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Abstract 

Sugar cane burning in Brazil causes remarkable amounts of organic compounds to be emitted 

amongst which the polycyclic aromatic hydrocarbons (PAHs) represent serious health hazards. 

Therefore, twenty-four hour aerosol samples (< 10 m aerodynamic diameter) were collected in 

Araraquara city (São Paulo state) during the harvest season using a Hi-Vol sampler. PAHs were 

recovered using an Accelerated Solvent Extractor and analyzed by low pressure-gas 

chromatography–ion trap mass spectrometry (LP-GC-ITMS). The fully automated extraction 

process was performed in less than 25 min with a solvent consumption of approximately 20 mL. 

The use of a deactivated 0.6 m x 0.10 mm ID restrictor coupled to a 10 m wide-bore analytical 

column allowed most of the 16 PAHs in EPA’s priority list to be identified and quantified in only 

13 min. Concentrations of PAHs in Araraquara aerosols ranged between 0.5 ng m
-3 

and 8.6 ng m
-3

. 
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1 Introduction 

 

 Brazil owns 25 % of the world’s cultivated area for sugar cane and therefore is one of the 

major producers. Although used since 1917 as automotive fuel, ethanol had its production greatly 

expanded after 1970, when the Brazilian Government developed the PROÁLCOOL program. The 

extensive sugar cane culture accessible in the country encouraged the production of a relatively 

clean fuel using a renewable energy source at low cost. Nowadays the cultivated area comprehends 

3.12 million hectares, which produced 11 billion liters of ethanol and 142.8 million tons of sugar in 

the last 2002 season [1,2]. In particular, the Southeast region, mainly the São Paulo state, is 

responsible for 80 % of the national production and involves approximately 400,000 workers.  

At harvesting season, from May to November, the crops are burnt to make the process of 

manual harvesting easier, by protecting the rural workers from the sharp leaves, insects and 

poisonous snakes, and also to increase the sugar content by weight due to water evaporation [3]. In 

natural and anthropogenic fires, incomplete combustion results in the formation of compounds such 

as carbon monoxide, ammonia, methane and higher hydrocarbons [4]. Amongst the organic 

emissions, polycyclic aromatic hydrocarbons (PAHs) are the most feared ones due to their 

carcinogenic and/or mutagenic properties [5,6]. Recently their endocrine disruption action has been 

reported [7]. Sixteen PAHs are included in the priority pollutants list of the US Environmental 

Protection Agency (EPA) [8]. 

The pyrolysis of the organic matter under high temperatures and consequent recombination 

of acetylene units results in condensed polyaromatic molecules [9], present in both the gas and 

particulate phases. Low molecular weight PAHs are found predominantly in the gas phase, while 

those with four or more rings are found mainly in the particle phase. Van Vaeck et al. [10] have 

found that about 80 % of the atmospheric inventory of particulate PAHs is associated with particles 

below 1 µm. Miguel and Friedlander [11] have reported that around 75 % of benzo[a]pyrene 

(B[a]P) is associated with particles smaller than 0.26 µm, that may deposit into the alveoli causing 

lung diseases such as asthma or emphysema, even when low concentrations are present. The 

prevalent presence of PAHs in the respirable fraction of submicrometer aerosol particles generates a 

special interest from the health point of view [12] and constitutes a real hazard although the extent 

of such contributions remains almost unknown. The characterization of individual particle 

composition using microanalysis methods is thus of great relevance [13]. In the Southeast of Brazil, 

regional air pollution caused by sugar cane burning has become a serious problem with potential 

effects on human health and the global environment. Arbex et al. [14] observed a strong correlation 

between the amount of smoke particles deposited in a medium city in the state of São Paulo and the 
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number of persons who needed inhalation therapy in a local hospital, indicating that sugar cane 

burning may cause deleterious health effects in the exposed population. Zamperlini et al. [15] 

reported the identification of 38 compounds originating from sugar cane soot: the sixteen PAHs 

from EPA’s priority pollutants list, some alkyl PAHs and tiophen derivatives. However, up to now 

there is no specific information concerning the chemical composition of the aerosol during the sugar 

cane burning season and the subsequent effects on the exposed population in the region 

For a long time the accurate identification and quantification of such trace pollutants has 

been a challenge for environmental science. High performance liquid chromatography (HPLC) is 

usually coupled to diode-array, fluorescence or UV detectors, but chromatographic resolution is 

limited. In this respect, capillary gas chromatography (GC) performs better but the extreme 

complexity of aerosol samples practically requires coupling to a mass spectrometer (MS) for 

reliable identification [16]. Nowadays GC-MS comprises one of the standard methods for the 

determination of PAHs in ambient air [17]. However, GC performed with conventional capillary 

columns (30 m x 0.25 mm) results in long analysis times. In addition, the classical extraction 

methods, such as Soxhlet for instance, are extremely laborious and time-consuming. This was the 

motivation to apply a new GC-ITMS technique [18] combined with accelerated solvent extraction 

(ASE) in order to detect and quantify polycyclic aromatic hydrocarbons in aerosol samples in a fast, 

accurate and reliable approach. 

 

2 Experimental 

 

Solvents and standards 

 All reagents used were of analytical reagent grade. Dichloromethane (DCM), methanol 

(MeOH) and isooctane were purchased from Merck (Darmstadt, Germany). Pure PAHs 

(acenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[b]fluoranthene, 

benzo[k]fluoranthene, benzo[g,h,i]perylene, benzo[a]pyrene, benzo[e]pyrene, chrysene, 

dibenzo[a,h]anthracene, fluoranthene, fluorine, indeno[1,2,3-c,d]pyrene, naphthalene, perylene, 

phenanthrene, pyrene) as well as a standard mixture (PAH-Mix 45) and a mixture of perdeuterated 

PAHs (PAH-Mix 31: acenaphthene-D10, chrysene-D12, naphthalene-D8, perylene-D12, 

phenanthrene-D10) were purchased from  Dr. Ehrenstorfer (Augsburg, Germany). 

 

Sampling and site characterization 

 Located at latitude 21
o
 48’ 11’’ S and longitude 48

o
 08’ 25’’ W and with a population of 

about 200,000 inhabitants, Araraquara is in the center of the so-called “sugar cane belt”, an interior 

region of the state of São Paulo responsible for most of the sugar cane business in Brazil.  
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Particulate matter in the size range < 10 m (PM10) was collected for twenty-four hours 

during ten days in August 2002, corresponding to the winter harvest season. A high-volume sampler 

(Hi-Vol PM10, Energética, Brazil) operating with an average flow rate of 1.13 m
3
 min

-1
 was placed 

at 4 m height at a sampling site located in the Institute of Chemistry of the São Paulo State 

University, in a suburban area. The closest sugar cane crop is at a distance of approximately 5 km. 

Based on the 30-day air mass back trajectories, obtained from the Hybrid Single-Particle 

Langrangian Integrated Trajectory model (HYSPLIT), the sampled air masses at Araraquara were 

coming from the Atlantic Ocean to the center of Brazil [19].  

Atmospheric particulate samples were collected using glass fiber filters (Pallflex Products 

Corporation, 20 cm x 25 cm surface), that were pre-heated at 400 
o
C during 24 h before use to 

lower their water and organic matter blank values. After cooling, filters were weighed and stored in 

solvent-rinsed aluminum foil until use.  

The concentrations of the collected total suspended particulate (TSP), the volume of air 

sampled, and the temperature for each day are given in Table I. 

 

Sample extraction and GC-MS analysis 

 The entire filter was cut into 6 parts and one (average weight 0.45 g) was loaded into a 5 mL 

extraction cell. The extractions were performed using a pressure of 160 bar at a temperature of 100 

o
C. The solvent consisted of 4:1 DCM:MeOH. The cycle times were 5 min heat-up and 5 min static 

extraction. The flush volume was 150 %. The full cycle was repeated 3 times, and after extraction 

the instrument was purged three times with nitrogen (Air Liquide, Liège, Belgium) for 60 s. Pre-

rinsed 40 mL screw-cap I-chem vials were used to collect the extracts (approximately 20 mL), that 

were afterwards concentrated under N2 until dryness at room temperature and re-dissolved in 500 

L isooctane. A blank filter section was handled using exactly the same procedures as those used 

for field samples. 

 Low pressure GC-ITMS analyses were performed on a Varian 3800 GC (Walnut Creek, CA, 

USA) instrument equipped with a CP-Sil 8 Rapid MS
®

 column (10 m x 0.53 mm I.D.; df = 1 m, 

Varian-Chrompack) attached to a uncoated restriction column of 60 cm x 100 m I.D. (Varian-

Chrompack) by a single ferrule column connector and a vespel ferrule 0.53-0.25 mm I.D. The 

column was kept at 40 
o
C during 1 min before temperature programming to 120 and

 
260 

o
C at a rate 

of 40 and 15 
o
C min

-1
, respectively. The final temperature was kept for 1.17 min to complete 

elution. Helium (Air Liquide, Liège, Belgium) was used as carrier gas at a constant flow rate of 1.5 

mL min
-1

. Splitless injections (1 L) were carried out through a universal injector (Varian 1079) 

operating at 290 
o
C, and the samples were introduced using an 8200 Varian auto-sampler. A Varian 

Saturn 2000 ion trap MS was used as a detection system, keeping the transfer line temperature at 
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230 
o
C. The full optimization of the analytical methodology for PAHs determination by LP-GC-

ITMS and additional details on its validation in comparison to conventional GC-ITMS is described 

elsewhere [18]. 

 In this work the 16 PAHs listed by the US EPA as priority pollutants plus benzo[e]pyrene 

were analyzed. The target compounds were identified by GC retention times, comparison with 

authentic standards, and from their recorded mass spectra by comparison with the NIST library 

(100,000 compounds). Perdeuterated PAHs were used as internal standards to quantify the 

individual analytes by the LP-GC-ITMS analysis. 

 

3 Results and discussion 

Accelerated solvent extraction (ASE) 

 According to Richter et al. [20], the extraction efficiency using ASE is comparable to that 

obtained by Soxhlet extraction, encouraging us to apply such procedure to our samples. Using 

optimized conditions described by Alexandrou et al. [21], the fully automated ASE extraction 

process was performed in less than 15 min, whereas Soxhlet extraction required 16 and 20 h 

according to Caricchia et al. [22] and Kavouras et al. [23], respectively. Furthermore a total solvent 

consumption with ASE could be reduced to approximately 20 mL. Hence ASE provided a very fast 

procedure with a minimum consumption of toxic solvents and environmental burden, nowadays two 

crucial parameters in the choice of the extraction technique. 

 

LP-GC-ITMS analysis 

Conventional PAHs chromatographic separations are performed generally within 30-40 min 

in order to elute all compounds. The temperature-programming rate needs to be low enough for the 

complete separation of PAHs and results in a long chromatographic experiment, preferentially in a 

thin film column with low capacity. The low-pressure GC is then an attractive alternative to shorten 

the analysis time. Furthermore, the use of wide bore thick film columns operating under vacuum 

conditions allows the capacity of the system to be increased substantially. 

Using the LP-GC-ITMS approach, the best separation was achieved with a CP-Sil 8 column 

and very fast program rates (i.e. 15 and 40 
o
C min

-1
). The total elution took less than 13 min in spite 

of the low initial temperature (40 
o
C). Of particular interest is the decrease of the retention time for 

individual PAHs by a factor of 3-4, without loss of the baseline separation (except for benzo[b]- and 

benzo[k]fluoranthene), and the improvement of the detection limits, as already reported by 

Ravindra et al. [18]. The mass spectra of target compounds agreed well with those from authentic 

standards, in that fit-factors were similar (see Figure 1). Additionally, the retention time 

reproducibility between samples and standards was enough to ensure the identification of the target 



 6 

analytes. Moreover, the use of the ITMS permitted the entire mass spectra to be obtained with a 

sensitivity that exceeded that of quadrupole/single ion monitoring [24]. 

Finally, the outlined advantages of fast analysis and lower gas-consumption are decisive 

parameters to be taken into account for routine monitoring, not only at the industrial scale, but also 

in a research laboratory. 

 

Atmospheric particulate matter 

 Particulate PAHs concentrations are summarized in Table II. The average value for each 

compound, with the minimum and maximum values and the total PAHs concentrations (sum of the 

18 compounds) are reported for the 10 days sampling. The typical reproducibility of instrumental 

analysis is 10-15 %. The values were corrected for volatilization losses during the evaporation step 

under N2 [22]. The estimated recovery yield ranged from 78 ± 5 % for naphthalene to 85 ± 3 % for 

benzo[g,h,i]perylene. According to Caricchia et al. [23], losses of PAHs from particulate collected 

on filters are more significant for the compounds containing less than five rings when the sampling 

time exceeds 24 h. Therefore, the concentrations reported in Table II are a good estimation of the 

environmental levels. 

 Concentrations of individual compounds are in a range of up to 18 ng m
-3

. The total PAHs 

levels are between 13 and 94 ng m
-3

. These values are close to those observed in Naples (2 – 130 ng 

m
-3

) [23] and exceed those measured in Santiago de Chile (0.68 – 11.14 ng m
-3

) [24]. The average 

concentration for total PAHs of 49 ng m
-3

 measured in Araraquara is also higher than that observed 

in Seoul (26.3 ng m
-3

) [26].  

Because PAHs are generally considered as typical products of incomplete combustion of 

organic matter, the increased concentrations in Araraquara are readily associated to the intense 

sugar cane burning which takes place at this time of the year in the surrounding area. Indeed, 

Azevedo et al. [27] also observed high average concentrations in Campos dos Goytacazes (up to 

122 ng m
-3

), another city surrounded by sugar cane plantations. Our average concentration for total 

PAHs (samples collected in August) is lower, probably due to the sampling in atypical winter 

conditions with temperatures reaching 30 
o
C. The latter could increase the gas particle distribution 

of PAHs compounds. Also, Azevedo et al. [27] showed a seasonal distribution with high PAHs 

concentrations in July with a strong decrease until the end of the crop season (September). Of 

course, variables such as climate, air masses, other anthropogenic contributions and unpredictable 

crop burnings, characteristic of both cities, should also to be taken in to account. 

The average B[a]P concentration (1.9 ng m
-3

) measured in Araraquara is of special interest 

due to its high carcinogenic property, being higher than those measured in large cities in developed 

countries such as London [28]. According to Simoneit [9] the major PAHs emitted from Gramineae 
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species burning are phenanthrene, fluoranthene and pyrene, and the minor anthracene and 

benzo[a]anthracene. The concentrations of these compounds detected in our work are compatible 

with this observation, suggesting that the PAHs emissions are indeed produced by the sugar cane 

burning. 

The total suspended particle matter (TSP) ranged from 76 g m
-3

 to 182 g m
-3

, and was 

below the Brazilian Regulation limits (150-240 g m
-3

 – 24 h air quality standard; Resolution 

CONAMA no. 03). However, the average (103 g m
-3

) is above the annual geometric average of 80 

g m
-3

, probably due to intense crop burning processes. It can explain the increase of respiratory 

problems observed in the population during the winter season as reported by Arbex et al. [14], 

mainly in dry days when the contributions of the large amount of agricultural fires to the emission 

of particulate matter are maximal, as demonstrated by Godoi et al. [13]. Indeed, the World Health 

Organization (WHO) advises that even at low levels of particulate matter (less than 100 µg m
-3

) 

short-term exposure is associated with health effects. Evidence is also emerging that long-term 

exposure to low concentrations is associated with mortality and other chronic effects, such as 

increased rates of bronchitis and reduced lung function [29].  
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Table I – Total suspended particulate (TSP), volume of air collected, and ambient temperature for 

each sampling day in Araraquara 

sample date Ambient  

temperature (
o
C) 

TSP  

(µg m
-3

) 

Volume 

sampled (m
3
) 

1 05/08/02 18-30 78.8 1627 

2 06/08/02 20-27 76.3 1604 

3 07/08/02 18-31 78.5 1610 

4 08/08/02 19-31 108.5 1661 

5 09/08/02 18-30 115.3 1592 

6 10/08/02 18-30 97.3 1610 

7 12/08/02 18-29 103.6 1599 

8 13/08/02 18-30 104.8 1604 

9 14/08/02 19-30 181.8 1667 

10 15/08/02 18-30 89.0 1593 
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Table II – PAHs concentrations (ng m
-3

) measured in PM10 aerosol samples collected in Araraquara 

Compound Concentration range (ng m
-3

) Average concentration (ng m
-3

)  

Naphthalene 0.19 – 0.93 0.42 ± 0.27 

Acenaphthylene 0.25 – 2.03 0.95 ± 0.62 

Acenaphthtene 0.12 – 1.78 0.70 ± 0.56 

Fluorene 0.11 – 0.91 0.42 ± 0.43 

Phenanthrene 0.94 – 5.08 2.9 ± 1.2 

Anthracene 0.11 – 0.51 0.33 ± 0.13 

Fluoranthene 1.1 – 6.5 3.3 ± 1.6 

Pyrene 0.57 – 6.03 2.5 ± 1.7 

Benzo[a]anthracene < 0.74 - 

Chrysene 1.7 – 13.8 6.6 ± 4.1 

Benzo[b+k]fluoranthene 1.8 – 11.0 5.6 ± 3.3 

Benzo[a]pyrene < 0.74 – 3.30 1.9 ± 1.1 

Benzo[e]pyrene 1.0 – 4.6 2.7 ± 1.4 

Indeno[1,2,3-cd]pyrene < 1.6 – 18.2 8.7 ± 5.6 

Dibenzo[a,h]anthracene < 1.6 - 

Benzo[g,h,i]perylene 2.5 – 13.8 8.5 ± 3.8 

Perylene 1.2 – 5.6 3.8 ± 1.5 

Total 13.4 – 94.0 49.3 ± 2.8 
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Figure 1 – Mass spectra of an authentic standard and a sample for phenanthrene and fluoranthene. 

 


