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“Be the change that you wish to see in the world.”

Mahatma Gandhi

“Life is like riding a bicycle. To keep your balance you must keep moving.”

Albert Einstein
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Abstract

In computing the available computing power has continuously fallen short of the
demanded computing performance. As a consequence, performance improvement has
been the main focus of processor design. However, due to the phenomenon called

“Power Wall” it has become infeasible to build faster processors by just increasing the
processor’s clock speed. One of the resulting trends in hardware design is to integrate
several simple and power-efficient cores on the same chip. This design shift poses
challenges of its own. In the past, with increasing clock frequency the programs
became automatically faster as well without modifications. This is no longer true with
many-core architectures. To achieve maximum performance the programs have to run
concurrently on more than one core, which forces the general computing paradigm to
become increasingly parallel to leverage maximum processing power.

In this thesis, we will focus on the Reactive Stream Program (RSP). In stream
processing, the system consists of computing nodes, which are connected via commu-
nication streams. These streams simplify the concurrency management on modern
many-core architectures due to their implicit synchronisation. RSP is a stream pro-
cessing system that implements the reactive system. The RSPs work in tandem with
their environment and the load imposed by the environment may vary over time. This
provides a unique opportunity to increase performance per watt. In this thesis the
research contribution focuses on the design of the execution layer to run RSPs on
tiled many-core architectures, using the Intel’s Single-chip Cloud Computer (SCC)
processor as a concrete experimentation platform. Further, we have developed a
Dynamic Voltage and Frequency Scaling (DVFS) technique for RSP deployed on
many-core architectures. In contrast to many other approaches, our DVFS technique
does not require the capability of controlling the power settings of individual com-
puting elements, thus making it applicable for modern many-core architectures, with
which power can be changed only for power islands. The experimental results confirm
that the proposed DVFS technique can effectively improve the energy efficiency, i.e.
increase the performance per watt, for RSPs.
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Chapter 1

Introduction

Gordon Moore’s conjecture was: “The number of transistors placed on an integrated
circuit doubles approximately every two years” [101]. This became known as “Moore’s
Law”; it proved accurate for several decades and fuelled the growth of the computer
industry by providing faster processors. And yet the demand for computational power
has always exceeded the supply [98]. As an example, the recently released Oculas
Rift virtual-reality headset requires approximately 3.5x the rendering power needed to
render a game at the resolution of 1080p and frame rate of 60 frames per second. This
is due to the fact that the headset requires even higher resolution, higher refresh rate,
and 3D processing capabilities. This means that almost all of the Graphics Processing
Units (GPUs) which were capable of rendering a game a few months ago are not
powerful enough for the Oculas Rift [20].

The trend of shrinking transistors to increase clock speed and build a faster pro-
cessor worked well, but it meant that with a faster clock speed, more power was
needed per unit area. Although one might think that a smaller feature size means
less power consumption, the increased clock frequency and higher number of gates
have over-compensated this reduction. With the increase in required power per die
area came the problem known as “Power Wall”, i.e. processors generated so much
heat that dissipating this heat efficiently became a problem [8, 35], so much so that it
has become infeasible to build faster processors by increasing the processor’s clock
speed [119]. Furthermore, in the wake of green computing, the power available to a
processor is not increasing in comparison to the amount of data that is to be processed.
This has moved the industry’s focus from raw performance to performance per watt.
Another contributing factor is the rise of the mobile devices, for which a longer battery
life is usually desired.
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Physical barriers in making processors faster by increasing the clock frequency and
the need for energy-efficient computing have paved the way for many-core computing
to become mainstream.

One approach to the problem of reducing power consumption and increasing
processing power is to replace one complex and power-hungry core with several
simpler but more power-efficient ones [22, 23, 119].

As the heat and interference caused by increased clock speeds and shrinking
transistor size are starting to limit processor designs [22, 23], processors such as the
Intel Xeon Phi [30], ARM (Cortex A7 & A15) [45], Tilera TILE64 [13], and Kalray
MPPA2-256 [66] reflect a trend towards tiled many-core architectures. This trend
of increasing the number of cores integrated in a single die is expected to increase
steadily in the foreseeable future [22]. In addition to physical barriers, this move to
many-core chips is driven by a need to get more performance per watt.

This approach comes at a price. In the past, as the clock frequency increased,
programs running on these faster processors became faster without any modification.
However, this is not true anymore with the many-core architectures. To achieve
maximum performance, the programs have to run concurrently on more than one
core [119]. While parallel programming has a long tradition in the field of scientific
computing, to leverage maximum processing power made available by many cores on
the chip, the general computing paradigm has to become increasingly parallel.

This shift to parallel programming puts a burden on programmers, as the identific-
ation and exposition of the concurrency becomes the responsibility of the programmer.
Furthermore, programmers have to worry about the decomposition and mapping of a
computation to the cores to achieve optimal utilisation.

Another issue on many-core architecture is data consistency. Most current multi-
core Central Processing Units (CPUs) are organised around cache-coherent shared
address space, in which memory consistency is maintained by the hardware on behalf
of the programmer. However, in the Shared Memory Multiprocessor systems the
memory consistency is usually handled by the hardware, which incurs some protocol
overhead. This protocol overhead can vary, based on the used cache-coherency
mechanisms [92, 122]. As we add more cores to the chip, the protocol overhead
becomes a bottleneck and all gain from adding more cores is lost. The problem comes
from the fact that any technical implementation that exists today is based on the idea
of caches. In order to have a consistent view of memory across all cores it is necessary
to invalidate cache lines which are modified by other cores. The technologies that exist
today are not scalable for thousands of cores [92, 122]. As a solution, one approach is
to build a processor with no support of hardware-based cache-coherency; this seems
to scale well with hundreds or even thousands of cores.
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The programming difficulty and scaling are like two sides of the same coin. Now
we have architectures which can scale to hundreds or even thousands of cores, but
we are facing increasing difficulties in writing programs that run efficiently on them.
Moreover, in order to achieve optimal performance on such an architecture the pro-
grammer needs knowledge of the underlying hardware. As an example, General
Purpose Graphics Processing Unit (GPGPU) provides many computation cores, but
in order to get maximum performance the programmer has to know how and when
to move the data correctly from the main memory of the computer to the various
memories of the GPU hardware. Furthermore, the programmer has to take care of load
balancing, i.e. all cores taking part in a computation should have a nearly equivalent
workload. Otherwise, some cores will remain idle while others are processing data,
increasing the wall clock time that the program takes to complete [119], wasting
resources and increasing energy consumption as a result.

Effectively programming many-core architectures is currently the domain of ex-
perts. However, one programming paradigm that addresses the complexity involved in
achieving maximum processing power from such architecture is stream processing.

Under the stream processing paradigm, programs are constructed by computational
nodes connected by unidirectional communication channels. Each compute node can
be executed as soon as data is available on its input streams. Streams are communica-
tion channels to transfer sequences of data among computation nodes. These streams
simplify the concurrency-management on modern many-core architectures due to their
implicit synchronisation.

In this thesis, we will focus on stream programs that continually respond to
external inputs and process virtually infinite sequences of data. We refer to such stream
programs as Reactive Stream Programs (RSPs), to differentiate them from general
stream programs, where the programs respond to rather small and finite input data.
An example of RSP is real-time video encoding, where the encoder needs to process
incoming video frames as they arrive.

The RSPs work in tandem with their environment, where the load imposed by
the environment may vary over time. This provides a unique opportunity to increase
performance per watt. Optimisation of power consumption is important, especially if
RSPs are used in resource-constrained environments.1 For example, if the system load
imposed by the environment varies over time, the use of dynamic power management
techniques like Dynamic Voltage and Frequency Scaling (DVFS) can be used to
effectively reduce the power consumption of such systems. Expanding the example of
real-time video encoding, the computational resources needed vary greatly depending
on the captured scenery: detailed sceneries with fast, complex movements are much

1Although even for High Performance Computing (HPC) the power consumption is a huge problem.
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more computationally intensive than still scenes with few details. The challenge in
dynamic power management for RSPs is to save power at the right time, without
violating the system’s throughput and latency constraints. This is a hard problem,
because the future resource requirements can be unpredictable for many important
applications.

In this thesis, we present an execution layer that provides light-weight DVFS
support for RSPs. We target the Single-chip Cloud Computer (SCC) many-core
processor as a concrete example to evaluate our approach. The SCC is a research
processor from Intel. It provides 48 cores and a flexible infrastructure for DVFS.
Compared to other commercially available tiled many-core architectures, it supports
more independent on-die voltage and frequency domains. Moreover, since the SCC is
based on IA-32 cores, a legacy benchmark code can be easily ported.

1.1 Research Questions

Although RSPs are in general well suited for many-core architectures, they work in
tandem with their environment, in which the load imposed by the environment may
vary over time. Keeping this in mind, this thesis is motivated by the following research
question:

Is it possible to improve the adaptive resource utilisation and improve the
energy efficiency of RSPs on many-core platforms by exploiting knowledge
about the states of the system?

This question is split into the following sub-questions:

1. What is an efficient way to port an existing RSP execution layer to the SCC?

2. What are meaningful performance-indicators to identify the workload situation
of an RSP on a many-core processor?

3. Is it possible to have these performance-indicators to be independent of any
specific hardware feature of that many-core processor?

4. What are the adequate strategies to optimise the performance per watt of RSPs
on many-core platforms?

5. Is it possible to design DVFS strategies that are light-weight and simple, but still
adequate to provide substantial reduction in energy consumption of RSPs?
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1.2 Contributions

This thesis will make the following contributions, aiming to answer the proposed
research question:

1. The development of the first RSP execution layer for the many-core processor
SCC that retains the shared memory programming model.2

2. We present the Hierarchical Allocator (HALLOC), a novel hierarchical memory
creation and management scheme for the SCC.

3. We discuss and identify performance metrics to identify the workload situation,
which can be used to develop DVFS strategies for RSPs on many-core processors.
These metrics do not depend on any specific hardware features of the many-core
processor.

4. We present Resource-Aware Light-weight Parallel Execution Layer (RA-LPEL),
a resource-aware execution layer for RSPs on many-core architectures.

5. We evaluate the effectiveness of our DVFS method for RSPs in terms of im-
provement of energy efficiency.

Contributions 1 and 2 answer the first research sub-question, i.e. finding an effi-
cient way to port an existing RSP execution layer to the SCC. We have developed the
so-called HALLOC memory manager, which provides a way to create the illusion of a
shared memory on the SCC. Furthermore, it also hides the cumbersome details of alloc-
ation and deallocation from the end-user, offering a simple Application Programming
Interface (API) to work with. The main distinction of HALLOC—that separates it
from multi-threaded memory allocators—is that it is not simply a memory manager;
instead it is a complete mechanism that creates the shared memory—the instance of an
Operating System (OS) running on the SCC is not aware of the existence of this shared
memory—at the application level and provides functionality to manage this memory.

Contribution three addresses both the second and third research sub-questions,
since they are intertwined. We consider the throughput and available resources as
major indicators of performance of the RSPs. Furthermore, the available resources
and throughput can be considered to be independent of hardware architecture.

2There has been before a successful attempt to port a stream-processing environment to the
SCC [135]. This approach was made for a concrete coordination language, called S-Net. Our ex-
ecution layer is not bound to a particular coordination language, and did not require refactoring the code
for the sake of avoiding shared memory communication.
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Contributions 4 and 5 answer the fourth sub-question by introducing the RA-LPEL
and by experimentally evaluating the different DVFS policies on the actual hardware.
We report a substantial reduction in energy consumption.

1.3 Publications

Most of the work in this thesis has been published in the following papers:

• Nilesh Karavadara, Simon Folie, Michael Zolda, Nga Nguyen, Raimund Kirner,
“"A Power-Aware Framework for Executing Streaming Programs on Networks-
on-Chip”, In Proc. International Workshop on Performance, Power and Pre-
dictability of Many-Core Embedded Systems (3PMCES), Electronic Chips
and Systems Design Initiative (ECSI), Dresden, Germany, March 2014. doi:
10.13140/RG.2.1.1684.4400. Available at http://dx.doi.org/10.13140/RG.2.1.
1684.4400

• Nilesh Karavadara, Michael Zolda, Vu Thien Nga Nguyen, and Raimund Kirner,
“A Hierarchical Memory Management for a Load-Balancing Stream Processing
Middleware on Tiled Architectures”, In 18th Workshop on Programming Lan-
guages and Foundations of Programming (KPS’15), Technische Universität
Wien, Pörtschach, Austria, October 2015. Available at http://www.complang.
tuwien.ac.at/kps2015/proceedings/KPS_2015_submission_50.pdf

• Nilesh Karavadara, Michael Zolda, Vu Thien Nga Nguyen, Jens Knoop, and
Raimund Kirner, “Dynamic Power Management for Reactive Stream Processing
on the SCC Tiled Architecture”, EURASIP Journal on Embedded Systems,
2016(1):1–17, June 2016. ISSN 1687-3963. doi: 10.1186/s13639-016-0035-9.
Available at http://dx.doi.org/10.1186/s13639-016-0035-9

1.4 Structure of the Thesis

The remainder of this thesis is organised as follows:
Chapter 2 provides the necessary background in the context of this thesis. This

includes stream programming with details on models, languages, and properties of
stream programs. Furthermore, we describe the execution model for S-Net language.
This includes the description of the S-Net language, followed by the detailed descrip-
tion of the compiler, the Runtime Systems (RTSs), and the execution layers for the
S-Net. This chapter also covers some aspects of power and the energy optimisation
for computers in general. An overview of the Network on Chip (NoC) architectures

http://dx.doi.org/10.13140/RG.2.1.1684.4400
http://dx.doi.org/10.13140/RG.2.1.1684.4400
http://www.complang.tuwien.ac.at/kps2015/proceedings/KPS_2015_submission_50.pdf
http://www.complang.tuwien.ac.at/kps2015/proceedings/KPS_2015_submission_50.pdf
http://dx.doi.org/10.1186/s13639-016-0035-9
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is also provided with examples. In addition to the S-Net, we also provide a detailed
description of the Intel’s experimental research processor, the SCC. S-Net serves as a
programming language for the RSPs and the SCC is used as a research vehicle for the
experimental evaluation of our approach in this work.

Chapter 3 describes HALLOC, a novel hierarchical shared memory creation and
allocation mechanism that forms part of the execution layer. It includes design criteria
and a detailed implementation explanation of HALLOC. In addition, we will describe
the execution layer initialisation procedure on the SCC hardware.

Chapter 4 covers definitions of workload and resource usage situations in general.
In addition, it also provides a formal definition of load ranges for RSPs with different
arrival rate, and then extends them by taking into account the impact of DVFS.

Chapter 5 discusses RA-LPEL, an execution layer with resource awareness for
RSPs. This chapter covers the heuristics used in our experimental evaluation to adjust
power consumption. Furthermore, we also describe various DVFS policies. In addition,
we introduce guidelines which governs when to employ DVFS based on system state.

Chapter 6 starts by introducing a set of use cases of RSPs. These use cases are
used as experimental benchmarks to evaluate efrficiency of our DVFS policies its
impact on RSPs. Furthermore, experimental results are reported and analysed, with a
focus on performance and energy optimisation.

Chapter 7 discusses the related work of this thesis, focusing on three main areas:
another approach that targets the SCC with S-Net, memory-management, and energy
optimisation. The related work in memory-management area covers approaches that
focus on providing the shared memory-management functionality for NoC, while the
related work for power optimisation covers approaches that use DVFS to reduce energy
consumption.

Chapter 8 summarises the work. It also discusses future research directions.





Chapter 2

Background

This chapter provides the necessary background for the rest of the thesis. In § 2.1
the programming paradigm on which we are focusing in this work is discussed.
Introduction to the stream programming model is covered in § 2.1.1 and in § 2.1.2 we
study the properties of the stream programs. An overview of different stream languages
is provided in § 2.1.3, followed by an account of Reactive Stream Programs (RSPs)
in § 2.1.4. Detailed description of the execution model of RSP with a concrete
example of S-Net language is provided in § 2.2. For S-Net we provide an in-depth
overview of the language in § 2.2.1, while the compiler, the Runtime Systems (RTSs),
and execution layers are covered in § 2.2.2, § 2.2.3 and § 2.2.4 respectively. A brief
study of the power- and energy-optimisation is presented in § 2.3. We review some
of the examples of the multi-core/many-core Network on Chip (NoC) architectures
in § 2.4. Finally, § 2.5 describes Intel’s Single-chip Cloud Computer (SCC), an
experimental processor with fine-grained Dynamic Voltage and Frequency Scaling
(DVFS) capabilities. In the context of this thesis we use the S-Net and the SCC as a
research vehicle to conduct experiments.

2.1 Stream Programming

The philosophy behind stream/data-flow programming provides a drastically different
way of looking at the computation from the von Neumann architecture with control-
flow. In control-flow, the focus is on how control moves through the program and the
order of the computation. In data-flow, the focus is on how data moves through the
program and the availability of the data. With data-flow style scheduling becomes the
responsibility of the system, and not of the programmer.

In data-flow programming a program is modelled as a directed graph of the oper-
ator nodes representing computations, connected by arcs representing data path. In
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contrast to control-flow paradigm, the activation/execution/firing of the operator node
is dependent on the availability of the data on its input arcs. For readers interested in
broadening their knowledge of the field of the data-flow programming, we list some
surveys as invaluable resources [2, 63, 123, 139].

Similar to the data-flow programming paradigm, a program in stream programming
is described by a directed graph in which the operator nodes denote operations and the
arcs connecting them denote data dependencies between operations. For convenience,
from now on we will refer to operator nodes simply as nodes. In the stream program-
ming, the data arcs are represented as streams. Now what do we mean by streams?
According to Lee and Parks there exist different definitions of the term stream in
the literature [88]. One definition, for example, from Landin [84] and Burge [25],
describes streams with recursion and lazy semantics. In this definition a stream is
composed of two parts: first is the value of the head of the stream and the second is
the procedure, which when evaluated produces the rest of the stream. According to
another definition by Franco et al. [39] and by Dennis [34], streams are regarded as
channels, or an infinite—or finite with unknown quantity—sequence of elements. In
the context of this thesis, we use second definition, with which streams are regarded as
channels.

2.1.1 Stream Programming Models

With the introduction of the Kahn Process Network (KPN), Kahn’s main intention
was to model concurrent systems, but the model has proved to be a convenient way
to model signal processing systems as well [64, 65]. In KPN, the operator node is
called a coroutine or process, while stream is identified as channel. The processes
of a KPN are deterministic and can be modelled as a sequential program, i.e. for
the same input they always produce exactly the same output. The channel is an
unbounded First In First Out (FIFO) queue. Since the channels are unbounded and
processes are deterministic, the resulting KPN does not depend on the computation
or communication delays and exhibits deterministic behaviour. Processes read/write
atomic data elements called tokens from/to channels. Since channels are unbounded,
write operation is non-blocking, i.e. a process can write a token to the output channel at
any time. In contrast, a reading operation is blocking, i.e. a process becomes blocked
when reading from an empty input channel.

Since KPN channels are unbounded, a buffer overflow or even deadlock is possible.
It is difficult to schedule a KPN because of the need to balance relative process rates.
In 1987, Lee and Messerschmitt proposed Synchronous Data Flow (SDF), a restricted
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version of KPN [86, 87]. When a process in the SDF is invoked,1 it consumes/produces
a fixed number of tokens from each of its input/output channels. For an SDF graph,
the rate at which a node consumes/produces tokens is known a priori. This makes
the number of tokens produced/consumed independent of the input data. In order to
avoid deadlock, each channel in SDF has an associated property called delay, which
corresponds to a sample offset between the input and the output. A channel with some
delay d means that the first d number of tokens in that stream is not produced by a
node, but is part of the initial state of the program. With the introduction of delay and
knowledge of the token rate, SDF does not require unbounded channels as KPNs and
it is guaranteed to have a static schedule.

2.1.2 Properties of a Stream Program

According to observations [103, 123] stream programs can be classified by properties
of their nodes and streams, such as:

Stream Communication Type Streams can be either uni-directional or bi-directional.
In the case of the former, data travels in only one direction, while in the case of
the latter data can travel in either direction. For example, let’s look at the two
nodes A and B connected by stream S. In the case, when S is uni-directional
only one node can write to the stream while another node can only read from it.
If stream S is bi-directional, both nodes A and B can read and write from/to the
same stream.

Node Computation Type Computation performed by a node can be functional or
non-functional. A functional node F with the same input I always produces the
same output O; there is no state that can change this. A non-functional node
NF with the same input I, may produce a different output, depending on other
factors, e.g. the internal state of the node.

Node Computation Behaviour The behaviour of a node can be constant or variable
through the execution. For example, does the processing time for messages stay
constant or does it change based on the input value of the message? Another
example is multiplicity2, which stays constant regardless of change in the input
message or the node’s internal state in case of constant behaviour, whereas it
would change if the node behaviour was variable.

1Hereafter, we will use the term invoke to describe the action when a node performs its computation
once. This action is also identified as execution, firing or activation.

2Multiplicity of a node is the ratio of the number of input messages to the number of output messages
per node invocation. A node with multiplicity of n-to-m, consumes n messages from its input stream
and produces m messages on its output stream on each invocation.
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Inter-node communication The communication that takes place over the stream
between two nodes can be synchronous or asynchronous. If the communication
is synchronous then there has to be a mechanism in place that would support
synchronisation between the transmission and reception of the messages, i.e. a
global clock. In case of asynchronous communication, there is no synchronisa-
tion taking place between transmission and reception, and as such a notion of
time does not exist for communication purposes between nodes. In this case,
reading and writing of the messages are proceeded independently.

Program Structure The structure of the program can be static or dynamic. For a
program with property of static structure, the graph of the program in terms of ar-
rangement and the number of nodes and the relationship between them by means
of stream connection would not change. For a program with dynamic structure,
the number of streams, the number of nodes, and the connection between them
can change dynamically during the execution lifetime of a program.

2.1.3 Stream Programming Languages

As noted in [123] a number of programming languages have integrated the concept of
streams. An exhaustive listing of the features of all the streaming languages can be
very long. Bearing that in mind, we will give a brief overview of some of the notable
languages here.

Each language introduces its own terminology to describe components of the
language, some of the examples are:

The graph representing the application contains the vertices representing compu-
tation and edges representing connection between them, also denoted as the
network or an execution plan

Vertices representing computation are also denoted as operator node, operator,
node, function, kernel, filter, component, or box

Edges representing connection are also referred to as channel, data path, stream, or
data arc

The action performed by a node is denoted by terms invocation, execution, firing
or activation

A single unit of data travelling on a stream can be identified as envelope, message,
or record
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The functionality of Bobolang [36] e.g. basic operators and data types, is imple-
mented and compiled natively in the underlying systems, e.g. in C++. The streams
are uni-directional, while the program structure is dynamic. The data is processed
by operators. The operators are made up of two parts: The first part contains strictly
serial computation called sub-operators, i.e. it should not be possible to decompose
it any further. The second part specifies how all the sub-operators of an operator are
connected. Apart from user-specified sub-operators, there are two implicit special
sub-operators that define the input and the output for the operator. Each operator
may have multiple inputs or outputs, which in turn allow operations like gather and
scatter. The technical documentation presents a detailed description of the language
syntax [12].

The application development environment called Auto-Pipe [27] is geared towards
simplifying the development of complex streaming applications for hybrid architec-
tures. In order to achieve its goal, Auto-Pipe uses a coordination language called X [40]
to connect kernels written in traditional languages in a data-streaming style, i.e. X can
express the nodes and edges of a task-processing graph, as well as the configuration,
platform definition, and device bindings. X allows representation of a program in
terms of coordination and communication of kernels written in a different computation
language. Since Auto-Pipe is targeting hybrid architecture, each kernel may have
several platform-specific implementations, e.g. American National Standards Institute
(ANSI) C, Compute Unified Device Architecture (CUDA), and VHSIC Hardware
Description Language (VHDL). All platform-specific implementations of a kernel are
required to provide the same interface and streaming data semantics, e.g. input/output
ports and data types. This in turn guarantees the correctness of a program, regardless
of where each kernel is mapped. The runtime of X is responsible for making sure that
the data arrives at the correct kernel, even if it is executed on a different platform. In
addition to language X, the Auto-Pipe environment has X-Com, a compiler that takes
in the application’s specification of computation, resources, and a topology of these
resources to generate a set of source files that can be compiled for each device in the
system. The X-Dep, an application deployment tool, is used to deploy the application
on the target hardware.

StreamIt [127] from Massachusetts Institute of Technology (MIT) is believed
to be the most popular streaming language based on the ideas of the SDF in the
research community. StreamIt is accompanied by an optimising compiler and a RTS.
Since StreamIt employs the SDF model, it requires the kernel to have static input
and output rates. That is, the number of items consumed on the input stream and
produced on the output stream must be constant, from one invocation to the next. Every
StreamIt program is a hierarchical composition of three basic stream structures, called
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Pipeline, SplitJoin, and FeedbackLoop. Although StreamIt is based on SDF, which
requires synchronous communication between kernels, it also has a distinct feature
called teleport messaging the ability to send control messages to other kernels as an
asynchronous method call. These control messages are used to change the behaviour
of the receiving kernel. In addition, as these control messages do not use the same
infrastructure as data items, they can be communicated to the kernels independently
of the data-flow graph of an application. To support node synchronisation, StreamIt
introduces the conception of information flow, in which messages can carry timing
information when transferred over streams [128]. This is required as all the kernels
in StreamIt execute independently, without any notion of global time. Since StreamIt
is based on the SDF model, it only supports a static schedule. This in turn allows
the compiler to perform enough analysis and optimisation to produce an efficient
implementation.

S-Net is a declarative coordination language that aims to support the transition
from sequential code to parallel code, where the concurrency handling is completely
managed by S-Net [49]. The kernels are implemented in an independent computational
language, e.g. ANSI C. The streams in S-Net are uni-directional. In contrast to
StreamIt, the program structure in S-Net can be changed dynamically at runtime
and S-Net provides asynchronous communication over streams. Furthermore, there
is no restriction on the rate of consumption/production of messages on the streams.
Compared to StreamIt, S-Net is more general and closer to KPNs. We will cover S-Net
with a more detailed description in Section 2.2.

2.1.4 Reactive Stream Programs

Harel and Pnueli [56] separated the computing systems into two classes: transforma-
tional systems and reactive systems. In transformational systems, a computer program
is considered like a black box that accepts inputs, produces outputs by performing
transformations on the inputs, and terminates. Transformational systems can be com-
pletely described as relations between their inputs and outputs. In contrast, only the
relation between inputs and outputs cannot describe reactive systems completely. Re-
active systems continuously respond to external inputs, i.e. a reactive system maintains
an ongoing relationship with its environment by continuously interacting with it.

According to Berry [18] reactive systems can be broken down into two categories
based on their relationship with its environment: reactive systems and interactive
systems. The systems that continuously respond to external stimuli produced by their
environment at the same speed at which the environment produces it are reactive
systems, i.e. the environment decides when to produce the stimuli and the system
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responds to it. In contrast, interactive systems respond to external stimuli produced by
their environment at their own speed.

The distinction between reactive and interactive systems is based on how they
respond to stimuli from their environment, i.e. it is based on a program’s semantics,
although there is no structural difference between a reactive and interactive system.
Taking this into account, we use the same definition of a reactive system as in Harel and
Pnueli [56], which covers both interactive and reactive systems and takes no account
of the way they respond to their environment.

We use the term Reactive Stream Program (RSP) as it is by Nguyen [103]
to describe programs that fit into the category of a reactive system based on the
definition above and designed as a stream program, i.e. RSPs are stream programs
that continuously react to potentially never-ending stimuli from their environment, in
contrast to a stream program with a rather small and finite input.

We will use image filter application as a running example of an RSP. Figure 2.1
shows the structure of an image filter application. The application includes a node
Splitter that reads messages (possibly infinite) containing images from the environment
and splits them into messages containing sub-images. The messages with sub-images
are sent to different branches where Filter nodes perform the actual filtering operation.
Messages containing the filtered sub-images are then sent to the Merger node, which
combines them into complete images and sends them out to the environment.

As we know in RSPs, data arrives from the environment as a virtually infinite
sequence of messages. Nodes that receive messages from the environment are called
entry nodes and the input messages of these entry nodes are called external input
messages. In our example, node Splitter is an entry node. In similarity to entry nodes,
nodes sending messages to the environment are exit nodes. The messages produced
by exit nodes are called external output messages. The node Merger is an exit node,
as can be seen from Figure 2.1. The nodes that are between entry and exit nodes are
called intermediate nodes and, as such, all the messages inside the RSP are referred to
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as intermediate messages, i.e. the messages that are not external input/output messages.
In our exemplary image filter application, nodes Filter0 to Filtern are intermediate
nodes.

Conceptually, the execution model of an RSP includes three layers: a compiler,
an RTS and an execution layer. The compiler parses the source code of an RSP and
generates the object code.

The RTS enforces the RSP’s semantics and uses the object code to allocate runtime
objects. In terms of enforcing semantics, the RTS makes sure that each Runtime
Component (RC) reads from and writes to appropriate streams. The runtime allocation
of the objects includes, but is not limited to, the FIFO buffers that represent streams
and RC that represents an instance of a node or an operator.

The execution layer below the RTS, transforms RCs into executable objects called
tasks and provides an implementation of FIFO buffers to transfer messages between
these tasks. The execution layer also provides a scheduler to distribute tasks to physical
resources. In simple terms, a task is an iterating process that reads messages from
its input streams, performs the associated node’s computations, and writes output
messages to its output streams. Each iteration of a task is called RC invocation. The
term multiplicity defines the ratio of the number of input messages to the number of
output messages per RC invocation. A task with multiplicity of n-to-m, consumes n
messages from its input stream and produces m messages in its output stream on each
invocation.

2.2 Execution Model of RSPs with S-Net as an Example

As we already know, conceptually the execution model of an RSP includes three layers:
a compiler, an RTS, and an execution layer. We use S-Net as a reference language
and describe its compiler, RTS, and execution layer. The execution model of S-Net is
illustrated in Figure 2.2.

2.2.1 S-Net Language

S-Net [49] is a declarative coordination language. The main design principle of S-Net
is to separate computations from concurrency management aspects. S-Net is a pure
coordination language, as it does not provide the features to express computations
but offers a notation for describing data dependencies in computation. In S-Net
the computational logic is encapsulated inside the individual stateless computation
components called boxes. S-Net relies on auxiliary language to implement these boxes.
In principle, any conventional programming language can be used to implement boxes.
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net imageFilter ({image}→{filteredImage})

{

box Splitter((image) → (subImage, <branch>));

box Filter((subImage) → (subImage));

box Merger((subImage, <branch>) → (filteredImage));

} connect

Splitter .. Filter!<branch> .. Merger;

Listing 2.1 S-Net Implementation of the Image Filter Application

Currently, interfaces for a subset of ANSI C and Single Assignment C (SAC) [48]
are provided to be used as a box language. The boxes are connected by streams that
facilitate communication between them.

The term network is used to describe an application in S-Net with multiple boxes
connected via streams. Each box in S-Net is a Single Input Single Output (SISO)
component, i.e. they have a single input stream and a single output stream. These
two streams connect a box to the rest of the network. The SISO components are
either boxes or previously constructed networks. Large and complex networks can be
constructed by combining these SISO components together. Any network, irrespective
of its size and complexity, again is a SISO component.

Listing 2.1 shows the S-Net code of our running example of image filter application.
In the S-Net, data in the form of the message travel through the streams. Each message
is comprises a set of label-value pairs. There are two types of labels called fields and
tags. Fields are completely opaque to the S-Net RTS and it gets manipulated only
inside boxes, as they are associated with values from the box language domain. In
contrast to fields, tags are integer numbers and accessible by both the S-Net RTS and
the user-defined boxes. To differentiate the tag and the field, the tags are enclosed
within angular brackets. In our running example of an image filter, <branch> is a tag
while image, subImage and f ilteredImage are the fields.

The behaviour of the network and box in S-Net is declared by a type signature:
a mapping from a single input type to one/multiple output type. In our example,
node Splitter accepts messages with an image as an input and produces messages that
contain the subImage as a field and <branch> as a tag. Let’s look at a more complex
example;

box foo ((a, <b>) → (c) | (c, d, <e>)

);

The box foo accepts messages with field a and tag <b> and produces messages
with either field c or with fields c, d and tag <e>.
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foo bar

Figure 2.3 Serial Composition

To loosen the restriction of a single input type, S-Net supports an inheritance
mechanism, called flow inheritance. This allows a box to accept all sub-types of the
box’s declared input type. Excess fields and tags of a message are bypassed through the
box. That means that when a message arrives to a box, only entries with listed labels
in the input type are taken by the box to generate output messages. These additional
fields and tags are then added to each message emitted by the box in response to the
input message if the output message does not contain the field and tags of the same
name already. This means box foo receives any input records that have at least field a
and tag <b>, but also records with further fields and tags. In our running example, the
node Splitter produces messages with type (subImage,<branch>), whereas the next
node Filter accepts messages with the type (subImage). In this case, tag <branch> is
bypassed and added to the output messages that are sent to node Merger.

In addition to the boxes implemented in the box language, there are two built-in
types of boxes in the S-Net, the filter box and the synchrocell. The filter boxes support
simple operations on the messages including adding or removing fields, splitting
messages, and simple computations on tags. Since boxes/networks in S-Net are SISO,
if a box/network requires data from several messages as input, these messages have
to be merged first. S-Net provides synchrocell to do just that. A synchrocell is
parameterised over the type of message that it is supposed to merge. As soon as it
receives messages of all matching types, it releases a single combination of these
messages. After producing the merged message, the synchrocells serve as an identity
function, forwarding all incoming records.

In order to construct a network composed of boxes that represents a stream program,
S-Net provides five network combinators.

Serial composition (denoted as ..) and parallel composition (denoted as |) allow
the construction of pipelines and branches respectively. Both combinators are static,
in the sense that only one instance for each of their operands is created. As can be
seen in Figure 2.3, serial composition connects two components serially. For example,
in f oo..bar serial composition connects the output of operand f oo to the input of
operand bar. Parallel composition of f oo|bar connects f oo and bar in parallel. This
can be seen in Figure 2.4. The message is routed to the operand network that best
matches its type [49] by parallel compositor.
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Figure 2.6 Parallel Replication
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foo <Feedback>

Figure 2.7 Feedback Loop

The next two combinators are dynamic, in the sense that they create replicas of
their operands on demand. Serial replication (denoted as ⋆) and parallel replication
(denoted as !) allows construction of pipelines and branches of dynamic lengths
respectively. The serial replicator in f oo⋆ stop will replicate the operand network f oo
and join then serially until the exit pattern stop is met. Serial replicator is illustrated
in Figure 2.5. Parallel replicator in f oo!<T > as depicted in Figure 2.6 will create
instances of its operand f oo for every unique tag value <T > and combine them in
parallel. Each message arriving to parallel replication is processed by only one of
these instances. The tag value <T > will determine which instance will process the
message and then message is routed accordingly.

The feedback combinator (denoted as \) is similar to a serial replication combinator
as it takes one operand, but instead of an exit pattern it takes a continue pattern. If the
message on the output stream matches the continue pattern, it is sent back as an input
message to that operand. Figure 2.7 shows the feedback combinator for f oo\continue,
where a feedback loop around the operand f oo is created. All the messages matching
the continue pattern continue will be sent back to f oo as input messages.

Only serial composition preserves message order, while others do not due to the
fact that messages travel through different branches. In order to allow preservation of
the message order, S-Net provides deterministic variants of these combinators. They
are denoted as || for parallel composition, ⋆⋆ for serial replication, and !! for parallel
replication.

To support stream programs on a distributed system, the S-Net language is extended
with a concept of nodes and placement [50, 51]. A node is an abstract location—
representing a Processing Element (PE) in a distributed system—at which the network
or part of it can be placed. These locations are restricted to being a plain integer
number, to keep the model as general as possible. As nodes are logical, the mapping
between node and physical device is implementation-dependent. In order to cater for
placement, S-Net is extended by two placement combinators.

The static placement combinator (denoted as @NUM) takes one operand and a
location. The operand will be mapped statically to the PE indexed NUM. In (A..B)@1
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the operand (two boxes A and B connected by serial composition) will be mapped to
the PE indexed 1. The dynamic placement combinator (denoted as @<t>) supports
only the parallel replicator. In (A..B)!@<t> each unique branch of (A..B) is created,
based on the tag <t>, and will be mapped to the PE with the same index as the tag <t>.
In a case in which the placement is not annotated, the operand is mapped to the default
PE with index 0. The S-Net language report [52] provides a more formal and in-depth
description of S-Net language and supporting features.

2.2.2 S-Net Compiler

The compilation process of an RSP written in S-Net is composed of various stages,
e.g. parsing, type inference, type checking, optimisation, and code generation. In the
first stage, the S-Net source code passed as an input to the compiler is transformed to
Abstract Syntax Tree (AST) representation. Next the compiler carries out the most
important task of type inference together with various optimisations and annotations.
Next the decision functions—this decision is used by the RTS for routing purpose—are
generated, based upon user-defined types, patterns, and from the inferred type inform-
ation. Finally, the compiler generates C-code in a portable format called the Common
Runtime Interface (CRI) [47]. More in-depth details of the compilation process are
covered in the S-Net implementation report [46]. To generate the executable, a C
compiler is used to link the object code generated from CRI, the box function object
code, and S-Net RTS libraries.

2.2.3 S-Net Runtime Systems and Distribution Layers

Currently for S-Net there are two different RTSs available: S-Net RTS and FRONT [43,
44]. FRONT employs work-stealing mechanism to distribute work to PEs. It also
performs transformation on some patterns, e.g. synchrocell followed by serial replicator
is turned into a specific box implementation, making it much more efficient than
standard S-Net graphs. Since we are only focusing on S-Net RTS remaining discussion
will be limited to S-Net RTS as RTS of choice for S-Net.

The interpretation of the CRI format, takes places in the RTS. A component
included in S-Net RTS called CRI deployer transforms the CRI format to the actually
executed representation of the S-Net stream network. The CRI deployer, together with
modules for the types and patterns, Input/Output (I/O) communication, box language
interface, task manager, stream manager and distribution, make up S-Net RTS. The
task manager provides functionality such as task-creation and destruction. Similarly,
the stream manager facilitates stream creation and destruction functionality.
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The CRI deployer is specific to an RTS as it implements the final transformation
of the network representation to target architecture. The CRI deployer takes the CRI
code and produces representation of the original S-Net program as a graph called RC
graph that contains RCs connected by streams. Each RC in a RC graph represents
an S-Net entity or an operator. Since a box/network in S-Net is SISO, the stream is
represented as a single reader and single writer FIFO buffer. The S-Net RC graph is
directed and acyclic.

Serial composition is the simple case where operands are connected by pipelined
streams, and therefore no extra entity is required as can be seen from Figure 2.3.
Figure 2.4 shows parallel composition, in which two entities called parallel compositor
and collector can be observed. The parallel compositor distributes messages from
its input stream to operand branches. The collector gathers output messages from its
operand branches. Similarly, as can be seen from Figure 2.5 and Figure 2.6, serial and
parallel replications also features these operators, but in addition to distributing the
messages they also generate a new operand instance dynamically based on need, i.e.
depending on exit pattern in serial replication and tag value in parallel replication. The
serial/parallel replicator and parallel compositor can be also called dispatcher as its
main function is to dispatch the incoming message to appropriate RCs.

A distribution module manages distribution of tasks to physical computational
resources. Currently S-Net supports multiple distribution strategies. This includes the
default distribution layer nodist, which uses shared memory to provide communication
and is applicable for shared memory multi-processor systems. An alternative is an
mpi distribution layer which uses Message Passing Interface (MPI) [38] to facilitate
communication and is part of distributed S-Net [51]. Another layer scc is similar to
mpi distribution layer, but instead of MPI for communication it utilises SCC specific
features to provide communication [135, 136].

2.2.4 S-Net Execution Layers

Currently S-Net supports multiple execution layers, e.g. PTHREAD [47] and Light-
weight Parallel Execution Layer (LPEL) [112].

The PTHREAD layer maps each S-Net entity to a dedicated Portable Operating
System Interface [for Unix] (POSIX) thread [60]. As the threads in this layer are
managed by an Operating System (OS) scheduler, it may suffer from cache- and
context-switch related overheads. This is due to the nature of S-Net in which active
entities tend to quickly exceed the number of available cores. The read/write operations
on streams in this layer are protected by POSIX mutexes.
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The LPEL was designed to overcome the problem faced by the PTHREAD layer.
The LPEL creates as many threads as the number of the available processing cores.
These threads are called workers in LPEL. Each S-Net entity is mapped to a lightweight
coroutine. This alleviates the scheduling decision from an OS level to the LPEL level.
In addition, LPEL also makes it possible to collect monitoring information, such as
execution time of box entities or buffer usage. The read/write operations on streams in
this layer are protected by atomic processor instructions, which emulate semaphores.

Since our work revolves around LPEL we will keep our discussion limited to
this particular execution layer. The execution layer also provides a scheduler to map
computation to resources. The LPEL provides two schedulers described in work by
Prokesch [112] and Nga [103]. The former provides a decentralised scheduler in
which the task to core mapping is done statically, while the latter provides a centralised
scheduler and demand-based priority for tasks. We will describe the latter in detail as
we also use the same in our work.

2.2.4.1 LPEL - A Stream Execution Layer with Efficient Scheduling

The LPEL is an execution layer designed for S-Net which allows collecting monitoring
information and provides control over mapping and scheduling of tasks. In addition,
it provides task- and stream-management functionality. LPEL adopts a user-level
threading scheme providing the necessary threading and communication mechanisms
in user-space. It builds upon the services provided by the OS or virtual hardware, such
as kernel-level threading, context switching in user-space, atomic instructions, and
timestamping.

Figure 2.8 shows an abstract design of the LPEL. In LPEL, each core is modelled
as a worker. A special case of a worker is called conductor. A task is ready when it has
all of its data available on its input stream and its output stream is not full. The LPEL
scheduler does not map tasks to worker permanently. Instead, ready tasks are stored in
a queue called Central Task Queue (CTQ). It is the responsibility of the conductor to
manage this CTQ. The scheduler uses the notion of data demands on streams to derive
the task priority. The built-in monitoring framework is used to retrieve stream state
information at runtime and to analyse data demands. When a worker is free, it sends a
request for a new task to the conductor. On each request for a task from a worker, the
conductor retrieves the task with the highest priority and sends it to the worker. While
the worker is executing the task, the conductor updates the CTQ, and also updates the
task priority if needs be, without interrupting workers.

All the conductor-worker communications are exercised via mailboxes. The com-
munication takes place only between conductor and worker; worker-worker commu-
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nication is not allowed. The mailbox basically consists of a message queue, in which
messages are enqueued by conductor/workers and dequeued only by the owning work-
er/conductor. As the workers access the mailboxes of the conductor concurrently, care
must be taken to ensure corruption-free operations of the mailbox—atomic operation
or PTHREAD mutexes are used to protect critical region.

The streams in LPEL are uni-directional and implemented as FIFO buffers. The
read/write operations are protected by atomic operation or PTHREAD mutexes. Reading
from an empty stream will put the task into a blocking state. Since the streams are not
bounded, writing is always successful.

2.2.4.2 Distributed S-Net with LPEL

We already know that the S-Net language is extended with a concept of nodes and
placement to support the distributed system. Each PE on the distributed system is
equipped with its own S-Net RTS and LPEL/PTHREAD execution layer. There is no
shared memory to provide communication between workers in LPEL. For this reason
the centralised version of scheduler can not be used. Prokesch [112] implements a
decentralised scheduler for LPEL that features a local scheduler for each worker. This
scheduler is a perfect fit for such a distributed scenario—of course as an alternative to
the Pthread based execution layer.

The compiler first takes the S-Net program with placement annotations and gener-
ates the PE specific CRI code. Each PE runs an instance of its own S-Net RTS and
LPEL layer with a decentralised scheduler. Each PE uses CRI code to create LPEL
tasks and streams as usual. Once the task to PE mapping is done at the compile time,
it is not changed during the run time. PE-specific LPEL instance with decentralised
scheduler controls the scheduling of tasks within the PE.

S-Net RTS provides three components called, Input Manager (IM), Output Manager
(OM) and the Data Fetcher (DF). When a stream crosses the PE boundary it is re-
gistered with a manager, input stream with IM, and output stream with OM. The
task reading/writing to the stream performs operations as normal, while IM/OM
transparently moves messages between different PEs.

Let us now look at a simple example: tasks t1 and t2 are connected serially and
are located on different PEs, PE1 and PE2 respectively. When t1 produces a message
on its output stream, OM on PE1 reads the message and by using MPI sends it to the
IM of the corresponding PE, PE2 in our case. The IM on PE2 also uses the MPI to
receive the message. Once it has the message it writes it to the corresponding stream,
the input stream of t2 in our case.
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When a message is to be sent across a PE boundary, only the representation of
the field data is sent instead, to avoid unnecessary data transfers. The representation
consists of a Unique data Identifier (UID) and the location of the PE where the actual
data is held. This mechanism allows the avoiding the transfer of data until it will be
actually needed by a task. At this point, the DF sends a fetch request to the IM of the
PE where the data is kept. The DF uses UID and location information to identify the
data it needs and the location of the PE. The IM that received the data request informs
the DF of the same PE. The DF retrieves the data requested and sends it to the PE that
asked for it. The local scheduler of LPEL does not control either IM, OM, or DF, as
they are implemented as kernel-level threads and are scheduled by the OS scheduler.
One benefit of such a design is that it prevents deadlocks; on the flip side this design
may increase OS-level context switches.

2.2.5 S-Net Terminology at a Glance

Here is a quick listing of the S-Net terminology:

Box is a component that encapsulates computational logic. The boxes are stateless
components and they are implemented in auxiliary language e.g. ANSI C and
SAC [48].

Stream is a communication channel that allows the exchange of information between
two boxes/components connected by it.

Task is a runtime instance of box implementation. A task can be described as an
iterating process that reads input from its input streams, performs the associated
box’s computations, and writes output to its output streams.

RC invocation is a term to describe single iteration of a task.

Network describes a stream program or segment of such a program by means of
boxes and streams connecting them.

Combinator describes the way the boxes are connected, e.g. in serial pipeline fashion
or in a parallel branch manner.

Message is a datum that is processed by a task on an RC invocation. Each message is
made up of a set of label-value pairs. There are two types of labels called fields
and tags. Fields are completely opaque to S-Net, as they are associated with
values from the box language domain; they get manipulated only inside boxes.
Tags are integer numbers and accessible by both S-Net RTS and user-defined
boxes.



28 Background

Multiplicity defines the ratio of the number of input messages to the number of output
messages per RC invocation. A task with multiplicity of n-to-m consumes n
messages from its input stream and produces m messages in its output stream on
each invocation.

2.3 Power and Energy Optimisation

Power management techniques to reduce energy consumption have been extensively
studied in prior work. The metrics including but not limited to energy, power, Energy
Delay Product (EDP) and Energy Delay-squared Product (ED2P) are used in power
studies depending on the goals of the work and the type of platform being studied.
Energy is often considered the most fundamental of the possible metrics for platforms,
ranging from mobile/embedded to data centres and High Performance Computing
(HPC) [70]. Energy can be calculated as:

Energy = power× time (2.1)

where, energy(E) is measured in joules(J), power(P) is measured in watts(W), and
the execution time of an application time(t) is measured in seconds(s).

Power-management techniques have been employed/studied extensively at various
levels, such as logic, architecture, and an OS-level [102].

The techniques used at the logic level include but are not limited to: clock gating
— turning off clock signal to unused circuits; half-frequency and half-swing clock —
where both edges of a clock signal are used enabling operation at half the frequency in
the former, and in the latter the clock swings for only half of the V ; asynchronous logic
— when a clock signal is completely absent and completion signals are used instead.

The techniques used at the architecture level cover various systems: a memory
system — in which various sub-techniques are used, such as selective activation of
cache hierarchy and memory banking, compression of instruction in memory saving
instruction fetch energy [15, 89]; communication system — e.g. Gray code or bus-
invert encoding of address on bus [121] or network-no-chip with topology-aware
routing or reconfiguration techniques [108]; parallel processing — in which functional
units are replicated to allow processing of data in parallel.

The techniques used at the OS level include: power manager — as in Linux and
Windows OS, the power manager allows diverse options such as timer to put display,
hard drive, or other components to sleep mode; in Linux cpufreq infrastructure
handles Central Processing Unit (CPU) frequency scaling [107].
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There are other levels at which different techniques are used for power/energy
efficiency reasons such as compiler, application, and network. A large amount of
research work has been done in this area, and some surveys [11, 16, 28, 99, 100, 129,
130, 134] that cover various topics are recommended to interested readers.

2.3.1 Power Efficiency vs Energy Efficiency

There is distinction between power-efficient and energy-efficient systems. A power-
efficient system may not be an energy-efficient system. As an example, a power-
efficient system may decrease the clock frequency which in turn saves power, but this
affects the execution time of an application running. There comes a time when the
execution time of this application increases to a point when overall energy consumed
actually increases, rendering system power-efficient but not energy-efficient.

DVFS and Dynamic Power Management (DPM) are two widely used techniques
for reducing energy consumption in the processing unit. As name suggests in DVFS,
the voltage and/or frequency of a particular component is changed to decrease power
consumption at the price of potentially lower performance. The DPM techniques
switch the processor/CPU/core to a low-power inactive state as long as possible [11].

In Complementary Metal-Oxide Semiconductor (CMOS) technology, the total
power consumption can further be decomposed into static and dynamic compon-
ents [141]:

Ptotal = Pstatic +Pdynamic (2.2)

Where Pstatic represents static power consumption, resulting due to various factors
including—but not limited to—sub-threshold leakage, tunnelling current through
gate oxide, and leakage through a reverse-biased p-n junction [120, 129]. Pdynamic

represents dynamic power consumption, resulting due to the activity of logic gates, i.e.
charging/discharging of capacitors and temporary current paths between the supply
rails. The dynamic power consumption increases with the increase in switching
frequency. This is due to the fact that dynamic power consumption occurs only during
gate activity. DPM solutions are best suited for decreasing the impact of the static
power component, as the static power consumption is always present, even when the
circuit is on stand-by. In contrast, the dynamic power consumption is present when
there is some activity, and as such, DVFS approaches are more suitable for reducing
the dynamic power consumption.
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2.3.2 Dynamic Power Consumption

The dynamic power consumption of a core can be calculated as:

Pdynamic = aCV 2 f (2.3)

where a is switching activity factor, i.e. how many transitions occur in a chip,
C is physical capacitance, V is supply voltage, and f is clock frequency. Each of
these parameters can be used to reduce the dynamic part of power consumption.
Power consumption due to the switching-activity factor a can be decreased by using
techniques like clock gating, in which clock signal is not sent to idle circuits, e.g.
caches. Power consumption due to the physical capacitance C can be reduced by
changing low-level design parameters such as transistor sizes and wire lengths. By
decreasing the clock frequency f power consumption can be reduced, but as we noted
earlier, the energy consumption may or may not improve. Reducing the supply voltage
V will also reduce power consumption. This is better than frequency as a small change
in voltage will have a big impact on power consumption, although decreasing voltage
also requires a decrease in frequency to allow safe operation of the chip.

A change in voltage can change the energy-optimal point of operation for a core.
Since core frequency has an approximately linear relationship with supply voltage, and
power consumption is approximately quadratic with voltage as can be seen from Equa-
tion 2.3, this provides a single knob to adjust power consumption and performance.

Since in the context of this thesis we used only DVFS to reduce energy consump-
tion, we will focus only the dynamic part of the power consumption in general. As
we already noted that voltage change has a big impact on power consumption in
comparison to other parameters, our centre of interest lies in DVFS techniques. The
DVFS techniques can be subdivided further into offline and online. The distinction is
based on when the DVFS decision is made, i.e. statically at compile time (offline) or
dynamically at runtime (online). We will visit DVFS again in Chapter 7.

2.4 Many-Core Network on Chip Platforms

The evolution of semiconductor fabrication processes has driven computer architec-
tures from single-core processors to multi/many-core systems. When the number of
cores on a chip started to climb the classic solutions like buses could not provide
assurance of a reliable connection between them. Luca Bennini and Giovanni De
Micheli introduce the NoC concept in 2002 to resolve the interconnection problem
with multi/many-core architectures [14]. As name suggests, NoC consists typically of
routers, network-adapter interface, and connections to allow a flow of data between
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Figure 2.9 TILE64 Architecture Diagram [3]

various components available on/off-chip. Intel’s SCC is the architecture upon which
this thesis work was developed. However, it is worth mentioning some other example
architectures that are similar. We recommend some survey papers [1, 4, 21] for the
readers interested in the details of NoCs in general.

2.4.1 The Tilera TILE64 Processor

Processors in the Tile family are based on the Tilera’s multi-core architecture. We will
take a brief look at the TILE64 processor in particular as an example. The platform
supports several programming languages, e.g. full ANSI C, providing a way to make
porting of legacy code easy.

Figure 2.9 shows the architecture diagram of the TILE64 processor. The processor
features 64 homogeneous PEs arranged in a two-dimensional 8x8 grid. Each PE is
referred to as a tile. All the tiles are connected with the I/O, the peripherals and
each other via high-speed, on-die, packet-switched, multiple two-dimensional mesh
networks (the mesh network is based on Tilera’s iMesh interconnect technology) [13,
138]. By employing a dedicated mesh network with different latencies and bandwidths
for inter-tile, memory, and I/O communications, the architecture provides a high
bandwidth and extremely low latency communication among tiles. There are four
on-die Memory Controllers (MCs) that connect the tiles to on-board Double Data
Rate (DDR) memories.

The tiles on the TILE64 can operate between 600—1000 MHz. Additionally, cores
can be grouped into islands to eliminate unnecessary communication and reduce power
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consumption (unused tiles can be put into sleep mode). As can be seen from Figure 2.9,
each tile contains three major components: processor engine, cache engine, and switch
engine. The processor engine is a three-way Very Long Instruction Word (VLIW)
processor architecture with an independent program-counter.

The cache engine contains the tile’s Translation Lookaside Buffers (TLBs), caches,
and cache-sequencers. In addition to the support for both private and shared memory,
the TLBs also support pinning blocks of memory in the cache. There are separate 8
KiB L1 instruction and data caches. L1 instruction cache has 8 entries TLB, while
data cache has 16 entries TLB. A unified 2-way 64 KiB L2 cache backs the L1 caches.
Each tile also contains a 2D Direct Memory Access (DMA) engine that supports block
copy functions like cache-to-memory, memory-to-cache, and cache-to-cache. There is
no L3 cache but each tile’s L2 cache can be shared with other tiles, in effect providing
a shared L3 cache.

The switch in the switch engine is a full crossbar for non-blocking routing, with
credit-based flow control. There are in total five different networks out of that; four are
dynamic networks and one is a static network. The dynamic networks are dimensional-
ordered wormhole-routed. There is one-cycle latency for each hop through the network
for cases when the packets are going straight. If the packet has to make a turn at the
switch then latency is increased by one cycle due to the route calculation.

There are five different networks in the iMesh. Each network supports 32-bit
unidirectional links, allowing traffic flow in both directions at the same time. The five
networks are:

Static Network (STN) is a scalar network with low latency allowing static configura-
tion of the routing decisions. It is mainly used for streaming data from one tile
to another via pre-configured routes.

User Dynamic Network (UDN) low latency, user programmable, packet-switched
network used for communications between threads running in parallel on mul-
tiple tiles.

Memory Dynamic Network (MDN) used for memory transfers such as loads, stores,
and cache misses.

Tile Dynamic Network (TDN) supports data transfer between tile caches. TDN
works in concert with MDN.

Input/Output Dynamic Network (IDN) is network accessible to OS-level code, not
user applications. Used primarily to transfer data between tiles and I/O devices,
and I/O devices and memory.
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Figure 2.10 Adapteva Epiphany-64 Architecture Diagram [59]

The Tile Processor architecture defines a flat globally shared 64-bit physical address
space and a 32-bit virtual address space. In addition to the default hardware backed
cache coherent memory the TILE64 also supports other memory modes, i.e. a non-
coherent and a non-cacheable memory mode. Different memory attributes and modes
are managed and configured by means of page table entries and enforced through
TLB entries. TILE64 provides directory-based coherence policy. Every node has
directory cache and off-chip directory controller. Tile-to-tile memory request/response
transits the TDN. Off-chip memory request/response transit the MDN. The traffic due
to the cache coherency was so high that an extra mesh network was added to the later
TILEPro processors. A Coherence Dynamic Network (CDN) is used only for passing
invalidation messages needed for the cache-coherency protocol.

On TILE64 processor each tile can independently run a full OS, e.g. GNU/Linux. In
addition, multiple tiles taken together can run a multi-processor OS like an Symmetric
Multiprocessing (SMP) version of GNU/Linux.

2.4.2 Adapteva Epiphany-64

The Epiphany architecture from Adapteva targets the embedded system domain with
the goal of providing low power, multi-core, scalable, parallel, and distributed shared-
memory coprocessor [55, 59]. Currently there are two versions of the Epiphany
coprocessor available: the Epiphany-16 (16 cores in a 4x4 grid) and the Epiphany-64
(64 cores in a 8x8 grid). The PE in Epiphany architecture is referred to as eCore, future
versions of the Epiphany are expected to house up to 4096 eCores [106, 132].

Figure 2.10 shows a top-level and node-level diagram of the Epiphany-64 copro-
cessor. The 64 mesh nodes/eNode are organised in a 8x8 2D array, connected to each
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other by a mesh network. Each eNode consists of a Reduced Instruction Set Computer
(RISC) CPU (eCore, 800 MHz maximum frequency), 32 KiB of local scratchpad
memory, a DMA engine (with two DMA channels supporting both non-blocking and
blocking DMA transfers), and a network interface to an eMesh router. Each eCore
includes a general purpose program sequencer, 64-word—each word is 32 bits—large
general purpose register file, Integer Arithmetic Logic Unit (IALU), Floating Point
Unit (FPU), a debug unit, and an interrupt controller. There are no caches available on
Epiphany architecture. Epiphany-64 is a coprocessor and as such it does not run any
OS. The Epiphany architecture uses a flat unprotected memory map. Every mesh node
can directly access the complete memory system, without any limitation. Each eCore
can address its local Static Random Access Memory (SRAM), other eCores’ SRAM,
and a shared off-chip Dynamic Random Access Memory (DRAM). The local memory
system is split into four separate sub-banks in order to increase the performance by
means of simultaneous memory accesses.

All the on-chip and off-chip communication is handled by an eMesh, an on-
chip, high-speed 2D mesh network. Three different 2D mesh networks make-up the
interconnect network of the Epiphany64. Different types of traffic flows through
their dedicated eMesh. Each Epiphany64 has four independent off-chip eLinks that
extend the eMesh network and memory architecture. These eLinks allow connection
of multiple Epiphany64 on a board and to a Field Programmable Gate Array (FPGA).
The three different eMesh networks are:

cMesh routes on-chip write traffic. The cMesh network connects an eCore to all four
of its neighbours and has a maximum bi-directional throughput of 8 bytes/cycle.

xMesh routes off-chip write transactions, including a case when the traffic destin-
ation is an another chip in a multi-chip system configuration. The maximum
throughput of the xMesh depends on the available off-chip I/O bandwidth.

rMesh routes both on-chip and off-chip read traffic. The xMesh has a maximum
throughput of one read transaction every eight clock cycles.

The Epiphany architecture can be programmed using C, C++, OCL, and has a
Software Development Kit (SDK). The program is written in two parts: one for the
host CPU and one or more kernels for running on the eCore nodes. Generally, the
application’s initialisation and outer loops are performed on the host CPU, while a
numerically-intensive loop is developed as a kernel executed on the eCore.
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2.4.3 ClearSpeed CSX700

The ClearSpeed CSX700 [126] is a highly parallel Single Instruction Multiple Data
(SIMD) architecture and is slightly different to the previous NoCs we have looked at.
The ClearSpeed architecture—CSX700 is a coprocessor like Adapteva Epiphany-64—
has two cores, each with 96 PEs (192 PEs in total), providing a peak performance of
96 GFOLPS, while consuming power of less than 9 watts.

As illustrated in Figure 2.11a, CSX700 has two similar Multi-threaded Array
Processor (MTAP) cores. Each MTAP core has a 128 KiB SRAM that can be accessed
by both MTAPs, and a DDR2 memory interface. Each memory interface supports up
to 8 GiB of DRAM and can be accessed by both MTAP cores. The CSX700 operates
at the clock frequency of 250 MHz. The main components of MTAP are execution
units, caches, and I/O [124, 125].

The execution units consist of two main parts. The first is an RISC-like control
unit, referred to as a mono execution unit, which acts on mono (non-parallel) data and
handles program flow control and I/O functions. The second is highly parallel SIMD
architecture called poly execution unit. The mono and poly execution units support
64-bit addressing, and have basically the same architecture and instruction set. The
poly execution unit contains an array of 96 PEs, and acts on poly (parallel) data. A
poly controller connects a mono execution unit to the poly execution unit.

The main features of the mono execution are: support for 8 hardware threads, 128
8-bit semaphores (for synchronisation), Arithmetic Logic Unit (ALU), 64-bit FPU,
and 8 128-byte register files (one per thread). Also there is 8 KiB instruction and 4
KiB data caches connected to the mono execution unit to speed-up access to code and
data.

In a poly execution unit the array of 96 PEs provides both compute power and
high bandwidth storage. The PE array operates on a SIMD model, i.e. processing
multiple data items in parallel. As we can see from Figure 2.11b, each PE contains a
128-byte register file, 6 KiB of SRAM, single and double precision FPUs, a 64 KiB
I/O buffer that connects to Programmed Input/Output (PIO), and high-speed dedicated
I/O channels to two adjacent PEs called swazzle path. As shown in Figure 2.11b, the
register file of each PE is connected to the register files of its left and right neighbours,
via swazzle path. This in turn allows single-cycle register-to-register data transfer with
neighbouring PEs. The PIO mechanism allows the poly execution unit to perform
load/store to the external memory. Communication between both MTAPs, memory
units, and other interfaces is facilitated by an on-chip bus network called ClearConnect
Bus.
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4.1 Data Decomposition

Having an image and an array of PEs, various data distributions schemes could
be considered. The most obvious schemes are row (column)-stripe distribution,
block distribution, and row (column)-cyclic distribution. Here, we discuss the
effectiveness of each of these data distribution schemes for parallel implementa-
tion of HCD algorithms on the CSX architecture. An important consideration
for the CSX architecture is the size of PE’s memory which is rather limited. For
the CSX architecture, various data distributions should be compared in terms of
the following parameters: (a) required memory space for each PE; (b) redundant
external memory communication; and (c) inter-PE communication time.

In the following, c and r denote the number of columns and rows in image
matrix, respectively. According to the algorithm description in Section 2, HCD
performs a set of operations in windows around each pixels. In fact, HCD uses
windows which may have different sizes in 3 stages: calculating partial deriva-
tives, Gaussian smoothing, and non-maximal suppression. Let ω be the sum of
these window sizes. Also, let p indicate the number of PEs. Finally, in each mem-
ory communication, each PE reads or writes m bytes of data (pixel) from/into
the external memory. Π is the memory space needed to calculate the elements
of Harris matrix for m pixels.

Block distributions. In this scheme, as illustrated in Figure 2(a), the image is
divided into p = d ∗ s blocks, with each block having c/d columns and r/s rows.
The first block is assigned to the first PE, the second one to the second PE, and
so on. Each block can be identified by an ordered pair (i, j) where 1 ≤ i ≤ s
and 1 ≤ j ≤ d. In the following, P (i, j) denotes the PE which is responsible for
processing the block (i, j) and refers to PE ((i − 1)s + j).

Figure. 2(b) depicts the boundary data needed for computation by P (i, j) and
its four immediate neighbors. To handle boundary data, needed by two neigh-
boring PEs, there are two possible alternatives: transferring boundary data from
external memory to both PEs, hence performing redundant data communication,
or transferring to one PE and then using swazzling path to transfer it to the
other PE. The former takes more time, and the latter requires more PE memory

(a) Simplified CSX700 Architecture
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4.1 Data Decomposition

Having an image and an array of PEs, various data distributions schemes could
be considered. The most obvious schemes are row (column)-stripe distribution,
block distribution, and row (column)-cyclic distribution. Here, we discuss the
effectiveness of each of these data distribution schemes for parallel implementa-
tion of HCD algorithms on the CSX architecture. An important consideration
for the CSX architecture is the size of PE’s memory which is rather limited. For
the CSX architecture, various data distributions should be compared in terms of
the following parameters: (a) required memory space for each PE; (b) redundant
external memory communication; and (c) inter-PE communication time.

In the following, c and r denote the number of columns and rows in image
matrix, respectively. According to the algorithm description in Section 2, HCD
performs a set of operations in windows around each pixels. In fact, HCD uses
windows which may have different sizes in 3 stages: calculating partial deriva-
tives, Gaussian smoothing, and non-maximal suppression. Let ω be the sum of
these window sizes. Also, let p indicate the number of PEs. Finally, in each mem-
ory communication, each PE reads or writes m bytes of data (pixel) from/into
the external memory. Π is the memory space needed to calculate the elements
of Harris matrix for m pixels.

Block distributions. In this scheme, as illustrated in Figure 2(a), the image is
divided into p = d ∗ s blocks, with each block having c/d columns and r/s rows.
The first block is assigned to the first PE, the second one to the second PE, and
so on. Each block can be identified by an ordered pair (i, j) where 1 ≤ i ≤ s
and 1 ≤ j ≤ d. In the following, P (i, j) denotes the PE which is responsible for
processing the block (i, j) and refers to PE ((i − 1)s + j).

Figure. 2(b) depicts the boundary data needed for computation by P (i, j) and
its four immediate neighbors. To handle boundary data, needed by two neigh-
boring PEs, there are two possible alternatives: transferring boundary data from
external memory to both PEs, hence performing redundant data communication,
or transferring to one PE and then using swazzling path to transfer it to the
other PE. The former takes more time, and the latter requires more PE memory
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Figure 2.11 ClearSpeed CSX700 Architecture Diagram [57]
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Figure 2.12 Xeon Phi Coprocessor Architecture Diagram

2.4.4 Intel Xeon Phi

All of the coprocessors in the Xeon Phi product family are powered by Intel’s Many
Integrated Core (MIC) Architecture [32, 62].

Intel Xeon Phi has over 50 cores3, at a maximum of 8 MCs, supporting up-to
16 GiB maximum memory providing 352 GiB/s bandwidth [30, 33] and Peripheral
Component Interface Express (PCIe) interface logic; this can be seen from the high-
level diagram in Figure 2.12. The cores, PCIe Interface logic, and Graphics DDR
type 5 (GDDR5) MCs are connected via a high-performance on-die bi-directional
Interprocessor Network (IPN) ring. The basic core clock frequency is 1.238GHz, but
during peak workloads and depending on thermal conditions, Intel’s Turbo boost Tech-
nology can increase the core frequencies to 1.333GHz at maximum. The connection
between the host and Xeon Phi is made through the PCIe system interface. The Xeon
Phi consumes, on average, 300 watts when operating at the base frequency with all
cores active.

The cores on the Xeon Phi are simple-core—without expensive features such as
out-of-order execution and branch prediction—based on x86 architecture, supporting
four hardware threads per core. As shown in Figure 2.12, each Xeon Phi core has
Vector Processing Unit (VPU), 32 KiB L1 instruction and 32 KiB L1 data cache,
512 KiB unified L2 cache and interface to On-Die Interconnect (ODI). The 512-bit
wide VPU contains the vector register file with 32 registers per thread context. The

3Product with series 31xx has 57 cores, 51xx has 60 cores, and 71xx has 61 cores. Here we will
mainly refer to the latest Xeon Phi 7120 with 61 cores.
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Xeon Phi offers full cache-coherency across all cores. The coherency is maintained by
cross-snooping L2 caches in all cores. This is achieved by having distributed duplicate
Tag Directory (TD) for each core. A TD tag contains the address, state, and an ID for
the owner of the cache line. In the case of a cache miss a request is sent from the core
that suffered the memory miss to the correct TD via the ring interconnect. Aggregated
L2 cache provides about 30.5 MiB of on-chip shared memory. The Xeon Phi has two
ring interconnect, one travelling in each direction. The ring interconnect is used by
all connected entities, using special controllers called ring stops to insert requests and
receive responses from the ring.

As Xeon Phi is in effect an x86 SMP on-a-chip architecture running Linux as an
OS, a programmer can use familiar programming languages and models, for example
C, C++, Fortran, PTHREAD, OpenMP, TBB, and Cilk Plus, etc [37, 113]. There are
multiple execution models for Xeon Phi:

Multi-core only application’s MAIN() is executed on host processor.

Multi-core Hosted with Many-core Offload application’s MAIN() is executed on
host processor, and selected routines (highly parallel, computationally intensive)
are executed on the coprocessor.

Symmetric execution application’s MAIN() runs symmetrically on processor and
coprocessor.

Many-core only booted from host processor but application’s MAIN() runs on copro-
cessor only.

2.5 Single-chip Cloud Computer

The Single-chip Cloud Computer (SCC) [58, 117] is a 48-core experimental processor
created by Intel Labs as a “concept vehicle” for many-core software research. The
SCC has on-chip message passing buffers and support for dynamic frequency and
voltage scaling. Its 48 P54C cores are connected to each other and the main memory
via a high-speed, on-die, packet-switched two-dimensional mesh network.

In this section we look at the SCC’s hardware architecture in § 2.5.1 and § 2.5.2,
some essential registers in § 2.5.3, memory hierarchy in § 2.5.4, followed by an
overview of the DVFS feature in § 2.5.5.
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Figure 2.13 Simplified Intel SCC Architecture Diagram [75]

2.5.1 Top-level Architecture

As seen in Figure 2.13 the SCC [58, 117] consists of 24 tiles in a 4x6 grid. Each tile is
connected to a high bandwidth, low latency, on-die two-dimensional mesh network
via router. This arrangement of tiles/cores resembles a cluster on a single chip. The
routers implement fixed X-Y routing, which means the packet first travels along the
x-axis and then along the y-axis. There are four on-die MCs. Each MC can address
two Dual In-line Memory Modules (DIMMs). Each memory module can be 8 GiB at
maximum (16 GiB max for each MC); this translates into maximum 64 GiB off-die
DRAM in total for the system. For simplicity and clear distinction, we will refer to
this DRAM memory as main memory from now on. The SCC chip also contains a
Voltage Regulator Controller (VRC) that provides any core or the System Interface
(SIF) the capability to adjust voltage and the frequency of tiles, allowing DVFS. The
SIF provides a way for communication between system FPGA (a controller located
on the system board) and router on the mesh network. The Management Console PC
(MCPC) uses PCIe bus interface to connect to the system FPGA and in turn to the
SCC.
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2.5.2 Tile-level Architecture

Figure 2.13 also shows a detailed view of an individual tile. Each tile contains two
P54C-based Intel Architecture (IA) cores. Each core has associated 32 KiB L1 (data
and instruction) and 256 KiB L2 caches. A tile also has 16 KiB (8 KiB for each
core) block of SRAM called Message Passing Buffer (MPB). Although, MPB is also
called Local Memory Buffer (LMB) sometimes, we will use MPB through this work
to maintain consistency. In addition, to accelerate message transfer between cores,
a Write Combine Buffer (WCB) was added—not shown in Figure 2.13—to the tile.
Furthermore, there is a Traffic Generator (TG) for testing the mesh—not accessible to
end user/application—, a Mesh Interface Unit (MIU), Global Clocking Unit (GCU),
Clock Crossing FIFO (CCF)—also not shown in Figure 2.13—and memory Lookup
Table (LUT) on the tile as well.

There is only one MIU on the tile, so the cores on the tile have to access MIU in a
round-robin manner. The MIU is responsible for handling all the memory and message
passing requests. In particular, the MIU packetises the data going from the cores to
the mesh and de-packetises data coming from the mesh to the cores. A credit-based
protocol is used to make sure of a smooth flow of data on the mesh network; MIU
also handles the management of credits. Configuration registers control the operating
mode of the SCC. These registers are located in the Control Register Buffer (CRB)
that forms part of the MIU. When the cores on the tile need access to resources, e.g.
MPB or main memory, an access request is generated. Once the access request is
generated, it is then placed in the appropriate queue managed by MIU. There are three
different queues:

• main memory queue—initially request is send to router, then to MC, and finally
to main memory

• MPB queue—the request is sent to the core’s MPB

• Local CRB queue—the request allows access to the local configuration registers,
which also reside in the MIU

As we will see in Section 2.5.5, the tiles and mesh network can have different
execution frequency. In order to enable asynchronous communication between the two
domains, where execution frequency may not be same, the GCU takes an incoming
clock and generates the divided local clocks for the router and the cores along with the
synchronisation signals. GCU and CCF are responsible to make sure no data is lost
while it crosses different clock domains. All the routers on the chip must be running at
the same frequency; if not then any data transferred across the clock boundary will
result in being lost or damaged.
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2.5.3 Configuration Registers and FPGA Registers

Application can control the behaviour of various hardware elements on the tile by
means of the configuration registers located in CRB within MIU. For example, these
registers control clock divider settings, interrupt handling, and cache configuration. At
the start-up these registers are always initialised with default values. An application can
memory map these registers, in order to change the mode/behaviour of the hardware
elements controlled by these registers at runtime.

Although, here we will look at the some of these registers, we will not dive
deeply into their fine detail. Interested readers can find more in-depth information
in [75, 79, 80, 83]. Each core on the SCC has LUT entries that map CRBs of all the
tiles of the SCC. This allows any core of the SCC to access (read/write) configuration
registers of any other core on the SCC, including itself.

Core configuration There are three main parts that form core configuration registers.
This includes interrupt registers that are directly connected to the interrupt pin of
the cores, control register contains bits to control external events of the processor,
and the status register that contains different types of status information from the
external interface of the core. Each core on the tile has its own core configuration
registers.

L2 cache configuration This register affects the operation of L2 cache, e.g. en-
abling/disabling the L2 cache or clock gates the cache controller. There are two
L2 cache configuration registers on a tile, one for each core.

Sensor Sensor registers aid thermal monitoring functionality. There are two sensor
registers per tile. The first enables or disables the monitoring and the second
provides the thermal reading value.

Global Clock Configuration There is one global clock configuration register per tile
to control the router and tile clocks.

Tile ID This register contains the (x, y) coordinates of the tile and core ID of the
reading core, which can be used to determine the physical location of tile/core
on the SCC. There is one tile ID register per tile.

Atomic Flag Each tile has two Test-and-Set (T&S) registers, one for each core.

LUT Each core has its own LUT, which contains 256 entries. These entries are used
to access different parts/hardware of the SCC.
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In addition to the configuration registers there are additional registers located in
FPGA.

Global Timestamp Counter provides a common time base across all the cores. Each
core has its own timestamp counter, but these are not synchronised. Furthermore,
this counter is based on 125 MHz system clock of the FPGA, and does not get
affected by the frequency of the cores on the SCC.

Atomic Increment Counters there are 96 32-bit atomic increment counters. Each
counter is pair of registers: the atomic increment counter register and the initial-
isation counter register. The read/write operation and results for these registers
are as follows:

Initialisation Counter returns the current register value on read access. Write
access initialises the register with the new value.

Atomic Increment Counter an atomic increment of the register value per-
formed on read access. Write access causes an atomic decrement of the
register value. The old value gets returned.

Global Interrupt Registers provides a mechanism to send interrupts to any core
from any other core on the SCC. The global interrupt register is made-up of 48
interrupt status registers, 48 interrupt mask registers, 48 interrupt reset registers,
and 48 interrupt request registers, one for each core.

2.5.4 Memory Architecture

It is important to notice that the SCC does not provide cache coherency. If the
shared memory is used it becomes the programmer’s responsibility to maintain coher-
ency explicitly.

Physically, SCC memory consists of off-chip DDR3 DRAM (main memory) and
on-chip SRAM (MPB). The tiles on the SCC are divided into four regions. As can be
seen from Figure 2.13 each region, also called memory domain contains six tiles. Each
domain has a particular MC assigned to it (by default the nearest one).

In the default boot-up configuration, memory controlled by MC is divided evenly
into the nearest MiB as 12 parts. Each part serves as a private memory for a core in
a memory domain. A part of surplus memory (64 MiB in total, 16 MiB per MC) is
allocated as a shared memory among cores. The access to private memory always goes
through MC that is assigned to memory domain, while access to the shared memory
can go through any MC.
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From a programmer’s point of view, the SCC provides three different memory
types as listed below:

• A private off-chip memory for each core. This memory is cache coherent with
an individual core’s L1 and L2 caches.

• A shared off-chip memory. This memory may be configured as uncached or
cached. If configured as cached it is the programmer’s responsibility to manage
coherence.

• The MPB, 384 KiB (16 KiB per tile) of physically distributed logically shared
on-chip memory.

This division between the shared and private memory is done by means of LUT.
Although main memory is divided into shared and private parts at the boot-up time
with some default values, where this division occurs can be re-configured by modifying
LUT entries. The LUT entries can be changed in two ways: the first is to change
them once the cores are booted with an OS; this change will be lost once the cores are
re-booted. The second way is to change the default values so that even if the cores are
re-booted, changes are preserved.

2.5.4.1 Message Passing Buffer

Each tile has 16 KiB of MPB. By default, 8 KiB are assigned to each core. Since
MPB is on-chip, access latency is in par with that of L2 cache. The MPB can be used
in multiple ways, e.g. assigning 8 KiB per core or using all 384 KiB as scratchpad
memory. Any core on the SCC can access any part of MPB, even though that part is
assigned to another core. This provides a way for very low latency communication
between cores. Since each 16 KiB segment is physically located on each tile, access
latency will differ based on the physical location of the MPB and core. Table 2.1 lists
the approximate memory-access latency for reading a cache line from various memory
systems. Although the table lists local MPB access with and without bypass, in reality
the bypass mechanism cannot be used, due to the hardware design bug [74, 83].

On the SCC, data can be moved at the granularity of the L1 cache line (32 bytes).
There is no cache coherency on the SCC, and MPB (in effect, a shred memory) can be
accessed (read/write) by any core; this can introduce the problem of inconsistent data
(stale data). To address the issue, Intel has provided a special flag called the Message
Passing Buffer Type (MPBT). Any MPB type memory is tagged with MPBT flag by
the OS. All cache lines tagged with MPBT will bypass the L2 cache and directly go
into L1 cache. The Intel Instruction Set Architecture (ISA) is also extended with an
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Access Location Approximate latency to read a cache line (cycles)

L2 cache 18 core cycles
Local MPB - with bypass 15 core cycles
Local MPB - without bypass 45 core cycles + 8 mesh cycles
Remote MPB 45 core cycles + 4*n*2 mesh cycles
DDR3 (main memory) 40 core cycles + 4*n*2 mesh cycles + 30 on-die mc

(400 MHz) + 16 cycles (400 MHz off-die DDR3
latency)

n=number of hops to the MPB or the memory controller (0 < n < 10)

Table 2.1 Various Memory Access Latencies [77]

instruction called CL1INVMB. Using CL1INVMB will invalidate all the cache lines
tagged as MPBT in the core’s L1 cache. Access to these invalidated L1 cache lines
will force an update of the L1 cache lines with the data from actual memory, as there
are no valid cache entries for them in L1 cache. We will look a little more in-depth at
caching policies in Section 2.5.4.2.

A WCB was added to facilitate coalesced memory write operations. The WCB
combines adjacent writes, up to a single cache line, and writes them to memory in a
single write operation.

2.5.4.2 Cache Policy

The P54C core on the SCC can have only one outstanding memory request and will
stall on missed reads until data is returned. On missed writes, the core will continue
operation until another miss of either type occurs. Multiple outstanding requests at the
tile level can be supported by the mesh network and the memory system.

As we already know, the memory on the SCC can be configured as cached, un-
cached, or MPBT. We can say that caching happens at three levels in the SCC: L1
cache, L2 cache, and WCB. Figure 2.14 details the memory type and how it interacts
with caches. The Linux that runs on the SCC exposes three different memory device
drivers: DCMDeviceFD (maps memory as cached), NCMDeviceFD (maps memory as
uncached), and MPBDeviceFD (maps memory as MPBT type).

Both the L1 and the L2 caches on the SCC are 4-way set associative with a cache
line size of 32 bytes, are write-back, and do not allocate on write miss, i.e. are write-
around. Since caches are write-around, write misses are treated as a write directly to
the main memory.

cached memory as name implies, cached memory is cached at both L1 and L2 cache
level. Memory access goes through the L1 and L2 caches, then to the main
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Figure 2.14 Memory Type and Cache Interaction [114]

memory if there are cache misses. Cacheable memory has a granularity of a 32
Byte cache line.

uncached memory if memory is configured as uncached it will bypass both L1 and
L2 caches. A read operation to this memory bypasses both caches, and the
read value is stored directly in the registers of the core, while write requests are
delivered directly to the MIU. The uncacheable memory has a granularity of 1,
2, 4 or 8 bytes.

MPBT memory tagged as MPBT will always bypass the L2 cache and will only be
cached in L1 (at a granularity of a L1 cache line). All sequential writes to the
same cache line of MPBT type memory will accumulate in WCB; from core’s
perspective the write operation is complete at that point. The WCB will write
data to the main memory when the entire cache line is filled, or write access to a
different cache line occurs.

Since there is no cache coherence among the cores, if we want to use cached
memory or would like to use MPBT with WCB, special care must be taken. This can
be explained more clearly with an example.

Time t1 Core-A and Core-B reads from the cached memory; the read data is stored in
L1/L2 caches.
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Time t2 Core B writes to the same memory address; the data is in cache or WCB.

Time t3 Core A reads from the same cached memory again; the cached data is returned
from L1/L2 (this is stale data).

If memory is mapped as MPBT there are two steps that need to taken: the first is
to perform dummy write to different cache line at t2 to make sure that changed data is
written back. The second is to issue CL1INVMB at t3 before read to invalidate MPBT
cache lines in L1 and force retrieval of data from MPB memory.

If memory is mapped as cached, this becomes tricky. Since caches are write-back,
at t2 any changes will still be in caches and we have to flush it to the memory. For
L1 we can use WBINVD or INVD instructions to flush or invalidate cache lines. The
main problem is that the P54C cores used in the SCC did not have an on-chip L2
cache originally. This is the reason for having the L2 cache external to the core. What
this means is that the WBINVD and INVD instructions have no effect on L2. By
using control register provided on the SCC, the L2 can be put into reset mode, which
initialises all lines as invalid. However, this reset operation cannot be used to invalidate
the L2 cache during execution, as it halts the core due to the hardware bug [81]. A
manual L2 flushing routine was developed to solve the L2 flushing problem [82]; this
routine is a high-latency operation. Again, for more details interested readers are
advised to visit [73].

2.5.4.3 Lookup Table

The cores on the SCC are 32-bit and as such they can address up-to 4 GiB of memory.
As we know, there are 4 MCs on the SCC and combined they can handle up-to 64 GiB
of memory. This is where MIU uses LUT. LUT is a set of configuration registers that
converts 32-bit core addresses to 46-bit system address. Each core on the SCC has its
own LUT. Each LUT contains 256 entries, one for each 16 MiB segment of the core’s
4 GiB physical memory address space. Each entry can point to any memory location,
e.g. MPB, CRB, SIF, or main memory.

Table 2.2 shows the entries for a core’s LUT for the SCC system with 32 GiB of
main memory. The system that we use for our research has 32 GiB of main memory.

As you may recall from Section 2.5.4, there are 4 memory regions, each region
containing 12 cores. Each region is served by particular MC. 32 GiB main memory
is 8 GiB per MC. This means that each core will have 8192MiB/12 = 682.666MiB
of private memory. As each entry in LUT points to 16 MiB segments, we will need
682.666MiB/16MiB = 42.666 slots, by rounding down its 42 slots. In Table 2.2,
entries 0–40 and entry 255 make up these 42 slots. LUT entries 128–131 point to
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LUT Entry No of Entries Map To

0 - 40 41 Private Memory

41 - 127 87 Unused

128 - 131 4 Shared Memory

132 - 191 60 Unused

192 - 215 24 MPB, One entry for each tile

216 - 223 8 Unused

224 - 247 24 CRB, One entry for each tile

248 - 249 2 Unused

250 1 MCPC TCP/IP Interface

251 1 VRC

252 - 254 3 Unused

255 1 Private Memory

Table 2.2 LUT Entries for the SCC with 32 GiB of System Memory [75]

the shared memory (4slots∗16MiB = 64MiB), and all the cores maps their LUT to
same physical address. Entries 192–215 and 224–247 map MPBs and CRBs of all the
tiles of the SCC, e.g. entry 192 maps to MPB of tile (x=0, y=0) and entry 193 maps
to MPB of tile (x=1, y=0), and so on. Entry 250 is used for Transmission Control
Protocol/Internet Protocol (TCP/IP) communication between the SCC and the MCPC.
while entry 251 maps to VRC. There are lots of slots that are empty and do not map to
anything in the default configuration. The next section describes briefly how the actual
address translation from core address to system address works in the SCC.

2.5.4.4 Address Translation

Figure 2.15 illustrates the translation mechanism employed by the SCC to turn a 32-bit
core address in to a 46-bit system address.

As a standard procedure during memory access, the core’s Memory Management
Unit (MMU) converts 32-bit core virtual address to 32-bit core local physical address.
During a cache miss, MIU receives this 32-bit core local physical address. At this
point MIU uses LUT to translate core address to the system address.

The upper 8-bits from the provided 32-bit core local physical address index an
entry into the LUT. The LUT returns a 22-bit address, which also contains some
routing information, described below.
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Figure 2.15 Address Translation [75]

bypass bypass is a 1-bit value which is used to specify the tile’s local MPB access
(although it is not used due to the hardware bug).

destID the 8-bit destination ID (destID) identifies another tile on the SCC for routing
via the 2D mesh network.

subDestID the 3-bit sub-destination ID (subdestID) defines the port where the packet
leaves the router; which type of memory access will occur is based on which
port of the router is defined, e.g. main memory, MPB, or CRB.

sysAdrExt the 10-bit system address extension (sysAdrExt) is prepended to the 24-bit
that passed through from the core address, resulting in 34-bit address.

It’s only the 34-bit address that is send to the MC, as we know that the maximum
supported memory for each MC is 16 GiB. Since 234/10243 = 16 GiB, the 34-bit
address is enough for 16 GiB memory. The 34-bit address is only sufficient for one
MC. Still we have all the MPBs and CRBs and various registers. Finally, the 46-bit
system address is obtained by combining the 1-bit bypass bit, 8-bit destination ID,
3-bit sub destination ID, and a new 34-bit address (10-bit system address extension
prepended to the 24-bit pass through address).

2.5.5 Voltage and Frequency Scaling

Power management on the SCC comprises three components that work with separate
clocks and power sources: tiles, mesh network, and MCs. As can be seen from Fig-
ure 2.13 on the SCC, there are voltage and frequency domains as well, in addition to
the memory domains. These voltage and frequency domains are also known as islands.
From now on we will refer to them as islands. There are 7 voltage islands and 28
frequency islands on the SCC. Each tile on the SCC is a one frequency island (24
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Voltage (Volts) RCCE Maximum Frequency (MHz)

0.7 460

0.8 598

0.9 644

1.0 748

1.1 875

1.2 1024

1.3 1198

Table 2.3 Voltage and Maximum Frequency Values [77]

total), while MCs—all 4 MCs make one island—VRC, the mesh network, and the SIF
make up the rest of the islands [58]. In contrast to frequency islands, whereby each
tile is an island, six voltage islands contains 2×2 array of tiles (4 tiles per island) each,
while the entire mesh network is regarded as 7th island.

Using the VRC the voltage can be adjusted on a per island granularity. With 6.25
µV steps, voltage can be set between 0.7 and 1.3 volts. The maximum frequency is
dependent on the current voltage level and can be varied between 100 to 800 MHz.
The frequency of the mesh network can be set at 800 or 1600 MHz, while for MCs
it can be set at either 800 or 1066 MHz. Although the MCs and mesh regarded as
frequency islands, unlike frequency islands made of tiles their frequency cannot be
adjusted dynamically. The frequency of the MCs depends on the frequency of the
mesh network. If the mesh network is running at 1600 MHz, MCs can be set at either
800 MHz or 1066 MHz. If mesh network is running at 800 MHz, the frequency of the
MCs is set to 800 MHz.

In order to prevent any damage to the SCC chip, scaling the frequency up requires a
corresponding change in the voltage. The official SCC documentation [77] and source
code of RCCE [78, 97, 131] (a message passing library by Intel) provides a table with
the maximum frequency allowed for each voltage level. However, there were stability
issues with certain voltage levels and the maximum allowed frequency [94]. As
reported in previous studies [42, 53] we also found that some of the voltage frequency
pairs resulted in cores becoming unstable or crashing all together (which requires
a hard reset of the platform). Through experimental evaluation we have calibrated
the voltage and frequency pairs that work for our SCC unit. Figure 2.16 shows our
calibrated voltage-frequency levels and the one provided in the RCCE source code. For
the frequency range marked as improved, we were able to lower the voltage required,
while for the unstable range we had to increase the volts required to make the core
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Figure 2.16 Frequency-Voltage Profile of the SCC

stable and prevent crashes. While the RCCE source code provides only two usable
voltage levels, our calibrated profile provides four voltage levels.

The voltage and frequency islands enable parts of the SCC to be turned off or
dialled down to a lower frequency to minimise power consumption. All adjustments
are under the control of the application which could then set any group of tiles to a
higher performance level for computationally intensive workloads and to lower the
performance level for cores performing memory or I/O operations. Each core can
change the voltage and frequency of any other core. This makes it easier to implement
different power management schemes, e.g. one core controls the island or one core
can control the entire chip. As a concrete example, RCCE [78, 97, 131] implements
the first approach. In RCCE each voltage island has defined the “master” core that
is responsible for the voltage and frequency scaling of that island. In the second
approach, where one dedicated core is responsible for power management of the entire
chip is described in [68, 69].

2.6 Chapter Summary

This chapter has laid the foundations for the thesis by providing a background of
the topics covered in the context of this thesis. The thesis focuses on introducing
energy awareness for RSPs on NoC architectures. An RSP is a reactive system with its
internal implementation designed as a stream program. NoC is processor architecture
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in which multiple cores on a single chip are connected by some sort of network. For
stream programming, we briefly described models, properties of stream programs, and
some languages. Afterwards, we clearly defined what we meant by RSPs followed by
a detailed introduction of the S-Net language. Next was an overview of the power and
energy optimisation techniques. For the NoC section we began with examples of NoC
architectures. The in-depth description of the SCC, an NoC with 48 cores and a main
research vehicle for this thesis, concluded this chapter.





Chapter 3

Design and Implementation of the
Execution Layer

We have covered the execution model of S-Net in Section 2.2. In this chapter we
will cover the design decisions with a short description of implementation detail of
Light-weight Parallel Execution Layer (LPEL) for the Single-chip Cloud Computer
(SCC). In § 3.1 we justify the need for Hierarchical Allocator (HALLOC). This is
followed by a detailed description of the shared memory initialisation scheme and
a comprehensive explanation of the HALLOC in § 3.2 and § 3.3 respectively. The
changes required in order to use LPEL on the SCC is covered in § 3.4. We provide an
account of how conductor and workers are initialised on the SCC in § 3.4.1, followed
by synchronisation mechanism available in § 3.4.2. We conclude this chapter with a
short summary in § 3.5.

Figure 3.1 illustrates the execution model for the SCC. Each core on the SCC has
its own instance of S-Net Runtime System (RTS) and LPEL. The communication takes
place over the shared memory provided by LPEL. Even-though each core has its own
RTS and LPEL instance, the scheduling is done by the conductor core, while all the
worker cores are responsible for invoking actual tasks to perform some computation.

3.1 Shared Memory Motivation

We described LPEL with Central Task Queue (CTQ) in Chapter 2.2.4.1. The conductor
manages centralised task queue which contains tasks that are ready to be invoked. The
communication between conductor and workers is provided by means of mailboxes
and streams, both implemented on top of the shared memory. The LPEL has some
requirements in terms of what services are provided by underlying hardware. For
example LPEL needs support for kernel-level threading and context switching in user-
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Figure 3.1 Execution Model of S-Net for the SCC
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space. While the former is easily available, the latter poses a problem. For user-space
context switch, we need the mechanism to transfer the whole context of the executing
task from one core to another. This is a problem as LPEL uses the Portable Coroutine
Library (PCL) [91] to provide user-space thread management. PCL provides basic
light-weight, low-level mechanism for context-switching from user-space together
with management functionality for coroutines. This whole stack of technology (PCL,
LPEL and S-Net RTS) makes it more difficult as each task’s execution context may
add/remove different properties at each layer. Furthermore, our initial investigation
confirms that the actual code that implements PCL/LPEL tasks contains reference
(pointers) to parts of data held in different memory places. To transfer this whole
information, either we have to build the mechanism that packs the whole execution
context of a task to be transferred, which may not work due to the memory references
or provide illusion of the shared memory in the SCC. Having a shared memory also
means that the other functionality such as communication in terms of the mailboxes
and streams would also work without much modification.

3.2 Shared Memory Initialisation

We know from § 2.5.4 that each core on the SCC has its own private memory that
is accessible only to the core and some shared memory that can be accessed by any
core on the scc. The division between shared and private memory is achieved by
manipulating each core’s Lookup Table (LUT) entries.

The default LUT mapping is listed in Table 2.2. There are 256 LUT entries,
of which 0–40 are used by the Operating System (OS) that is running on the core.
Entries 192–255 are mapped to Message Passing Buffers (MPBs), Control Register
Buffers (CRBs) and so on. We can see that entries 41–127 and 132–191 are unused.
Furthermore, entries 128–131 are used for the shared memory. If we combine all of
these entries, we can use LUT entries 41–191 to create the shared memory.

To create the shared memory, we improve upon the memory hijacking technique
used in the RCCE [76, 131] library. In RCCE, 4 LUT entries (128–131) are mapped
to the same physical address-space range on all the cores. As each LUT entry points
to a 16 MiB segment of physical memory, this mapping provides 64 MiB of memory
which is shared between all the cores.

There are a few problems that we have to overcome in order to have a usable shared
memory. Firstly, 64 MiB is not enough to deploy LPEL and some real-world Reactive
Stream Programs (RSPs). The problem of not having enough shared memory can be
solved by using all the unused entries of the LUT, that is entries 41–191. As each
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entry points to a 16 MiB segment of memory, by using entries 41–191 we can create
approx 2.5 GiB of shared memory.

The next problem to consider is: where will we get the physical memory to which
our extended range of LUT entries will point (Don’t forget that, by default only 4 of
these entries point to the physical memory). As mentioned before, out of 256 entries
of the LUT table only the first 41 entries point to the physical memory needed by
the individual OS instances. So to obtain enough physical memory to configure as
a shared memory, we need to disable 4 of the 48 cores on the SCC. This provides
us with enough valid entries from these disabled cores to populate unused/extended
entries of the LUT. In total we have 151 unused entries. Now, by disabling 4 cores we
obtain 41∗4 = 164 entries in total. This is more than enough for our purpose, but as a
consequence we lose 4 out of 48 cores on the SCC.

The next problem is that with memory mapped as described in the RCCE, you
get a shared memory but the virtual address range is not the same for all the cores.
Let’s look at a small example: We have some physical memory that we would like to
share between two cores. Now core-0 may map this memory at the virtual address
starting from 0xb5815000 and core-1 may map at the virtual address starting from
0xb5700000, even though both are pointing at the same segment of physical memory
(both cores invoke mmap system call to map memory independently). This increases
the difficulty of creating complex data structures in the shared memory: a structure
allocated in the shared memory might have a pointer pointing to another structure that
is also allocated in the shared memory. Since the pointer stores an absolute address,
that address is only valid for the core that allocated the memory for the structure, i.e.
pointers are not globally valid. For example, core-0 allocated some memory that is
pointed to by a pointer p, if we try to access this memory from core-1 the address that
pointer p points to will not be a valid address, and as such it may cause data corruption
and a segmentation fault in the most extreme case.

Of-course we can use offsets from the beginning of the address-space instead.
That is, instead of passing pointer between cores, we can store the starting address
of the shared memory for each core and then use this to calculate offset. As an
example, core-0 and core-1 can store their start address (virtual address) of the shared
memory in to a core local variable called shm_base. Now on core-0 instead of storing
a pointer p, an offset pointer offset_ptr will be stored. This offset_ptr can be calculated
as offset_ptr = p− shm_basecore−0. Now this offset_ptr is sent to core-1 where the
pointer p is reconstructed as p = shm_basecore−1 + offset_ptr. But this approach of
using offsets from the beginning of the address-space would introduce an additional
overhead and unnecessary complexity. In addition, it would prevent us from using any
third party library if needed.
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All of these problems can be avoided if we can somehow map the physical memory
to the same virtual address range on all the cores. The system call mmap() creates a
new mapping in the virtual address space of the calling process. We will look at some
of the parameters that we are interested in here; in-depth description of the same can
be found in [72]. When mmap is called, the address of the new mapping is returned as
the result. The actual mmap() looks like;

void *mmap(void *addr, size_t length, int prot, int flags, int fd,

off_t offset)

The parameters we are interested in are:

addr there are two options for addr parameter, if NULL is provided the kernel chooses
the address at which to create the mapping. The kernel takes it as a hint where
to place the mapping if addr is not NULL.

length is the size of mapping in bytes.

flags this flag decides if the memory is shared or not by using MAP_SHARED or -
MAP_PRIVATE. In addition, there are some more flags that can be ORed. Out
of those flags, we are only interested in a flag called MAP_FIXED; this flag
forces the kernel to place the mapping at exactly the address provided by addr
parameter (instead of taking it as only a hint).

fd the memory device drivers that provides the raw memory/file descriptor (in our
case we use NCMDeviceFD which maps memory as uncached).

We now know that there are two steps to create a shared memory: the first step is
to change default LUT entries; the second one is to map this newly available memory
into the virtual address space of the programme. We will look at those two steps in
detail.

3.2.1 LUT Remapping

We will look at how the LUT remapping is done using a concrete example. Since we
are not interested in all 256 LUT entries, the following figures show only the relevant
entries.

Figure 3.2 shows the default LUT entries for cores core-0, core-1 and core-14.
For simplicity, we show the value for each LUT entry as a decimal number. However
these numbers are real values, i.e. they were obtained experimentally by reading LUT
entries of respective cores. As we can see, entries 0–40 are mapped as private, entries
41–127 and 132-191 are unused, and entries 128–131 are mapped as shared. We
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Core 0 Core 1 Core 47
LUT # Values Maps To

0 6144 Private

1 6145

2 6146

: : :

38 6182

39 6183

40 6184 Private

41 Unused

42

43

: : :

125

126

127 Unused

128 6636 Shared MC0

129 45548 Shared MC1

130 268780 Shared MC2

131 307692 Shared MC3

132 Unused

133

134

: : :

189

190

191 Unused

LUT # Values Maps To

0 6185 Private

1 6186

2 6187

: : :

38 6223

39 6224

40 6225 Private

41 Unused

42

43

: : :

125

126

127 Unused

128 6636 Shared MC0

129 45548 Shared MC1

130 268780 Shared MC2

131 307692 Shared MC3

132 Unused

133

134

: : :

189

190

191 Unused

...

LUT # Values Maps To

0 307651 Private

1 307652

2 307653

: : :

38 307689

39 307690

40 307691 Private

41 Unused

42

43

: : :

125

126

127 Unused

128 6636 Shared MC0

129 45548 Shared MC1

130 268780 Shared MC2

131 307692 Shared MC3

132 Unused

133

134

: : :

189

190

191 Unused

Figure 3.2 Default LUT Entries for Cores 0, 1 and 47

Core 17 MC-0 Core 18 MC-1 Core 29 MC-2 Core 30 MC-3
LUT # Values Maps To

0 6595 Private

1 6596

2 6597

3 6598 :

4 6599

: : :

36 6631

37 6632

38 6633

39 6634

40 6635 Private

LUT # Values Maps To

0 45302 Private

1 45303

2 45304

3 45305 :

4 45306

: : :

36 45338

37 45339

38 45340

39 45341

40 45342 Private

LUT # Values Maps To

0 268493 Private

1 268494

2 268495

3 268496 :

4 268497

: : :

36 268529

37 268530

38 268531

39 268532

40 268533 Private

LUT # Values Maps To

0 307200 Private

1 307201

2 307202

3 307203 :

4 307204

: : :

36 307236

37 307237

38 307238

39 307239

40 307240 Private

Figure 3.3 Private LUT Entries for Donor Cores 17, 18, 29 and 30
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Core 0 Core 1 Core 47
LUT # Values Maps To

0 6144 Private

1 6145

: : :

39 6183

40 6184 Private

41 6595 SHM

42 6596

: : :

80 6634

81 6635

82 45302

83 45303

: : :

121 45341

122 45342

123 268493

124 268494

: : :

162 268532

163 268533

164 307200

165 307201

: : :

190 307226

191 307227 SHM

LUT # Values Maps To

0 6185 Private

1 6186

: : :

39 6224

40 6225 Private

41 6595 SHM

42 6596

: : :

80 6634

81 6635

82 45302

83 45303

: : :

121 45341

122 45342

123 268493

124 268494

: : :

162 268532

163 268533

164 307200

165 307201

: : :

190 307226

191 307227 SHM

...

LUT # Values Maps To

0 307651 Private

1 307652

: : :

39 307690

40 307691 Private

41 6595 SHM

42 6596

: : :

80 6634

81 6635

82 45302

83 45303

: : :

121 45341

122 45342

123 268493

124 268494

: : :

162 268532

163 268533

164 307200

165 307201

: : :

190 307226

191 307227 SHM

Figure 3.4 Remapped LUT Entries for Cores 0, 1 and 47

decide which cores will be the donor cores (these cores will become un-usable) at
the boot time—this means we only boot 44 out of 48 cores. This allows us to have
at maximum 44 cores to deploy LPEL onto. Since we know which cores will be the
donor cores, by using the pre-calculated table we can work out the values that will be
written to unused LUT entries by each core.

Figure 3.3 shows the LUT entries for the donor cores that we will use for this
example. For this particular example we take a core from each Memory Controller
(MC). So, core-17, core-18, core-29 and core-30 belong to MC-0, MC-1, MC-2 and
MC-3 respectively. There is no particular reason behind choosing these cores, any
cores can be chosen. However, we have to keep in mind that if we get all the donor
cores from the same MC, we may face congestion on the network due to all the cores
trying to access data from the same MC. There can be multiple ways to choose donor
cores, e.g., a core from each MC, cores from same voltage island, cores that are far
away from the MC and so on.

Figure 3.4 shows LUT entries from same cores 0, 1 and 47, but after LUT remap-
ping has been done. As we can see, there is no change in LUT entries 0–40 that points
to private part of memory. Entries 41–191 have been changed now and point to the
memory region that will be shared by all the cores. Now as we can see all the cores
have the same value for the shared part. Entries 41–81 map the values from LUT
entries 0–40 of core-17, entries 82–122 map the values from LUT entries 0–40 of
core-18, entries 123–163 map the values from LUT entries 0–40 of core-29 and entries
164–191 map the values from LUT entries 0–27 of core-30. From core-30 we only
map 28 entries as after that we run out of unused LUT entries (we only map until entry
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191). This mapping happens in all the cores that will take part in program execution
(of-course maximum 44 cores). For LUT remapping there is no need for any type of
synchronisation or communication between participating cores, as we already know
values that need to be written to LUT, which is the same for all the cores. Once again
just for clarification, we map all entries from a donor core before moving on to the
next, this is just for illustration purposes. We can map the number of entry from each
donor core in a round robin manner; e.g., we take one entry from each donor core,
or let’s say three entries from each donor core. Table 3.1 illustrates this with some
numbers. In case of mapping a single entry each time, large data may span multiple
MCs, or in the case of mapping more entries each time, multiple cores may try to
access the same MC to access data in turn.

3.2.2 Memory Mapping

Now we have completed LUT remapping, how do we actually map this memory? it’s
not very straight forward and there are some caveats we should be aware of. Listing 3.1
and Listing 3.2 show partial pseudocode of a function that initialises the SCC platform
and the shared memory respectively.

When the SCC initialisation function is invoked, depending on the role (conductor
or worker) of a core, a different part of the initialisation function code is executed.
The conductor is responsible for mapping a shared memory and making the resulting
virtual address where this mapping occurs available to workers. If the core is a worker,
it will wait until the address to map memory becomes available. At this point, it is
important to remember that the shared memory does not exists yet. We use MPB
to store meta-data and flags that assist at this stage to provide the communication
mechanism between cores. Lines 6–11 are executed by the conductor. The conductor
first maps MPB memory and sets required meta-data and default values for flags. Next
a call to the shared memory initialisation function SHMInit (described in Listing 3.2)
is made, at this point v_addr is NULL (SHMInit will set the value to v_addr if memory
mapping is successful). The resulting virtual address is copied to MPB and instruction
CL1INVMB is executed to make sure that it is written to MPB and not stuck in the
Write Combine Buffer (WCB). In next step, flag flag_conductor_init is set to indicate
the conductor has finished mapping the memory and the virtual address is in MPB
and then MPB memory is unmapped. Of-course the MPB memory is mapped again
at a later stage in the SCC initialisation function; this avoids any possible conflict
betweenthe shared memory mapping and any other mappings, e.g., MPBs, CRBs and
atomic registers.
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LUT Entry to Map
Donor-Core – LUT Entry Taken

One Entry Per Donor Core Three Entry Per Donor Core

41 C-17 – 0 C-17 – 0

42 C-18 – 0 C-17 – 1

43 C-29 – 0 C-17 – 2

44 C-30 – 0 C-18 – 0

45 C-17 – 1 C-18 – 1

46 C-18 – 1 C-18 – 2

47 C-29 – 1 C-29 – 0

48 C-30 – 1 C-29 – 1

49 C-17 – 2 C-29 – 2

50 C-18 – 2 C-30 – 0

51 C-29 – 2 C-30 – 1

52 C-30 – 2 C-30 – 2

53 C-17 – 3 C-17 – 3

54 C-18 – 3 C-17 – 4

55 C-29 – 3 C-17 – 5

56 C-30 – 3 C-18 – 3

57 C-17 – 4 C-18 – 4

58 C-18 – 4 C-18 – 5

59 C-29 – 4 C-29 – 3

60 C-30 – 4 C-29 – 4

Table 3.1 Example of LUT Mappings with Different Number of Entries in Round-robin
Manner
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1 Function SCCInit()

2 Set v_addr = NULL

3 Set flag_conductor_init = False

4
5 If coreID equal Conductor

6 Map MPB memory

7 Call SHMInit(v_addr)

8 Copy value of v_addr to MPB

9 Invoke CL1INVMB

10 Set flag_conductor_init = True

11 Unmap MPB memory

12 Else

13 Map MPB memory

14 While flag_conductor_init equal False Do

15 Wait for some time

16 End While

17 Copy value from MPB to v_addr

18 Unmap MPB memory

19 Call SHMInit(v_addr)

20 End If

Listing 3.1 Partial Pseudocode of the SCC Platform Initialisation Function
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The lines 13–19 are executed by worker cores. Similar to the conductor part,
workers also map and unmap MPB memory at the beginning and at the end for the same
reasons. After mapping MPB memory, the worker busy-waits on a flag_conductor_init.
Once flag_conductor_init is set, the worker can retrieve the virtual address (and store
in v_addr) to map a shared memory from the MPB and calls SHMInit with v_addr as
a parameter.

Similar to the SCC initialisation, a shared memory initialisation also executes
slightly different code based on the role (conductor or worker) of a core as can be seen
in Listing 3.2. The different branch of code is taken based on value of the v_addr.
From Listing 3.1 the conductor will always have NULL for v_addr, where as for
workers it will contain the virtual address. As can be seen in Listing 3.2 we map the
memory twice for conductor, this is one of the caveats. Again this has something to do
with preventing a mapping conflict in address ranges. First we create an anonymous
mapping by specifying addr as NULL and without MAP_FIXED flag in mmap. This
allows the kernel to choose an address for the mapping that does not overlap any other
mapping (there are no mapping at this point apart from MPB anyway). Lines 9–13
perform error checking and either exits the program in case of error or unmaps the
recently mapped region. In next step, we call mmap again but this time we do not
create anonymous mapping. We specify the address that was acquired in previous
mmap call as the value for addr and also use MAP_FIXED flag to force the kernel to
make new mapping at the provided address. Again we check this new mapping was
successful as can be seen in lines 18–22, and set v_addr. On worker part, SHMInit
is already called with address to make fixed mapping, and as such mmap is called
only once and usual error checking is performed (lines 24–29). At the end, variables
shmStart and shmEnd are set with values. We use these variables to implement the
address validation technique described in Section 3.3.3.

Now some more information about why we perform two mmap calls for the con-
ductor.

If the memory region specified by addr and len overlaps pages of any
existing mapping(s), then the overlapped part of the existing mapping(s)
will be discarded [24].

This can cause problems when we provide a fixed address to mmap; conflict with
existing mappings can occur resulting in hard to trace bugs (we have experienced this
first hand). It becomes hard to trace this kind of memory corruption bug as it may be
the case that mapping discards only part of existing mapping. As an example, there
are 24 mappings for MPB, one for each tile (MPB is physically distributed on a tile
basis). In the worst case we may overwrite part of this mapping, so in the case we think
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1 Function SHMInit(v_addr)

2 Set local_v_addr1 = NULL

3 Set local_v_addr2 = NULL

4
5 IF v_addr equal NULL

6 Call mmap() with addr as NULL

7 Set local_v_addr1 = return value of mmap()

8
9 If local_v_addr1 equal NULL

10 Print error message and exit program

11 Else

12 Unmap memory mapped at local_v_addr1

13 End If

14
15 Call mmap() with addr as local_v_addr1 and MAP_FIXED flag

16 Set local_v_addr2 = return value of mmap()

17
18 If local_v_addr2 equal NULL

19 Print error message and exit program

20 Else

21 Set v_addr = local_v_addr2

22 End If

23 Else

24 Call mmap() with addr as v_addr and MAP_FIXED flag

25 Set local_v_addr1 = return value of mmap()

26
27 If local_v_addr1 equal NULL

28 Print error message and exit program

29 End If

30 End If

31
32 Set shmStart = v_addr;

33 Set shmEnd = base + shared memory size;

Listing 3.2 Partial Pseudocode of a Shared Memory Initialisation Function
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that we are writing to MPB we may in-fact be writing to uncached shared memory
resulting in data corruption or, even worse, nearly untraceable memory access bugs
and race conditions. Now in the case of mapping twice, we ask the kernel to provide
us with an address first time; this automatically prevents any conflict with existing
mappings; and in second stage we use this address to make fixed mapping that we can
guarantee to be conflict-free.

3.3 HALLOC: A Hierarchical Memory Allocator

Once the shared memory has been initialised, the next question is how to use this
shared memory. Any static objects (e.g. variables) are allocated statically at the link
time and will reside in the program’s heap space. Since heap space resides in private
memory of a process/core and is not accessible to other cores, the focus of our approach
is restricted to the Dynamic Storage Allocation (DSA) only.

Calling standard malloc will allocate space in the core’s private segment rather
than in the shared region of memory. We have written our own malloc and free

functions that are based on K&R malloc and free [71] to address the issue.

By using the LUT entries to create a shared memory, all cores share the same view
on the memory (with memory mapped at the same address range on all the cores).
There are multiple ways we can allocate this shared memory to cores. For convenience,
from now on we will refer to the shared memory as a SHM-Arena

The first approach is to have a global allocator that allocates memory to each core
as and when requested. The benefit of this scheme is that it is very simple. As the
SHM-Arena is accessible by all the cores, to allocate memory from it each core has to
grab the lock, allocate memory and then release the lock. The lock is necessary as we
do not want meta-data within the memory allocator to be corrupted due to simultaneous
accesses by multiple cores. The drawback of this approach is that locking/unlocking
creates unnecessary contention and adversely impacts the performance.

In the second approach, the SHM-Arena is divided into blocks of equal size and
then each core can locally manage its block. The problem with this approach is that
not all tasks need the same amount of memory. For example in RSPs there is a global
input/output task, which requires very small amount of memory. In this case, if we
distribute equally-sized blocks of memory to all the cores taking part in execution it
will be a waste of resources.

To alleviate this problem, we can fuse the first and second approach to create
a hybrid allocator. More concretely, we propose a hierarchical memory manage-
ment scheme that is composed of two principal components: (a) a “global allocator”
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component which allows memory management at the SCC level and (b) a “local alloc-
ator” component which is associated with each core on the SCC and allows memory
management at the core level.

There is only one global allocator that is shared by all the cores. This global
allocator allocates blocks of memory from SHM-Arena as and when required by
participating cores. In contrast, each core has its own local allocator, responsible for
managing (allocation/de-allocation) memory that has been made available by global
allocator. When the memory available is depleted and the local allocator is unable to
fulfil the request for memory allocation, a core will request another block of memory
from the global allocator. In case the global allocator is also exhausted of available
memory, the program will simply terminate due to out of memory error (our SHM-
Arena is approx 2.5 GiB). Any program that requires more than 2.5 GiB of memory at
any given point in time can not be executed with our approach, we regard this case as
a limitation of hardware/system (as in practice, for any given platform, there is a limit
to the amount of memory that is available).

For clarity of exposition, from now on we refer to the block of memory that is
allocated by the global allocator from SHM-Arena as super-chunk and when this super-
chunk becomes available to the local allocator, we refer to it as chunk. Since our DSA
is hierarchical by nature, we will refer our allocator as HALLOC. The functionality to
create shared memory—as described in Section 3.2— is also part of HALLOC.

3.3.1 HALLOC Design Criteria and Concepts

Before we divulge into the details, we present some design criteria of HALLOC;

Explicit (de-)allocation An application has to explicitly call the functions provided
by HALLOC to allocate/release memory e.g. malloc and free.

No reallocation This is true at both levels of hierarchy. At the global allocator
level SHM-Arena (single large block of memory) is fixed size, and can not be
increased by system level calls e.g. sbrk(). At the local allocator level, once
memory is allocated for requested size it can not be increased or decreased e.g.
by using realloc.

Low fragmentation Immediate coalescing is employed to decrease fragmentation.

Immediate coalescing When a chunk of memory if freed/de-allocated, it is merged
straight-away with any available neighbouring free chunks to build up a larger
free chunk if possible.
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Figure 3.5 Shared Memory Layout

Deferred coalescing In the case where immediate coalescing is not possible, employ
deferred coalescing instead. In deferred coalescing, chunk is not merged imme-
diately (it takes un-specified time before coalescing happens) with adjacent free
blocks.

Ownership The concept of ownership is essential to implement preventative measures
for memory blowup problems.

Prevent blowup blowup [17] is a special kind of fragmentation, where required
memory is fixed, but the memory consumption still grows with time, ultimately
leading to out of memory even though there is some memory that can be made
available to use.

First-Fit strategy Ensures that allocations are quick, reduces fragmentation and is
easy to implement. To keep implementation simple we use same a first-fit
strategy to allocate memory chunk of any size (of-course up to available memory
size).

Memory is not zeroed Reduces the overhead of zeroing memory when allocating. In
our case, only one application will be running at any given time and as such we
can afford not to clear memory while allocating.

super-chunks are not freed To keep implementation simple at this stage, we do not
free super-chunks, as we already free chunks it makes sure that cores have
enough memory available.

Figure 3.5 depicts the view of shared memory from the perspective of different
cores. In addition, Figure 3.5 also depicts SHM-Arena, super-chunk and chunk. SHM-
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Arena is one big block of memory which is composed of multiple super-chunks and
some un-allocated memory. When a core makes a request to the global allocator it
receives a super-chunk. The super-chunks which are managed by a core may not be
contiguous. Furthermore, as soon as super-chunk is made available to a core for the
allocation it becomes a chunk (i.e. super-chunk is a concept that makes explanation
simple). The core keeps its chunks as a circular linked list of free memory. For
example, the core-1 manages the super-chunk 1 and 3. If we look at the core 1 view of
these super-chunks then each super-chunks is composed of multiple chunks. We have
a concept of ownership as well. In our example the core-1 owns super-chunk 1 and 3
(and as such all chunks within), where as the core-2 owns super-chunk 2.

The ownership concept is important to prevent the problem of blowup. Simply put,
blowup is where memory required is fixed, but the memory consumption still grows
with time. This can be illustrated with an example of producer-consumer relationship
that is quite a common pattern in programming. Let’s consider a program in which a
producer repeatedly allocates a same size chunk of memory and gives it to a consumer
which frees it. Now if the memory freed by the consumer is un-available to produce,
even-though memory required for each allocation never changes consumption of
memory will grow with time. Now since we know who the owner of any given chunk
is, we can make this chunk available to its owner once it’s de-allocated. This is the sort
of model for RSP applications we are targeting; in RSP we refer to producer/consumer
as source/sink. We refer to de-allocation as remote free, if de-allocation of a chunk
is performed by a core that is not the owner i.e. core did not allocate the chunk in
question. In contrast, de-allocation of chunk is referred to as local free, if chunk owner
and the core performing de-allocation is the same.

The local allocator in HALLOC manages two lists: first to keep track of free storage,
known as free list. The second list is the garbage list to keep track of garbage storage
that needs to be added back to the free list. The free list is only accessed by an
owning core, while the garbage list can be accessed by multiple not-owning cores.
Even-though we have hierarchy of allocation and de-allocation function, all of the gory
details is hidden behind only two functions that are exposed to the end user which are;
allocation function scc_malloc and de-allocation function scc_free.

3.3.2 Memory Allocation

As we already know, the memory allocation in HALLOC happens at two levels. We
have a wrapper function called scc_malloc which is used by a program when it needs to
allocated some storage. Internally scc_malloc calls either the global allocator function
called scc_malloc_global or the local allocator called scc_malloc_local. We will start
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Next
Chunk Size Owner ID Free Memory

Chunk Header Available Storage

Figure 3.6 A Chunk with Header

with data structure of chunk and then look at the allocators. We do not provide any
in-depth details of the local allocator scc_malloc_local as it is a “first fit” algorithm
from [71].

Information required in order to manage super-chunk/chunk is kept in the data
structure called chunk header. The information in chunk header is arranged in three
fields: first is a pointer to next chunk in free list or garbage list; second is size of
chunk i.e. the memory which is available for storage; and third is owner-id. We use
core-id as owner-id for chunks. The chunk header is followed by the memory area
that is available for storage to end user. The pointer returned by allocator points at the
storage area, not at the chunk header itself. Chunk is depicted in Figure 3.6. Since
we know exactly how big the header is, we can always retrieve information needed
from the header by employing pointer arithmetic. In order to keep track of free storage
available, the local allocator uses the next chunk field from the header to create circular
linked list called free list composed of all the chunks. Once a chunk is allocated, it is
removed from the free list and the next chunk field is set to NULL.

Algorithm 1 Algorithm scc_malloc_global to Allocate m Bytes from SHM-Arena
Require: m≤ SHM-Arena_size ◃ size of un-allocated memory in SHM-Arena

1: tas_lock()
2: super-chunk← SHM-Arena_ptr
3: super-chunk_next← NULL
4: super-chunk_size← m
5: super-chunk_owner-id← core-id
6: SHM-Arena_ptr← SHM-Arena_ptr +(m+header_size)
7: SHM-Arena_size← SHM-Arena_size −(m+header_size)
8: tas_unlock()
9: Return super-chunk

Algorithm 1 describes the global allocator. It is a very simple allocator that keeps
track of the size of the SHM-Arena and the starting point of un-allocated memory
in SHM-Arena as meta-data. When a request for memory allocation is made by a
core, the global allocator performs three steps. First it checks if there is enough
memory to allocate. If there is enough memory available, then it continues to the
next step—otherwise it returns an error. Next it uses a lock to avoid any corruption
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of meta-data. Finally it allocates the required size of super-chunk with appropriate
header information, and then adjusts the size and starting point of the un-allocated
memory in SHM-Arena before releasing the lock. This global allocator can be called
by multiple cores simultaneously and as such we will need a lock to guard the critical
section. We use Test-and-Set (T&S) register available on the SCC to implement this
lock. Locks implemented using T&S provide atomicity at the SCC level, which is a
mandatory property for the global allocator.

Algorithm 2 Algorithm scc_malloc to Allocate n Bytes from Free List of Chunks

1: mutex_lock()
2: memptr← scc_malloc_local(n) ◃ K&R First-Fit malloc
3: mutex_unlock()

4: if memprt = NULL then
5: scc_free_garbage() ◃ triggers garbage list clean-up
6: mutex_lock()
7: memptr← scc_malloc_local(n)
8: mutex_unlock()

9: if memprt = NULL then
10: super-chunk← scc_malloc_global(m)
11: mutex_lock()
12: scc_free_local(super-chunk) ◃ make it available to local allocator
13: memptr← scc_malloc_local(n)
14: mutex_unlock()

15: if memprt = NULL then
16: Not enough memory available, return Error
17: else
18: Return memptr

Algorithm 2 allocates n bytes of memory from the free list. The local allocator
scc_malloc_local implements a “first fit” allocation strategy. As interested readers
can find a detailed description with sample code in [71], we refrain from listing any
code here. Initial implementation of scc_malloc_local is not thread-safe. It is therefore
protected by a lock (lines 1–3). Since scc_malloc_local is a core local allocator, mutex
lock is sufficient enough. The following situations can occur when scc_malloc is
called:

Lines 1–3 allocation request is successful and required memory is allocated by
scc_malloc_local, no further action is required, scc_malloc returns pointer
to allocated memory.
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Lines 4–8 First call to scc_malloc_local returns NULL, we may have some chunks
that are already marked for de-allocation waiting in the garbage list. In this
case, we trigger garbage list clean-up by invoking scc_free_garbage. Once
garbage clean-up is complete, we try again to allocate required memory with
scc_malloc_local. In case of success, pointer to allocated memory is returned.

Lines 9–14 Second call to scc_malloc_local also return NULL. In this case we request
super-chunk from global allocator scc_malloc_global. Once we have super-
chunk before it can be used we have to make it available to scc_malloc_local
by adding it to the free list. This is achieved by invoking scc_free_local. we try
one more time to allocate required memory with scc_malloc_local. In order to
ease the contention on the global allocator, the core always requests m bytes of
memory where m > n.

Lines 15–18 Since asking for super-chunk is our last attempt to allocate memory.
Failure in this case means there is not enough memory available and the program
exists with out of memory error. Pointer to allocated memory is returned in case
of a success.

As can be seen from Algorithm 2, all the calls to scc_malloc_local and scc_free_local
are protected by a mutex from the Portable Operating System Interface [for Unix]
(POSIX) thread library to make them thread-safe.

3.3.3 Memory De-allocation

This hierarchical allocation means we will also need a hierarchical de-allocation, but
at this point we do not free local chunks back to SHM-Arena or super-chunk. The
reasoning behind this decision is that even if we send back chunks to SHM-Arena we
may still see fragmentation. This fragmentation is due to the fact that once a super-
chunk is added to local allocator it is broken down in to even smaller chunks (as and
when new allocation request arrives); this will prevent us performing coalescing at a
global level. Now, as we already mentioned earlier, there are two types of deallocation;
we refer to them as local free and remote free.

Each core maintains a garbage list containing chunks marked for de-allocation. In
the case of remote free, a chunk is added to the garbage list of owner core.

Again in similarity to allocation functions, we have a few functions that deal
with de-allocation of memory allocated with scc_malloc. Here we list all of the
de-allocation functions:
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scc_free A wrapper function and counterpart to scc_malloc. This wrapper hides
all the details of de-allocation from a programmer and calls the appropriate
de-allocation function available internally.

scc_free_local A local de-allocator and counterpart to local allocator scc_malloc_local,
and as expected it is also described in [71]. Local de-allocator scc_free_local
returns the chunk to be freed to the core local free list and provides immediate
coalescing functionality. This function is called in case of local free and only by
owner core.

scc_free_remote When chunk is de-allocated using remote free, scc_free_remote is
called to add the chunk to appropriate garbage list. This function is called by
any core that is not owner of a chunk that is being free. In the case of remote
free, deferred coalescing takes place to reduce fragmentation.

scc_free_garbage This function is called to de-allocated chunk that are placed in
garbage list of a core.

Algorithm 3 Algorithm scc_free to De-allocate Memory Pointed by p
1: if not (shmStart ≤ p ≤ shmEnd) then
2: OS_standard_free(p) ◃ p points to private memory
3: return

4: if owner-id = core-id then
5: mutex_lock()
6: scc_free_local(p) ◃ K&R free
7: mutex_unlock()
8: else
9: air_lock()

10: scc_free_remote(p,owner− id) ◃ add chunk to garbage list of owner core
11: air_unlock()

We know at which address SHM-Arena starts and ends from Listing 3.2. We can
use this information to employ a simple protection mechanism to check if an address is
valid. An address is a valid shared memory address if condition shmStart ≤ address≤
shmEnd is satisfied (line 1). If the memory pointed by p was allocated in private
region using standard malloc (malloc by OS), then we need to free it using standard
free (line 2). This may happen plus it’s a good protection measure. In case when p
was allocated by scc_malloc there are two actions which can be performed. In the first
case, owner-id from chunk header and core-id are compared and found to be same (line
4). Then function scc_free_local, which is the standard free function corresponding
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to scc_malloc_local is called. All the calls to scc_free_local are protected by a
mutex lock to ensure thread-safe operation (lines 5–7). Immediate coalescing is also
performed by scc_free_local, detailed description and implementation details can be
found in [71]. In second case where id mismatch happens, a call to scc_free_remote is
performed. Since scc_free_remote can be invoked by multiple cores simultaneously,
it is protected by a lock implemented using the Atomic Increment Counter (AIR),
described in Section 2.5.3. Since implementation of scc_free_remote is very simple,
we omit any code/pseudocode. In-short each core maintains an array with each element
pointing to garbage list of other cores, where index of an element is equal to the core-
id/owner-id. A chunk being remote freed is simply inserted at the beginning of a
garbage list.

Algorithm 4 Algorithm scc_free_garbage to De-allocated Memory from Garbage List

1: air_lock()
2: glfirst← garbage_list ◃ copy the garbage list
3: garbage_list← NULL ◃ make the garbage list empty
4: air_unlock()

5: mutex_lock()
6: while gl f irst ̸= NULL do
7: glnext← chunk after glfirst in list
8: scc_free_local(gl f irst) ◃ K&R free
9: glfirst← glnext

10: mutex_unlock()

Algorithm 4 describes how the core de-allocates the chunk which was added to its
garbage list by other cores. This algorithm is executed during the garbage clean-up
process that is invoked by scc_malloc when the first attempt to allocate memory fails.
there are two stages in scc_free_garbage;

Lines 1–4 We protect this region with a lock implemented with AIR to protect the
garbage list from being corrupted due to the concurrent access by other cores.
Once lock is acquired we copy garbage list to local list and set garbage list to be
NULL (to mark it empty). This is an inexpensive operation as the garbage list is
a linked list so that only copying pointer to first chunk is enough. This strategy
reduces the time that other cores have to wait in order to access the garbage list
while the owner core is in its clean-up routine.

Lines 5–10 Here, since we are accessing free list (accessed only by owner core),
mutex is enough to protect from any concurrent access. Then we simply loop
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through the copied garbage list until the end and add each chunk to the free list
by calling scc_free_local.

3.4 LPEL on the SCC

Once we have HALLOC we have to make some changes to get porting of LPEL on
the SCC complete. Since LPEL was originally designed for shared memory systems
where all the cores are running under the same instance of OS, only one instance of
S-Net RTS and LPEL is required, whereas in our case this does not hold anymore. In
addition, the previously used synchronisation mechanism does not work either i.e. we
can not use PTHREAD mutex to achieve cross-core synchronisation on the SCC as each
core runs its own instance of OS. Furthermore, if the user does not specify the desired
number of workers on program startup we can not infer available number of cores that
will participate (in multi-core/many-core shared memory system with single system
image this can be achieved by querying OS). And lastly, we have to make sure that all
the calls to standard malloc (for memory that is shared between cores) are replaced
with scc_malloc.

3.4.1 Conductor/Worker Initialisation on the SCC

When deploying the LPEL on the SCC, it makes sense to create exactly as many
workers as there are cores, as the cores of SCC are single-threaded. As there is no
shared memory at the beginning, we can not just create conductor/workers on a single
core and then distribute them amongst participating cores, which is the way it is done in
a normal shared-memory machine. For this purpose, when the execution of a program
starts, a configuration file is used to decide which core will be the conductor based on
the physical core id.

As mentioned in Section 3.2, to create a truly global shared memory, all the cores
have to map part of the program’s address-space to the same virtual address range.
Meta-data, including a flag necessary to establish communication between cores is
located in a predefined location in MPB. This location is predefined and as such all the
cores taking part in the computation will know this MPB location.

If a core is a conductor, it starts by initialising the shared memory, tasks, streams
and the static parts of streaming network. If core is a worker, it will busy-wait on a
flag located in MPB. Once the conductor has mapped the LUT entries and created the
shared memory, it places the relevant LUT configuration in the MPB and sets the flag.
Once the flag is set, the worker cores configure their LUTs to create mapping of the
shared memory to the same virtual address range as the conductor.
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The LPEL uses mailboxes to facilitate communication between conductor and
workers. Each mailbox is protected by a lock to ensure that no messages are lost and
operations are corruption free. Once we create a mailbox associated with conductor
and each worker, it does not allow automatic establishment of communication channel
between them. There are two ways this can be done: first the conductor and all workers
will create their mailbox and then by using MPB communicate the location of their
mailbox; the second way is to reserve some memory at the beginning of the shared
memory and use it to statically allocate slots where each core will locate its own
mailbox by means of core id. Since we have a fixed number of cores on the SCC, we
opted to choose the second option. The conductor initialises all the mailboxes in the
reserved section of the shared memory, all the workers has a private list of mailbox
addresses that is populated with values by calculating offset from beginning of the
shared memory.

Once the mailboxes are set-up, the workers request tasks to execute from the
conductor and the conductor will fulfil these requests based on demand and task
priority. When there are no more messages to be processed, the conductor sends a
termination message to all the workers via the mailbox.

3.4.2 Synchronization Primitives

Having access to the atomic instruction to provide synchronisation and protect critical
region is one of the requirement of the LPEL, which should be fulfilled by the under-
lying hardware. LPEL requires synchronisation at different points, some examples
are:

• During the initialisation phase, the conductor/workers use a shared flag to
synchronise LUT remapping and the shared memory creation.

• The meta-data of the global allocator in HALLOC is accessed/modified by
conductor/workers concurrently.

• The meta-data of the local allocator in HALLOC need to be protected against
concurrent access by multiple threads within the same core.

• The mailbox is an example of producer/consumer paradigm, where messages are
added/removed from the queue concurrently. This queue needs to be protected
against concurrent access to ensure messages are not lost and to avoid corruption
of the queue.

• Streams are used to transfer messages between tasks. Streams are implemented
as First In First Out (FIFO) buffers, and these buffers need protection to ensure
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integrity of data (during reading/writing to the stream) and its associated counters
(used to derive data demand for scheduling purposes).

We already use all the hardware registers provided by SCC for synchronisation.
The MPB is used to store the shared flag. We use the T&S registers to implement locks
that protect the meta-data of the global allocator. We use the atomic counter registers
to implement locks to protect the garbage list and the mailboxes.

We still need more synchronisation primitives to protect the streams and for the
core local memory allocator. For this purpose we use POSIX (PTHREAD) mutexes.
The SCC runs an OS instance on each core, so we create mutexes with the process
shared attribute set. This allows different workers to access the same mutex, as this
access will be seen as it was accessed by different processes. In addition, the function
that is called to acquire lock on this mutex i.e. pthread_mutex_lock is replaced by calls
to the non-blocking version of the same function pthread_mutex_trylock.

3.5 Chapter Summary

This chapter provided a detailed description of the design and implementation of LPEL
for the SCC. We have covered memory management mechanisms including, LUT
remapping, memory mapping and shared memory allocation/deallocation. We also
covered the concept and the design criteria of HALLOC, a novel hierarchical memory
allocator. We provided an account of how conductor and workers are initialised on the
SCC and how we use synchronisation primitives provided by the SCC hardware.



Chapter 4

Taxonomy of Resource-aware
Execution

This chapter describes the resource model and different resource load scenarios. We
study the influence of load balance on power consumption in § 4.2. We provide formal
definitions of load ranges for Reactive Stream Programs (RSPs) with different arrival
rates in § 4.5. Furthermore, in § 4.6 these definitions are then extended with inclusion
of Dynamic Voltage and Frequency Scaling (DVFS), and as such we take into account
the impact DVFS has on available resource and system state.

4.1 Resource Model and Resource Management Sys-
tem

The resource is a reusable entity that is employed in order to function effectively.
The model is concerned with two categories of resources; the first one is available
resources, these are the actual resources provided by the system. The second one is
required resources, these are the resources that are requested by the tasks in order to
function. The resource pool can contain different types of resources, e.g., number
of cores on a many-core machine, frequency at which these cores can operate, or
available network bandwidth.

In the simplest term, a Resource Management System (RMS) is defined as a service
that manages a pool of resources that is available to optimise the system performance.
The term system performance can indicate various metrics such as power consumption,
energy consumption, throughput, responsiveness and fault-tolerance.
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Let Ψ be a type of resource then Ψcapacity and Ψdemand are availability of the
resource and requested resource respectively. A pool with n types of resource is:

Ψpool = {Ψ1,Ψ2, ...,Ψn} (4.1)

4.2 Influence of Load Balancing

The term load can be described as, the relationship between the amount of available
(capacity) processing capacity of a resource and the amount required (demand) by the
work that needs to be carried out on this resource. Considering this, load balancing
can be defined as a strategy to distribute the load across the available resources almost
uniformly such that optimal resource utilisation can be achieved.

There are two main approaches to achieve load balancing: static and dynamic. The
static load balancing approach performs better in terms of complexity but it requires
prior knowledge about resource capacity and workload. The dynamic load balancing
approach is more complex but it takes into account the state of resources at the decision
time and does not require prior knowledge of the workload.

We already know from our power equation Equation 2.3 that the dynamic power
consumption of a core is approximately proportional to the product of its operating
frequency by the square of its operating voltage:

Pdynamic ∝ f ·V 2. (4.2)

This means that a small change in voltage has a big impact on power consumption,
as power consumed by a processor is directly proportional to V 2. A reduction in
operating voltage generally also requires a proportional reduction in frequency [102,
109]. A quadratic reduction in power consumption becomes possible to obtain by
varying the voltage along with the frequency.

On the one hand, for a chosen voltage there is a maximum frequency at which a
circuit can run without problem; running faster than this maximum frequency will
result in bad data. On the other hand, for a chosen voltage, setting frequency that is
much below the maximum frequency allowed for this voltage level will result in waste
of power.

Generally a more common approach for the many-core processors is to have
islands that can have different frequency and voltage. These islands are also known as
Voltage-Frequency Islands (VFIs), where multiple computational units are arranged
into groups to form a cluster/island. As an example, the Single-chip Cloud Computer
(SCC) allows to set the frequency of each tile (of 2 cores), and the voltage of each
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island (of 8 cores). But as we previously noted, for a given voltage there is a maximum
frequency to ensure problem-free operation. This mean if we set voltage accordion to
the need of a core running with highest frequency in the island, we may be wasting
power as 7 other cores may not require this high voltage level for safe operation.

This behaviour supports the argument that load balance is beneficial if we want to
apply DVFS to a system with VFIs. As with a load balanced system, almost all the
cores in an island will have uniform amount of work to do and as such we can reduce
the frequency for all the cores in the island by the same amount, effectively opening a
way to reduce voltage as well, with the assurance of safe operation of all the cores.

In contrast to load balancing, the core consolidation works by aggregating load
on to a minimum number of cores. Maximum voltage and frequency are than set for
these cores, but this may mean that cores on the island that do not have any work will
waste power.

Maximal dynamic power savings are achieved on a perfectly load-balanced system,
by reducing the speed of all islands by the same amount and avoiding different speeds
on different cores. This can easily be seen for a two-core system:

We already know that for a chosen voltage there is a maximum frequency at which
a circuit can run. As such, the dynamic power consumption of a processing unit is
approximately proportional to the cube of its operating voltage, equivalent to the cube
of its operating speed or frequency, resulting in Pdymanic ∝ speed3 ∝ f 3. Now the
power for a two-core system is:

Pdynamic = Pdynamiccore1
+Pdynamiccore2

∝ speed3
core1

+ speed3
core2

. (4.3)

Now let’s assume we want to run the system at a momentary speed of:

s = speedcore1 + speedcore2 (4.4)

which is determined by the current workload, hence:

Power ∝ speed3
core1

+(s− speedcore1)
3 = s3−3s2speedcore1 +3s speed2

core1
, (4.5)

which is minimal for speedcore1 = s/2. In other words, speedcore1 = speedcore2(=

s/2) yields the minimal power consumption for any momentary system speed s. It is
not hard to generalise this result for n cores.

This reasoning justifies chip-level DVFS for a dynamically load-balanced system,
greatly simplifying the act of choosing the right voltages/frequencies in the presence
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of core-level load fluctuations, as any required load balancing is then automatically
performed by the system.

4.3 Resource Underload

The term underload describes the condition where, capacity of the resource vastly
exceeding demand for the resource, resulting in unnecessary waste. In other words,
if the resource usage of the system can be reduced substantially without having any
adverse effect on the performance, the system is said to be in an underload situation.
The underload condition can occur due to many reasons, such as lack of available input
to be processed by the system, or internal delays due to data dependencies resulting in
most of the resource being idle. More formally the underload for resource Ψi is:

Ψicapacity ≫Ψidemand (4.6)

4.4 Resource Overload

The term overload describes the condition when demand begins to exceed capacity and
reaches a point where the resource is fully saturated such that it can hardly (or maybe
can not) perform its specified function any more. To put it into simple words, overload
is defined as the point when the demand for resource exceeds the capacity of that
resource resulting in dramatically reduced functionality. The overload can be caused
by a number of reasons, such as over estimation of resource capacity, under estimation
of workload, or allocation of resource without considering load and capacity. More
formally the overload for resource Ψi:

Ψicapacity ≪Ψidemand (4.7)

4.5 Load Ranges for RSP with Different Arrival Rate

The RSP can be modelled as nodes connected by streams. This means they are similar
to communication networks in the sense that they route messages from one source node
to a destination node, with a slight difference being that in RSPs, some computation
will be performed on the messages by the nodes. Despite the difference, performance
of RSPs can be described by using same matrices used for communication networks,
such as throughput and latency. We define throughput and latency as:
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Figure 4.1 Load Ranges for RSP with Different Arrival Rate in Terms of Throughput
and Latency [103]

Throughput is the rate of completely processing external input messages. Through-
put is measured in messages per time unit.

Latency from a general point of view can be described as a time delay between the
cause and the effect. In the case of RSPs, it would be the time difference between,
the arrival of a message at the program, to when it is processed. Although we do
not differentiate, the latency includes two parts; the amount of time a message
has to wait in the input queue; and the amount of time it takes a node to process
it and generate output. In order to derive a more stable view of the system,
we take into account the average latency calculated as the arithmetic mean of
latencies of all external input messages.

Let λ be the arrival rate at which external input messages arrive and Mcp be the
average number of external input messages currently being processed by the RSP.
Figure 4.1 shows three different states of the system that can be described as:

Underload Range When the first external input message arrives, it is the only mes-
sage in the system and it is processed exclusively i.e. there is no resource sharing
during message processing. At this point, the latency for every message pro-
cessed will be at its smallest value, and so does the the average latency termed
through latency (Lthrough). Since, all messages are being processed exclusively,
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the throughput will be equal to the arrival rate, T P = λ . The highest value of λ

at which latency is still at its smallest value Lthrough and Mcp < 1 is λthroughL.

The range [0,λthroughL) is defined as the underload range. The observations that
can be made in this range are:

• resource usage is Ψcapacity≫Ψdemand

• for all value of λ within the rage (0,λthroughL) the latency is almost constant
i.e. Lthrough

Operational Range When λ > λthroughL and Mcp > 1 the processing of messages in
the system requires resource sharing or even wait in the input queues. If we have
bounded Mcp then latency L is also bounded.

At the highest value of λ at which Mcp is still bounded, the system reaches its
highest throughput termed peak throughput (T Ppeak). The value of λ at T Ppeak

will be λpeakT P.

The range [λthroughL,λpeakT P] is defined as the operational range. The observa-
tions which can be made in this range are:

• λpeakT P is equivalent to T Ppeak

• resource usage is Ψcapacity ≥Ψdemand

• for all value of λ within the rage [λthroughL,λpeakT P] the latency increases
with increasing value of λ

Overload Range T Ppeak is the maximum arrival rate the system can cope with. If the
arrival rate exceeds this value i.e. λ > T Ppeak, the system will get saturated and
as such Mcp will become infinite, in turn making latency infinite as well.

The range [λpeakT P,∞) is defined as the overload range. The observations that
can be made in this range are:

• resource usage is Ψcapacity≪Ψdemand

• for all values of λ that are higher than λpeakT P the latency becomes ∞

4.6 Load Ranges for RSP with Different Arrival Rate
and DVFS

Figure 4.2(B) and (C) extend the previous definition of the different load ranges with
DVFS. Let’s assume the architecture provides three discrete voltage and frequency
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Figure 4.2 Load Ranges for RSP with Different Arrival Rate and Effect of the DVFS
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settings: V Fmax and V Fmin are the upper and lower bounds of the available voltage
and corresponding frequency value respectively, whereas V Fmid is some value in the
middle.

Figure 4.2(B) shows the impact of DVFS on the throughput, where as Figure 4.2(C)
shows the impact of different the Voltage and Frequency (VF) settings on the latency.

Now the values of T Ppeak and Lthrough depend on which VF settings they are in.
As in our example, we have three different values for VF, and as such we can observe
three different values for throughput and latency:

V Fmax For setting V Fmax things do not change, they stay as they were in Section 4.5.
Where [0,λthroughL) would be underload, [λthroughL,λpeakT P] is operational, [λpeakT P,∞)

is defined as the overload range.

V Fmin The real difference we can observe is with V Fmin. As Figure 4.2 (C) shows
the Lthrough is increased as the clock cycle of the core slows down. Also the
operation range is shorter than in the other two VF settings. What happens here
is that by using V Fmin, we actually narrow the underload range, while at the
same time we expand the overload range. What this means is that we can move
to V Fmid if we detect that we cannot keep up with λ . Similarly we can also
come to V Fmid from V Fmax if we can see that there are lots of resources waiting
for work. Now we can extend this to as many VF settings as there are available,
effectively creating as many overload, underload points which we can use to
tune the DVFS.

As an example, for V Fmin; the underload range, the operational range and the
overload range can be:[
0,λV Fmin

throughL

)
,
[
λ

V Fmin
throughL,λ

V Fmin
peakT P

]
and

[
λ

V Fmin
peakT P,∞

)
.

Now the interesting thing is if we detect overload in this, we would switch to V Fmid

effectively increasing clock cycles of the cores so that they run faster and in turn can
cope with higher λ . This will bring the load into the operational range of V Fmid , thus
enabling power increase only when required.

4.7 Chapter Summary

In this chapter we described the resource overload and underload in general and
defined two matrices, throughput and latency. We use these matrices as indicators of
performance and system state of RSPs. Next we formally described different load
ranges specifically for RSPs, also taking into account dynamic arrival rate of messages.
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Then we extended it with the effect of DVFS and described how knowledge of the
state of the resources can be used with different VF settings to derive DVFS policies
that can be used at runtime to drive DVFS decisions. This in turn allowed us to make
the execution of RSPs more energy efficient, thus achieving our goal.





Chapter 5

RA-LPEL: Resource-Aware
Execution Layer

This chapter describes the Resource-Aware Light-weight Parallel Execution Layer
(RA-LPEL), for the Reactive Stream Programs (RSPs). We start with a recapitulation
of power management functionality provided by the Single-chip Cloud Computer
(SCC) hardware in § 5.1. The account on development of heuristics that we use to
adjust power consumption of RSPs at runtime is given in § 5.2. This includes the
ways that we detect overload and underload situations in RSPs. In addition, we define
the Dynamic Voltage and Frequency Scaling (DVFS) policies as well. We discuss
chip level DVFS and island level DVFS in § 5.3. We conclude this chapter with a
short summary in § 5.4.

5.1 Recapitulation of Power Optimisation with the SCC

Power management on the SCC consists of three components which work with separate
clocks and power sources: tiles, mesh network and memory controllers. The maximum
frequency is dependent on current voltage level and can be varied between 100 to 800
MHz for cores. The frequency of the mesh and memory controllers can only be set at
the SCC boot time, i.e. it cannot be changed by application at runtime like frequency
of cores. The frequency of the mesh network can be set at 800 or 1600 MHz, while for
Memory Controllers (MCs) it can be set at either 800 or 1066 MHz.

The cores on the SCC are arranged in voltage and frequency domains also known
as islands. The frequency domains on SCC are fine grained i.e. each tile (made up of
two cores) on the SCC is a frequency domain. The voltage domains are course grained,
2×2 array of tiles (4 tiles or 8 cores per island) make-up a voltage island. The entire
mesh network is regarded as an island, although voltage change for this island is not



88 RA-LPEL: Resource-Aware Execution Layer

allowed. Theoretically using the Voltage Regulator Controller (VRC), the voltage
can be adjusted on a per island granularity. With 6.25 µV steps, voltage can be set
between 0.7 and 1.3 volts, again support for very fine grained voltage change is not
available, and as such we can only change voltage in 0.1 V steps. In order to prevent
any damage to the SCC chip, scaling the frequency up requires a corresponding change
in the voltage.

The voltage and frequency islands enable parts of the SCC to be turned off or
dialled down to a lower frequency to minimize power consumption. All adjustments
are under the control of the application which could then set any group of tiles to
a higher performance level for computationally intensive workloads and lower the
performance level for cores performing memory or Input/Output (I/O) operations.
Each core can change the voltage and frequency of any other core. This makes it easier
to implement different power management schemes; e.g. one core controls the island
or one core can control an entire chip.

5.2 Heuristics to Adjust Power Consumption

In reactive stream processing, the system operates in direct response to inputs from
its environment. If the load imposed by the environment varies, dynamic power
management techniques can be used effectively to reduce the power consumption of
such systems.

Our strategy is to reduce the frequency and voltage when there are more than
enough resources and the system can easily cope with the input rate, and to increase
them when the system becomes overloaded.

As mentioned in Section 2.1, stream programs consume messages from a dedicated
entry stream and produce output messages to a dedicated exit stream. At runtime, we
would ideally want a situation where:

ir ≈ k ·or,

where ir is the rate at which messages enter the network, or is the rate at which
messages leave the network, and k is the multiplicity of the network (cf. Section 2.1).
More precisely, we want to avoid the case of ir≫ k ·or, which means that the system
is internally accumulating messages, a behaviour that will eventually lead to memory
exhaustion, whereas the case of ir≪ k ·or is just impossible.
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For simplicity, we will (w.l.o.g.) assume a multiplicity of k = 1, i.e. the network
produces exactly one output message for each input message. In that case we can drop
the factor k and obtain:

ir ≈ or. (5.1)

To achieve the near balance of Equation 5.1, we have to consider a dynamic input
rate from the environment. The system must be equipped with sufficient computa-
tional resources to process messages fast enough under the maximal input rate irmax,
otherwise the system may become overloaded. In this case the output rate will stay
close to some maximal achievable output rate ormax, i.e.

or ≈ ormax≪ ir, (5.2)

and messages will either start to accumulate inside system, or they will be dropped.
On the other hand, if the input rate falls below ormax, the system becomes underloaded,
i.e. :

ir ≈ or≪ ormax, (5.3)

and unused system resources may cause unnecessary power drain.

One way to deal with this situation is to use a platform where we can dynamically
adjust the performance in response to demand. If we use voltage and frequency scaling
to adjust the performance, ormax becomes dependent on the current voltage V and
frequency f .

According to Equation 5.2 we can detect overload by checking, if the average
output rate falls below the average input rate. The overload at the time t is given by:

ol(t) =
ir(t)−or(t)

ir(t)
. (5.4)

5.2.1 Detecting Overload

In many streaming applications, the input rate depend on a stateful stochastic process.
Thus it makes sense to consider the overload history to predict the potential future
overload. We wanted to keep the overhead of our strategy low and therefore decided
to use a simple Exponential Moving Average (EMA) predictor, which is extremely
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fast to calculate and has minimal memory overhead. At a given time t, we calculate
the predicted future overload olpred(t +1) as:

olpred(t +1) =

0 if t = 0

αol ·ol(t)+(1−αol) ·olpred(t) if t ≥ 1,
(5.5)

The smoothing factor 0 < αol < 1 is application-specific. A high value makes
the prediction depend mostly on the recent history, whereas a low value makes the
prediction more dependent on the long-term history. A suitable smoothing factor can
be found by minimising an error measure, like the Sum of Square Errors (SSE), on
representative sample data. This can either be achieved by graphically checking the fit
for different parameters, or by applying a least squares approach [96].

5.2.2 Detecting Underload

We detect underload situations by observing used resources. More precisely, we
examine the slack, e.g. the number of workers that are waiting for work to be assigned.
Like in the overload case, we use an EMA to make a prediction about the future
underload. At a given time t, we calculate the predicted future number of unused
workers wwpred(t +1) as:

wwpred(t +1) =

0 if t = 0

αww ·ww(t)+(1−αww) ·wwpred(t) if t ≥ 1,
(5.6)

Again, the smoothing factor 0 < αww < 1 is application-dependent. A high value
makes the prediction depend mostly on the recent history, whereas a low value makes
the prediction more dependent on the long-term history. A suitable smoothing factor
can, again, be found by minimising an error measure on representative sample data.

5.2.3 DVFS Policy

Our policy for adjusting the frequency at runtime can be summarised by the following
set of rules:

1. Increase the frequency of all the islands by one step, when the number of
waiting workers is predicted to fall short of a given lower threshold (wwpred(t +
1) ≤ wwth) and the overload is predicted to exceed a given upper threshold
(olpred(t +1)> olth).
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Underload Condition Overload Condition Action

wwpred(t +1)≤ wwth olpred(t +1)≤ olth none

wwpred(t +1)≤ wwth olpred(t +1)> olth increase frequency

wwpred(t +1)> wwth olpred(t +1)≤ olth decrease frequency

wwpred(t +1)> wwth olpred(t +1)> olth decrease frequency

Table 5.1 Policy for Changing the Frequency

2. Decrease the frequency of all the islands by one step, when the number of waiting
workers is predicted to exceed the given lower threshold (wwpred(t+1)> wwth).

3. Otherwise do not change the frequency.

Table 5.1 summarised all possible situations and the action implied by the above
rules. Of course, the frequency is only varied within the limits given in Figure 2.16.

If some messages are half-way processed in the system, the effect of the change
is not seen immediately in its full extent. We therefore limit the rate of frequency
adjustments. The maximal allowable rate of frequency adjustments depends on the
application-specific maximal processing latency lmax and on the smoothing factor αol .

5.2.4 Frequency Adjustment

As pointed out in [7], the operating speed of a processing unit on a multi-core platform
is approximately proportional to its operating clock frequency:

speed ∝ f , (5.7)

whereas its dynamic power consumption is approximately proportional to the
product of its operating frequency by the square of its operating voltage:

Pdynamic ∝ f ·V 2. (5.8)

Since a lower operating voltage increases the circuit delay, the operating voltage
always imposes an upper bound on the operating frequency, and it follows that the
dynamic power consumption of a processing unit is approximately proportional to the
cube of its operating voltage:

Pdynamic ∝ V 3, (5.9)
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or, equivalent, to the cube of its operating speed or frequency:

Pdynamic ∝ speed3
∝ f 3. (5.10)

We use the full range of available frequency settings, that is from 100 MHz to 800
MHz. We change the frequency by adjusting the operating frequency divider fdivcur :

fdivinc = fdivcur −1

fdivdec = fdivcur +1
(5.11)

As pointed out above, there is a minimal required voltage level for each frequency,
which we also have to adjust in order to avoid chip failures (cf. Figure 2.16).

5.3 Islands or Chip Level DVFS

The cores on the SCC are arranged in islands. This arrangement allows fine grained
control over voltage (at granularity of 8 cores) and frequency (at granularity of 2 cores)
at the granularity of island level. We do not utilise this feature of the SCC, instead we
perform DVFS at chip level. There are multiple reasons behind this decision.

In order to calculate power consumption, we need both, supply voltage(V ) and
current(A). While SCC is equipped with many Analogue to Digital Converters (ADCs)
that can measure the supply voltages for individual islands, it only provides current at
chip level, which means power can only be measured for all the cores and the mesh
together as a whole.

In addition, Our main aim has been to develop a light-weight power management
approach. If we would had opted to use island level DVFS, it would require a very
complex DVFS policy which might not be light-weight. As we know, while frequency
can be set for two cores, the voltage can only be set at island level, i.e. for 8 cores.
Now in case of an island level DVFS, the scheduler has to keep an account of which
core has how much load. This could be a problem, for example, if one of the core
in the frequency island (two cores on a tile form one frequency island), has more
work than other, we have to keep the frequency level such that it would not have
negative impact on the core with high workload. This gets more difficult, as on the
SCC we can only set voltage for a minimum of 8 cores. We already know that, for a
chosen frequency there is a minimum voltage required to ensure the circuit can run
without any problem, setting the voltage higher means waste of power. Now we have
to make sure that workload on the cores on an island is nearly identical so that we
can have voltage/frequency that caters for the needs of all the cores on the island.
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What this means is that if we want to utilise the island level DVFS feature of the SCC
we have to modify the scheduler in order to keep track of which task is assigned to
which core/island, in addition to overall load fluctuation due to the nature of the RSPs.
Furthermore, with the centralised scheduler, it’s highly likely that by the time we can
get all the information required to calculate workload on the cores in an island and
required changes in voltage/frequency value, the task assigned to core may change and
the load associate with it as well, rendering the previous calculation useless.

One interesting observation here is that, if the load is nearly identical for all of the
cores on an island we can set voltage/frequency which is fit for all the cores. Now if
all the cores on the chip have nearly identical workload it would make perfect sense to
have system level DVFS. The centralised scheduler that we use provides exactly that,
a near balance of the workload amongst all the workers.

As we already argued in Section 4.2 with a small example, that with a load balanced
system almost all the cores will have uniform amount of work to do and as such we
can reduce the frequency for all the cores by the same amount. This effectively opens
a way that allows light-weight DVFS mechanism such as ours, that reduces energy
consumption of RSPs without affecting performance.

5.4 Chapter Summary

In this chapter we described a resource-aware execution layer called RA-LPEL for the
RSPs. We also covered the heuristics used in experimental evaluation to adjust power
consumption at run time. Our heuristics were based on system state such as overload
and underload. We used the correlation of the input rate and the output rate to detect
overload situations in the system. In addition, we used monitoring information about
idling cores to detect underload situations. Based on these two metrics, we derived our
DVFS policies that govern the decision of whether to change voltage and frequency of
the SCC or not.





Chapter 6

Experimental Evaluation

We ran two sets of experiments. First set is to evaluate the efficiency of the Resource-
Aware Light-weight Parallel Execution Layer (RA-LPEL) on the Single-chip Cloud
Computer (SCC) in terms of throughput, latency and scalability. The second set is to
evaluate the efficiency in terms of impact of Dynamic Voltage and Frequency Scaling
(DVFS) and resulting reduction in power consumption.

We describe our choices of use cases for the experiment in § 6.1. Then, we
describe the experimental setup in § 6.2. The results for throughput, latency and
scalability are discussed in § 6.3. Afterwards, in § 6.4 we examine the impact of
various energy policies of RA-LPEL on power consumption. Finally, in § 6.5 we
summarise the topics discussed in this chapter.

6.1 Use Cases

We describe our use cases that we use experimentally to evaluate RA-LPEL on the
SCC. These use cases are implemented as stream programs using the language S-Net.
Here we provide the functional description and concrete implementation of the use
cases in the S-Net.

Each use case contains main structure which performs the computation. Normally
this main structure is comprised of multiple sub-tasks. To increase the level of
concurrency, S-Net provides parallel replication to create multiple instances of the
main structure. In all the described use cases, parallel replication is shown as !!<node>,
where !! is the parallel replication operator of S-Net and tag <node> decides number
of instances created. Note that each use case is set-up with an appropriate concurrency
level. This ensures that we avoid the case where workers are idle because there is no
available task to execute, while at the same time, the number of tasks is not too large
to cause overhead.
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6.1.1 Fast Fourier Transform (FFT)

net fft

{

box initialiser((X, <node>) → (X, Y, W, <step>));

box round((X, Y, W, <step>) → (X, Y, W, <step>));

} connect

( initaliser .. round .. round )!!<node>;

Listing 6.1 S-Net Implementation of the FFT Algorithm

(X, <node>)  
(X, Y, W, <step>)

(X, Y, W, <step>)  
(X, Y, W, <step>)

(X, Y, W, <step>)  
(X, Y, W, <step>)

(X, <node>)  
(X, Y, W, <step>)

(X, Y, W, <step>)  
(X, Y, W, <step>)

(X, Y, W, <step>)  
(X, Y, W, <step>)

!! <node>

...

...

...

Figure 6.1 A Schematic Representation of the FFT as an S-Net Network

Fast Fourier Transform (FFT) [31] is an algorithm to compute the Discrete
Fourier Transform (DFT) of a sequence. Some example applications of FFT include
discrete sine or cosine transforms (used for MP3/MPEG/JPEG encoding), solving
partial differential equations, and digital signal processing in general.

Listing 6.1 shows S-Net implementation of FFT application, also denoted as
FFT. S-Net network of FFT is depicted in Figure 6.1. The application contains
a main structure which performs the FFT algorithm. The main structure includes
the initialiser box which allocates memory to store temporary values during the
transformation (Y), generates the series of sine and cosine waves (W) and decides the
step size (<step>) for each following FFT round. The round box applies step stages,
each of which calculates the N/2 frequency spectra from N frequency spectra from the
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previous stage. The round box is applied in pipeline manner until all the stages have
been calculated.

To increase the level of concurrency S-Net parallel replication mechanism is
employed to create multiple instances of the main structure. The number of instances
is defined by tag <node>.

6.1.2 Data Encryption Standard (DES)

net des

{

box initP((plainText, key, <node>) → (text, key, <round>));

box roundP((text, key, <round>) → (text, key, <round>));

box finalP((text, key, <round>) → (cipherText));

} connect

( initP .. roundP .. roundP .. roundP .. roundP ..

roundP .. roundP .. roundP .. roundP .. roundP ..

roundP .. roundP .. roundP .. roundP .. roundP ..

roundP .. roundP .. finalP

)!!<node>;

Listing 6.2 S-Net Implementation of the DES Algorithm

(plainText, key, <node>)  
              (text, key, <round>)

(text, key, <round>)  
              (text, key, <round>)

(plainText, key, <node>)  
              (text, key, <round>)

(text, key, <round>)  
              (text, key, <round>)

(text, key, <round>)  
              (text, key, <round>)

!! <node>

...

...

...

(text, key, <round>)  
                            (cipherText)

(text, key, <round>)  
                            (cipherText)

...

(text, key, <round>)  
              (text, key, <round>)

16 roundP boxes

Figure 6.2 A Schematic Representation of the DES as an S-Net Network

Data Encryption Standard (DES) use case is a block cipher application and denoted
as DES [105]. Block cipher means it takes in plaintext blocks of a given size and
returns encrypted/ciphertext blocks of the same size. DES operates on a sequence of



98 Experimental Evaluation

messages, each message contains a number of plaintext blocks and their corresponding
keys. Listing 6.1 shows S-Net implementation of this use case, while Figure 6.2 is
a graphical representation of the S-Net network of DES. The main structure which
performs the DES encryption is made up of three S-Net boxes. The box initP applies
an initial permutation to the given plaintext and then the permuted block is divided
into two blocks of equal size. The box roundP applies the cypher function to those
two blocks once. As shown in Listing 6.2, to apply 16 rounds of ciphering there are 16
instances of the box roundP connected in a pipeline manner. The box finalP applies
the final permutations after joining up the two blocks into one.

6.1.3 Colour Histogram Calculation

In the field of computer vision and photography, a colour histogram is a represent-
ation of the distribution of colours in an image. Image histograms have wide use
in thresholding, mostly used in computer vision. Edge detection, image segmenta-
tion, and co-occurrence matrices are some of the applications where threshold values
obtained from histograms can be used.

This use case takes in digital images as its input, and RGB colour histograms are
produced as the output. The main structure of this application contains two components:
a splitter box that separates RGB channels of the a given image, and a calcHist
box that calculates the colour histogram of the given image. The images produced by
the splitter box are assigned with different tag values (<colour>) so that they are
passed to different instances of the calcHist box. The S-Net implementation of this
use case is shown in Listing 6.3, where Figure 6.3 is a graphical model of the network.
The execution time of each box is dynamic, as it depends on the size of input image.
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net histogram

{

box splitter((image, <node>) → (chnlImage, <colour>));

box calcHist((chnlImage, <colour>) → (histImage, <colour>));

} connect

( splitter .. (calcHist)!!<colour> )!!<node>;

Listing 6.3 S-Net Implementation of the Histogram Application

(image, <node>)  
           (chnlImage, <colour>)

(chnlImage, <colour>)  
           (histImage, <colour>)

(chnlImage, <colour>)  
           (histImage, <colour>)

!! <node>

...

!! <colour>

Figure 6.3 A Schematic Representation of the Histogram Application as an S-Net
Network
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6.1.4 Image Filter

net filter

{

box splitter((image, <size>, <node>) → (subImage, <tag>));

box filters((subImage, <tag>) → (subImage, <tag>));

box merger((subImage, <tag>) → (filtImage));

} connect

( splitter .. (filters)!!<tag> .. merger )!!<node>

Listing 6.4 S-Net Implementation of the Image Filter Application

(image, <size>, <node>)  
                  (subImage, <tag>)

(subImage, <tag>)  
  (subImage, <tag>)

(subImage, <tag>)  
  (subImage, <tag>)

!! <node>

...

!! <tag>

(subImage, <tag>)  
                (filtImage)

Figure 6.4 A Schematic Representation of the Image Filter Application as an S-Net
Network

Image filtering is used to reduce noise and/or extract useful image structures in
most applications in computer vision and computer graphics field.

As shown in S-Net implementation of image filter in Listing 6.4 the main structure
of this application contains a splitter box, filters box and merger box. The
splitter box takes an image as an input and splits it into multiple sub-images. The
size of input image and requested sub-image size (<size>) has direct influence on
how many sub-images are generated. Each sub-image is assigned a different tag
value (<tag>). This tag value is used to decide which instance of filters box will
receive the sub-image in question. The box filters apply a series of filters on the
sub-image. The box merger takes in filtered sub-images and assembles them into
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a single filtered image. The execution time of each box depends on the given input
image size and number of filters box instances created. The S-Net network of
image filter is visualised in Figure 6.4.

6.1.5 Face Detection

net faceDetection

{

box classifier1((image, <node>) → (image, <res>));

box classifier2((image, <res>) → (image, <res>));

box classifier3((image, <res>) → (image, <res>));

} connect

( classifier1 .. classifier2 .. classifier3 )!!<node>;

Listing 6.5 S-Net Implementation of the Face Detection Application

(Image, <node>)  
         (image, <res>)

(Image, <res>)  
         (image, <res>)

(Image, <res>)  
         (image, <res>)

(Image, <node>)  
         (image, <res>)

(Image, <res>)  
         (image, <res>)

(Image, <res>)  
         (image, <res>)

!! <node>

...

...

...

Figure 6.5 A Schematic Representation of the Face Detection Application as an S-Net
Network

Face detection (more general case is feature detection) is used widely in computer
vision field. Examples of the applications include but are not limited to biometric
identification and authentication, surveillance marketing and photography.

The face detection application applies a sequence of classifiers to detect different
features to be found in an image, like eyes, mouth, nose, etc. The source code
and diagrammatic representation of the S-Net network of face detection is shown
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in Listing 6.5 and Figure 6.5 respectively. The main structure of face detection
contains different classifiers arranged in pipeline manner. Each classifier operates on
the same image but looks for different features. For simplicity of the implementation
we used a simulation of the actual feature detectors and decided randomly whether the
feature predictors were matched, i.e. if a feature is detected or not. Based on the value
of tag <node>, multiple instances of the main structure are created to increase the
level of concurrency.

6.2 Experimental Set Up

In our experiments we used a default sccKit 1.4.2 configuration, with memory and
mesh running at 800 MHz. For performance experiments in Section 6.3 cores are
running at fixed frequency of 533 MHz, while for power experiments in Section 6.4
cores run at various frequencies during execution of a benchmark. We used the
SCCLinux device NCMDeviceFD for the shared memory mapping.

We used 4 out of the 48 cores of the SCC as donors for the shared memory, and 4
further cores to model an external source/producer and sink/consumer for Reactive
Stream Programs (RSPs). This left us with at most 40 cores as workers that process
messages.

6.2.1 Data Collection and Post-Processing

As mentioned in Section 2.5 the SCC is connected to Field Programmable Gate Array
(FPGA) called the Board Management Controller (BMC). While SCC is equipped
with many Analogue to Digital Converter (ADC) sensors which can measure the
supply voltages for individual islands, however it does not provide current at this level.
In order to calculate power, we need both supply voltage and the current. Both of these
values are available at the chip level on the 3.3 V rails, which means power can only
be measured for all cores and the mesh together as a whole.

The Power Measurement Controller (PMC) situated in the FPGA/BMC period-
ically collects the data from the measurement ADCs and stores them in the power
measurement registers. These registers can be memory mapped and read by the cores
or the Management Console PC (MCPC). Furthermore, FPGA also provides a global
timestamp counter that can be used across cores to have a reliable/consistent time
source. Since the global timestamp counter is located on FPGA it does not get affected
by frequency change on the SCC cores.

As we mentioned before, we only need to observer input rate, output rate and
waiting workers. In addition, we also keep track of voltage and current of the SCC
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chip. We achieve this by memory mapping registers mentioned above. All of this
information is collected and used by the power manager (a part of conductor) at
run-time. The power manager also writes all the information in to a log file for post
processing. Post processing is only required to generate graphs and analyse the effects
of different energy policies. Power consumption is calculated by multiplying the
voltage and current consumption at any given moment (i.e. when each measurement is
taken). Average power consumption of a benchmark execution is the arithmetic mean
of all the power readings.

6.3 Performance Experiments

In this section we evaluate the efficiency of RA-LPEL with dynamic load balancing on
the SCC and compare it to distributed S-Net with decentralised version of Light-weight
Parallel Execution Layer (LPEL) [112] with manual load balancing as an execution
layer. In the latter, a global mapper is used to allocate tasks to cores and a local
scheduler for each core. The core-local scheduling policy is round-robin, whereas
the global mapper uses either a round-robin policy or a static mapping. The Message
Passing Interface (MPI) is used to facilitate communication between cores. We also
evaluate the scalability of RA-LPEL for varying numbers of cores.

The SCC does not provide cache coherency and offers no direct control over cache
flushing, so we have to ensure consistency when using the cache. We use two variants
of RA-LPEL: In Cached-RA-LPEL only the task stack consisting of non-shared data
is cached, whereas in Uncached-RA-LPEL we do not use caching. For LPEL with
manual load balancing MPI is used and memory is not shared, so we can make full
use of caching. In this approach, which we denote MPI-LPEL, each benchmark is
mapped to achieve the best load balance, i.e. each instance of the pipeline is mapped
on a separate core. The first core is special: Besides processing messages, it is also
responsible for receiving input messages from the environment, distributing messages
to the other cores and collecting them, and sending them out to the environment. The
MPI communications occur only between the first and all other cores. To ensure the
message order, MPI must be used in blocking mode.

Figure 6.6 shows the maximum throughput and minimum latency of the FFT
benchmark. Uncached-RA-LPEL outperforms Cached-RA-LPEL by a factor of at
least 1.5 for both, throughput and latency, even though caching is disabled in Uncached-
RA-LPEL. Since the SCC is configured as a shared memory platform, the caches need
to be flushed to ensure data integrity among cores. This causes a significant overhead
that caching cannot compensate.
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Figure 6.6 Performance of FFT on Uncached-RA-LPEL, Cached-RA-LPEL and MPI-
LPEL

MPI-LPEL has the lowest throughput, because the communication performance of
MPI is inferior to direct memory access. The maximum communication bandwidth
between 2 cores is around 2.78 MiB/s for MPI. Transferring 64 kB between 2 cores
takes more than 22 ms via MPI but only 15 ms via direct memory access. With 2
cores the throughput achieved by MPI-LPEL is less than for Cached-RA-LPEL and
Uncached-RA-LPEL, and for more cores the MPI bandwidth is shared. MPI-LPEL
requires one core to communicate with all other cores, sending input messages and
receiving output messages. Due to similar load on the cores, this communication is
likely to coincide. MPI introduces a (de)serialising and (un)packing overhead and
operates in blocking mode and this forces each core to wait while sending messages
via the MPI interface. As a result the throughput for MPI-LPEL can be seven times
smaller than for Cached-RA-LPEL and 20 times smaller than for Uncached-RA-LPEL,
as shown in Figure 6.6.

MPI-LPEL has a higher latency than Uncached-RA-LPEL and Cached-RA-LPEL.
Besides the before mentioned reasons, the RA-LPEL scheduler affords control over the
consumption rate of input messages to optimise latency [104]. MPI-LPEL lacks this
feature and allows the program to consume input messages even when it is overloaded
and unable to process them. The latency for MPI-LPEL can be 370 and 900 times
higher than for Cached-RA-LPEL and Uncached-RA-LPEL, respectively.

Figure 6.7 shows how Uncached-RA-LPEL scales for the FFT benchmark. From 2
to 16 cores the throughput scales roughly linearly, but more cores imply more memory
accesses. Memory is managed by 4 memory controllers and extensive access can
cause contention. Therefore throughput does not scale well between 32 and 40 cores.
Although FFT operates on a sizeable amount of data (64 kB), the computation time is
relatively small. On average each task takes 65 ms to process a message, so each core
must access a large amount of data frequently.
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Figure 6.7 Scalability of FFT on Uncached-RA-LPEL
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Figure 6.8 Scalability of DES on Uncached-RA-LPEL
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Figure 6.9 Scalability of Histogram on Uncached-RA-LPEL
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Figure 6.10 Scalability of Image Filter on Uncached-RA-LPEL
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Figure 6.11 Scalability of Face Detection on Uncached-RA-LPEL

In contrast, DES requires extensive computation on a small amount of data. Each
input message is 2 kB and each task takes 194 ms on average to process a message.
For this reason, the throughput of DES scales better, as shown in Figure 6.8.

The latency depends on the immanent concurrency level of the stream program.
Increasing the number of cores takes advantage of the concurrency within the stream
program and helps to reduce the latency. However, more cores also imply higher
communication costs, as tasks are spread among cores. Figure 6.7 and Figure 6.8 show
that the latency decreases when we increase the number of cores up to 16. For 32
and 40 cores the communication overhead surpasses the benefit of concurrency. The
latency of DES and FFT therefore does not scale well for 32 or 40 cores.

Figure 6.9 and Figure 6.10 show throughput and latency for histogram and image
filter benchmark respectively. In contrast to DES and FFT, here we can see roughly
linear scaling in throughput from 2 cores all the way to 40 cores. This was expected,
as histogram and image filter are computationally more intensive than DES and FFT.
For histogram the latency continues to decrease up to 40 cores. In contrast, a decrease
in latency can be observed for image filter benchmark for up to 32 cores, after which it
rises sharply. One reason can be the higher number of message queuing at the merge
point in the stream network, which can be a bottleneck.

As can be seen in Figure 6.11, face detection is computationally expensive, in
line with histogram and image filter, and as such we see a similar trend in throughput
scalability. For the latency part, we can see substantial drop until 8 core, then slight
change for 16 cores. From 16 cores onward, we can see a slight increase in the latency.
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Benchmark Task Min (s) Max (s) Diff (%)

initP 1.1232 1.9954 77.65
FFT

stepP 10.3226 15.2775 48.00

initP 3.6370 6.8986 89.68

subRound 4.7194 14.3530 204.13DES

finalP 2.1357 4.0790 90.99

<collect> 0.9477 1.5814 66.86

<split> 0.8987 4.2756 375.74

split 3.9660 5.0427 27.15
Histogram

calHist 22.3738 28.7144 28.34

<collect> 0.6123 27.0231 4313.34

<filter> 0.1787 0.4919 175.19

<parallel> 0.4500 1.5947 254.38

<split> 0.3979 11.5076 2792.24

filt 134.2071 470.1736 250.33

Image Filter

split 1.0512 6.3557 504.62

classifier1 9.2898 15.7955 70.03

classifier2 10.9571 15.3507 40.10Face Detection

classifier3 6.8608 11.9101 73.60

Table 6.1 Minimal and Maximal Task Execution Time for Benchmarks Running on 40
Cores

Table 6.1 shows the minimal and maximal execution time for each task in the
benchmarks. Some of these tasks have multiple instances occurring in the separate
parallel pipelines created by S-Net. We can see that all benchmarks show a consider-
able variation in execution times of tasks. This can be attributed to high work-load
imbalance which depends highly on input messages. These numbers underline the
need for a load balancing scheduler like the one we have presented.

The table shows that the <collect> task of the image filter benchmark has nearly
4000% variation on 40 cores (for 32 core run this variation is 495.30%). The <collect>
task merges messages from multiple streams and forwards them to the subsequent
component. Such a high variation indicates that at some point multiple messages were
waiting to be merged, resulting in the sharp increase in latency seen in Figure 6.10.
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Figure 6.12 Average Service Requests Received per Second by the Conductor

6.3.1 Central Work Queue Bottleneck at the Conductor

In the centralised scheduler of RA-LPEL, the tasks which can be executed next, i.e.
ready tasks, are stored in a queue called Central Task Queue (CTQ). This CTQ is
maintained by the conductor. Since we only have one conductor which serves 40
workers, the natural question would be:

is having only one conductor for 40 workers causing a bottleneck?

We run an extra experiment in order to investigate if this is the case. For this
experiment we compare service request received by the conductor with 40 cores
executing as workers.

Figure 6.12 shows request received by the conductor with all the benchmark
application. As we can see with 72 requests per second, the image filter sends least
amount of requests. While with 519 requests per second, FFT sends the highest amount
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of requests per second. In order to see if 519 is causing a bottleneck at the conductor,
we use a synthetic S-Net application, where tasks do not perform any work. The
benchmark contains tasks that just read an integer value from its input stream and write
this value back to its output stream. With this synthetic benchmark the conductor is
capable to service 750 requests per second, which is nearly 50% higher than requests
sent by the FFT benchmark. This clearly shows that our experiments did not suffer
from bottleneck at the conductor.

Furthermore, the number of requests that the conductor receives is also dependent
on the applications as well. For example, the number of requests will be lower for
applications where tasks take considerable amount of time (e.g. couple of seconds)
for completion, in comparison to the applications where task completion time is very
small (e.g. couple of nanoseconds).

Although, bottleneck at the conductor still is of a concern to us, as we move to an
architecture with a higher core count, the conductor may/will become a bottleneck.
Still in our opinion it is not a very big problem. There are many architectures which
come with far higher core counts than SCC, but the cores are arranged in an island
fashion in similarity to the SCC. For example, Kalray Massively Parallel Processor
Array (MPPA)2-256 Boston [66] processor architecture has 256 cores. These 256
cores are arranged in 16 clusters, with each cluster containing 16 cores. In order to
avoid the conductor becoming a bottleneck, we can run multiple instances of RA-
LPEL, ideally one instance per cluster. In this case, one instance of the conductor is
only responsible for 15 workers1. As we can see from Figure 6.12, it is highly unlikely
that one conductor will become a bottleneck when there are only 15 workers.

6.4 Power Optimisation Experiments

In this section we evaluate the efficiency of RA-LPEL in terms of energy usage by
deploying different energy policies. For all the experiments described in this section
we use all 40 cores of the SCC (We lose 4 cores as donors for the shared memory, and
4 further cores to model an external source/producer and sink/consumer for RSPs).

For these experiments we use a fixed input pattern consisting of 7000 messages for
FFT and face detection, 2300 messages for DES and histogram, and 1800 messages
for image filter. In order to see the effect of DVFS on energy consumption we deploy
three different energy policies. The case when dynamic voltage and frequency scaling
is enabled is denoted as DVFS. The case when voltage is fixed at maximum (1.1V) and
only frequency is scaled is denoted as Dynamic Frequency Scaling (DFS). The last

1This would require a modification of the RA-LPEL, in terms of new communication protocol to
allow conductor-to-conductor communication.
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policy which does not scale either volt or frequency (maximal voltage and frequency
with volt fixed at 1.1 V and frequency fixed at 800 MHz) is denoted as Maximal
Voltage and Frequency (MVF).

We also test our DVFS energy policy using different thresholds for overload
(olth) and waiting workers (wwth). We expected different thresholds to yield different
behaviour with respect to energy efficiency, which would allow us to pick thresholds
with a balanced behaviour, i.e. which would save a significant amount of energy
without sacrificing too much computational performance.

6.4.1 Effectiveness of Power Saving

Table 6.2 summarises the main result of our experiments, indicating the total wall-clock
time, the average power level, and the total energy consumption of each benchmark
under three different energy policies: DVFS, DFS and MVF.

The total wall-clock time that each benchmark takes to run is roughly the same
(σ/µ < 0.6%) under DVFS, DFS, and MVF, the reason being that we are considering a
reactive scenario, where the pace of the system is not determined by the core frequency,
but by the data input rate imposed by the environment. In other words, the system
must complete a given workload within a specified wall-clock time. It cannot complete
the workload significantly faster, because the input data only becomes available in
real time, and it must not complete its workload significantly slower (the latter would
indicate an abnormal overload situation).

Tiny differences in the wall-clock times are mainly due to variations in the dynamic
scheduling of tasks: For example, even a slight difference in the execution time of a
sole task can influence numerous subsequent scheduling decisions, like the assignment
of individual tasks to particular cores, which can in turn cause changes in the memory
access times of these tasks, due to the use of differing Network on Chip (NoC) routes.

Our results indicate that the DVFS strategy cuts the energy consumption by, 58%
for FFT, 35% for DES, 52% for histogram, 70% for image filter, and 42% for face
detection benchmark. As expected, the exclusive use of frequency scaling in DFS
without voltage scaling saves significantly less energy in all benchmarks.

6.4.2 Influence of Thresholds

Figure 6.13, Figure 6.14, Figure 6.15, Figure 6.16, and Figure 6.17 show time series of
our experiments under the three energy policies for each benchmark. Each sub-figure
shows the progress of the input rate ir, the output rate or, the predicted overload olpred ,
the predicted number of waiting workers wwpred , and power.
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Benchmark Policy Wall-Clock Time [s] Power [W] Energy [kJ]

FFT
DVFS 1646.045 30.600 50.378

DFS 1662.049 47.934 79.670

MVF 1655.352 72.579 120.143

σ2 43.069 296.665 818.136

σ/µ 0.40% 34.19% 34.30%

DES
DVFS 1447.779 46.625 67.507

DFS 1448.767 56.862 82.399

MVF 1451.745 71.838 104.291

σ2 2.842 107.199 228.231

σ/µ 0.12% 17.72% 17.83%

Histogram
DVFS 1637.046 34.189 55.969

DFS 1638.545 51.399 84.200

MVF 1624.340 72.736 118.148

σ2 40.609 248.587 646.176

σ/µ 0.39% 29.88% 29.52%

Image Filter
DVFS 1559.915 21.420 33.417

DFS 1550.796 41.515 64.386

MVF 1562.298 71.447 111.621

σ2 24.569 422.480 1033.988

σ/µ 0.32% 45.89% 46.06%

Face Detection
DVFS 1797.958 42.044 75.757

DFS 1774.602 53.726 95.513

MVF 1776.495 74.030 131.508

σ2 112.186 174.648 532.678

σ/µ 0.59% 23.35% 22.87%

Table 6.2 Total Wall-clock Time, Average Power Level, and Total Energy Consumption
of Each Benchmark Under Three Different Energy Policies, as Mean Over Five Runs
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Figure 6.13 FFT with Thresholds olth = 0.20 and wwth = 3.0

1

2

3

4

5

2.5

5.0

7.5

0.0

0.2

0.4

0

5

10

15

20
30
40
50
60
70

ir [1/s]
or [1/s]

olpred  [1/s]
w

w
pred  [1]

pow
er [W

]

0 250 500 750 1000 1250
messages

(a) DVFS

1

2

3

4

5

2

4

6

0.0

0.2

0.4

0

5

10

15

40

50

60

70

ir [1/s]
or [1/s]

olpred  [1/s]
w

w
pred  [1]

pow
er [W

]

0 250 500 750 1000 1250
messages

(b) DFS

1

2

3

4

5

2

4

6

−0.2

0.0

0.2

0.4

0

5

10

15

71

72

73

74

ir [1/s]
or [1/s]

olpred  [1/s]
w

w
pred  [1]

pow
er [W

]

0 250 500 750 1000 1250
messages

(c) MVF

Figure 6.14 DES with Thresholds olth = 0.20 and wwth = 3.0
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Figure 6.15 Histogram with Thresholds olth = 0.20 and wwth = 3.0
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Figure 6.16 Image Filter with Thresholds olth = 0.20 and wwth = 3.0
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Figure 6.17 Face Detection with Thresholds olth = 0.20 and wwth = 3.0

The red dashed lines mark our balanced overload threshold olth = 0.2 and our
balanced waiting threshold wwth = 3.0. In the topmost panel we can see our input rate
pattern, in this case a synthetic ascending/descending step pattern. The panel below
shows the corresponding output rate, which can be seen to carry a significant jitter.
The next two panels show the predicted overload olpred and the predicted number of
waiting workers wwpred , respectively. In the last panel, we see that the power level for
DVFS follows roughly the shape of the input rate pattern, although it is delayed. The
pattern for DFS is similar, but the system operates at a higher power level, which is
visible as a shift on the power axis. Moreover, the system reaches the maximal power
level faster and stays there longer. For MVF, the power level is practically constant,
and what can be seen in the panel is merely a slight jitter. Bakker et al. [10] have
observed a similar fluctuation in power consumption of the SCC chip in idle mode.
They ascribe this behaviour to the charging and discharging of a stabiliser capacitor in
the voltage regulator circuits.

Table 6.3 summarises the results of our experimentation with different overload and
waiting thresholds under the DVFS policy. For the same reason as given in Section 6.4.1
concerning Table 6.2, the total wall-clock time that each benchmark takes to run is
roughly the same for all different chosen thresholds.

Let’s have a closer look at the effect of the different parameter choices of the
FFT benchmark. The combination of a high overload threshold of olth = 0.24 and a
low waiting threshold of wwth = 2.4, as seen in Figure 6.18(a), causes the system to
increase its performance configuration at a very late point in time, and performance
is decreased again shortly afterwards. Although the olpred is already higher than olth,
the system does not engage DVFS to increase performance, the reason being that
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Benchmark olth wwth Wall-Clock Time [s] Power [W] Energy [kJ]

0.24 2.4 1647.944 26.868 44.278

0.16 2.4 1638.741 28.729 47.080

0.20 3.0 1646.045 30.600 50.378

0.24 3.6 1635.508 32.971 53.930

FFT

0.16 3.6 1655.718 32.010 53.024

0.24 2.4 1443.617 40.944 59.113

0.16 2.4 1454.066 44.094 64.168

0.20 3.0 1447.779 46.625 67.507

0.24 3.6 1441.094 43.402 62.539

DES

0.16 3.6 1447.406 46.882 67.849

0.24 2.4 1643.120 33.882 55.673

0.16 2.4 1643.268 33.944 55.779

0.20 3.0 1637.046 34.189 55.969

0.24 3.6 1636.282 33.971 55.586

Histogram

0.16 3.6 1636.062 34.021 55.660

0.24 2.4 1568.998 20.212 31.712

0.16 2.4 1541.283 21.159 32.596

0.20 3.0 1559.915 21.420 33.417

0.24 3.6 1539.534 20.971 32.281

Image Filter

0.16 3.6 1575.832 20.845 32.852

0.24 2.4 1766.394 33.599 59.714

0.16 2.4 1785.962 34.912 62.487

0.20 3.0 1797.958 42.044 75.757

0.24 3.6 1785.684 40.825 73.130

Face Detection

0.16 3.6 1760.555 44.493 78.333

Table 6.3 Average Power Level, Wall-clock Time, and Total Energy Consumption for
Different Threshold Values of olth and wwth Under the DVFS Policy, as Mean Over
Three Runs
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Figure 6.18 FFT with Different Choices of Thresholds olth and
wwth for DVFS
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Figure 6.21 Image Filter with Different Choices of Thresholds olth and wwth
for DVFS
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Figure 6.22 Face Detection with Different Choices of Thresholds olth and wwth
for DVFS
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wwpred is still lot lower than wwth. Which means the overload that the system is
experiencing can be/is dealt with by increasing the resource usage i.e. waiting workers.
Once wwpred is below threshold wwth and if olpred is still above olth then DVFS is
engaged. Lowering the overload threshold to olth = 0.16 makes the system reach its
maximum performance state earlier and leave it later, as shown in Figure 6.18(b). If,
in addition, the waiting threshold is raised to wwth = 3.6, as shown in Figure 6.18(d),
the system spends most of the time in its maximum performance state.

For the DES benchmark similar patterns to FFT can be seen in Figure 6.19. Fig-
ure 6.19(a) shows that olpred and wwpred cross the thresholds at roughly the same time
and we can see that power consumption starts to increase around same time (roughly
around 500 messages). From Figure 6.19(c) we can see that even though wwpred

is below threshold around 375 messages, we do not see a corresponding change in
power consumption, the reason being olpred has not reached the threshold yet. Once
olpred crosses the threshold olth = 0.24 around 500 messages, we can see that power
consumption starts to increase reflecting an increase in voltage/frequency.

we can observe different pattern for histogram benchmark in Figure 6.20. There
is some subtle fluctuations in power consumption. This behaviour can be attributed
to the fact that number of waiting worker wwpred is hovering around threshold wwth.
As we can see from Figure 6.20(d), the fluctuation disappears when higher value
is set for the threshold, i.e. wwth = 3.6. Furthermore, the power consumption stays
roughly the same for nearly all different threshold values for histogram and is much
lower compared to the other benchmarks, i.e. FFT and DES. We can see nearly similar
pattern—minus the power fluctuations—for image filter benchmark in Figure 6.21.
The difference in the power consumption with varying value of thresholds is more
noticeable than was for histogram benchmark. As can be observed in Figure 6.21(a) the
higher value of thresholds olth and wwth triggers small change in power consumption,
whereas lowering the threshold olth to 0.16 allows olpred to reach it early at around 500
messages, but the spike in wwpred around same time delays the decision to increase
frequency, which happens around 600 messages as can be seen in Figure 6.21(b). The
threshold wwth is set to 3.6 as observed from Figure 6.21(d) and Figure 6.21(d). This
means the the the frequency will be decreased at later time in comparison to the case
in which the threashold is set at 2.4. The decrease in frequency is triggered around
1100 messages.

Figure 6.22 shows similar patterns for the Face Detection benchmark. Note that
the power panel in Figure 6.18(a) Figure 6.22(a) has a different scale, indicating a very
good choice of parameters, where the system never needs the maximal performance
settings.
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From all the experiments we can see that the waiting worker threshold wwth

determines the sensitivity towards low resources. If wwth is too high, the speed of the
processor (and thus the power consumption) might be increased earlier than necessary
to handle the workload even though there are still some workers available which might
be able to handle increased workload. If wwth is too low, there is a risk that the system
will not be able to handle the workload. The overload threshold olth determines the
sensitivity towards high workload. If olth is too low, the speed of the cores (and thus
the power consumption) might be kept higher than necessary to handle the work load.
If olth is too high, there is a risk that system will not be able to handle the workload.

The above rules form a set of general guidelines for choosing suitable thresholds
wwth and olth. Notwithstanding, the concrete values are application-specific. In
practice, these values could be determined using meta-heuristics to perform guided
profiling of the application under consideration.

6.5 Chapter Summary

In this chapter we experimentally evaluated our approach. We ran two sets of experi-
ments. The first set is to evaluate the efficiency of the RA-LPEL on the SCC in terms
of throughput, latency and scalability. The second set was to evaluate the efficiency in
terms of impact of DVFS and resulting reduction in power consumption.

We described our choices of use cases for the experiment. The use cases were
implemented in a stream language S-Net, the uses cases were fast fourier transform,
data encryption standard, colour histogram calculation, image filtering and face detec-
tion. The power optimisation experiments confirmed our theory that, even with simple
DVFS strategy such as our, substantial (up to half or more for most of the benchmarks)
energy reduction can be achieved.





Chapter 7

Related Work

Power management techniques to reduce energy consumption have been extensively
studied in prior work. Dynamic Voltage and Frequency Scaling (DVFS) is a widely
used technique to allow a trade-off between power consumption and performance. Our
work focuses specifically on Reactive Stream Programs (RSPs) running on many-core
architecture. We have also developed HALLOC, a mechanism that provides Operating
System (OS) independent memory creation and management functionality. The novelty
of HALLOC is that it allows memory (de)allocation and management across cores,
each running a separate instance of an OS. This differs from previous work that we
studied in the sense that most of the prior work has focused either on the multi-thread
workload or multi-core running in a single system image setting, i.e. a single instance
of an OS runs on all the cores.

In this chapter, we present an assortment of work based on similar ideas, or that
in one way or other influenced our work. The work that is most closely related to
ours, since it also focuses on S-Net and Single-chip Cloud Computer (SCC) is covered
in § 7.1. Related work for memory management is presented in § 7.2. This is followed
by related work in the DVFS arena in § 7.3. We conclude this chapter with a short
summary in § 7.4.

7.1 Distributed S-Net on the SCC

Work by Verstraaten et al. [135, 136] is closely related to ours in the sense that it also
uses the S-Net Runtime System (RTS) on the SCC. Although their approach is similar
to ours, there are some fundamental differences. The main focus of their work was to
provide a simplified way of programming the SCC and similar future architectures by
using the S-Net, while we are targeting energy-efficient execution of the RSPs on the
SCC and similar future many-core architectures.
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Verstraaten et al. used distributed S-Net in their work. Traditionally, the distributed
S-Net used Message Passing Interface (MPI) to transfer data between nodes when the
stream crossed the node boundary, i.e. when the reader of a stream is not located on
the same node where the writer is located. Verstraaten et al. employed SCC specific
features, such as, Lookup Table (LUT) remapping, Message Passing Buffer (MPB)
and interprocess interrupts to devise a communication mechanism that can be used
instead of the MPI.

Regarding the programming side, a fundamental difference between our work and
that of Verstraaten et al. is that their approach requires user annotations for the mapping
of software components to cores, while our execution layer includes a dynamic load-
balancing mechanism and thus does not need manual tuning of the schedule with
such placement annotations. This is because Verstraaten et al. used a distributed
version of S-Net with PTHREAD backend in their work, in which the mapping of the
task/network-to-core is determined via static user annotations at compile time, as
we already mentioned in Section 2.2. This can be difficult, as the end users have to
manually annotate the source code and must have necessary knowledge of the topology
of the targeted architecture. Furthermore, automatic system-wide load-balancing under
dynamic demand is also very difficult to achieve, due to static task/network-to-core
mapping. As mentioned, in our approach we do not need to use such annotations for the
task/network-to-core mapping, allowing more portability across different architectures.
In addition, our use of the centralised scheduler allows system-wide load-balancing
under dynamic load demands.

On the technical side, for the LUT remapping they use 172 unused LUT pages
and split them into two sections. The first section maps the physical memory, and
using their custom malloc implementation, memory can be allocated in this section.
The second section is used to map LUT pages sent by other cores dynamically. S-Net
fields can be big and as such they are allocated in the first section. When field data
needs to be sent across a node boundary, the sending core sends only an LUT entry,
where data is located. On receiving core this LUT entry is mapped to its own second
section, and as such, data can be transferred between cores without any need to copy
to/from any buffer space. A small amount of data, such as S-Net metadata and LUT
entry information is transmitted via MPB. Since there is no task migration taking
place and apart from data nothing is shared between the cores, they were able to retain
access to L2 caches of the SCC. We also use LUT remapping, but we do this statically,
i.e. once LUT entries are mapped they are not changed during the execution of the
program, this allowed us to create a shared memory on the SCC (where C pointers can
be shared between cores as well). In addition, we use this shared memory to allocate
everything, from the task structure to the S-Net field data. Furthermore, we assume
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shared everything approach and due to the lack of fine-grain control over L2 caches1

on the SCC we had to disable L2 caches for our approach. The distributed version
of S-Net runs several threads per core, such as the Input Manager (IM), the Output
Manager (OM), the Data Fetcher (DF) and the worker thread, while in our approach
the core executes only worker thread. So theoretically, there may be some difference
in OS induced context switching overhead.

Although we would like to compare our approach with Verstraaten’s in terms of
throughput and scalability, this was not possible due to the problem with OS-level
device drivers that were used by Verstraaten et al. and were made deprecated following
the introduction of the newer version of the sccKit, and Field Programmable Gate
Array (FPGA) hardware for the SCC controller. Also, the version of the Linux kernel
used by Verstraaten et al. was replaced by a newer kernel (Linux kernel_3.1.4). This
means that the mechanism that was employed to create device drivers at kernel level2

was changed from cdev to miscdevices. Furthermore, there were also some changes in
how interrupts were handled. Given that, with all these changes required at various
levels, including kernel level, an attempt was made to get everything working, to
compare the work of Verstraaten et al. with ours, but was not pursued any further [95].

It would have been interesting to have had the performance compared between
these two approaches. But the inability in doing so is not a severe limitation, since our
contributions are not purely performance focused. In our work we have developed
an efficient, light-weight power management mechanism for RSPs on the SCC. Our
power management mechanism should also be applicable to other future architectures
that do not have the limitations caused by the SCC architecture.

7.2 Hierarchical Memory Management Mechanism

Our memory management mechanism HALLOC (described in Chapter 3.3) is spe-
cialised in allowing memory allocation/deallocation across different instance of OS
executing on different cores on the Network on Chip (NoC) architecture. Furthermore,
our approach provides simple Application Programming Interface (API) with func-
tions like, scc_malloc and scc_free (similar to standard malloc and free), which
abstracts away communication mechanism from the cores/processes and allows com-
plex structures to be passed by reference, substantially simplifying the programming
of distributed applications. The main distinction of HALLOC compared to other multi-

1The cache has to be flushed manually to ensure memory consistency, this cache flushing operation
is expensive, costing approximately 1,000,000 cycles [9, 135, 136].

2The device drivers are used to map memory in different configurations e.g. MPB or not, cached, or
uncached. Verstraaten et al. used one of the custom device drivers they created.
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threaded allocators is that, HALLOC does not only provide memory management
functionality, but in addition it also includes a mechanism that creates shared memory
that works seamlessly on top of multiple cores of the SCC, with each cores running
an independent instance of an OS. As such, this shared memory only exist at an
application level, i.e. the OS is not even aware of the existence of this extra memory
available. As the closest related work, we have identified some work that provide some
sort of support for the shared memory either on SCC or work in similar manner to our
approach.

In Intel’s [79] Privately Owned Public Shared Memory (POP-SHM) approach
for the SCC, each core offers some of its private memory to create a pool of shared
memory to share data with other cores. POP-SHM provides an API to create the shared
object. Access to these objects has to be guarded by POP-SHM library calls, so that
the library can take care of coherency by flushing the caches. The approach provides
only a mechanism to share data. To perform computations the data must be copied to
core local private memory first, which is cumbersome in case of multi-layer software.
Memory Efficient Sharing (MESH) [111] is a framework for memory-efficient sharing.
It uses remote method invocation to pass access to a shared object between cores. The
MESH framework uses POP-SHM to provide a shared memory. It provides a higher
level of abstraction than POP-SHM.

Software Managed Cache-coherence (SMC) [140] is a library for the SCC that
provides coherent, shared, virtual memory, but it is the responsibility of the program-
mer to ensure that data is placed in the shared region and that operations to shared data
are guarded by release/acquire calls.

Hoard [17] targets multithreaded applications and aims to avoid false sharing and
being efficient. Hoard maintains one global heap and per-processor heaps; each thread
can access only its heap and the global heap. When usage of per-processor heap’s drops
below a certain threshold, a fixed-size chunk of its memory is moved to global head to
be used by another processor. Hoard allocates per-processor memory in what is called
superblock. Each block allocated by Hoard has a superblock as an owner, to which it
returns in case of a de-allocation. Another example of memory allocator algorithm
with a per-processor private heap with owner is LKmalloc [85]. The allocator in Vee
and Hsu [133] behaves in similar manner to Hoard, as de-allocated memory is returned
when it meets a certain threshold.

In [5] authors present a memory allocator called scalloc that is fast, multi-core
scalable, and provides low-fragmentation. The allocator is made-up of two parts: a
frontend to manage memory in spans and a backend to manage empty spans. Spans
are the same concept as superblocks in Hoard [17]. The spans are organised in 29
different size classes, ranging from 16 bytes to 1 MiB. Any request for memory over
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1 MiB is allocated directly from OS using mmap. Span-pool is a global concurrent
data structure that holds spans in different pools using arrays and stack. Each span
is used to fulfil memory requests in terms of blocks, when all the blocks in span are
freed, i.e. span has no allocated block, it is returned to span-pool. With regard to
memory allocation and deallocation we have a similar approach, for example notion
of ownership of memory block and separate lists to hold memory blocks that needs to
be freed. For example, a block is added to a local free list when allocation was done
by same core, or added to a remote free list otherwise. In the case of scalloc, these
will be threads—not cores. The main difference in our approach is that our allocator
works across different instances of OS, uses less complex data structure and can handle
allocation bigger than 1 MiB in size.

7.3 Energy Optimisation

DVFS has attracted several research projects for its applications in efficient power
management. The majority of the work in this area aims to minimise energy consump-
tion by dynamically adjusting the voltage and frequency of the Central Processing
Unit (CPU) depending on the state of the system at different levels. As currently our
work targets DVFS at the CPU/core level, we will restrict related work discussed in
this section to the same level.

By observing memory operations like memget, memput, and memcpy, the au-
thors in [42] identify slack periods of Partitioned Global Address Space (PGAS)
applications during these operations. By exploiting these slack periods, the authors
propose a power management middleware to allow adjusting the power configuration
at both PGAS application and runtime layers. The runtime layer makes decisions for
power configurations based on the combination of predefined thresholds and adaptive
thresholds based on the history. At the application layer, the middleware allows the
programmer to use language extensions to define different power/performance policies,
including maximum performance, balance power/performance, minimum power and
maximum power reduction. The middleware is facilitated with a power controller to
dynamically adjust the voltage and frequency, depending on the power configuration.
To achieve the desired configuration, the power controller can operate in different
modes, including adjusting both the voltage and frequency (DVFS), or adjusting only
the frequency (Dynamic Frequency Scaling (DFS)).

Thrifty Barrier [90], exploits barrier synchronisation imbalance in parallel applica-
tions to reduce energy consumption. In the thrifty barrier, when a thread reaches the
barrier if it is not the last one to arrive it is put into sleep mode. In addition, being
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not the last thread to arrive at the barrier, the estimated wait time that the thread has
to spin-loop aids the decision to put the thread into sleep. Also, this estimated wait
time with a cache invalidation message from coherency protocol is used to wake up
the sleeping thread when the last thread enters the barrier. The base assumption in this
study is that computation phases that surround a particular barrier tend to perform the
same type of computation every time they are executed. This work targets only the
barrier synchronisation points in parallel application; any parallel programming model
in which this points are not explicit can not use this approach.

Cai et al. proposed a mechanism to save energy consumption based on the iden-
tification of critical threads in parallel regions [26]. These threads are detected by
the meeting point thread characterisation mechanism and are executed on cores with
maximum frequency. The voltage and frequency are scaled down for cores executing
other non-critical threads. Meeting points only target the application following Single
Program Multiple Data (SPMD) semantics. They insert meeting points—a barrier like,
although, unlike a barrier, not stopping a thread from progressing past the point—at the
end of each parallel loop. Each thread compares its own progress with other threads
based on these meeting points, and slows down if it is ahead. The main assumption
in this work is that the total number of times each thread visits the meeting point is
roughly the same. This work is limited to the class of applications that exhibit SPMD
semantics.

Several works focus on dynamic power adaptation for MPI applications by ob-
serving the behaviours of MPI calls. For example, Lim et al. proposed a method which
aims to dynamically reduce the power state (p-state) of CPUs during communication
phases where computational is not extensive [93]. This approach uses different training
algorithms to identify communication regions in the MPI program and to derive the
appropriate p-state of for each region. A shifting component is then used to determine
when the MPI program enters and leaves a communication region. This component is
also responsible for changing the p-state to the desired level. The p-state is changed by
writing the appropriate values of the Frequency Identifier (FID) and Voltage Identifier
(VID) to the Model Specific Register (MSR).

Similarly, Iannou et al. proposed a method that aims to detect recurring communic-
ation and execution phases in MPI applications [61].The phase detector is designed by
instrumenting MPI calls to measure the execution time of each call and the execution
time of the program in between calls. The instrumentation information is then used in
the so-called supermaximal repeat string algorithm [54] to detect different phases in
the MPI program. The work also proposes a hierarchical power controller to automat-
ically adjust the voltage and frequency during each detected phase. The adjustment
is determined based not only on the information of the local power domains but also



7.3 Energy Optimisation 131

on the previously observed execution times of the phase on multiple frequency and
voltage domains.

Likewise, Freeh and Lowenthal propose a profile directed scheme for power
reduction in MPI programs [41]. They divide the program into phases based on trace
data collected during a profile run of the application. In order to construct the phases,
a program is divided into blocks identified by MPI operations, and change in memory
pressure (measured as operations per miss). Two adjacent blocks are merged into a
phase if their corresponding memory pressure is within some threshold. Each phase is
then assigned a voltage, frequency value. As another example, Kappiah et al. proposed
a method which exploits inter-node slack to detect non-bottleneck nodes [67]. The
frequency of these nodes is scaled down so that their computations are potentially
completed at the same time with bottleneck nodes.

Sassolas et al. present a hybrid DVFS and Dynamic Power Management (DPM)
technique to save energy in pipelines streaming applications [118]. The main focus
of this work is that the computation is done in stages in a pipeline manner. Based on
that knowledge, the observation they make is that throughput in streaming application
is constrained by the duration of its slowest stage. So if other stages slow down,
power consumption can be reduced. A monitor keeps account of the utilisation of
a communication buffer, and based on two thresholds will decide if the producer is
executing fast or slowly. Based on the position in the streaming pipeline, a priority is
assigned to the task for scheduling purpose. Based on utilisation of a communication
buffer, one of the DVFS modes—there are two modes used in this study: Turbo
and Half-turbo—is chosen. Any unused resources and resources executing blocked
tasks are put into Deep Idle, a DPM mode. Similarly, Alimonda et al. described their
approach to applying DVFS to data-flow application [6]. Their work assumed that the
mapping of tasks to Processing Elements (PEs), as well as their interconnection is
already given. In order to make the DVFS decision they also monitored First In First
Out (FIFO) buffer occupancy. Although unlike work by Sassolas et al. they did not
use DPM.

As a static power adjustment approach, Rountree et al. used linear programming to
derive the offline schedule for CPU frequency so that the energy saving is optimal [115].
The linear programming solver relies on the application communication trace to
identify the critical path of execution. Using the power characteristics of the cluster,
the solver derives a schedule that ensures that the node executing the critical path is
never slowed down. Although this approach provides a nearly optimal schedule, it
requires a complete trace of the program at each different frequency level. In addition,
the linear programming solver is too slow to be efficiently utilised at runtime for
dynamic adaptation. To overcome these problems, the authors combine this static
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approach and dynamic slack prediction into the Adagio RTS [116]. Adagio first
generates a static schedule based on the predicted execution time. The schedule is
dynamically adapted during the runtime based on the prediction of critical paths.

Wang and Lu proposed a threshold-based approach to reduce energy consumption
for heterogeneous clusters [137]. First an offline analysis is performed to generate
thresholds. These thresholds are then used to divide the workload into several ranges
with different power configurations. At runtime, the workload for cluster is measured
and, based on this measurement, future workload is predicted. The predicted workload
is then used to decide the range and appropriate power configuration to be used.
Similarly, Chen at al. proposed a DVFS scheme for heterogeneous clusters that satisfies
Quality of Service (QoS) requirements [29]. They use approximation algorithms to
analyse trade-off of time/space complexity and power consumption minimisation
for three different QoS models. The latest survey by Bambagini and Marinoni [11]
presents in-depth analysis of state-of-the-art energy-aware scheduling algorithms for
real-time systems, including DVFS, DPM and hybrid approaches.

Chen et al. have presented a DVFS (and also static power consumption) ap-
proach that targets special multi-core platforms with time-triggered communication,
i.e. Time-Division Multiple Access (TDMA) [28]. Our approach is not limited to
such TDMA-based architectures. Also, the SCC used in our experiments does not
have a time-triggered NoC. In addition, TDMA schemes are normally applied for
highly dependable architectures, where the focus is more on dependability rather than
efficient resource utilisation.

Poellabauer et al. have developed a feedback-based DVFS approach that aims
to reduce the processor speed during Input/Output (I/O)-intensive phases where the
maximum processor speed cannot be fully exploited [110]. The detection is made by
observing the ratio of data cache misses per instruction, which they call Memory Access
Rate (MAR). A high MAR denotes an I/O-intensive period with lots of accesses to data
memory, while a low MAR denotes a computation-intensive period. The separation of
execution is phased into I/O and computation works effectively for a single core. With
multiple cores these phases tend to be out of sync among the cores, which reduces the
chance that all cores are doing I/O at the same time.

Bini et al. have presented a DVFS framework for real-time systems [19]. This
approach is based on the calculation of the so-called optimal processor speed which
would allow all deadlines to be met. They then use two discrete speeds, one slightly
below and the other slightly above the optimal speed, which are used to approximate
the optimal speed, such that it is guaranteed that no deadline is missed.

In all the related work described above, the system state is observed at either the
OS level or MPI level, or does not work for multi-core or works for specific real-
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time scheduling only. In contrast, in our approach we extract the system state at the
application level, and we do not have to rely on specific task scheduling methods or
NoC message routing schema.

As our approach specialises on the domain of streaming applications, we automat-
ically adapt the power configuration to cope with the dynamic changes of the system’s
workload in an energy-efficient way. To do so, we use the correlation of the input
and the output rates to detect overload situations in the system. In addition, we use
monitoring information about idling cores to detect underload situations. In contrast
to approaches where I/O is the deciding factor to reduce speed at I/O phases, e.g.
MPI phase and barrier based approaches, we rely on temporal overload/underload
situations in the system. Moreover, in contrast to some of the approaches discussed
above, we do not derive an offline schedule that satisfies certain power consumption
constraints. This is because for a dynamic load-balancing centralised scheduler such
as ours it is not possible to use static schedules. In addition, we are targeting RSPs,
where workload is dependent on the environment, and as such likely to have high
variation. In some of the related work described above, the results are acquired by
means of simulation. In contrast, we use an actual hardware platform to obtain results.
Nevertheless, our approach is also hardware independent, i.e. it does not require any
specific performance registers, and as such, is adapted to a new hardware platform
without the need for any additional measures/modifications.

The DVFS related work discussed in this section can be summarised as:

Uniform vs. Core-based Control The majority of DVFS research assumes the power
controllability of individual computing elements, for example, Cai et al. [26], Li
et al. [90], Gamell et al. [42], Lim et al. [93], Iannou et al. [61], Poellabauer et
al. [110], Sassolas et al. [118], and Alimonda et al. [6]. This is also the case for
Chen at al. [29] with the focus on server farms.

For many-core processors like the SCC, such an individual control of computing
elements is not applicable. While the SCC allows frequency switching at the
tile level, the more important voltage setting can only be done at the level of
individual voltage islands of four tiles each. Thus, we support an approach that
does not rely on controllability of individual nodes, but rather does a processor-
wide adaptation of power settings.

Dynamic vs. Static Scheduling Some DVFS approaches focus on static control of
power settings, for example, Kappiah et al. [67], Rountree et al. [115],[116], and
Chen et al. [28]. In contrast, our approach focuses on the support of dynamic
scheduling problems.
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Soft vs. Hard Real-Time Some DVFS approaches target real-time systems, deploy-
ing scheduling methods that rely on the knowledge of the computational demand
of individual tasks in order to allow response-time analysis, for example, Wang
and Lu [137], Bambagini and Marinoni [11], or Bini et al. [19]. Our approach
does not rely on the knowledge of computational demands of individual tasks.
However, on the downside, our approach is not applicable for frameworks with
hard real-time requirements.

7.4 Chapter Summary

In this chapter, we have presented a range of work related to two aspects: memory
allocation and management, and power consumption reduction by means of DVFS. To
the best of our knowledge, there has been no specialised memory allocator that covers
the non-single system image OS, and provide abstraction that hides details of the un-
derlying communication mechanism. With simple API functions like, scc_malloc and
scc_free (similar to standard malloc and free) our approach substantially simplifies
the programming of distributed architectures. We focus on the domain of RSPs with
dynamic program structures and variable workload with asynchronous communica-
tion. This allows us to use a simple matrix like correlation of the input rate and the
output rate, and idling cores to drive DVFS related decision to automatically adapt the
power configuration to cope with dynamic changes of the system’s workload in an
energy-efficient way.
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Conclusion and Outlook

With the advent of many-core architectures, general computing has been forced to
become increasingly parallel to leverage the parallelism offered by architectures.
Furthermore, industry has moved from raw performance to performance per watt. Re-
flecting the future trend there is a need for heavy computation, but power consumption
is a first-class citizen as a constraint.

Motivated by these developments, this dissertation has presented the design and
implementation of a resource-aware execution layer for Reactive Stream Programs
(RSPs) called Resource-Aware Light-weight Parallel Execution Layer (RA-LPEL).
Achieving more performance per watt is the main goal of the presented work. This
chapter concludes the thesis by summarising the main features and contributions and
discusses possible future work.

8.1 Thesis Summary

With the advent of multi-core/many-core architectures in everyday computing, pro-
grams have to run concurrently on more than one core to achieve maximum perform-
ance. This many-core shift in hardware forces the general computing paradigm to
become increasingly parallel, to leverage maximum processing power and to improve
application performance. In the wake of green computing, performance per watt has
become widely used metric.

One way to program these many-core systems is to use stream processing paradigm.
In the the stream processing paradigm, programs are constructed by computational
nodes connected by streams. Streams are communication channels to transfer se-
quences of data between computation nodes. The stream processing model is well-
suited for modern many-core architectures, as it embraces distributed processes that
interact solely through explicit data streams. The stream programming relieves pro-
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grammers from the burden of identification and exposition of the concurrency and
simplifies the concurrency management on modern many-core architectures due to
their implicit synchronisation. Furthermore, high-level coordination languages based
on principles from data-flow programming allow software engineers to rapidly build
maintainable parallel applications from sequential building blocks.

A stream program that continuously respond to external inputs and proceses
virtually infinite sequences of data is referred to as a Reactive Stream Program
(RSP). The RSPs work in tandem with their environment, and the load imposed by the
environment may vary over time. This provides a unique opportunity to maximise the
performance per watt. For example, if the system load imposed by the environment
varies over time, dynamic power management techniques like Dynamic Voltage and
Frequency Scaling (DVFS) can be used to effectively reduce/increase the voltage and
frequency to allow energy-efficient execution of programs. Saving the power at the
right time, without violating the system’s throughput and latency constraints is a hard
problem, as the future resource requirements can be unpredictable for many important
applications.

Motivated by these developments, this dissertation has presented the design and im-
plementation of RA-LPEL, which employs light-weight DVFS mechanism to support
the energy-efficient execution of RSPs on the many-core architectures.

We introduced the Single-chip Cloud Computer (SCC) many-core processor and
S-Net stream programming language as a concrete hardware and software vehicles to
evaluate our approach. Next, we described our effort of bringing an existing execution
layer for RSPs to the SCC. The details included a memory creation and allocation
mechanism called Hierarchical Allocator (HALLOC) for the SCC. HALLOC allows
memory management across distributed cores of the SCC, each running a separate
instance of an Operating System (OS). The main distinction of HALLOC is that it is not
simply a memory manager; instead it is a complete mechanism that creates the shared
memory—the instance of an OS running on the SCC is not aware of the existence of
this shared memory—at the application level and provides functionality to manage
(de)allocations.

We then provided taxonomy of the resource-aware execution together with formal
definition of load ranges for RSPs with different arrival rates. We extended these
definitions by including the impact the DVFS has on the matrices (throughput and
latency). Next we describe RA-LPEL, a resource-aware execution layer for the RSPs.
We described our use of the correlation between the input rate and the output rate to
detect overload situations in the system. We also used monitoring information about
idling cores to detect underload situations. Afterwards, we described the heuristics
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which use these temporal overload/underload situations in the system to derive and
apply DVFS decisions.

We performed benchmarking to obtain results regarding two aspects of RA-LPEL.
In the first aspect we studied performance in terms of scalability of throughput/latency
for varying number of cores. We also compared our shared-memory approach with
existing distributed backend as well. In the second aspect, we covered our main aim of
investigating the impact of DVFS on the energy efficiency.

We identified throughput and the waiting worker as indicators of resource utilisation
of RSPs. These metrics are independent of hardware, i.e. although the exact value
might depend on the hardware architecture, the concept does not, and as such they
are general enough to cover various architectures. We used throughput and ideal
workers to derive policies that ensure power is saved at the right time without affecting
performance.

The measurements showed a substantial gain (power consumption reduced nearly
down to half in some cases) in energy efficiency for the scenario in which the DVFS
was employed, compared with one without the DVFS. When only Dynamic Frequency
Scaling (DFS) was enabled, there was reduction in the power consumption, but not as
significantly as was achieved with DVFS.

8.2 Conclusion

We have presented “RA-LPEL”, a resource-aware light-weight parallel execution layer,
which aims to maximise the energy efficiency (performance per watt) of the RSPs on
many-core architectures. In order to achieve that aim we also developed “HALLOC”, a
shared memory creation and management mechanism.

Porting an existing execution layer (Light-weight Parallel Execution Layer (LPEL)
as a ground work) to the SCC seemed straight-forward, but proved to be more difficult
than anticipated. One of the major problems we faced was that LPEL was designed
for shared memory architectures. While the SCC provides some form of support for
shared memory, e.g. Message Passing Buffer (MPB), it was not sufficient for our
purpose due to its size (8 KiB per core). In order to solve this problem we devised
“HALLOC”, a memory creation and management scheme, which provided nearly 2.5
GiB of shared memory, but on the down side, we had to lose four cores of the SCC.
We had to overcome many problems while working on HALLOC, e.g. working out
the order in which memory mapping and Lookup Table (LUT) remapping occurs,
creating separation between two different memory (de)allocation mechanisms working
together to avoid memory bugs, and problems with the caches.
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One of the other problems we faced was how to handle cache coherency. The SCC
does not provide cache coherency and since we assume shared everything, we had
to disable caches of the SCC. This was due to multiple reasons. One of the reasons
was the lack of L2 cache invalidation, i.e. that if the memory is shared and caches are
used, the programmer has to manually flush the caches, a costly operation (costing
approximately 1,000,000 cycles [9, 135, 136]). There was no way to partially flush
the L2 cache. In addition, in the centralised scheduler used in our work, task-to-core
mapping is changed very frequently for the purpose of the load-balance. In this case
the cost of frequent cache-flushing overhead outweighs any gain in performance. For
future non-cache coherent architectures, it would be desirable to have fine grain control
over caches to avoid the problem related to the memory consistency and to keep the
cost of cache flushing to a minimum.

The lack of debugging tools was another big problem. Memory analysis tools
like Valgrind could have been very useful while designing HALLOC, but due to the
SCC specific problems it would not work as expected. As an example, the instruction
CL1INVMB is only available in the SCC and as such would be a problem. The shared
memory created by HALLOC was above OS and as such it proved to be a problem to
conduct a memory leak analysis with Valgrind. Although debugging with GDB was
possible, it was very cumbersome. In the case of using GDB we had to connect to
the SCC cores via Secure Shell (SSH), which meant that we would get 44 different
consoles, one per core. One can imagine the problem when you have to click through
44 windows, every time you step forward/back to see what is happening.

On the power management side of the SCC, one of the promising aspects was that
we could turn off cores to reduce power consumption. Unfortunately, when cores were
turned off at runtime it was not possible to bring them back to normal operation. A
hard reset of the SCC platform was required to resume normal operation. Another
problem was that while voltage can be set for an island (made up of 8 cores) it was
not possible to get readings for power consumption at this level, i.e. the SCC provides
voltage and current readings only for the entire chip.

On the SCC, frequency scaling is fast (roughly 20 clock cycles) and will require
synchronisation1 between only 2 cores—a tile is frequency island—while voltage
scaling is slow (roughly 40 ms) and will require synchronisation of 8 cores (4 tiles
form a voltage island). This can be a problem when the workload is not balanced, as by
the time synchronisation is complete for 8 cores of an island and then 6 islands of the
SCC, the workload and tasl-to-core mapping may have already changed, rendering the
validity of the calculation moot. An ideal power management would scale voltage and

1As we can only set the frequency for 2 cores, we have to make sure that voltage is set to the need
of the core running with the highest frequency to ensure problem free operations.
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frequency per core. However, this level of granularity would require a large amount of
the die area and complex wiring to have a core local power supply.

Overall there are some problems with the SCC that need to be revisited/solved for
future many-core architectures, e.g. the limited amount of Test-and-Set (T&S) registers
(they are used to implement atomic locks), the rather small size of MPB memory, the
limitation of a single outstanding memory operation (described in Section 2.5.4.2),
the costly L2 cache flush operation (with no support for partial flush), relatively poor
performance of some components, e.g. memory, and the aged feature set of the P54C
architecture.

The main lesson we learned from this work was that while the SCC has many
interesting features, it also has multiple problems that hold it back. In addition, the
SCC was a research architecture and is no longer maintained, but the lessons we have
learned will be useful for future many-core architectures.

We worked on a low level of abstraction in order to develop HALLOC, which
provides others to use a familiar shared memory programming model to program the
SCC without worrying about an underlying memory model. Furthermore, we devised a
way to have a shared memory that is above OS, i.e. created and managed at application
level. If not all, then part of the implementation will be useful for future work on the
next generation of architectures. At the University of Hertfordshire we have already
acquired a Kalray MPPA2-256 [66], a many-core processor with 256 cores. The cores
in this architecture are arranged in 16 clusters, with each cluster consisting of 16 cores
(similar to the islands on the SCC). While the MPPA2-256 has a distributed memory
architectures, each cluster within behaves as a 16-core Symmetric Multiprocessing
(SMP) system, and as such we believe that the work we have done will provide a
crucial base and open up more avenues to drive further research in the direction of
energy-efficient execution of RSPs on future many-core architectures.

As our approach specialises on the domain of streaming applications, we use
RSP-specific properties to automatically adapt the power configuration to cope with
dynamic changes of the system’s workload in an energy-efficient way. The RA-LPEL
demonstrated the effectiveness of simple matrices and light-weight DVFS policies. The
performance indicators we used are independent of any specific hardware architecture
and as such will be useful for any future many-core architectures.

8.2.1 Research Questions: a Retrospective

With all the work described in this thesis, our aim was to answer the research questions
set at the beginning of this study:
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Is it possible to improve the adaptive resource utilisation and improve the
energy efficiency of RSPs on many-core platforms by exploiting knowledge
about the states of the system?

This question was split into multiple sub-questions:

1. What is an efficient way to port an existing RSP execution layer to the SCC?

2. What are meaningful performance indicators to identify the workload situation
of an RSP on a many-core processor?

3. Is it possible to have these performance indicators to be independent of any
specific hardware feature of that many-core processor?

4. What are adequate strategies to optimise the performance per watt of RSPs on
many-core platforms?

5. Is it possible to design DVFS strategies that are light-weight and simple, but still
adequate to provide substantial reduction in energy consumption of RSPs?

Many of these sub-questions are dependent on each other. As an example, to
answer the Question 1, we have to consider the properties this particular execution
layer provides and how it would help to answer subsequent questions, e.g. Question 2
and help to identify performance indicators for RSPs.

We answered the Question 1 with the development of the first RSP execution layer
for the many-core processor SCC that retains the shared memory programming model.2

In order to retain shared memory programming model, we devised the HALLOC, a
novel hierarchical memory creation and management mechanism for the SCC.

With the identification of, throughput, and number of waiting worker, as a meaning-
ful performance metrics to indicate the workload situation, and the resource utilisation
of RSPs, we answered the Question 2. These metrics that we identified are independent
of the hardware i.e. although the exact value might depend on the hardware archi-
tecture, the concept does not, and as such they are general enough to cover various
architectures, with this insight we answered the Question 3.

We answered Question 4, with the development of the Resource-Aware Light-
weight Parallel Execution Layer (RA-LPEL), which used throughput and ideal work-
ers to derive heuristics that governed the DVFS related decisions. These heuristics
allowed to save power at the right-time without affecting the performance constraints.

2There has been before a successful attempt to port a stream-processing environment to the
SCC [135]. This approach was made for a concrete coordination language, called S-Net. Our ex-
ecution layer is not bound to a particular coordination language, and did not require refactoring the code
for the sake of avoiding shared memory communication.
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We evaluated the efficiency of the RA-LPEL on the actual hardware, i.e. the SCC;
in order to answer Question 5. With the experimental results obtained on the SCC, we
confirmed that our light-weight and simple DVFS strategy—based on throughput and
idle workers—substantially reduced the energy consumption of the RSPs, nearly down
to half in some cases

Lastly, by answering all the sub-questions, we can say that, it is possible to improve
the adaptive resource utilisation and improve the energy efficiency of RSPs on many-
core platforms by exploiting knowledge about the states of the system, i.e. throughput
and the number of idle workers.

8.3 Outlook

Within this dissertation, we have presented the current state of our research in op-
timising the performance of RSPs on many-core platforms. We have introduced
approaches to exploit the knowledge of RSPs to effectively allow DVFS to reduce the
power consumption without violating the system’s throughput and latency constraints.
Although the results presented in Chapter 6 have demonstrated the effectiveness of our
approach, there are numerous was for further development.

It might be useful to conduct further studies to identify extra properties of the RSPs
that can be used as the indicators of the system state. Currently we use throughput
and resource utilisation, i.e. the number of waiting workers to derive the system
state. This indicator could be modified to include the amount of time workers have
to wait, although this would mean that the overhead would increase with the number
of workers, as the waiting time for all the workers has to be calculated on each
decision step. In contrast, the overhead of our current metric—the number of waiting
workers—is constant. This could provide useful insights, for example, whether the
more complex metrics are better indicators of the performance of the RSPs or not.
Additionally, another interesting approach to pursue is to change the steps of how much
the frequency/voltage change, e.g. instead of changing frequency one step at time, the
difference can be calculated as % and ask to change the frequency accordingly in % as
well.

Temperature has an impact on power consumption. Since the SCC provides a
temperature sensor it would be interesting to extend the RA-LPEL and see how this
extra information could be used to optimise energy usage even further.

Currently we manually use a hill climbing approach to see the effect of the dif-
ferent threshold values on power consumption. In practice, these values could be
determined using meta-heuristics to perform guided profiling of the application under
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consideration. In this case, these meta-heuristics would have to be deployed during
runtime. One option is to embed an optimisation technique such as hill climb or a
genetic algorithm into RA-LPEL itself. This could be a promising direction that would
allow a dynamic adaptation of threshold values at the runtime.

Another interesting direction is to have a conductor operating at the voltage island
level, i.e. in the case of the SCC, one RA-LPEL conductor that would manage seven
workers and multiple—ideally one per island—conductors operating on the chip. This
would allow a more fine-grained DVFS at the island level, although this is simply
a specialisation of our approach, in which we consider the SCC as just one island.
Having multiple conductors will not allow the simple load balancing approach that
we currently get with a centralised scheduler. Furthermore, this approach will require
partitioning and mapping of RSP network to different islands—which is more difficult
than it seems, as it also requires multiple changes to the centralised scheduler, e.g.
to make it topology aware, need to develop new protocol for conductor-to-conductor
communication, investigation into cost/benefit analysis at runtime (in order to allow
task migration between different instances of a conductor for the purpose of load
balance or DVFS).

Currently the conductor is in charge of turning the knobs to allow DVFS. With a
higher number of workers the conductor will not scale sufficiently and will begin to
struggle with making DVFS-related decisions and performing its scheduling duties.
Which may very well be the case with Kalray MPPA2-256, with 256 cores. One way to
resolve this problem is to implement the DVFS optimisation as a separate component
and not as a part of the conductor.

Another interesting avenue to pursue is to apply our approach to other Runtime
Systems (RTSs), e.g. FRONT. Since FRONT also targets shared memory architectures
and we already provide the shared memory on the SCC, it would be an interesting
study to investigate if similar increase in energy-efficiency can be observed for RSPs
with different RTS with minimum implementation efforts.
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