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Abstract	
A	molecular	 receptor	 for	mephedrone,	an	amphetamine-like	NPS,	was	developed	using	host-guest	

chemistry	and	pharmacophoric	design.	The	in-field	detection	of	new	psychoactive	substances	(NPS)	is	

an	 area	 that	 has	 garnered	 considerable	 attention	 in	 the	 last	 few	 years.	 With	 the	 continuously	

expanding	 number	 of	 NPS	 on	 the	 market,	 traditional	 detection	 mechanisms	 lack	 the	 selectivity	

needed.	In	this	project	a	new	methodology	has	been	developed	for	the	design	of	host	molecules	for	

use	in	in-field	detection,	based	on	biomimetic	design.		

To	understand	what	a	sensory	molecular	needs	to	be	selective	against,	GC-MS	and	HPLC	analysis	were	

employed	 to	 identify	 and	 quantify	 thirteen	 aminoindane	 internet	 samples.	 It	 was	 found	 that	 the	

composition	of	internet	samples	varies	greatly	in	terms	of	concentration	of	active	ingredient,	with	a	

range	of	17-95	%	w/w	of	active	 ingredient	 identified.	 It	was	also	found	that	caffeine	was	the	most	

common	cutting	agent	with	a	range	of	27.7-30.2	%	w/w	identified.	This	highlights	the	need	for	both	

selectivity	and	sensitivity	in	detection	mechanisms.		

Using	 the	 principles	 of	 biomimetic	 design,	 a	 methodology	 for	 the	 treatment	 of	 protein-ligand	

interactions	was	 developed.	 Protein-ligand	 binding	 data	 collected	 from	 the	 Protein	Databank	was	

analysed	 for	 mephedrone	 related	 structures	 and	 common	 cutting	 agents,	 identified	 through	

aminoindane	 internet	 sample	 analysis	 and	 literature	 sources.	 From	 this	 work	 a	 three-point	

pharmacophoric	model	was	developed,	upon	which	two	host	molecules	were	considered,	macrocyclic	

calixarenes	and	acyclic	anthraquinones.	Both	contained	the	three	binding	interactions	deduced	from	

the	pharmacophore	design;	two	p-stacking	interactions	and	one	hydrogen	bond	acceptor.		

The	final	host	molecule	taken	forward	for	testing	was	1,8-dibenzylthiourea	anthracene	(Probe	1).	The	

binding	 affinity	 of	 Probe	 1	 to	 mephedrone	 was	 tested	 using	 1H-NMR.	 An	 estimated	 association	

constant	 of	 104	M-1	was	 calculated,	with	 a	 1:1	 binding	 stoichiometry.	Along	with	 ESI-MS	 and	DFT	

calculations,	it	was	found	that	mephedrone	binds	to	Probe	1	in	a	concerted	fashion	with	a	three-point	

binding	 geometry,	 with	 two	 hydrogen	 bonds	 and	 one	 p-stacking	 interaction.	 A	 modest	 optical	

response	using	fluorescence	spectroscopy	was	also	observed	between	mephedrone	and	Probe	1	at	

high	molar	concentrations.	A	more	pronounced	response	was	observed	upon	addition	of	high	molar	

concentrations	of	flephedrone.		

1H-NMR	showed	that	Probe	1	selectively	bound	mephedrone	over	methamphetamine	as	well	as	the	

four	most	 common	 cutting	 agents	 identified	 from	 literature:	 lidocaine,	 caffeine,	 paracetamol	 and	

benzocaine,	which	have	been	 shown	 to	 cause	 false	positives	 in	 previous	 studies.	 Probe	1	 showed	

significant	selectivity	for	the	β-ketoamine	arrangement.	This	is	supported	by	the	systematic	analysis	
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of	mephedrone,	methamphetamine,	mephedrone	precursor	and	flephedrone.	This	 is	 the	first	 time	

this	has	been	achieved	using	host-guest	chemistry.	A	protocol	was	developed	to	successfully	detect	

mephedrone	via	Probe	1	using	NMR	spectroscopy	in	a	simulated	street	sample	containing	two	of	the	

most	 common	 cutting	 agents,	 benzocaine	 and	 caffeine.	 To	 further	 aid	 future	design	of	 small	 host	

molecules	 a	 methodology	 for	 the	 in	 silico	 analysis	 of	 small	 molecule	 host-guest	 binding	 using	

metadynamics	was	explored.	Solvent	interactions	with	the	host	and	guest	molecules	were	observed,	

highlighting	the	importance	of	solvent	choice	in	binding	studies.	Metadynamics	shows	potential	to	be	

used	in	further	work	for	improving	the	approach	in	which	host	molecules	are	designed	in	future.	 
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Chapter	1 General	Introduction	

1.1 History	of	Psychoactive	Substances		

Psychoactive	drugs	have	the	ability	to	change	people’s	states	of	consciousness	making	them	popular	

for	use	recreationally,	with	reports	of	abuse	from	as	far	back	as	1300	BC1.	This	is	despite	the	known	

dangers	associated	with	psychoactive	drug	use.	Psychoactive	substances	are	defined	by	 the	World	

Health	Organisation	(WHO)	as	“any	substance	that,	when	taken	in	or	administered	into	one's	system,	

affect	mental	processes,	e.g.	cognition	or	affect”2.	The	total	annual	worldwide	market	for	medicines	

is	approximately	$250	billion,	yet	 the	market	 for	 recreational	drugs	 is	estimated	to	be	at	 least	 ten	

times	greater3.	The	culture	of	taking	psychoactive	drugs	is	not	new,	what	changes	are	the	drugs	that	

are	abused,	and	the	effects	that	they	have	on	the	body4.	Psychoactive	substances	are	utilised	in	the	

area	of	psychotherapy	and	mental	illness,	but	despite	in-depth	research	into	their	clinical	uses	from	

leading	scientists	such	as	Alexander	Shulgin,	these	substances	are	primarily	used	as	“party	drugs”5.	

Psychoactive	drugs	fall	into	three	categories	based	on	their	pharmacological	effects:	stimulants	such	

as	amphetamine	and	caffeine,	hallucinogens	such	as	lysergic	acid	diethylamide	(LSD)	and	psilocybin,	

and	depressants	for	example	benzodiazepines	and	opioids	(Table	1.1).	However,	it	is	not	uncommon	

for	these	drugs	to	fall	into	multiple	categories.	These	different	effects	occur	depending	on	how	the	

drug	 interacts	 with	 the	 body,	 especially	 their	 effects	 on	 the	 central	 nervous	 system	 (CNS).	

Psychoactive	drugs	pass	through	the	blood	brain	barrier	and	compete	with	natural	substrates	such	as	

serotonin,	dopamine	and	noradrenaline	acting	primarily	on	the	monoamine	transporter	proteins.		

	

	

	

	

	

	

	

	

Table	1.1	-	Timeline	of	common	drugs	of	abuse	and	their	relative	pharmacodynamic	effects.	
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Drug	Of	Abuse	 Abuse	First	Reported	 Effect	

Cocaine	 1884	 Stimulant	

Marijuana	 1920	 Depressant	

Lysergic	acid	diethylamide	(LSD)	 1943	 Hallucinogen	

Amphetamine	 1960	 Stimulant	

3,4-Methylenedioxymethamphetamine	(MDMA)	 1970	 Stimulant	

Crack	Cocaine	 1985	 Stimulant	

Diacetylmorphine	(Heroin)	 1890	 Depressant	

Mephedrone	 2003	 Stimulant	

Aminoindanes	 2005	 Stimulant	

Methylenedioxypyrovalerone	(MDPV)	 2014	 Stimulant	

	

LSD	is	seen	as	the	first	synthetic	psychoactive	drug	that	was	abused	on	a	large	scale.	Its	psychedelic	

effects	were	discovered	 inadvertently	by	Albert	Hoffman	 in	1943	while	 researching	 into	medically	

useful	 ergot	 alkaloid	derivatives.	 This	 brought	 about	 its	 use	 in	psychiatry6.	 LSD	 started	 to	become	

prevalent	on	the	recreational	drug	scene	in	the	1960s;	it	was	seen	as	the	drug	at	the	centre	of	the	

counterculture.	It	quickly	became	illegal	in	both	the	UK	and	the	USA	instigating	the	constant	search	

for	alternative	legal	forms	that	would	induce	similar	effects.	A	number	of	drugs	have	followed	on	from	

LSD,	including	3,4-methylenedioxy-N-methylamphetamine	also	known	as	MDMA	(Figure	1.1).		

	

Figure	1.1	-	Chemical	structure	of	A.	lysergic	acid	diethylamide	(LSD)	and	B.	3,4-methylenedioxy-N-methamphetamine	

(MDMA).	

The	emergence	of	new	recreational	drugs	has	increased	rapidly	over	the	last	10	years,	which	has	led	

to	the	term	“new	psychoactive	substances”	or	NPS.	These	are	compounds	that	are	chemically	altered	

from	government	controlled	substances	to	sidestep	regulations,	yet	still	have	potent	effects	that	rival	

banned	substances.	NPS	are	primarily	abused	for	their	stimulant	and	hallucinogenic	effects	and	are	

designed	to	mimic	the	effects	of	popular	drugs	of	abuse	such	as	MDMA	and	LSD.	Among	other	effects	



General	Introduction	

25	
	

these	drugs	are	seen	to	induce	extreme	mood	lifts	accompanying	euphoria	and	a	subjective	alteration	

of	consciousness7,8.	NPS	have	also	been	found	to	improve	self-confidence9.	NPS	contain	chemicals	that	

in	most	cases	have	not	been	 tested	 in	man,	and	 the	pharmacology	behind	such	drugs	 is	 relatively	

unknown.	Users	can	therefore	not	be	certain	what	they	are	taking	and	what	the	effects	might	be.	

The	rapidly	expanding	NPS	market	has	primarily	been	blamed	on	the	internet	and	the	ease	of	acquiring	

them10.	The	speed	at	which	new	drugs	are	introduced	is	an	ever	expanding	problem11.	The	internet	

plays	a	pivotal	role	in	the	marketing	of	these	drugs,	especially	to	the	younger	population12.	 In	May	

2016	the	UK	government	made	the	decision	to	impose	a	blanket	ban	on	all	psychoactive	substances.	

Under	 this	 classification	 importation,	 exportation,	 production	 and	 supply	 are	 prohibited	 without	

lawful	authority13.	The	psychoactive	substances	act	was	brought	in	to	protect	the	public,	especially	

young	people	and	target	suppliers	and	manufacturers	who	advertise	harmful	substances	as	legal	and	

safe.		

1.1.1 Emergence	of	New	Psychoactive	Substances	(NPS)		

The	main	classes	of	NPS	that	are	monitored	by	the	European	Monitoring	Council	for	Drug	and	Drug	

Addition	(EMCDDA)	include:	synthetic	cannabinoids,	synthetic	cathinones,	phenethylamines,	opioids,	

tryptamines	 and	 benzodiazepines	 (Figure	 1.2).	 These	 groups	 of	 compounds	 all	 have	 one	 thing	 in	

common,	they	are	relatively	small	amine-containing,	hydrophobic	molecules,	which	have	the	ability	

to	 cross	 the	 blood-brain	 barrier	 and	 exhibit	 psychoactive	 effects	 in	 the	 CNS.	While	many	 fall	 into	

multiple	 categories	 they	 can	 generally	 be	 classed	 as	 stimulants,	 inhibitors	 or	 hallucinogenic	

substances14.		
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Figure	 1.2	 -	 Generic	 structure	 for	 A.	 phenethylamines,	 B.	 tryptamines,	 C.	 piperazines,	 D.	 cathinones	 and	 E.	

benzodiazepines.	Cannabinoids	are	not	classed	based	on	their	structure	but	their	action	on	cannabinoid	receptor	type	one	

(CB1),	and	therefore	no	generic	structure	of	this	class	is	available.	

These	 products	 are	 sold	 under	 attractive	 names	 such	 as	 ‘sparkle’	 (mephedrone)	 and	 ‘ivory	wave’	

(desoxypipradrol)	 and	 are	 presented	 in	 striking	 packaging.	 They	 are	 also	 relatively	 cheap	 in	

comparison	to	the	illegal	alternatives,	such	as	MDMA.	A	survey	conducted	in	2010	showed	that	the	

average	price	of	a	NPS	in	the	UK	was	£9.69	per	tablet7,	compared	to	between	£30-50	for	ecstasy15.		

It	was	reported	in	2015	that	there	were	over	560	NPS	being	monitored	by	the	EMCDDA,	380	of	which	

have	come	onto	the	market	in	the	last	5	years	(Figure	1.3)10.	One	changing	aspect	over	the	years	is	the	

class	of	NPS	that	are	being	abused,	and	to	what	extent.	This	highlights	the	changeability	of	the	NPS	

market.	The	UK	government	has	been	failing	to	keep	up	with	the	growing	number	of	NPS	inundating	

the	market	and	therefore,	have	been	failing	to	effectively	control	these	substances,	or	understand	

their	potential	health	implications16.	While	new	NPS	come	onto	the	market	continuously,	the	number	

of	classes	does	not	change	as	readily,	with	most	falling	into	one	of	the	already	established	classes.		
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Figure	1.3	-	The	number	of	new	psychoactive	substances	notified	from	2005–15	in	Europe10.	

Stimulant	drugs	with	amphetamine-like	structures	have	long	been	a	popular	choice	as	recreational	

drugs.	 This	 is	 due	 to	 the	 complex	 pharmacological	 profile	 that	 is	 observed	 from	 these	 structures.	

Figure	1.3	shows	thirteen	different	classes	of	NPS	monitored	by	the	EMCDDA	since	2005.	Of	which,	

four	 are	 deemed	 to	 have	 amphetamine-like	 structures,	 including:	 arylalkylamines,	 aminoindanes,	

cathinones	and	phenethylamines.	Of	these,	cathinones	have	remained	the	most	prevalent	since	2008.		

Based	on	United	Nations	Office	 on	Drugs	 and	Crime	 (UNODC)	 reports,	 cathinones	 are	 the	 second	

highest	 NPS	 class	 at	 15	 %	 of	 the	 reported	 values.	 The	 “original	 NPS”	 is	 often	 reported	 to	 be	

mephedrone,	 a	 synthetic	 cathinone	 that	 was	 developed	 as	 the	 legal	 alternative	 to	

methamphetamine17.	 Cathinones	 have	 been	 found	 to	 exhibit	 similar	 psychoactive	 effects	 to	 the	

amphetamine	 class.	 Since	 their	 introduction	 onto	 the	 ‘drugs	 market’	 in	 2007	 the	 popularity	 of	

cathinones	 has	 remained	 stable,	 with	 a	 peak	 seen	 in	 2014;	 by	 2015	 there	 were	 103	 cathinone	

analogues	on	the	market18.	Their	popularity	is	thought	to	have	risen	due	to	law	enforcement	agencies	

increasing	controls	over	MDMA	as	well	as	its	precursors.	This	change	lead	to	an	overall	decrease	in	

the	amount	of	MDMA	available,	which	subsequently	increased	the	market	price.	Therefore,	paving	

the	way	for	a	cheaper	alternative	with	the	same	stimulant	effects.		

Figure	1.3	also	shows	the	emergence	of	another	amphetamine-like	class,	the	aminoindanes,	which	

came	onto	the	market	in	2010,	with	their	popularity	peaking	in	2011,	the	same	year	the	cathinones	

were	controlled,	with	12	main	seizures	reported	in	the	UK19.	Aminoindanes	were	developed	to	try	and	
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mimic	 the	 action	 of	 amphetamine,	while	 sufficiently	 differing	 in	 their	 chemical	 structure	 so	 as	 to	

remain	uncontrolled.	They	were	advertised	as	the	next	legal	alternative	to	mephedrone	and	became	

popular	as	a	way	to	circumvent	the	new	legislation	with	legal	analogues,	but	with	the	same	reported	

stimulant	effects;	showing	potent	effects	on	serotonin	release	and	reuptake.	

1.1.2 Cathinones		

Cathinones	are	related	to	the	parent	compound	and	ring	substituted	analogues	of	the	psychoactive	

cathinone	 (Figure	 1.4),	 an	 alkaloid	 derived	 from	 the	 Khat	 plant.	 In	 the	 2000s,	 many	 synthetic	

cathinones	 received	 renewed	 popularity	 as	 new	 drugs	 of	 abuse,	 due	 to	 their	 amphetamine	 and	

cocaine	like	effects20,	cathinones	have	remained	popular	ever	since	their	introduction	onto	the	drug	

scene	in	2008.		

	

Figure	1.4	-	Generic	structure	for	cathinone	analogues	where	R1=	H	or	alkyl	group;	R2=	H	or	alkyl;	R3=	H,	alkyl	or	alkoxy;	

R4=	alkyl	group,	as	stated	in	the	Misuse	of	Drugs	Act	197121.	For	the	natural	product	cathinone	R1,	R2,	R3	and	R4	=	H.		

The	most	prevalent	of	the	natural	cathinones	present	in	Khat	is	cathinone.	Cathinone	is	a	beta-keto	

analogue	 of	 amphetamine	 (Figure	 1.4)	 and	 is	 very	 labile	 in	 the	 presence	 of	 oxygen	 and	 quickly	

decomposes	 to	 cathine	 once	 isolated22.	 This	 has	 brought	 about	 the	 production	 of	 synthetic	

cathinones,	which	as	salts	are	considerably	more	stable	in	a	solid	crystalline	state.	It	is	from	this	that	

the	emergence	of	substituted	cathinone	analogues	arose.	As	of	2015,	the	UNODC	has	reported	that	

there	are	now	over	103	synthetic	cathinones	available10.	In	the	UK	the	number	of	synthetic	cathinone	

seizures	has	increased	60-fold	between	2008	and	201323.	This	is	also	reflected	in	the	fatality	statistics	

with	just	nine	deaths	from	cathinone	use	in	2007	compared	to	60	deaths	in	201324.		

Mephedrone	is	one	of	the	most	popular	synthetic	cathinones10	(Figure	1.5).	Currently,	there	are	46	

countries	 that	 are	 reporting	mephedrone	use,	 thereby	establishing	 its	presence	worldwide	on	 the	

illicit	 drug	 market.	 Since	 2012	 the	 single	 most	 commonly	 named	 NPS	 in	 drug-related	 deaths	 is	

mephedrone.	With	the	number	of	deaths	involving	mephedrone	doubling	from	22	in	2014	to	44	in	

2015,	the	highest	on	record25.		
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Figure	1.5	-	Chemical	structure	of	para-methylmethcathinone	(mephedrone).	

The	pharmacology	of	mephedrone	was	originally	associated	with	drugs	 such	as	amphetamine	and	

MDMA	in	relation	to	its	behavioural	effects26,	including	stimulated	mood	and	an	increased	sex	drive.	

It	 also	 mimics	 the	 negative	 side	 effects	 of	 these	 drugs	 such	 as	 increased	 heart	 rate	 and	 body	

temperature,	full	body	convulsions	and	addictiveness.	These	effects	are	associated	with	mephedrone	

acting	on	a	number	of	different	monoamine	transporters.	It	was	found	to	be	a	potent	inhibitor	of	the	

uptake	of	all	three	monoamine	transporters:	dopamine,	serotonin	and	noradrenaline,	comparable	to	

the	 potency	 of	 MDMA27.	 This	 interaction	 with	 the	 monoamine	 transporters	 causes	 a	 release	 of	

dopamine	 and	 5-HT,	 with	 5-HT	 release	 being	 greater	 than	 that	 of	 dopamine28.	 The	 release	 of	

dopamine	has	been	found	to	link	the	psychostimulant	effects	of	mephedrone	to	MDMA.	Interestingly	

mephedrone	has	been	shown	to	substitute	for	cocaine	in	drug	discrimination	studies	on	rats,	which	

could	explain	 its	 levels	of	dependence	reported,	due	to	 their	 similar	serotonergic	 responses27.	The	

complex	pharmacological	profile	of	mephedrone	could	help	to	explain	why	mephedrone	is	so	popular.	

It	 is	 for	 these	 reasons	 that	mephedrone	 is	 seen	as	 such	a	 large	 risk	 to	public	 health,	 leading	 to	 it	

becoming	controlled	in	the	UK	in	201129.	However,	this	has	not	diminished	its	popularity	as	expected,	

with	46	countries	currently	reporting	use	of	mephedrone18.	In	Europe,	mephedrone	still	accounts	for	

20	%	of	all	seized	cathinone	analogues23.	It	is	widely	believed	that	the	popularity	of	mephedrone	was	

not	associated	with	its	legal	status10,26.		

1.1.3 Aminoindanes	

Aminoindanes	came	onto	the	market	in	2010	around	the	time	that	cathinones	became	controlled.	At	

the	instigation	of	this	project	in	2011	aminoindanes	were	believed	to	be	the	“next	big	wave”	in	NPS30,	

as	 a	 legal	 alternative	 to	 synthetic	 cathinones.	 They	 are	 conformationally	 rigid	 analogues	 of	

amphetamines	 (Figure	1.6).	 The	general	 structure	of	 aminoindanes	 can	be	altered	 in	 a	number	of	

ways;	such	as	substitution	of	the	aromatic	ring	with	a	number	of	functional	groups	or	through	addition	

of	 a	 methylenedioxy	 bridge.	 They	 are	 primarily	 prepared	 using	 indanone,	 indene	 or	 through	

intramolecular	cyclisation	of	acyl	chloride	derivatives	of	3-phenyl-2-propenoic	acid31.	
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Figure	1.6	-	Generic	chemical	structure	for	A.	aminoindanes	and	B.	amphetamines.	

At	the	commencement	of	this	project,	aminoindanes	were	not	covered	by	legislation	and	therefore	

could	 be	 easily	 purchased	 over	 the	 internet.	 The	most	 prevalent	 aminoindane	 analogues	 sold	 as	

research	chemicals	were:	5,6-methylenedioxy-1-aminoindane	(MDAI),	5-iodo-2-aminoindane	(5-IAI),	

2-aminoindane	(2-AI)	and	4-methoxy-6-methyl-2-aminoindane	(MMAI)32.		

In	 2011	 a	 total	 of	 12	 aminoindane	 seizures	 were	 reported	 in	 the	 UK	 by	 the	 Laboratory	 of	 the	

Government	Chemist	(LGC).	This	number	rose	to	16	in	2012	with	the	majority	corresponding	to	MDAI.	

By	2013	the	UNODC	showed	aminoindanes	corresponded	to	only	1	%	of	all	NPS	reports	worldwide,	

and	there	were	no	reports	of	aminoindane	seizures	in	the	UK19,33–35.	Their	popularity	have	not	risen	to	

the	 suggested	 levels,	 with	 seizures	 significantly	 lower	 than	 those	 of	 the	 cathinones,	 even	 once	

cathinones	were	controlled.	Aminoindanes	have	been	reported	to	have	a	reduced	potency	compared	

to	 cathinones	 and	 amphetamines	 such	 as	MDMA.	 They	 have	 been	 shown	 to	 produce	 a	 primarily	

serotonergic	response	in	animal	and	in	vitro	studies36,	which	is	unlikely	to	lead	to	the	combination	of	

neurological	effects	found	desirable	in	cathinones	or	the	stimulant	effects	found	in	amphetamines.	

This	could	account	for	the	lack	of	popularity	after	2012	compared	to	the	amphetamine	and	cathinone	

classes30.			

1.1.4 Constituents	in	‘Marketed’	Products	

The	problem	with	NPS	is	not	limited	to	the	drug	itself,	but	also	the	formulation	of	the	products	sold37.	

There	are	no	regulations	enforced	to	ensure	the	safety	of	the	NPS	and	therefore	any	number	of	active	

ingredients	 and	 excipients	 can	 be	 found	 in	 the	 purchased	 products32.	 As	well	 as	 finding	 a	 varying	

concentration	of	active	ingredient	in	products	bought	over	the	internet,	a	number	of	excipients	have	

also	 been	 identified	 as	 cutting	 agents.	 Cutting	 agents	 are	 chemicals	 used	 to	 dilute	 the	 NPS	 with	

something	 less	 expensive	 than	 the	 compound	 itself.	 When	 choosing	 a	 cutting	 agent	 illicit	 drug	

manufacturers	or	dealers	would	ideally	attempt	to	find	a	chemical	that	is	inexpensive,	easy	to	obtain,	

relatively	 non-toxic	 and	 that	 mimics	 the	 physical	 attributes	 of	 the	 psychoactive	 substance	 used.	

Common	cutting	agents	range	from	compounds	of	no	potential	abuse	such	as	lactose	and	mannitol	to	
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common	pharmaceuticals	such	as	paracetamol	(analgesic),	lidocaine	(local	anaesthetic)	and	procaine	

(local	anaesthetic).	The	latter	cutting	agents	can	lead	the	user	to	think	that	the	product	is	having	an	

effect,	when	in	fact,	it	actually	contains	no	active	psychoactive	ingredient.	Sometimes	cutting	agents	

used	can	cause	greater	side	effects	than	the	active	substance38.	For	example,	a	common	cutting	agent	

is	caffeine;	in	large	quantities	(0.5-1	g)	caffeine	can	have	similar	effects	to	other	stimulant	drugs,	and	

can	be	fatal	at	doses	as	low	as	5	g39.		

There	remains	considerable	uncertainty	 into	the	composition	of	products,	and	the	extent	to	which	

label	claims	can	be	accepted	as	written26.	For	example	Baron	et	al.	conducted	a	study	analysing	seven	

NPS	products,	and	concluded	that	six	out	of	the	seven	products	did	not	contain	the	advertised	active	

ingredient	and	that	six	contained	high	quantities	of	caffeine40.		

This	mixture	of	different	compounds	in	products	not	only	has	health	implications,	it	also	complicates	

the	detection	of	 active	 ingredients.	 This	 is	 for	 two	 reasons,	 the	 first	being	 that	 a	 large	number	of	

cutting	agents	have	similar	chemical	structures	to	the	active	ingredients,	the	second	is	that	the	active	

ingredient	becomes	diluted	when	mixed	with	a	number	of	cutting	agents.	This	means	that	there	are	

both	 selectivity	 and	 sensitivity	 issues	 relating	 to	 the	 detection	 of	 the	 NPS	 due	 to	 the	 complex	

composition	of	these	samples.			

Given	the	rapidly	evolving	nature	of	the	NPS	market,	there	 is	a	need	for	more	effective	analysis	of	

NPS.	This	has	been	well	documented	by	UNODC	in	their	yearly	World	Drug	Reports18,41.	A	review	by	

Banks	et	al.	highlighted	the	future	challenges	with	the	forensic	testing	of	NPS.	They	state	that	one	of	

the	main	challenges	facing	the	analysis	of	NPS	 is	that	of	 in-field	detection.	 In	particular	developing	

fully	validated,	simple,	selective	and	sensitive	detection	mechanisms42.		

1.2 Current	Detection	of	New	Psychoactive	Substances	

Studies	of	NPS	are	usually	divided	into	three	categories;	analysis	of	pure	substances,	analysis	of	NPS	

products	 and	 analysis	 of	 NPS	 in	 bodily	 fluids,	 such	 as	 blood	 or	 urine.	 A	 number	 of	 studies	 have	

investigated	 the	 analysis	 and	 characterisation	 of	 aminoindanes,	 specifically	MDAI	 and	 5-IAI	 using	

nuclear	magnetic	resonance	(NMR),	mass	spectrometry	(MS)	and	infra-red	(IR)	spectroscopy	43,44.	Such	

techniques	have	also	been	adopted	for	the	analysis	of	cathinones37,45,46.	Gas	chromatography-mass	

spectrometry	(GC-MS)	is	a	common	technique	adopted	for	the	analysis	of	volatile	components	of	both	

pure	 substances	 and	 NPS	 products.	 The	 high	 throughput,	 ease	 of	 sample	 preparation	 and	 high	

sensitivity	makes	 it	 a	popular	means	of	analysing	NPS	products.	Amphetamine-like	 substances	are	

small	volatile	molecules,	and	therefore	GC-MS	is	an	ideal	technique	for	analysis.	Baron	et	al.	carried	

out	multiple	studies	into	NPS	products	using	GC-MS	as	well	as	a	broader	study	into	twenty-three	NPS	

in	 thirty-five	 internet	 purchased	 products	 including	 methoxetamine	 (MXE),	 mephedrone	 and	 1-
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benzylpiperazine	 (BZP)	 (Figure	 1.7)47.	 GC-MS	 has	 also	 been	widely	 applied	 to	 the	 analysis	 of	 NPS	

reference	standards47–49.	

	

Figure	1.7	-	Chemical	structures	of	benzylpiperazine	and	methoxetamine	

High-performance	liquid	chromatography	(HPLC)	is	another	common	technique	for	the	analysis	of	NPS	

products,	as	 it	allows	 for	 identification	and	quantification	of	both	volatile	and	non-volatile	organic	

compounds.	Validated	HPLC	methodologies	have	been	well	established	for	the	analysis	of	traditional	

amphetamine-related	substances50,51.	There	are	also	a	number	of	studies	that	have	developed	HPLC	

methodologies	for	cathinones52.	Given	its	prevalence,	specific	methodology	for	mephedrone	has	also	

been	 established.	 Sutcliffe	 et	 al.	 published	 the	 first	 validated	 HPLC	 analytical	 method	 for	 the	

identification	 and	quantification	 of	mephedrone37.	 Additionally,	 they	 analysed	mephedrone	 in	 the	

presence	of	common	adulterants:	caffeine,	benzocaine,	sucrose,	mannitol	and	lactose.	They	reported	

limits	of	detection	down	to	0.03	µg	mL-1	 for	mephedrone.	This	highlights	the	advantage	of	using	a	

separation	technique	for	analysis,	as	it	reduces	any	interference	that	could	occur	from	the	presence	

of	cutting	agents.		

Due	to	the	complexity	of	identifying	and	quantifying	NPS	in	bodily	fluids	more	advanced	techniques	

are	often	implemented.	Beyer	et	al.	conducted	two	studies	using	liquid	chromatography-tandem	mass	

spectrometry	(LC-MS-MS),	one	examined	cathinones	found	in	blood	samples18,	the	other	examined	

cannabinoids,19.	Lower	limit	of	quantification	(LLOQ)	values	were	determined	to	be	10	ng	mL-1	for	all	

compounds	analysed.		

All	of	the	techniques	mentioned	above,	once	validated,	can	produce	consistent	and	reliable	results	for	

the	detection	of	NPS.	However,	they	are	all	laboratory-based	techniques	that	require	a	certain	level	

of	sample	preparation,	as	well	as	expertise	in	the	use	of	the	instrumentation	and	data	interpretation,	

which	cannot	be	used	rapidly	in	the	field	for	identification	of	NPS	samples.		

In	order	to	tackle	the	problem	of	NPS	detection,	rapid	in-field	detection	devices	are	necessary.	In-field	

detection	devices	for	drugs	of	abuse	are	utilised	in	many	different	ways,	from	paramedics	at	the	site	

of	a	drug	overdose,	to	police	and	customs	officers	who	can	test	potentially	illegal	drugs	on	site.	To	be	

used	in	situations	such	as	these	the	methodology	needs	to	be	rapid,	easy	to	perform	and	the	results	
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should	be	easy	to	interpret.	In	the	past	traditional	drugs	of	abuse	have	been	tackled	with	using	simple	

in-field	tests	to	allow	for	rapid	positive	identification,	usually	through	a	visual	colour	change.	However,	

NPS	numbers	are	growing	so	rapidly	that	 law	enforcement	agencies	cannot	keep	up	and	therefore	

they	are	currently	very	limited	in	techniques	available	for	in-field	detection.		

Given	their	similar	structures	the	NPS	classes	highlighed	above,	aminoindanes	and	cathinones,	can	be	

detected	using	similar	detection	devices	to	those	used	for	MDMA,	e.g.	colourmetric	tests,	although	

with	poor	selectivity.	Their	predominance	in	society	and	the	health	and	safety	risks	associated	with	

them	means	 that	 effective	 laboratory-based	 detection	 techniques	 have	 been	 established42.	 These	

methods	however	are	time-consuming,	expensive	and	require	a	considerable	amount	of	expertise	to	

analyse	the	results	obtained45.	There	currently	remains	a	 lack	of	 in-field	detection	mechanisms	for	

new	 amphetamine-like	 substances,	which	 allows	 for	 the	 rapid	 identification,	with	 high	 selectivity,	

sensitivity	and	low	sample	volumes.		

1.2.1 Colourmetric	Tests	for	Illicit	Drugs		

A	highly	desired	form	of	detection	is	direct	detection,	whereby	a	visual	change	can	be	observed	upon	

positive	identification.	This	would	allow	for	simple,	inexpensive	detection	on	site.	An	example	of	this	

is	a	colourmetric	test,	where	the	sample	is	reacted	with	reagents	that	change	colour	depending	on	

the	analyte	they	react	with54.		

There	 are	 a	 number	 of	 advantages	 to	 using	 colourmetric	 sensing	 mechanisms,	 for	 example	

components	needed	for	analyses	are	typically	inexpensive	and	easy	to	understand,	which	means	that	

they	do	not	require	highly	trained	personnel	to	analyse	results.	They	can	be	adapted	to	be	made	even	

easier	by	designing	a	sensor	that	changes	colour	in	the	visible	region	to	give	the	desired	results55.		

There	are	a	number	of	simple	colourmetric	tests	for	illicit	drugs.	A	popular	one	that	is	often	used	is	

the	Marquis	Field	Test,	which	is	a	simple	test	to	detect	MDMA,	amphetamine	and	alkaloids56.	The	test	

reagent	is	composed	of	a	mixture	of	formaldehyde	and	concentrated	sulphuric	acid,	which	produces	

different	coloured	products	depending	on	the	compound	it	interacts	with.	It	is	the	colour	change	as	

well	 as	 the	 length	of	 time	 taken	 for	 the	 colour	 to	become	apparent	which	 is	 noted.	 For	 example,	

MDMA	will	turn	dark	purple	within	5	s	(Figure	1.8)	whereas	another	substance,	dextromethorphan	

(DXM)	will	 turn	the	solution	black	within	15-30	s.	Methanol	 is	sometimes	added	to	the	solution	 in	

order	to	slow	the	colour	change	down,	making	it	easier	to	visualise.	The	test	is	extremely	sensitive	and	

as	with	most	colour	tests,	an	estimate	can	be	easily	made	as	to	the	quantity	of	the	drug	present,	based	

on	the	 intensity	of	 the	colour	observed.	The	Marquis	Test	has	been	found	to	 identify	a	number	of	
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substances	but	produces	no	reaction	for	mephedrone	or	other	synthetic	cathinones,	due	to	the	para	

substitution	preventing	the	formation	of	a	stable	carbocation	needed	for	identification.	

	

	

Figure	1.8	-	Marquis	reagent	colour	change	in	the	presence	of	3,4-methylenedioxy-N-methylamphetamine	(MDMA).	

Interpretation	of	the	results	obtained	can	be	seen	to	be	subjective	and	further	analysis	is	needed	for	

definitive	 identification	of	 compounds,	 particularly	 in	 a	 legal	 context.	 This	 is	 also	 true	 for	 another	

common	colourmetric	test	called	the	Scott	Test.	For	this	test,	a	small	amount	of	suspected	cocaine	(2-

4	mg)	is	dissolved	in	cobalt	thiocyanate	solution	with	the	addition	of	concentrated	hydrochloric	acid.	

In	the	presence	of	cocaine	hydrochloride	the	solution	turns	bright	blue.	There	are	a	number	of	other	

colourmetric	tests	that	are	utilised	for	drug	detection	as	highlighted	in	Toole	et	al.57.		

For	colourmetric	analysis,	 there	are	 two	general	 signal	motifs	 to	consider;	change	 in	 intensity	at	a	

certain	wavelength,	 therefore,	 seeing	 the	 intensity	 of	 a	 colour	 response	 change	 and	monitoring	 a	

change	in	maximum	wavelength	which	means	a	change	in	colour.	Colour	changes	may	not	necessarily	

be	visible	to	the	naked	eye	but	through	spectroscopic	techniques	such	as	fluorescence	and	ultraviolet	

and	visible	spectroscopy	(UV/Vis).		

A	recent	study	has	examined	colourmetric	tests	currently	available	for	preliminary	 identification	of	

mephedrone	and	its	analogues57.	Through	examination	of	all	the	substances	against	eight	different	

colour	 tests;	 including	Marquis	Reagent	and	 the	Scott	Test,	drugs	could	be	positively	 identified	by	

means	of	referring	to	the	appropriate	results	run	from	standards.	Such	simple	tests	allow	for	rapid,	

cheap	and	easy	determination	of	substances,	but	are	known	to	have	low	precision	and	accuracy	and	

are	only	qualitative,	they	also	lead	to	sample	destruction	in	large	quantities.	This	is	a	problem	with	the	

ever-expanding	number	of	NPS	coming	onto	the	market	that	have	similar	chemical	structures.		

There	are	more	sophisticated	detection	devices	such	as	microfluidic	affinity	sensors,	for	the	detection	

of	cocaine58.	This	device	consists	of	a	microchamber	packed	with	aptamer-functionalised	microbeads.	

These	act	as	a	sensing	surface	which	has	been	 integrated	with	an	on-chip	heater	and	temperature	

sensors.	These	sensors	use	a	Förster	resonance	energy	transfer	system,	which	generates	a	signal	in	
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response	 to	 the	 drug	 binding	 to	 the	 sensor,	 with	 detection	 limits	 as	 low	 as	 1	 nM.	 However,	 this	

technique	is	still	very	complex	to	interpret	for	a	non-expert	and	expensive	to	manufacture.		

1.2.2 Current	In-Field	Detection	Mechanisms	for	Amphetamine-Like	Substances		

The	growing	complexity	of	selective	in-field	detection	due	to	the	expanding	NPS	market,	means	that	

more	sophisticated	detection	mechanisms	need	to	be	established.	Masseroni	et	al.	developed	a	probe	

that	 utilises	 pyrene-derivatized	 cavitands	 bound	 to	 fluorescent	 nanoparticles	 to	 detect	 MDMA59.	

Notably,	both	amphetamine	and	fluoromethamphetamine	showed	no	fluorescent	response.	This	level	

of	selectivity	has	not	been	shown	for	traditional	optical	techniques.	This	highlights	the	growing	need	

for	more	sophisticated	mechanisms	in	order	to	achieve	selectivity.		

While	there	are	currently	no	 in-field	detection	mechanisms	for	aminoindanes,	 the	development	of	

selective	detection	mechanisms	for	cathinones	(specifically	mephedrone),	has	been	of	considerable	

focus.	 There	 are	 currently	 only	 a	 small	 number	 of	 successful	 novel	 direct	 detection	 mechanisms	

available	for	the	detection	of	mephedrone	that	does	not	involve	large	laboratory-based	equipment.	

Sutcliffe	et	al.	developed	an	electrochemical	sensor	that	can	detect	mephedrone	and	a	number	of	

other	analogues	through	the	reduction	of	the	amine	functionality	to	a	secondary	amine	by	interactions	

with	the	sulfonimide	mediator60.	Electrochemical	sensors	such	as	these	are	ideal	for	in-field	devices	

exhibiting	good	sensitivity.	However,	as	 these	 sensors	 interact	with	amine	groups	 they	 show	poor	

selectivity	between	amphetamines,	other	cathinone	analogues	and	common	cutting	agents	such	as	

benzocaine61.		

Krishnaiah	et	al.	developed	another	electrochemical	detection	mechanism	for	mephedrone	in	urine	

that	 utilised	 a	 dropping	mercury	 electrode62.	 Through	 reduction	 of	 the	 carbonyl	 functional	 group,	

detection	 limits	of	12.5	pM	were	achieved	 in	universal	buffer.	However,	no	selectivity	 testing	was	

conducted	in	this	experiment	against	other	drugs	of	abuse	or	common	cutting	agents.	

A	study	conducted	by	Baron	et	al.	used	direct	detection	through	the	incorporation	of	aqueous	mercury	

chloride	 solutions	 to	 form	 unique	 drug	 related	 crystals.	 It	 has	 been	 applied	 to	 the	 detection	 of	

mephedrone,	BZP	and	MDAI63.	Each	of	these	compounds	form	specific	drug-reagent	crystals	within	

minutes	 of	 exposure,	 which	 can	 be	 visualised	 under	 high	 magnification	 using	 transmitted	 light	

microscopy	 and	 phase	 contrast	microscopy	 set.	 The	 uniqueness	 of	 the	 test	 carried	 out	 has	 been	

confirmed	by	comparison	to	the	microcrystalline	response	to	that	of	other	psychoactive	stimulants	

and	common	cutting	agents	such	as	caffeine,	lactose	and	magnesium	sulphate.	The	limits	of	detection	

vary	depending	on	the	drug	analysed.	These	limits	were	found	to	be	5 gL-1	for	mephedrone,	0.5 gL-1	

for	MDAI	and	0.3 gL-1	for	BZP.	It	was	found	that	there	were	limitations	in	the	results	when	the	ratio	of	
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the	drug	to	cutting	agent	was	too	low.	BZP	could	be	detected	alongside	caffeine	from	as	low	as	20	%	

(v/v),	MDAI	from	40	%	(v/v)	and	mephedrone	was	higher	at	50	%	(v/v),	all	dissolved	in	methanol.	It	is	

common	for	tablets	and	capsules	that	are	analysed	to	contain	much	lower	concentrations	of	drugs	

than	those	seen	here	and	this	would	be	hard	to	detect	amongst	the	number	of	excipients	that	have	

been	known	to	be	present	in	these	products32.	It	is	the	low	sensitivity	and	selectivity	of	this	detection	

mechanism	that	makes	it	a	poor	working	model	for	mephedrone	detection.		

One	traditional	 in-field	detection	mechanism	that	 is	popular	are	immunoassay	tests,	 in	part	due	to	

their	 selectivity.	 Randox	 Laboratories	 currently	 have	 a	 commercially	 available	 immunoassay	 for	

synthetic	 cathinones,	 which	 shows	 limits	 of	 detection	 between	 0.18	 and	 9.2	 μgL-1.	 However,	

independent	 validation	 of	 this	 test	 by	 Ellefsen	et	 al.	 showed	 that	 there	was	 a	 large	 negative	 bias	

observed,	leading	to	a	large	number	of	false	positives	between	cathinone	analogues64.		

All	of	these	in-field	detection	mechanisms	successfully	detect	mephedrone,	and	in	some	cases	with	

low	limits	of	detection,	and	selectivity.	However,	to	achieve	an	effective	in-field	detection	device	it	

needs	to	have	low	limits	of	detection,	selectivity,	ease	of	interpretation,	and	reliability	as	well	as	rapid	

identification.	 Currently,	 there	 is	 no	working	 in-field	detection	mechanism	 that	 incorporates	 all	 of	

these	characteristics.	

1.3 Analysis	of	New	Psychoactive	Substances	Using	Host-Guest	Design	

Using	the	principles	of	host-guest	design	it	may	be	possible	to	rationally	develop	a	mechanism	that	

has	the	ease	of	colourmetric	detection,	which	has	the	ability	to	address	all	the	above	criteria,	but	with	

increased	selectivity65,66.	As	shown	above,	there	are	a	number	of	advantages	to	using	colourmetric	

sensing	tests	as	the	components	and	analyses	are	typically	inexpensive	and	easy	to	understand,	which	

means	that	they	do	not	require	highly	trained	personnel	to	analyse	the	results.	They	have	the	potential	

to	be	adapted	to	be	made	even	easier	by	using	host-guest	chemistry	to	design	a	sensor	that	binds	to	

cause	a	colour	change	in	the	visible	region.	The	ease	of	visual	detection	experienced	with	colourmetric	

sensing	leads	to	poor	sensitivity,	which	in	turn	means	there	are	higher	limits	of	detection	than	other	

techniques.	Colourmetric	tests	have	been	shown	to	be	useful	working	models	in	the	past;	however,	

they	now	lack	selectivity	due	to	the	number	of	structurally	similar	NPS	available.	The	principle	of	a	

colourmetric	test	is	still	good,	it	is	the	mechanism	of	the	current	devices	that	lacks	selectivity	as	they	

focus	on	detection	of	a	single	functional	group,	e.g.	amine.	If	the	mechanism	of	detection	is	based	on	

reaction	 with	multiple	 functional	 groups	 in	 a	 pre-determined	 geometrical	 orientation	 it	 could	 be	

possible	to	develop	a	selective	colourmetric	test67.	Such	mechanisms	are	often	referred	to	as	ligand	

sensors.	
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1.3.1 Ligand	Sensors	

Synthetic	ligands	are	molecules	that	are	developed	with	specific	binding	sites	in	order	to	coordinate	

to	 particular	 molecules65,68.	 This	 selectivity	 makes	 them	 a	 very	 popular	 method	 of	 detection	 for	

molecular	recognition.	They	work	as	probe	molecules	by	binding	to	drug	molecules	by	which	a	positive	

identification	can	be	made,	either	through	a	visible	colour	change	or	use	of	a	transducer.	They	have	

as	yet	not	been	utilised	in	the	area	of	NPS	detection;	however,	they	have	been	known	to	be	useful	in	

the	detection	of	performance	enhancing	drugs	in	athletes69.		

Ligands	can	be	designed	in	one	of	two	ways;	to	bind	to	known	drugs	to	allow	for	identification	of	the	

ligand-drug	complexes,	or	by	binding	to	the	matrix,	leaving	ligand-free	drugs	in	a	system.	Both	can	be	

confirmed	 through	 common	 spectroscopic	 techniques.	 The	 same	 principles	 used	 for	 detection	 of	

traditional	drugs	can	be	applied	to	NPS.	By	designing	sensor	ligands	with	binding	sites	that	correspond	

to	specified	drugs,	 ligand-drug	complexes	will	be	formed	and	this	complex	can	be	detected	using	a	

chosen	 transducer	mechanism.	 An	 ideal	 mechanism	 for	 in-field	 drug	 detection	 is	 a	 visible	 colour	

change	 which	 can	 be	 quantified	 using	 optical	 spectroscopy,	 specifically	 fluorescence	 and	 UV/Vis	

spectroscopy.	It	is	also	possible	to	investigate	the	binding	between	a	host	and	guest	system	using	a	

number	of	NMR	and	mass	spectrometry	techniques.		

As	with	most	chemical	tests,	selective	ligand-host	molecules	can	be	time-consuming	to	develop	and	

synthesise,	with	large	amounts	of	testing	and	validation	necessary	in	order	to	prove	selectivity.	When	

developing	 sensors,	 the	 excipients	 in	 the	 formulations,	 as	 mentioned	 in	 Section	 2,	 have	 to	 be	

considered	to	ensure	there	are	no	false	negatives	or	positives	due	to	drug-sensor	and	excipient-sensor	

interactions	occurring	concurrently,	thereby	masking	the	intended	response.		

One	of	the	most	selective	interactions	in	chemistry	occurs	in	nature,	between	proteins	and	ligands.	

Proteins	have	very	high	specificity	for	their	target	guest	despite	complex	matrixes.	Proteins	however,	

are	 only	 stable	 at	 physiological	 pH	 and	 can	 be	 unpractical	 as	 in-field	 detection	 probes.	 It	may	 be	

possible	to	develop	a	small	molecule	ligand	sensor	that	mimics	the	selectivity	of	proteins,	by	extracting	

the	binding	data	from	protein-ligand	interactions.	The	idea	of	rationally	designing	a	biomimetic	sensor	

based	 on	 protein-ligand	 binding	 could	 help	 to	 overcome	 the	 problems	 associated	 with	 complex	

mixtures	found	in	samples,	by	ensuring	both	selectivity	and	sensitivity67,70.		

Known	 databases	 such	 as	 the	 Brookhaven	 Protein	 DataBank71	 can	 be	 utilised	 to	 help	 find	 ligand	

interactions	that	afford	good	relationships	with	selected	drug	molecules71.	This	has	the	possibility	to	

also	be	used	to	help	minimise	the	 interactions	with	competing	substances	 in	the	samples,	 thereby	

reducing	 the	 amount	 of	 time	 and	 money	 spent	 designing,	 synthesising	 and	 testing	 ligands	 that	

consequently	 have	 poor	 ligand-drug	 interactions.	 Currently,	 in	 silico	 evaluation	 of	 protein-ligand	
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interactions	is	commonly	utilised	in	drug	design.	By	understanding	the	protein-ligand	interactions	that	

are	 observed	 experimentally,	 drug	molecules	 can	 be	 designed	 that	 selectively	 bind	 in	 the	 protein	

cavities	to	induce	a	physiological	response72.	This	is	achieved	by	mapping	the	binding	features	(also	

known	as	pharmacophoric	features)	that	are	necessary	for	the	host	molecule	to	bind	to	the	protein.	

The	developed	map	is	known	as	a	pharmacophore	model.	If	it	is	possible	to	experimentally	design	the	

guest	molecules	(drug)	by	developing	a	pharmacophore	model	of	the	protein	binding	features,	then	

given	 the	 same	 principles	 it	 could	 theoretically	 be	 possible	 to	 map	 the	 binding	 features	 of	 the	

proposed	 guest	 molecules	 to	 rationally	 design	 selective	 host	 molecules,	 i.e.	 reverse	 the	 current	

procedure	for	pharmacophore	design.	This	is	a	method	for	host	design	that	has	not	yet	been	reported	

in	the	literature.	In	order	to	achieve	this,	it	is	necessary	to	have	an	in-depth	understanding	of	how	the	

guest	molecule	e.g.	a	cathinone	or	aminoindane	analogue,	 interacts	with	a	protein	selectively,	and	

then	develop	a	pharmacophore	model	based	on	these	interactions.		

The	Brookhaven	Protein	DataBank	contains	a	number	of	high-quality	protein–ligand	complexes	which	

can	be	examined	in	order	to	find	a	suitable	protein-ligand	complex,	which	may	then	be	used	to	study	

receptor	interactions	with	drugs	of	abuse/common	adulterants/endogenous	psychoactive	substances	

(i.e.	 dopamine	 and	 serotonin).	 This	 information	 could	 then	 be	 used	 to	 develop	 a	 consensus	

pharmacophore	of	protein-ligand	binding	to	support	host	molecule	selection.		

1.4 Pharmacophore		

A	pharmacophore	is	an	abstraction	of	the	molecular	features	(often	referred	to	as	pharmacophoric	

features)	that	are	necessary	for	molecular	recognition	of	a	ligand	by	a	protein	(or	a	guest	molecule	by	

a	host	molecule)73.	The	pharmacophore	summarises	the	key	groups	that	are	required	for	binding	and	

their	 relative	 positions	 in	 space	with	 respect	 to	 one	 another	 (Figure	 1.9)74.	 In	 order	 to	 develop	 a	

structure-based	pharmacophore,	a	detailed	understanding	of	 the	dimensions	of	 the	binding	site	 is	

required.	Once	a	pharmacophore	model	has	been	developed	computationally	from	a	host	protein	it	

if	often	used	to	screen	for	potential	guest	molecules75.		
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Figure	1.9	-	Example	of	a	serotonin	pharmacophore.	The	different	colours	represent	different	pharmacophoric	features;	

H-bonding	accepting	green,	hydrophobic	pink,	and	π-stacking	in	blue.	The	radius	of	the	spheres	shows	the	distances	from	

a	central	point,	over	which	it	is	feasible	for	the	interactions	to	occur.	Distances	between	the	key	features	identified	by	the	

pharmacophore	shown	are	reported	in	Angströms	(Å).	

By	understanding	the	 interactions	 involved	 in	protein-ligand	binding	 it	 is	possible	to	use	molecular	

modelling	techniques	to	design	molecules	with	the	potential	to	fit	inside	and	bind	to	sites	of	interest.	

For	example,	by	using	computational	techniques	to	screen	potential	drugs	against	therapeutic	protein	

targets	it	is	possible	to	identify	favourable	protein-drug	interactions,	which	can	be	used	to	prioritise	

potential	 lead	molecules	 for	 further	 investigation	 such	 as	 initial	 biological	 testing76.	 This	 helps	 to	

reduce	the	number	of	potential	compounds	that	have	to	be	tested.	In	this	instance,	we	can	categorise	

the	binding	site	of	the	protein	of	interest	as	a	host	molecule,	and	the	potential	drug	molecule	that	

binds	to	the	site	as	a	guest	molecule.			

Instead	of	developing	a	model	to	describe	the	drug	molecule	that	fits	in	the	protein	cavity,	it	could	be	

possible	to	apply	the	same	techniques	to	modelling	the	binding	site	of	the	protein.	This	model	can	

then	 be	 used	 to	mimic	 the	 binding	 site	 of	 the	 protein	 and	 synthesise	 a	 small	molecule	 host	 that	

encompasses	the	key	binding	features	of	the	desired	protein,	and	selectively	bind	the	analyte	e.g.	a	

cathinone.	 Producing	 a	 small	 molecule	 sensor	 that	mimics	 the	 selectivity	 of	 proteins	 can	 help	 to	

overcome	 the	 disadvantages	 of	 using	 proteins,	 such	 as	 their	 relative	 instabilities	 when	 not	 in	 a	

controlled	environment77.		

When	analysing	these	proteins	and	their	binding	computationally,	it	is	first	important	to	understand	

how	protein	structures	and	binding	interactions	have	been	derived.	Only	fully	validated	experimental	

data	should	be	used	in	order	to	develop	a	robust	pharmacophore	model.		

1.4.1 Protein-ligand	Pharmacophore	Design	

Proteins	 are	 large	 macromolecules	 that	 consist	 of	 one	 or	 more	 chains	 made	 up	 from	 different	

permutations	of	the	20	naturally	occurring	amino	acids	linked	together	via	peptide	bonds.	The	unique	
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way	in	which	proteins	are	sequenced	determines	their	tertiary	structure,	which	in	turn	determines	

their	function.	Protein	functionality	is	diverse;	proteins	that	have	functions	ranging	from	transport,	

through	to	storage	and	movement	in	a	biological	system	have	all	been	observed78.	The	vast	number	

of	 roles	 proteins	 play	 in	 the	 body	 account	 for	 the	 considerable	 diversity	 and	 complexity	 of	 their	

structures.		

All	20	naturally	occurring	alpha	amino	acids	contain	both	a	carboxylic	acid	and	an	amino	group	(Figure	

1.10).	They	are	distinct	from	one	another	due	to	differences	in	their	side	chains,	which	can	differ	with	

respect	to	physicochemical	properties	such	as	acidity/basicity	and	steric	bulk.		

	

Figure	1.10	-	Generalised	chemical	structure	for	an	alpha	amino	acid,	with	variables	occurring	at	the	R	group.	

Protein	 structure	 can	 be	 described	 in	 four	 levels:	 primary,	 secondary,	 tertiary	 and	 quaternary	

structures	 (Figure	 1.11).	 The	 primary	 structure	 is	 the	 unique	 sequence	 of	 amino	 acids,	 secondary	

structure	is	the	folding	or	coiling	of	the	polypeptide	chains	to	form	recognisable	motifs	in	the	protein	

such	as	alpha-helices	and	beta	pleated	sheets,	tertiary	structure	arises	via	interactions	between	side	

chains	of	the	amino	acids,	such	as	hydrogen	bonding,	van	der	Waals	and	disulphide	bridges.	Finally,	

the	 quaternary	 structure	 is	 the	 assembly	 of	 multiple	 polypeptide	 subunits,	 producing	 an	 overall	

functional	complex,	such	as	triosephosphate	isomerase	(TIM)	barrel	folding.			

	

Figure	1.11	-	Four	structural	levels	of	protein	structure	(adapted	from79).	

Their	complex	shapes	can	give	rise	to	pockets	and	cavities.	 It	 is	 in	such	cavities	that	protein-ligand	

binding	interactions	occur.	The	shape,	size	and	chemical	nature	of	these	cavities	determines	which	

ligands	can	bind,	based	on	the	potential	interactions	that	can	take	place80.	This	concept	is	described	

by	 the	 theory	 of	 induced	 fit74.	 This	 theory	 is	 modified	 from	 Fisher’s	 theory	 of	 the	 lock	 and	 key	
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mechanism	of	enzymes14	and	differs	as	it	does	not	assume	the	protein	is	static.	It	assumes	that	the	

ligand	plays	a	role	in	determining	the	final	shape	of	the	protein	and	only	the	suitable	ligand	is	capable	

of	inducing	an	appropriate	alignment	of	the	active	site74.	

The	 notion	 of	 induced	 fit	 has	 long	 aided	 drug	 discovery,	 to	 help	with	 the	 rational	 design	 of	 drug	

molecules	that	selectively	fit	into	specific	disease-implicated	receptors.	It	is,	therefore,	important	to	

understand	the	different	types	of	interactions	that	can	occur	to	form	these	complexes	in	order	to	fully	

exploit	the	theory	of	induced	fit,	and	develop	a	robust	pharmacophore	model	for	the	chosen	analyte.	

1.4.2 Interactions	

Protein–ligand	binding	interactions	are	crucial	to	almost	all	processes	that	occur	 in	nature80.	These	

chemical	interactions	occur	at	a	molecular	level	with	a	high	degree	of	selectivity	and	sensitivity81.	It	is	

important	 to	 understand	 how	 proteins	 and	 ligands	 interact	 for	 two	 main	 reasons.	 Firstly,	 to	

understand	how	a	ligand	will	bind	to	a	protein	requires	knowledge	of	how	the	structure	of	the	ligand	

affects	the	binding	affinity,	and	how	small	structural	modification	can	affect	the	predicted	outcome.	

Secondly,	 identifying	the	forces	 involved	in	protein-ligand	binding	is	fundamental	to	understanding	

and	exploiting	molecular	recognition.		

Proteins	and	ligands	mainly	interact	through	four	non-covalent	interaction	types;	hydrogen	bonding,	

π-π	 interactions,	 ionic	 interactions	 and	 hydrophobic	 interactions82.	 Hydrogen	 bonding	 occurs	 via	

electromagnetic	attractions	between	 ionisable	molecules	 in	which	hydrogen	atoms	 interact	with	a	

highly	electronegative	atom	(e.g.	N,	O	or	F).	They	are	one	of	the	strongest	non-covalent	interactions	

ranging	in	bond	strength	from	4.2	-	25	kJ	mol-1	83.	The	relative	strength	of	a	hydrogen	bond	depends	

on	bond	length,	bond	angle,	temperature,	pressure	and	environment.	These	five	conditions	account	

for	 the	 large	 range	of	energies	 that	have	been	observed.	Hydrogen	bonds	are	directional,	with	an	

optimum	angle	of	interaction	at	180	degrees.	

π-surface	interactions	are	attractive,	non-covalent	interactions	between	aromatic	rings.	They	can	be	

either	offset	face-face	or	edge-face	interactions	(Figure	1.12),	where	the	p-orbitals	overlap	to	form	π	

bonds.	Their	strength	ranges	from	6.7	-	10	kJ	mol-1	84.	The	type	of	π-stacking	 interaction	that	takes	

place	can	be	determined	by	a	number	of	 factors.	Two	such	 factors	are	 the	groups	 involved	 in	 the	

interaction	and	the	orientation	of	the	two	aromatic	rings	may	favour	one	type	over	the	other85.	 In	

general,	 the	 edge/face	 orientation	 maximises	 the	 interaction	 between	 positive	 and	 negative	

electrostatic	potentials	between	 two	aromatic	 rings	and	 therefore,	 it	 is	 usually	 a	more	 favourable	

interaction86.	However,	it	is	not	possible	to	utilise	this	interaction	in	all	cases.		
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Figure	1.12	-	Illustration	of	face/face	vs.	edge/face	π-stacking	interactions.	

Ionic	interactions	can	occur	between	charged	ligands	and	amino	acid	residues	with	polar	side	chains	

such	as	aspartic	acid.	They	are	the	strongest	non-covalent	bonds	found	within	proteins,	with	strengths	

between	 20	 -	 40	 kJ	 mol-1.	 Their	 strength	 is	 proportional	 to	 the	 distance	 between	 two	 charged	

interacting	funtionalities74.		

Hydrophobic	 interactions	 are	 spatial	 interactions	 caused	 by	 the	 aggregation	 of	 hydrophobic	

molecules;	they	are	the	sum	of	the	attractive	and	repulsive	forces	between	these	molecules.	Van	der	

Waals	interactions	are	one	type	of	hydrophobic	interaction.	Keesom,	Debye	and	London	dispersion	

forces	are	the	three	main	contributors	to	van	der	Waals	interactions.	Van	der	Waals	interactions	are	

weak	interactions	ranging	in	strength	between	2	-	4	kJ	mol-1.	They	are	transient	interactions	that	occur	

between	two	dipole	moments	and	therefore	 it	 is	often	hard	to	discriminate	between	the	different	

interactions	 leading	 to	 them	 all	 being	 labelled	 as	 hydrophobic	 interactions.	 Despite	 the	 relative	

weakness	of	van	der	Waals	interactions	they	are	extremely	important	in	protein-ligand	binding,	due	

to	the	sheer	number	of	them.	This	effect	is	hard	to	mimic	in	a	small	molecule	host.		

By	understanding	how	all	these	forces	work	together	to	produce	selective	protein-ligand	interactions,	

it	is	possible	to	rationally	design	molecules	that	will	only	bind	at	specific	complementary	binding	sites.	

It	could	therefore	be	possible	to	utilise	protein-ligand	interactions	to	develop	a	small	molecule	sensor	

that	will	capture	the	type	of	interactions	that	make	proteins	selective	for	a	given	molecule	of	interest.	

Protein-ligand	interactions	can	be	analysed	in	silico	based	on	experimentally	derived	structures	and	

the	binding	data	extracted	in	order	to	develop	a	pharmacophore	model.	

1.4.3 Experimental	Determination	of	Protein-Ligand	Interactions	

Protein-ligand	interactions	can	be	studied	using	the	Protein	DataBank	(PDB;	www.rcsb.org)71.	The	PDB	

is	 an	 online	 repository	 for	 three-dimensional	 structural	 data	 of	 large	 molecules.	 Experimentally	

derived	data	is	used	to	design	a	host	molecule	for	specific	compounds	of	interest.	There	are	two	main	

ways	 to	 collect	 experimental	 data	 on	 protein	 structures:	 X-ray	 crystallography	 and	 NMR	

spectroscopy87.		
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1.4.3.1 X-ray	Crystallography	

Over	80	%	of	the	protein	structures	in	the	PDB	are	obtained	from	X-ray	crystallography88.	It	is	based	

on	the	diffraction	of	X-rays	by	a	crystalline	material,	producing	an	electron	density	map.	Regions	of	

electron	density	represent	atoms	and	the	bonds	between	atoms.	A	map	of	these	features	allows	for	

the	determination	of	the	3D	structure	of	proteins.		

There	are	several	experimental	hurdles	 that	need	 to	be	overcome	 in	order	 to	obtain	a	3D	protein	

structure	using	X-ray	crystallography.	Firstly,	the	protein	needs	to	be	in	a	crystalline	state,	which	is	not	

always	 possible.	 For	 example,	 transmembrane	 proteins	 are	 very	 hydrophobic	 so	 when	 they	 are	

isolated,	as	is	necessary	to	obtain	crystals	for	X-ray	crystallography,	they	often	form	aggregates	as	the	

hydrophobic	regions	try	to	escape	energetically	disfavoured	aqueous	environments.	Aggregation	of	

this	kind	is	not	compatible	with	crystallisation.		

In	order	to	aid	crystallisation	of	protein	structures,	it	is	common	for	proteins	to	be	altered,	or	mutated.	

Mutations	 are	 often	 deliberately	 applied	 to	 amino	 acid	 residues	 in	 a	 protein	 sequence	 when	

attempting	to	obtain	an	experimental	structure.	One	of	the	reasons	for	this	is	to	aid	the	isolation	or	

crystallisation	of	the	protein	and/or	prevent	aggregate	formation.	One	example	of	such	mutations	is	

to	prevent	the	formation	of	disulphide	bridges	between	residues.	Disulphide	bridges	have	been	found	

to	accelerate	 the	 formation	of	 aggregates89;	 this	hinders	 the	ability	 to	 form	a	 crystal	 structure	 for	

analysis.	It	is	believed	to	be	Derewenda	who	first	introduced	the	concept	of	mutating	protein	surfaces	

in	order	to	increase	their	suitability	for	crystallography90.	Mutations	can	also	be	introduced	in	order	

to	increase	the	solubility	of	proteins	to	aid	in	crystallisation.	Waldo	et	al.	suggested	that	by	decreasing	

the	entropic	barrier	to	crystallisation	this	would	aid	in	crystal	formation.	One	way	of	doing	this	is	to	

reduce	the	flexibility	of	loops	or	end	termini91.	It	is	essential	to	understand	where	such	mutations	have	

been	introduced	into	a	protein	sequence	as	small	changes	can	affect	all	 levels	of	protein	structure,	

which	 may	 impact	 on	 binding	 sites.	 Any	 impact	 on	 the	 binding	 site	 needs	 to	 be	 taken	 into	

consideration	when	extracting	binding	data	for	the	pharmacophore	model.		

Once	a	crystal	is	produced	and	X-ray	crystallography	has	been	carried	out,	there	are	several	important	

properties	of	 the	 final	model	 that	must	be	 taken	 into	consideration	when	analysing	 the	data.	 It	 is	

important	to	ensure	that	the	binding	data	extracted	from	the	proteins	to	build	the	pharmacophore	

model	is	fully	validated.		

The	location	of	a	binding	site	in	the	protein	is	important,	especially	when	trying	to	rule	out	artefacts	

of	crystallisation	as	it	is	possible	to	observe	surface	binding	of	a	ligand	to	a	protein,	and	binding	of	a	

ligand	in	a	buried	cavity.	The	binding	of	a	ligand	in	a	buried	cavity	tends	to	cause	less	concern	when	

considering	artefacts	of	 crystallisation	as	binding	 in	a	buried	site	 is	unlikely	 to	 lead	 to	stabilisation	
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between	two	unit	cell	interfaces	in	the	crystal	form,	and	generate	misleading	information	with	respect	

to	 the	nature	of	protein-ligand	binding.	However,	binding	at	 the	 surface	of	 a	protein	 requires	 the	

investigator	to	be	much	more	sceptical	when	considering	whether	or	not	the	interactions	observed	

are	real	or	the	result	of	artefacts	introduced	because	of	the	experimental	methods	used	to	obtain	a	

crystal	structure.	

Artefacts	of	crystallisation	are	fundamentally	interactions	or	properties	that	occur	due	to	the	protein	

being	in	crystal	form.	Solvation	in	a	cavity	does	not	necessarily	mean	that	interactions	are	occurring	

with	the	water.	It	may	mean	that	the	entire	cavity	is	largely	solvated	in	crystal	form;	this	can	prevent	

interactions	occurring,	such	as	π-stacking	or	hydrophobic	interactions,	as	the	water	may	not	be	easily	

displaced	by	the	ligand	to	allow	for	binding.	This	is	again	dependent	on	the	thermodynamic	stability	

of	the	water	molecules.	However,	with	water	present	in	the	crystal	structure	it	is	not	possible	to	know	

whether	interactions	would	occur	without	water	present,	and	therefore	highly	solvated	cavities	need	

to	be	considered	on	a	case-by-case	basis	 in	 relation	to	 the	thermodynamic	stability	of	each	of	 the	

water	molecules	 in	 the	binding	 cavity.	Another	 example	of	 an	 artefact	of	 crystallisation	 is	 binding	

occurring	between	protein	interfaces	in	the	crystal	form	as	shown	in	Figure	1.13	with	caffeine.	

	

Figure	1.13	-	An	image	showing	caffeine	binding	between	two	protein	subunits	in	1C8L.	

Another	factor	to	be	taken	into	consideration	when	looking	at	electron	density	maps	 is	resolution.	

Resolution	is	defined	as	the	measure	of	how	easy	it	is	to	differentiate	two	adjacent	spots	in	an	electron	

density	map	and	is	commonly	measured	in	ångstrӧms	(Å)92.	Resolution	is	important	when	looking	at	

interactions	between	proteins	and	ligands.	As	seen	in	Figure	1.14	the	hydrogen	bonding	interaction	

occurs	at	1.66	Å,	if	the	resolution	value	of	the	X-ray	crystal	structure	was	greater	than	this	distance	

then	it	could	not	be	claimed	with	complete	certainty	that	the	interaction	was	occurring.		
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Figure	1.14	-	Hydrogen	bond	between	glutamic	acid	residue	and	methamphetamine	at	a	distance	of	1.66	Å.	

Another	 validation	 criterion	when	establishing	 crystal	 structure	quality	 is	occupancy.	Occupancy	 is	

associated	 with	 the	 electron	 density	 map	 produced	 during	 the	 X-ray	 crystallography	 experiment	

(Figure	1.15).	It	is	related	to	units	cells	i.e.	if	all	molecules	in	the	crystal	are	precisely	identical	then	the	

occupancy	for	all	atoms	is	one93.	If	the	occupancy	is	not	one	this	would	indicate	that	not	all	the	unit	

cells	 in	the	crystal	are	 identical.	This	may	be	caused	by	different	conformations	of	amino	acid	side	

chains	in	different	unit	cells.	These	small	differences	may	cause	different	protein-ligand	interactions	

in	different	unit	cells.		

	

Figure	1.15	-	Electron	density	map	showing	the	possibility	of	two	rotamers	for	a	histidine	residue	giving	an	occupancy	of	

less	than	1	(taken	from94).	

An	additional	 factor	 to	be	 taken	 into	 account	when	 validating	protein	binding	data	 is	 B	 factors.	 B	

factors	are	values	given	to	denote	the	thermodynamic	stability	of	atoms	in	the	X-ray	crystallographic	

representation	of	a	protein	structure.	They	give	an	indication	as	to	the	level	of	thermal	motion	that	is	

likely	to	be	observed	for	a	given	atom95.	An	atom	with	a	high	relative	B	factor	in	comparison	to	the	

overall	B	factor	of	the	protein	suggests	they	are	thermally	labile	and	therefore	interactions	observed	
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between	them	and	a	ligand	in	the	X-ray	crystal	structure	complex	may	not	actually	occur	in	reality.	All	

of	these	parameters	need	to	be	considered	for	validation	of	potential	binding	sites.	

1.4.3.2 NMR	Spectroscopy		

NMR	protein	structures	account	for	about	16	%	of	all	structures	in	the	PDB88.	NMR	spectroscopy	is	

usually	carried	out	in	an	aqueous	media	using	highly	purified	proteins.	In	aqueous	media,	the	proteins	

tumble	and	vibrate	allowing	for	determination	of	the	1D	and	2D	structures.	For	analysis	of	proteins,	
1H-NMR	is	employed,	as	hydrogen	is	the	most	abundant	naturally	occurring	element	in	proteins	that	

can	be	visualised	using	NMR.	Both	1D	and	2D	experiments	are	carried	out	which	allows	for	analysis	of	

bonded	and	non-bonded	interactions	between	protons.		

One	of	the	reasons	there	is	less	NMR	data	in	the	PDB	is	because	it	can	only	be	carried	out	on	small	

proteins	or	protein	domains	(50–60	kDa),	due	in	part	to	the	complexity	of	analysing	spectra	of	large	

proteins96.		

As	with	crystallographic	techniques,	there	are	a	number	of	criterion	that	need	to	be	taken	into	account	

when	analysing	NMR	derived	protein	structures	and	binding	data.	Mutations	can	also	occur	in	proteins	

that	 are	analysed	using	NMR;	however,	 they	are	present	 for	different	 reasons.	One	example	 is	 to	

stabilise	the	helixes	 in	proteins.	This	can	help	to	rigidify	the	protein	to	prevent	fast	destabilisation,	

which	can	occur	within	the	time	frame	of	an	NMR	scan97.	As	with	X-ray	crystallography	any	mutation	

can	affect	the	binding	site,	and	therefore	needs	to	be	taken	into	account	when	bound	to	the	ligand	of	

interest.		

The	geometrical	quality	of	the	derived	structures	is	an	important	factor	that	needs	to	be	considered	

when	 looking	at	NMR	data.	 It	 is	 essential	 for	 the	NMR	structure	 to	be	 carefully	examined	 for	 any	

abnormalities	that	may	arise.	For	example,	the	bond	lengths	and	angles	should	be	checked	as	they	

can	 sometimes	 be	 incorrect	 due	 to	 non-bonded	 interactions	 or	 strain	 depending	 on	 the	 NMR	

restraints98.	Bond	lengths	and	angles	are	largely	known	from	analysis	of	small	molecules.	For	example,	

if	a	carbon	has	a	tetrahedral	geometry,	the	angle	should	not	vary	significantly	from	109.5	degrees	or	

this	would	be	a	cause	for	concern.	However,	certain	atoms	in	many	protein	structures	are	known	to	

exhibit	bond	angles	that	would	indicate	significant	strain.		

1.4.3.3 Comparison	of	Experimental	Techniques		

Data	in	the	PDB	is	collected	primarily	from	either	X-ray	crystallography	or	NMR	experimental	data.	

Both	of	these	techniques	allow	for	in-depth	analysis	not	only	of	the	full	protein	structure	but	also	the	

binding	of	ligands	in	cavities.	
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The	advantage	of	NMR	spectroscopy	is	that	there	is	no	need	for	a	protein	crystal	to	be	formed,	as	

analysis	is	carried	out	in	aqueous	media.	However,	NMR	spectroscopy	has	one	major	limitation,	only	

proteins	less	than	60	kDa	can	be	studied.	The	average	protein	in	the	PDB	is	107	kDa	and	therefore	

NMR	is	unsuitable	for	a	 large	number	of	proteins99.	X-ray	crystallography	on	the	other	hand	 is	not	

limited	by	size,	assuming	that	a	crystal	can	be	isolated.	The	results	of	NMR	spectroscopy	analysis	is	

not	as	detailed	and	accurate	as	those	obtained	for	crystallography100.		

Both	techniques	have	their	own	advantages	and	disadvantages	when	studying	protein	structures	and	

ligand	binding.	With	validated	methodology	for	both	techniques,	useful	binding	information	could	be	

extracted	and	taken	forward	to	build	a	pharmacophore	model	 for	the	chosen	analyte.	With	this	 in	

mind,	a	molecular	probe	(i.e.,	host	molecule)	will	be	designed	based	on	this	pharmacophore	model	

that	will	utilise	these	interactions	to	selectively	bind	the	analyte.	One	way	of	designing	host	molecules	

is	through	supramolecular	chemistry.		

1.5 Supramolecular	Design	and	Testing		

Supramolecular	 chemistry	 is	 a	 term	 coined	by	 Jean-Marie	 Lehn101	meaning	 ‘chemistry	 beyond	 the	

molecule’102.	Individual	molecules	consist	of	atoms	joined	by	intramolecular	forces	such	as	covalent	

bonds;	 however,	 supramolecular	 chemistry	 makes	 use	 of	 intermolecular	 interactions	 such	 as	 π-

stacking,	hydrogen	bonding	and	electrostatic	forces	to	bring	molecules	together.	Aromatic	molecules	

can	stack	together	by	virtue	of	π-π	interactions,	while	hydrogen	bonding	allows	for	electronegative	

atoms	 in	 molecules	 to	 form	 strong	 bonds	 with	 protons	 in	 neighbouring	 molecules.	 Electrostatic	

interactions	 are	 individually	weaker	 interactions;	 however,	 they	 can	 allow	 for	 further	 interactions	

between	molecules.	Supramolecular	chemistry	encompasses	all	of	 these	 interactions	making	them	

perfect	candidates	for	use	as	sensing	molecules.	A	number	of	different	macrocyclic	molecules	have	

been	designed	containing	 functional	groups	that	aim	to	enhance	these	 intermolecular	 interactions	

and	thereby	act	as	‘host	molecules’	to	optimise	potential	interactions	with	‘guest	molecules’,	this	is	

known	as	complementarity	 i.e.	where	both	the	host	and	guest	molecule	have	mutual	spatially	and	

electronically	complementary	binding	sites	so	as	to	allow	a	‘supermolecule’	to	form103.	One	example	

of	these	is	protein-ligand	interactions.		

Host-guest	 chemistry	 is	 used	 for	 the	 detection	 of	 guest	 molecules	 using	 rationally	 designed	 host	

molecules.	The	binding	site	in	the	host	molecule	is	designed	to	selectively	attract	the	guest	molecule	

of	interest,	using	intermolecular	interactions.	These	interactions	can	be	incorporated	into	the	design	

of	a	host	molecule	to	allow	it	to	be	selective	towards	a	target	guest	molecule.		

Supramolecular	 host	 molecules	 form	 host-guest	 complexes	 based	 on	 the	 principles	 of	 molecular	

complementarity102.	 According	 to	 Fisher’s	 lock-and-key	 theory,	 complementarity	 is	 the	 most	
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important	 factor	 to	consider	when	designing	potential	host	molecules.	The	more	 interactions	 that	

make	up	the	binding	between	a	host	and	guest	the	stronger	the	complementarity	for	the	complex,	

and	 therefore	 the	 stronger	 the	binding	constant104.	 This	 is	why	using	protein-ligand	 interactions	 is	

ideal,	as	they	often	involve	a	large	array	of	binding	interactions	to	provide	the	selectivity	observed.		

Macrocycles	are	host	systems	that	are	pre-organised	 into	cyclic	 shapes	and	are	normally	designed	

with	a	selection	of	aromatic	functionalities	and	strongly	electronegative	atoms	such	as	O,	N	and	S.	

Electronegative	atoms	such	as	nitrogen	and	oxygen	can	provide	good	hydrogen	bonding	groups,	while	

other	atoms	such	as	sulphur	can	induce	intermolecular	dipole-dipole	interactions	which	aid	in	host-

guest	 interactions.	 Some	 of	 the	 most	 utilised	 macrocycles	 for	 molecular	 recognition	 include	

cyclodextrins,	 crown	 ethers	 and	 calixarenes	 (Figure	 1.16)68,103.	 For	 example	 Kubo	 et	 al.	 used	

functionalised	calixarenes	to	discriminate	between	different	enantiomers	of	amine	derivatives,	via	an	

array	 of	 hydrogen	 bonding	 interactions105.	 This	 study	 shows	 that through	 rational	 design	 even	

enantioselective	molecular	recognition	can	be	achieved	using	ligand	sensors.		

	

	

Figure	1.16	-	An	example	of	A.	calixarene	macrocyclic	host	molecule	and	B.	an	anthraquinone	based	acyclic	host	molecule.	

The	 advantage	 of	 macrocycles	 is	 that	 there	 may	 be	 no	 energetically	 unfavourable	 change	 in	

conformation	of	the	host	upon	binding	of	the	guest106.	In	contrast,	acyclic	hosts	also	known	as	podands	

are	not	pre-organised	and	are	more	flexible	in	nature103.	Anthraquinone	derivatives	are	sometimes	

utilised	as	acyclic	host	molecules	due	to	their	flexibility	and	conjugated	ring	system	(Figure	1.16)107.	

They	 are	 therefore	 capable	 of	 ‘wrapping	 around’	 a	 guest	 molecule.	 This	 change	 in	 conformation	

requires	 more	 energy	 and	 therefore	 the	 host-guest	 complex	 needs	 to	 be	 more	 energetically	

favourable.	This	 can	 sometimes	allow	 for	a	more	 selective	host	molecule	as	 they	can	be	designed	

around	specific	guest	molecules103,	such	as	through	the	use	of	a	pharmacophore	model.	

There	are	multiple	ways	in	which	to	determine	binding	constants	of	host-guest	interactions.	Ideally	to	

determine	 the	 mechanism	 of	 binding	 an	 instrument	 that	 is	 sensitive,	 enabling	 reduced	 sample	

volumes	 and	 has	 fast	 analysis	 times	 is	 required.	 Typically	 spectroscopic	 techniques	 are	 used	 for	



General	Introduction	

49	
	

determining	 binding	 constants,	 including	 NMR,	 UV/Vis,	 fluorescence	 spectroscopy	 and	 mass	

spectrometry.	However,	not	all	of	them	are	capable	of	identifying	the	mechanism	of	binding.		

1.5.1 Detection	Mechanisms	for	Binding		

Upon	 binding,	 the	 host	 and	 guest	 molecules	 undergo	 a	 physicochemical	 change,	 due	 to	 the	

intermolecular	interactions	taking	place.	It	is	this	physical	change	that	can	be	detected.	For	example,	

NMR	identifies	changes	in	chemical	resonance,	UV/Vis	changes	in	absorption	bands	and	fluorescence	

changes	in	the	excited	state	emission.	The	information	gathered	from	this	can	then	be	compared	and	

fitted	to	binding	models	in	order	to	obtain	information	such	as	stoichiometry,	energetics	(enthalpy	

and	entropy)	and	binding	constants	(Ka)	(Equation	1.1)108.	

𝑲𝒂 = 	 [𝑯𝑮]
𝑯 [𝑮]

								Equation	1.1	

Where:	

H	is	the	concentration	(M)	of	the	host	molecule,	

G	is	the	concentration	(M)	of	the	guest	molecule	in	its	free	state,	and	

HG	is	the	concentration	(M)	of	the	host/guest	complex.	

Equation	1.1	assumes	a	stoichiometry	of	1:1	in	the	bound	state.	This,	of	course,	may	not	be	true	and	

calculations	must	be	adjusted	accordingly108.		

1.5.1.1 NMR	

NMR	 binding	 studies	 have	 long	 been	 established	 for	 quantitative	 determination	 of	 host-guest	

binding109,110.	 It	works	on	the	principle	that,	upon	binding,	 the	chemical	environment	of	the	atoms	

involved	will	alter,	and	these	changes	can	be	detected	and	used	to	calculate	binding	constants.		

There	are	two	types	of	exchanges	that	can	occur	on	examination	of	a	binding	system	in	NMR;	slow	

and	 fast	 exchange.	 Slow	 exchange	 is	 normally	 seen	 for	 large	 molecules	 such	 as	 protein-ligand	

binding110	 due	 to	 protein–ligand	 systems	 exhibiting	 high	 binding	 affinity	 and	 low	 dissociation	

constants.	This	would	mean	that	signals	would	be	visible	 for	both	the	bound	and	free	state	of	 the	

protein	and	ligand	respectively.	However,	for	small	molecule	systems	that	will	be	used	in	this	project,	

binding	affinity	is	lower,	and	fast	exchange	is	normally	observed.	For	a	system	in	fast	exchange	the	

chemical	shift	observed	is	a	mole	fraction	weighted	average	of	the	free	and	bound	states	together,	

i.e.	 only	 one	peak	 is	 observed	 and	 its	 chemical	 shift	will	 alter	 depending	on	 the	equilibrium	 state	

(Equation	1.2).		
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Mobs	=	XL(free)ML(free)	+	XL(bound)ML(bound)						Equation	1.2	

Where:	

Mobs	is	the	chemical	shift	observed	by	the	system	(ppm),	

XL(bound)	and	XL(free)	are	the	mole	fraction	of	the	bound	and	free	ligand,	and	

ML(free)	and	ML(bound)	are	the	chemical	shifts	for	the	ligand	in	its	free	and	bound	state	(ppm)110.	

By	plotting	the	observed	change	in	chemical	shift	over	a	number	of	molar	ratios	of	host	and	guest	a	

binding	curve	can	be	fitted	that	will	not	only	allow	for	association	constants	to	be	calculated	but	can	

also	 provide	 valuable	 information	 regarding	 the	 stoichiometry	 of	 binding.	 Such	 experiments	 are	

known	as	NMR	titrations.		

The	 advantage	 of	 NMR	 over	 optical	 spectroscopy	 for	 determination	 of	 binding	 constants	 is	 that	

valuable	information	as	to	which	groups	are	involved	in	the	binding	interaction	may	be	obtained.	This	

is	 important	when	 looking	at	 sensors	 that	have	been	designed	 to	 selectively	bind	host	molecules.	

Knowing	the	groups	that	are	involved	in	binding	means	that	the	types	of	intermolecular	interactions	

can	be	deduced.	Another	notable	advantage	over	optical	spectroscopy	is	that	all	organic	ligands	can	

be	detected	through	NMR	analysis,	and	therefore	it	does	not	require	there	to	be	a	chromophore	or	

fluorophore	 present	 in	 the	 ligand.	 Despite	 all	 these	 advantages,	 NMR	 is	 not	 as	 sensitive	 as	 other	

spectroscopic	techniques,	and	larger	sample	concentrations	are	required	to	obtain	binding	constant	

values.	

1.5.1.2 UV/Vis	Detection		

The	visible	and	ultraviolet	absorption	spectra	of	organic	compounds	are	associated	with	transitions	

between	electronic	energy	levels	in	the	ground	state.	The	energy	transitions	normally	occur	between	

bonding	or	lone-pair	orbitals	and	the	unfilled	non-bonding	orbitals	due	to	a	pulse	of	electromagnetic	

energy	from	the	spectrometer	(Figure	1.17).		
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Figure	1.17	-	A	schematic	showing	the	promotion	of	an	electron	from	a	bonded	(π)	to	non-bonded	(π*)	orbital	due	to	the	

absorption	of	electromagnetic	energy	(hѵ).	

The	energy	supplied	by	the	source	in	a	spectrometer	promotes	electrons	from	their	ground	state	to	

an	excited	state	orbital	or	antibonding	orbital.	There	are	three	types	of	orbitals	in	the	ground	state	

that	may	be	involved	in	this	process;	sigma	bonds	(σ),	pi-bonds	(π)	and	non-bonding	atomic	orbitals	

(n).	 There	 are	 also	 antibonding	 orbitals	 involved	 in	 transitions,	 σ*	 and	 π*.	 The	 amount	 of	 energy	

absorbed	dictates	which	transition	will	be	brought	about.		

When	 these	 transitions	 occur	 there	 is	 an	 increase	 in	 energy	 of	 the	 promoted	 electron	 and	 this	

corresponds	to	a	wavelength	of	an	absorption	spectrum.	This	wavelength	is	inversely	proportional	to	

the	 change	 in	 energy	 of	 the	 orbitals	 involved	 (Equation	 1.3),	 where	 energy	 (E)	 is	 in	 kJ	 mol-1	 and	

wavelength	(λ)	in	nm.		

𝑬 = 	 𝟏.𝟏𝟗	𝒙	𝟏𝟎
𝟓

𝝀
														Equation	1.3	

Another	 equation	 that	 relates	 to	 UV/Vis	 analysis	 is	 the	 Beer-Lambert	 Law.	 This	 is	 particularly	

important	 when	 using	 this	 technique	 for	 quantitative	 binding	 studies.	 Beer’s	 law	 states	 that	 the	

absorption	is	proportional	to	the	number	of	absorbing	molecules111.	

𝒍𝒐𝒈𝟏𝟎
𝑰𝑶
𝑰
= 	𝝐. 𝒍. 𝒄														Equation	1.4	

Where:	

IO	and	I	are	the	intensities	of	the	incident	and	transmitted	light,	

	l	the	path	length	of	the	solution	(cm),		

c	is	the	concentration	(M)	and	

e	is	molar	absorptivity	(M-1	cm-1)	
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The	function	Log10	(I0/I)	is	also	known	as	the	absorbance	or	optical	density	of	a	given	solution.	This	is	

important	when	comparing	optical	spectroscopy	techniques	and	quantifying	binding.		

In	order	to	have	a	UV/Vis	active	molecule,	there	must	be	a	chromophore	present.	A	chromophore	is	

a	 functional	group	that	exhibits	a	characteristic	absorption	spectrum.	For	host-guest	binding	to	be	

quantified	using	UV/Vis	the	chromophore	in	the	host	molecule	needs	to	be	involved	in	the	binding	

with	 the	 guest.	 For	 example,	 the	 lone	 pair	 on	 an	 amine	 functionality	 in	 a	 chromophore	 such	 as	

thiourea	can	act	as	a	hydrogen	bond	donor,	upon	binding	the	absorption	spectrum	of	the	thiourea	

will	be	affected.	This	is	because	the	energy	of	electronic	transitions	is	increased	when	a	molecule	is	

hydrogen	bonding.	This	will	bring	about	a	change	in	either	the	intensity	of	absorption	or	red	shift	of	

the	absorption	band,	i.e.	longer	wavelengths	(Figure	1.18).	It	is	this	change	in	the	absorption	of	light	

that	can	be	quantified	and	used	to	determine	binding	constants.		

	

	

Figure	1.18	-	Schematic	showing	the	red	shift	caused	by	hydrogen	bonding.	The	blue	line	indicates	an	absorption	spectrum	

before	hydrogen	bonding	 complexation,	 the	 red	 line	 indicated	 the	 same	 compound	 that	 is	 taking	part	 in	 a	 hydrogen	

bonding	interaction.	

Spectrophotometric	 measurements	 involve	 low	 sample	 volumes	 and	 are	 simple	 to	 carry	 out,	

therefore,	they	are	ideal	for	measuring	host-guest	interactions.	The	host	molecules,	however,	must	

be	carefully	designed	to	 incorporate	a	chromophore	that	 is	directly	 involved	 in	binding	 in	order	to	

monitor	these	interactions.	
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1.5.1.3 Fluorescent	Detection	

Fluorescence	spectroscopy	can	be	used	for	determining	binding	between	a	host	and	guest	molecule	

based	on	the	change	in	the	emission	spectra	of	the	host	molecule.	Unlike	NMR	it	is	very	sensitive	and	

it	is	possible	to	use	concentrations	in	the	nanomolar	range.	For	this	reason,	fluorescence	is	often	seen	

as	an	ideal	signal	transduction	mechanism	in	sensing	applications.		

There	are	two	main	components	necessary	for	the	design	of	a	fluorescence	sensor;	a	signal	moiety	

(the	 fluorophore)	 and	 a	 recognition	 moiety	 (the	 receptor).	 The	 signal	 moiety	 acts	 as	 the	 signal	

transducer,	converting	information	into	an	optical	response.	The	recognition	moiety	is	responsible	for	

binding	to	the	analyte	in	a	selective	and	efficient	manner.		

It	is	important	to	take	into	account	the	solvent	system	when	using	fluorescence	sensors.	Such	sensors	

are	 easily	 affected	 by	 solvent	 effects	 such	 as	 pH,	 ionic	 strength,	 concentration	 and	 polarity.	 The	

concentration	in	particular	can	play	an	important	role	in	fluorescence	emission.	If	a	sample	is	highly	

concentrated	then	self-quenching	or	self-absorption	can	occur.	Highly	polar	solvents	can	also	lead	to	

a	decrease	in	fluorescence	as	they	have	the	ability	to	hydrogen	bond	to	the	substrates.	The	pH	of	the	

solution	when	working	with	acidic	or	basic	 compounds	 can	have	a	 significant	effect.	 For	example,	

protonated	acids	are	poor	fluorophores	and	therefore,	a	weak	emission	signal	will	be	observed.	There	

needs	 to	be	an	active	communication	pathway	between	signalling	and	 recognition	moieties	which	

allows	for	the	photo-physical	properties	of	the	fluorophore112.		

In	the	case	of	fluorescence,	the	emission	arises	from	a	singlet	excited	state	(in	a	fluorophore).	This	is	

achieved	by	promoting	an	electron	 from	a	ground	 state	orbital	or	 the	highest	occupied	molecular	

orbital	 (HOMO)	 to	 a	 higher	 energy	 orbital	 i.e.	 the	 lowest	 unoccupied	 molecular	 orbital	 (LUMO)	

through	light	irradiation.	It	is	the	electron	returning	from	the	excited	state	back	to	the	ground	state	

that	emits	energy	of	a	given	wavelength	which	leads	to	fluorescence	(Figure	1.19).		
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Figure	 1.19	 -	 Absorption	 of	 light	 leading	 to	 promotion	 of	 an	 electron	 from	 the	 ground	 state	 to	 the	 excited	 state.	

Fluorescence	is	emitted	when	the	excited	electron	returns	to	the	ground	state.	The	energy	of	the	emitted	light	is	often	

less	than	the	absorbed	light	due	to	relaxation	in	the	system.	

There	are	a	number	of	different	mechanisms	through	which	a	change	in	fluorescence	emission	can	

occur	 in	order	 to	be	able	 to	visualise	binding.	One	common	mechanism	 is	 internal	charge	 transfer	

(ICT).	This	works	on	the	principle	of	two	components	(the	host	and	the	guest)	connected	through	π-π	

or	n-π	conjugation	i.e.	hydrogen	bonding	or	π-stacking	interactions.	A	common	example	of	this	type	

of	fluorophore	is	 illustrated	in	Figure	1.20.	The	crown	ether	moiety	binds	to	the	analyte	selectively	

through	electron	donor/acceptor	interactions	between	the	analyte	and	receptor.		

	

Figure	1.20	-	Example	of	crown	ether	ligand	sensor	with	a	fluorophore.	The	dashed	lines	represent	the	hydrogen	bonding	

between	donor	and	acceptor	that	occur	upon	binding.	hѵ	is	incident	light	and	hѵ’	is	the	emitted	light	of	lower	energy	due	

to	internal	charge	transfer.	
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The	mechanism	of	energy	transfer	is	achieved	by	means	of	modulating	energy	and	electron	transfer	

process	between	an	energy	accepting	and	energy	donating	moiety	or	electron	donating	and	electron	

accepting	 moiety,	 most	 commonly	 hydrogen	 bonding.	 It	 is	 the	 coming	 together	 of	 occupied	 and	

unoccupied	orbitals	between	the	two	components	which	leads	to	an	energy	transfer	and	it	is	this	that	

can	be	detected	as	an	observable	energy	release	through	an	increase	in	the	intensity	of	the	emission	

spectrum.	 Fluorescence	 is	 a	 highly	 versatile	 technique	 that	 can	 be	 applied	 in	 real	 time,	 using	 low	

concentrations	of	 the	 sensor,	 and	 fluorescence	 emission	 can	be	 easily	 detected	using	 inexpensive	

instruments.		

Synthesising	 and	 validating	 the	 binding	 of	 host-guest	 molecules	 can	 be	 very	 time-consuming,	

especially	if	the	host	molecules	synthesised	result	in	poor	binding	with	the	target.	It	may	be	possible	

to	minimise	the	chance	of	unsuccessful	host	molecules,	by	applying	the	concept	of	in	silico	molecular	

dynamics.		

1.6 Metadynamics	Analysis	of	Host-Guest	Interactions		

1.6.1 Molecular	Dynamics		

Molecular	dynamics	 is	 a	 rapidly	 growing	 field,	providing	a	 link	between	 the	microscopic	nature	of	

molecular	 interactions	and	the	macroscopic	world	of	 laboratory-based	reactions113.	Ultimately,	 the	

aim	is	to	draw	links	between	in	silico	studies	and	experimental	studies	in	order	to	develop	a	greater	

understanding	of	how	chemical	systems	work.	Applications	range	from	fundamental	studies	such	as	

equilibria	to	more	complex	biomolecular	systems114.		

Molecular	dynamics	can	be	used	to	study	host-guest	binding	in	a	system	and	to	predict	the	position	

and	movement	of	these	molecules	to	study	potential	binding	sites.	Understanding	complex	laws	of	

motion	and	how	they	can	be	applied	in	bulk	chemical	systems	makes	molecular	dynamics	a	powerful	

tool.	 In	order	to	draw	direct	 links	between	experimental	work	and	 in	silico	 simulations	the	physics	

applied	to	the	system	must	be	ideal.	There	are	number	of	factors	that	need	to	be	taken	into	account	

when	applying	such	algorithms.	Molecular	structures	are	complex	and	require	a	deep	understanding	

of	the	constraints	and	interactions	that	can	occur,	namely	bonding	and	non-bonding	interactions.	In	

a	molecule	there	are	a	number	of	degrees	of	freedom,	with	rotational	and	intramolecular	potentials	

being	important.	For	example,	every	molecule	will	have	a	set	torsional	angle,	which	is	the	angle	of	the	

atoms	in	relation	to	the	plane	of	the	molecule	(Figure	1.21).	The	flexibility	of	each	atom	from	the	plane	

of	the	molecule	will	be	different	and	therefore,	the	constraints	associated	with	each	potential	angle	

must	be	explored	in	the	algorithms	applied	to	the	system.	The	same	is	true	for	the	electronic	effects	

between	molecules.	It	is	for	this	reason	that	appropriate	application	of	force	fields	and	constraints	are	
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vital	to	producing	reliable	data	that	is	comparable	to	experimental	data.	A	good	force	field	underpins	

all	modelling	and	molecular	dynamic	investigations.		

	

	
	
Figure	1.21	-	The	torsion	angle	shown	in	the	plane	of	the	molecule	is	the	twist	seen	along	a	bond	in	a	molecule.	

When	 studying	 host-guest	 interactions	 the	 free	 energy	 of	 the	 system	 is	 an	 important	 factor	 to	

evaluate,	 as	 it	 allows	 for	 quantification	 of	 the	 energy	 of	 complexation	 at	 any	 given	 point	 in	 a	

simulation.	One	of	 the	 limitations	associated	with	 traditional	molecular	dynamics	 is	 that	 it	 cannot	

predict	the	free	energy	of	a	system,	as	it	would	take	an	infinite	amount	of	time	to	sample	the	entire	

system.	In	order	to	predict	free	energy,	mapping	of	the	entire	energy	profile	is	required	as	opposed	

to	taking	averages	over	a	set	timescale.	This	is	nearly	impossible	due	to	the	large	computational	cost	

involved.	The	recent	branch	of	molecular	dynamics,	metadynamics,	has	been	applied	to	this	area	due	

to	its	less	computationally	expensive	sampling	approach	to	study	chemical	systems.	

1.6.2 Metadynamics		

Metadynamics	 is	 less	 computationally	 expensive	 than	 molecular	 dynamics.	 It	 allows	 for	 the	

acceleration	of	rare	occurrences	in	a	system,	as	described	by	complex	Hamiltonians,	which	takes	into	

account	both	the	sum	of	the	kinetic	energy	and	the	potential	energy	of	the	particles115.	Metadynamic	

systems	are	described	by	a	few	collective	variables	(CV),	also	known	as	degrees	of	freedom.	During	a	

simulation,	the	location	of	the	system	is	determined	by	the	pre-set	CVs.	The	CVs	and	the	free	energy	

at	any	given	point	of	the	system	during	a	simulation	are	used	to	produce	a	positive	Gaussian	potential	

which	is	added	to	the	real	energy	of	the	system	(Figure	1.22).	By	doing	this	 it	prevents	the	system	

from	returning	to	a	position	it	has	previously	explored.	This	is	repeated	throughout	the	simulation,	

forcing	the	system	to	explore	the	full	energy	landscape,	at	a	much	lower	computational	cost	than	that	

of	 traditional	molecular	 dynamics.	Once	produced	 the	 energy	profile	 is	 the	 reverse	of	 the	 sum	of	

applied	Gaussians.	
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Figure	1.22	-	Representation	of	the	addition	of	Gaussians	potentials	to	escape	free	energy	minima,	to	overcome	ΔG,	to	

explore	the	entire	energy	landscape	of	the	system.	Each	hump	in	the	lower	energy	potential	represents	the	addition	of	

one	Gaussian	potential	(adapted	from	116).		

The	size	of	the	Gaussians	applied	to	the	system	primarily	determine	the	accuracy	of	the	energy	profile	

that	was	created.	However,	the	smaller	the	Gaussians	the	more	that	need	to	be	applied	in	order	to	

achieve	 a	 full	 energy	 profile,	 which	 in	 turn	 results	 in	 a	 higher	 computational	 cost.	 Therefore,	 an	

appropriate	 compromise	 between	 the	 two	 should	 be	 found	 for	 optimum	 simulation	 conditions.	

Without	the	addition	of	Gaussian	potentials	(as	in	traditional	molecular	dynamics)	the	simulation	has	

to	naturally	overcome	ΔG	which	leads	to	prolonged	simulations	times	

The	studies	will	generate	free	energy	values	as	a	function	of	the	CVs	i.e.	the	distance	between	the	two	

probes,	one	in	the	guest	and	the	other	in	the	host	molecule.	This	is	achieved	by	forcibly	moving	the	

guest	 molecule	 towards	 and	 away	 from	 the	 host	 within	 a	 given	 simulation	 radius.	 By	 using	 this	

approach	it	allows	for	the	guest	and	host	molecule	interactions	to	be	analysed	in	a	relatively	short	

processing	 time	 because	 the	 molecules	 follow	 a	 reconstructed	 map	 of	 the	 free	 energy	 in	 the	

system115,117.	As	a	result,	a	comprehensive	study	of	the	energy	landscape	of	a	system	is	generated	by	

providing	a	means	for	escaping	local	energy	minima,	consequently	providing	a	platform	to	study	rare	

events	between	molecules	in	real-time.		

The	parameters	and	 restrictions	applied	 to	a	 system	are	vital	 in	achieving	accurate	data.	Different	

systems	require	unique	parameters	based	on	the	molecules	in	the	system.	The	application	of	different	

force	fields	takes	into	account	the	variation	in	the	level	of	constraints	for	molecules,	as	dynamics	are	

designed	to	mimic	nature	as	much	as	possible	in	silico.		
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To	 ensure	 the	 application	 of	 the	metadynamics	 analysis	 is	 robust	 and	 effective,	 it	 is	 necessary	 to	

understand	and	assess,	prior	to	running	the	simulation,	the	different	parameters	that	can	be	applied	

from	the	algorithm	to	calculate	conformational	energy	of	the	molecules,	to	the	force	fields	used,	as	

well	as	taking	into	account	the	effect	that	solvent	has	on	a	system.	

1.6.2.1 Implicit	and	Explicit	Solvation	

Accurate	models	of	molecules	 in	solution	using	molecular	mechanics	 requires	a	 realistic	model	 for	

calculating	interactions	that	solvent	can	form	in	the	system.	To	achieve	this,	calculations	using	both	

implicit	and	explicit	solvent	are	necessary	as	they	use	different	approaches	for	studying	liquid	state	

dynamics.		

Implicit	solvation	treats	the	solvent	system	as	a	continuous	medium	as	opposed	to	individual	‘explicit’	

solvent	molecules.	Using	implicit	solvent	allows	for	approximations	in	a	system	to	be	made	that	are	

computationally	efficient,	thus	allowing	for	calculations	to	be	carried	out	that	would	not	be	feasible	

when	using	explicit	solvent	due	to	the	high	computational	cost.	However,	the	approximations	made	

by	 implicit	solvent	models	can	sometimes	 lead	to	 inaccurate	results118.	For	example,	 implicit	water	

doesn’t	take	into	account	entropic	terms,	such	as	the	hydrophobic,	viscosity	and	hydrogen	bonding	

effects.	These	effects	are	critically	important	when	studying	liquid	state	interactions.	

Conversely,	explicit	solvation	uses	thousands	of	discrete	solvent	molecules	in	a	system	which	allows	

for	the	inclusion	of	entropic	effects118.	This	requires	a	large	amount	of	central	processing	unit	(CPU)	

time	compared	to	the	equivalent	implicit	system.	This	restricts	simulations	using	explicit-solvation	to	

smaller	 system	 sizes	 and	 simulation	 times	 to	 within	 the	 tens	 of	 nanoseconds119,	 unless	 using	 a	

supercomputer.	Nevertheless,	without	increased	parametrisation	of	implicit	solvent	systems	to	take	

into	account	entropic	 terms,	molecular	mechanics	 is	 still	 limited	 to	 the	use	of	explicit	 solvation	 to	

achieve	in	silico	models	with	higher	accuracy.		

1.6.2.2 Conformational	Energy	Searching		

Molecules	can	adopt	more	than	one	low	energy	conformation	which	may	differ	only	slightly	in	their	

energy	values120.	It	is	important	to	appreciate	the	range	of	low-energy	conformations	that	are	likely	

to	be	adopted	by	the	host	molecules	to	take	into	account	any	significant	conformational	changes	that	

may	arise.	This	is	achieved	by	performing	a	conformational	search.		

Conformational	searches	can	be	divided	into	two	general	categories,	systematic	methods	and	Monte	

Carlo	methods.	The	systematic	method	is	used	for	molecules	that	ideally	have	less	than	seven	flexible	

torsional	angles.	The	number	of	 flexible	bonds	 is	directly	proportional	to	the	number	of	structures	

generated	and	therefore,	the	larger	the	molecule	the	more	structures	there	are	to	analyse	and	the	
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longer	 the	 processing	 time,	 as	 demonstrated	 in	 a	 case	 of	 predicting	 conformations	 of	 cyclo-	

hexapeptides121.	The	second	method	for	conformational	searching	is	the	Monte	Carlo	method,	which	

is	an	estimation	procedure122.	For	larger	molecules,	the	Monte	Carlo	method	is	a	good	alternative	to	

the	 systematic	 method.	 In	 the	Monte	 Carlo	 method,	 the	 position	 of	 atoms	 in	 the	molecules	 are	

randomly	changed	by	Cartesian	coordinates,	or	by	randomly	changing	the	dihedral	angle	of	bonds	in	

the	molecule.	This	generates	a	new	conformation	which	is	subsequently	minimised122.	The	process	is	

repeated	 and	 the	 resultant	 structures	 are	 sorted	 and	 compared	 according	 to	 their	 energies,	

generating	a	list	of	different	conformers.	The	Monte	Carlo	method	incorporates	probability	into	the	

analysis,	to	predict	whether	a	scenario	that	can	happen,	will	actually	occur	in	a	system;	such	as	the	

probability	that	the	energy	of	a	molecule	resulting	from	the	minimised	conformation	is	accurate.	It	is	

the	average	of	the	generated	energy	values	that	allows	for	a	Gaussian	distribution	curve	to	fall	around	

the	true	value	which	in	this	case	is	the	local	minimum	energy	of	a	structure.		

It	is	important	for	searches	to	locate	low-energy	conformations	quickly	but	they	must	also	return	a	

range	 of	 conformations	 that	 are	 representative	 of	 all	 the	 possible	 conformations	 for	 a	molecule.	

Monte	Carlo	methods	provide	a	good	approach	that	combines	both	efficiency	and	completeness.		

Once	identified,	the	minimum	energy	conformation	can	then	be	used	to	carry	out	metadynamics.	It	is	

possible	 to	 carry	 out	 these	 searches	 in	 a	 number	 of	 different	 environments	 e.g.,	 water,	

dimethylsulphoxide	(DMSO),	air	and	vacuum.	Therefore,	it	is	essential	to	select	the	environment	that	

approximates	 the	 conditions	 of	 the	 experimental	 work	 being	 conducted.	 For	 example,	 largely	

hydrophobic	compounds	are	likely	to	show	vastly	different	conformations	in	water	than	in	DMSO	or	

air	 due	 to	 hydrophobic	 effects.	 This	 must	 be	 taken	 into	 account	 when	 designing	 the	 method.	

Conformational	 searching	 takes	 into	 account	 implicit	 water	 in	 a	 system,	 this	 means	 that	 the	

interaction	of	water	molecules	with	the	molecules	of	interest	is	not	directly	represented.	The	addition	

of	entropic	terms	that	occur	in	metadynamics	may	lead	to	interactions	that	are	not	seen	when	carrying	

out	conformational	searching	in	implicit	solvation.		

Conformational	searches	also	do	not	take	into	account	thermal	effects	and	are	run	at	a	predetermined	

temperature123.	However,	fluctuations	in	the	temperature	of	a	system	can	affect	the	conformation	of	

a	molecule.	Sensors	applied	 in	 real	 life	are	 likely	 to	be	affected	by	 thermal	effects.	Therefore,	 it	 is	

important	to	understand	what	changes	may	occur	or	how	stable	a	predicted	conformation	is	when	

explicit	 solvent	and	changes	 in	 temperature	are	added	prior	 to	carrying	out	metadynamics	on	 the	

system,	in	order	to	contextualise	the	results	obtained.	This	can	be	achieved	using	simulated	annealing.	
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1.6.2.3 Simulated	Annealing		

Simulated	annealing	is	a	molecular	dynamics	technique	used	to	investigate	the	stability	of	conformers	

and	probe	whether	minima	are	global	or	 local	(Figure	1.23).	 It	takes	 into	account	not	only	thermal	

effects	on	a	system	but	also	the	effect	of	explicit	water	on	the	system.		

	

	

	

	

	

	

	

	

	

	

	

	

	

The	effect	on	a	starting	structure	conformation	when	it	is	heated	to	a	high	temperature	is	simulated	
124	i.e.,	what	happens	to	the	structure	when	the	atoms	have	high	thermal	mobility.	

The	 structure	 is	 then	 allowed	 to	 cool.	 The	 cooling	 process	 allows	 the	 structure	 to	 evolve	 to	 an	

energetically	favourable	final	structure,	which	may	differ	from	the	starting	one.	This	is	a	very	useful	

process	for	studying	the	relationship	between	conformations	and	thermal	energy	which	are	invaluable	

in	 understanding	 the	 stability	 of	 predicted	 conformations.	 It	 is	 of	 particular	 importance	 for	 host	

molecules	as	interactions	are	distance	(and	sometimes	direction)	dependent;	with	a	small	change	in	

conformation	 leading	 to	 unexpected	 changes	 in	 interactions	 with	 the	 guest	 molecule.	 The	

representative	conformation	determined	using	simulated	annealing	can	be	compared	to	the	results	

of	 conformational	 searching	 to	 understand	 both	 thermal	 and	 solvent	 effects	 in	 a	 system.	 The	

representative	conformation	is	then	carried	through	to	metadynamics	to	ensure	that	simulations	are	

Energy	

EX	

Local	minima		

State	

Global	minima		

Figure	1.23	-	A	schematic	representation	of	simulated	annealing	where	Ex	denotes	the	thermal	energy	required	to	force	

the	search	from	local	minima	to	global	minima.	
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started	from	the	most	stable	structure.	Metadynamics	is	a	technique	that	is	not	often	used	to	study	

the	complexation	of	small	molecules.	Therefore,	in	order	to	validate	a	method,	it	is	necessary	to	use	

proven	experimental	data.		

1.7 Aims	&	Objectives	

As	there	is	a	need	for	rapid,	sensitive	and	selective	in-field	detection	probes	for	the	growing	number	

of	NPS,	the	primary	aim	of	the	project	is	to	develop	a	selective	sensory	probe	for	the	amphetamine-

related	new	psychoactive	substances.	In	order	to	achieve	this,	a	novel	approach	will	be	adopted	so	as	

to	 ensure	 both	 selectivity	 and	 sensitivity.	 To	 ensure	 selectivity	 it	 is	 first	 imperative	 to	 understand	

against	what	the	probe	needs	to	be	selective.	At	the	commencement	of	this	project,	aminoindanes	

were	still	uncontrolled	and	believed	to	be	the	‘next	wave’	of	NPS,	whereas	cathinones	were	controlled,	

and	their	popularity	had	remained	consistently	high.	Therefore,	it	was	proposed	to	explore	a	sensory	

probe	for	both	aminoindanes	and	cathinones.	Aminoindane	internet	products	are	easily	purchased	

due	 to	 their	 legal	 status	 and	 therefore,	 they	 will	 be	 studied	 to	 understand	 their	 composition.	

Aminoindane	internet	samples	will	be	fully	analysed	using	HPLC	and	GC-MS	to	determine	the	common	

excipients	present	 in	 internet	 samples,	and	also	 to	quantify	 the	concentration	of	active	 ingredient	

present	(Chapter	2).	This	will	help	to	determine	the	selectivity	and	sensitivity	needs	for	the	sensory	

probe.		

Protein-ligand	interactions	will	be	studied	based	on	the	findings	from	the	aminoindane	analysis,	and	

an	 in-depth	 literature	 review	 regarding	 cathinone	 street	 sample	 composition.	 Naturally	 occurring	

protein-ligand	interactions	are	both	selective	and	sensitive,	and	therefore	by	taking	inspiration	from	

nature	 a	 rationally	 designed	 host	 molecule	 based	 on	 these	 interactions	 will	 be	 developed.	 The	

examination	 of	 protein-ligand	 interactions	 for	 cutting	 agents,	 drugs	 of	 abuse	 and	 endogenous	

psychoactive	 substances	with	 similar	 structures	 to	 both	 aminoindanes	 and	 cathinones	will	 ideally	

allow	 for	 the	development	of	 a	 three-dimensional	pharmacophore	model	 (Chapter	3).	A	 validated	

methodology	will	be	developed	 for	 this	analysis	 so	 that	 it	 is	possible	 to	apply	 such	work	 to	 future	

sensor	development	to	improve	selectivity	and	aid	in	the	design	of	potential	host	molecules.	In	order	

to	 design	 a	 selective	 sensory	 molecule,	 a	 representative	 drug	 from	 both	 the	 aminoindane	 and	

cathinones	classes	will	be	chosen	upon	which	to	design	each	of	the	pharmacophores.	As	discussed	

above,	the	original	NPS	mephedrone,	is	still	widely	abused	and	remains	a	big	problem	in	relation	to	

public	health.	The	complex	pharmacological	profile	of	mephedrone	goes	someway	to	explaining	why,	

even	 once	 controlled	mephedrone	 has	 remained	 a	 popular	 drug	 of	 abuse.	 There	 is	 still	 a	 lack	 of	

effective	in-field	detection	devices	that	are	both	selective	and	sensitive	for	mephedrone,	and	it	is	for	
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these	reasons	that	mephedrone	will	be	the	primary	target	for	the	development	of	a	sensory	molecule	

(Chapter	3	and	4).		

The	binding	features	extracted	to	develop	the	pharmacophore	model	will	be	applied	to	the	design	of	

a	host	molecule.	Knowledge	of	supramolecular	chemistry	and	ideal	host-guest	binding	will	be	applied	

to	develop	a	host	molecule	which	 incorporates	binding	 features,	 such	as	potential	hydrogen	bond	

donor/acceptors	or	aromatic	functionalities	for	π-stacking	interactions	and	will	aid	in	the	consensus	

design	of	potential	host	molecules	(Chapter	4).	

Based	on	the	pharmacophore	two	different	host	scaffolds	will	be	explored	for	this	work,	one	flexible	

host	molecule	(acyclic)	and	one	rigid	host	molecule	(macrocycle)	(Chapter	4).	Upon	synthesising	the	

potential	 host	molecules,	 full	 binding	 studies	will	 be	 carried	 out	 using	 a	 number	 of	 spectroscopic	

techniques	 including	NMR,	UV/Vis	and	fluorescence	spectroscopy.	Additionally,	mass	spectrometry	

will	 be	 used,	 as	 a	 confirmatory	 technique.	 This	 will	 allow	 for	 binding	 constants	 to	 be	 calculated	

between	 the	 host	 and	 guest	 molecules.	 Binding	 of	 the	 host	 molecule	 will	 be	 examined	 against	

common	 cutting	 agents	 and	 drugs	 of	 abuse,	 identified	 from	 the	 aminoindane	 analysis	 and	

pharmacophore	development	to	ensure	selectivity.	The	host	molecule	will	then	be	tested	against	a	

potential	simulated	street	sample	to	ensure	there	is	no	cross-reactivity	(Chapter	5).		

Finally,	the	developed	host	molecule	will	be	analysed	in	silico	using	metadynamic	simulations	(Chapter	

6).	 This	 will	 help	 to	 establish	 if	 a	 consensus	 between	 experimentally	 observed	 binding	 and	

computationally	binding	can	be	achieved.	This	will	be	used	in	an	attempt	to	accelerate	and	improve	

the	process	of	host	molecule	design	for	NPS	in	the	future,	ultimately	allowing	sensor	development	to	

keep	up	with	the	rapidly	growing	field	of	NPS.		

	



	

	

Chapter	2 Identification	and	Quantification	of	

Aminoindanes	in	Internet	Purchased	NPS	Products	

2.1 Introduction	

Understanding	 the	 complex	matrix	 of	 new	psychoactive	products	 is	 important	 for	 considering	 the	

possible	difficulties	of	in-field	detection.	Not	only	is	it	essential	to	recognize	the	array	of	bulking	agents	

or	 cutting	agents	 that	may	be	present	 in	 street	 samples,	but	also	 the	concentrations	 in	which	 the	

active	ingredient	is	found.	This	will	help	to	determine	not	only	the	selectivity	required	but	also	the	

sensitivity	regarding	detection	limits.	Government	analysis	reports	have	shown	that	the	cutting	agents	

present	 do	 not	 vary	 substantially	 between	 the	 different	 classes,	 with	 the	 most	 common	 being	

reported	as	benzocaine,	caffeine	and	lactose125.	It	is	however	the	relative	concentrations	of	the	active	

ingredients	that	vary	the	most125.		

As	stated	in	Chapter	1,	at	the	commencement	of	this	project	in	2012	aminoindanes	were	believed	to	

be	the	next	stimulant	NPS	of	interest.	This	was	due	to	their	amphetamine-like	structures,	which	were	

believed	 to	 exert	 a	 similar	 physiological	 response	 to	 the	 popular	 cathinone	 and	 amphetamine	

classes30.	It	was	decided	that	for	this	project	two	sensory	molecules	would	be	developed;	one	for	the	

already	established	and	controlled	cathinone	class,	and	another	for	the	uncontrolled	aminoindanes,	

so	as	to	stay	ahead	of	the	rapidly	adapting	NPS	market.	In	order	to	develop	a	sensory	molecule,	it	is	

first	 important	 to	 understand	 first-hand	 the	 composition	 of	 products,	 to	 inform	 how	 a	 sensory	

molecule	must	work.	Cathinones	 are	 controlled	and	 consequently	 it	was	not	possible	 to	purchase	

them;	however,	aminoindanes	are	 legal	and	hence	they	are	still	commercially	available.	Therefore,	

aminoindane	 internet	 products	 were	 purchased,	 and	 subsequently	 analysed.	 The	 analysis	 of	

aminoindanes	still	has	the	potential	to	guide	the	design	of	the	cathinone	sensory	molecules,	as	well	

as	the	aminoindane	sensor	as	reports	from	Laboratory	of	the	Government	Chemist	(LGC)	have	shown	

that	 there	 is	 a	 large	 degree	 of	 overlap	 in	 the	 constituents	 found	 in	 both	 of	 these	 classes	 of	

compounds19,125–127.		

2.1.1 NPS	Class	of	Interest;	Aminoindanes	

One	group	of	NPS	that	have	been	re-classified	into	a	specific	drug	family	by	the	European	Monitoring	

Centre	 for	 Drugs	 and	 Drug	 Addiction	 (EMCDDA)	 are	 the	 aminoindanes128.	 Aminoindanes	 are	

conformationally	 rigid	analogues	of	amphetamines	and	were	 first	 synthesised	by	Nichols	et	al.	 for	

their	serotonin	neurotoxicity	effects129.	A	number	of	aminoindanes	have	been	available	via	internet	
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retailers	since	2010,	most	notably	5,6-methylenedioxy-1-aminoindane	(MDAI),	5-Iodo-2-aminoindane	

(5-IAI)	and	2-aminoindane	(2-AI)32.		

	

Figure	 2.1	 -	 Chemical	 structures	 for	 the	 three	 most	 common	 aminoindane	 derivatives,	 A.	 5,6-methylenedioxy-1-

aminoindane	(MDAI),	B.	2-aminoindane	(2-AI)	and	C.	5-iodo-2-aminoindane	(5-IAI).	

Although	uncontrolled	in	the	UK	up	to	the	recent	blanket	ban	on	NPS,	internet	availability	of	these	

substances	shifted	over	the	last	six	years,	where	5-IAI	was	suggested	to	be	the	new	‘must	have’	NPS	

after	 the	 control	 of	 mephedrone	 in	 201030,	 and	 in	 recent	 years	 the	 abuse	 of	 MDAI	 has	 risen	

significantly130.	Until	May	2015,	 the	aminoindanes	most	commonly	reported	to	the	United	Nations	

Office	of	Drugs	and	Crime	(UNODC)	were	MDAI,	5-IAI	and	2-AI131.	As	with	many	NPS,	studies	into	the	

chemical	characterisation	of	aminoindane	products	is	limited	as	they	are	relatively	new	substances	of	

misuse.	In	order	to	aid	identification,	Casale	et	al.	reported	the	chemical	characterisation	of	pure	5-

IAI	and	its	 isomer	4-IAI,	5,6-MDAI	and	its	 isomer	4,5-MDAI	using	GC-MS,	NMR	and	FT-IR43,44.	A	few	

studies	have	investigated	the	products	of	aminoindanes;	however,	these	are	usually	limited	to	one	or	

two	 products	 as	 part	 of	 a	 larger	 study32,44,47,132.	 A	 more	 comprehensive	 study	 looked	 at	 seven	

aminoindane	products	using	GC-MS	for	identification	purposes	only.	They	identified	MDAI	and	a	range	

of	 adulterants	 where	 one	 product	 was	 suspected	 to	 have	 unknown	 inorganic	 material40.	 On-site	

testing	 methods	 were	 investigated	 for	 aminoindane	 products	 using	 microcrystalline	 tests63,	

electroanalytical	 sensing133	 and	 handheld	 Raman	 spectroscopy134	 where	 the	 %	 w/w	 of	 the	 active	

ingredient	and	the	adulterants	present	greatly	influenced	positive	identification.	Thus,	there	is	a	need	

to	further	investigate	the	quantities	of	active	ingredients	in	these	samples,	to	understand	how	this	

might	affect	the	design	of	a	sensory	molecule.		

At	 present	 there	 remains	 a	 lack	 of	 information	 regarding	 the	 full	 chemical	 identification	 and	

quantification	 of	 NPS	 products,	 including	 aminoindanes.	 This	 lack	 of	 information	 regarding	 the	

aminoindane	class	means	it	 is	hard	to	identify	which	of	the	aminoindane	class	 is	most	prevalent	 in	

products,	making	it	difficult	to	identify	an	individual	target	for	a	sensory	molecule.	In	order	to	develop	

a	selective	sensory	molecule	it	is	important	to	understand	what	the	molecule	needs	to	be	selective	

against,	 i.e.	cutting	agents	and	adulterants.	 It	 is	also	important	to	understand	the	concentration	of	

active	ingredient	present	in	these	products.	This	allows	for	a	deeper	understanding	into	the	limits	of	

detection	that	will	be	required	for	a	sensory	molecule.	Therefore,	the	aim	of	this	study	is	to	identify	
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and	 quantify	 the	major	molecular	 constituents	 in	 internet	 purchased	 aminoindane	 products.	 This	

information	can	then	be	carried	forward	for	the	rational	design	of	sensory	molecules.		

2.2 Experimental		

2.2.1 Chemicals	and	Reagents		

Analytical	grade	standards	of	2-aminoindane	hydrochloride	(2-AI.HCl)	and	caffeine	were	purchased	

from	Sigma	Aldrich	(Dorset,	UK).	The	reference	standards	MDAI.HCl	and	5-IAI.HCl	were	obtained	from	

LGC	standards	(Teddington,	UK).	HPLC	grade	methanol,	acetonitrile,	water	and	ortho-phosphoric	acid	

were	purchased	from	Fisher	Scientific	(Loughborough,	UK).	A	total	of	11	products,	labelled	to	contain	

an	aminoindane	analogue,	were	purchased	online	between	February	2012	and	May	2013	from	seven	

different	UK-based	internet	retailers.	Samples	prepared	for	chromatography	analysis	were	placed	in	

clear	DP	ID	2	mL	glass	vials,	fitted	with	PTFE/silicone	septa	certified	caps.		

2.2.2 Gas	Chromatography-Mass	Spectrometry	(GC-MS)	

GC-MS	experiments	were	performed	using	a	Varian	450	ion	trap	GC	and	240	MS.	Analysis	was	done	

using	both	chemical	ionisation	(CI),	with	methane,	and	electron	ionisation	(EI)	with	a	scan	range	of	40	

-	 1000	m/z.	 Ion	 trap,	 manifold	 and	 transfer	 line	 temperatures	 were	 set	 to	 150,	 50	 and	 250	 oC,	

respectively.	Gas	chromatographic	separation	was	achieved	using	a	Varian	FactorFour	5	%	phenyl-

methyl	capillary	column	(30	m	x	0.25	mm	x	0.25	µm)	using	helium	as	a	carrier	gas	(1	mL	min-1)	and	a	

split	ratio	of	10:1.	The	column	was	heated	to	50	oC	for	2	min	following	sample	injection,	increased	to	

300	oC	(15	oC	min-1),	held	for	5	min	and	then	cooled	back	to	50	oC	(50	oC	min-1),	with	a	total	run	time	

of	28.7	min.	Solutions	were	prepared	of	each	product	using	methanol	(0.1	mg	mL-1)	and	filtered	(0.2	

µm	 PTFE	 membrane	 filters)	 prior	 to	 analysis.	 Mass	 spectra	 of	 selected	 peaks	 were	 compared	 to	

purchased	reference	standards	and	an	in-house	National	Institute	of	Standards	and	Technology	(NIST)	

and	Scientific	Working	Group	for	the	Analysis	of	Seized	Drugs	(SWGDRUG)	library.	

2.2.3 High	Performance	Liquid	Chromatography	(HPLC)	

Reverse	phase	HPLC	analysis	was	performed	using	an	 integrated	Perkin	Elmer	Flexar	 system	fitted	

with	an	in-line	degasser,	100-place	auto	injector	and	a	photodiode	array	(PDA)	detector	(recording	

268	 nm).	 Data	 analysis	 was	 carried	 out	 using	 Chromera-flexa	 software	 version	 3.4.0.5712.	 Two	

Phenomenex	C18	columns	(150	x	4.6	mm)	were	used	for	the	analysis,	a	core	kinetix	5	µ	XB	and	a	non	

XB	5	µ	column,	both	fitted	with	a	guard	column	(AJ0-8768	C18).	A	gradient	solvent	system	was	used	

where	mobile	phase	A	was	composed	of	HPLC	grade	water	and	ortho-phosphoric	buffer	(pH	2.1),	and	

mobile	phase	B	was	HPLC	grade	acetonitrile.	The	gradient	method	was	90	%	mobile	phase	A	increasing	
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to	50	%	over	15	min	with	a	flow	rate	of	1.5	mLmin-1	using	an	injection	volume	of	5	µL.	Both	mobile	

phases	were	vacuum	filtered	through	a	0.44	mm	pore	nylon	filter	and	degassed	for	10	min	at	25	oC	

using	an	ultrasonic	bath	prior	to	use.	Stock	solutions	of	caffeine,	MDAI,	2-AI	and	5-IAI	(0.5	mg	mL-1)	

were	prepared	by	adding	1.0	mg	of	each	component	weighed	accurately	into	a	2	mL	volumetric	flask	

and	made	up	to	volume	with	methanol/water	(50/50	v/v).	The	remaining	calibration	standards	(i.e.,	

0.1,	0.05,	0.025,	and	0.01	mg	mL-1)	were	prepared	by	serial	dilution.	The	method	was	validated	to	

evaluate	 specificity,	 linearity	 accuracy,	 precision,	 LOD,	 LOQ,	 and	 robustness135.	 Specificity	 was	

evaluated	 by	 ensuring	 acceptable	 resolution	 between	 each	 aminoindane	 and	 caffeine	 at	 ≥	 2.	 The	

correlation	coefficient	was	used	to	determine	the	 linearity	(r2	≥	0.999).	The	accuracy	and	precision	

was	determined	using	known	concentrations	of	each	standard	at	high,	medium	and	low	levels	(n	=	6).	

The	LOD	(i.e.,	 (3.3*standard	error	of	 the	 intercept)/slope)	and	LOQ	(i.e.,	 (10*standard	error	of	 the	

intercept)/slope)	was	calculated	using	the	calibration	curve.	Three	sets	of	standards	were	prepared	

on	different	days	to	evaluate	robustness.	

2.3 Results	and	Discussion	

2.3.1 Gas	Chromatography-Mass	Spectrometry	(GC-MS)	

GC-MS	is	a	commonly	used	technique	for	routine	analysis	of	psychoactive	substances,	which	has	been	

utilised	 for	 a	 number	 of	 drug	 classes	 to	 analyse	 volatile	 components47,136.	 In	 this	 study	 eleven	

aminoindane	products	were	purchased	from	seven	UK	distributers	between	February	2012	and	May	

2013.	Primary	characterisation	was	based	on	the	implementation	of	GC-MS	analyses.	All	mass	spectral	

peaks	with	a	relative	abundance	greater	than	10	%	of	the	base	ion	peak	were	analysed	and	results	are	

shown	in	Table	2.1.		
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Table	2.1	-	GC-MS	results	for	all	eleven	products	using	chemical	and	electron	ionisation1.	

Product	name	 GC-MS	Retention	

Time	(min)	

Fragmentation	(m/z)a	 Confirmatory	Peak	CI	

(m/z)	

NIST	Library	

Match	

P1:	2-AI	 13.79	±	0.06	 42,	 56,	 65,	 84,	 91,115,	 136,	 144,	

163,	172	

247	(M-1)	

249	(M+1)	

Unknown	

14.21	±	0.07	 42,	55,	67,	82,	94,	109,	122,	137,	

150,	165,	194		

193	(M-1)	

195	(M+1)	

Caffeine	

P2:	2-AI	 8.903	±	0.003	 65,	77,	89,	91,	118,	130,	133	 132	(M-1)	

134	(M+1)	

2-AI	

P3:	5-IAI	 12.474	±	0.007	 42,	50,	63,	77,	91,	102,	118,	130,	

149,	160,	177	

176	(M-1)	

178	(M+1)	

MDAI	

14.20	±	0.04	 42,	55,	67,	82,	109,	137,	165,	194	 193	(M-1)	

195	(M+1)	

Caffeine	

P4:	5-IAI	 7.75	±	0.06	 42,	51,	65,	78,	91,	103,	133	 132	(M-1)	

134	(M+1)	

2-AI	

P5:	MDAI	 12.5	±	0.2	 42,	51,	63,	77,	91,	103,	150,	160,	

177	

176	(M-1)	

178	(M+1)	

MDAI	

P6:	MDAI	 8.94	±	0.03	 42,	50,	63,	91,	105,	116,	133	 132	(M-1)	

134	(M+1)	

2-AI	

P7:	MDAI	 12.27	±	0.05	 42,	63,	91,	118,	130,	149,	160,	177	 176	(M-1)	

178	(M+1)	

MDAI	

P8:	MDAI	 NA	 NA	 NA	 NA	

P9:	Pink	Panther	 12.5	±	0.2	 42,	65,	73,	91,	102,	118,	130,	149,	

160,	177	

176	(M-1)	

178	(M+1)	

MDAI	

8.45	±	0.02	 53,	57,	97,	124,	140,	155	 155	(M)	

156	(M+1)	

MPA	

P10:	

Pink	champagne	

9.11	±	0.08	 42,	50,	63,	77,	91,	103,	116,	133	 132	(M-1)	

134	(M+1)	

2AI	
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14.19	±0.04	 42,	55,	67,	82,	94,	109,	137,	165,	

194	

193	(M-1)	

195	(M+1)	

Caffeine	

P11:	Blurberry	 9.07	±	0.09	 42,	51,	63,	77,	91,	103,	116,	133	 132	(M-1)	

134	(M+1)	

2AI	

14.24	±	0.07	 42,	55,	67,	82,	94,	109,	121,	136,	

165,	194	

193	(M-1)	

195	(M+1)	

Caffeine	

a	All	numbers	in	bold	represent	the	molecular	ion	peak	[M+]:	All	numbers	in	italics	represent	the	base	ion	peak.		

The	standards	were	initially	run	to	determine	the	retention	time	of	reference	compounds,	2-AI	eluted	

at	8.6	min,	MDAI	at	12.2	min,	5-IAI	at	12.8	min	and	caffeine	at	14.1	min.	Each	of	the	standards	showed	

distinct	fragmentation	patterns	using	the	EI	ionisation,	with	high	intensity	molecular	ion	peaks	seen	

for	all	standards.	Fragmentation	patterns	are	in	good	agreement	with	that	observed	by	Baron	et	al.47.		

P1	contained	two	peaks	in	the	GC;	caffeine	m/z	194	and	an	additional	peak	that	gave	a	positive	match	

for	methylphenidate.	Methylphenidate	 is	 a	 psycho	 stimulant	 drug	 approved	 for	 the	 treatment	 of	

attention	deficit	hyperactivity	disorder	(ADHD)	that	is	commonly	abused	for	its	stimulant	properties.	

The	EI	fragmentation	of	methylphenidate	found	in	P1	was	in	good	agreement	with	that	seen	for	the	

methylphenidate	standard	(60	%),	both	showing	no	presence	of	 the	molecular	 ion	peak.	However,	

when	methylphenidate	standard	was	run	the	retention	times	of	the	two	peaks	did	not	correlate,	13.78	

min	for	the	sample	and	11.21	min	for	the	standard.	The	second	highest	match	in	the	library	was	ethyl	

phenylacetate,	a	food	flavouring,	with	a	lower	match	of	just	30	%.	Analysis	using	chemical	ionisation	

showed	 a	 molecular	 ion	 peak	 of	m/z	 248	 which	 does	 not	 match	 with	 the	 molecular	 weight	 of	

methylphenidate	 (233	 gmol-1)	 or	 ethyl	 phenylacetate	 (164	 gmol-1).	 However	 it	 does	 relate	 to	

ethylphenidate,	an	analogue	of	methylphenidate	which	is	also	been	known	to	be	abused.	However,	

the	retention	time	for	ethylphenidate	standard,	again	does	not	match	that	of	the	unknown	peak.	All	

of	these	compounds	have	both	aromatic	and	ester	functionalities,	which	is	common	to	a	number	of	

organic	drug-like	molecules.	Therefore	with	the	information	collected	no	conclusion	can	be	provided	

as	to	the	identity	of	the	unknown	peak.	

The	aminoindanes	all	showed	similar	characteristic	fragmentation	patterns	corresponding	to	the	loss	

of	NH3.	 The	presence	of	 2-AI	 at	 133	m/z	was	 detected	 in	 five	 products	 (P2,	 P4,	 P6,	 P10	 and	P11)	

including	four	products	not	labelled	to	contain	2-AI	(P4,	P6,	P10	and	P11).	The	fragmentation	patterns	

and	retention	times	for	2-AI	were	consistent	with	that	seen	for	the	standards.	However,	P1	did	not	

contain	any	of	the	reputed	drug,	2-AI,	instead	just	caffeine	was	identified,	base	peak	m/z	194.	2-AI	has	

not	previously	been	reported	to	be	a	common	component	of	aminoindane	products.	Yet,	the	most	
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common	combination	found	in	the	products	(P10	and	P11)	analysed	was	a	mixture	of	2-AI	and	caffeine	

which	was	found	in	two	of	the	products,	while	caffeine	was	found	with	MDAI	 in	one	product	(P3).	

More	 worrying	 was	 the	 presence	 of	 an	 additional	 active	 ingredient,	 methiopropamine	 (MPA)	

molecular	ion	m/z	155;	in	combination	with	MDAI	in	Pink	Panther	(P9).	The	retention	time	of	MPA	

was	 found	 to	match	 the	standard,	with	 the	base	 ion	peak	at	m/z	155.	MPA	 is	a	new	psychoactive	

stimulant	that	is	structurally	related	to	methamphetamine	that	was	first	sold	in	the	UK	in	2010	under	

the	 name	 street	 name	 Blow137.	 Interestingly,	 Baron	 et	 al.	 also	 found	 the	 presence	 of	 MPA	 in	

combination	 with	 MDAI	 in	 Pink	 Panther	 samples	 they	 purchased	 in	 201147.	 The	 MPA/MDAI	

combination	is	now	commonly	seen	on	legal	high	websites	sold	under	the	product	name	M&M’s138.		

Blurberry	 was	 found	 to	 contain	 2-AI	 and	 caffeine,	 which	 are	 the	 reputed	 active	 ingredients.	 All	

branded	products	(P9-11)	claimed	to	contain	an	aminoindane,	although	they	did	not	state	which	one,	

as	well	as	caffeine	as	 the	active	 ingredients.	Pink	Champagne	 (P10)	was	purchased	 from	the	same	

supplier	as	Blurberry	(P11)	and	was	found	to	contain	the	same	active	ingredients,	2-AI	and	caffeine;	

their	physical	appearance	was	also	similar.	Both	Blurberry	(P11)	and	Pink	Champagne	(P10)	proved	

difficult	to	homogenise	and	dissolve	in	methanol	as	small	amounts	of	insoluble	solid	material	was	also	

present	even	after	sonication	and	vortexing,	suggesting	inorganic	bulking	agents.	The	remaining	solid	

was	filtered	out	before	analysis.	This	highlights	that	when	designing	a	sensor,	inorganic	constituents	

need	to	be	taken	into	account	along	with	organic.	Their	apparent	lack	of	solubility	in	organic	solvent	

may	mean	it	is	possible	to	filter	out	inorganic	bulking	agents	before	analysis	using	a	sensory	molecule,	

which	could	reduce	the	risk	of	interference.	However,	this	may	not	be	true	for	all	inorganic	bulking	

agents.		

Two	products,	P3	and	P4,	reputed	to	contained	5-IAI	were	analysed,	but	neither	were	found	to	contain	

the	molecular	ion	at	m/z	259,	which	as	seen	in	the	standard,	is	characteristic	of	5-IAI.	However,	P3	

contained	caffeine	and	MDAI	while	P4	contained	2-AI.	Earlier	studies	conducted	by	Bond	et	al.	did	

identify	the	presence	of	5-IAI	 in	samples	from	two	different	suppliers	both	labelled	as	pure	5-IAI16.	

However,	in	more	recent	studies	5-IAI	was	not	found	in	a	number	of	products	labelled	as	5-IAI47.		

2.3.2 High	Performance	Liquid	Chromatography	(HPLC)	

To	 date,	 GC-MS	 has	 proved	 to	 be	 the	 most	 commonly	 applied	 analytical	 method	 to	 determine	

aminoindane	 product	 content;	 however,	 this	 has	 been	 limited	 to	 identification	 only32,40,47.	 In	 this	

study,	a	liquid	chromatography	method	was	developed	to	quantify	aminoindane	derivatives	(i.e.,	2-

AI,	 5-IAI	 and	 MDAI),	 but	 also	 to	 investigate	 any	 non-volatile	 constituents.	 An	 initial	 HPLC	

chromatographic	 method	 was	 developed	 by	 analysing	 a	 standard	 mixture	 stated	 above,	 using	 a	

Phenomenex	Kinetex	5	µ	C18	column.	Four	standards,	2-AI,	MDAI,	5-IAI	and	caffeine,	were	analysed	
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to	 examine	 their	 chromatographic	 properties	 e.g.	 peak	 shape	 and	 tailing	 due	 to	 the	 amine	

functionalities.	 The	 analytes	 eluted	 at	 1.67	 (2-AI),	 2.2	 (MDAI),	 6.9	 (5-IAI)	 and	 3.2	 min	 (caffeine).	

However,	tailing	and	poor	resolution	were	observed	with	each	compound	(Figure	2.2).		

	

Figure	2.2	-	HPLC	separation	of	2,AI,	MDAI,	caffeine	and	5-IAI	standards	on	a	5	µ	C18	column	150	x	4.6	mm,	AJ0-8768	C18	

guard	column,	ACN/aqueous	orthophophoric	acid	(pH	2.1),	λ=	268	nm.	

This	is	likely	due	to	the	interaction	of	the	branched	amines	of	the	aminoindane	derivatives	with	the	

stationary	phase139.	Despite	the	structural	similarities	between	2-AI	and	5-IAI,	the	presence	of	iodine	

in	5-IAI	caused	it	to	eluted	later	in	the	run.	This	is	due	to	iodine	having	strong	interactions	with	the	

stationary	phase	leading	to	increased	peak	broadening	for	5-IAI.	In	an	attempt	to	improved	resolution,	

a	Kinetex	5	µ	C18	XB	column	was	used	to	reduce	tailing	(Figure	2.3).	Both	the	C18	and	the	XB-C18	

column	have	the	same	dimensions	(150	x	4.6	mm)	and	particle	size	(1.7	µm).	5-IAI	showed	the	most	

pronounced	 improvement	 with	 the	 peak	 width	 at	 base	 reducing	 from	 3.6	 to	 0.2	min,	 while	 2-AI	

improved	from	0.4	to	0.2	min.	As	predicted,	the	XB	column	helped	to	improve	peak	shape	for	basic	

compounds	through	addition	of	di-isobutyl	side	chain	which	end	caps	the	underivatised	silanol	phase.		
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Figure	2.3	 -	HPLC	separation	of	2-AI,	MDAI	and	5-IAI	using	the	XB-5	µ	C18	column	150	x	4.6	mm,	AJ0-8768	C18	guard	

column,	ACN/aqueous	orthophophoric	acid	(pH	2.1),	λ=	268	nm.	

A	 large	 number	 of	 NPS	 contain	 at	 least	 one	 amino	 group	 including	 cathinones,	 tryptamines	 and	

cannabinoids.	Therefore,	the	application	of	this	method	in	terms	of	the	separation	of	amines	could	be	

wide	 reaching.	 In	addition	 to	 this	halogens,	have	become	a	 common	addition	 to	NPS	 structures41.	

Therefore,	 understanding	 how	 5-IAI	 interacts	 with	 the	 stationary	 phase	 differently	 due	 to	 the	

presence	of	iodine,	could	be	applied	to	future	NPS	studies.		

Peak	purity	was	determined	for	each	peak	in	the	study	through	use	of	the	photo-diode	array	detector.	

The	UV	spectrum	of	each	chromatogram	was	studied,	to	ensure	that	no	additional	absorbance	from	

other	 substances	 could	 be	 observed	 at	 the	 same	 retention	 time.	 This	 confirmed	 that	 there	 is	 no	

additional	analytes	coeluting	with	the	compounds	of	interest,	which	is	possible	in	a	complex	mixture,	

which	can	often	contain	structurally	related	analogues	not	stated	on	packaging.	If	the	peaks	were	not	

pure	then	quantification	of	substances	would	be	inaccurate.		

The	 method	 was	 evaluated	 according	 to	 the	 International	 Conference	 on	 Harmonisation	 (ICH)	

guidelines	 for	 validation	 of	 analytical	 procedures135.	 The	 following	 validation	 characteristics	 were	

assessed:	linearity,	accuracy,	precision	and	specificity	(Table	2.2).	Calibration	standards	for	a	five	point	

curve	were	prepared	and	demonstrated	a	linear	response	(r2	=	0.999)	over	a	range	of	0.01	-	0.5	mg	

mL-1;	with	good	repeatability	for	each	concentration	(RSD	=	0.1	-	2	%)140.	The	accuracy	was	determined	

by	recovery	of	known	concentrations	of	each	standard	at	high,	medium	and	low	levels	in	methanol	in	

the	calibration	range.	Both	2-AI	and	caffeine	showed	recovery	values	within	13	%	of	the	expected.	For	

all	compounds	the	recovery	was	found	to	be	within	10	%	of	the	expected	concentration	value.	LOD	

values	were	calculated	for	caffeine,	MDAI,	2-AI	and	5-IAI	as	3.2,	2.9,	2.5	and	3.2	µgmL-1,	respectively.	
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Limits	of	quantification	were	found	to	be	9.8,	7.6,	8.7	and	9.6	µgmL-1	for	2-AI,	MDAI,	5-IAI	and	caffeine,	

respectively.	Previous	studies	for	caffeine	carried	out	by	Srdjenovic	et	al.	reported	an	LOD	of	0.7	µg	

ml-1	141.	The	LOQ’s	for	all	four	compounds	were	relatively	high	compared	to	published	data	on	similar	

drugs	of	abuse132,142.	This	may	be	due	to	the	accuracy	and	repeatability	around	the	LOD	being	relatively	

poor,	which	leads	to	a	higher	error	associated	with	the	intercept	and	slope	leading	to	a	higher	LOD	

value.	This	was	likely	caused	by	limitations	of	the	instrument	used.	The	HPLC	used	for	this	study	had	

two	single	piston	pumps;	this	caused	non-continuous	delivery	of	solvent	resulting	in	higher	baseline	

noise	levels	which	in	turn	affects	the	LOD.	However,	all	target	concentrations	were	above	the	LOQ,	

with	adequate	accuracy	and	recovery	values.	Previous	studies	for	calculation	of	the	LOD	for	calibration	

curves	heavily	weighted	at	 low	concentrations	have	 found	 that	using	 the	error	of	 the	 intercept	as	

opposed	 to	 the	 error	 of	 the	 slope	 leads	 to	 a	 lower	 calculated	 value	 for	 LODs	 and	 LOQs143,144.	 On	

comparison	of	the	two	methods	this	was	found	to	be	true	for	each	of	the	four	standards	in	this	study.	

Therefore,	the	method	has	been	found	to	be	fit	for	purpose.		

Table	2.2	-	Summary	of	validation	data	for	the	quantification	of	2-AI,	MDAI,	caffeine	and	5-IAI	obtained	using	a	5	µ	XB-C18	

Kinetic	Column	(150	x	4.6	mm),	AJ0-8768	C18	guard	column,	ACN/aqueous	orthophophoric	acid	(pH	2.1),	λ=	268	nm.	

		 2-AI	 MDAI	 Caffeine	 5-IAI	

tR	(min)	 1.04	±	0.01	 1.53	±	0.04	 3.12	±	0.04	 7.95	±	0.05	

LOD	(µgmL-1)a	 2.5	 2.9	 3.2	 3.2	

LOQ	(µgmL-1)b	 9.8	 7.6	 8.0	 9.6	

Precision	(%	RSD)	 	 	 	 	

0.025	mg	mL-1	 1.6	 2.4	 1.7	 3.2	

0.1	mg	mL-1	 0.88	 0.97	 0.36	 0.57	

0.5	mg	mL-1	 0.93	 0.73	 1.0	 0.56	

Accuracy	(%)	 	 	 	 	

0.025	mg	mL-1	 99	±	2	 160	±	2	 113	±	3	 62	±	3	

0.1	mg	mL-1	 87	±	2	 117.3	±	0.3	 107.3	±	0.5	 85	±	1	

0.5	mg	mL-1	 99	±	3	 109.4	±	0.7	 102	±	2	 97.2	±	0.7	

Co-efficient	of	regression	(r2)	 1.000	 1.000	 0.999	 1.000	

	

a	Limit	of	detection	(calculated	using	the	standard	error	of	the	intercept	and	the	slope).	
b	Limit	of	quantification	(calculated	using	the	standard	deviation	of	the	intercept	and	the	slope).	
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Using	the	identification	of	constituents	found	in	the	GC-MS,	HPLC	was	used	to	confirm	identity	and	

quantify	the	different	constituents	in	the	purchased	products.	HPLC	analysis	confirmed	identification	

of	 product	 content	 found	 through	 GC-MS	 analyses	 as	 seen	 in	 Table	 2.3.	 By	 using	 the	 reference	

standards,	 they	were	 all	 confirmed	 to	be	 the	 same	 constituents	 as	 identified	by	GC-MS.	A	GC-MS	

library	search	matched	the	unknown	peak	in	P1	with	methylphenidate;	however,	when	the	standards	

were	examined	by	HPLC	the	retention	times	differed.	Methylphenidate	standard	was	found	at	8.67	

min	 while	 the	 unknown	 peak	 appeared	 much	 earlier	 at	 3.27	 min.	 The	 CI	 data	 from	 the	 GC-MS	

suggested	 that	 the	 compound	 could	 be	 ethylphenidate,	 despite	 the	 retention	 times	 not	

corresponding.	The	retention	time	for	ethylphenidate	on	HPLC,	using	the	same	method	was	found	to	

be	 9.76	min.	Unsurprisingly,	 due	 to	 their	 chemical	 similarity	 this	 is	 close	 to	 the	 retention	 time	 of	

methylphenidate.	However,	once	the	data	shows	no	similarity	to	the	unknown	peak.		
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Table	2.3	-	Quantification	of	HPLC	results	with	confirmation	of	components	found	in	GC-MS.	

Product	Name	 HPLC	Retention	Time	

(min)	

Total	%	w/wa	 HPLC	and	GC-MS	

Confirmed	Identity	

P1:	2-AI	 3.27	±	0.01	 unconfirmed	 Unconfirmed	

3.20	±	0.02	 38.7	±	0.4	 Caffeine	

P2:	2-AI	 1.125	±	0.007	 88	±	1	 2-AI	

P3:	5IAI	 3.208	±	0.002	 22.9	±	0.6	 Caffeine	

1.656	±	0.002	 37	±	2	 MDAI	

P4:	5-IAI	 1.101	±	0.004	 67	±	1	 2-AI	

P5:	MDAI	 1.55	±	0.01	 35.1	±	0.5	 MDAI	

P6:	MDAI	 1.11	±	0.02	 94.4	±	0.8	 2-AI	

P7:	MDAI	 1.550	±	0.005	 93	±	2	 MDAI	

P8:	MDAI	 NA	 NA	 NA	

P9:	Pink	Panther	 1.641	±	0.009	 25.4	±	0.5	 MDAI	

1.62	±	0.01	 74	±	1	 MPA	

P10:	Pink	

Champagne	

2.514	±	0.006	 13.2	±	0.3	 2-AI	

3.125	±	0.008	 17.3	±	0.5	 Caffeine	

P11:	Blurberry	 1.117	±	0.003	 37.6	±	0.8	 2-AI	

3.131	±	0.006	 20.8	±	0.9	 Caffeine	

																								a	All	concentrations	were	calculated	as	%	w/w	to	1	standard	deviation.	

Both	the	GC-MS	and	the	HPLC	data	confirmed	the	presence	of	MDAI	in	four	products	(P3,	P5,	P7	and	

P9).	Quantification	by	HPLC	indicated	that	of	these	four	products	MDAI	was	found	in	concentrations	

ranging	from	25.4	(P9)	up	to	94	%	w/w	(P6),	which	was	the	highest	percentage	of	drug	found	in	any	

of	the	products.	HPLC	results	confirmed	the	presence	of	2-AI	and	caffeine	in	both	Pink	Champagne	

and	Blurberry	(P10	and	P11);	however,	the	percentage	composition	was	found	to	differ,	with	13	and	

38	%	w/w	of	2-AI	found	respectively.	Caffeine	concentrations	of	the	samples	were	also	not	consistent	

with	17	%	w/w	in	P10	and	21	%	w/w	in	P11.	Caffeine	was	also	found	in	two	further	products	at	higher	

concentrations	of	39	%	w/w	(P1)	and	23	%	w/w	(P3).	Caffeine	 is	a	common	additive	 found	 in	NPS	
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products	due	 to	 its	 stimulant	effect	and	ease	of	procurement.	A	number	of	previous	 studies	have	

detected	caffeine	in	NPS	products40,49;	however,	the	concentration	of	caffeine	is	often	not	reported.	

A	study	into	the	opioid	para-fluorofentanyl	(pFF)	reported	a	range	of	27.7	–	30.2	%	w/w	of	caffeine	in	

the	six	seized	capsules145.	This	 is	comparable	to	the	results	 found	for	the	aminoindanes	where	the	

range	of	caffeine	was	detected	at	17.3	–	38.7	%	w/w.	Concentrations	of	aminoindanes	were	found	in	

the	 range	 of	 13.21	 –	 94.4	 %	 w/w.	 This	 is	 comparable	 to	 a	 study	 conducted	 into	 the	 content	 of	

cathinone	products,	which	also	found	a	large	range	of	11	-	85	%	w/w	of	active	ingredient,	with	a	range	

of	12	-	42	%	for	the	mephedrone	containing	products146.	The	identified	content	of	Pink	Champagne	

(P10)	only	accounts	for	30.51	%	w/w	of	the	overall	content.	This	is	significantly	lower	than	the	other	

samples,	and	as	shown	in	the	label	claim	this	suggests	the	presence	of	inorganic	bulking	agents	that	

were	not	detected	using	either	GC-MS	or	HPLC	methods.	The	Pink	Champagne	label	claims	there	are	

amino	acid	complexes,	caffeine	and	cola	vera	as	well	as	the	active	ingredients	in	the	product.	A	study	

conducted	by	Comment	et	al.	utilised	inductively	couple	plasma-mass	spectrometry/	atomic	emission	

spectroscopy	(ICP-MS/AES)	to	examine	the	possible	inorganic	constituents	in	ecstasy	tablets147.	They	

found	large	concentrations	of	calcium,	magnesium	and	potassium	all	of	which	can	be	associated	with	

bulking	agents	such	as	magnesium	stearate	and	calcium	carbonate,	none	of	which	are	visible	using	

HPLC	or	GC-MS.	A	report	by	the	Centre	for	Public	Health	outlined	all	the	reported	cutting	agents	that	

have	been	found	in	illicit	drugs	as	well	as	other	contaminants	such	as	fatal	levels	of	lead148.	It	can	be	

seen	that	it	is	not	uncommon	to	find	lower	concentrations	of	active	ingredients	in	NPS	such	as	that	

seen	in	Pink	Champagne	(P10).	Overall,	2-AI	was	found	in	consistently	higher	concentrations	of	up	to	

95	%.	The	increasing	presence	of	2-AI	with	aminoindane	products	has	not	been	previously	reported.	

HPLC	analysis	confirmed	the	GC-MS	findings	that	no	5-IAI	was	detected	in	any	of	the	products.	It	was	

previously	stated	that	aminoindane	drug	labels	appear	to	be	used	to	cover	for	a	mixture	of	substances	

not	stated	on	the	label40.	Of	the	products	analysed	in	this	study,	only	50	%	contained	the	advertised	

compound.		

2.4 Conclusion	

Identification	and	quantification	of	eleven	aminoindane	products	was	carried	out	using	GC-MS	and	

HPLC.	 GC-MS	was	 used	 for	 primary	 identification	 of	 products.	 Electron	 ionisation	was	 carried	 out	

confirming	 the	 presence	 of	 four	 volatile	 organic	 components;	 caffeine,	 2-AI,	 MDAI	 and	MPA.	 An	

additional	 organic	 constituent	 was	 found;	 however,	 results	 were	 inconclusive	 as	 to	 the	 identity.	

Separation	of	all	four	peaks	was	achieved	using	an	XB-C18	column	giving	minimal	tailing,	reproducible	

peaks	 and	 repeatability.	 These	 results	 were	 not	 observed	 using	 a	 C18	 column	 with	 the	 same	

dimensions,	where	the	amine	functionalities	cause	peak	broadening.	This	highlights	the	need	for	an	

XB-C18	column	for	amine	based	analysis,	which	 is	critical	 for	NPS	analysis.	HPLC	data	confirms	the	
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presence	of	the	same	constituents	as	seen	in	the	GC-MS,	meaning	that	all	organics	were	either	volatile	

or	semi-volatile.	Quantitative	analysis	showed	concentration	of	aminoindanes	ranged	from	17	-	95	%	

w/w,	with	caffeine	found	in	four	samples	ranging	from	17-39	%	w/w.	Ten	out	of	the	eleven	samples	

can	be	concluded	to	contain	additional	constituents	not	visible	using	HPLC	or	GC-MS.	In	the	eleven	

products,	total	identified	content	varied	from	30.51	%	w/w	(P10)	to	99%	w/w	(P9).	This	highlights	the	

importance	of	sensitivity	for	any	in-field	detection	mechanism.	The	notion	that	NPS	products	are	pure	

has	been	further	proved	in	this	study	to	be	incorrect.	For	the	products	analysed,	six	out	of	the	eleven	

matched	their	label	claim,	but	no	5-IAI	was	detected	in	any	of	the	samples.	This	highlights	a	significant	

problem	with	NPS	detection,	that	there	is	little	if	no	continuity	between	the	purchased	drugs	and	the	

label	claims.	The	lack	of	5-IAI	has	been	noted	before;	this	study	further	confirms	despite	5-IAI	being	

sold	online,	it	is	not	actually	present	in	samples.	This	could	explain	why	the	popularity	of	5-IAI	has	not	

grown	 in	 the	predicted	manner.	Worth	mentioning	 is	 the	presence	of	2-AI	 in	 five	samples,	 four	of	

which	were	labelled	to	contain	other	drugs,	this	trend	has	not	previously	been	seen	and	is	important	

for	 understanding	 the	 prevalence	 of	 different	 aminoindanes.	 Both	 the	 GC-MS	 and	HPLC	methods	

stated	can	be	used	for	future	analysis	of	aminoindane	products,	and	could	be	adapted	for	use	with	

other	amphetamine-like	NPS,	for	fast	identification	and	quantification	of	product	content.		

Aminoindane	popularity	subsided	since	the	commencement	of	this	work,	thought	to	be	due	to	their	

reduced	potency	compared	to	other	amphetamine-like	substances.	Given	the	diminishing	popularity	

of	aminoindane	derivatives	during	the	undertaking	of	this	project,	the	decision	was	made	to	no	longer	

develop	a	sensory	probe	for	the	aminoindane	class	and	instead	focus	the	design	of	the	sensory	probe	

on	 the	 cathinone	 class.	 As	 emphasised	 in	 Chapter	 1	 cathinones,	 specifically	 mephedrone	 abuse,	

peaked	in	2010	and	has	stayed	prevalent	ever	since.	Aminoindanes	being	legal	makes	them	easy	to	

obtain	and	hence	they	are	readily	available	for	analysis;	this	is	not	the	case	for	cathinones.	However,	

a	large	amount	of	information	from	the	analysis	of	aminoindanes	is	still	relevant	when	designing	the	

sensory	molecule	 for	mephedrone.	 Specifically,	 from	 this	 work	 it	 is	 clear	 that	 the	 street	 samples	

analysed	do	not	just	contain	the	advertised	constituents.	With	concentrations	as	low	as	17	%	for	active	

ingredients,	clearly	the	full	matrix	of	the	samples	needs	to	be	understood	when	designing	a	sensory	

molecule.	 Furthermore,	 the	most	 common	 cutting	 agent	 identified	was	 caffeine,	 so	 evidently	 the	

sensory	molecule	needs	to	be	selective	over	caffeine	to	prevent	any	false	positives.	With	36	%	of	the	

samples	 not	 containing	 the	 active	 ingredient	 advertised,	 it	 highlights	 the	 need	 for	 selectivity	 over	

chemical	 analogues	 of	 the	 target	 drug.	 All	 of	 these	 findings	 give	 valuable	 information	 into	 the	

selectivity	and	sensitivity	needs	of	a	sensory	molecule.	Reports	by	LGC	state	that	similar	constituents	

have	been	found	in	cathinones	as	in	aminoindanes19,33,126,127,149;	therefore,	the	information	collected	
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from	the	analysis	of	aminoindanes	is	valuable	and	will	be	taken	forward	to	aid	the	rational	design	of	a	

sensory	molecule	for	cathinones.		

	



	

	

Chapter	3 Development	of	a	Three-Point	

Pharmacophore	Based	on	Protein-Ligand	

Interactions	

3.1 Introduction	

As	 highlighted	 in	 Chapter	 1,	 one	 of	 the	 main	 characteristics	 that	 current	 in-field	 NPS	 sensory	

mechanisms	lack	is	selectivity.	This	is	due	to	the	growing	number	of	structurally	related	NPS,	as	well	

as	the	range	of	cutting	agents	present	in	products.	The	importance	of	which	was	further	affirmed	in	

Chapter	2.	Therefore,	in	this	project	it	is	proposed	to	use	the	concept	of	biomimetic	design	to	tackle	

this	 problem.	 Protein-ligand	 interactions	 are	 known	 to	 be	 incredibly	 selective,	 and	 therefore	 an	

objective	approach	will	be	adopted	based	on	these	interactions	for	the	design	of	a	sensory	molecule.	

When	a	ligand	binds	in	a	protein	pocket	there	are	points	of	interactions	between	the	protein	and	the	

ligand	in	the	cavity,	it	is	these	interactions	that	allow	for	selective	recognition	of	the	ligand.	Mapping	

these	interactions	of	the	ligand	with	the	receptor	is	known	as	pharmacophore	modelling.	Using	these	

protein-ligand	interactions	to	tackle	selectivity	in	drug	design	using	pharmacophore	model	is	nothing	

new,	as	discussed	in	Chapter	1.	For	example,	Figure	3.1	shows	the	outline	of	a	pharmacophore	based	

on	interactions	between	a	protein	and	serotonin.	The	respective	distances	shown	are	based	on	the	

spatial	orientation	of	amino	acid	residues	from	the	receptor	that	form	a	cavity	which	binds	serotonin.		

	

Figure	3.1	-	Example	of	a	serotonin	pharmacophore.	The	different	colours	represent	different	pharmacophoric	features;	

H-bonding	accepting	green,	hydrophobic	pink,	and	π-stacking	in	blue.	The	radius	of	the	spheres	shows	the	distances	from	

a	central	point,	over	which	it	is	feasible	for	the	interactions	to	occur.	Distances	between	the	key	features	identified	by	the	

pharmacophore	shown	are	reported	in	Angströms	(Å).	
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The	 concept	 of	 pharmacophore	 design	 for	 the	 development	 of	 drug	 molecules	 (guests)	 is	 well	

established;	 however,	 using	 the	 technique	 for	 the	 design	 of	 host	 molecules	 for	 small	 molecule	

recognition	has	not	been	previously	attempted.	Using	the	same	principles	of	pharmacophore	design	

applied	to	the	development	of	guest	molecules,	it	is	feasible	to	design	host	molecules	for	interaction	

with	a	specific	guest,	i.e.	reverse	the	procedure.	

	This	pharmacophore	can	 then	be	used	as	 the	basis	 for	designing	a	 synthetic	host	molecule	which	

maps	these	points	and	mimics	the	binding	site.	As	previously	discussed,	proteins	are	large	complex	

macromolecules.	 To	 be	 sure	 that	 any	 interactions	 extracted	 for	 the	 pharmacophore	 model	 are	

credible,	it	is	important	to	understand	the	factors	that	can	affect	protein-ligand	binding.	There	are	five	

main	factors	that	need	to	be	considered	when	studying	proteins	for	pharmacophore	development;	B	

factors,	binding	energy	of	 ligands,	solvation	effects,	resolution	and	finally	position	of	 ligands	 in	the	

proteins.	The	importance	of	these	factors	has	been	discussed	in	detail	previously	(Chapter	1).	

As	discussed	in	Chapter	2,	the	rapid	change	in	NPS	abuse	away	from	aminoindanes	in	Europe	shifted	

the	target	class	of	interest	for	this	project	from	aminoindanes	to	cathinones,	specifically	mephedrone.	

Given	 this	 information,	 the	 target	of	 interest	 for	 sensor	design,	and	 therefore	 the	pharmacophore	

model	is	mephedrone.	

Therefore,	 the	aim	of	 this	work	 is	 to	develop	a	pharmacophore	model	 that	will	 aid	 in	 the	 rational	

design	of	a	selective	sensory	molecule	for	detection	of	mephedrone.	To	achieve	this,	information	on	

cutting	agents	from	the	analysis	of	aminoindane	internet	products	(Chapter	2),	along	with	literature	

sources	that	have	assessed	product	content,	will	be	used	to	develop	a	pharmacophoric	model;	upon	

which	the	design	of	sensory	molecules	will	be	based.	This	will	be	achieved	through	in-depth	analysis	

of	protein-ligand	 interactions	 for	 common	cutting	agents	and	chemical	analogues	of	mephedrone.	

From	which	detailed	binding	information	can	be	extrapolated	to	develop	a	pharmacophoric	model.		

3.2 Method	

3.2.1 Identification	of	Experimental	Structures	

The	 identification	of	protein-ligand	 interactions	started	with	a	 literature	search	of	current	drugs	of	

abuse	and	common	excipients	that	have	been	identified.	This	was	done	to	develop	an	understanding	

of	what	the	sensory	molecule	needs	to	be	selective	against.	Then	the	binding	information	of	these	

compounds	can	be	used	to	rationally	design	a	host	molecule	that	 is	selective,	by	excluding	binding	

properties	that	have	been	found	to	be	favourable	for	cutting	agents	and	other	drugs	of	abuse	that	can	

be	present	in	mephedrone	products.	To	provide	additional	binding	information	for	the	development	

of	the	pharmacophore,	identification	of	compounds	that	are	structurally	similar	to	mephedrone	was	
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also	carried	out.	Several	resources	were	used	in	order	to	collect	this	information	i.e.	the	Laboratory	of	

the	Government	 Chemist	 (LGC)	 drug	 intelligence	 bulletins,	 the	Advisory	 Council	 for	 the	Misuse	 of	

Drugs	(ACMD)	and	the	European	Monitory	Council	for	Drug	and	Drug	Addiction	(EMCDDA).	In	addition,	

serotonin	and	dopamine	were	included,	as	they	are	structurally	similar	to	mephedrone.	Paracetamol	

was	 also	 included	due	 to	 its	 use	 as	 an	adulterant	 in	 cathinones,	 but	 also	because	of	 its	 structural	

similarities	to	mephedrone.	Protein	interactions	with	paracetamol	were	searched	for	under	the	UK	

trade	name	as	well	as	the	US	trade	name,	Tylenol	and	its	chemical	name	acetaminophen	to	ensure	all	

possible	hits	were	collected.		

The	advanced	search	tool	for	Reaxys	was	used	alongside	the	structure	of	mephedrone	as	the	product,	

for	search	criteria	“product”	and	“similar”.	The	CAS	Registry	Number	was	used	in	order	to	determine	

structural	names	as	well	 as	 any	 commonly	used	name	 that	were	 then	 searched	 for	 in	 the	Protein	

DataBank	(PDB).	All	hits	were	collated	into	a	spreadsheet	and	taken	forward	for	quality	control.			

3.2.2 Quality	Control	

Quality	 control	was	 performed	 to	 ensure	 that	 all	 data	 used	 in	 the	 pharmacophore	modelling	was	

robust.	 The	 flow	chart	 shown	 in	 Figure	3.2	outlines	 the	procedures	 carried	out	on	each	of	 the	37	

proteins	to	ensure	viability.		
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Figure	3.2	-	Flow	chart	showing	the	methodology	of	protein	quality	control	for	X-ray	crystal	structures.	

It	 was	 also	 noted	 which	 type	 of	 experimental	 data	 was	 being	 reported	 i.e.	 NMR	 or	 X-ray	

crystallography.	 For	 each	 of	 the	 proteins	 the	 PDB	 files	 were	 used	 to	 extract	 the	 appropriate	

information	for	ligand	binding;	PDB	accession	code,	ligand	ID,	resolution,	relative	B	factor,	maximum	

B	factor,	occupancy	and	the	presence	of	any	mutations.	

The	interaction	distances	between	ligand	and	protein,	and	the	neighbouring	residues,	relative	to	the	

ligand,	were	determined	using	the	Ligand	Explorer	4.1.0	software	on	the	PDB	website.		

For	 H-bonding	 interactions	 all	 interactions	 within	 5	 Å,	 a	 minimum	 acceptor	 angle	 of	 90˚	 and	 a	

minimum	donor	angle	of	120˚,	were	included.	For	hydrophobic	interactions	a	distance	of	4.5	Å	was	

used	as	a	cut-off150.	All	neighbouring	residues	within	4	Å	of	the	ligand	were	used	to	determine	B	factor	

values	for	the	cavity,	to	ensure	a	full	representation	of	cavity	stability.	All	B	factors	of	atoms	in	binding	

residues	were	compared	against	the	average	B	factor	for	the	PDB	complex.	The	same	parameters	were	

applied	to	the	analysis	of	all	compounds	included	from	the	PDB.	

Once	all	the	criteria	were	considered	(Figure	3.2),	the	primary	data	was	studied	from	the	published	

journals.	This	was	to	ensure	that	no	information	discussed	in	the	corresponding	article	was	different	

to	that	stated	in	the	PDB	file.	The	literature	was	also	useful	in	helping	to	generate	understanding	as	
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to	where	 in	the	structure	the	 ligand	 is	binding,	 i.e.	ensuring	that	 it	 is	not	occurring	at	an	 interface	

between	two	crystals	which	could	be	an	artefact	of	crystallisation.	Any	proteins	and	binding	sites	that	

did	not	comply	with	any	of	the	above	criteria	were	excluded	from	further	analysis.	

3.2.3 Binding	Site	Analysis	using	Phase	

Further	analysis	was	performed	using	Phase	in	Macromodel	(Schrӧdinger)151.	Phase	is	software	which	

allows	for	detailed	analysis	of	protein-ligand	binding	from	crystallographic	data.	All	 interactions	for	

each	residue	in	the	binding	site	of	the	37	proteins	were	recorded.		

For	all	hydrophobic	interactions	the	distances	over	which	interactions	between	the	protein	and	ligand	

occurred	were	recorded,	and	the	type	of	interaction	was	noted.	In	the	case	of	π-stacking	interactions	

the	 relative	orientation	was	noted	 i.e.	 edge/face	or	 face/face.	 For	 hydrogen	bonding	 the	 angle	of	

interaction	was	also	recorded.		

The	 following	 parameters	 were	 used	 for	 protein	 preparation:	 assign	 bond	 order,	 add	 hydrogens,	

create	zero	order	bonds	to	metals,	create	disulphide	bonds	and	deletion	of	waters	beyond	5	Å	from	

hetero	groups.	Water	molecules	closer	than	5	Å	were	included	to	highlight	any	hydrogen	bonding	to	

water	that	sits	in	the	cavity	and	give	an	idea	of	the	impact	of	solvation	in	the	binding	site	on	protein-

ligand	binding.	 Ligand	diagrams	were	generated	using	 residues	within	5	Å	of	 the	molecule	and	all	

possible	binding	interactions	were	considered	during	the	assessment.	

Binding	site	analysis	also	allows	for	solvation	to	be	observed	in	a	binding	cavity.	Both	structural	and	

non-structural	water	molecules	can	interact	with	the	ligand;	however,	only	interactions	occurring	with	

structural	water	molecules	were	accepted.	Structural	water	can	be	assumed	to	be	an	addition	to	the	

binding	cavity	due	to	their	thermodynamic	stability,	and	therefore,	can	be	considered	as	an	additional	

binding	point.	Highly	solvated	binding	sites	that	contain	non-structural	water	molecules	have	been	

excluded	from	further	analysis.	Structural	water	molecules	were	determined	to	be	those	that	had	B-

factors	in	the	same	range	as	the	residues	within	the	binding	site.		

3.2.4 Binding	Site	Analysis	using	SiteMap		

SiteMap	was	used	(Schrödinger)	to	carry	out	binding	site	identification	and	validation152.	The	following	

parameters	were	used:	5	Å	buffer,	12	site	points	per	reported	site,	more	restricted	hydrophobic	site	

was	applied,	and	a	standard	grid	using	the	OPLS_2005	force	field.	All	binding	sites	were	cropped	at	4	

Å	 from	 the	 nearest	 site	 point.	 Each	 of	 the	 interactions	 sites	 collected	 from	 Phase	 analysis	 were	

compared	to	the	binding	site	analysis	produced	by	SiteMap,	to	ensure	correlation	between	the	two	

before	the	pharmacophore	was	generated.		
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3.2.5 Ligand	Minimisation	using	Maestro		

Each	of	the	ligands	were	extracted	from	their	complexes	and	minimised	using	the	minimisation	tool	

in	Maestro	and	default	parameters.	The	conformation	of	the	complexed	ligand	was	extracted	and	the	

two	ligands	were	overlaid	using	the	superposition	of	ligands	tool.	The	root	mean	square	(RMS)	values	

were	calculated	in	situ,	to	prevent	transformation.	The	maximum	difference	between	atoms	as	well	

as	the	average	RMS	value	for	each	of	the	ligands	was	calculated.	All	values	below	0.5	Å	were	accepted.		

3.2.6 Pharmacophore	Design	

For	each	of	the	protein	binding	sites	remaining	after	validation,	the	three	most	favourable	interactions	

were	noted.	The	most	 favourable	being	H-bonding	 followed	by	p-stacking	and	 finally	hydrophobic	

interactions.	 Binding	 sites	 for	 the	 same	 compound	 that	 lacked	 consensus	 in	 terms	 of	 their	

pharmacophores	 were	 discarded.	 Similar	 features	 were	 aligned	 and	 the	 pharmacophores	 were	

overlaid.	 Angles	 and	 distances	 of	 typical	 features	 between	 pharmacophores	 were	 measured	 and	

assessed.	 Using	 the	 similarities	 between	 the	 overlaid	 features	 a	 consensus	 pharmacophore	 was	

developed.	 This	 produced	 a	 3-point	 pharmacophore	 which	 was	 an	 amalgamation	 of	 each	 of	 the	

individual	 pharmacophores	 producing	 a	 consensus	 pharmacophore	 by	 averaging	 the	 geometrical	

components.	

3.3 Results	and	Discussion	

3.3.1 Selection	Criteria		

Mephedrone	was	 chosen	 as	 the	 guest	molecule	 of	 interest	 for	 sensor	 design,	 and	 therefore,	 the	

selection	 of	 guest	 molecules	 studied	 reflected	 this.	 The	 guest	 molecules	 selected	 fall	 into	 two	

categories;	molecules	that	the	sensor	must	be	selective	against,	and	therefore,	the	binding	features	

should	 be	 excluded	 from	 the	 pharmacophore	 design,	 and	 structurally	 related	 molecules	 to	

mephedrone,	whose	binding	properties	the	pharmacophore	model	should	reflect.	Selection	criterion	

for	the	inclusion	of	protein-ligand	interactions	in	the	spreadsheet	for	analysis	was	performed	through	

literature	 searches	of	 current	drugs	of	 abuse	and	 common	excipients	 that	have	been	 identified	 in	

mephedrone	 and	 also	 supported	 from	 the	 aminoindane	 study	 in	 Chapter	 2.	 Table	 3.1	 shows	 the	

compounds	 included	 in	 the	 spreadsheet	 and	 the	 rationale	 behind	 their	 selection.	 The	 LGC	 drug	

intelligence	bulletins	have	been	published	quarterly	since	2011	and	summarizes	the	drug	seizures	in	

that	quarter	as	well	as	highlighting	common	adulterants	that	have	been	identified	in	them19.	They	are	

the	main	source	of	up	to	date	adulterant	information.	In	addition,	the	Advisory	Council	for	the	Misuse	

of	Drugs	(ACMD)	is	a	good	resource	for	bulking	agents	identified	in	cathinone	samples	in	the	UK,	in	

particular	 their	 report	 on	 the	 “Consideration	of	 Cathinones	 for	Controlled	 Status”21.	 The	 EMCDDA	
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regularly	updates	its	websites	in	relation	to	seizures	in	the	European	Union.	They	published	a	report	

in	2010	related	to	cathinones	and	common	adulterants,	as	well	as	a	joint	report	with	Europol	into	the	

specific	 abuse	 of	 mephedrone	 in	 Europe153,154.	 The	 LGC	 report	 published	 in	 2012	 stated	 that	

cathinones	had	been	found	to	contain	similar	adulterants	to	those	found	in	cocaine,	so	information	

has	been	collected	from	cocaine	in	reports	dated	before	2012126.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Table	3.1	-	The	15	compounds	collected	and	considered	for	the	protein-ligand	analysis.	
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Compound	Identified	 Source	 Year	 Use	

Benzocaine	 LGC	–	Drug	Intelligence	Bulletin	 2011	 Anaesthetic	

LGC	–	Drug	Intelligence	Bulletin	 2012	

LGC	–	Drug	Intelligence	Bulletin	 2013	

ACMD,	Consideration	of	Cathinones	 2010	

Caffeine	 LGC	–	Drug	Intelligence	Bulletin	 2011	 Stimulant	

LGC	–	Drug	Intelligence	Bulletin	 2012	

LGC	–	Drug	Intelligence	Bulletin	 2013	

ACMD,	Consideration	of	Cathinones	 2010	

UNODC,	Challenges	of	NPS	 2013	

Glucose		 LGC	–	Drug	Intelligence	Bulletin	 2011	 Bulking	agent		

LGC	–	Drug	Intelligence	Bulletin	 2012	

LGC	–	Drug	Intelligence	Bulletin	 2013	

Lactose	 LGC	–	Drug	Intelligence	Bulletin	 2011	 Bulking	agent		

LGC	–	Drug	Intelligence	Bulletin	 2012	

Europol-EMDCCA	Joint	Report	 2010	

Lidocaine	 Federal	Registration,	Department	of	Justice		 2011	 Anaesthetic	

Lignocaine	 LGC	–	Drug	Intelligence	Bulletin	 2011	 Anaesthetic	

LGC	–	Drug	Intelligence	Bulletin	 2012	

LGC	–	Drug	Intelligence	Bulletin	 2013	

Paracetamol	 LGC	–	Drug	Intelligence	Bulletin	 2012	 Analgesic		

LGC	–	Drug	Intelligence	Bulletin	 2013	

EMCDDA	–	Synthetic	Cathinones	Report	 2010	

Procaine	 LGC	–	Drug	Intelligence	Bulletin	 2011	 Anaesthetic	

LGC	–	Drug	Intelligence	Bulletin	 2012	

Sucrose	 LGC	–	Drug	Intelligence	Bulletin	 2011	 Bulking	agent		

LGC	–	Drug	Intelligence	Bulletin	 2012	

LGC	–	Drug	Intelligence	Bulletin	 2013	

Cocaine	 EMCDDA	–	Synthetic	Cathinones	Report	 2010	 Stimulant,	 drug	 of	
abuse	

ACMD,	Consideration	of	Cathinones	 2010	

LGC	–	Drug	Intelligence	Bulletin	 2012	

Ephedrine	 Europol-EMDCCA	Joint	Report	 2010	 Mephedrone	
Precursor,	stimulant		

EMCDDA	–	Synthetic	Cathinones	Report	 2010	

MDMA	 Europol-EMDCCA	Joint	Report	 2010	 Stimulant,	 drug	 of	
abuse	

Methamphetamine	 U.S	Department	of	Justice	–	Situation	Report	 2011	
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ACMD,	Consideration	of	Cathinones	 2010	 Stimulant,	 drug	 of	
abuse	

Pseudoephedrine	 Europol-EMDCCA	Joint	Report	 2010	 Mephedrone	
Precursor,	stimulant		

EMCDDA	–	Synthetic	Cathinones	Report	 2010	

	

Ephedrine,	 pseudoephedrine,	 lignocaine	 and	 benzocaine	 all	 failed	 to	 produce	 hits	 in	 the	 Protein	

Database	 and	 therefore,	 no	 direct	 protein-ligand	 binding	 information	 is	 available	 for	 these	

compounds.	 Drugs	 such	 as	 MDMA	 and	 methamphetamine	 have	 not	 been	 commonly	 found	 with	

mephedrone	in	samples	but	have	been	included	due	to	their	structural	similarities	and	are	therefore	

predicted	to	have	similar	binding	properties.	They	have	also	been	included	to	ensure	that	the	sensor	

is	designed	with	possible	drugs	of	abuse	that	could	induce	false	positives	in	mind,	to	help	increase	the	

selectively	of	the	sensor	to	mephedrone.		

In	order	to	expand	the	search	further,	 information	on	the	binding	of	serotonin	and	dopamine	was	

included.	Mephedrone	works	by	inhibition	of	the	dopamine	and	serotonin	receptors	and	therefore,	

mimics	the	actions	of	serotonin	and	dopamine	due	to	its	structural	similarities155.	By	finding	valid	data	

for	the	binding	of	these	neurotransmitters,	information	can	be	extracted	and	used	to	help	design	an	

effective	sensor	for	mephedrone.	It	was	not	possible	to	find	binding	data	for	dopamine	and	serotonin	

receptors,	as	there	is	a	lack	of	crystal	structures	for	these	receptors	or	any	closely	related	G-protein	

coupled	 receptors	 (GPCR)	 because	 of	 the	 difficulties	 in	 crystallizing	membrane-bound	 proteins156.	

There	are,	however,	a	number	of	hits	in	the	PDB	of	proteins	that	are	bound	to	serotonin	or	dopamine,	

particularly	 cytochrome	 P450	 variants.	 Serotonin	 and	 dopamine	 produced	 seven	 and	 four	 hits	

respectively,	which	were	taken	forward	for	further	analysis.		

Results	from	the	initial	searches	of	the	PDB	yielded	37	hits	(Table	3.2).	This	was	considered	a	relatively	

small	data	set	to	take	forward	into	quality	control	studies.	Therefore,	to	try	and	increase	the	number	

of	structures	further	search	tools	were	employed.	The	chemical	search	database,	Reaxys157	was	used	

to	try	and	increase	the	dataset.	This	allows	for	more	compounds	that	are	likely	to	have	similar	binding	

properties	to	mephedrone	to	be	included	that	may	not	be	common	drugs	of	abuse.	This	produced	22	

near	hits	for	compounds,	as	well	as	14	position/stereoisomers,	as	seen	in	Figure	3.3.	
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Figure	 3.3	 -	 Reaxys	

substance	search	based	on	structurally	similar	compounds	to	mephedrone.	

Compounds	with	near	hits	are	defined	as	 including	“structures	containing	the	same	ring	and	chain	

systems	(possibly	multiple)	with	the	original	relative	positions	of	substituents	and	extended	by	further	

simple	substituents	such	as	hydrocarbons”157.	Medium	hits	are	defined	as	“structures	with	a	wider	

range	of	rings	and	substituents:	the	degree	of	unsaturation,	form	and	substitution	patterns	of	rings	is	

extended”157.	Therefore,	those	compounds	included	as	medium	hits	have	not	been	investigated	for	

possible	binding	properties.	All	36	compounds	classed	as	near	hits	and	position/stereoisomers	were	

investigated	in	terms	of	their	structural	similarities.	Most	of	the	hits	in	Reaxys	are	novel	compounds	

that	are	not	commonly	available.	None	of	the	36	compounds	produced	hits	in	the	PDB.	Therefore,	no	

further	compounds	were	included	in	the	spreadsheet	based	on	Reaxys	searches.	The	final	selection	of	

compounds	taken	forward	can	be	seen	in	Table	3.2.	From	the	compounds	selected,	caffeine,	lidocaine,	

paracetamol	 and	 cocaine	 have	 been	 included	 as	molecules	 to	make	 the	 sensor	 selective	 against.	

Methamphetamine,	MDMA,	serotonin	and	dopamine	are	all	molecules	that	are	structurally	similar	to	

mephedrone,	 and	 therefore,	 can	 be	 used	 to	 extract	 pharmacophoric	 binding	 features	 that	 could	

reflect	those	of	mephedrone.		

	

	

	

	

	

	

	

	

Table	3.2	-	37	proteins	collected	showing	their	PDB	accession	codes	and	the	ligand	of	interest	that	is	interacting	with	the	

protein.	
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PDB	Accession	Code	 Ligand	ID	

3RFM	 Caffeine	

1C8L	 Caffeine	

3G6M	 Caffeine	

2A3B	 Caffeine	

1L5Q	 Caffeine	

1L7X	 Caffeine	

1GFZ	 Caffeine	

3DDS	 Caffeine	

3DDW	 Caffeine	

3DD1	 Caffeine	

3GKZ	 Methamphetamine	

3JQZ	 Lidocaine	

3TTR	 Lidocaine	

1Q72	 Cocaine	

2AJV	 Cocaine	

1I7Z	 Cocaine	

2PGZ	 Cocaine	

3GM0	 MDMA	

1TYL	 Paracetamol	

1TYM	 Paracetamol	

2DPZ	 Paracetamol	

2OCU	 Paracetamol	

3DJI	 Paracetamol	

3PY4	 Paracetamol	

4A9J	 Paracetamol	

4GN6	 Paracetamol	

3ADV	 Serotonin	

4DTW	 Serotonin	

4DUE	 Serotonin	

2QEH	 Serotonin	

3BRN	 Serotonin	

3NK1	 Serotonin	

2YMD	 Serotonin	

4DTZ	 L-Dopamine	

2QMZ	 L-Dopamine	
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3NK2	 L-Dopamine	

5PAH	 L-Dopamine	

	

3.3.2 Quality	Control		

For	each	of	the	37	protein-ligand	complexes,	detailed	understanding	of	the	protein-ligand	interactions	

occurring	was	required.	All	protein-ligand	H-bonding,	π-stacking	and	hydrophobic	interactions	were	

identified	and	recorded	including	the	residue	that	was	 interacting	and	the	 interatomic	distances	 in	

Angströms	 (Å).	All	37	proteins	 showed	at	 least	 three	 interactions	with	 the	 ligand,	2YMD	bound	 to	

serotonin	showed	the	greatest	number,	with	16	interaction	points.		

For	each	of	the	residues	in	the	binding	site,	the	B	factors	were	recorded	and	the	average	B	factor	for	

a	residue	was	compared	against	the	average	B	factor	for	the	protein.	This	is	not	the	Wilson	plot	value,	

which	is	commonly	used.	The	reason	the	Wilson	plot	value	was	not	used	is	because	it	assumes	random	

distribution	of	atoms,	which	is	not	true	for	all	proteins,	especially	those	with	low	resolution	(>3	Å)	or	

high	solvation	in	X-ray	crystallography158,	for	example	3GM0.	Therefore,	for	this	work	determination	

of	relative	thermodynamic	stability	has	been	achieved	by	using	the	average	B	factor.		

The	occupancy	for	each	of	the	complexes	was	recorded;	this	was	found	to	be	one	for	all	complexes.	

This	means	that	for	all	the	proteins	considered	the	unit	cells	were	identical	throughout	the	crystal	and	

no	further	analysis	needs	to	be	performed.		

The	 experimental	 method	 was	 noted	 for	 all	 of	 the	 complexes,	 and	 for	 all	 37	 proteins	 X-ray	

crystallography	 was	 used	 as	 the	 structural	 elucidation	 method.	 The	 resolution	 of	 complexes	 is	

important	when	studying	protein-ligand	interactions	using	X-ray	crystallography	so	for	each	complex	

this	was	recorded.		

The	resolution	of	a	crystal	structure	denotes	the	quality	of	the	data.	For	example	2AJV	has	the	best	

resolution	 in	 this	 dataset	 at	 1.5	 Å.	 This	 means	 that	 it	 is	 possible	 to	 conclude	 that	 an	 observed	

interaction	at	a	distance	greater	than	1.5	Å	is	real,	within	the	constraints	applied	to	forming	the	crystal.	

Any	interactions	below	this	distance	cannot	be	verified	with	a	great	degree	of	certainty.	Given	that	

hydrogen	 bonds	 commonly	 occur	 between	 atoms	 at	 distances	 approximately	 1.5-2.5	 Å159,	 any	

resolution	higher	than	this	does	not	definitively	show	the	presence	of	hydrogen	bonding.	3RFM	has	

the	poorest	resolution	at	3.6	Å	and	was	therefore	excluded;	the	remaining	complexes	have	resolutions	

<	2.65	Å.	

Mutations	in	a	protein	often	occur	for	experimental	reasons,	such	as	to	understand	the	effect	of	a	

particular	residue	on	binding,	or	to	help	a	protein	crystallise.	However,	it	is	important	to	understand	
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if	they	have	occurred,	and	where.	Two	of	the	36	proteins	studied	contained	mutations	in	the	binding	

site;	 4DTW	and	 4DUE.	Mutations	 anywhere	 in	 the	 protein	 can	 affect	 the	 binding	 site	 as	 they	 can	

change	the	overall	structure	of	the	protein;	however,	mutations	in	the	binding	cavity	are	likely	to	have	

a	more	significant	effect	on	the	protein-ligand	binding	interactions	being	studied.	Therefore,	4DTW	

and	4DUE	were	excluded.		

To	ensure	that	all	information	collected	from	the	PDB	is	correct	and	complete	the	original	published	

journal	articles	were	investigated.	This	gave	further	insight	into	how	the	experiments	were	carried	out	

as	well	as	providing	details	with	respect	 to	the	position	of	 the	binding	sites.	Seven	of	 the	proteins	

(3PY4,	4GN6,	2QMZ,	2OCU,	3TTR,	2DPZ	and	1I7Z)	did	not	have	a	corresponding	journal	article;	these	

were	still	included	for	further	validation,	as	there	was	no	evidence	to	exclude	them	at	this	stage.	Of	

the	remaining	27	complexes,	seven	(1C8L,	1GFZ,	3JQZ,	1L5Q,	1L7X,	2PGZ	and	3NK1)	were	excluded	

from	further	analysis	as	the	protein-ligand	interaction	occurred	at	the	interface	between	two	crystal	

subunits	(Figure	3.4).	The	most	common	cause	for	exclusion	based	on	journal	data	was	the	protein-

ligand	binding	occurring	at	the	domain	 interface,	 this	 is	a	product	of	crystallisation	due	to	analysis	

using	X-ray	crystallography,	and	not	indicative	of	interactions	that	would	naturally	occur160.	5PAH	was	

excluded	due	to	large	number	of	metal	interactions	that	were	stabilising	the	dopamine	ligand	in	the	

protein.	This	is	not	a	suitable	representation	of	the	type	of	data	that	needs	to	be	extracted	in	order	to	

develop	the	pharmacophore,	or	that	can	be	incorporated	into	a	small	host	molecule.	 In	total	eight	

proteins	were	 excluded	 due	 to	 undesirable	 or	 unreliable	 protein-ligand	 binding	 properties;	 5PAH,	

1C8L,	1GFZ,	3JQZ,	1L5Q,	1L7X,	2PGZ	and	3NK1.	

	

Figure	3.4	-	Caffeine	binding	between	two	protein	subunits	in	1C8L.	

The	average	B-factors	for	each	residue	were	compared	against	the	maximum	B-factor	for	the	protein.	

B-factors	are	an	indication	of	thermodynamic	stability;	therefore,	 if	the	B-factors	of	the	residues	in	
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the	pocket	are	high	it’s	possible	that	the	structure	is	not	truly	representative	of	how	the	protein-ligand	

complex	is	formed	in	vivo	given	that	it	is	subject	to	a	large	degree	of	thermal	mobility.	For	each	of	the	

26	remaining	complexes	studied	it	was	decided	that	all	residues	in	the	binding	cavity	must	report	B-

factor	values	below	80	%	of	the	maximum	for	that	structure	in	order	to	be	retained.	Two	complexes	

were	 excluded	 based	 on	 this	 criteria;	 3DDS	 and	 1Q72.	 Thus,	 twenty-three	 complexes	were	 taken	

forward	for	binding	analysis	using	the	Phase	software	(Table	3.3).	At	this	stage,	the	ligands	still	range	

from	cutting	agents	such	as	caffeine	to	aid	in	selectivity,	to	structurally	related	compounds	such	as	

methamphetamine	and	serotonin.		

Table	3.3	-	All	23	proteins	that	were	accepted	after	quality	control	and	taken	forward	for	binding	analysis	using	Phase.	

PDB	Accession	Code	 Ligand	ID	 Resolution	(Å)	 Occupancy	of	1.0	

3G6M	 Caffeine	 1.65	 yes	

2A3B	 Caffeine	 1.9	 yes	

3DDW	 Caffeine	 1.9	 yes	

3DD1	 Caffeine	 2.57	 yes	

3GKZ	 Methamphetamine	 1.9	 yes	

2AJV	 Cocaine	 1.5	 yes	

1I7Z	 Cocaine	 2.3	 yes	

3GM0	 MDMA	 2.4	 yes	

1TYL	 Paracetamol	 1.9	 yes	

1TYM	 Paracetamol	 1.9	 yes	

2DPZ	 Paracetamol	 2.1	 yes	

2OCU	 Paracetamol	 2.38	 yes	

3DJI	 Paracetamol	 1.95	 yes	

3PY4	 Paracetamol	 2.42	 yes	

4A9J	 Paracetamol	 1.9	 yes	

4GN6	 Paracetamol	 2.42	 yes	

3ADV	 Serotonin	 2.27	 yes	

2QEH	 Serotonin	 2.1	 yes	

3BRN	 Serotonin	 2	 yes	

2YMD	 Serotonin	 1.96	 yes	

4DTZ	 L-Dopamine	 1.55	 yes	

2QMZ	 L-Dopamine	 2.1	 yes	

3NK2	 L-Dopamine	 2.65	 yes	
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3.3.3 Binding	Analysis	using	Phase	

The	Phase	software	was	used	to	give	more	detailed	information	into	the	type	of	binding	interactions	

between	each	of	the	ligands	and	the	proteins	they	were	complexed	with,	specifically	the	bond	length	

and	angles	of	those	interactions.	Each	of	the	interactions	were	analysed	according	to	the	validation	

criteria	using	Phase	to	ensure	they	were	viable.	Phase	allows	for	shape	based	screening	of	each	of	the	

protein-ligand	interactions.	This	is	important	to	understand	the	3D	conformation	of	the	ligand	in	the	

protein	cavity,	and	how	this	relates	to	the	observed	interactions.		

To	obtain	the	 information	needed	to	develop	a	pharmacophore	from	the	proteins	collected,	 three	

interaction	points	in	the	binding	cavity	are	needed.	Hydrogen	bonding	was	considered	to	be	the	most	

desirable	 interaction,	due	 to	 the	strength	of	 the	 interaction.	For	hydrogen	bonding	both	 the	bond	

length	and	the	angle	of	interaction	were	collected.	p-stacking	interactions	were	the	next	interactions	

considered.	For	these	interactions	the	bond	length	and	type	of	p-stacking	interaction	was	noted.	There	

are	three	main	types	of	p-stacking	interactions;	edge/face,	face/face	and	in	special	circumstances	p-

cation	binding.	For	each	of	the	p-stacking	interactions	the	type	of	interaction	was	recorded,	as	this	

may	be	important	when	considering	the	final	pharmacophore	design.	Complexes	containing	caffeine	

exclusively	showed	face/face	p-stacking	interactions,	the	methamphetamine	and	MDMA	complexes	

contained	edge/face	interactions.		

The	final	interaction	considered	was	hydrophobic	interactions.	These	occur	between	ligands	and	the	

hydrophobic	areas	in	the	protein	cavity.	Hydrophobic	interactions	are	individually	the	weakest	of	the	

interactions;	however,	 they	are	 the	most	numerous	and	 important	 for	 stabilising	 the	 ligand	 in	 the	

cavity	and	can	affect	the	residues	considered	in	the	cavity	for	pharmacophore	design.		

Before	analysis	all	proteins	were	prepared	systematically	to	ensure	that	any	problems	in	the	protein	

structure	were	 highlighted,	 and	 also	 to	 ensure	 all	 relevant	 hydrogen	 atoms	were	 included,	which	

allows	any	hydrogen	bonding	to	be	seen.	After	protein	preparation,	a	number	of	 the	proteins	had	

missing	atoms,	overlapping	atoms,	invalid	atom	types	or	alternative	positions	for	atoms.	The	last	one	

means	that	despite	the	occupancy	stated	as	being	1	for	each	of	the	atoms	from	the	data	collected	

from	PDB	records,	some	of	the	atoms	were	in	fact	found	to	have	an	occupancy	value	of	0.5.	This	may	

indicate	that	each	unit	cell	is	not	the	same	in	the	protein;	however,	it	may	also	be	indicative	of	two	

possible	rotamers	for	a	specific	sidechain.	Given	the	lack	of	information	at	this	stage,	these	proteins	

were	retained,	and	further	validation	was	carried	out.		

Ligands	usually	bind	by	displacing	water	from	a	binding	site161.	However,	highly	stable	water,	based	

on	thermodynamic	stability	(B-factors),	are	energetically	unfavourable	to	displace	and	consequently	

the	ligand	may	not	bind	in	the	cavity,	or	it	may	bind	via	the	water	molecules.	This	is	not	a	property	of	
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proteins	that	is	easily	mimicked	in	a	small	molecule.	However,	such	highly	stable	water	molecules	can	

be	considered	to	be	structural	waters,	i.e.	they	become	a	feature	of	the	binding	cavity	and	therefore,	

such	interactions	can	be	considered	to	be	as	useful	as	those	occurring	through	fixed	residues.	Such	

interactions	that	occur	through	thermodynamically	stable	water	molecule	were	accepted.		

Highly	 solvated	 cavities	 can	 also	 be	 indicative	 of	 an	 open	 binding	 cavity	 and	 could	 indicate	 that	

protein-ligand	binding	is	less	favourable.	This	is	because	open	cavities	are	less	likely	to	encapsulate	

and	bind	to	the	entire	ligand,	which	would	make	it	less	selective	as	a	sensor.	Highly	solvated	protein	

pockets	were	eliminated	from	further	analysis.	There	was	a	total	of	10	protein-ligand	complexes	that	

were	eliminated	based	on	this;	3G6M,	3TTR,	2AJV,	1I72,	1TYL,	1TYM,	4A9J,	2OCU,	3DJ1	and	2QMZ.		

However,	high	solvation	was	closely	linked	to	a	lack	of	interactions	between	the	protein	and	ligands,	

and	therefore,	many	exhibited	both	properties.	In	total	24	binding	sites	were	excluded	from	the	data	

set	after	Phase	analysis,	this	means	19	proteins	were	excluded,	as	some	proteins	exhibited	multiple	

binding	sites	with	different	properties.	Table	3.4	 shows	 the	9	 remaining	protein-ligand	complexes;	

2A3B	binds	caffeine	in	two	different	cavities	both	of	which	have	been	included.		
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Table	 3.4	 -	 Binding	 information	 for	 the	 9	 remaining	 protein-ligand	 complexes,	 with	 three	 primary	 interaction	 with	

distance,	angle	and	type	where	appropriate.	

Protein	 Ligand	 Interactions	 Residue	 Distance	 Angle	 Type	

2A3B	 A:CAFF	1435	 π-Stacking	 TRP384	 3.3Ǻ	 		 Face/Face	

H-bonding	 TRP137	 2.03Ǻ	 142.4˚	 		

Hydrophobic	 MET43	 3.68Ǻ	 		 		

B:CAFF	2435	 π-Stacking	 TRP384	 2.5Å	 		 Face/Face	

H-bonding	 TRP137	 2.09Å	 140.5˚	 		

Hydrophobic	 PHE76	 2.67Ǻ	 		 		

3DDS	 A:CAFF	904	 π-Stacking	 PHE285	 4.77Ǻ	 		 Face/face	

π-Stacking	 TYR613	 2.3Ǻ	 		 Edge/Edge	

Hydrophobic	 ALA610	 3Ǻ	 		 		

3DDW	 A:CAFF903	 π-Stacking	 PHE285	 2.6Ǻ	 		 Face/Face	

π-Stacking	 TYR613	 2.6Ǻ	 		 Face/Face	

Hydrophobic	 ALA610	 3Ǻ	 		 		

3DD1	 B:CAFF903	 π-Stacking	 PHE285	 2.6Ǻ	 		 Face/Face	

π-Stacking	 TYR613	 2.6Ǻ	 		 Face/Face	

Hydrophobic	 ALA610	 3Ǻ	 		 		

3GKZ	 A:500	Methamphetamine	 π-Stacking	 TRP232	 3.42Ǻ	 		 Edge/Face	

π-Stacking	 PHE237	 3.68Ǻ	 		 Edge/Face	

H-bonding	 GLU114	 1.66Ǻ	 176.5˚	 Side	chain		

3GMO	 A:B41	600	MDMA	 π-Stacking	 PHE237	 3.66Ǻ	 		 Edge/Face	

H-bonding	 GLU114	 1.76Ǻ	 161˚	 		

Hydrophobic	 TYR55	 3.46Ǻ	 		 		

2DPZ	 A:TYL2001	Paracetamol	 π-Stacking	 PHE5	 2.57Ǻ	 		 Edge/Edge	

π-Stacking	 HID48	 3.54Ǻ	 		 Edge/Edge	

Hydrophobic	 LEU	2	 2.36Ǻ	 		 		

3PY4	 A:TYL598	Paracetamol	 π-Stacking	 HID109	 3.5Ǻ	 		 Edge/Edge	

Positive	charge	 ARG255	 2.65Ǻ	 		 		

3NK2	 X:LDP433	

Dopamine	

H-bonding	 ASN166	 2.21Ǻ	 128.6˚	 		

Hydrophobic	 TYR407	 2Ǻ	 		 		

Hydrophobic	 MET167	 3Ǻ	 		 		
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3.3.4 Binding	Site	Analysis	using	SiteMap	

In	order	to	ensure	that	the	chosen	interactions	were	valid	each	of	the	final	nine	binding	sites	were	

subjected	to	SiteMap	analysis.	By	validating	the	binding	site	using	SiteMap,	it	ensures	the	ligands	are	

positioned	in	favourable	sites	for	the	binding	that	has	been	identified.	SiteMap	predicts	and	evaluates	

the	binding	sites	in	a	given	protein,	irrespective	of	whether	the	ligand	is	bound.	This	ensures	that	each	

binding	point	collected	using	Phase	is	in	a	favourable	position,	i.e.	that	hydrophobic	interactions	occur	

in	a	largely	hydrophobic	region	of	the	cavity	and	that	all	hydrogen	bonding	interactions	occur	in	the	

regions	 predicted.	 Figure	 3.5	 shows	 an	 example	 of	 a	 SiteMap	 produced	 for	 3GM0	 with	 MDMA	

superimposed	 on	 top	 to	 see	 how	 the	 ligand	 fits	 in	 the	 putative	 binding	 sites.	 The	 yellow	 mesh	

represents	predicted	hydrophobic	regions,	blue	is	hydrogen	bond	donors	and	red	is	hydrogen	bond	

acceptors.	The	grey	spheres	represent	the	site	points	applied	to	the	binding	site	for	analysis.		

The	three	residues	identified	as	important	for	binding	in	3GM0	are	PHE	237,	TYR	55	and	GLU	114.	PHE	

237	displays	a	p-stacking	interaction	which	is	appropriately	located	in	the	yellow	(hydrophobic)	region	

in	Figure	3.5.	GLU	114	is	a	hydrogen	bond	acceptor	and	sits	in	the	red	region,	while	the	hydrogen	bond	

donor	atom	in	MDMA	is	positioned	in	the	blue	region.		

a	

Figure	3.5	-	SiteMap	for	3GM0	overlaid	with	MDMA.	

This	shows	that	the	three	predicted	binding	interactions	from	Phase	correlate	with	those	predicted	by	

SiteMap.	This	was	found	to	be	true	for	all	9	binding	sites	studied.	The	SiteMap	for	2DPZ	shows	red	and	

blue	mesh	regions	 (Figure	3.6)	which	would	 indicate	positions	 for	hydrogen	bonding;	however,	no	

such	interactions	were	found	using	Phase.		
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Figure	3.6	-	SiteMap	for	2DPZ	showing	large	hydrogen	bonding	areas.	

The	 interactions	 found	 were	 p-stacking	 and	 hydrophobic	 interactions,	 these	 residues	 are	 still	

positioned	in	the	desired	region.	The	Phase	and	SiteMap	data	shows	good	consensus	in	relation	to	the	

binding	interactions	observed.	The	final	nine	complexes	were	next	subjected	to	ligand	minimisation	

as	a	final	validation	step	before	pharmacophore	development	was	carried	out.		

3.3.5 Ligand	Minimisation	using	Maestro	

Energy	minimisation	was	carried	out	on	each	of	the	ligands	to	ensure	that	they	were	in	an	energetically	

favourable	confirmation.	This	is	because	ligands	can	be	stabilised	in	high	energy	confirmations	by	the	

presence	of	a	large	number	of	Van	der	Waals	forces,	which	as	previously	mentioned	is	a	feature	of	

proteins	 that	cannot	be	mimicked	 in	a	 small	molecule	sensor.	 In	order	 to	achieve	 this	each	of	 the	

ligands	was	minimised	 to	 produce	 the	minimum	energy	 conformation,	without	 the	 presence	 of	 a	

protein.	This	confirmation	was	then	compared	against	that	seen	in	each	of	the	complexes.	The	two	

ligands	were	overlaid	and	the	heavy	atom	root	mean	square	(RMS)	values	of	each	were	calculated.	

Figure	3.7	shows	the	minimised	structure	of	MDMA	overlaid	with	the	conformation	found	complexed	

in	3GM0.		
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Figure	3.7	-	MDMA	from	3GM0	overlaid	with	minimised	conformation	of	MDMA.	

The	total	RMS	for	3GM0	was	calculated	as	0.1237	Å,	with	the	maximum	difference	between	any	two	

atoms	 calculated	 as	 0.2768	Å,	 between	 the	 oxygen	 atoms	of	 the	methylene	 groups.	 This	was	 the	

largest	RMS	value	calculated	and	is	still	close	to	zero.	The	closer	to	zero	the	value	the	less	difference	

between	the	two	conformations	and	therefore	the	better	the	value.	As	can	be	seen	in	Figure	3.7	there	

is	very	 little	difference	 in	the	minimum	energy	conformation	and	the	conformation	adopted	when	

complexed.	This	 is	 true	for	all	of	 the	9	 ligand	complexes	studied,	with	caffeine	complexed	 in	2A3B	

producing	 the	 smallest	 RMS	 at	 0.0063.	 All	 9	 binding	 sites	 were	 taken	 through	 to	 be	 used	 for	

pharmacophore	development.			

Table	3.5	-	Nine	remaining	protein-ligand	complexes	taken	through	to	pharmacophore	design.	

PDB	accession	code	 Ligand	ID	

2A3B	 Caffeine	

3DDS	 Caffeine	

3DDW	 Caffeine	

3DD1	 Caffeine	

3GKZ	 Methamphetamine	

3GM0	 MDMA	

2DPZ	 Paracetamol	

3PY4	 Paracetamol	

3NK2	 L-Dopamine	
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3.3.6 Pharmacophore	Design		

Traditionally,	 once	 data	 collection	 and	 validation	 has	 been	 conducted	 the	 pharmacophore	 is	

generated	using	a	specialised	computer	program151.	However,	given	that	these	programs	are	based	

on	guest	molecule	pharmacophores	they	are	not	suitable	 for	host	molecule	design.	Therefore,	 the	

pharmacophore	was	developed	manually	based	on	a	consensus	of	the	3D	pharmacophores	for	each	

of	the	remaining	compounds.	This	was	done	by	isolating	the	key	binding	features	from	each	of	the	

pharmacophores	in	relation	to	mephedrone,	and	averaging	the	geometrical	components	to	produce	

a	consensus	pharmacophore.		

Using	 the	protein-ligand	complexes	 listed	 in	Table	3.5	 the	software	package	called	Maestro150	was	

used	to	build	a	pharmacophore	for	a	cathinone,	specifically	mephedrone.	The	pharmacophore	gives	

information	as	to	which	types	of	 interactions	can	be	utilised	to	facilitate	binding	in	a	cavity.	This	 is	

achieved	 by	 analysing	 the	 differences	 in	 binding	 properties	 between	 each	 of	 the	 protein-ligand	

complexes	considered	and	then	the	pharmacophore	is	altered	to	prevent	non-selective	binding,	based	

on	structural	differences.	

MDMA	is	structurally	similar	to	mephedrone	and	can	therefore	provide	valuable	 information	as	to	

possible	interactions	that	can	be	utilised	in	a	sensor	for	mephedrone.	Figure	3.8	shows	the	binding	of	

MDMA	to	its	receptor,	an	anti-methamphetamine	single	chain	antibody	variable	fragment.	Figure	3.8A	

shows	the	specific	binding	properties	of	MDMA	in	the	cavity	with	the	amino	acid	residues.	For	MDMA,	

three	 interactions	 can	 be	 observed,	 one	 hydrogen	 bond	 and	 two	 p-stacking	 interactions.	 This	

information	was	extracted	and	compiled	to	develop	a	pharmacophore	for	MDMA	(Figure	3.9).	Due	to	

their	 structural	 similarities,	 selectivity	 between	 mephedrone	 and	 MDMA	 may	 prove	 challenging.	

Figure	3.8B	shows	how	the	size	of	the	binding	pocket	can	play	an	important	role	in	the	selectivity	of	

compounds,	 and	 can	 therefore	 be	 exploited	 in	 the	 sensor.	 Further	 adjustments	 can	 be	 made	

manipulating	steric	properties	of	the	molecule	so	that	the	fit	in	the	binding	pocket	is	modified.		
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Figure	3.8	-	A.	Diagram	of	binding	site	of	MDMA	in	a	protein,	and	B.	simulation	of	MDMA	in	the	same	protein	cavity.	

Once	each	set	of	data	was	analysed	based	on	the	above	validation	criteria,	each	of	the	protein-ligand	

interactions	occurring	 in	the	9	binding	sites	was	converted	 into	a	three-point	pharmacophore.	The	

pharmacophoric	points	chosen	are	based	on	 the	 three	most	 favourable	 interactions	seen	 for	each	

complex,	ideally	hydrogen	bonding	and	p-stacking.	The	angles	and	distances	were	measured	for	each	

of	the	binding	sites;	the	distances	are	taken	from	the	interaction	point	of	the	residues.	Each	of	the	

pharmacophores	were	overlaid	with	one	another	and	comparisons	were	drawn	as	to	the	similarities	

seen	that	could	be	utilised	for	mephedrone	recognition.	Figure	3.9	shows	an	example	of	one	of	these	

pharmacophores,	developed	using	data	on	MDMA	(3GM0).		

	

Figure	3.9	-	Three-point	pharmacophore	based	on	protein	3GM0	for	MDMA.	The	binding	features	are	portrayed	as	mashed	

spheres,	colour-coded	as	green,	hydrogen-bond	acceptor,	magenta,	hydrophobic	and	orange	as	aromatic	rings	(distances	

not	to	scale).	
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The	pharmacophore	developed	based	on	3GKZ	binding	with	methamphetamine	 is	shown	 in	Figure	

3.10	along	with	the	combined	pharmacophores	from	the	two	paracetamol-protein	complexes,	2DPZ	

and	3PY4	and	dopamine,	3NK2.	Methamphetamine	(Figure	3.10	A)	shows	similarities	to	the	MDMA	

pharmacophore,	(Figure	3.9)	with	a	hydrogen	bond	acceptor	and	a	p-stacking	interaction.	The	same	

is	also	true	for	dopamine	(Figure	3.10	C),	which	is	structurally	similar	to	mephedrone	and	also	contains	

a	hydrogen	bond	acceptor	and	p-stacking	interaction.	Paracetamol	(Figure	3.10	B),	which	the	sensor	

must	 be	 selective	 against	 shows	 no	 hydrogen	 bonding.	 This	 difference	 could	 be	 utilised	 to	 aid	

selectivity	in	the	final	sensor	molecule.	The	four	caffeine	complexes	(2A3B,	3DDS,	3DDW	and	3DDI)	

exhibit	various	binding	interactions	depending	on	the	protein	they	are	in	complex	with,	and	therefore	

it	was	not	possible	to	develop	a	common	pharmacophore	for	caffeine,	which	is	a	promiscuous	binder,	

due	to	its	highly	hydrophobic	structure.	It	was	however	noted	that	in	all	caffeine-protein	interactions	

p-stacking	was	the	primary	interaction.		

	

Figure	3.10	-	Three-point	pharmacophore	based	on	A.	methamphetamine	(3GKZ),	B.	the	combined	paracetamol	binding	

(2DPZ	AND	3PY4)	and	C.	dopamine	(3NK2).	The	binding	features	are	portrayed	as	mashed	spheres,	colour-coded	as	green,	

hydrogen-bond	acceptor,	magenta	as	hydrophobic	and	orange	as	π-stacking	interactions	(distance	not	to	scale).	

The	 pharmacophore	 as	 seen	 in	 Figure	 3.11	 is	 a	 consensus	 of	 the	 five	 remaining	 crystallographic	

experimental	data	sets;	two	paracetamol	and	one	each	for	dopamine,	MDMA	and	methamphetamine	

(3GKZ,	 3GM0,	 2DPZ,	 3PY4	 and	3NK2).	 Each	of	 these	 four	 compounds	has	 structural	 similarities	 to	

mephedrone	 that	 could	 be	 used	 to	 predict	 mephedrone	 binding,	 given	 the	 lack	 of	 protein-

mephedrone	binding	data.	The	important	interactions	that	can	correlate	to	mephedrone	have	been	
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prioritised	and	the	distances	and	angles	have	been	averaged	between	these	interactions,	to	produce	

a	consensus	pharmacophore	based	on	the	proteins	in	Table	3.5,	with	the	exception	of	caffeine.		

	

Figure	3.11	-	Pharmacophore	design	for	mephedrone	binding	including	bond	distances	and	angles.	The	binding	features	

are	portrayed	as	mashed	spheres,	colour-coded	as	green,	hydrogen-bond	acceptor	and	orange	as	aromatic	rings	(distances	

not	to	scale).	

All	 four	 of	 these	 ligands	 contain	 structural	 similarities;	 they	 all	 contain	 one	 aromatic	 ring	 and	 a	

secondary	 amine	 (Figure	 3.12).	 Therefore,	 they	 all	 demonstrated	 similar	 binding	 patterns.	 These	

pharmacophoric	binding	features	are	also	common	to	the	target	compound,	mephedrone.		

	

Figure	3.12	-	The	chemical	structures	for	A.	dopamine	B.	paracetamol	C.	MDMA	and	D.	methamphetamine	upon	which	

the	pharmacophore	is	based.	

The	four	binding	sites	all	contained	one	hydrogen	bonding	acceptor	interaction	and	two	hydrophobic	

or	 p-stacking	 interactions,	 interacting	 with	 the	 amine	 and	 aromatic	 groups.	 Both	 dopamine	 and	
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methamphetamine,	 two	 sterically	 similar	 compounds	 to	mephedrone	 contain	 the	 hydrogen	 bond	

interaction	in	the	same	orientation	to	the	hydrophobic	interactions.	Therefore,	this	geometry	for	the	

strongest	predicted	interaction,	the	hydrogen	bond,	is	reflected	in	the	final	pharmacophore.	The	π-

stacking	 interactions	were	 favoured	over	 hydrophobic	 interactions,	 as	 they	 are	 relatively	 stronger	

interactions.	The	spacing	and	conformation	of	these	interactions	will	not	directly	match	mephedrone,	

which	needs	to	be	considered	when	applying	the	pharmacophore	design	to	synthetic	host	molecules.	

However,	each	of	the	interactions	included	in	the	average	conformation	of	the	pharmacophore	reflect	

the	possible	binding	properties	or	position	of	the	functionalities	in	mephedrone.	Another	similarity	to	

note	 was	 that	 all	 p-stacking	 interaction	 seen	 for	 the	 binding	 sites	 included	 were	 edge/face	

interactions.	These	 similarities	made	 it	 simpler	 to	compare	 the	 five	binding	 sites	and	measure	 the	

distances	between	 similar	 interactions,	which	 could	be	used	 to	bind	mephedrone.	The	angles	and	

distances	shown	are	given	as	a	range	based	on	the	different	 individual	pharmacophores	that	were	

developed.	It	 is	also	incredibly	difficult	to	develop	a	constrained	system	which	synthetically	mimics	

exact	distances	when	designing	host	molecules	and	therefore	a	range	makes	it	more	feasible	to	design	

a	binding	cavity	that	approximates	the	pharmacophoric	features.	It	is	also	more	representative	of	the	

four	cavities	used	to	design	the	pharmacophore.		

3.4 Conclusion		

A	 three-point	 pharmacophore	 to	 aid	 in	 the	 design	 of	 a	 sensor	 molecule	 to	 selectively	 bind	

mephedrone	was	developed	based	on	protein-ligand	interactions	of	the	chosen	guest	molecules.	The	

initial	selection	criterion	highlighted	14	compounds	that	are	either	commonly	found	in	seized	samples	

containing	mephedrone,	so	the	sensor	must	be	selective	against	them	or	are	structurally	related	to	

mephedrone	and	were	used	to	make	the	sensor	selective	for	mephedrone.	This	information	was	used	

for	consideration	when	developing	the	pharmacophore	which	will	be	used	to	guide	the	synthesis	of	a	

selective	host	molecule.	Initially,	there	were	37	protein-ligand	complexes	identified	for	eight	of	the	14	

suggested	 compounds.	 The	 remaining	 six	 compounds	 produced	 no	 hits	 in	 the	 PDB,	most	 notably	

mephedrone	itself.	This	is	believed	to	be	due	to	the	lack	of	experimental	data	surrounding	the	class	

of	proteins	that	they	naturally	bind	to	 i.e.	 transmembrane	proteins.	Therefore,	structurally	related	

compounds	were	used	as	the	source	of	binding	information	for	the	pharmacophore.	

The	37	protein-ligand	complexes	were	subjected	to	rigorous	quality	control	procedures,	to	eliminate	

any	complexes	that	were	not	viable	for	use	in	generating	pharmacophores.	The	interactions	between	

each	 of	 the	 protein-ligand	 complexes	 along	 with	 the	 respective	 binding	 sites	 were	 extensively	

analysed	using	Phase	and	Sitemap.	This	allowed	for	any	complexes	to	be	excluded	that	did	not	contain	

valid	and	robust	binding	data	that	could	be	utilised	in	the	pharmacophore,	or	incorporated	into	the	
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final	 host	molecule.	 Thereby,	 excluding	 anything	 that	 cannot	 be	mimicked	 in	 small	molecule	 host	

binding.			

After	validation	of	each	of	the	protein-ligand	complexes	was	conducted,	nine	binding	sites	remained.	

These	were	taken	forward	to	help	develop	a	three-point	consensus	pharmacophore	for	mephedrone.	

Caffeine	was	concluded	to	be	a	promiscuous	binder,	and	therefore	no	consensus	pharmacophore	was	

developed.	It	was	determined	that	caffeine	p-stacking	interactions	are	largely	face/face	interactions,	

whereas	the	structurally	related	compounds	such	as	the	amphetamines	were	edge/face	interactions.	

This	 difference	 could	 be	 utilised	 in	 host	 molecule	 design	 to	 gain	 selectivity	 over	 caffeine.	 The	

remaining	five	complexes	were	used	to	design	the	final	3-point	pharmacophore.	Binding	features	from	

dopamine,	 MDMA	 and	 methamphetamine	 were	 used	 to	 make	 the	 pharmacophore	 selective	 for	

mephedrone,	while	selectivity	against	cutting	agents	was	identified	from	the	binding	information	for	

paracetamol.	Due	to	the	variability	in	binding,	ranges	were	used	for	both	the	angles	and	distances.	

The	 structural	 similarities	 in	 the	 four	 remaining	 ligands,	 dopamine,	 paracetamol,	 MDMA	 and	

methamphetamine	suggests	that	the	types	of	interactions	occurring	were	similar.	This	aided	the	final	

pharmacophore	design,	and	the	three	final	binding	points	were	found	to	be	a	hydrogen	bond	acceptor	

and	two	edge/face	p-stacking	interactions.		

The	hydrogen	bond	acceptor	is	expected	to	interact	with	the	secondary	amine	in	mephedrone,	as	is	

seen	for	MDMA	and	methamphetamine,	while	the	p-stacking	interactions	are	positioned	to	interact	

with	 the	 benzyl	 group	 in	 mephedrone.	 The	 one	 binding	 feature	 that	 is	 not	 accounted	 for	 in	 the	

pharmacophore	 is	any	 interaction	with	the	carbonyl	 functionality,	due	to	 lack	of	binding	data.	The	

carbonyl	group	in	cathinones	is	what	makes	it	unique	to	the	amphetamine	class,	therefore,	to	obtain	

selectivity	 for	mephedrone	over	 amphetamines	 the	 pharmacophore	would	 ideally	 include	 binding	

features	that	would	interact	with	the	carbonyl.	This	is	a	natural	limitation	when	designing	a	sensor	in	

this	 way,	 i.e.	 when	 no	 experimental	 protein-ligand	 complexation	 data	 is	 available	 for	 the	 target	

compound.	 Thus,	 traditional	 synthetic	 host	 molecule	 design	 will	 be	 employed	 together	 with	 the	

pharmacophore	 model	 which	 will	 enable	 an	 additional	 binding	 point	 to	 be	 added	 to	 the	 host	

molecules	that	does	not	occur	in	the	pharmacophore	model.	

Importantly,	the	host	molecules	will	be	designed	based	on	the	understanding	of	how	common	cutting	

agents	bind	to	proteins,	i.e.	the	binding	features	from	paracetamol	and	the	knowledge	of	caffeine’s	

affinity	for	face/face	p-stacking.	This	will	allow	for	certain	features	to	be	excluded	or	minimised	from	

the	 host	 design,	 such	 as	 steric	 size	 of	 the	 binding	 cavity.	 This	 information	 could	 help	 to	 improve	

selectivity	 of	 potential	 host	 molecules.	 Host	 molecules	 for	 the	 detection	 of	 mephedrone	 will	 be	

designed	based	on	the	pharmacophore	model,	along	with	the	additional	binding	information	to	aid	in	



Development	of	a	Three-Point	Pharmacophore	Based	on	Protein-Ligand	Interactions	

104	
	

selectivity	over	cutting	agents.	The	 final	host	molecules	will	be	synthesised	 (Chapter	4)	and	tested	

(Chapter	5),	to	evaluate	the	pharmacophore	based	host	design	for	the	detection	of	mephedrone.



	

	

Chapter	4 Synthesis	of	Potential	Host	Molecules			

4.1 Introduction	

As	discussed	in	Chapter	2,	the	main	focus	of	the	project	shifted	to	the	design	and	development	of	a	

sensory	molecule	for	mephedrone,	as	the	demand	for	an	in-field	sensory	device	for	the	aminoindanes	

was	not	deemed	necessary	 given	 its	 reduced	popularity.	 The	pharmacophore	model	 developed	 in	

Chapter	3	based	on	protein-ligand	interactions	(i.e.,	host-guest	interactions),	will	be	used	to	design	a	

number	 of	 host	 molecules.	 Using	 host-guest	 chemistry	 the	 synthesis	 of	 host	 molecules	 that	

encompass	 these	 pharmacophoric	 features	 to	 selectively	 bind	mephedrone	will	 be	 attempted.	 As	

highlighted	 in	Chapter	1,	current	 in-field	detection	mechanisms	 lack	selectivity	over	other	drugs	of	

abuse	as	well	as	the	numerous	cutting	agents	that	can	be	present	in	NPS	products.	To	address	the	

problem	of	selectivity	the	host	molecules	will	be	designed	based	on	supramolecular	chemistry,	which	

utilises	non-covalent	interactions	such	as	hydrogen	bonding,	electrostatic	and	dispersion	interactions,	

in	conjunction	with	the	pharmacophore	model.	

4.1.1 Sensor	Selection		

An	empirical	approach	to	the	host	molecule	design	was	adopted	 in	Chapter	3,	which	used	binding	

patterns	 of	 small	 molecules	 with	 proteins	 to	 develop	 a	 pharmacophore.	 Based	 on	 this	

pharmacophore,	knowledge	of	supramolecular	host	molecules	was	applied	and	two	different	classes	

of	molecules	were	considered:	macrocyclic	calixarenes	and	acyclic	anthraquinones.	As	discussed	 in	

Chapter	 1,	 there	 are	 two	 main	 classifications	 for	 host	 molecules,	 flexible	 (acyclic)	 and	 rigid	

(macrocyclic)	scaffolds.	Both	have	their	own	unique	advantages	relating	to	interactions	and	enthalpy	

effects	of	binding.	Calixarenes	are	semi-rigid,	macrocyclic	molecules	with	a	pre-organised	nature	that	

lack	 conformational	 flexibility	 and	 therefore	minimal	 re-organisation	 of	 the	 host	molecule	 is	 seen	

upon	addition	of	the	guest.	They	have	also	reported	high	selectivity	between	neutral	molecules162.	

Anthraquinones	are	more	flexible	and	therefore	allow	for	the	host	molecule	to	reorganise	around	a	

guest	molecule	upon	binding.	It	is	useful	to	examine	both	flexible	and	rigid	host	molecules	in	order	to	

understand	the	effect	that	flexibility	has	on	the	binding	ability	and	selectivity	of	the	host	molecules.		

4.1.1.1 Calixarenes	

Calixarenes	 are	 cyclic	 host	 molecules	 that	 are	 synthesised	 by	 condensation	 of	 para-substituted	

phenols	 with	 formaldehyde103.	 They	 form	 three	 dimensional	 bowl	 structures	 with	 hydrophobic	

cavities	that	can	encapsulate	smaller	molecules	or	ions.	They	come	in	a	number	of	ring	sizes,	with	the	

number	 of	 phenolic	 moieties	 governing	 the	 size	 of	 the	 ring.	 The	 most	 commonly	 studied	 are	
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calix[4]arene	and	calix[6]arene	(Figure	4.1).	Calixarenes	can	be	substituted	on	both	the	‘upper’	and	

‘lower	rims’103,163.	The	upper	rim	is	defined	as	the	wide	rim,	where	the	tert-butyl	groups	are	situated	

in	the	4-	position,	while	the	phenolic	hydroxyl	groups	seen	in	Figure	4.1	are	positioned	para	to	the	

tert-butyl	groups	on	the	lower,	or	narrow,	rim.	There	is	a	large	amount	of	literature	surrounding	the	

substitution	 of	 the	 ‘lower	 rim’	 as	 well	 as	 the	 ‘upper	 rim’	 as	 the	 tert-butyl	 groups	 are	 easily	

cleaved163,164.	

	
Figure	4.1	-	Chemical	structures	of	calix[4]arene	and	cali[6]arene.	The	upper	and	lower	rim	in	the	1	–	and	4-	positions	can	

both	be	substituted.	

By	selectively	altering	the	upper	and/or	 lower	rim	it	 is	possible	to	design	hosts	that	are	capable	of	

binding	 anion,	 neutral	 and	 cation	 guest	 species.	 Agraval	 et	 al.	 outlined	 in	 detail	 the	 variations	 of	

substituents	that	are	possible	on	both	the	upper	and	lower	rim	of	calixarenes165.	Substitution	on	the	

upper	rim	is	carried	out	by	first	de-tert-butylation	followed	by	a	subsequent	reaction.	The	nonpolar	

aromatic	groups	make	the	compounds	water	 insoluble,	which	can	 lead	to	synthetic	complications.	

However	Shinkai	et	al.	found	that	the	addition	of	sulfonate	groups	on	the	lower	rim	produces	water-

soluble	calixarenes166.	Some	of	the	earliest	work	carried	out	on	the	alteration	of	calixarene	structure	

was	esterification	of	the	lower	rim	hydroxyl	groups.	This	research	showed	that	strict	control	of	the	

reaction	conditions	is	necessary	in	order	to	produce	the	desired	product165.	A	variety	of	studies	have	

been	 conducted	 looking	 at	 the	 effects	 of	 different	 substituents,	 their	 effects	 on	 the	 calixarene	

conformation	 and	 the	 type	 of	 guest	molecules	 that	 can	 be	 attracted,	 for	 example;	 etherification,	

bridged	calixarenes	and	bis-calixarenes.	The	concept	of	dimerising	calixarenes	via	substitution	of	the	

lower	rim	has	led	to	the	development	of	selective	anion	sensors164.	Yilman	et	al.	reviewed	calixarene	

complexation	with	neutral	molecules,	showing	that	careful	selection	of	substituents	can	afford	high	

selectivity	between	guest	molecules162.	Both	upper	and	lower	rim	substitution	has	been	shown.	Lower	

rim	substitution	is	more	common,	thought	to	be	due	to	the	ease	of	synthesis.	However,	substitution	

of	the	upper	rim	affords	access	to	the	hydrophobic	bowl	of	the	calixarene,	which	can	be	utilised	for	

molecule	recognition.	It	is	the	ability	to	alter	the	cavity	size	of	calixarenes,	as	well	as	the	large	number	

Calix[4]arene Calix[6]arene

OHOH HOOH
OH

OH
OH

OH

OH
OH
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of	 possible	 substitutions,	 that	 makes	 them	 very	 versatile	 with	 respect	 to	 host-guest	 complex	

formation.	This	makes	 it	possible	 to	be	selective	with	 respect	 to	 the	size	of	 the	guest	molecule109,	

which	is	potentially	useful	for	selective	binding	of	mephedrone.		

Calixarenes	are	pre-organised,	semi-rigid	structures	that	contain	a	high	degree	of	rotation	around	the	

methylene	bond.	This	leads	to	a	number	of	known	conformations	occurring;	cone,	partial	cone,	1,3	

alternate	and	the	1,2	alternate	(Figure	4.2)167.		

	

Figure	4.2	-	Four	possible	conformations	that	have	been	reported	for	calixarenes.	

It	is	possible	to	fix	the	conformation	of	the	calixarenes	into	the	more	desirable	cone	conformation	by	

selective	 substitution	 of	 the	 lower	 rim	with	 bulky	 functional	 groups	 such	 as	 isopropyl	 and	 benzyl	

functionalities164.	The	 larger	 the	number	of	units	 in	 the	calixarenes	 the	harder	 it	 is	 to	 fix	 the	cone	

structure	 due	 the	 bulkiness	 of	 the	 substituted	 lower	 rim.	 The	 effect	 of	 substitution	 on	 the	

conformation	of	the	calixarene	is	extremely	important	when	considering	the	overall	binding	cavity	of	

the	host	molecule.			

4.1.1.2 Anthraquinones		

Anthraquinones	 are	 a	 class	 of	 naturally	 occurring	 molecules	 based	 on	 the	 9,10-anthraquinone	

skeleton	(Figure	4.3).	They	are	some	of	the	most	widely	used	polycyclic	systems	in	both	nature	and	

technology	 due	 to	 their	 unique	 physical	 properties168.	 The	 unique	 fluorescence	 properties	 of	

anthraquinones	makes	 them	 ideal	 scaffolds	 for	 developing	 sensory	molecules.	 They	 are	 naturally	

occurring	compounds	that	are	well	studied	for	a	number	of	uses	including	dyes,	pharmaceuticals	and	

host	molecules,	and	a	large	variety	of	derivatives	have	been	synthesised169.	
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Figure	4.3	-	Chemical	structure	for	9,	10	Anthraquinone.	

Substituted	 anthraquinones	 are	 flexible	 with	 no	 pre-organised	 nature.	 They	 are	 synthesised	 via	

oxidation	of	anthracene,	typically	using	chromium	trioxide	as	the	oxidant170.	Anthraquinone	analogues	

are	most	commonly	 substituted	 in	 the	4-	and	5-	position;	however,	 the	 literature	surrounding	 the	

anthraquinones	show	that	substitution	is	not	limited	to	the	these	positions.	By	altering	not	only	the	

substituents	but	also	 the	position	of	 substitution	around	 the	anthraquinone	 scaffold	 the	potential	

binding	cavity	can	be	adjusted.	Dhananjeyan	et	al.	examined	the	synthesis	of	a	range	of	anthraquinone	

analogues,	 and	 their	 biological	 properties169.	 Mariappan	 et	 al.	 reported	 a	 number	 of	 synthesised	

compounds	 that	were	 used	 as	 host	molecules	 for	 detection	 of	 cations,	 and	 anthraquinone	metal	

complexes	were	used	for	the	detection	of	Cu2+	and	Fe3+	ions171.	Wu	et	al.	also	examined	the	detection	

of	anions	using	anthraquinones	that	possess	a	single	thiourea	substitution	on	the	ring172.	In	this	study	

the	host	anthraquinone	molecules	showed	good	selectivity	for	fluoride	ions	as	colourmetric	sensors.	

Both	these	studies	used	UV/Vis	spectroscopy	to	quantify	the	interactions.	The	fluorescent	properties	

of	anthraquinone	due	to	 their	highly	conjugated	ring	system	has	been	greatly	utilised	 in	biological	

applications.	Investigations	into	anthraquinone	interactions	with	DNA	has	been	well	documented	in	

literature.	With	anthraquinone	showing	strong	hydrophobic	interactions	and	hydrogen	bonding	which	

was	quantified	using	fluorescence	spectroscopy173.	It	is	envisioned	that	these	key	binding	properties,	

also	identified	in	Chapter	3,	could	be	easily	utilised	and	integrated	into	this	flexible	supramolecular	

design	for	a	host	molecule	for	mephedrone.	

The	 aim	 of	 this	 chapter	 is	 to	 synthesise	 a	 host	molecule	 to	 selectively	 bind	mephedrone	 using	 a	

supramolecular	approach	which	is	based	on	the	key	pharmacophoric	features	determined	in	Chapter	

3.	The	host	molecules	have	been	designed	on	their	ability	to	bind	mephedrone	but	not	the	related	

methamphetamine	 and	 commonly	 used	 cutting	 agents	 such	 as	 caffeine	 and	 lidocaine.	 Two	 host	

molecule	scaffolds	are	being	explored,	macrocyclic	calixarenes	and	the	more	flexible	anthraquinones	

(Figure	 4.4).	 Calixarenes	 have	 been	 found	 to	 have	 very	 favourable	 binding	 constants	 with	 small	

molecules,	using	the	hydrophobic	bowl	to	selectivity	bind	guest	molecules162.	Their	water	solubility	

could	be	advantageous	when	looking	at	in-field	detection	as	it	minimises	the	use	of	organic	solvents.		

O

O
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Anthraquinones	have	a	conjugated	ring	system	that	is	ideal	for	designing	an	optical	sensor.	They	have	

also	 shown	 good	 selectivity	 in	 biological	 applications173.	 These	 features,	 along	 with	 their	 flexible	

scaffold	make	them	an	ideal	choice	for	host	molecule	design.	

4.2 Experimental		

All	sensor	synthesis	work	in	this	thesis	was	carried	out	in	Prof.	Karl	Wallace’s	Laboratory	at	the	
University	of	Southern	Mississippi.	

	

4.2.1 Sensor	Design		

The	desirable	pharmacophoric	features	have	been	incorporated	into	the	design	of	both	the	calixarene	

and	anthraquinone	scaffolds,	for	the	detection	of	mephedrone	(Figure	4.4).	The	host	molecules	will	

be	 substituted	with	 urea	 (calixarene)	 or	 thiourea	 (anthraquinone)	moieties,	 attached	 to	 aromatic	

functionalities.	Urea/thiourea	groups	can	act	as	both	a	hydrogen	bond	donor	and	acceptor,	which	

based	on	the	deduction	in	Chapter	3	will	be	beneficial	in	the	binding	of	host	molecules.	Due	to	a	lack	

of	binding	data	 for	 the	carbonyl	group,	 this	was	not	 incorporated	 into	the	pharmacophore	design.	

However,	the	carbonyl	is	what	makes	the	cathinones	unique	compared	to	other	amphetamine-related	

compounds,	therefore	the	urea/thiourea	groups	can	also	provide	an	additional	binding	point	by	acting	

as	a	hydrogen	bond	donor	to	bind	the	carbonyl.		

	

Figure	 4.4	 -	 Chemical	 structures	 for	 target	 host	molecules	 for	 synthesis	 (1).	 1,3-dithioureanaphthylcalixarene	 (2)	 1,8-

dibenzylthiourea	anthraquinone.	

The	aromatic	groups	reflect	the	π-stacking	interactions	that	were	identified	in	the	pharmacophore.	In	

the	calixarene	molecule	the	hydrophobic	bowl	has	multiple	π-stacking	interactions,	the	two	π-stacking	

interactions	in	the	anthraquinone	are	present	as	the	two	benzyl	groups.	The	naphthyl	units	on	the	

calixarene	have	been	added	to	be	used	as	potential	signalling	unit	for	use	in	optical	spectroscopy.	Both	
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contain	two	arms	attached	to	the	core	structure,	this	is	to	aid	in	a	concerted	design	that	could	allow	

for	increased	selectivity	based	on	the	steric	size	of	guest	molecules.		

4.2.2 Chemicals	and	Reagents		

All	 solvents	 used	were	obtained	 from	Fisher	 Scientific,	 Pittsburgh,	USA.	All	 chemical	 reagents	 and	

deuterated	solvents	for	NMR	analysis	were	purchased	from	Sigma	Aldrich,	Montana,	USA,	with	the	

exception	of	4-tert-butylcalix[4]arene	which	was	purchased	from	Sigma	Aldrich,	Gillingham,	UK.	Thin	

layer	 chromatography	 (TLC)	 silica	 gel	 with	 fluorescent	 plates	 254	 nm,	 thickness	 0.2	 mm,	 were	

purchased	from	Sigma	Aldrich,	Montana,	USA.	Silica	gel	for	column	chromatography	was	purchased	

from	Silicycle	(Québec	City,	Canada)	pore	size	60-200	µm.		

4.2.3 Analytical	Measurements		

All	nuclear	magnetic	resonance	spectra	(NMR)	were	recorded	as	approximately	10	%	w/v	solutions	in	

deuterated	chloroform	(unless	otherwise	stated)	on	a	Bruker	400	MHz	NMR	instrument,	with	16	scans	

per	spectrum.	Chemical	shifts	are	recorded	in	ppm,	relative	to	the	internal	standard	TMS	and	coupling	

constants,	J,	are	recorded	in	Hz.	The	low	temperature	1H-NMR	study	was	carried	out	on	a	Bruker	600	

MHz	in	acetone-d6,	intervals	of	10	degrees	were	applied	from	25	oC	down	to	-50	oC.	The	sample	at	

each	temperature	point	was	allowed	to	equilibrate	for	20	minutes	before	the	spectra	were	recorded.	

Sixteen	scans	were	carried	out	at	each	temperature	point.		

Fourier	 transfer	 infrared	 spectra	 (FT-IR)	 were	measured	 over	 the	 range	 of	 4000-400	 cm-1	 using	 a	

Nicolet	Nexus	470	FTIR	paired	with	a	Smart	Orbit	ATR	attachment.	The	characteristic	functional	groups	

are	reported	in	wavenumbers	(cm-1),	and	are	described	as	weak	(w),	medium	(m),	strong	(s),	and	very	

strong	 (vs).	 Unless	 otherwise	 stated	 TLC	 was	 carried	 out	 using	 a	 mobile	 phase	 of	 ethyl	 acetate:	

cyclohexane	 (3:1	 v/v).	 Liquid	 chromatography	mass	 spectrometry	 (LC-MS)	was	 carried	out	 using	 a	

Varian	Prostar	1200L	quadrupole	MS/MS,	fitted	with	a	Luna	C18	column	(3	µ;	100	mm	x	4.6	mm).	A	

flow	rate	of	0.25	mLmin-1	with	acetonitrile/water	(90/10	v/v).	

Elemental	analysis	(C,H,N	and	S)	was	carried	out	in	duplicate	by	Analytical	and	Chemical	consultancy	

service	Medac	Ltd.,	Woking,	UK.		

4.2.4 NMR	Titration		
1H-NMR	titrations	were	carried	out	by	preparing	a	20.0	mM	solution	of	the	host	molecule	in	acetone-

d6	(1.0	mL).	Stock	solutions	of	the	drug	free	bases	were	prepared	in	acetone-d6	(2.0	mL).	Aliquots	of	

12.5	µL	(12.5	µL	=	0.5	molar	equivalences	(eq.)	of	drug	to	probe)	were	added	and	the	1H-NMR	spectra	

were	recorded	after	each	addition.	
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4.2.5 Calixarene	Derivatives		

4.2.5.1 De-tert-butylation	of	Calixarene174		

	

	

Scheme	4.1	-	De-tert-butylation	of	tert-butylcalix[4]arene.	

4-tert-Butylcalix[4]arene	((3),	2.0	g,	3.1	mmol),	phenol	(1.35	mL,	1.07	gmL-1,	15	mmol)	and	anhydrous	

aluminium	 trichloride	 (2.0	 g,	 15	 mmol)	 were	 dissolved	 in	 toluene	 (70	 mL)	 and	 stirred	 at	 room	

temperature.	The	solution	changed	from	clear	to	yellow	after	a	few	hours,	and	after	stirring	overnight	

the	solution	was	opaque	beige	in	colour.	Hydrochloric	acid	(0.2	M,	5	mL)	was	added	dropwise	to	the	

reaction	mixture.	The	toluene	phase	was	extracted	and	washed	with	water	(3	x	25	mL),	dried	over	

MgSO4,	filtered	and	the	organic	layer	was	evaporated	yielding	a	beige	oily	residue.	The	product	was	

added	slowly	to	methanol	 (15	mL)	 in	 ice,	 the	product	precipitated	out	and	was	filtered.	The	crude	

white	solid	was	recrystallized	 from	chloroform/methanol	 (2:3	v/v)	yielding	a	white	crystalline	solid	

((4),	990	mg,	76	%).	1H-NMR	(CDCl3)	δ,	ppm:	1.82	(s,	8H,	ArCH2Ar),	6.71-6.73	(dd	4H,	J=7.8	Ar-H),	7.01-

7.02	(d,	8H,	Ar-H),	10.18	(s,	4H,	OH).	Decomposed	at	275	oC.		

4.2.5.2 Nitration	of	Calix[4]arene175	

	

Scheme	4.2	-	Nitration	of	calix[4]arene.	

Acetic	acid	(5	mL)	and	nitric	acid	(2.2	mL,	70	%,	33	mmol)	were	slowly	combined	and	cooled	in	ice.	

Calix[4]arene	((4),	250	mg,	0.6	mmol)	was	taken	up	in	dichloromethane	(DCM;	5	mL),	and	cooled	in	

ice.	 The	 calix[4]arene	 solution	 was	 added	 dropwise	 to	 the	 acid	 mixture	 with	 stirring	 in	 ice.	 On	
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completion	of	addition	the	solution	was	bright	orange.	The	mixture	was	stirred	in	ice	for	5	hours,	and	

then	added	to	25	mL	of	cold	water.	The	residual	solid	precipitated	out	and	was	filtered	off,	washed	

with	water	followed	by	DCM,	yielding	a	pale	yellow	solid,	((5),	75	mg,	13	%).	1H-NMR	(DMSO-d6)	δ,	

ppm:	3.40-3.16	(s,	8H,	ArCH2Ar),	5.8	(s,	4H,	OH),	8.14	(s,	8H,	ArH);	IR	(FT-IR)	cm-1:	1620	(stretch,	N-O),	

1300	(stretch,	N-O).	Decomposed	at	284	oC.	

4.2.5.3 Attempted	Reduction	of	Nitrocalix[4]arene	using	SnCl2176,177		

	

Scheme	4.3	-	Reduction	of	nitrocalix[4]arene	to	aminocalix[4]arene.	

Nitrocalix[4]arene	((5),	107	mg,	0.18	mmol)	and	tin(ll)	chloride	dihydrate	(796	mg,	3.5	mmol)	were	

mixed	together	in	ethanol	(20	mL)	and	refluxed	for	5	hours.	Once	the	starting	material	could	not	be	

detected	by	TLC,	 the	reaction	was	cooled,	and	potassium	hydroxide	 (1M)	was	added	to	adjust	 the	

solution	 to	 pH≈10.	 The	 reaction	 was	 then	 filtered,	 yielding	 no	 product.	 The	 filtrate	 was	 then	

evaporated	to	dryness,	yielding	a	brown	residue	and	analysed	by	NMR,	there	was	no	evidence	that	

the	desired	product	was	formed.	Traces	of	unchanged	starting	material	are	observed,	with	a	number	

of	unidentified	peaks.	

4.2.5.4 Attempted	Reduction	of	Nitrocalix[4]arene	using	Pd/C177	

	

	

Scheme	4.4	-	Reduction	of	nitrocalix[4]arene	using	Pd/C.	

Nitrocalix[4]arene	((5),	200	mg,	0.34	mmol),	hydrazine	(6,	3.24	mL,	1.02	gmL-1,	5.2	mmol)	and	Pd/C	

(0.19	mg,	1.76	mmol)	were	dissolved	 in	 isopropyl	alcohol	(IPA;	60	mL).	The	calixarene	did	not	fully	

dissolve	upon	addition.	The	reaction	was	refluxed	under	nitrogen	for	4.5	hours.	The	calixarene	was	

seen	to	be	more	soluble	upon	heating.	The	reaction	was	then	cooled	and	the	mixture	evaporated	to	
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dryness.	The	resultant	residue	was	analysed	by	NMR	and	LC-MS	showing	an	absence	of	the	desired	

product	but	the	presence	of	unchanged	starting	material	and	additional	uncharacterised	peaks.		

4.2.5.5 Di-substitution	of	4-tert-butylcalix[4]arene	Lower	Rim174		

	

	

Scheme	4.5	-	Di-substitution	of	4-tert-butyl-1,3-dibenzoylcalix[4]arene.	

4-tert-Butylcalix[4]arene	((3),	200	mg,	0.3	mmol)	was	taken	up	in	pyridine	(10	mL)	and	stirred	in	ice	

for	an	hour.	Benzoyl	chloride	(0.29	mL,	1.21	gmL-1,	2.5	mmol)	was	added	dropwise	into	the	reaction	

mixture	and	left	to	stir	for	1.5	hours.	The	reaction	mixture	was	poured	into	ice	water	(50	mL)	and	a	

white	precipitate	 immediately	started	to	form.	The	precipitate	was	filtered	off,	washed	with	water	

and	then	recrystallized	from	chloroform/ethanol	(3:5	v/v),	filtered	and	washed	with	ethanol	yielding	

a	white	crystalline	solid	((8),	50	mg,	20	%).	1H-NMR	(CDCl3),	δ	ppm	1.04	(s,	18H,	t-bu),	1.19	(s,	18H,	t-

bu),	3.53-3.57	(d,	4H,	J=14.21	Hz,	ArCH2Ar),	4.00-4.03	(d,	4H,	J=14.17	Hz,	ArCH2Ar),	5.18	(s,	2H,	ArOH),	

6.94	(s,	4H,	Ar-H,	(-benz)),	7.05	(s,	4H,	Ar-H,	(-OH)),	7.57-7.59	(t,	4H,	J=7.80	Hz,	m-Ar-H),	7.74-7.78	(t,	

2H,	J=	7.47	Hz,	p-Ar-H),	8.37-8.39	(d,	4H,	J=7.08	Hz,	O-Ar-H).	Decomposed	at	263	oC.		

4.2.5.6 Attempted	de-tert-butylation	of	4-tert-butyl	1,3	dibenzoylcalix[4]arene	

	

	

Scheme	4.6	-	De-tert-butylation	of	4-tert-butyl	1,3-dibenzoylcalix[4]arene.	
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4-tert-Butylcalix[4]arene	 ((8),	 53	 mg,	 0.06	 mmol),	 phenol	 (0.027	 mL,	 1.07	 gmL-1,	 0.3	 mmol)	 and	

anhydrous	aluminium	trichloride	(75	mg,	0.3	mmol)	were	taken	up	in	toluene	(15	mL)	and	stirred	at	

room	 temperature.	 The	 solution	 went	 from	 clear	 to	 yellow	 after	 a	 few	 hours,	 and	 after	 stirring	

overnight	 the	 solution	 was	 opaque	 beige	 in	 colour.	 Hydrochloric	 acid	 (0.2	 M,	 5	 mL)	 was	 added	

dropwise.	The	toluene	phase	was	extracted	and	washed	with	water	(3	x	15	mL),	the	organic	layer	was	

evaporated	yielding	a	beige	oily	residue.	Methanol	was	used	in	an	attempt	to	precipitate	out	product,	

no	precipitate	formed.	The	methanol	was	evaporated	off	and	the	resulting	residue	was	analysed	using	

NMR	where	no	presence	of	desired	product	seen.		

4.2.6 Anthraquinone	Derivatives		

4.2.6.1 Synthesis	of	1,8-	diaminoanthraquinone178		

	

	

Scheme	4.7	-	Synthesis	of	1,	8-diaminoanthraquinone.	

1,8-Dinitroanthraquinone	 ((10),	 504	 mg,	 1.69	 mmol),	 sodium	 sulphide	 (1.422	 g,	 6.76	 mmol)	 and	

sodium	hydroxide	(275	mg,	6.76	mmol)	were	added	to	ethanol	(15	mL)	stirred	and	refluxed	for	6	hours.	

After	this	time	the	reaction	mixture	was	cooled	in	ice	and	an	insoluble	material	precipitated	over	1	

hour.	The	reaction	mixture	was	filtered	under	vacuum,	and	the	solid	was	washed	with	cold	water,	

yielding	a	deep	purple	solid	((11),	360	mg,	90	%).	1H-NMR	(400	MHz,	CDCl3)	δ,	ppm:	6.75	(s,	4H,	2NH2),	

6.93-6.96	(d,	2H,	J=12	Hz,	ArH),	7.40-7.44	(dd,	2H,	J=16	Hz,	ArH),	7.60-7.63	(d,	2H,	J=12	Hz,	ArH);	IR	

(neat)	in	cm-1:	3377	νN-H	(m),	3131	νAr-H,	2964	νC=C-H,	1701	νC=O	(s).	Decomposed	at	>	200	oC.	
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4.2.6.2 Attempted	Synthesis	of	1,8-Dibenzylthiourea	anthraquinone		

	

	

Scheme	4.8	-	Synthesis	of	dibenzylthiourea	anthraquinone.	

1,8-Diaminoanthraquinone	((11),	81	mg,	0.4	mmol)	and	benzylisothiocyanate	((12),	111	μl,	1.13	gmL-

1,	0.8	mmol)	were	added	 to	DCM	(5.5	mL)	 stirred,	and	 left	 to	 reflux.	TLC	analysis	 in	ethyl	acetate:	

cyclohexane	(3:1)	showed	significant	starting	material	and	formation	of	two	new	spots,	after	24	hours	

no	further	changes	were	seen	using	TLC.	After	24	hours	the	reaction	appeared	to	stop	progressing	and	

the	mixture	was	allowed	to	cool.	The	solvent	was	evaporated	to	yield	a	brown	oil	which	solidified	on	

standing.	 The	 reaction	 mixture	 was	 dissolved	 up	 in	 ethyl	 acetate,	 and	 separated	 via	 column	

chromatography	with	 silica	 gel,	 eluting	with	 EtOAc/hexane	 (10/90	 v/v),	 isolating	 starting	material,	

evaporation	of	the	two	other	fractions	and	NMR	analysis	showed	no	formation	of	the	desired	product.		

4.2.6.3 Attempted	Synthesis	of	Dibenzylthiourea	anthraquinone	using	Triethylamine	

	

	

Scheme	4.9	-	Synthesis	of	dibenzylthiourea	anthraquinone	using	trimethylamine.	
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1,8-Diaminoanthraquinone	((11),	203	mg,	0.8	mmol),	benzyl	isothiocyanate	((12),	286	μl,	1.13	gmL-1,	

1.7	mmol)	and	triethylamine	(0.26	mL,	0.73	gmL-1,	1.8	mmol)	were	added	to	DCM	(40	mL)	and	refluxed.	

The	reaction	was	monitored	by	TLC	(ethyl	acetate:	cyclohexane	3:1	v/v).	After	24	hours	the	reaction	

appeared	to	stop	progressing,	starting	material	was	still	present	together	with	3	additional	spots	on	

the	TLC.	The	reaction	mixture	was	allowed	to	cool,	and	a	precipitate	formed.	The	reaction	mixture	

was	filtered	producing	a	purple	solid,	which	was	found	to	be	the	starting	material.	The	filtrate	was	

treated	with	hydrochloric	acid	(1	M,	10	mL)	to	remove	excess	triethylamine,	the	organic	phase	was	

examined	by	TLC	showing	3	spots	remaining,	one	of	which	corresponded	to	the	benzyl	isothiocyanate	

starting	material.	 The	 reaction	mixture	 was	 dissolved	 in	 ethyl	 acetate,	 and	 separated	 via	 column	

chromatography	with	silica	gel,	eluting	with	EtOAc/hexane	(10/90	v/v),	isolating	the	anthraquinone	

and	benzyl	isothiocyanate	starting	materials	and	the	other	fraction	isolated	was	a	light	brown	residue	

which	was	analysed	by	NMR	but	the	desired	product	was	not	detected.	

4.2.6.4 Attempted	Synthesis	of	Dibenzylthiourea	anthraquinone	using	Triethylamine	in	

Ethyl	Acetate	

	

Scheme	4.10	-	Synthesis	of	dibenzylthiourea	anthraquinone	using	triethylamine	in	ethyl	acetate.	

1,8-Diaminoanthraquinone	((11),	100	mg,	0.4	mmol),	benzyl	isothiocyanate	((12),	111	μl,	1.13	gmL-1,	

0.9	mmol)	and	triethylamine	(0.26	mL,	0.73	gmL-1,	1.8	mmol)	were	added	to	ethyl	acetate	(40	mL),	

stirred	and	refluxed.	The	reaction	was	monitored	via	TLC	(ethyl	acetate:	cyclohexane	3:1	v/v)	after	24	

hours	 the	 reaction	 appeared	 to	 stop	 progressing,	 starting	material	 was	 still	 present	 along	with	 3	

additional	spots	on	the	TLC.	The	reaction	was	filtered	producing	a	purple	solid,	which	was	found	to	be	

anthraquinone-starting	material.	Filtrate	was	treated	with	hydrochloric	acid	(1	M)	to	remove	excess	

triethylamine,	TLC	of	the	reaction	mixture	showed	3	spots	remaining,	one	of	which	corresponded	to	

the	benzyl	 isothiocyanate	starting	material.	Reaction	was	separated	using	column	chromatography	

with	 silica	 gel	 eluting	 with	 EtOAc/hexane	 (10/90	 v/v),	 each	 of	 the	 fractions	 were	 evaporated	 to	
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dryness,	 isolating	 starting	 material	 and	 two	 additional	 by-products,	 the	 desired	 product	 was	 not	

detected	using	NMR	or	MS.			

4.2.6.5 Attempted	Synthesis	of	Dibenzylthiourea	anthraquinone	in	Aqueous	Acetone	

	

	

Scheme	4.11	-	Synthesis	of	dibenzylthiourea	anthraquinone	in	acetone	and	water.	

1,8-Diaminoanthraquinone	((11),	100	mg,	0.4	mmol),	benzyl	isothiocyanate	((12),	111	μL,	1.13	gmL-1,	

0.9	mmol)	and	carbon	disulphide	(0.05	mL,	1.26	gmL-1,	0.8	mmol)	were	combined	in	aqueous	acetone	

(1:3,	 20	 mL)	 and	 refluxed.	 After	 three	 hours	 a	 new	 spot	 was	 visible	 on	 the	 TLC	 as	 well	 as	 the	

anthraquinone	starting	material.	The	reaction	was	monitored	by	TLC	for	28	hours,	starting	material	

was	 still	present,	but	 the	 reaction	had	stopped	proceeding.	Reaction	was	 removed	 from	the	heat,	

filtered	and	the	filtrate	was	evaporated	to	dryness.	The	precipitate	was	analysed	by	NMR	and	was	

shown	to	be	the	anthraquinone	starting	material,	the	filtrate	was	shown	to	be	benzyl	isothiocyanate	

and	by-products,	but	no	detection	of	the	desired	product	using	NMR	or	MS.			

	

	

	

	

	

	

	



Synthesis	of	Potential	Host	Molecules	

118	
	

4.2.6.6 Attempted	Synthesis	of	Dibenzylthiourea	Anthraquinone	using	P4	Base		

	

	

	
Scheme	4.12	-	Synthesis	of	dibenzylthiourea	anthraquinone	using	P4	superbase.	

1,8	-Diaminoanthraquinone	((11),	200	mg,	0.8	mmol)	and	phosphazene	base	P4	–	tert-butyl	(1.17	g,	

1.9	 mmol)	 were	 stirred	 in	 ethyl	 acetate	 (35	 mL)	 at	 room	 temperature	 for	 10	 minutes.	 Benzyl	

isothiocyanate	((12),	0.25	mL,	1.13	gmL-1,	1.9	mmol)	was	taken	up	in	ethyl	acetate	(2	mL)	and	added	

dropwise	to	the	reaction	mixture.	The	reaction	was	left	to	stir	at	room	temperature	for	64	hours,	and	

was	monitored	by	TLC.	The	reaction	was	filtered	and	the	precipitate	was	analysed	by	NMR,	the	starting	

material	was	detected,	but	the	desired	product	was	not	detected	using	NMR	or	MS.			

4.2.7 Anthracene	Derivatives		

4.2.7.1 Reduction	of	1,8-dinitroanthraquinone179		

	

	

Scheme	4.13	-	Reduction	of	1,8-diaminoanthraquinone	to	1,8-diaminoanthracene.	

1,8-Dinitroanthraquinone	((10),	1.00	g,	4.2	mmol)	was	dissolved	in	isopropanol	(IPA;	50	mL)	and	stirred	

under	nitrogen	for	15	minutes.	Sodium	borohydride	(2.00	g,	53	mmol)	was	added	and	the	reaction	

was	refluxed	for	36	hours.	The	reaction	mixture	was	poured	into	iced	water	(100	mL)	and	a	purple	
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precipitate	formed,	the	reaction	mixture	was	filtered	and	the	precipitate	washed	with	water	to	yield	

a	dark	purple	solid	((13),	820	mg,	93	%).	1H-NMR	(400	MHz,	CDCl3)	δ,	ppm:	4.21	(s,	4H,	NH),	6.76-6.74	

(d,	2H,	J=8	Hz	ArH),	7.31-7.29	(dd,	2H,	J=	8	Hz	ArH),	7.49-7.47	(d,	2H,	J=	8	Hz,	ArH),	8.22	(s,	1H,	ArH),	

8.37	(s,	1H,	ArH);	IR	(neat)	3298	νN-H	(m),	3270	νAr-H	and	1623	νC=C	cm-1;	M.p.	=	195-196	°C.	

4.2.7.2 Attempted	Synthesis	of	1,	8-dibenzylthiourea	anthracene	using	Triethylamine	

	

	
Scheme	4.14	-	Synthesis	of	1,8-dibenzylthiourea	anthracene.	

1,8-Diaminoanthracene	((13),	700	mg,	3.4	mmol),	benzoisothiocyanate	((12),	0.76	mL,	1.13	gmL-1,	6.7	

mmol)	and	triethylamine	(1.25	mL,	0.72	gmL-1,	7.9	mmol)	were	added	to	DCM	(70	mL)	and	refluxed	

for	24	hours.	Monitoring	by	TLC	showed	the	presence	of	anthracene	starting	material	and	formation	

of	a	new	spot.	The	reaction	was	allowed	to	cool	and	placed	in	ice,	a	precipitate	formed	which	was	

filtered	off.	The	precipitate	was	washed	with	ethyl	acetate/hexane	(1:9	v/v).	TLC	of	the	precipitate	

showed	two	spots,	neither	of	which	corresponded	to	the	starting	material.	The	product	was	dissolved	

up	 in	 ethyl	 acetate	 and	 purified	 via	 column	 chromatography	 using	 silica	 gel	 and	 ethyl	 acetate:	

cyclohexane	 (3:1	 v/v)	 eluent.	 Both	 bands	 were	 isolated	 and	 examined	 by	 NMR	 showing	 possible	

multiple	conformers	present.	A	variable	temperature	NMR	study	was	conducted	to	try	and	freeze	out	

the	isomers	for	further	analysis.	Concluded	that	Compound	14	was	not	successfully	synthesised.	
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4.2.7.3 Synthesis	of	Dibenzylthiourea	anthracene	in	Ethanol	

	

	

Scheme	4.15	-	Synthesis	of	1,8-dibenzylthiourea	anthracene.	

1,8-Diaminoanthracene	((13),	877	mg,	4.2	mmol)	and	benzoisothiocyanate	((12),	1.13	gmL-1,	8.4	mL)	

were	 taken	 up	 in	 ethanol	 (100	mL)	 and	 refluxed	 for	 2	 hours.	 The	 reaction	was	 cooled	 in	 ice,	 and	

filtered.	The	precipitate	was	washed	with	excess	water	and	ethanol.	The	product	was	dried	under	

vacuum,	yielding	a	dark	brown	solid	((14),	1.04	g,	40	%).	1H-NMR	(400	MHz,	acetone-d6)	δ,	ppm:	4.78-

4.79	(d,	4H,	J=	5.5	Hz,	2CH2),	7.34-7.36	(m,	10H,	ArH-benzyl),	7.55-7.56	(m,	4H,	ArH-anthracene),	8.01-

8.02	(d,	2H,	J=	8.1	Hz,	ArH-anthracene),	8.29	(s,	2H,	2NH),	8.67	(s,	1H,	ArH-anthracene),	8.78	(s,	1H,	

ArH-anthracene),	9.87	(s,	2H,	2NH);	13C-NMR	(400	MHz,	acetone-d6)	δ,	ppm:	47.7	(CH2,	12/12’),	116.8	

(ArC,	C9),	125.5	(ArC,	C2),	126.5	(ArC,	C5),	126.7	(ArC,	9’),	127	(ArC,	C10),	127.4	(ArC,	C14/14’),	128.2	

(ArC,	C15/15’),	132.1	(ArC,	C4’),	134.9	(ArC,	C13/13’),	139	(ArC,	C8),	182.4	(C=S,	C11/11’);	IR	(neat)	in	

cm-1:	3377	νN-H	(m),	3131	νAr-H,	2964	νC=C-H,	1612	νC=S	(m),	1495	νC=S	(s),	and	1250	νC=S	(s);	m.p.	=	213	-214	

°C.	 Elemental	 analysis	 (%)	 calculated	 for	 C30H26N4S2:	 C,	 71.11;	 H,	 5.17;	 N,	 11.06.	 Re-calculated	 for	

C30H26N4S2×H2O	C,	68.67;	H,	4.99;	N,	10.68,	Found:	C,	68.93,	H,	4.89;	N,	10.34.	
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4.2.8 Aniline	Derivative		

4.2.8.1 Synthesis	of	Benzylthiourea	Aniline180		

	

Scheme	4.16	-	Synthesis	of	benzylthiourea	aniline.	

Aniline	((15),	400	mg,	392	µL,	4.3	mmol)	and	benzylisothiocyanate	((12),	568	µL,	1.13	gmL-1,	4.3	mmol)	

were	taken	up	in	ethanol	(30	mL)	and	refluxed	for	two	hours.	Upon	the	formation	of	a	precipitate,	the	

reaction	was	allowed	to	cool	to	room	temperature	and	filtered.	The	product	was	dried	under	vacuum,	

yielding	a	cream	solid	((16),	620	mg,	59	%).	1H-NMR	(400	MHz,	DMSO-d6)	δ,	ppm:	4.73-4.74	(d,	2H,	J=	

5.5	Hz,	CH2),	7.10-7.12	(t,	1H,	J=7.3	Hz,	ArH-benzyl),	7.23-7.29	(m,	1H,	ArH-aniline),	7.30-7.38	(m,	6H,	

ArH),	7.41-7.43	(d,	2H,	J=7.8	Hz,	ArH-aniline),	8.16	(s,	1H,	NH),	9.61	(s,	1H,	NH);	13C-NMR	(400	MHz,	

DMSO-d6)	δ,	ppm:	47.2	(CH2,	C8),	123.3	(ArC,	C12),	124.3	(ArC,	C4),	126.8	(ArC,	C10/10’),	128.2	(ArC,	

C6),	128.6	(ArC,	C5),	139	(ArC,	C9),	139.1	(ArC,	C1),	180.8	(C=S,	C7);	IR	(neat)	in	cm-1:	3375	νN-H	(m),	

3129	νAr-H,	2967	νC=C-H,	1616	νC=S	(m),	1495	νC=S	(s),	and	1250	νC=S	(s);	m.p.	=	145-146	°C.	

4.2.9 Synthesis	of	Mephedrone		

4.2.9.1 Synthesis	of	4-methyl	propiophenone		

	

Scheme	4.17	-	Synthesis	of	4-methyl	propiophenone.	

Propionyl	 chloride	 ((18),	 1.06	 gmL-1,	7.5	mL,	 86	mmol)	 in	DCM	 (10	mL)	was	 added	drop	wise	 to	 a	

mixture	of	AlCl3	(12.0	g,	86	mmol)	in	DCM	(50	mL)	with	ice	–	cooling	under	a	nitrogen	atmosphere.	

The	mixture	was	stirred	for	0.5	h.	Anhydrous	toluene	((17),	0.87	gmL-1,	16.2	mL,	152	mmol)	was	then	
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added	over	0.5	h	cooling	in	ice,	the	mixture	was	allowed	to	warm	to	room	temperature	and	stirred	for	

1.5	h.	The	solution	was	added	to	approx.	90	mL	ice	water	with	vigorous	effervescence.	The	organic	

layer	was	separated	and	the	aqueous	layer	was	re-extracted	with	2	x	50	mL	DCM.	Combined	organic	

extracts	were	washed	with	NaOH	5	%	in	H2O	(2	x	50	mL),	brine	(2	x	50	mL),	dried	over	MgSO4	and	

evaporated	to	give	a	pale	yellow	oil	((19),	11.31	g,	88	%).	1H-NMR	(400	MHz,	CDCl3)	δ,	ppm:	7.85-7.86	

(d,	2H,	J=	8.0	Hz,	ArH),	7.22-7.23	(d,	2H,	J=	8.0	Hz,	ArH),	2.95-2.96	(q,	2H,	J=	7.2	Hz,	CH2CH3),	2.40	(s,	

3H,	CH3Ar)	1.20-1.21	(t,	3H,	J=	7.9	Hz,	CH2CH3);	IR	(neat)	in	cm-1:	1682	νC=O	(s),	1608	νC=C	(m).		

4.2.9.2 Synthesis	of	4-methyl-2-bromopropiophenone	

	

	

Scheme	4.18	-	Synthesis	of	4-methyl-2-bromopropiophenone.	

To	a	solution	of	4-methyl	propiophenone	((19),	8.89	g,	60	mmol)	in	DCM	(60	mL),	one	drop	of	hydrogen	

bromide	(33	%	in	aqueous	solution)	was	added	followed	by	one	drop	of	bromine.	The	mixture	was	

stirred	at	room	temperature	until	the	bromine	colour	had	dispersed.	Additional	bromine	(3.1	mL,	3.1	

gmL-1)	was	added	dropwise	with	stirring.	The	reaction	mixture	was	stirred	at	room	temperature	for	

1.5	h	and	then	concentration	 in	vacuo	produced	a	dark	brown	oil	which	solidified	on	standing.	The	

crude	product	was	recrystallized	from	diethyl	ether	to	give	a	white	crystalline	solid	((20),	4.5	g,	37	%).	
1H-NMR	(400	MHz,	CDCl3)	δ,	ppm:	7.90-7.91	(d,	2H,	J=	8.0	Hz,	ArH),	7.27-7.28	(d,	2H,	J=	8.0	Hz,	ArH),	

5.26-5.27	(q,	1H,	J=	7.2	Hz,	CHBr),	2.41	(s,	3H,	CH3Ar)	1.88-1.89	(d,	3H,	J=	6.7	Hz,	CH2CH3);	IR	(neat)	cm-

1:	1682	νC=O	(s),	1608	νC=C	(m);	m.p.	=	76-77	°C;	lit.	m.p.	76-77	°C37.	

4.2.9.3 Synthesis	of	4-methyl	methcathinone	hydrochloride	

	

	

Scheme	4.19	-	Synthesis	of	4-methyl	methcathinone	hydrochloride.	
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To	a	solution	of	4-methyl-2-bromopropiophenone	((20),	4.5	g,	19.7	mmol)	 in	ACN	(100	mL)	methyl	

amine	hydrochloride	(1.33	g,	19.7	mmol)	was	added.	Once	dissolved,	potassium	carbonate	(8.17	g,	

59.1	mmol)	was	 added.	 The	 reaction	mixture	was	 left	 stirring	 at	 room	 temperature,	with	 a	white	

precipitate	forming	throughout	the	reaction.	The	reaction	was	monitored	via	TLC	until	completion	(ca.	

7	h).	Once	the	reaction	had	reached	completion	the	precipitate	and	salts	were	filtered	off	and	the	

filtrate	was	concentrated	 in	vacuo.	The	remaining	residue	was	redissolved	in	diethyl	ether	(50	mL),	

extracted	with	 aqueous	 hydrochloric	 acid	 (5	%,	 3	 x	 50	mL).	 The	 combined	 aqueous	 extracts	were	

washed	with	diethyl	ether	(2	x	50	mL).	The	combined	aqueous	extracts	were	made	basic	(pH	9-10)	

using	 ammonium	hydroxide.	 The	 crude	product	 free	base	 is	 observed	 to	 precipitate	 out	 from	 the	

aqueous	solution	as	an	oil.	Diethyl	ether	(3	x	50	mL)	was	used	to	extract	out	the	free	base	and	the	

combined	organic	extracts	were	washed	with	water	(2	x	50	mL)	and	dried	over	sodium	sulfate,	filtered	

and	cooled	in	ice.	Hydrochloric	acid	in	diethyl	ether	(2M)	was	added	until	no	more	white	precipitate	

was	 seen	 to	 form.	 The	 product	 was	 filtered	 off	 and	 recrystallized	 from	 ethanol,	 yielding	 a	 white	

crystalline	solid	((21),	950	mg,	23	%).	1H-NMR	(400	MHz,	CDCl3)	δ,	ppm:	9.30	(br	s,	2H,	CH3NH2)	7.90-

7.91	(d,	2H,	J=	8.0	Hz,	ArH),	7.27-7.28	(d,	2H,	J=	8.0	Hz,	ArH),	4.19-4.22	(q,	1H,	J=	8.1	Hz,	CHNH),	2.59	

(s,	3H,	CH3NH2),	2.41	(s,	3H,	CH3Ar),	1.88-1.89	(d,	3H,	J=	6.7	Hz,	CH2CH3);	IR	(neat)	in	cm-1:	2717	νN-H	

(m),	1689	νC=O	(s),	1606	νC=C	(m);	m.p.	250-252	oC;	lit	m.p.	251	oC37.	

4.3 Results	and	Discussion	

4.3.1 Calixarene		

As	outlined	above,	1,3-dithioureanaphthylcalixarene	(1)	was	designed	based	on	the	pharmacophoric	

features	proposed	in	Chapter	3,	to	selectively	bind	mephedrone.	The	hydrophobic	bowl	is	predicted	

to	bind	to	the	benzyl	unit	of	mephedrone,	while	the	urea	arms	are	designed	to	bind	to	both	the	amine	

and	the	carbonyl	functionalities.	The	naphthyl	groups	have	been	included	as	potential	signalling	units	

for	use	with	optical	spectroscopy.	The	proposed	synthetic	route	for	compound	(1)	is	shown	in	Scheme	

4.20.		
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Scheme	4.20	-	Proposed	reaction	procedure	for	the	synthesis	of	1,3-diureanaphthylcalix[4]arene.	

The	first	step	involves	de-tert-butylation	of	the	upper	rim	of	the	starting	tert-butylcalix[4]arene	(3).	

This	is	a	well-established	method	reported	in	a	number	of	literature	sources163,166,174.	The	reaction	was	

carried	 out	 in	 toluene	 via	 a	 retro-Friedel-Crafts	 de-tert-butylation;	 five	 equivalents	 of	 aluminium	

chloride	were	used.	The	reaction	was	left	at	room	temperature	overnight,	before	being	worked	up	

following	a	procedure	set	out	by	Elçin	et	al174.	The	most	recent	NMR	predictions	for	calixarenes	carried	

out	by	Magrans	et	al.181	showed	that	the	de-tert-butylated	calixarene	could	not	exclusively	adopt	the	

cone	conformation.	However,	NMR	analysis	of	compound	(4)	shows	the	Ar-CH2-Ar	chemical	shifts	at	

3.57	and	3.88	ppm,	which	would	suggest	a	cone	conformation,	as	reported	in	the	literature182.		

Compound	(4)	was	then	nitrated	using	acetic	acid	and	nitric	acid	in	DCM.	To	prevent	over	nitration	of	

the	upper	rim,	the	reaction	was	carried	out	using	nitric	acid	as	the	limiting	reagent	at	low	temperature.	

DCM	 was	 used	 due	 to	 the	 insolubility	 of	 compound	 (4)	 in	 aqueous	 media,	 however	 the	 starting	

material	 was	 still	 not	 completely	 soluble	 in	 the	 reaction	mixture.	 After	 2	 hours	 the	 reaction	 was	

worked	up	as	outlined	 in	Kumar	et	al.175.	A	 1H-NMR	spectrum	of	 the	 crude	material	 indicated	 the	

presence	of	starting	material	as	well	as	product;	washing	with	DCM	and	ethanol	produced	the	pure	

product.	NMR	spectra	showed	two	chemical	environments	which	suggests	tetra	substitution	of	the	
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upper	calixarene	rim.	IR	data	corroborates	successful	nitro	substitution	showing	IR	stretches	at	1620	

and	1300	cm-1	indicative	of	N-O	stretch	of	the	nitro	groups.			

In	 order	 to	 introduce	 the	 urea	 functionalities,	 reduction	 of	 the	 nitro	 groups	 is	 required.	 Several	

alternative	 reaction	 conditions	 were	 examined	 for	 the	 reduction.	 There	 is	 currently	 no	 literature	

associated	with	this	reaction	using	calixarenes	and	therefore	known	reduction	conditions	for	different	

compounds	were	attempted.	The	first	attempt	was	using	tin	(II)	chloride,	in	ethanol.	NMR	analysis	of	

the	 reaction	product	 showed	no	evidence	 for	 formation	of	 the	 required	compound.	Another	well-

known	reductive	procedure	is	palladium	on	carbon,	which	was	carried	out	using	isopropyl	alcohol	as	

the	solvent	under	reflux.	The	starting	calixarene	(compound	(6))	did	not	appear	to	completely	dissolve	

in	 this	 solvent	 under	 reflux	 and	 the	 starting	material	 was	 isolated	 upon	work	 up	 of	 the	 reaction	

mixture.	The	reaction	conditions	used	for	the	reduction	of	the	nitroanthraquinones	was	a	solution	of	

ethanol	 and	 four	 equivalents	 of	 sodium	 sulphide.	 Compound	 (6)	 was	 not	 soluble	 in	 this	 reaction	

mixture,	even	under	reflux	conditions,	and	a	small	amount	of	DMSO	was	added	to	the	mixture	to	aid	

solubility.	 This	 allowed	 the	 reaction	 to	 proceed,	 however	 the	 presence	 of	 the	 DMSO	 proved	

problematic	 and	 it	 was	 not	 possible	 to	 obtain	 compound	 (1)	 out	 of	 solution.	 Evaporation	 of	 the	

reaction	mixture,	 led	to	a	mixture	of	starting	materials	and	the	1H-NMR	of	 the	residue	showed	no	

presence	of	the	desired	product.	The	solubility	of	compound	(6)	was	examined	in	a	range	of	organic	

solvents;	however,	DMSO	was	the	only	solvent	in	which	it	appeared	to	show	any	degree	of	solubility.	

This	is	a	characteristic	of	the	calixarenes	that	has	been	noted	previously65.	Substitution	of	the	lower	

rim	of	the	calixarenes	aids	the	solubility	of	these	compounds	both	in	aqueous	and	organic	media,	by	

disrupting	the	hydrogen	bonding	between	the	lower	rim	hydroxyl	groups.	In	order	to	further	study	

the	calixarenes	as	host	molecules,	substitution	on	the	lower	rim	to	increase	solubility	was	carried	out.		

Selective	substitution	of	two	hydroxyl	groups	for	benzoyl	groups	was	carried	out	as	described	by	Elçin	

et	al.174.	It	was	found	that	by	substituting	the	1-	and	3-	positions	with	benzoyl	groups,	solubility	of	the	

calixarene	was	improved,	specifically	in	nitric	acid	to	allow	for	nitration	to	occur	at	increased	yields.	

This	also	allowed	for	de-tert-butylation	to	occur	on	just	two	positions	on	the	upper	rim,	those	that	are	

not	benzoyl	substituted	in	the	para	position.	

Compound	 (3)	 was	 substituted	 in	 the	 1-	 and	 3-	 positions	 with	 benzoyl	 groups,	 using	 2	 molar	

equivalents	 of	 benzoyl	 chloride	 (Scheme	 4.21).	 Splitting	 of	 the	 CH2	 protons	 in	 the	 NMR	 analysis	

showed	 symmetrical	 substitution,	 indicating	 that	de-tert-butylation	occurred	on	 just	 the	1-	 and	3-	

positions	on	the	upper	rim.	Then	de-tert-butylation	was	carried	out	as	described	previously;	however,	

the	 presence	 of	 the	 benzoyl	 groups	 prevented	 removal	 of	 the	 tert-butyl	 groups	 in	 the	 1-	 and	 3-	

positions.	The	final	product	remained	di-tert-butyl	substituted.	
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Scheme	4.21	-	Proposed	reaction	procedure	for	the	synthesis	of	dinitro-dibenzoylcalix[4]arene.	

The	 1H-NMR	 spectrum	 corresponds	 to	 that	 reported	 in	 the	 original	 paper174.	 The	 synthesis	 of	

compound	(23)	was	repeated	successfully	multiple	times	and	consistently	produced	20	%	yields	of	the	

desired	product,	this	 is	significantly	 lower	than	the	65	%	reported	in	the	literature174.	The	nitration	

step	as	 carried	out	previously	was	 repeated	on	 the	benzoyl	 calixarene	derivative	 (9)	however,	 the	

required	product	was	not	observed.	The	reaction	was	carried	out	on	a	100	mg	scale,	due	to	the	low	

yielding	first	step;	therefore,	it	is	possible	that	the	scale	was	too	small	to	allow	for	successful	isolation	

of	the	desired	product.	This	reaction	will	need	to	be	repeated	on	a	larger	scale	to	better	understand	

how	the	reaction	works.	Once	sufficient	material	is	obtained	this	will	enable	further	experiments	to	

be	carried	out	on	the	upper	rim	in	order	to	produce	the	desired	calixarene	host	molecule.	This	could	

be	further	explored	in	the	future	as	another	potential	host	molecule	for	detection	of	mephedrone.	

Given	 the	unsuccessful	 synthesis	of	 the	calixarene	derivative,	 in	part	due	 to	 the	 insolubility	of	 the	

calixarenes,	 focus	 was	 diverted	 to	 the	 anthraquinone	 derivative,	 which	 are	 known	 to	 have	 good	

solubility	in	organic	solvents183.	

4.3.2 Anthraquinone	

The	proposed	anthraquinone	sensor	molecule	(2)	was	designed	with	two	thiourea	groups	substituted	

in	the	1,8	position	of	the	anthraquinone,	to	give	the	ideal	cavity	size	for	mephedrone.	Thioureas	have	
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the	 ability	 to	 both	donate	 and	 accept	 hydrogen	bonds,	which	 is	 ideal	 for	 the	 amine	 and	 carbonyl	

functionalities	 in	 mephedrone.	 The	 two	 benzyl	 groups	 are	 positioned	 to	 act	 as	 the	 π-stacking	

interactions	 present	 in	 the	 pharmacophore	model.	 The	 anthraquinone	 is	 an	 ideal	 scaffold	 for	 an	

optical	sensor.	The	flexibility	of	the	structure	may	allow	for	the	two	arms	to	rearrange	themselves	

around	mephedrone	 for	 binding,	 this	 is	 one	 of	 the	 advantages	 of	 an	 acyclic	 supramolecular	 host	

molecule	over	the	macrocyclic	calixarenes.		

The	proposed	reaction	scheme	for	the	synthesis	of	1,8-dibenzylthiourea	anthraquinone	((2);	Scheme	

4.22)	was	 a	 three-step	process,	 starting	 from	 the	 commercially	 available	1,8-dinitroanthraquinone	

(10).	This	should	allow	for	reduction	of	the	nitro	groups	to	primary	amines	followed	by	the	formation	

of	the	thiourea	functionality.		

	

Scheme	4.22	-	Proposed	reaction	scheme	for	the	synthesis	of	1,8-dibenzylthiourea	anthraquinone.	

The	reduction	of	 the	1,8-dinitroanthraquinone	(10)	was	successfully	repeated	using	sodium	sulfide	

with	yields	of	up	to	90	%.	The	coupling	of	benzylisothiocyanate	with	compound	(11)	was	attempted	

under	a	number	of	different	reaction	conditions	to	optimise	the	product	yield,	including	variation	of	

the	base.	Both	triethylamine	and	sodium	hydroxide	were	used	in	a	variety	of	solvents	including	DCM,	

ethyl	acetate	and	ethanol	under	reflux.	Reaction	times	were	varied	from	one	hour	to	one	week	and	

the	reactions	were	monitored	by	TLC.	All	of	these	reactions	yielded	the	starting	material	 following	

workup.	The	amino	group	on	the	anthraquinone	appeared	to	be	unreactive	to	all	of	these	conditions.	

Previous	literature	concerning	these	reactions	have	been	based	upon	anthracene	moieties	and	not	

anthraquinones,	meaning	there	was	no	carbonyl	group	positioned	between	the	amino	groups184.	It	is	

possible	that	the	carbonyl	group	is	preventing	amino	groups	from	reacting,	by	stabilising	the	structure	

through	 hydrogen	 bonding.	 As	 shown	 in	 Figure	 4.5,	 it	 is	 possible	 for	 two	 stable	 six	 membered	

intramolecular	rings	to	form	due	to	hydrogen	bonding.	The	stability	of	the	intramolecular	hydrogen	



Synthesis	of	Potential	Host	Molecules	

128	
	

bonding	would	also	explain	why	only	 starting	material	was	 isolated	 from	the	 reaction	mixtures.	 In	

order	to	investigate	if	this	is	the	reason	for	the	reaction	not	progressing,	a	phosphazene	superbase	

was	used.	Tert-butyl-P4	is	a	more	powerful	base	than	most	amines	with	a	pKBH+	value	of	30.1185.	Even	

with	such	a	strong	base,	no	reaction	took	place	and	just	starting	material	was	once	again	isolated	from	

the	reaction	mixture.		

	

	

	

	

	

	

Given	that	the	phosphazene	superbase	reaction	was	not	successful,	the	anthraquinone	sensor	was	

redesigned.	 Therefore,	 the	 next	 step	 involved	 reduction	 of	 the	 dinitroanthraquinone	 to	 a	

diaminoanthracene	moiety	(Scheme	4.23),	which	will	free	up	the	amino	functionalities	to	react	and	

form	the	thiourea	groups	required	for	the	host	molecule.	By	removing	the	carbonyl	functionalities	the	

potential	host	molecule	still	encompasses	the	pharmacophoric	features	that	were	designed	in	Chapter	

3,	so	the	change	in	structure	still	contains	two	aromatic	functionalities	and	hydrogen	bond	donors	as	

in	the	perceived	design.			

There	is	considerable	literature	surrounding	the	reduction	of	anthraquinones.	The	simplest	reaction	

reported	 by	 Wong	 et	 al.179	 was	 carried	 out	 by	 refluxing	 sodium	 borohydride	 and	 1,8-

dinitroanthraquinone	in	isopropyl	alcohol	for	36	hours,	yielding	a	brown	solid	with	yields	consistently	

above	80	%.	This	is	an	improvement	from	the	published	yield	of	just	55	%.			

	

Scheme	4.23	-	Reduction	of	anthraquinone	to	diaminoanthracene.	

O

O
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Figure	4.5	-	Potential	hydrogen	bonding	occurring	between	both	amino	functionalities	and	the	carbonyl. 
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The	diaminoanthracene	was	reacted	with	2.2	equivalents	of	benzylisothiocyanate	in	DCM,	to	examine	

how	the	reactivity	is	affected	by	the	removal	of	the	carbonyl	group.	TLC	examination	of	the	reaction	

mixture	 showed	 3	 spots,	 one	 of	 which	 was	 the	 corresponding	 starting	 material.	 Column	

chromatography	was	used	to	separate	the	bands	which	were	subsequently	analysed	using	1H-NMR.	

Based	on	the	NMR	spectra	the	first	band	showed	formation	of	the	thiourea	on	just	one	amino	group,	

producing	the	‘one	arm’	host	compound.	From	the	NMR	the	second	band	appeared	to	show	possible	

formation	of	the	desired	dithiourea	host	molecule	(14),	with	a	more	symmetrical	splitting	of	the	NMR	

peaks,	and	was	isolated	as	a	yellow	solid.	As	seen	in	the	1H-NMR	(Figure	4.6)	a	large	number	of	peaks	

were	observed	in	the	aromatic	region,	integrating	to	a	total	of	40	protons,	which	is	more	than	the	26	

protons	expected	for	this	compound.		

	

	

Figure	4.6	-	Variable	temperature	1H-NMR	for	dithioureabenzylanthracene	(14)	run	in	acetone-d6.	

Four	amine	signals	are	seen	in	the	NMR	spectra	which	 is	more	than	the	two	signals	that	would	be	

expected	for	compound	(14)	due	to	the	symmetry.	This	could	be	due	to	the	formation	of	different	

conformers,	 which	 has	 been	 reported	 previously	 for	 a	 number	 of	 dithiourea	 substituted	

compounds186,187.	 The	 conformations	 that	 have	 been	 reported	 are	 anti-anti,	 syn-anti	 and	 syn-syn	

(Figure	4.7).	The	syn-anti	conformation	produces	a	non-symmetrical	molecule	that	would	explain	the	
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four	different	amine	signals	from	the	thiourea	moiety	seen	in	the	NMR	(7.61,	5.37,	9.09	and	9.12	ppm).	

The	different	conformations	may	also	help	explain	why	there	are	more	signals	in	the	aromatic	region	

than	would	be	expected.	This	may	be	due	to	the	different	conformers	affecting	the	proton	in	position	

9-	of	the	anthracene	(8.78	ppm)	in	different	ways	leading	to	multiple	peaks	being	seen.	To	try	and	

freeze	the	conformers	out	in	an	attempt	to	establish	if	it	is	possible	to	see	just	one	in	the	proton	NMR,	

a	low	temperature	study	was	conducted.	As	seen	in	Figure	4.6	this	did	not	occur	as	expected,	a	number	

of	signals	shifted,	but	the	final	spectrum,	at	-50	oC,	still	does	not	represent	the	expected	number	of	

signals	for	one	conformer.		

	

Figure	4.7	-	Possible	conformers	for	dithioureabenzylanthracene	(14).	

Due	 to	 the	 inconclusiveness	 of	 the	 previous	 reaction	 and	 the	 NMR	 studies,	 alternative	 reaction	

conditions	for	the	synthesis	of	compounds	(14)	were	examined.	The	literature	concerning	this	reaction	

indicates	that	DCM	is	the	preferred	solvent.	However,	DCM	has	been	known	to	contain	traces	of	HCl	

from	the	production	process188	and	small	amounts	of	acid	may	have	an	effect	on	how	the	reaction	

progresses.	 For	 this	 reason	 ethanol	was	 used	 to	 observe	 the	 effect.	 The	 reaction	was	 refluxed	 in	

ethanol	for	two	hours,	in	the	absence	of	base.	After	two	hours	the	reaction	mixture	was	cooled	in	ice	

and	filtered,	successfully	yielding	compound	(14)	a	dark	brown	solid	with	a	yield	of	80	%.	1H-NMR	of	

the	product	 showed,	as	predicted,	 two	regions	 for	 the	protons	 in	 the	amine	and	distinct	aromatic	

peaks	(Figure	4.8).	Integration	shows	26	protons	as	would	be	expected	for	compound	(14).		
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Figure	4.8	-	1H-NMR	for	dithioureabenzylanthracene	(14)	run	in	acetone-d6.	

The	reaction	was	subsequently	repeated	over	1	hour	and	3	hours	both	of	which	produced	the	desired	

compound	(14),	however	in	lower	yields.	Therefore,	it	was	concluded	that	a	2	hour	reaction	time	was	

optimal	with	 yields	of	up	 to	40	%	 for	 the	 full	 two	 step	 reaction.	With	 compound	 (14)	 successfully	

synthesised,	it	was	taken	forward	for	binding	studies.	

Preliminary	studies	to	examine	the	binding	affinity	of	compound	(14)	were	carried	out	alongside	the	

continued	synthesis	of	potential	host	molecules.	As	the	synthetic	work	and	preliminary	testing	were	

carried	 out	 in	 the	USA,	mephedrone	 could	 not	 be	 used	 at	 this	 point	 due	 to	 licencing	 restrictions.	

Therefore,	the	precursor	to	mephedrone,	4-methyl	propiophenone	(compound	(19))	was	initially	used	

to	examine	affinity.	Compound	 (19)	does	not	contain	 the	methylamino	group	 in	mephedrone,	but	

does	have	the	important	aromatic	and	carbonyl	functionalities.		
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Figure	4.9	-	Full	1H-NMR	titration	of	compound	(14)	and	the	mephedrone	precursor	4-methyl	propiophenone	(compound	

(19)).		

A	full	1H-NMR	titration,	from	0.5	to	15	eq.	was	carried	out	in	acetone	to	determine	whether	compound	

(19)	had	an	affinity	with	the	host	molecule,	(14).	In	Figure	4.9	it	can	be	seen	that	the	signal	due	to	the	

NH	functionalities	at	9.2	ppm	in	compound	(14)	are	moving	further	downfield	as	compound	(16)	 is	

added.	This	is	indicative	of	hydrogen	bonding	occurring,	which	shows	that	there	is	an	affinity	between	

the	host	and	guest.	The	only	group	present	in	compound	(19)	that	could	cause	this	shift	is	the	carbonyl	

functionality,	which	 could	not	be	 included	 in	 the	pharmacophoric	 features.	However,	 for	 the	host	

molecule	to	be	selective	for	mephedrone	over	other	amphetamine	related	molecules	an	affinity	for	

the	carbonyl	would	be	ideal,	in	addition	to	the	pharmacophoric	features	identified	in	Chapter	3.	The	

pharmacophore	model	predicted	that	there	should	be	a	π-stacking	interaction	with	the	benzyl	group	

on	mephedrone.	However,	no	other	noticeable	shifts	can	be	observed	from	either	the	host	or	guest.	

A	change	in	chemical	shift	in	the	host	molecule	shows	promising	results	for	compound	(14)	having	an	

affinity	 for	mephedrone.	 Given	 the	 preliminary	 results	 based	 on	 the	mephedrone	 precursor	 (19),	

compound	(14)	became	the	point	of	focus	due	to	these	promising	results	and	therefore	the	synthesis	

of	the	calixarene	derivatives	was	not	continued.		



Synthesis	of	Potential	Host	Molecules	

133	
	

	

Figure	4.10	-	Chemical	structure	for	the	model	system,	1-benzyl-3-phenylthiourea	(compound	(16)).	

In	supramolecular	chemistry	it	is	common	practice	to	test	a	simplified	analogue	of	a	host	molecule,	to	

systematically	evaluate	 the	 interactions	points	of	 the	host	molecule	which	may	be	 responsible	 for	

binding	 the	 guest.	Given	 that	 compound	 (14)	 showed	promising	 results,	 a	model	 host	 sensor	was	

synthesised	 which	 will	 be	 examined	 alongside	 compound	 (14)	 in	 Chapter	 5.	 Compound	 (16)	 was	

prepared	 using	 ethanol	 and	 one	 equivalent	 of	 benzylisothiocyanate.	 As	 shown	 in	 Figure	 4.10	

compound	(16)	contains	just	one	thiourea	pendant	arm	and	the	anthracene	moiety	is	replaced	with	

an	aniline	group.	This	will	help	determine	whether	both	pendant	arms	are	necessary	to	establish	the	

binding	affinity	with	mephedrone.	Based	on	the	pharmacophore	design	in	Chapter	3,	the	sterics	of	the	

binding	 cavity	 should	play	a	 large	 factor	 in	 selectivity.	 Therefore,	 synthesis	 and	examination	of	 an	

‘open’	structure,	will	determine	whether	this	is	true	experimentally	(Chapter	5).		

4.4 Conclusion	

Successful	de-tert-butylation	of	tetra-tert-butylcalix[4]arene	was	achieved	in	yields	of	76	%,	which	is	

an	 improvement	 of	 the	 68	 %	 that	 was	 reported	 in	 the	 literature174.	 Di-nitro	 substitution	 of	 the	

calix[4]arene	was	carried	out	under	acidic	conditions	and	the	product	was	characterised	using	both	

NMR	and	IR	spectroscopy	techniques.	Reduction	of	the	nitro	groups	was	not	successful	due	to	the	

insolubility	of	the	nitrocalix[4]arene	in	both	aqueous	and	organic	media.	In	order	to	overcome	this,	

the	lower	rim	of	the	tetra-tert-butylcalix[4]arene	was	di-substituted	with	benzoyl	groups	prior	to	de-

tert-butylation.	Successful	de-tert-butylation	of	the	di-substituted	product	was	carried	out	with	yields	

of	20	%.	Nitration	of	the	benzoylated	compound	was	unsuccessful,	possibly	due	to	small	yields	in	the	

previous	steps	there	was	insufficient	material	to	obtain	reasonable	amount	of	product	for	this	step.	

Any	 future	 attempts	 to	 use	 the	 calixarene	 class	 as	 host	 molecules	 for	 mephedrone	 will	 need	 to	

consider	functionalising	the	lower	rim,	before	attempting	upper	rim	substitution,	to	prevent	the	same	

solubility	issues.	It	appears	to	be	that	by	keeping	the	hydroxyl	groups	on	the	lower	rim	the	solubility	

of	the	molecule	decreases.	
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The	 original	 target	 host	 molecule,	 1,8-dinaphthylthiourea	 anthraquinone	 (2)	 was	 not	 successfully	

synthesised.	This	was	likely	due	to	the	strength	of	the	hydrogen	bonding	between	the	carbonyl	and	

amine	functionalities	in	the	intermediate	step	of	the	synthetic	pathway,	making	the	compound	too	

unreactive	 to	 undergo	 reactions	 to	 form	 the	 thiourea	 functionality.	 However,	 by	 reducing	 the	

anthraquinone	 to	 an	 anthracene	 moiety	 it	 allowed	 the	 reaction	 to	 proceed	 due	 to	 the	 lack	 of	

intramolecular	hydrogen	bonding	between	the	carbonyl	and	the	amine	functionalities.	The	reduction	

of	the	anthraquinone	does	not	alter	the	binding	site	in	relation	to	the	pharmacophore	model,	as	the	

carbonyl	 of	 the	 anthraquinone	 was	 not	 considered	 the	 hydrogen	 bond	 donor.	 However,	 the	

anthracene	moiety	could	now	act	as	an	additional	π-stacking	point,	as	there	are	two	present	in	the	

pharmacophore.	1,8-Dibenzylthiourea	anthracene	(14)	was	successfully	synthesised	in	yields	of	40	%	

by	refluxing	compound	(13)	in	ethanol	in	the	absence	of	base.		

Using	compound	(14),	a	preliminary	binding	study	with	a	4-methylpropiopheneone	(19),	which	is	a	

precursor	to	mephedrone,	was	carried	out	using	1H-NMR.	There	appears	to	be	an	interaction	between	

the	host	and	guest	molecules,	with	 the	hydrogen	bonding	causing	a	downfield	 shift	of	 the	proton	

signals	of	the	amine	groups	on	the	host	molecule.	Compound	(19)	varies	from	mephedrone	by	the	

removal	of	 the	methylamine	 functionality.	Therefore,	 the	only	group	that	can	cause	this	hydrogen	

bonding	to	occur	is	the	carbonyl.	This	shows	promising	results	to	take	compound	(14)	forward	for	full	

examination	against	mephedrone.	NMR	titration	will	give	an	insight	into	whether	it	is	binding,	as	well	

as	how	it	is	binding	as	the	protons	involved	in	binding	will	be	most	affected	and	therefore	a	shift	in	

the	NMR	will	be	observed.	This	will	give	experimental	evidence	into	the	atoms	involved	in	binding,	

from	which	an	experimental	pharmacophore	model	can	be	build,	which	can	then	be	compared	to	the	

pharmacophore	model	predictions.	This	will	give	evidence	as	to	whether	the	pharmacophore	design	

aided	in	the	host	molecule	design	process.		

The	 final	 aim	of	 the	host	 is	 to	produce	an	optical	 sensor	 that	 can	be	used	 in	 the	 field.	 Therefore,	

additional	 optical	 techniques	 such	 as	 UV/Vis	 and	 fluorescence	 spectroscopy	 will	 also	 be	 used	 to	

examine	the	binding	affinity	between	the	host	and	mephedrone.	Selectivity	is	also	very	important,	as	

discussed	 in	 detail	 in	 Chapter	 3.	 Therefore,	 the	 binding	 between	 the	 host	 molecule	 and	

methamphetamine	will	also	be	studied,	in	addition	to	the	commonly	used	cutting	agents.	



	

	

Chapter	5 Evaluation	of	Host	Molecule	Interactions	

with	Mephedrone	and	Related	Substances		

5.1 Introduction	

Compound	 (13),	 here	 after	 known	 as	 Probe	 1	 was	 synthesised	 in	 Chapter	 4	 based	 on	 the	

pharmacophoric	model	in	Chapter	3.	Using	this	host	molecule,	the	binding	affinity	of	the	target	guest	

molecule,	mephedrone,	will	be	evaluated	later	in	this	chapter.	A	number	of	approaches	have	been	

investigated	for	the	in-field	detection	of	new	psychoactive	substances63,133,134;	however,	there	remains	

a	need	to	improve	the	selectivity	over	chemical	analogues	and	common	cutting	agents,	while	retaining	

sensitivity,	ease	of	interpretation	and	reliability.	The	use	of	host-guest	chemistry	to	selectively	target	

particular	analytes	i.e.	cations	and	anions	is	well	established102.	Less	common	is	the	use	of	host-guest	

chemistry	for	small	molecule	recognition189,190.	With	an	understanding	of	intermolecular	interactions,	

such	 as	 hydrogen	 bonding,	 hydrophobic	 interactions	 and	p-stacking,	 the	 same	 techniques	 can	 be	

applied	to	small	molecules85,191.	There	are	a	number	of	detection	techniques	used	for	monitoring	host-

guest	 binding.	 They	 all	 have	 their	 own	 unique	 advantages	 and	 disadvantages.	 For	 example	 NMR	

provides	valuable	information	regarding	the	specific	atoms	that	are	involved	in	the	interactions,	but	

it	is	not	very	sensitive	and	therefore	requires	high	sample	concentrations.	Optical	techniques	such	as	

fluorimetry	 and	 UV/Vis	 spectroscopy	 are	 more	 sensitive	 than	 NMR	 and	 allow	 for	 much	 lower	

concentrations	of	analytes	to	be	studied,	but	they	rely	on	the	host	or	guest	molecule	to	possess	either	

a	chromophore	or	fluorophore	in	its	motif	that	participates	in	binding.	Fluorimetry	specifically,	can	be	

carried	out	in	a	wide	range	of	concentrations	from	millimolar	down	to	nanomolar,	depending	on	the	

system	being	studied.		

Ideally	 for	 use	 in	 in-field	 detection	 Probe	 1	 will	 produce	 an	 optical	 change	 upon	 binding	 to	

mephedrone,	e.g.	a	colour	change.	Fluorimetry	or	UV/Vis	spectroscopy	techniques	can	be	applied	to	

observe	 and	 quantify	 an	 optical	 change	 upon	 binding.	 This	 is	 why	 an	 anthracene	 unit	 is	 an	 ideal	

functional	group	 for	 the	host	molecule,	as	 it	 is	 known	 to	be	a	good	 fluorophore	 for	use	 in	optical	

spectroscopy	techniques192.		

Binding	constants	 can	be	calculated	 from	titration	data	based	on	a	 change	 in	 response	versus	 the	

concentration	ratios	between	the	host	and	guest.	At	half	the	observed	total	response	the	dissociation	

constant	(Kd)	is	equal	to	the	concentration	of	the	guest193.	However,	it	is	now	more	accepted	to	use	

analysis	software	to	accurately	determine	binding	constants	from	titration	data108,	as	more	complex	

algorithms	can	be	applied	to	fit	the	data.	
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Density	functional	theory	(DFT)	is	often	used	for	in	silico	analysis	of	host-guest	interactions,	in	parallel	

with	experimental	data.	DFT	calculations	are	based	on	the	concept	that	there	is	a	relationship	between	

total	electronic	energy	and	the	overall	electronic	density	of	a	system.	This	theory	extends	to	the	fact	

that	ground	state	energy	and	other	system	properties	can	be	uniquely	defined	by	electron	density194.	

DFT	is	defined	by	Equation	5.1	where	E	is	energy,	ρ(r)	denotes	the	density,	Vext	states	that	everything	

occurs	under	constant	external	potential	and	µ	is	a	Lagrange	multiplier	constant.	

𝜹𝑬[𝝆 𝒓 ]

𝜹𝝆(𝒓)
𝑽𝒆𝒙𝒕	 = 	𝝁									Equation	5.1	

Currently	DFT	 calculations	 remain	 the	 primary	method	 for	 studying	 ground	 state	 complexation	 of	

matter	in	silico.	To	solve	Equation	5.1	for	a	given	system	a	self-consistent	approach	is	taken.	An	initial	

estimation	of	density	 is	applied	to	the	equation	to	produce	a	set	of	orbitals	which	leads	to	a	more	

accurate	 determination	 of	 the	 density,	 which	 is	 used	 for	 the	 second	 iteration	 and	 so	 on	 until	

convergence	is	achieved114.	DFT	calculations	allow	for	an	estimation	of	not	only	the	energy	of	a	system	

and	 its	 component	parts,	but	also	an	 indication	of	 the	binding	 interactions	 that	are	occurring.	 For	

example,	a	study	of	the	change	in	conformation	of	the	host	molecule	upon	binding	to	the	guest	can	

be	observed	as	well	as	the	interactions	between	the	host	and	guest195,196.		

An	important	factor	in	the	design	of	Probe	1	is	selectivity.	The	pharmacophore	model	of	Probe	1	not	

only	gave	detailed	insight	into	potential	binding	interactions,	it	also	allowed	for	analysis	of	common	

cutting	agents	that	the	host	molecule	needs	to	be	selective	against,	a	necessity	for	reliable	 in-field	

detection.	 As	 previously	 discussed,	 certain	 cutting	 agents	 and	 excipients	 are	 more	 common	 in	

mephedrone	street	 samples.	 For	 this	 reason,	a	number	of	 chemical	analogues	as	well	 as	 common	

cuttings	agents	will	also	be	tested	against	Probe	1	(Figure	5.1).		
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Figure	 5.1	 -	 Chemical	 structure	 of	 selected	 cathinones,	 chemical	 analogues	 and	 common	 cutting	 agents	 studied	 A.	

mephedrone	B.	flephedrone	C.	mephedrone	precursor	D.	methamphetamine	E.	caffeine	F.	paracetamol	G.	benzocaine	

and	H.	lidocaine.	

The	aim	of	 this	work	 is	 to	test	 the	host	molecule	developed	 in	Chapter	4	against	 the	target	guest,	

mephedrone,	 and	 to	 study	 selectivity	 against	 chemical	 analogues	 and	 common	 cutting	 agents.	 In	

order	to	fully	study	host-guest	binding	interactions	a	number	of	techniques	were	employed,	nuclear	

magnetic	 resonance	 (NMR),	 UV/Vis	 spectroscopy,	 mass	 spectrometry	 (MS)	 and	 fluorimetry.	 NMR	

spectroscopy	 will	 be	 used	 to	 study	 the	 specific	 functional	 groups	 involved	 in	 possible	 host-guest	

interactions,	while	MS	will	be	used	as	a	confirmatory	technique	to	ensure	binding	is	occurring	between	

Probe	 1	 and	 mephedrone,	 as	 well	 as	 to	 determine	 stoichiometry.	 Optical	 techniques	 such	 as	

fluorimetry	and	UV/Vis	spectroscopy	will	be	employed	to	evaluate	the	prospect	of	using	Probe	1	for	

in-field	detection	applications.	DFT	calculations	will	be	carried	out,	in	an	attempt	to	aid	interpretation	

of	host-guest	interactions	observed	in	the	aforementioned	techniques.		

5.2 Methods	

Caffeine,	lidocaine,	paracetamol,	methamphetamine	hydrochloride	and	benzocaine	were	purchased	

from	 Sigma	 (Dorset,	 UK).	 Tetrabutylammonium	 chloride	 was	 purchased	 from	 Alfa	 Aesar	

(Massachusetts,	USA).	Mephedrone	hydrochloride	was	synthesised	as	 laid	out	 in	Chapter	4	section	

2.7.	

5.2.1 Liberating	Mephedrone	Freebase		

Mephedrone	hydrochloride	(200	mg)	was	dissolved	in	water	(50	mL).	The	mephedrone	freebase	was	

liberated	with	ammonium	hydroxide	(pH≈10)	and	extracted	into	diethyl	ether	(3	x	20	mL).	The	organic	

layer	was	washed	with	water	(3	x	50	mL)	to	ensure	there	was	no	residual	anions	present.	The	organic	

layer	was	dried	over	MgSO4	and	evaporated	to	dryness	yielding	a	yellow	oil.		
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5.2.2 NMR	Spectroscopy	Titration	Studies	

Both	 13C-NMR	 and	 1H-NMR	 titration	 spectra	 were	 recorded	 on	 a	 JEOL	 600	MHz	 spectrometer	 in	

acetone-d6,	unless	otherwise	stated.	Chemical	shifts	are	reported	in	parts	per	million	(ppm)	downfield	

from	tetramethylsilane	(0	ppm)	as	the	internal	standard	and	coupling	constants	(J)	are	recorded	in	

hertz	(Hz).	The	multiplicities	observed	in	the	1H-NMR	spectra	are	reported	as	(br)	broad,	(s)	singlet,	

(d)	doublet,	(dd)	doublet	of	doublets,	(t)	triplet,	and	(m)	multiplet.	All	spectra	are	recorded	at	ambient	

temperature,	unless	specified	otherwise.	1H-NMR	titrations	were	carried	out	by	preparing	a	20.0	mM	

solution	of	molecular	Probe	1	or	2	 in	acetone-d6	(2.0	mL).	A	stock	solution	of	each	free-based	drug	

(i.e.,	mephedrone	or	flephedrone)	was	prepared	in	acetone-d6	(2.0	mL).	Aliquots	of	2.5	μL	(2.5	μL	=	

0.1	 eq.	 of	 drug	 to	 probe)	were	 added	 and	 a	 1H-NMR	 spectrum	was	 recorded	 after	 each	 addition.	

Dissociation	 constants	 (Kd)	 were	 determined	 as	 the	 concentration	 of	 guest	 at	 half	 the	 observed	

chemical	shift.		

5.2.3 DFT	Calculations		

All	DFT	calculations	reported	were	performed	by	Prof.	Mire	Zloh	at	the	University	of	Hertfordshire.	

A	 conformational	 search	was	 carried	 out	 for	 Probe	 1	 alone	 and	 the	 Probe	 1-guest	 complex	 using	

Hyperchem	 8.10	 and	 OPLS	 force	 field.	 The	 five	 lowest	 energy	 structures/complexes	 that	 were	

conformationally	 different	 were	 subjected	 to	 PM7	 calculations	 using	 MOPAC2012,	 B3LYP	 6-

311++G(2d,2p)	 performed	 in	 orca.	 The	 lowest	 energy	 complexes	 for	 each	 NPS	 with	 Probe	 1	 was	

optimized	at	the	DFT	level,	and	that	was	followed	by	generating	and	optimizing	alternative	complexes	

for	comparison,	i.e.	to	ensure	that	the	minimum	conformation	of	both	drugs	was	in	fact	achieved.	The	

mephedrone	and	flephedrone	were	studied	in	their	respective	binding	positions,	i.e.	mephedrone	was	

positioned	 to	 bind	 to	 Probe	 1	 outside	 of	 the	 binding	 pocket	 and	 flephedrone	was	 position	 in	 the	

binding	pocket	and	DFT	calculations	were	re-run.		

5.2.4 UV/Vis	Spectroscopy	Studies	

UV/Vis	absorption	spectra	were	recorded	on	a	Cary	100	spectrometer.	A	solution	of	Probe	1,	2.5	mM	

was	prepared	 in	HPLC	grade	acetone.	A	0.01	M	mephedrone	 freebase	 solution	was	prepared	and	

aliquots	of	25	μL	(25	μL	=	0.25	eq.	of	mephedrone	freebase	to	Probe	1)	were	added	to	a	cuvette	with	

2	mL	of	Probe	1;	spectrum	were	collected	after	each	addition.	All	spectra	were	run	at	25	˚C	with	a	scan	

range	of	330	-	700	nm.	The	scan	rate	was	set	to	600	nm	min-1,	with	a	signal	averaging	time	of	0.1	s.		
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5.2.5 Fluorescence	Spectroscopy	Studies		

Fluorescence	emission	studies	were	carried	out	on	a	Perkin	Elmer	LS-55.	A	solution	of	Probe	1,	5.0	µM	

was	prepared	in	HPLC	grade	acetone.	An	additional	solution	containing	5.0	µM	Probe	1	and	2.5	mM	

of	 guest	 (mephedrone	 or	 flephedrone	 freebase)	 was	 prepared,	 to	 prevent	 dilution	 effects	 upon	

addition	to	the	solution	of	Probe	1.	Aliquots	of	50	μL	(50	μL	=	0.5	eq.	of	guest	to	Probe	1)	were	added	

to	the	cuvette	containing	2	mL	of	Probe	1,	spectra	were	collected	after	each	addition	from	0.5	to	50	

eq.	All	spectra	were	run	at	25	˚C.	For	all	mephedrone	experiments	the	excitation	wavelength	(λex)	was	

410	nm	with	a	scan	range	of	425	–	700	nm	was	applied.	For	flephedrone	λex	=	392	nm,	with	a	scan	

range	of	405	–	700	nm	was	used.	The	slit	width	for	both	excitation	and	emission	was	set	to	7.5	nm	

with	a	scan	speed	of	500	nm	min-1.	For	all	experiments	the	cuvette	remained	inside	instrument	holder	

throughout	the	experiment,	and	additions	were	made	directly	into	the	cuvette,	waiting	two	minutes	

between	additions	and	spectrum	collection.	

For	benzocaine,	lidocaine,	paracetamol	and	caffeine	solutions	of	2.5	mM	were	prepared	in	acetone	

and	aliquots	of	50	μL	(50	μL	=	0.5	eq.	of	guest	to	Probe	1)	were	added	from	0.5	to	50	eq.	directly	into	

the	cuvette	containing	a	5.0	µM	solution	of	Probe	1	(2	mL).	An	excitation	wavelength	of	410	nm	was	

used	and	the	same	instrument	parameters	as	above.		

Using	 the	 same	 instrument	 parameters,	 studies	 using	 neat,	 i.e.	 undiluted	 mephedrone	 and	

flephedrone	were	conducted,	whereby	a	5.0	µM	solution	Probe	1	in	acetone	was	prepared	and	the	

guest	was	added	in	5	µL	aliquots	(5	µL	=	150	eq.	of	guest	to	Probe	1).	Spectra	was	collected	from	150	

to	1950	eq.	of	guest	to	Probe	1.	The	same	parameters	were	used	to	study	neat	benzocaine,	lidocaine,	

paracetamol	and	caffeine	where	1	mg	portions	of	each	of	the	cutting	agents	was	added.		

Further	studies	were	conducted	using	a	range	of	concentrations	of	guest	in	acetone.	For	the	dilutions	

studies	 in	 acetone,	 five	 solutions	 of	 mephedrone	 freebase	 in	 acetone	 were	 prepared	 with	 the	

following	concentrations:	2.98,	1.96,	1.49,	0.99,	0.74,	and	0.60	M.	Spectra	was	collected	up	to	450	eq.	

of	guest	to	Probe	1.			

5.2.6 Mass	Spectrometry		

Mass	spectrometry	studies	were	was	performed	using	a	Varian	Prostar	1200L	quadrupole	MS/MS	via	

direct	 injection	 using	 an	 ESI	 source.	 For	 analysis	 of	 the	 Probe	 1	 and	 mephedrone,	 10	 eq.	 of	

mephedrone	freebase	were	added	to	a	0.5	mg	mL-1	solution	of	Probe	1	in	acetone.	Formic	acid	(1	

%	v/v)	was	added	to	each	sample	as	an	ionizing	agent	before	injection.	An	additional	experiment	

was	performed	where	20	µl	 of	deuterated	water	was	added	 to	 the	mephedrone	and	Probe	1	

mixture	 and	 the	 ESI-MS	 was	 acquired	 in	 both	 the	 positive	 and	 negative	 ion	mode.	 The	 final	
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optimised	methods	was	established	as,	needle	voltage	5000	V,	capillary	voltage	40	V,	detector	

voltage	1500	V,	drying	gas	temperature	was	275	˚C,	and	the	nebulizer	pressure	was	40	psi,	with	

the	drying	gas	at	15	psi	for	all	experiments.	For	MS/MS	experiments	the	same	above	instrumental	

parameters	were	applied,	in	addition	the	collision	energies	were	set	as	-5,	-14	and	-22	V	and	the	

capillary	voltages	were	set	as	as	10,	95	and	10	V,	using	argon	as	the	collision	gas.			

5.2.7 Simulated	Street	Sample	Protocol		

Mephedrone	hydrochloride	(100	mg),	benzocaine	(100	mg)	and	caffeine	(100	mg)	were	combined	and	

dissolved	in	water	(50	mL).	The	mixture	was	filtered	to	remove	the	undissolved	particulates,	from	the	

insoluble	cutting	agents.	The	mephedrone	freebase	was	liberated	with	ammonium	hydroxide	(pH»10)	

and	extracted	into	diethyl	ether	(3	x	20	mL).	The	organic	layer	was	washed	with	water	(3	x	50	mL)	to	

ensure	there	was	no	residual	anions	present.	The	organic	layer	was	dried	over	MgSO4	and	evaporated	

to	dryness	yielding	a	yellow	oil	with	small	amounts	of	white	solid	from	the	remaining	cutting	agents.	

The	remaining	residue	was	tested	against	Probe	1	using	1H-NMR	using	the	same	method	applied	to	

the	previous	titrations	experiments.		

5.3 Results	and	Discussion	

5.3.1 NMR	Spectroscopy	Testing		

The	initial	technique	used	to	evaluate	the	interaction	between	the	host	and	guest	molecules	was	1H-

NMR.	This	technique	allows	for	determination	of	whether	binding	occurs,	as	well	as	the	atoms	that	

are	involved	in	the	binding.	From	this	information	is	it	possible	to	deduce	the	orientation	that	binding	

is	occurring,	specifically	the	types	of	intermolecular	interactions	working.	From	this	information	it	is	

also	possible	to	calculate	association	constants.	

Choice	of	solvent	is	important	when	carrying	out	binding	studies	as	certain	solvents	are	known	to	be	

competitive	binding	solvents,	meaning	that	the	energy	needed	to	displace	the	solvent	in	the	binding	

cavity	 is	higher	for	certain	solvents.	For	example,	some	solvents	(e.g.	water)	hydrogen	bond	to	the	

host	and	guest	molecules.	Probe	1	showed	poor	solubility	in	most	organic	and	aqueous	solvent.	The	

only	solvents	it	dissolved	in	were	acetone	and	dimethyl	sulfoxide	(DMSO).	DMSO	is	known	to	be	a	very	

competitive	binding	solvent	due	to	it	being	a	strong	hydrogen	bond	acceptor,	and	has	been	shown	to	

be	an	inappropriate	solvent	for	host-guest	binding	studies197.	Therefore	acetone-d6	was	the	solvent	

used	for	all	NMR	titrations.		
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5.3.1.1 Chloride	Testing		

As	 previously	 discussed	 in	 Chapter	 1,	 mephedrone	 is	 most	 commonly	 found	 in	 the	 form	 of	 a	

hydrochloride	 salt.	 Anions,	 such	 as	 chloride,	 are	 known	 to	 be	 strong	 hydrogen	 bond	 acceptors103.	

Thioureas	have	been	incorporated	into	the	host	design	due	to	their	hydrogen	bonding	abilities	and	

therefore,	it	needs	to	be	determined	whether	any	interference	from	the	chloride	binding	could	impair	

the	ability	 to	evaluate	mephedrone	 specific	binding.	 Tetrabutylammononium	chloride	 (TBACl)	was	

used	as	a	stable	source	of	chloride	anions	to	determine	the	affinity	between	Probe	1	and	chloride	ions.	

	

	

Figure	5.2	-	Structure	of	1,8-dibenzylthiourea	anthracene	(Probe	1),	with	NMR	assignments.		

The	 1H-NMR	 titration	 of	 Probe	 1	 against	 TBACl	 is	 shown	 in	 Figure	 5.3.	 When	 looking	 at	 binding	

between	 small	 molecules	 in	 NMR,	 fast	 exchange	 interactions	 are	 occurring.	 This	 means	 that	 the	

chemical	shift	of	a	given	peak	is	the	weighted	average	of	the	free	and	bound	states,	observable	in	an	

equilibrium	system110.	This	therefore	is	taken	into	account	when	calculating	any	association	constants	

from	chemical	shifts.		

Downfield	 shifts	 of	 six	 proton	 environments,	N(1),	N(2),	 9,	 10,	 12	 and	 14	 can	 be	 seen.	 The	 peaks	

associated	with	the	NH	groups	(environments	N(1)	and	N(2))	have	the	most	noticeable	shifts,	with	a	

total	change	of	1.6	ppm	each.	This	downfield	shift	suggests	that	the	NH	groups	are	hydrogen	bonding	

to	the	chloride	anion.	Hydrogen	bonding	causes	the	protons	involved	to	become	deshielded	due	to	

the	hydrogen	bonding	lengthening	the	O-H	bond,	this	reduces	the	valence	electron	density	around	

the	proton.	Consequently,	the	more	hydrogen	bonding	that	occurs	in	the	system,	and	the	stronger	

the	interaction,	the	more	the	proton	peak	will	shift	when	the	guest	is	added.	The	system	was	found	

to	reach	equilibrium	at	two	equivalents	of	Probe	1	to	chloride.			
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The	total	chemical	shift	for	NH(1),	(starting	at	9.51	ppm)	was	1.56	ppm,	giving	an	association	constant	

(Ka)	 for	 Probe	 1	 and	 chloride	 as	 500	M-1.	 For	 small	 molecule	 binding	 this	 is	 relatively	 weak	 with	

literature	showing	binding	between	anions	and	small	molecules	ten	times	higher	than	that	reported	

here172,198.	

	

Figure	5.3	-	1H-NMR	titration	of	tetrabutylammonium	chloride	against	Probe	1	in	acetone-d6	from	0	to	10	eq.		

Protons	9	and	10	on	the	anthracene	unit	shift	upon	addition	of	chloride	ions	from	8.9	to	9.8	ppm	and	

8.6	to	8.4	ppm	respectively.	The	shift	downfield	for	proton	9	and	the	shift	upfield	for	proton	10	are	

representative	of	the	protons	undertaking	π-anion	interactions.	As	previously	discussed	in	Chapter	1,	

there	 is	a	 large	amount	of	 literature	 surrounding	π-anion	 interactions199,200.	These	 interactions	are	

often	utilised	for	anion-host	binding	and	have	been	found	to	have	energetically	favourable	binding	

interaction	of	20–50	kJ	mol-1	199.	The	difference	in	the	change	in	chemical	shifts	seen	for	protons	9	and	

10	is	most	likely	due	to	the	anion	not	binding	directly	above	the	centroid	of	the	aromatic	ring.	This	

causes	a	change	in	the	electron	density	around	protons	9	and	10	and	as	a	result	the	change	in	their	

chemical	shift	varies	accordingly.		

Figure	5.3	 shows	 that	 Probe	1	has	 a	 good	affinity	 for	 chloride	 ions,	which	needs	 to	be	 taken	 into	

account	when	looking	at	mephedrone	hydrochloride,	as	well	as	other	constituents	in	products	that	

may	 be	 present	 as	 hydrochloride	 salts.	 Chloride	 binding	 to	 Probe	 1	 could	 potentially	 induce	 false	

positives	if	it	is	found	to	bind	in	the	same	way	as	mephedrone.	Given	Probe	1’s	high	affinity	for	chloride	
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ions,	it	may	be	possible	to	simultaneously	bind	chloride	and	mephedrone	in	one	probe,	but	first	Probe	

1	will	need	to	be	evaluated	for	mephedrone	binding.	

5.3.1.2 Mephedrone	Testing		

In	 order	 to	 assess	 mephedrone	 binding	 independently	 of	 chloride	 ions,	 all	 mephedrone	 NMR	

experiments	were	conducted	using	the	mephedrone	freebase.	A	discussed	on	Chapter	1,	the	freebase	

form	of	a	number	of	cathinone	analogues	have	been	found	to	be	unstable;	however,	the	length	of	

stability	has	not	previously	been	quantified.	Therefore,	a	full	1H-NMR	stability	study	of	mephedrone	

freebase	in	acetone-d6	was	carried	out	before	any	binding	studies	were	performed.	Figure	5.4	shows	

the	stacked	NMR	plot	from	T	=	0	to	T	=	18	hours,	where	slight	degradation	started	to	occur	due	to	

reduction	 of	 the	 amine	 group	 causing	 new	 peaks	 to	 appear	 in	 the	 alkyl	 region	 of	 the	 spectra	

(highlighted	by	the	red	circle).	Given	that	significant	degradation	is	only	seen	from	18	hours,	it	was	

concluded	that	mephedrone	freebase	is	stable	enough	to	conduct	binding	studies	assuming	that	it	is	

completed	 in	 this	 time	 frame.	Consequently,	 for	all	binding	studies	 the	mephedrone	 freebase	was	

liberated	immediately	prior	to	any	experimental	work,	and	was	used	no	more	than	12	hours	after	it	

was	extracted.		

	

Figure	5.4	-	1H-NMR	stability	study	of	mephedrone	freebase	from	T=0	to	18	hours	carried	out	in	acetone-d6.	

For	the	binding	studies	between	mephedrone	and	Probe	1,	the	concentration	of	Probe	1	was	kept	the	

same	as	 the	 anion	experiments	 at	 20	mM	 in	 acetone-d6	 for	 continuity.	 Thirteen	data	points	were	

collected	 from	zero	eq.	of	mephedrone	 to	Probe	1	up	 to	10	eq.	The	same	6	proton	environments	
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observed	for	chloride,	shift	upon	the	addition	of	mephedrone	(Figure	5.5).	These	are	two	anthracene	

protons	(9	and	10),	four	NH	protons	in	two	chemical	environments	((N)1	and	(N)2),	the	methylene	

group	(12)	and	slight	shifts	in	the	benzyl	aromatic	protons	(14,	14a).		

	

Figure	5.5	-	1H-NMR	titration	of	Probe	1	with	mephedrone	in	acetone	(20	mM).	Due	to	the	instability	of	the	free-based	

mephedrone	new	1H-NMR	signals	as	the	result	of	degradation	appeared	as	the	titrations	commenced	and	are	marked	

with	asterisks	(*).	

Both	NH	 groups	 from	Probe	1	 shift	 downfield	 upon	 addition	of	mephedrone.	 This	 is	 due	 to	 them	

hydrogen	bonding	with	mephedrone,	one	with	the	carbonyl	and	another	with	the	amine	functionality.	

Both	 the	 NH	 groups	 of	 Probe	 1	 move	 a	 total	 of	 2.1	 ppm	 each	 upon	 the	 addition	 of	 ten	 eq.	 of	

mephedrone	 to	 Probe	 1.	 This	 indicates	 that	 they	 both	 have	 the	 same	 binding	 constant	 as	 the	

dissociation	constant	is	proportional	to	the	concentration	of	mephedrone	at	half	the	observed	shift.	

This	would	suggest	that	they	both	bind	to	mephedrone	concurrently,	i.e.	in	a	1:1	ratio	between	host	

and	guest.	Figure	5.6	shows	the	Scatchard	plot	for	NH(1)	based	on	the	NMR	titration	of	mephedrone	

and	Probe	1.	From	the	Scatchard	plot	the	association	constant	(Ka)	was	estimated	at	104	M-1.	Despite	

mephedrone	showing	the	greater	total	shift,	chloride	has	a	stronger	affinity	at	Ka	=	500	M-1,	as	the	

concentration	needed	to	induce	the	same	response	was	lower	for	chloride	then	mephedrone.	Given	

the	symmetrical	nature	of	Probe	1	it	cannot	be	concluded	whether	it	is	the	NH’s	directly	attached	to	

the	anthracene	that	are	binding,	the	NH’s	with	the	methylene	linker,	or	both.	It	is	also	hard	to	conclude	
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whether	they	are	acting	as	hydrogen	bond	donors	or	acceptors,	as	NH	groups	have	the	ability	to	act	

as	both.		

As	both	NH	environments	are	effected	during	binding,	it	can	be	concluded	that	both	arms	of	Probe	1	

are	interacting	with	mephedrone.	For	that	reason	one	arm	must	be	acting	as	a	hydrogen	bond	donor	

to	the	carbonyl	and	one	arm	hydrogen	bonding	to	the	amine	in	mephedrone.	Given	that	the	amine	

functionality	in	mephedrone	freebase	cannot	be	observed	in	the	spectrum,	it	cannot	be	deduced	as	

to	whether	it	is	acting	as	a	hydrogen	bond	donor	or	acceptor.		

	

Figure	5.6	-	Scatchard	plot	for	the	binding	of	NH(1)	in	Probe	1	upon	the	addition	of	mephedrone	up	to	10	eq.	(10	eq.	=	0.08	

M).	

A	less	noticeable	difference,	but	still	imperative	to	understanding	how	the	host-guest	interaction	may	

be	occurring,	 is	 the	 shift	 seen	 for	 protons	 in	 positions	 9	 and	10	 (highlighted	 in	 Figure	 5.5)	 on	 the	

anthracene	moiety.	Proton	9	shifts	downfield	while	proton	10	shifts	upfield.	These	changes	are	likely	

both	induced	by	π-stacking	interactions.	As	discussed	in	Chapter	1,	π-stacking	can	occur	in	a	number	

of	ways	between	aromatic	residues,	it	can	be	edge/face	or	face/face.	The	effect	that	π-stacking	has	

on	aromatic	protons	using	NMR	can	help	determine	which	type	of	π-stacking	is	occurring85.	Proton	9	

shifting	downfield	means	that	it	is	becoming	more	deshielded,	this	is	indicative	of	face/face	π-stacking,	

due	to	the	increased	effect	of	the	magnetic	field	on	the	aromatic	protons.	The	opposite	 is	true	for	

proton	 10	 which	 shifts	 upfield.	 This	 may	 be	 due	 to	 unsymmetrical	 interactions	 between	 the	

mephedrone	and	the	two	protons	either	side	of	the	central	anthracene	unit.	This	would	mean	that	

the	deshielding	effects	of	the	binding	between	Probe	1	and	mephedrone	are	different.	Which	proton	

is	π-stacking	with	Probe	1	cannot	be	conclusively	determined	from	the	data	collected	thus	far.	
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Mephedrone	has	its	own	organic	framework,	and	therefore	the	chemical	shifts	from	mephedrone	can	

be	analysed	to	further	determine	how	it	is	binding	to	Probe	1.	For	mephedrone	there	are	noteworthy	

chemical	shift	changes	seen	for	the	methyl	(4.20	to	4.25	ppm)	and	the	two	methyl	groups	(0.02	ppm	

shift	upfield).	The	methine	and	two	methyl	groups	on	mephedrone	are	in	close	proximity	to	the	β-

carbonyl	and	amine	functionalities,	which	undergo	hydrogen	bonding.	This	causes	a	decrease	in	the	

electron	density	 around	 the	methine	and	 two	methyl	 groups,	which	 results	 in	downfield	 chemical	

shifts.		

From	the	pharmacophore	model	(Chapter	3),	the	carbonyl	group	was	not	considered	to	be	part	of	the	

binding	motif,	due	to	lack	of	experimental	binding	data.	However,	carbonyls	are	good	hydrogen	bond	

acceptors	and	therefore,	it	is	important	to	study	how	it	acts	experimentally	upon	binding.	Using	1H-

NMR	it	is	not	possible	to	see	the	effect	of	the	carbonyl	group	as	it	does	not	contain	a	proton,	therefore	

a	carbon	NMR	titration	was	attempted.	Unfortunately,	even	with	increasing	the	number	of	scans	the	

carbonyl	peak	in	13C-NMR	was	of	low	intensity	and	it	was	not	possible	to	get	any	definitive	results	as	

to	whether	a	change	in	chemical	shift	can	be	observed	upon	binding.			

To	 study	 how	 the	 choice	 of	 solvent	 affects	 binding	 affinity,	 the	 same	 titration	 experiment	 was	

conducted	in	DMSO.	This	was	also	carried	out	to	gain	more	experimental	data	to	help	with	correlation	

for	metadynamics	 studies	 (Chapter	 6).	 In	 silico	 analysis	 is	 currently	 limited	 to	being	 carried	out	 in	

methanol,	water,	octanol	or	DMSO.	Out	of	these	solvents	Probe	1	is	only	soluble	in	DMSO.	Therefore,	

experimental	data	in	DMSO	could	aid	in	the	emulation	of	experimental	results	in	silico.	No	interaction	

between	Probe	1	and	mephedrone	in	DMSO	was	observed	up	to	10	eq.	of	mephedrone	(Figure	5.7).	
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Figure	5.7	-	1H-NMR	spectrum	showing	Probe	1	with	mephedrone	at	0.25	eq.	(1)	and	10	eq.	(2)	in	DMSO.	

DMSO	is	known	to	be	a	competitive	binding	solvent	due	to	its	high	affinity	for	hydrogen	bonding.	This	

hydrogen	 bonding	 increases	 the	 solvation	 energy	 barrier	 that	 host-guest	 interactions	 need	 to	

overcome,	 therefore	usually	decreasing	 the	association	 constant.	Consequently,	no	 interaction	 for	

mephedrone	and	Probe	1	is	seen	when	DMSO	is	used	as	the	experimental	solvent.	This	confirms	that	

acetone	was	 the	 ideal	 choice	of	 solvent,	based	on	 the	 small	 range	of	 solubility.	 It	 also	gives	more	

experimental	data	that	can	be	taken	forward	for	metadynamics	analysis,	which	will	be	examined	in	

Chapter	6.	

5.3.1.3 Flephedrone	Testing		

To	further	understand	how	mephedrone	is	binding	and	the	selectivity	of	Probe	1,	another	cathinone	

analogue	 was	 studied.	 Flephedrone	 was	 chosen	 as	 a	 comparison	 cathinone	 as	 it	 differs	 from	

mephedrone	by	only	the	4-fluoro	motif	(Figure	5.1),	and	could	provide	valuable	information	into	how	

a	small	structural	change	could	affect	binding	and	consequently	selectivity.		

To	 prevent	 any	 interaction	 with	 chloride	 anions,	 flephedrone	was	 also	 used	 as	 a	 freebase	 for	 all	

binding	studies.	The	same	conditions	used	 for	mephedrone	titrations	were	applied	to	 flephedrone	

and	Probe	1,	to	ensure	consistency.	The	1H-NMR	titration	of	flephedrone	with	Probe	1	(Figure	5.8)	

shows	that	the	same	proton	environments	shift	as	seen	for	mephedrone,	(NH(1),	NH(2),	9,	10,	12	and	

14)	however	the	shifts	are	less	pronounced.	Upon	the	addition	of	10	eq.	of	flephedrone	a	total	shift	

of	 1.10	 ppm	 for	 NH(1)	 was	 observed,	 compared	 to	 1.99	 ppm	 for	 mephedrone.	 This	 shows	 that	

flephedrone	does	bind	to	Probe	1,	however	the	addition	of	the	fluorine	group	decreases	the	Ka	to	9.8	

M-1	which	is	a	10	fold	decrease	compared	to	mephedrone.	
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Figure	5.8	-	1H-NMR	titration	of	Probe	1	with	flephedrone	in	acetone-d6	(20	mM).	

This	correlation	between	the	proton	environments	effected	suggests	that	the	same	interactions	are	

occurring	between	Probe	1	and	flephedrone	that	are	seen	for	mephedrone.	This	is	not	unexpected	as	

flephedrone	contains	the	carbonyl,	amine	and	aromatic	functionalities	which	were	the	binding	points	

in	mephedrone,	in	the	same	motif.	However,	the	addition	of	the	electronegative	fluorine	atom	on	the	

aromatic	 ring	clearly	has	an	effect	on	 the	amine	and	carbonyl	 functionalities,	which	decreases	 the	

binding	affinity	to	Probe	1.	Given	that	hydrogen	bonds	are	electrostatic	interactions,	small	changes	in	

electronegativity	can	have	strong	effects	on	the	strength	of	hydrogen	bonding.	The	fluorine	drawing	

electron	density	away	from	the	aromatic	ring	could	decrease	the	electron	density	around	the	oxygen	

of	the	carbonyl	group.	This	could	explain	the	decrease	in	the	strength	of	hydrogen	bonding	seen	in	

the	NMR	 titration.	 However,	 the	 change	 in	 binding	 could	 also	 be	 due	 to	 the	 fluorine	 on	 the	 ring	

preventing	flephedrone	binding	in	the	same	orientation	as	mephedrone.	This	cannot	be	concluded	

just	from	NMR	experiments,	and	will	be	further	investigated	in	later	sections.		

5.3.1.4 Methamphetamine		

Methamphetamine	and	mephedrone	have	been	found	to	be	co-administered	by	users,	with	one	case	

even	proving	fatal201.	Therefore,	it	is	important	to	be	able	to	distinguish	between	the	two	in	an	in-field	

test.	Methamphetamine	and	mephedrone	have	very	similar	structures	(Figure	5.9).	Current	 in-field	

detection	 mechanisms	 in	 the	 literature	 fail	 to	 adequately	 distinguish	 between	 the	 two61	 due	 to	
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similaries	in	their	chemical	structure.	It	is	possible	that	methamphetamine	can	cause	false	positives	

when	testing	for	mephedrone.	Therefore,	selectivity	over	methamphetamine	is	necessary	for	an	in-

field	detection	probe	for	mephedrone.				

	

Figure	5.9	-	Chemical	structure	of	A.	methamphetamine	and	B.	mephedrone.	

Methamphetamine	 differs	 from	 mephedrone	 by	 a	 carbonyl	 and	 tolyl	 moiety,	 and	 therefore	 still	

contains	two	of	the	three	binding	points	identified	in	mephedrone.	It	has	already	been	determined	

from	studying	4-methyl	propiophenone	in	Chapter	4,	that	binding	can	still	be	observed	on	removal	of	

the	 amine	 functionality,	 however	 with	 a	 significantly	 reduced	 association	 constant.	 By	 studying	

methamphetamine	binding	with	Probe	1	further	understanding	on	how	the	removal	of	the	carbonyl	

functionality	effects	binding	can	be	established.		

As	with	the	cathinone	analogues	methamphetamine	was	studied	 in	 its	 free	base	form.	There	 is	no	

literature	studies	for	the	stability	of	methamphetamine	free	base	in	acetone,	so	a	full	stability	study	

was	carried	out	over	48	hours.	Unlike	 the	cathinone	analogues	no	degradation	was	seen	up	 to	24	

hours,	however	slight	impurities	start	to	appear	after	48	hours.	For	continuity	methamphetamine	free	

base	was	liberated	prior	to	all	experiments	and	used	the	same	day.		

No	significant	binding	is	seen	from	0.25	eq.	to	8	eq.	(Figure	5.10),	after	which	slight	shifts	in	the	NH(1)	

and	NH(2)	peaks	were	observed.	For	mephedrone	the	binding	starts	to	plateau	at	4	eq.,	this	shows	

that	Probe	1	exerts	good	selectivity	over	methamphetamine.			
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Figure	5.10	-	1H-NMR	titration	for	Probe	1	and	methamphetamine	freebase	in	acetone-d6	(20	mM).	

Current	 literature	 reporting	 sensory	mechanisms	 for	mephedrone	 have	 shown	 no	 selectivity	 over	

methamphetamine,	due	 to	 its	 structural	 similarity61,133.	 This	appears	 to	be	due	 to	 the	probe	being	

designed	to	interact	with	just	the	amine	functionality.	This	functionality	is	not	unique	to	the	cathinone	

class,	or	even	the	amphetamines.	Most	stimulant	drugs	of	abuse	contain	an	amine	functionality,	as	

they	act	through	inhibition	of	monoamine	transporters202.		

Studying	how	Probe	1	binds	when	the	amine	functionality	(4-methyl	propiophenone)	and	the	carbonyl	

(methamphetamine)	are	systematically	removed	gives	a	good	understanding	into	how	mephedrone	

binds.	The	removal	of	the	amine	functionality	has	a	10	fold	decrease	in	chemical	shift	of	NH(1)	by	4	

eq.	of	4-methyl	propiophenone	to	Probe	1.	While	removal	of	the	carbonyl	group	shows	no	binding	at	

4	eq.	Demonstrating	that	both	groups	are	needed	to	achieve	the	binding	observed	with	mephedrone.		

This	indicates	that	Probe	1	is	unique	as	a	NPS	sensory	mechanism	as	it	uses	a	concerted	design	that	

takes	into	account	not	only	multiple	binding	groups,	but	also	the	geometrical	conformation	of	these	

groups.	Using	this	design,	based	on	the	pharmacophoric	model,	results	indicate	that	Probe	1	has	good	

selectivity	over	methamphetamine.		

5.3.1.5 Aniline	Model	Sensor	(Probe	2)		

As	mentioned	is	Chapter	4,	when	studying	supramolecular	complexes	that	contain	multiple	binding	

sites	it	is	common	practice	to	use	a	model	system	that	contains	just	one	of	the	binding	sites.	This	is	to	
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see	whether	 the	entire	motif	of	 the	molecule	 is	necessary	 to	observe	 the	binding	affinity.	For	 this	

reason,	Probe	2	was	synthesised	in	Chapter	4,	(Figure	5.11)	which	contains	just	one	thiourea	pendant	

arm	and	no	anthracene	unit.		

	

	

Figure	5.11	-	Chemical	structure	of	model	system,	1-benzyl-3-phenylthiourea	(Probe	2).	

As	 a	 comparison	 1H-NMR	 titration	 experiments	 were	 carried	 out	 with	 Probe	 2	 against	 both	

mephedrone	and	flephedrone.	Probe	2	binds	to	mephedrone	(Figure	5.12)	but	very	weakly,	10	eq.	of	

mephedrone	only	induces	a	total	chemical	shift	of	0.2	ppm,	compared	to	2.1	ppm	for	mephedrone.	

Flephedrone	however	exerts	only	a	small	change	 in	chemical	shift	during	the	titration	experiment,	

with	NH(1)	moving	a	total	of	0.2	ppm	over	10	eq.	This	is	a	fivefold	decrease	in	binding	compared	to	

Probe	1	and	flephedrone.		

	

Figure	5.12	-	1H-NMR	titration	of	model	compound	(Probe	2)	upon	the	addition	of	mephedrone	freebase	in	acetone-d6.	
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This	diminished	binding	affinity	for	both	the	cathinone	analogues	with	Probe	2,	compared	to	Probe	1,	

highlights	the	need	for	the	both	thiourea	arms	to	gain	the	association	constant	observed	with	Probe	

1.	This	allows	for	cooperative	binding	in	a	concerted	fashion	that	is	seen	for	Probe	1.	The	cooperative	

binding	between	Probe	1	and	mephedrone	allows	for	increased	selectivity,	as	each	binding	point	in	

mephedrone	that	interacts	with	Probe	1	increases	the	binding	affinity203.	Therefore	the	decrease	in	

the	association	constant	can	be	seen	to	be	triggered	by	the	removal	of	any	binding	point.	This	shows	

that	the	pharmacophore	modelling	using	a	three	point	binding	interaction	was	necessary,	as	it	is	the	

presence	of	three	 interaction	points	between	Probe	1	and	mephedrone	that	provides	the	greatest	

association	constant.	This	shows	that	pharmacophore	design	provides	a	good	basis	for	small-molecule	

host	design.		

Further	 information	 into	 how	 mephedrone	 and	 flephedrone	 bind	 to	 Probe	 1	 could	 be	 achieved	

through	 density	 functional	 theory	 (DFT)	 calculations,	 which	 uses	 empirical	 in	 silico	 computational	

visualisations	of	binding	interactions	based	on	parametrized	data	sets.	These	calculations	can	aid	in	

the	rationalisation	of	binding	occurring	between	the	host	and	guest	molecules.	

	

5.3.2 DFT	Calculations	

5.3.2.1 Mephedrone	

In	 order	 to	 aid	 in	 the	 rationalisation	 of	 the	 binding	 interactions	 seen	 using	 1H-NMR	 between	

mephedrone	 and	 Probe	 1,	 density	 functional	 theory	 (DFT)	 calculations	 were	 performed.	 DFT	

A	
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calculations	 allow	 for	 an	 in	 silico	 empirical	 prediction	 of	 interactions	 between	 two	 molecules.	

Minimum	energy	conformations	of	Probe	1	and	mephedrone	were	generated.	

	

Figure	5.13	-	An	image	of	A.	minimum	conformation	of	Probe	1	uncomplexed	and	B.	minimum	conformation	of	Probe	1	

complexed	to	mephedrone,	based	on	optimised	DFT	calculations.		

Two	low	energy	conformations	were	obtained	for	Probe	1	in	the	gas	phase,	which	were	both	taken	

forward	for	analysis	of	the	bound	complexes	using	DFT	calculations.	Interaction	energies	were	then	

calculated	between	Probe	1	and	mephedrone	based	on	 the	minimum	energy	conformation	of	 the	

complex.		

The	interaction	energy	between	Probe	1	and	mephedrone	was	calculated	using	energies	of	the	most	

stable	respective	conformations	according	Equation	5.2.	

∆𝑬 = 𝑬𝒄𝒐𝒎𝒑𝒍𝒆𝒙	 − 𝑬𝒇𝒓𝒆𝒆	𝒉𝒐𝒔𝒕 + 𝑬𝒇𝒓𝒆𝒆	𝒈𝒖𝒆𝒔𝒕 					Equation	5.2	

Where	 Ecomplex,	 Efree	 host	 and	 Efree	 guest	 represent	 respectively	 the	 total	 energy	 of	 the	 complex,	 the	

optimized	free	Probe	1,	and	the	optimized	free	guest	energy.	Probe	1	with	mephedrone	bound	in	the	

binding	pocket	has	a	favourable	interaction	energy	of	-12.05	kJ	mol-1	(Figure	5.13	B).		

There	is	a	very	noticeable	change	in	conformation	between	the	unbound	and	bound	Probe	1,	with	a	

maximum	RMSD	of	36.29	Å	between	the	two	conformations	(Figure	5.13).	This	shows	that	the	host	

molecule	 reorganises	 to	encompass	mephedrone	 into	 the	binding	site.	The	deformation	energy	of	

Probe	 1	 to	 allow	 this	 interaction	 to	 occur	 was	 calculated	 as	 1824	 kJ	 mol-1.	 This	 is	 a	 very	 large	

deformation	energy,	which	suggests	that	the	binding	of	mephedrone	is	very	energetically	favourable	

B	
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in	order	overcome	such	a	large	energy	barrier.	This	would	suggest	that	the	mephedrone-host	complex	

is	very	strong.	The	optimised	bound	conformation	(Figure	5.14)	shows	mephedrone	bound	in	the	cleft	

of	Probe	1	via	an	array	of	hydrogen	bonding	interactions	and	a	π-stacking	interaction.	These	results	

are	consistent	with	the	chemical	shifts	observed	in	the	NMR	experiments.		

	

Figure	 5.14	 -	 An	 image	 showing	 the	minimum	 energy	 conformation	 of	 Probe	 1	 bound	 to	mephedrone,	 showing	 the	

hydrogen	bonding	and	π-stacking	interactions	occurring	between	Probe	1	and	mephedrone.	

There	are	three	interactions	between	Probe	1	and	mephedrone	at	the	minimum	conformation	(Figure	

5.14).	Both	arms	of	the	probe	interact	with	mephedrone,	but	interestingly	it	is	just	NH(2),	attached	to	

the	methylene	linkers,	that	directly	interacts	with	mephedrone.	There	appears	to	be	no	interaction	

with	NH(1)	attached	to	the	anthracene	unit.	As	previously	discussed,	this	could	not	be	concluded	from	

the	NMR	data	alone,	due	to	the	symmetry	of	the	host	molecule.	Both	the	NH	groups	are	acting	as	

hydrogen	bond	donors,	one	to	the	carbonyl	and	another	to	the	nitrogen	of	the	amine	in	mephedrone.	

Both	hydrogen	bonding	interactions	occur	in	favourable	orientations,	2.32	Å,	155.26°	and	2.12	Å	and	

163.15°,	 which	 lie	 within	 the	 ideal	 dimensions	 for	 hydrogen	 bonding159.	 Given	 that	 in	 the	 NMR	

titrations	both	NH	groups	shift	in	the	same	proportions	upon	binding,	it	would	make	sense	that	they	

are	binding	concurrently,	 i.e.	binding	occurring	 in	a	consensus	 fashion.	The	DFT	calculations	are	 in	

good	agreement	with	the	NMR;	that	the	benzyl	group	on	the	mephedrone	doesn’t	interact,	and	that	

it	 is	the	methine	of	the	chiral	carbon	in	mephedrone	that	has	a	π-interaction	with	proton	9	on	the	

anthracene.	 This	 arrangement	 of	 interactions	was	 not	 predicted	 from	 the	pharmacophore	 design,	
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however	there	are	still	two	binding	points	that	correlate	to	the	pharmacophore.	Based	on	the	DFT	

predictions	in	parallel	with	the	NMR	results	an	experimental	binding	pharmacophore	was	developed	

(Figure	5.15).	

	

Figure	5.15	-	An	image	showing	the	binding	pharmacophore	of	Probe	1	based	on	DFT	calculations,	where	green	represents	

hydrogen	bond	donors	and	the	orange	sphere	is	a	π-stacking	interaction.	

It	 is	 not	 unexpected	 that	 the	 distances	 and	 angles	 from	 the	 experimental	 pharmacophore	 show	

variation	from	the	predicated	pharmacophore,	as	the	two	pharmacophore	models	are	based	on	very	

different	binding	data,	and	the	pharmacophore	model	does	not	consider	the	carbonyl	functionality.	

What	can	be	seen	is	that	there	is	a	hydrogen	bond	donor	and	a	π-stacking	interaction	as	predicted,	

and	more	significantly	both	pharmacophores	show	a	three-point	binding	interaction	(Figure	3.11).	The	

proposed	 1:1	 stoichiometry	 based	 on	 the	 experimental	 results	 of	 the	 host-guest	 interaction	 is	

supported	by	the	DFT	calculations.		

5.3.2.2 Flephedrone		

As	with	mephedrone,	the	minimum	energy	conformation	of	flephedrone	was	generated	and	studied	

with	 Probe	 1	 to	 generate	 a	minimum	 energy	 conformation	 of	 the	 complex.	 Despite	 the	 chemical	

similarities	of	 the	two	cathinone	analogues,	 the	DFT	calculations	of	 flephedrone	bound	to	Probe	1	

shows	a	distinctly	different	binding	orientation.	The	favourable	energy	conformation	seen	in	Figure	

5.16	has	an	interaction	energy	of	-32.97	kJ	mol-1.		



Evaluation	of	Host	Molecule	Interactions	with	Mephedrone	and	Related	Substances	

156	
	

	

Figure	5.16	 -	An	 image	 showing	 the	 lowest	energy	 conformation	 for	 complexation	of	 flephedrone	with	Probe	1,	with	

hydrogen	bonding	and	π-stacking	interactions	indicated.		

The	deformation	energy	for	Probe	1	to	form	this	complex	is	-10.17	kJ	mol-1.	The	conformation	of	Probe	

1	does	not	change	as	much	as	when	mephedrone	is	bound,	with	a	maximum	RMSD	of	9.88	Å	between	

the	bound	and	unbound	conformations	of	Probe	1.	This	explains	why	the	deformation	energy	is	much	

higher	when	bound	to	mephedrone.	However,	what	can	be	seen	 is	 that	the	binding	orientation	of	

flephedrone	 is	 different	 to	 that	 seen	 for	 mephedrone,	 with	 just	 two	 interactions	 present;	 one	

hydrogen	bond	between	NH(1)	and	the	carbonyl	of	mephedrone	and	a	p-stacking	interaction	between	

proton	 9	 and	 the	 benzyl	 of	mephedrone.	 This	 shows	 that	 the	 introduction	 of	 the	 electronegative	

fluorine	has	a	large	effect	on	the	binding	orientation,	as	well	as	the	strength	of	binding,	as	seen	in	the	

NMR	titration	experiment.		

5.3.3 Mass	Spectrometry	Testing	

5.3.3.1 Mephedrone		

To	 further	 investigate	 the	 interactions	 observed	 using	 NMR,	 verification	 of	 binding	 as	 well	 as	

stoichiometry,	 mass	 spectrometry	 binding	 studies	 were	 carried	 out.	 Mass	 spectrometry	 was	

performed	through	direct	 infusion	using	electrospray	 ionisation	(ESI).	As	previously	shown,	solvent	

interactions	with	host	and	guest	molecules	can	have	considerable	effects	on	binding.	By	using	mass	

spectrometry,	it	is	more	likely	that	binding	will	be	seen	in	the	absence	of	solvent	as	measurement	are	

made	in	the	gas	state.			
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Probe	1	was	dissolved	up	in	acetone	and	the	instrument	parameters	were	optimised	to	achieve	the	

highest	percentage	abundance.	Ten	equivalences	of	mephedrone	freebase	was	added	to	Probe	1	in	

acetone,	and	data	was	acquired.	Figure	5.17	shows	the	mass	spectrum	of	Probe	1	after	the	addition	

of	mephedrone	where	four	distinct	peaks	are	observed,	mephedrone	freebase	at	m/z	178.4,	with	the	

most	common	fragment	at	m/z	160.4,	Probe	1	at	m/z	507.5	and	the	Probe	1-mephedrone	complex	at	

m/z	684.7.	The	MS	was	run	in	positive	mode	and	therefore	all	masses	stated	are	M+1.	The	spectrum	

was	run	with	a	scan	range	of	m/z	100	-	1000	to	see	if	any	peaks	from	a	different	binding	stoichiometry	

could	be	observed.	No	peaks	were	observed	past	m/z	684.7,	which	confirms	what	was	predicted	in	

both	the	DFT	and	the	NMR	experiments	that	the	complex	forms	in	a	1:1	ratio.	It	also	provides	further	

evidence	that	the	chemical	shift	changes	upon	binding	observed	in	the	NMR	is	due	to	the	mephedrone	

binding	 and	 not	 residual	 chloride	 ions.	 Given	 that	 the	 same	 chemical	 environments	 in	 NMR	 are	

effected	in	both	binding	interactions,	the	NMR	could	not	definitively	say	that	there	wasn’t	any	chlorine	

remaining	in	the	sample	that	was	causing	the	effect.	To	further	confirm	that	the	mass	adduct	peak	at	

m/z	684.7	corresponds	to	the	formation	of	a	complex	between	the	mephedrone	and	Probe	1,	MS/MS	

was	 conducted	 on	 this	 mass	 peak.	 This	 showed	 that	 the	 complex	 peak	 at	m/z	 684.7	 is	 further	

fragmented	into	the	constituent	peaks	of	m/z	178.4	and	507.5.		

	

Figure	5.17	-	ESI-MS	of	Probe	1	m/z	509,	mephedrone	freebase	m/z	179	and	complexed	Probe	1-mephedrone	m/z	685.	

Insert:	MS/MS	data	for	Probe	1	and	mephedrone.		

To	further	confirm	that	the	Probe	1-mephedrone	adduct	mass	signal	was	not	an	artefact,	deuterated	

water	was	added	to	the	sample.	This	lead	to	the	relative	increase	of	the	adduct	peak	from	m/z	684.7	
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to	a	range	of	m/z	688.8	to	690.7,	due	to	deuterium	displacement	of	labile	protons	on	Probe	1.	From	

the	mass	spectrometry	data,	it	can	be	confidently	concluded	that	mephedrone	and	Probe	1	form	a	

supramolecular	complex	as	suggested	by	the	NMR	data	and	DFT	calculations	in	a	1:1	stoichiometry.		

Ten	eq.	of	mephedrone	hydrochloride	was	added	to	Probe	1	in	acetone	to	see	whether	it	is	possible	

to	observe	any	competition	between	chloride	and	mephedrone.	Interestingly,	mephedrone	appears	

to	preferentially	bind	to	Probe	1	with	the	adduct	peak	at	m/z	684.7	still	observed.	There	was	no	peak	

corresponding	to	the	mass	of	Probe	1	and	chloride	in	positive	or	negative	modes.	This	is	an	interesting	

finding	as	the	NMR	data	showed	that	chloride	has	a	stronger	association	constant	than	mephedrone.	

This	difference	could	be	due	to	the	varied	conditions	in	which	the	two	experiments	are	conducted.			

5.3.3.2 Flephedrone		

To	further	study	the	interactions	seen	using	NMR,	Probe	1	and	flephedrone	freebase	were	studied	

using	ESI-MS.	The	same	conditions	used	for	mephedrone	were	applied	to	flephedrone	to	allow	for	a	

direct	comparison.	As	shown	in	Figure	5.18,	there	are	five	distinct	peaks	in	the	spectrum,	flephedrone	

freebase	at	m/z	182.4,	with	the	two	most	abundant	fragments	at	m/z	164	and	150204,	Probe	1	at	m/z	

507.5	and	Probe	1-flephedrone	complex	at	m/z	688.7.	Once	again	it	confirms	what	was	predicted	from	

the	NMR	data,	that	the	complex	forms	in	a	1:1	ratio	because	no	peaks	were	observed	further	up	the	

spectrum	that	would	indicate	a	different	binding	stoichiometry	was	occurring.	

	

Figure	5.18	-	ESI-MS	of	Probe	1	m/z	509,	flephedrone	freebase	m/z	182	and	complexed	Probe	1-mephedrone	m/z	689.	

Insert:	MS/MS	data	for	Probe	1	and	flephedrone.	
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Interestingly	during	infusion	the	ratio	of	bound	to	unbound	Probe	1	favoured	the	unbound	formation.	

This	is	contrary	to	what	is	seen	for	mephedrone	where	the	equilibrium	appears	to	shift	in	favour	of	

the	complex,	suggesting	that	the	association	constant	for	mephedrone	and	Probe	1	is	greater.	This	

reflects	the	findings	from	the	NMR	binding	study,	with	mephedrone	showing	a	stronger	association	

constant,	 i.e.	greater	change	in	chemical	shift.	Once	again	MS/MS	was	performed	on	the	spectrum	

seen	 in	 Figure	 5.18	 which	 confirmed	 that	 the	 complex	 peak	 was	 further	 broken	 down	 into	 its	

constituent	parts:	flephedrone	m/z	182.4	and	Probe	1	m/z	507.5.	This	confirms	that	the	peak	at	m/z	

684.7	is	due	to	the	complex	and	not	an	artefact.		

5.3.4 UV/Vis	Spectroscopy	Testing	

The	NMR	results	in	combination	with	the	DFT	calculations	suggest	that	flephedrone	interacts	with	the	

anthracene	moiety	on	Probe	1	in	a	different	way	to	mephedrone.	Additionally	flephedrone	interacts	

with	NH(1)	which	is	not	seen	for	mephedrone.	This	suggests	that	the	two	cathinone	analogues	could	

potentially	 have	 different	 optical	 responses	 upon	 binding.	 Therefore,	 both	 flephedrone	 and	

mephedrone	were	evaluated	using	UV/Vis	and	fluorimetry	in	an	attempt	to	characterise	their	binding	

using	optical	spectroscopy.	This	could	provide	valuable	information	to	develop	Probe	1	into	an	optical	

in-field	sensor,	and	also	provide	more	information	into	the	binding	mechanism.		

5.3.4.1 Mephedrone	

As	previously	discussed	 the	primary	aim	of	 this	work	 is	 to	produce	an	 in-field	detection	probe	 for	

mephedrone.	One	of	the	simplest	ways	to	achieve	this	is	through	an	optical	change	upon	binding	i.e.	

a	colour	change	upon	addition	of	the	drug	to	a	solution	of	the	host	molecule.	From	the	NMR	and	MS	

work	 it	 can	 be	 concluded	 that	 Probe	 1	 and	mephedrone	 form	 a	 supramolecular	 complex.	 To	 test	

whether	binding	can	be	observed	using	optical	techniques,	UV/Vis	analysis	was	conducted.		

Individual	UV/Vis	spectra	of	Probe	1	and	mephedrone	were	run	to	determine	the	absorption	spectrum	

of	both	molecules	(Figure	5.19).	Mephedrone	has	its	own	unique	absorption	spectrum,	and	therefore	

it	is	imperative	that	this	is	taken	into	account	when	studying	the	binding	interactions	with	Probe	1.		
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Figure	5.19	-	Absorption	spectrum	of	mephedrone	(grey)	and	Probe	1	(black)	from	330	-	600	nm.	

The	spectrum	was	run	with	a	scan	range	of	330	-	600	nm.	This	is	due	to	the	UV/Vis	cut	off	of	acetone	

being	reported	at	330	nm205	i.e.,	below	this	wavelength	the	spectrum	seen	is	dominated	by	acetone.	

A	maximum	absorbance	wavelength	(λmax)	for	Probe	1	is	seen	at	392	nm	while	mephedrone	is	at	332	

nm	(Figure	5.19).	The	absorption	spectrum	of	mephedrone	has	been	previously	reported	in	ethanol	

with	λmax	=	264	nm,	which	is	below	the	scan	range	in	this	experiment206.	The	absorbance	spectrum	of	

Probe	1	is	indicative	of	an	anthracene	moiety,	where	a	pattern	of	three	peaks	can	be	observed	at	356,	

372	 and	 392	 nm207.	 The	 three	 peaks	 are	 not	 as	 distinct	 as	 they	 would	 be	 for	 an	 unsubstituted	

anthracene.	 It	 has	 previously	 been	 shown	 that	 the	 absorbance	 spectrum	 of	 anthracene	 is	 greatly	

affected	by	the	choice	and	position	of	substituents	on	the	ring207.	There	is	an	overlap	between	spectra	

of	mephedrone	 and	 Probe	 1	 from	330-410	 nm,	which	was	 taken	 into	 account	when	 studying	 the	

change	in	absorbance	caused	by	the	addition	of	mephedrone	to	Probe	1.	A	full	UV/Vis	titration	was	

carried	 out	 in	 acetone,	 with	 Probe	 1	 kept	 at	 a	 constant	 concentration	 of	 2.5	 mM.	 Mephedrone	

freebase	was	dissolved	up	in	acetone,	as	with	the	NMR	experiments	the	molar	ratio	of	mephedrone	

was	studied	from	0.25	eq.	up	to	10	eq.		
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Figure	5.20	-	UV/Vis	absorption	spectra	for	the	titration	study,	between	Probe	1	and	mephedrone	from	0.25	eq.	to	10	

molar	eq.	of	mephedrone.	

As	seen	in	Figure	5.20	there	is	virtually	no	change	in	the	absorbance	spectrum	of	Probe	1	upon	the	

addition	of	mephedrone.	 In	order	 to	 see	a	 change	 in	 the	absorbance	 spectrum	of	Probe	1	due	 to	

mephedrone,	there	needs	to	be	an	interaction	between	the	absorbing	chromophore	in	Probe	1,	which	

given	the	spectrum	of	Probe	1	would	be	an	interaction	with	anthracene	moiety	and	mephedrone.	The	

DFT	 calculations	 and	 NMR	 experiments	 indicate	 that	 there	 is	 only	 a	 small	 interaction	 occurring	

between	 the	 anthracene	 and	mephedrone	 upon	 binding.	 Therefore,	 it	 is	 not	 unforeseen	 that	 no	

change	in	absorbance	is	observed	upon	the	addition	of	mephedrone	to	Probe	1.		

5.3.4.2 Flephedrone		

The	absorption	spectra	of	flephedrone	and	Probe	1	were	recorded	separately	(Figure	5.21).	As	seen	

with	mephedrone,	 the	absorbance	spectrum	of	 the	host	and	guest	overlap	 from	330-399	nm,	and	

therefore	any	increase	in	absorbance	due	to	the	addition	of	flephedrone	needs	to	be	accounted	for.	
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Figure	5.21	-	UV/Vis	absorbance	spectrum	of	Probe	1	(grey)	and	flephedrone	(black)	from	330	–	600	nm	in	acetone.	

A	full	UV/Vis	titration	was	carried	out	from	0.25	-	10	eq.	in	acetone	(Figure	5.22).	Probe	1	was	kept	at	

a	 constant	 concentration	of	2.5	mM	and	aliquots	of	 flephedrone	 freebase	 in	acetone	were	added	

directly	to	the	cuvette.		

	

Figure	5.22	-	UV/Vis	absorption	spectra	for	the	titration	study,	between	Probe	1	and	flephedrone	from	0.25	eq.	to	10	

molar	eq.	of	mephedrone	in	acetone.	

Despite	the	DFT	calculations	predicting	more	of	an	influence	on	the	anthracene	unit	upon	addition	of	

flephedrone,	no	significant	change	in	absorbance	was	seen	upon	addition	of	flephedrone.	It	is	possible	

that	complexation	cannot	be	observed	in	UV/Vis	in	the	ground	state,	therefore	fluorescence	titration	
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studies	will	be	carried	out	for	both	flephedrone	and	mephedrone	to	understand	if	an	optical	change	

can	be	observed	in	the	excited	state.		

5.3.5 Fluorescence	Spectroscopy	Testing	

5.3.5.1 Mephedrone		

The	 fluorescence	spectra	of	mephedrone	and	Probe	1	were	collected	separately	 to	determine	 the	

emission	 profile	 of	 both	 molecules,	 mephedrone	 was	 found	 to	 not	 fluoresce	 (Figure	 5.22)	 at	 an	

excitation	wavelength	of	392	nm.	This	means	 that	only	 the	emission	of	Probe	1	can	be	studied	 to	

understand	binding	 interactions.	Commonly	 the	absorbance	λmax	of	Probe	1	would	be	used	as	 the	

excitation	wavelength	for	studying	fluorescence,	to	ensure	the	best	sensitivity.	As	seen	in	Figure	5.19	

the	absorption	 spectrum	of	Probe	1	and	mephedrone	overlap	at	 λmax	=	410	nm.	 It	 is	possible	 that	

mephedrone	could	absorb	the	emitted	light	at	410	nm,	which	could	affect	the	results	observed.	With	

this	is	mind	the	excitation	wavelength	used	for	all	fluorescence	titrations	with	mephedrone	and	Probe	

1	was	392	nm	to	prevent	mephedrone	absorbing	the	excited	light	and	therefore	interfering	with	the	

emission	spectrum	of	Probe	1.	The	maximum	emission	wavelength	for	Probe	1	was	found	to	be	489	

nm	(Figure	5.23).	

	

Figure	5.23	-	Emission	profiles	for	Probe	1	and	mephedrone	freebase,	λex	=	of	392	nm	and	a	scan	range	of	410	-	700	nm.		

For	 consistency	 with	 NMR	 and	 UV/Vis	 experiments,	 acetone	 was	 used	 for	 all	 fluorescence	

experiments,	with	mephedrone	made	up	in	a	0.01	M	solution	in	acetone.	A	full	titration	was	carried	

out	from	0.25	to	50	molar	eq.	An	extended	titration	was	carried	out,	as	no	change	was	observed	up	

to	10	eq.		
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As	shown	in	Figure	5.24	the	emission	spectrum	does	not	change	during	the	titration.	Once	again	based	

on	the	previous	data,	that	suggested	there	is	only	a	slight	interaction	between	the	anthracene	and	

mephedrone,	 it	 is	 not	 unexpected	 that	 once	 again	 no	 interaction	 that	 causes	 an	 optical	 signal	 is	

occurring	in	the	same	molar	ratios	as	seen	for	NMR	analysis.		

For	 all	 experiments	 conducted	 thus	 far	 mephedrone	 freebase	 was	 made	 up	 to	 concentration	 in	

acetone,	 and	 aliquots	 of	 this	 solution	 were	 added	 to	 Probe	 1	 for	 the	 titration	 experiments.	 For	

fluorescence	the	concentration	of	this	solution	is	much	lower	than	that	used	for	NMR	to	reflect	the	

sensitivity	of	the	instrument.	To	understand	if	the	difference	in	results	seen	for	NMR	and	fluorimetry	

is	an	effect	of	concentration,	neat	mephedrone	freebase	(i.e.	not	dissolved	in	acetone	prior	to	use)	as	

well	 as	 higher	 concentrations	 of	mephedrone	 freebase	 in	 acetone	were	 studied.	 This	means	 that	

higher	equivalents	of	mephedrone	could	be	added	to	the	system	without	dilution	effects	occurring	

due	to	addition	of	microliters	of	acetone	to	the	cuvette.		

Mephedrone	freebase	is	an	oil	and	therefore,	in	order	to	determine	the	concentration	of	mephedrone	

added,	the	density	of	the	oil	was	calculated	as	0.53	±	0.01	g	mL-1.		
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Figure	5.24	-	Fluorescence	titration	with	Probe	1	and	mephedrone	in	acetone	showing	no	change	in	intensity,	λex	=	392	

nm	and	a	scan	range	of	410	-	700	nm.	
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As	seen	in	Figure	5.25,	addition	of	neat	mephedrone	freebase	leads	to	an	optical	response	with	the	

intensity	starting	at	the	bottom	red	line	and	increasing	to	the	second	red	line	upon	the	first	addition	

of	mephedrone	(150	eq.),	and	then	increasing	again	after	the	second	addition	to	the	top	red	line	(300	

eq.).		

However,	from	450	eq.	and	above	the	emission	is	quenched	and	the	intensity	decreases	sequentially	

by	a	total	intensity	of	552	after	1950	eq.	The	mechanism	by	which	this	occurs	is	not	fully	understood;	

however,	the	experiment	was	repeated	in	triplicate	and	resulted	in	a	similar	profile	for	each	replicate.	

There	 appears	 to	 be	 competing	 binding	 mechanisms	 occurring	 in	 the	 excited	 state,	 which	 are	

concentration	 dependent.	 As	 previously	 discussed	 (Chapter	 1),	 for	 the	 fluorescence	 intensity	 to	

increase	 there	must	 be	 one	 of	 two	 things	 occurring,	 charge	 transfer	 or	 FRET,	 i.e.	 there	 must	 be	

intermolecular	 energy	 transfer	 occurring	 between	 the	 host	 and	 guest192.	 If	 the	 lone	 pairs	 of	 the	

thioureas	are	donating	to	the	anthracene	ring	in	Probe	1	then	it	is	possible	that	upon	binding	to	the	

lone	 pairs	 of	 NH(1)	 this	 may	 allow	 for	 a	 charge	 transfer	 mechanism	 to	 arise.	 However,	 the	 DFT	

calculations	suggest	that	binding	is	occurring	with	NH(2),	which	would	not	allow	charge	transfer	to	

occur	upon	binding.	For	the	fluorescence	intensity	to	decrease	above	450	eq.	of	mephedrone	there	

must	be	a	subsequent	quenching	mechanism	occurring192.	It	is	possible	that	higher	concentrations	of	

mephedrone	causes	a	shift	in	the	equilibrium	of	binding	due	to	saturation	of	the	host,	leading	to	a	

change	 in	 the	 principal	 binding	 mechanism.	 There	 is	 no	 current	 literature	 present	 on	 these	 two	

mechanisms	occurring	in	the	same	system,	especially	at	such	high	molar	ratios.		

Figure	5.25	-	Fluorescence	titration	for	Probe	1	and	neat	mephedrone	freebase,	λex	=	392	nm.	5	µL	aliquots	of	mephedrone	

freebase	were	added	per	data	point.	The	red	line	at	the	bottom	indicates	Probe	1	before	addition	of	mephedrone,	the	

second	 red	 line	 indicates	 the	 first	 addition	 of	 mephedrone,	 and	 the	 top	 red	 line	 indicates	 the	 second	 addition	 of	

mephedrone.	 The	 remaining	 black	 lines	 indicate	 the	 sequential	 decrease	 of	 intensity	 due	 to	 further	 addition	 of	

mephedrone	freebase.	
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Another	interesting	observation	from	the	fluorescence	titration	of	neat	mephedrone	freebase	is	the	

10	nm	red	shift	of	the	emission	spectrum	seen	after	the	first	addition	of	mephedrone.	This	shift	only	

occurs	after	the	first	addition,	and	is	not	seen	in	the	initial	titration	experiments	where	mephedrone	

is	diluted	in	acetone	before	addition.		

To	study	 if	this	unique	fluorescence	response	 is	concentration	dependent	and	not	time	dependent	

(i.e.	 fluorescence	 goes	 up	 on	 the	 first	 addition	 of	 mephedrone	 irrespective	 of	 the	 concentration	

added),	450	eq.	of	mephedrone	freebase	was	added	directly	to	the	solution	of	Probe	1.	The	intensity	

immediately	decreased	upon	addition,	showing	that	the	increase	and	subsequent	decrease	seen	in	

Figure	 5.25	 is	 due	 to	 the	 concentration	 added.	 This	 again	 supports	 the	 theory	 that	 at	 higher	

concentrations	the	binding	equilibrium	shifts	towards	a	competing	quenching	mechanism	over	the	

charge	transfer	reaction	that	must	be	occurring	originally	to	cause	the	initial	increase	in	intensity.		

Currently,	there	is	NMR	binding	information	from	0.25	to	10	eq.	of	mephedrone	freebase	to	Probe	1	

and	fluorescence	binding	information	from	150	to	1950	eq.	The	binding	information	provided	from	

these	 two	 techniques	 currently	does	not	 correlate.	 In	order	 to	bridge	 the	gap	between	 these	 two	

techniques	and	understand	 if	 the	change	seen	 is	due	to	different	concentrations	used	 for	 the	 two	

techniques,	serial	dilutions	of	mephedrone	freebase	in	acetone	were	prepared	and	multiple	titration	

experiments	 were	 conducted.	 Interestingly,	 for	 all	 the	 dilution	 experiments,	 irrespective	 of	

concentration,	the	fluorescence	intensity	quenched	after	each	addition	(Figure	5.26).	This	is	contrary	

to	 what	 is	 observed	 for	 neat	 mephedrone,	 where	 the	 first	 two	 additions	 lead	 to	 an	 increase	 in	

intensity.	Another	observation	is	that	there	is	no	red	shift	with	the	addition	of	mephedrone	when	it	is	

first	diluted	 in	acetone.	This	suggests	that	the	addition	of	acetone	to	mephedrone	before	addition	

affects	the	mechanism	of	binding	to	Probe	1	during	fluorescence.	This	dilution	effect	is	not	seen	for	

NMR.		
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Figure	5.26	-	Fluorescence	binding	isotherm	for	Probe	1	and	mephedrone	from	a	stock	solution	of	0.74	M,	15	-	1950	eq.,	

λex	=	392	nm.	

After	 completing	 a	 series	 of	 experiments	 using	 fluorescence	 to	 study	 the	 binding	 between	

mephedrone	and	Probe	1	in	a	wide	range	of	molar	equivalents	(15	to	1950	eq.).	It	is	clear	that	binding	

at	high	concentrations	induces	an	optical	response	upon	binding	between	Probe	1	and	mephedrone.	

However,	 the	mechanism	by	which	this	works	 is	not	yet	 fully	characterised	as	there	appears	to	be	

multiple	mechanisms	by	which	this	occurs	depending	on	the	concentration	of	mephedrone	added,	

and	whether	it	is	in	solution	before	addition.	What	is	promising	is	that	there	is	a	reproducible	optical	

response	of	Probe	1	upon	binding	to	mephedrone,	and	therefore	Probe	1	has	potential	to	be	used	as	

an	optical	 in-field	 detection	mechanism,	 but	 further	 characterisation	 is	 needed	 first.	One	possible	

route	to	explore	would	be	characterisation	using	single	photon	fluorimetry.	

5.3.5.2 Flephedrone	

From	the	absorbance	spectrum	of	flephedrone	and	Probe	1	an	excitation	wavelength	of	410	nm	was	

chosen.	 This	 is	 to	 correlate	 with	 the	 maximum	 absorbance	 of	 Probe	 1	 observed	 in	 the	 UV/Vis	

experiments,	 which	 also	 showed	 no	 absorption	 of	 flephedrone,	 which	 could	 interfere	 with	 the	

emission	spectrum	of	Probe	1.	A	full	titration	was	carried	out	from	0.25	to	50	eq.	of	flephedrone	in	

acetone,	adding	directly	to	the	cuvette.	Again	no	change	in	the	emission	spectrum	was	seen	when	

flephedrone	was	added	in	acetone	at	low	concentrations	(Figure	5.27).		
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Figure	5.27	-	Emission	profile	for	flephedrone	freebase,	λex	=	410	nm	and	a	scan	range	of	425	-	700	nm.	

Given	the	phenomenon	seen	for	mephedrone,	where	the	addition	of	undiluted	(neat)	mephedrone	

lead	 to	 an	optical	 response,	 the	 same	was	 attempted	 for	 flephedrone.	Upon	 the	 addition	of	 neat	

flephedrone	freebase	there	is	a	clear	optical	response	(Figure	5.28).	The	bottom	red	line	indicates	the	

emission	 spectrum	 of	 Probe	 1	 in	 the	 absence	 of	 flephedrone,	 the	 top	 red	 line	 indicates	 the	 first	

addition	of	flephedrone	(150	eq.)	which	shows	a	fluorescence	intensity	increase	of	493.	After	the	first	

addition	the	intensity	starts	to	decrease.	The	insert	shows	graphically	how	this	change	in	fluorescence	

correlates	to	the	concentration	of	flephedrone	in	the	system.	As	predicted	from	the	DFT	calculations	

flephedrone	induces	a	greater	optical	response	then	mephedrone	upon	addition	to	Probe	1.	This	is	

predicted	to	be	due	to	the	increased	interaction	with	the	anthracene	moiety,	specifically	proton	9.	

However,	as	with	mephedrone	a	response	is	only	induced	upon	high	concentration	of	the	guest,	i.e.	

150	 eq.,	 which	 is	 contrary	 to	 the	 results	 seen	 for	 both	MS	 and	 NMR.	 As	 with	 mephedrone,	 the	

mechanism	 causing	 this	 unique	 binding	 isotherm	 is	 not	 fully	 understood.	 This	 change	 in	 the	

mechanism	of	binding	between	NMR	and	fluorimetry	may	be	caused	by	a	shift	in	the	equilibrium	at	

increased	concentrations	of	guest	saturating	Probe	1	and	therefore	binding	in	a	different	way.	Unlike	

with	 mephedrone	 there	 is	 no	 red	 shift	 seen	 for	 the	 emission	 spectrum	 upon	 addition	 of	 neat	

flephedrone.	 This	 further	 confirms	 that	 flephedrone	 and	 mephedrone	 are	 binding	 in	 different	

orientations.	
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Figure	5.28	 -	 Fluorescence	 titration	of	Probe	1	and	 flephedrone	 freebase	added	 in	5	µL	aliquots	of	neat	mephedrone	

freebase.	The	bottom	red	line	is	Probe	1	before	addition	of	mephedrone,	and	the	top	red	line	is	after	the	first	addition	of	

mephedrone.	The	black	 lines	are	the	subsequent	additions.	 Insert:	Plot	of	concentration	of	NPS	and	the	quenching	of	
fluorescence	intensity	at	485	nm	(acetone,	5.0	µM,	lex	=	410	nm).	

For	quantitative	laboratory	purposes	such	high	molar	equivalents	of	drug	are	not	ideal.	However,	for	

use	as	an	in-field	detection	mechanism	the	addition	of	undiluted	drug	to	induce	and	optical	response	

could	be	deemed	more	practical	as	no	solvent	would	be	required.	

Once	the	binding	between	Probe	1	and	mephedrone	was	characterised	the	next	stage	was	to	test	

selectivity	against	common	cutting	agents,	which	have	also	been	found	to	induce	false	positives	when	

testing	drugs	of	abuse61,134.	

5.3.6 Selectivity	Testing	

Mephedrone	is	not	found	pure	in	street	samples,	consequently	it	is	important	to	assess	the	selectivity	

of	 Probe	 1	 against	 the	most	 common	 cutting	 agents	 that	 could	 be	 present	 in	 the	 street	 samples	

alongside	 mephedrone.	 The	 analysis	 of	 aminoindane	 products	 in	 Chapter	 2	 highlighted	 that	 NPS	

products	may	contain	other	active	ingredients.	From	the	development	of	the	pharmacophore	it	was	

seen	that	many	cutting	agents	have	very	similar	chemical	structures,	and	therefore	could	have	very	

similar	binding	motifs	to	mephedrone.	The	pharmacophore	model	was	developed	to	not	only	design	

a	binding	motif	for	mephedrone,	but	also	to	understand	how	to	ensure	selectivity	against	common	

cutting	agents.	Selectivity	of	Probe	1	over	methamphetamine	has	already	been	shown.	Further	studies	

need	to	be	conducted	to	investigate	the	selectivity	of	Probe	1	over	common	cutting	agents.		

From	 the	binding	 analysis	 of	mephedrone	and	 flephedrone	with	Probe	1	 so	 far,	 the	 1H-NMR	data	

provides	the	most	valuable	binding	information.	It	has	allowed	for	understanding	into	which	atoms	
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are	 involved	 in	 binding,	 predicted	 stoichiometry	 as	 well	 as	 providing	 information	 with	 low	molar	

equivalents	(0-10	eq.)	compared	to	the	optical	studies.	Consequently,	selectivity	studies	will	be	carried	

out	using	1H-NMR	to	allow	for	direct	comparison	with	the	mephedrone	results.			

5.3.6.1 NMR	Spectroscopy		

In	order	to	test	selectivity	of	Probe	1	for	mephedrone,	four	of	the	most	common	cutting	agents	were	

chosen,	 benzocaine,	 caffeine,	 paracetamol	 and	 lidocaine	 (Figure	 5.29)16,49,208.	 1H-NMR	 testing	was	

carried	out	between	each	guest	molecule	separately	and	Probe	1.	Again	for	consistency	all	analysis	

was	carried	out	in	acetone-d6.		

	

Figure	 5.29	 -	 Chemical	 structures	 of	 four	 common	 cutting	 agents,	 A.	 benzocaine	 B.	 caffeine	 C.	 paracetamol	 and	 D.	

lidocaine.	

A	 spectrum	 of	 Probe	 1	 was	 acquired	 followed	 by	 the	 addition	 of	 10	 eq.	 of	 the	 guest	 molecules	

separately.	The	NMR	analysis	of	benzocaine	with	Probe	1	is	shown	in	Figure	5.30.	No	change	in	the	

chemical	shifts	of	either	the	host	or	guest	can	be	seen.	The	analysis	of	the	remaining	three	cutting	

agents;	caffeine,	lidocaine	and	paracetamol	show	the	same	results.	To	ensure	this	is	also	true	at	higher	

molar	ratios	each	system	was	run	with	50	eq.	of	guest.	There	was	still	no	change	seen	in	any	of	the	

chemical	shifts	for	all	four	cutting	agents.	This	shows	with	confidence	that	Probe	1	is	selective	over	

four	of	the	most	common	cutting	agents	known	to	be	found	in	mephedrone	street	samples.	
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All	of	the	cutting	agents	contain	at	least	one	functional	group	in	common	with	mephedrone.	However,	

the	size,	conformation	and	orientations	are	distinctly	different.	This	again	highlights	the	advantage	of	

utilising	a	concerted	design.	This	is	very	promising	given	that	previous	literature	states	the	problem	

with	cutting	agents	leading	to	false	positives	and	negatives63,133.	

If	these	results	are	taken	into	account	in	relation	to	both	the	mephedrone	testing	and	DFT	calculations	

it	 is	not	surprising	that	no	 interaction	 is	seen.	The	DFT	calculations	show	a	very	 large	deformation	

energy	 for	Probe	1	upon	binding	 to	mephedrone.	To	overcome	 this	energy	barrier	 the	 interaction	

must	 be	 very	 energetically	 favourable,	 which	 as	 shown	 above	 is	 due	 to	 the	 three-point	 binding	

interaction	 occurring.	 By	 removing	 one	 of	 these	 functional	 groups	 it	 reduces	 the	 binding	 affinity	

(mephedrone	precursor)	or	prevents	binding	at	all	(methamphetamine).	By	completely	changing	the	

orientation	 of	 these	 functional	 groups,	 as	well	 as	 reducing	 the	 number	 of	 binding	 points	 (cutting	

agents),	it	prevents	any	interaction	from	occurring	with	Probe	1,	thereby	creating	a	selective	sensor	

for	mephedrone.		

5.3.6.2 Fluorescence	Spectroscopy		

NMR	 results	 showed	 no	 interaction	 between	 Probe	 1	 and	 caffeine,	 lidocaine,	 benzocaine	 or	

paracetamol.	However	fluorimetry	is	far	more	sensitive	than	NMR,	and	an	optical	sensor	is	the	final	

aim	of	the	project.	Therefore,	each	of	the	cutting	agents	was	tested	against	Probe	1	to	see	whether	a	

fluorescence	response	could	be	observed	with	Probe	1.	Each	of	the	cutting	agents	was	run	as	a	2.5	

N(1 9	 1 N(2,7	 1

Figure	5.30	-	1H-NMR	spectra	of	Probe	1	(bottom)	plus	after	the	addition	of	ten	eq.	of	benzocaine	(top)	in	acetone-d6.	
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mM	solution	in	acetone	individually,	with	lex	=	392	nm.	No	fluorescent	response	was	observed	for	any	

of	the	cutting	agents.		

All	cutting	agents	were	tested	using	the	same	conditions	as	mephedrone	and	spectra	was	collected	

from	0.5	to	50	eq.	Figure	5.31	shows	the	titration	curve	for	caffeine,	no	response	can	be	seen	up	to	

50	eq.	The	same	is	observed	for	the	lidocaine,	benzocaine	and	paracetamol.	

	

Figure	5.31	 -	Fluorescence	 titration	of	Probe	1	 (5.0	µM)	and	caffeine	added	 in	50	µL	aliquots	of	a	2.5	mM	solution	 in	

acetone	from	0.5	-	50	eq.,	lex	=	392	nm.	

However,	when	mephedrone	is	diluted	in	acetone	prior	to	addition	no	response	is	observed	either.	

Therefore	each	of	the	cutting	agents	was	also	added	in	neat	to	Probe	1	in	the	cuvette	in	1	mg	portions	

up	 to	500	eq.	Above	 this	molar	concentration,	 the	solution	was	saturated.	For	each	of	 the	cutting	

agents	again	no	response	was	observed.	This	demonstrates	that	Probe	1	shows	selectivity	over	both	

dilute	and	neat	cutting	agents	using	both	NMR	and	fluorimetry.	

5.3.6.3 Street	Samples	

As	shown	from	the	analysis	of	aminoindane	street	samples	 in	Chapter	2,	varying	concentrations	of	

active	ingredients	can	be	combined	with	any	number	of	cutting	agents.	To	ensure	that	mephedrone	

can	 be	 detected	 in	 such	 mixtures,	 the	 two	 most	 common	 cutting	 agents	 present	 in	 NPS63,136:	

benzocaine	and	caffeine	were	studied	in	combination	with	mephedrone.	It	has	already	been	shown	

that	caffeine	and	benzocaine	do	not	bind	to	the	Probe	1,	therefore	any	interaction	that	occurs	in	a	

mixture	should	be	due	to	mephedrone.	Benzocaine,	caffeine	and	mephedrone	hydrochloride	were	

combined	in	equal	proportions.	The	entire	mixture	was	taken	up	in	water,	and	the	solution	was	filtered	

to	remove	the	undissolved	caffeine	and	benzocaine,	which	are	less	soluble	in	water	than	mephedrone	

0

20

40

60

80

100

120

410 460 510 560 610 660

RF
U

Wavelength	(nm)



Evaluation	of	Host	Molecule	Interactions	with	Mephedrone	and	Related	Substances	

173	
	

hydrochloride.	 The	 remaining	 procedure	 was	 carried	 out	 and	 upon	 evaporation	 a	mixture	 of	 the	

mephedrone	oil	and	white	solid	remained.	A	portion	of	this	mixture	was	dissolved	up	in	acetone-d6	

for	NMR	analysis.	A	full	1H-NMR	titration	was	carried	out	as	seen	in	Figure	5.32,	showing	the	expanded	

aromatic	region.	The	shift	of	the	NH	groups	and	9,	10	positions	of	anthracene	can	still	clearly	be	seen,	

which	 indicates	 that	 binding	 is	 occurring.	 The	 total	 shift	 is	 noticeably	 less	 than	 that	 seen	 for	

mephedrone	when	studied	on	 its	own.	This	 is	because	 the	sample	analysed	against	Probe	1	 is	not	

entirely	mephedrone	and	therefore	the	molar	equivalents	relate	to	the	entirety	of	the	street	sample	

contents.	

	

Figure	 5.32	 -	 Expansion	 of	 1H-NMR	 titration	 of	 Probe	 1	 (19.7	 mM	 acetone-d6)	 against	 the	 simulated	 street	 sample	

containing	benzocaine,	caffeine	and	mephedrone.	

When	comparing	10	eq.	of	just	mephedrone	to	10	eq.	of	the	street	sample,	the	relative	concentration	

of	mephedrone	compared	to	Probe	1	can	be	easily	determined	by	using	approximately	one	and	a	half	

times	more	mephedrone	 than	Probe	1.	 This	 induces	 a	 total	 chemical	 shift	 for	NH(1)	of	 0.18	ppm.	

Whereas	the	integral	ratios	of	Probe	1	to	mephedrone	in	the	pure	samples	is	1:10.	This	induces	a	total	

chemical	shift	for	NH(1)	of	2	ppm.	This	is	ten	times	higher	than	the	shift	seen	for	the	street	sample,	

which	 may	 in	 the	 first	 instance	 appear	 to	 be	 due	 to	 the	 cutting	 agents	 interfering	 with	 binding.	

However,	when	the	relative	integrals	for	Probe	1	and	mephedrone	are	taken	into	account	it	can	be	

seen	to	be	reflective	of	concentration	effects.	Therefore,	showing	that	the	presence	of	cutting	agents	

in	 the	 sample	 does	 not	 affect	 the	 chemical	 shifts	 of	 Probe	 1,	 and	 therefore	 does	 not	 affect	 the	
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association	constant	of	mephedrone	binding	to	Probe	1,	as	the	relative	concentrations	show	the	same	

chemical	shift.	

5.4 Conclusion	

Probe	 1	 was	 tested	 against	 a	 selection	 of	 guest	 molecules;	 mephedrone,	 flephedrone,	

methamphetamine,	 4-methyl	 propiophenone,	 lidocaine,	 caffeine,	 paracetamol	 and	 benzocaine	 as	

well	as	chloride	anions.	Chloride	anions	showed	the	strongest	binding	affinity	with	a	Ka	of	500	M-1,	

followed	by	mephedrone	at	104	M-1.	This	affinity	for	chloride	anions	means	mephedrone	could	not	be	

tested	in	the	hydrochloride	salt	form,	which	is	how	it	is	primarily	found	in	street	samples.	To	overcome	

this,	the	freebase	of	mephedrone	was	used	for	all	experiments,	so	as	to	study	the	binding	interactions	

in	the	absence	of	any	interaction	from	chloride.	Full	1H-NMR	titrations	were	carried	for	mephedrone	

with	Probe	1,	which	showed	that	there	were	chemical	shifts	seen	for	both	NH	groups	in	Probe	1,	as	

well	 as	 protons	 9	 and	 10	 on	 the	 anthracene.	 Small	 changes	 are	 also	 seen	 for	 alkyl	 protons	 in	

mephedrone;	however,	due	to	the	amine	proton	in	mephedrone	exchanging,	no	definitive	hydrogen	

bonding	 interaction	 could	 be	 observed	 from	 mephedrone.	 The	 three	 binding	 points	 the	 sensor	

molecule	was	designed	to	include	according	to	the	pharmacophore	model	were	a	hydrogen	bonding	

group	and	two	π-stacking	interactions.	The	shifts	 in	the	NMR	indicate	that	there	are	two	hydrogen	

bonds	and	one	π-stacking	interaction	between	Host	1	and	mephedrone.	Although	it	doesn’t	show	a	

complete	 correlation	 to	 the	 predicted	 pharmacophore	model,	 it	 does	 show	 a	 three-point	 binding	

motif	 in	 a	 concerted	 fashion,	with	binding	 shown	 to	both	 the	 amine	 and	 aromatic	 functionalities,	

which	does	correspond	to	the	pharmacophore	model.		

The	choice	of	solvent	proved	critical	for	the	binding	studies,	with	no	response	seen	when	DMSO	was	

used	as	the	experimental	solvent.	Mass	spectrometry	confirmed	that	the	interaction	occurring	during	

NMR	is	caused	by	a	1:1	complex	of	Probe	1	and	mephedrone.	It	also	proved	that	the	complex	must	be	

fairly	 stable	 to	 stay	 together	 through	 the	 ESI-MS	 conditions.	 Further	 confirmation	 of	 Probe	 1	 and	

mephedrone	 complexation	 in	 a	 1:1	 ratio	was	determined	 through	deuterium	and	MS/MS	 studies.	

Another	cathinone	analogue,	flephedrone	was	analysed	to	understand	selectivity.	The	addition	of	the	

fluoro	group	on	the	aromatic	ring	reduces	the	binding	affinity	by	tenfold	(Ka	=	10	M-1).	This	can	be	

concluded	to	be	due	to	concerted	sensor	design.	Further	evidence	for	the	consensus	binding	of	Probe	

1	and	mephedrone	is	seen	when	studying	Probe	2.	The	removal	of	the	second	thiourea	arm	in	Probe	

2	 shows	 a	 10	 fold	 decrease	 in	 Ka	 for	mephedrone.	 This	 is	 additionally	 rationalised	 using	 the	 DFT	

calculations	which	shows	mephedrone	binding	to	both	arms	of	Probe	1.	This	highlights	the	importance	

of	a	three-point	binding	motif	that	was	highlighted	in	the	pharmacophore	model	in	Chapter	3.	Also	

flephedrone	and	mephedrone	are	shown	to	bind	in	different	orientations	perhaps	due	to	the	change	
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in	 electronegativity	 by	 the	 addition	 of	 the	 fluorine	 functionality.	 This	 demonstrates	 how	 a	 small	

change	in	chemical	structure	can	affect	the	binding	affinity.		

Fluorescence	and	UV/Vis	spectroscopy	were	used	to	study	an	optical	change	that	may	be	observed	

upon	binding.	Both	mephedrone	and	flephedrone	showed	no	interactions	using	UV/Vis	spectroscopy	

even	at	high	molar	 ratios	 (300	eq.).	A	number	of	experiments	were	 conducted	using	 fluorescence	

spectroscopy.	Mephedrone	was	dissolved	in	acetone	and	up	to	50	molar	equivalents	of	mephedrone	

was	added	to	Probe	1,	no	change	in	the	emission	spectrum	was	observed.	The	same	was	also	found	

for	flephedrone.	However,	when	mephedrone	is	added	as	a	neat	oil	(i.e.	not	dissolved	up	in	acetone	

prior	to	addition)	at	high	molar	equivalents	there	is	a	very	noticeable	change	in	the	emission	spectrum.	

For	mephedrone,	from	150	eq.	to	300	eq.	the	intensity	increases	and	a	small	red	shift	in	the	spectrum	

is	observed,	after	which	the	emission	is	quenched.	The	exact	mechanism	of	action	taking	place	is	not	

understood.	 For	 flephedrone	 there	 is	 also	 an	 interaction	 observed	 at	 high	 concentrations	 of	

flephedrone	neat	oil	and	the	change	in	intensity	is	even	more	pronounced	then	for	mephedrone.	The	

first	addition	of	150	eq.	causes	an	increase	in	intensity	and	all	further	additions	lead	to	quenching.	The	

DFT	calculations	show	a	change	in	orientation	between	flephedrone	and	mephedrone	binding	with	

Probe	1.	 Indicating	a	decrease	 in	 the	hydrogen	bonding	 interactions	 for	 flephedrone	and	Probe	1,	

which	 is	 evident	 from	 the	 NMR	 experiments.	 However,	 the	 DFT	 calculations	 do	 show	 a	 stronger	

interaction	of	flephedrone	with	the	anthracene	moiety,	which	could	explain	why	flephedrone	shows	

a	stronger	binding	response	using	fluorescence.	

Again	the	fluorescence	mechanisms	involved	in	this	are	not	fully	understood	at	present,	there	is	little,	

if	 any,	 literature	 about	 the	 molecular	 sensing	 of	 cathinone	 to	 consult.	 However,	 it	 does	 show	

promising	results	for	using	Probe	1	in-field	as	an	optical	response	can	be	observed.	High	molar	ratios	

must	 be	 taken	 into	 account	 though,	 as	 this	 reduces	 the	 sensitivity	 of	 the	 sensory	 molecule.	 As	

highlighted	in	Chapter	1,	an	optical	change	upon	binding	is	the	ideal	mechanism	for	simple	in-field	

detection,	and	therefore	this	should	be	further	explored	to	see	how	it	can	be	fully	characterised	and	

optimised	for	in-field	use.		

In	summary,	Probe	1	displayed	greater	affinity	with	mephedrone	versus	methamphetamine	and	other	

related	analogues	via	1H-NMR.	This	suggest	a	greater	preference	for	a	β-ketoamine	arrangement.	This	

is	supported	by	the	systematic	analysis	of	mephedrone,	methamphetamine,	mephedrone	precursor	

and	flephedrone.		

Chapter	2	emphasised	the	need	for	selectivity	in	the	presence	of	a	number	of	different	cutting	agents.	

The	 results	 show	 that	 addition	 of	 common	 cutting	 agents	 did	 not	 affect	 the	 interaction	 between	

mephedrone	and	Probe	1	which	is	promising	for	use	with	street	samples.	The	development	of	an	in-
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field	 detection	 mechanism	 is	 a	 continuing	 endeavour;	 however,	 significant	 knowledge	 about	 the	

structural	 components	 necessary	 to	 selectivity	 bind	 mephedrone	 has	 been	 gained	 based	 on	

pharmacophore	design	(Chapter	3)	and	use	of	supramolecular	chemistry.		

	



	

	

Chapter	6 In-Silico	Analysis	of	Potential	Host-Guest	

Interactions		

6.1 Introduction	

The	ability	to	accurately	predict	binding	affinities	for	host-guest	interactions	is	a	much	sought	after	

goal.	Reliable	in	silico	data	can	not	only	provide	valuable	information	on	whether	interactions	occur	

between	the	host	and	guest	and	the	types	of	interactions,	but	also	help	to	minimise	time	consuming	

laboratory	synthesis	of	potential	sensor	(host)	molecules	which	may	ultimately	prove	unsuccessful,	by	

guiding	the	decision	making	process	for	synthesis.		

6.1.1 Metadynamic	simulations	of	host	molecules		

The	concept	of	metadynamic	simulations	for	large	molecules	has	been	studied	for	a	number	of	years	

to	evaluate	the	free	energy	of	complex	formation	between	proteins	and	ligands.	Using	the	principles	

applied	to	proteins	as	discussed	in	the	Introduction	(Chapter	1),	it	is	feasible	that	in	silico	binding	data	

between	small	molecules	could	be	used	to	predict	binding	affinities,	which	 in	turn	could	guide	the	

synthetic	development	of	small	host	molecules.	As	discussed	in	Chapter	1,	the	choice	of	simulation	

conditions	and	collective	variables	(CV)	will	be	vital	in	establishing	a	quality	system	to	ensure	that	the	

free	energy	values	calculated	are	as	representative	of	experimental	values	as	possible.	The	choice	of	

CVs	 is	 imperative	 to	 the	 reliability	of	 the	metadynamic	 simulations.	 Ideally	 the	CVs	 chosen	 should	

clearly	distinguish	between	different	conformational	variations	during	the	simulations	i.e.,	initial,	final	

and	 intermediate	 conformations.	 They	 should	 also	 represent	 all	 kinetically	 slow	 events,	 such	 as	

structural	 phase	 transitions,	 that	 may	 be	 relevant	 to	 reconstructing	 a	 free	 energy	 profile	 of	 the	

system209.	Given	 that	 the	 focus	of	 interest	of	 these	studies	 is	 the	binding	between	host	and	guest	

molecules,	 the	 variable	 most	 important	 to	 understanding	 the	 process	 of	 interest	 is	 the	 distance	

between	the	host	and	guest	molecules.	

An	example	of	 the	output	data	 collected	on	 completed	metadynamics	 simulations	 is	 presented	 in	

Figure	6.1.	This	data	allows	the	minimum	energy	complex	to	be	identified	as	well	allowing	full	analysis	

of	all	conformations	in	the	system	and	their	corresponding	free	energy	potential.		
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Figure	6.1	-	Example	of	metadynamics	data	output	which	shows	the	free	energy	as	a	function	of	distance,	based	on	the	

collective	variables	chosen,	in	this	case	distance	between	specified	atoms	in	the	host	and	guest	molecules.	The	minimum	

energy	is	seen	at	a	distance	of	5.2	Å.		

Using	metadynamics	to	predict	binding	between	small	molecules	in	this	way	is	a	novel	concept	with	

little	 literature	 surrounding	 its	use210.	 It	has	 the	ability	 to	vastly	 change	 the	area	of	host	molecule	

development	by	allowing	for	the	prediction	of	host-guest	binding,	which	could	dramatically	reduce	

the	time	of	sensor	development.	

	

Figure	6.2	-	Chemical	structures	of	the	three	host	molecules	analysed	using	metadynamic	simulations.	

The	aim	of	this	work	was	to	develop	an	approach	that	shows	a	consensus	between	the	experimental	

results	reported	in	Chapter	5	for	the	host-guest	complexes	and	in	silico	binding	data,	which	could	then	

be	used	for	future	sensor	development.	Simulations	were	run	for	sensor	Host	1	(Figure	6.2),	which	

was	the	final	host	molecule	prepared	in	Chapter	4	and	tested	in	Chapter	5.	The	same	approach	was	
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applied	 to	 two	 additional	 sensor	 designs	 (Figure	 6.2),	 dinaphthylthiourea	 anthraquinone	 (Host	 2,	

Figure	6.2)	and	dinaphthylurea	tetrahydroxylcalix(4)arene	(Host	3,	Figure	6.2).	The	synthesis	of	which	

was	examined	in	Chapter	4,	so	as	to	indicate	whether	future	synthetic	development	of	these	sensor	

molecules	could	be	worthwhile	based	on	in	silico	binding	data.		

6.2 Experimental		

6.2.1 Ligand	Preparation		

All	molecules	were	drawn	in	ChemDraw	and	converted	into	3D	Mol2	files	for	use	in	Maestro.	Ligands	

were	prepared	before	any	simulations	were	performed	to	ensure	all	3D	structures	were	correct.	Using	

LigPrep	version	3.6	in	Maestro,	OPLS_2005	force	field211	was	applied,	with	a	pH	of	7	±	1	in	chloride	

buffer.	Hydrogens	atoms	were	added	to	all	molecules,	and	the	final	prepared	ligands	were	used	for	

all	further	analysis.		

6.2.2 Conformational	Search	

All	compounds	were	saved	in	Mol2	format	and	imported	into	Maestro	(Schrodinger).	Conformational	

searching	 calculations	 were	 performed	 using	 MacroModel	 with	 an	 OPLS_2005	 force	 field211	 and	

implicit	 water	 solvent	 system,	 Generalized	 Born/Surface	 Area	 (GB/SA)212.	 Due	 to	 the	 lack	 of	

crystallographic	data	 for	 the	host	molecules	being	 investigated	no	constraints	were	applied	 to	 the	

system.	 The	 Polak-Ribiere	 conjugate	 gradient	 (PRCG)	 minimisation	 method	 was	 applied	 to	 all	

compounds,	 with	 the	 Monte	 Carlo	 Multiple	 Minimum	 (MCMM)	 torsional	 sampling	 method	 for	

conformational	 searching	 using	 1000	 steps	 and	 a	 21	 kJ	 mol-1	 window	 for	 conformers.	 Minimum	

conformation	 energy	 values	 and	 number	 of	 conformers	 were	 recorded.	 Once	 lowest	 energy	

conformers	were	obtained,	the	 interaction	of	the	host	molecules	with	mephedrone,	amphetamine	

and	caffeine	were	investigated.	The	guest	molecules	were	randomly	placed	near	the	host	molecule	

outside	of	the	putative	binding	site,	predicted	based	on	experimental	interactions,	to	guard	against	

biasing	results.	The	same	parameters	applied	for	single	molecule	conformational	searching	were	used	

to	 obtain	 the	minimum	 energy	 conformation	 for	 the	 host-guest	 complexes	with	 2000	 steps	 used	

instead	of	1000	to	account	for	the	increased	system	size.		

6.2.3 Simulated	Annealing	

The	starting	structures	used	 in	simulated	annealing	studies	were	 the	minimum	energy	conformers	

established	by	the	conformational	search	carried	out	in	MacroModel.	Simulated	annealing	was	carried	

out	 using	Desmond213.	 A	 system	 for	 studying	 each	 of	 the	 host	molecules	was	 built	 using	 periodic	

boundary	conditions	and	a	10	Å	cubic	buffer	box	applied	around	each	host	molecule.	This	allows	for	a	
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20	 Å	 distance	 between	 any	 two	 host	 molecules	 which	 guards	 against	 the	 formation	 of	 artefact	

interactions	between	two	molecules	 in	different	units.	Six	steps	were	applied	during	the	simulated	

annealing	cycle,	heating	from	0	K	to	1000	K	at	a	linear	gradient	and	held	at	1000	K	for	500	ps,	cooling	

to	 400	 K	 over	 a	 period	 of	 1	 ns,	 followed	 by	 a	 simulation	 time	 of	 3.13	 ns	 (Table	 6.1).	 Energy	 and	

coordinates	of	the	system	were	recorded	at	1	and	5	ps,	respectively.	Studies	were	repeated	for	all	

host	molecules.	 The	 temperature	was	 regulated	with	 the	Nose-Hoover	 chain	 thermostat214	with	 a	

relaxation	 time	of	1.0	ps.	Non-bonded	 interactions	had	a	10	Å	 cutoff	 and	 for	 long-range	Coulomb	

interactions	 the	 smooth-particle-mesh	 Ewald	method215	was	 applied.	 The	 RESPA	 integrator214	was	

used	to	carry	out	integration	of	bonded,	non-bonded-near	and	tat	with	steps	of	2.0,	2.0	and	6.0	fs.	

Simulated	annealing	was	carried	out	in	water,	methanol	and	dimethyl	sulfoxide	(DMSO)	for	Hosts	1	

and	3	 and	water	 for	Host	2.	All	 conformations	 from	 the	 simulation	 trajectory	were	extracted	 into	

separate	 files	 and	 clustered	 based	 on	 their	 RMSD	 to	 determine	 the	 most	 common	 cluster,	 and	

therefore	the	most	common	conformation	from	the	simulation.	The	clustering	script	in	Maestro	was	

used	in	order	to	achieve	this.		

Table	6.1	-	Simulated	annealing	conditions	used	for	studying	host	molecules.	

Time	(ps)	 Temperature	(K)	

30	 10	

100	 100	

200	 300	

300	 400	

500	 1000	

1000	 1000	

1000	 400	

	

An	 additional	 test	 was	 carried	 out	 for	 dibenzylthiourea	 anthracene	 (Host	 1)	 to	 ensure	 that	 the	

conformational	space	is	explored	in	3.13	ns	over	6	steps.	An	extended	simulated	annealing	study	was	

carried	out	that	consisted	of	heating	and	cooling	over	5	rounds	as	shown	in	Table	6.2.	This	was	carried	

out	over	17.13	ns.	The	same	parameters	for	the	system	were	applied	as	above.		
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Table	6.2	-	Extended	simulated	annealing	experiment	carried	out	for	dibenzylthiourea	anthracene.	

Time	(ps)	 Temperature	(K)	

30	 10	

100	 100	

200	 300	

300	 400	

500	 1000	

1000	 1000	

1000	 400	

1000	 400	

500	 1000	

1000	 1000	

1000	 400	

1000	 400	

500	 1000	

1000	 1000	

1000	 400	

1000	 400	

500	 1000	

1000	 1000	

1000	 400	

1000	 400	

500	 1000	

1000	 1000	

1000	 400	

	

6.2.4 Metadynamics		

The	three	host	molecule	starting	structures	used	for	the	metadynamics	study	were	the	representative	

energy	conformations	from	the	conformational	search	and	simulated	annealing	studies.	Desmond	was	

used	for	all	metadynamics	studies213.	The	settings	for	system	building	were	identical	to	those	used	in	

the	simulated	annealing	study,	except	the	periodic	boundary	box	was	increased	to	30	Å	to	allow	for	

additional	movement	of	the	molecules.		

Two	atoms,	one	from	the	guest	and	one	from	the	host	molecule,	were	chosen	as	probes	for	the	CV	

based	 on	 the	 minimised	 structures.	 Atoms	 with	 poor	 flexibility	 were	 selected	 to	 avoid	 excess	
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movement	that	can	occur	on	flexible	groups,	such	as	alkyl	chains,	as	well	as	to	prevent	the	molecule	

from	 moving	 outside	 of	 the	 box	 during	 the	 simulation.	 The	 distance	 between	 the	 molecules	 is	

calculated	between	these	two	probes	to	allow	for	a	distance	against	free	energy	plot	to	be	generated.	

A	number	of	different	parameters	were	studied	so	as	to	ensure	that	the	final	approach	was	as	high	

quality	as	possible.	Simulations	times	of	2,	5,	10	and	50	ns	were	examined,	with	buffer	sizes	of	both	

20	and	30	Å,	 as	well	as	varying	 the	number	of	CVs.	For	mephedrone	and	methamphetamine	 that	

naturally	occur	as	salts	the	neutral,	charged	and	addition	of	a	chloride	ion	were	examined.	Given	that	

experimentally	the	chloride	ion	is	shown	to	bind	very	strongly	to	the	sensor,	the	effect	of	the	chloride	

in	silico	was	also	explored.		

The	final	method	chosen	was	a	simulation	time	of	5	ns,	with	a	30	Å buffer	box	in	water,	methanol	and	

DMSO,	recording	between	1	to	5	intervals.	To	define	how	the	molecules	moved	in	the	simulation	the	

default	values	of	0.05	Å	for	distance,	0.03	radi	(1.8°)	for	angles	and	0.05	radi	(3.0°)	for	dihedral	angles	

were	used.	Just	one	CV	was	examined	which	consisted	of	one	probe	on	each	of	the	host	and	guest	

molecules,	this	was	determined	based	on	the	least	flexible	atoms	from	the	conformational	searching. 

This	 approach	 was	 found	 to	 give	 the	 best	 compromise	 between	 computational	 cost	 and	 quality	

results. Desmond	trajectory	viewing	and	analysis	tool	was	used	to	visualise	the	results.		

In	order	to	try	and	correlate	the	in	silico	data	with	the	experimental	data	further	studies	were	carried	

out	into	how	the	host-guest	complexes	interacted	in	organic	solvents.	Both	DMSO	and	methanol	were	

used	with	the	same	parameters	discussed	above,	to	allow	for	a	direct	comparison	of	the	free	energy	

profile,	and	complexation	conformations	in	different	solvent	systems.		

6.3 Results	and	Discussion	

6.3.1 Conformational	Searching	

Conformational	 analysis	 of	 the	 three	 host	 molecules;	 dibenzylthiourea	 anthracene	 (Host	 1),	

dinaphthylthiourea	anthraquinone	 (Host	2)	and	dinaphthylurea	 tetrahydroxylcalix(4)arene	 (Host	3)	

was	carried	out	and	the	results	for	each	are	presented	below.		

In	order	 to	 try	and	predict	 conformations	of	both	 the	host	and	guest	molecules	 in	water	 that	are	

represented	implicitly,	conformational	searching	of	each	guest	molecule	was	carried	out	as	well	as	

conformational	searching	of	host-guest	complexes	in	the	same	system.	This	is	a	preliminary	method	

for	 understanding	 the	 enthalpy	 contribution	 for	 complexation	 of	 the	 bound	 and	 unbound	 host	

molecules.	 Mephedrone,	 caffeine	 and	 methamphetamine	 were	 used	 as	 guest	 molecules	 to	

understand	 the	 selectivity	of	 the	host	molecules	 in	 silico,	 this	will	 also	be	a	direct	 comparison	 for	
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dibenzylthiourea	anthracene	(Host	1)	with	the	experimental	results	discussed	in	Chapter	5.	Caffeine	

was	chosen	as	a	representative	cutting	agent	as	it	is	prevalent	in	internet	products	(Chapter	2),	while	

methamphetamine	was	chosen	due	to	its	structural	similarities	to	mephedrone,	which	previous	in-

field	 detection	 mechanisms	 have	 failed	 to	 show	 selectivity	 against.	 As	 previously	 mentioned,	

selectivity	is	a	crucial	aspect	of	sensor	development,	and	the	use	of	metadynamics	could	potentially	

be	 incorporated	 into	 future	 strategies	 to	 predict	 selectivity	 of	 potential	 host	 molecules,	 before	

synthesis	is	carried	out.		

6.3.1.1 Dibenzylthiourea	Anthracene	(Host	1)	

Conformational	 searching	 of	 dibenzylthiourea	 anthracene	 (Host	 1)	 produced	 203	 conformations	

within	the	21	kJ	mol-1	energy	window.	The	lowest	energy	conformer	shown	in	Figure	6.3	represents	

the	most	stable	conformation	found	with	an	energy	value	of	16.38	kJ	mol-1;	this	was	found	6	times	out	

of	the	1000	steps	performed.	The	difference	between	the	 lowest	energy	conformer	found	and	the	

highest	energy	conformer	in	the	selected	energy	window	is	shown	in	Figure	6.3.	The	change	in	energy	

(∆E=	20.45	 kJ	mol-1)	 results	 in	 a	noticeable	difference	 in	 conformation	of	Host	 1	 (Figure	6.3).	 This	

highlights	the	need	for	full	analysis	of	the	conformational	space	to	ensure	that	metadynamic	studies	

are	based	on	a	minimised	energy	structure	to	give	the	best	representation	for	the	free	energy	data	

being	produced.		

	

Figure	6.3	 -	An	 image	showing	the	 lowest	energy	conformer	 for	Host	1	 (16.38	kJ	mol-1)	and	highest	energy	conformer	

(36.83	kJ	mol-1)	generated	through	conformational	searching	in	Maestro	within	the	selected	window	of	21	kJ	mol-1.	

Host	1	was	then	examined	with	mephedrone	in	the	putative	binding	site	to	establish	the	effect	the	

addition	of	the	guest	molecule	would	have	on	the	minimum	conformation	of	Host	1	in	implicit	water.	

Conformational	searching	using	2000	steps	produced	299	conformers,	the	minimum	structure	had	an	

energy	of	4.18	kJ	mol-1.	The	same	study	using	caffeine	as	the	guest	molecule	resulted	in	269	unique	
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structures	with	 a	 lowest	 energy	 conformation	of	 -291.65	 kJ	mol-1.	Host	 1	with	methamphetamine	

produced	the	least	number	of	conformers	with	194	over	2000	steps	with	the	lowest	energy	conformer	

at	27.30	kJ	mol-1.	It	is	worth	noting	that	the	energy	values	calculated	during	conformational	searching	

are	relative,	not	absolute,	and	therefore	cannot	be	compared	between	systems.	This	is	because	the	

number	 and	 type	 of	 atoms	 has	 a	 large	 impact	 on	 the	 energy	 values	 obtained	 during	 molecular	

mechanics	 calculations.	 It	 is	 however	 possible	 to	 see	 the	 change	 in	 energy	 of	 the	 system	 when	

mephedrone	is	added	so	it	gives	an	impression	of	whether	it	is	energetically	favourable	for	host-guest	

complexation	to	take	place.	This	can	be	established	using	Equation	6.1,	which	takes	into	account	the	

energy	 value	 of	 the	minimum	 structure	 of	 the	 host	 (EH)	 and	 guest	molecules	 (EG)	 separately	 as	 a	

comparison	of	the	complex	(EC).		

∆	𝑬 = 𝑬𝑪 − 𝑬𝑯 + 𝑬𝑮 										Equation	6.1	

The	 change	 in	 energy	 (ΔE)	 of	 Host	 1	 with	 each	 of	 the	 three	 guest	 molecules;	 mephedrone,	

methamphetamine	and	caffeine	as	well	as	the	bound	and	unbound	energy	values	are	presented	in	

Table	6.3.	

Table	6.3	-	Energy	of	bound	Host	1	with	mephedrone,	caffeine	and	methamphetamine	in	water.	EH,	EG,	EC	are	the	energy	

of	the	host,	guest	and	complex	respectively.	ΔE	is	the	calculated	change	in	energy	upon	formation	of	the	complex	(kJ	mol-

1).	

Complex	 EH	(kJ	mol-1)	 EG	(kJ	mol-1)	 EC	(kJ	mol-1)	 ΔE	(kJ	mol-1)	

Host	1	and	Mephedrone	 4.26	 -162.21	 -7.86	 150.09	

Host	1	and	Caffeine	 -291.65	 -21.98	 -599.68	 -286.05	

Host	1	and	Methamphetamine	 -27.30	 -154.47	 -70.98	 110.79	

	

The	 largest	negative	ΔE	shows	the	most	favourable	binding	as	 it	represents	the	greatest	change	 in	

energy	 caused	by	 the	binding	of	 a	 guest	molecule.	 The	data	presented	 in	 Table	6.3	 indicates	 that	

caffeine	has	the	most	favourable	binding	with	Host	1.	This	is	not	what	was	observed	experimentally	

(Chapter	5)	as	no	interaction	was	seen	to	occur	between	caffeine	and	Host	1.	This	is	where	simulated	

annealing	and	metadynamics	is	advantageous,	the	effect	of	explicit	water	to	more	accurately	mimic	

the	electrostatics	observed	in	experimental	conditions.	It	is	worth	noting	that	entropic	factors	are	not	

considered	on	examination	of	conformational	energy	values.	

6.3.1.2 Dinapthylthiourea	Anthraquinone	(Host	2)	

Conformational	 searching	 of	 dinaphthylthiourea	 anthraquinone	 (Host	 2)	 produced	 110	 unique	

conformations.	 The	 lowest	energy	 conformation	had	an	energy	of	96.16	 kJ	mol	 -1	 and	 is	 shown	 in	
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Figure	6.4.	It	appears	that	the	anthraquinone	and	two	naphthyl	moieties	are	π-stacking	in	order	to	

stabilise	the	structure	to	produce	the	lowest	energy	conformation.	As	with	Host	1	the	highest	energy	

conformation	 produced	 in	 the	 21	 kJ	mol-1	 energy	window	 is	 noticeably	 different	 from	 the	 lowest	

energy	conformation.		

	

Figure	6.4	 -	An	 image	showing	the	 lowest	energy	conformer	 for	Host	2	 (96.16	kJ	mol-1)	and	highest	energy	conformer	

(117.16	kJ	mol-1)	generated	through	conformational	searching	in	Maestro	within	the	selected	window	of	21	kJ	mol-1.	

The	 change	 of	 conformation	 of	 Host	 2	 was	 then	 explored	 with	 the	 addition	 of	 mephedrone,	

methamphetamine	and	caffeine.	Host	2	and	mephedrone	produced	49	conformers	with	the	lowest	

energy	of	-157.01	kJ	mol-1,	caffeine	and	Host	2	produced	31	conformers	with	a	lowest	energy	of	-17.05	

kJ	mol-1	and	methamphetamine	with	Host	2	produced	180	conformers	with	a	minimum	energy	of	-

118.65	kJ	mol-1.	The	data	presented	in	Table	6.4	shows	the	ΔE	values	calculated	in	the	same	way	as	

for	Host	1.	Once	again	caffeine	appears	to	have	the	most	favourable	interaction	with	Host	2;	however,	

there	 is	only	a	 small	difference	between	caffeine	and	mephedrone.	Methamphetamine	shows	 the	

least	favourable	interaction	with	Host	2.	Host	1	and	Host	2	have	similar	conformations;	however,	they	

appear	to	show	a	marked	difference	in	selectivity	at	this	stage.	This	is	an	interesting	outcome	that	will	

be	explored	 in	more	detail	during	the	metadynamic	simulations,	where	the	 interaction	energies	 in	

systems	with	explicit	solvent	can	be	compared.		

	

Table	6.4	-	Energy	of	bound	Host	2	with	mephedrone,	caffeine	and	methamphetamine	in	water.	EH,	EG,	EC	are	the	energy	

of	 the	 host,	 guest	 and	 complex	 respectively.	 ΔE	 (kJ	mol-1)	 is	 the	 calculated	 change	 in	 energy	 upon	 formation	 of	 the	

complex.		
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Complex	Name	 EH	(kJ	mol-1)	 EG	(kJ	mol-1)	 EC	(kJ	mol-1)	 ΔE	(kJ	mol-1)	

Host	2	and	Mephedrone	 -157.01	 -162.21	 -410.19	 -90.97	

Host	2	and	Caffeine	 -17.05	 -21.98	 -130.26	 -91.23	

Host	2	and	Methamphetamine	 -118.64	 -154.47	 -333.45	 -60.34	

	

6.3.1.3 Dinaphthylurea	Tetrahydroxylcalix(4)arene	(Host	3)	

Conformational	searching	of	dinaphthylurea	tetrahydroxylcalix(4)arene	(Host	3)	produced	32	unique	

conformations,	in	the	21	kJ	mol-1	energy	window.	The	lowest	energy	conformation	seen	in	Figure	6.5	

has	an	energy	value	of	-306.80	kJ	mol-1	and	is	the	most	stable	conformation	found.	It	can	also	been	

seen	 that	 the	 highest	 energy	 conformation	 for	 Host	 3	 does	 not	 show	 considerable	 differences	 in	

conformation	compared	to	the	lowest	energy	conformation	despite	the	19.93	kJ	mol-1	difference	in	

energy.	The	presence	of	the	hydroxyl	groups	on	the	lower	rim	are	known	to	form	strong	hydrogen	

bonds	which	 stabilised	 the	 cone	 conformation	of	 the	 ring.	 Therefore,	 a	 large	amount	of	 energy	 is	

required	to	disrupt	this	structure.	This	is	an	ideal	conformation	as	it	allows	for	the	hydrophobic	cavity	

to	form	which	can	be	a	good	binding	site	for	small	molecules.		

	

Figure	6.5	-	An	image	showing	the	lowest	energy	conformer	for	Host	3	(-306.80	kJ	mol-1)	and	highest	energy	conformer					

(-286.87	kJ	mol-1)	generated	through	conformational	searching	in	Maestro	within	the	selected	window	of	21	kJ	mol-1.	

Host	 3	 was	 studied	 with	mephedrone,	methamphetamine	 and	 caffeine.	 Host	 3	 and	mephedrone	

produced	272	unique	conformers	with	a	lowest	energy	values	of	-230.75	kJ	mol-1,	methamphetamine	

and	 Host	 3	 produced	 167	 conformers	 with	 the	 lowest	 energy	 conformer	 at	 -374.61	 kJ	 mol-1	 and	

caffeine	with	Host	3	produced	192	conformers	with	a	 lowest	energy	value	of	 -658.49	kJ	mol-1.	The	

results	of	these	investigations	are	shown	in	Table	6.5.	Host	3	appears	to	have	a	preferential	interaction	

with	caffeine	over	methamphetamine	and	mephedrone.	In	fact,	mephedrone	appears	to	be	the	least	
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favourable	guest	molecule	with	Host	3,	as	it	has	the	largest	positive	change	in	energy	compared	to	the	

other	guest	molecules.	

Table	6.5	-	Energy	of	bound	Host	3	with	mephedrone,	caffeine	and	methamphetamine	in	water.	EH,	EG,	EC	are	the	energy	

of	host,	guest,	and	complex	respectively.	ΔE	is	the	calculated	change	in	energy	upon	formation	of	the	complex	(kJ	mol-1).	

Complex	 EH	(kJ	mol-1)	 EG	(kJ	mol-1)	 EC	(kJ	mol-1)	 ΔE	(kJ	mol-1)	

Host	3	and	Mephedrone	 -230.75	 -162.21	 -631.21	 238.26	

Host	3	and	Caffeine	 -658.49	 -21.98	 -1032.16	 -351.69	

Host	3	and	Methamphetamine	 -374.61	 -154.47	 -442.42	 86.66	

	

Based	on	the	conformational	searching,	Host	1	and	2	appear	to	be	the	most	flexible	with	the	greatest	

change	 in	 conformation	 seen	 in	 the	 21	 kJ	 mol-1	 energy	 window.	 While	 Host	 3	 shows	 the	 least	

conformational	 change	 in	 the	 energy	window	 applied.	 This	 is	 expected	 due	 to	 the	 rigidity	 of	 the	

calixarene	backbone,	little	change	in	conformation	is	anticipated	as	the	system	is	more	rigid.	Host	1	

and	2	are	designed	to	be	flexible	so	as	to	adjust	their	conformation	upon	addition	of	the	guest,	and	

therefore	more	changes	in	conformation	would	be	expected	over	a	small	energy	range.	All	three	of	

the	 host	 molecules	 examined	 appear	 to	 preferentially	 bind	 caffeine	 over	 methamphetamine	 and	

mephedrone.		

6.3.2 Simulated	Annealing	

In	order	to	further	explore	the	conformational	space	of	each	of	the	host	molecules	and	avoid	bias	of	

starting	conformation	from	implicit	analysis,	a	more	realistic	representation	of	the	conformation	of	

each	of	the	host	molecules	in	explicit	solvent	was	achieved	using	conformational	searching,	the	next	

step	was	to	carry	out	simulated	annealing	on	each	of	the	hosts.	The	starting	conformation	used	was	

the	lowest	energy	conformation	obtained	using	the	conformational	searching	carried	out.	Simulated	

annealing	 will	 provide	more	 evidence	 that	 the	 conformations	 achieved	 are	 the	 global	 minima	 as	

opposed	to	the	local	minima	that	may	have	been	found	using	conformational	searching.	It	will	also	

take	into	account	explicit	solvation	which	can	have	a	large	effect	on	conformations	of	molecules.	Once	

the	simulated	annealing	was	carried	out,	all	the	conformations	from	the	cooling	steps	were	extracted	

and	a	clustering	script	in	Maestro	was	used	to	determine	the	conformation	appearing	with	highest	

frequency	based	on	the	most	common	cluster.		

6.3.2.1 Dibenzylthiourea	Anthracene	(Host	1)	

Host	1	was	subjected	to	two	different	methods	of	simulated	annealing.	The	first	was	the	3.13	ns	run	

with	one	stage	of	heating	and	cooling.	From	this	simulation	the	resulting	conformers	were	extracted	
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from	the	trajectory	and	subjected	to	conformer	clustering	based	on	their	root	mean	square	deviation	

(RMSD).	 From	 the	 5	 clusters	 produced	 cluster	 2	 contained	 133	 conformers	 which	 was	 the	 most	

commonly	populated	group.	The	average	conformation	found	in	this	cluster	is	shown	in	Figure	6.6.	

Without	accurate	free	energy	values	to	accompany	the	conformations	it	cannot	be	determined	for	

certain	 that	 the	 global	 minimum	 conformation	 has	 been	 achieved;	 however,	 it	 is	 a	 reasonable	

assumption	 that	 the	most	 prevalent	 cluster	 would	 be	 the	most	 representative	 conformation	 and	

therefore	the	local	energy	minimum216.	The	minimum	energy	conformation	seen	for	this	method	is	

similar	to	that	produced	using	conformational	searching,	and	good	agreement	is	seen	between	the	

implicit	and	explicit	systems.	

	

Figure	 6.6	 -	 An	 image	 showing	 the	 representative	 conformation	 of	 Host	 1	 in	 the	most	 common	 cluster	 from	 3.13	 ns	

simulated	annealing	in	water	based	on	clustering	all	conformations	from	the	Maestro	simulation.	

In	 order	 to	 determine	 whether	 the	 3.13	 ns	 simulation	 time	 is	 sufficient	 to	 achieve	 an	 accurate	

prediction	of	the	minimum	conformation	an	extended	simulated	annealing	method	of	17.13	ns	was	

used.	The	representative	conformation	achieved	using	the	extended	simulation	time	differs	markedly	

from	that	using	the	3.13	ns	simulations	(conformations	presented	in	Figure	6.6	and	6.7).	Due	to	the	

increased	simulation	time	used	for	the	second	method,	the	conformation	seen	in	Figure	6.7	is	a	more	

realistic	representation	of	the	minimum	energy	conformation.	As	such	this	conformation	will	be	taken	

forward	for	the	metadynamic	studies.	The	disadvantage	of	the	extended	method	is	that	it	has	higher	

computational	cost	compared	to	the	3.13	ns	method,	increasing	the	total	run	time	to	a	week	using	16	

CPUs,	as	opposed	to	14	hours.	This	has	to	be	weighed	up	against	the	sampling	of	the	conformational	

space.	 For	 less	 flexible	 structures	 that	 show	 little	 variation	 in	 conformation	 space	 using	

conformational	searching	techniques,	they	do	not	necessarily	warrant	the	additional	computational	

cost	for	simulated	annealing.		
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Figure	6.7	 -	An	 image	showing	 the	 representative	 conformation	of	Host	1	 in	 the	most	 common	cluster	 from	17.13	ns	

extended	simulated	annealing	experiment	 in	water	based	on	the	clustering	carried	out	on	all	conformations	from	the	

Maestro	simulation.	

When	comparing	the	representative	conformation	from	the	extended	simulated	annealing	study	to	

the	conformation	searching	a	noticeable	difference	is	seen	based	on	the	calculated	maximum	RMSD	

of	7.0	Å.	This	suggests	that	explicit	water	has	a	large	impact	on	the	conformation	of	Host	1.	Given	the	

effect	of	explicit	water	on	the	conformation	space	and	knowing	that	experimentally	Host	1	is	insoluble	

in	 water,	 two	 additional	 solvents,	 DMSO	 and	 methanol,	 were	 investigated	 in	 which	 to	 carry	 out	

simulated	 annealing.	 Ideally	 acetone	 would	 be	 used	 to	 most	 accurately	 mimic	 the	 experimental	

conditions	used	in	Chapter	5;	however,	there	are	currently	no	acetone	solvent	box	available.	For	Host	

1	 in	 methanol	 the	 most	 common	 cluster	 contained	 230	 conformations.	 Figure	 6.8	 shows	 the	

representative	conformation	of	Host	1	after	a	3.13	ns	simulation.	 It	can	be	seen	that	 it	 is	 to	some	

extent	similar	to	the	minimum	conformation	found	for	Host	1	using	the	same	method	in	water.		
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Figure	6.8	 -	An	 image	showing	 the	 representative	 conformation	of	Host	1	 in	 the	most	 common	cluster	 from	17.13	ns	

extended	simulated	annealing	experiment	in	methanol	based	on	the	clustering	carried	out	on	all	conformations	from	the	

Maestro	simulation.	

Experimentally,	Host	1	is	only	sparingly	soluble	in	methanol;	however,	is	it	more	soluble	in	DMSO.	It	

can	 be	 seen	 in	 Figure	 6.9	 that	 the	 representative	 conformation	 achieved	 for	 Host	 1	 in	 DMSO	 is	

distinctly	different	from	that	found	for	water	(RMSD	=	6.47	Å)	and	methanol	(RMSD	=	5.68	Å).	This	

suggests	 that	 the	 type	 of	 solvent	 has	 an	 influence	 on	 the	 conformation	 of	 Host	 1,	 and	 that	 the	

experimental	solubility	of	the	Host	is	important	when	carrying	out	the	in	silico	simulations.	It	is	for	this	

reason	that	metadynamics	will	be	carried	out	in	water,	methanol	and	DMSO	to	examine	the	effect	

explicit	solvent	has	on	the	binding	properties	of	the	hosts.	

	

Figure	6.9	 -	An	 image	showing	 the	 representative	 conformation	of	Host	1	 in	 the	most	 common	cluster	 from	17.13	ns	

extended	simulated	annealing	experiment	in	DMSO	based	on	the	clustering	carried	out	on	all	conformations	from	the	

Maestro	simulation.	

Small	molecules	have	not	been	extensively	studied	 in	silico	and	it	cannot	be	assumed	that	they	are	

water	 soluble.	 Ideally	 the	 conformational	 space	 in	explicit	 solvent	would	be	 further	explored	with	

more	 solvents	 that	 Host	 1	 is	 known	 to	 be	 soluble	 in;	 however,	 we	 are	 limited	 by	 the	 solvent	

parameters	available	in	the	software	program.		

6.3.2.2 Dinaphthylthiourea	Anthraquinone	(Host	2)	

Host	2	was	subjected	to	a	3.13	ns	simulated	annealing	study	by	heating	a	system	up	to	1000	K	before	

cooling.	A	representative	conformation	of	the	most	common	cluster	extracted	from	the	simulation	is	

shown	in	Figure	6.10.	Similarities	can	be	seen	with	the	representative	conformation	produced	using	
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implicit	water	in	conformational	searching.	This	suggests	that	both	methods	are	complementary	for	

Host	2.	Once	again	it	appears	as	though	the	naphthyl	moieties	are	π-stacking	with	the	anthraquinone	

ring	system	in	order	to	stabilise	the	conformation.	Given	the	hydrophobic	nature	of	anthraquinones	

and	aromatic	functionalities	it	is	anticipated	that	in	simulated	annealing	due	to	the	presence	of	explicit	

water,	Host	2	forms	a	closed	conformation	to	reduce	its	interaction	with	water.	This	would	suggest,	

as	with	Host	1,	that	the	use	of	organic	solvents	may	be	more	suitable	for	exploring	the	conformational	

space	that	this	molecule	can	explore.		

` 	

Figure	6.10	 -	An	 image	showing	 the	 representative	 conformation	of	Host	2	 in	 the	most	 common	cluster	 from	3.13	ns	

simulated	annealing	experiment	 in	water	based	on	 the	 clustering	 carried	out	on	all	 conformations	 from	 the	Maestro	

simulation.	

In	order	to	examine	the	effect	of	different	solvent	systems,	as	with	Host	1,	simulated	annealing	was	

carried	 out	 in	 DMSO	 and	 methanol	 over	 3.13	 ns.	 A	 representative	 conformation	 from	 the	 most	

common	cluster	of	Host	2	in	methanol	is	shown	in	Figure	6.11.	It	exhibits	distinct	differences	from	the	

most	stable	conformation	seen	in	water	(RMSD	=	6.01	Å).	It	also	shows	differences	in	conformation	

to	that	seen	for	Host	1	in	methanol	(RMSD	=	5.95	Å).	The	conformation	is	more	open	and	the	naphthyl	

groups	are	no	longer	positioned	so	as	to	allow	π-stacking	to	occur	with	the	anthraquinone	moiety.		
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Figure	6.11	 -	An	 image	showing	 the	 representative	 conformation	of	Host	2	 in	 the	most	 common	cluster	 from	3.13	ns	

simulated	annealing	experiment	in	methanol	based	on	the	clustering	carried	out	on	all	conformations	from	the	Maestro	

simulation.	

Host	2	was	run	in	DMSO	as	well,	and	as	seen	in	Figure	6.12,	the	most	representative	conformation	

based	on	the	most	populated	cluster	once	again	shows	distinct	differences	from	both	methanol	and	

water,	 with	 the	 two	 arms	 of	 the	 host	 positioning	 themselves	 on	 the	 same	 side	 of	 the	 central	

anthraquinone	 moiety.	 As	 with	 Host	 1	 the	 changes	 in	 conformation	 in	 different	 solvent	 systems	

highlights	 the	 importance	 of	 selecting	 the	 correct	 environment.	 This	 is	 especially	 important	when	

looking	at	a	system	with	explicit	solvent	as	the	solvent	directly	interacts	with	the	host	molecules.	
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Figure	6.12	 -	An	 image	 showing	 the	 representative	 conformation	of	Host	2	 in	 the	most	 common	cluster	 from	3.13	ns	

simulated	annealing	experiment	 in	DMSO	based	on	 the	clustering	carried	out	on	all	 conformations	 from	the	Maestro	

simulation.	

6.3.2.3 Dinaphthylurea	Tetrahydroxylcalix(4)arene	(Host	3)	

Calixarenes	are	known	to	be	water	soluble	which	is	a	valuable	feature	for	a	sensor65.	This	is	one	of	the	

reasons	for	exploring	calixarenes	as	potential	host	molecules	for	the	detection	of	mephedrone.	This	

lends	 itself	 to	 in	 silico	 work	 which	 is	 largely	 developed	 for	 water	 soluble	 substances.	 Of	 the	 400	

extracted	 conformations	 from	 the	 simulated	 annealing	 one	 of	 the	 five	 clusters	 contained	 386	

conformations,	 this	cluster	 is	accepted	to	be	 the	most	 representative	conformational	 shape	 in	 the	

system.	 A	 representative	 conformation	 of	 the	most	 common	 cluster	 is	 shown	 in	 Figure	 6.13.	 The	

conformation	seen	in	simulated	annealing	is	different	from	the	one	produced	using	conformational	

searching.	

	

Figure	6.13	 -	An	 image	 showing	 the	 representative	 conformation	of	Host	3	 in	 the	most	 common	cluster	 from	3.13	ns	

simulated	annealing	experiment	 in	water	based	on	 the	 clustering	 carried	out	on	all	 conformations	 from	 the	Maestro	

simulation.	

The	representative	conformation	seen	from	simulated	annealing	shows	the	hydrophobic	cavity	more	

open	than	that	seen	for	conformational	searching.	This	is	more	favourable	to	allow	a	guest	molecule	

inside	the	calixarene	cavity	for	binding.	The	commonality	between	the	conformations	from	the	two	

different	methods	is	that	the	calixarene	ring	has	retained	the	cone	conformation.	It	is	favourable	as	

calixarenes	are	known	to	adopt	a	number	of	conformations,	such	as	the	1,	4	alternate	(as	discussed	in	

Chapter	4)	which	is	less	amenable	to	host-guest	binding	of	mephedrone.		

As	 calixarenes	 are	 known	 to	be	water	 soluble,	 and	 are	 less	 soluble	 in	 organic	 solvents;	 therefore,	

further	studies	using	organic	solvents	will	not	be	carried	out.	
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As	simulated	annealing	takes	into	account	the	effect	of	explicit	solvent	on	the	conformation	of	the	

host	 molecules	 the	 metadynamic	 studies	 will	 be	 carried	 out	 using	 the	 minimum	 conformations	

extracted	from	the	simulated	annealing	studies.		

6.3.3 Metadynamics		

The	experimental	data	in	Chapter	5	has	shown	conclusively	that	Host	1	binds	to	mephedrone	freebase	

and	has	shown	a	high	degree	of	selectivity	by	not	binding	to	caffeine	or	methamphetamine,	with	up	

to	10	equivalents	tested	in	acetone.	The	use	of	metadynamics	is	intended	to	emulate	experimental	

results	in	silico.	If	a	suitable	model	is	established,	it	will	then	be	applied	to	Hosts	2	and	3	in	an	attempt	

to	predict	experimental	binding	in	silico.	This	approach	will	hopefully	give	an	indication	of	whether	it	

is	worthwhile	synthesising	the	host	molecules	which	can	be	carried	forward	for	binding	studies.	

6.3.3.1 Dibenzylthiourea	Anthracene	(Host	1)	

In	order	to	ensure	a	quality	final	approach	based	on	emulating	the	experimental	results	collected	on	

Host	 1,	 a	 number	of	 variables	were	 changed	 and	examined:	 simulation	 time,	mephedrone	 charge	

state,	 solvent,	 system	 size	 and	 position	 of	 CVs.	 Charged,	 uncharged	 and	 the	 inclusion	 of	 chloride	

counter	ion	were	studied	to	see	what	effect	this	would	have	on	binding.	In	street	samples	mephedrone	

would	be	found	as	the	more	stable	hydrochloride	salt	as	opposed	to	the	freebase	studied	in	Chapter	

5.	 Experimentally	when	acetone	 is	used	mephedrone	 freebase	 is	unionised,	 as	mephedrone	has	a	

predicted	 pKa	 of	 between	 8.4-9.545	 and	 acetone	 has	 a	 pKa	 of	 20217.	 In	 all	 solvents	 examined	

mephedrone	 is	 unionised.	 The	 results	 for	 Host	 1	 with	 mephedrone	 in	 a	 number	 of	 different	

experimental	conditions	is	presented	in	Table	6.6.	It	is	worth	noting	that	both	the	R	and	S	enantiomers	

were	tested	and	both	showed	the	same	results.		

Table	6.6	-	Results	of	metadynamics	method	development	of	Host	1	with	mephedrone	in	water.	

	

1(Cl)	denotes	a	chloride	counter	ion	is	present.	

Simulation	
Time	(ns)	

Charge/ions	 Buffer	
Size	(Å)	

CV1	 Minimum	Free	
Energy	(kJ	mol-1)	

CV	 Distance	
(Å)	

Complexation2		

5	 Cl	counter	ion	 30	 1	 -43.26	 26.45	 no	

5	 charged	 30	 1	 -37.87	 23.83	 no	

5	 Cl	counter	ion	 20	 1	(Cl)	 -39.29	 22.49	 no	

5	 Cl	counter	ion	 30	 1	(Cl)	 -40.80	 27.85	 no	

5	 charged	 20	 1	 -61.09	 17.50	 no	

2	 neutral	 30	 1	 -63.93	 6.06	 no	

5	 Cl	counter	ion	 20	 1	 -65.77	 4.35	 yes	

10	 Cl	counter	ion	 20	 1	 -114.52	 15.60	 no	
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2Complexation	showing	host-guest	binding	relative	to	that	seen	for	experimental	work	at	the	minimum	free	energy	of	the	
system.	
	
	
Noticeably	only	one	out	of	the	8	simulations	show	mephedrone	and	Host	1	forming	a	complex	at	the	

minimum	 free	 energy	 of	 the	 simulation.	 It	 can	 be	 observed	 in	 Figure	 6.14	 that	 the	 only	 possible	

interaction	between	Host	1	and	mephedrone	that	is	occurring	at	this	conformation	is	the	non-specific	

edge/face	π-stacking	between	the	benzyl	of	the	mephedrone	and	the	anthracene	in	Host	1.	It	does	

give	the	second	lowest	free	energy	of	all	the	mephedrone	and	Host	1	simulations,	which	shows	that	

it	 must	 be	 favourable	 but	 no	 interaction	 is	 seen	 at	 the	 minimum	 energy	 of	 the	 simulation.	 This	

conformation,	however,	is	not	what	is	seen	from	the	experimental	work,	as	Host	1	is	not	water	soluble	

and	therefore,	experimental	binding	data	cannot	be	obtained	in	water.		

	

Figure	6.14	 -	An	 imagine	 showing	 the	minimum	 free	energy	 complex	 for	Host	 1	 and	mephedrone,	 20	Å	 system,	5	ns	

simulation	with	chloride	counter	ion	in	water	(chloride	is	not	observed	near	the	host	or	guest	at	minimum	energy)	from	

the	metadynamics	analysis	in	Maestro.	

Under	 the	 same	 experimental	 conditions,	 but	 with	 an	 increased	 simulation	 time	 of	 10	 ns	 no	

interaction	 is	 seen	between	Host	 1	 and	mephedrone	 at	 the	minimum	energy	 for	 the	 system.	 The	

computational	 cost	 of	 a	 10	 ns	 simulation	 is	 very	 high,	 even	 with	 a	 buffer	 size	 of	 20	 Å.	 The	

computational	 time	 increases	 linearly	with	 simulation	 time;	 therefore,	 a	5	ns	 simulation	 is	 a	 good	

compromise	between	computational	cost	and	accuracy	of	simulations	to	ensure	the	full	free	energy	

landscape	is	explored.		

The	computational	running	time	increases	exponentially	with	an	increase	in	the	system	size	due	to	

the	increased	number	of	atoms	in	the	system.	Therefore,	it	is	important	to	consider	the	system	size	

carefully.	If	the	system	is	too	small	it	will	force	the	host	and	guest	together,	not	allowing	the	evaluation	

of	the	free	energy	of	the	system	when	the	molecules	are	apart	to	be	fully	explored,	which	may	lead	
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to	false	results.	If	the	system	is	too	large	then	the	computational	cost	will	be	too	high,	and	therefore	

not	practical.	By	increasing	the	system	size,	 it	 increases	the	buffer	 in	the	system	and	therefore	the	

simulation	needs	to	account	for	this	increase.	The	trajectories	for	the	20	Å	buffer	system	simulations	

appear	to	not	show	the	host	and	guest	apart	for	a	lot	of	the	simulation,	even	at	the	furthest	distance	

they	are	still	in	12	Å	of	each	other.	Ideally	to	fully	explore	the	free	energy	landscape	there	should	be	

more	free	movement,	as	would	occur	in	an	experimental	solvent	system.	For	this	reason,	a	system	

size	of	30	Å	buffer	has	been	selected.	The	trajectories	for	the	30	Å	buffer	system	simulations	show	

more	free	movement	in	the	system	of	both	the	host	and	the	guest	throughout	the	simulation.		

Host	1	was	run	with	mephedrone	in	a	30	Å	buffer	system,	over	5	ns	and	the	full	energy	landscape	was	

explored	 to	determine	whether	 a	 complex	was	 formed	at	 any	point	 during	 the	 simulation.	At	 the	

minimum	energy	of	-37.87	kJ	mol-1	no	complexation	was	observed;	however,	a	favourable	interaction	

was	seen	at	-35.73	kJ	mol-1	which	is	within	6	%	of	the	absolute	minimum	energy,	meaning	it	is	feasible	

that	this	conformation	could	be	adopted	in	solution.	The	conformation	at	this	energy	shown	in	Figure	

6.15,	with	the	hydrogen	bond	between	the	carbonyl	of	the	mephedrone	and	the	NH	of	the	thiourea	

from	Host	1;	both	the	angle	and	distance	of	which	are	favourable.	There	are	also	two	sites	of	possible	

π-stacking	of	the	mephedrone	benzyl	group	to	the	Host.	None	of	the	other	simulations	between	Host	

1	and	mephedrone	in	a	water	system	showed	any	favourable	complexations	in	the	simulations.	

	

Figure	6.15	-	An	 image	showing	Host	1	and	mephedrone	 in	water	 in	one	of	conformation	seen	from	the	simulation	 in	

Maestro	(CV=	4.14	Å,	E=	-35.73	kJ	mol-1).	
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Experimentally	chloride	has	a	high	binding	affinity	for	Host	1.	In	order	to	examine	this	in	silico	and	see	

whether	the	same	effect	can	be	seen,	the	chloride	anion	in	the	system	was	selected	as	a	probe	for	the	

CV	and	the	interaction	been	the	host	and	chloride	was	explored	using	metadynamics.	For	a	system	

size	of	both	20	and	30	Å	no	complexation	at	a	favourable	free	energy	was	observed,	this	is	in	contrast	

to	 the	 experimental	 results.	 However,	 there	 are	 a	 number	 of	 low	 energy	 minima	 found	 in	 the	

simulation,	one	of	which	shows	that	the	chloride	does	hydrogen	bond	with	Host	1	within	the	30	Å	

buffer	system,	with	an	energy	of	-33.64	kJ	mol-1	(Figure	6.16).	

	

Figure	6.16	-	An	image	showing	hydrogen	bonding	between	the	chloride	counter	ion	(represented	as	pink	sphere)	and	

Host	1	(CV=	4.48	Å,	E=	-33.64	kJ	mol-1)	in	the	metadynamics	simulation	in	Maestro.		

It	appears	 from	the	metadynamics	studies	 in	water	that	Host	1	prefers	to	adopt	the	conformation	

seen	 in	 the	 conformation	 searching	 study,	with	 the	benzyl	 groups	π-stacking	with	 the	 anthracene	

moiety.	 This	may	be	due	 to	 solvent	 effects,	 as	Host	 1	 is	 known	 to	be	 insoluble	 in	water,	 and	 this	

conformation	appears	to	allow	for	the	minimum	contact	with	water.		

As	 seen	 in	 the	 simulated	 annealing	 studies	 the	 choice	 of	 solvent	 has	 a	 large	 effect	 on	 the	

conformations	 of	 the	 molecules,	 which	 in	 turn	 can	 affect	 host-guest	 binding.	 For	 this	 reason,	

metadynamic	simulations	were	carried	out	using	DMSO	and	methanol	 in	a	30	Å	 system	over	5	ns	

which	was	established	in	the	metadynamic	studies	using	water.		

Different	solvents	interact	with	molecules	in	different	ways,	for	example	water	and	DMSO	are	known	

to	be	competitive	binding	solvents	due	to	their	strong	hydrogen	bonding	properties.	This	means	that	

in	order	for	mephedrone	to	bind	to	the	host	molecule	it	would	have	to	displace	the	solvent	that	is	
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binding,	 which	 involves	 overcoming	 an	 additional	 energy	 barrier.	 This	 could	 be	 energetically	

unfavourable	if	the	host-guest	binding	is	not	favourable	enough.		

Host	1	in	DMSO	showed	no	favourable	interactions	between	mephedrone	and	Host	1	throughout	the	

simulations.	The	lowest	energy	conformation	of	-56.23	kJ	mol-1	occurred	at	a	CV	distance	of	24.53	Å.	

Interestingly,	DMSO	can	be	seen	to	hydrogen	bond	to	both	Host	1	and	mephedrone	throughout	the	

simulation. 	

Polar	aprotic	solvents	such	as	DMSO	have	been	shown	to	be	good	hydrogen	bond	acceptors218,	this	

can	block	potential	hydrogen	bond	donors	such	as	the	NH	groups	in	the	thiourea	moieties	on	Host	1.	

It	is	shown	in	Figure	6.17	that	three	sites	of	hydrogen	bonding	occur	between	Host	1	and	the	DMSO.		

	

Figure	6.17	-	An	image	showing	Host	1	hydrogen	bonding	with	DMSO	during	the	metadynamics	simulations	in	Maestro.	

Three	binding	points	can	be	seen	between	the	host	and	the	surrounding	solvent.	

These	are	sites	that	have	experimentally	been	shown	to	interact	with	mephedrone,	in	acetone.	The	

introduction	of	a	competitive	binding	solvent	appears	to	show	that	it	is	more	energetically	favourable	

for	Host	1	 to	bind	 to	 the	 solvent	as	opposed	 to	mephedrone;	 therefore,	preventing	 complexation	

being	seen	in	silico.		
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Figure	6.18	-	An	image	showing	Host	1	hydrogen	bonding	with	methanol	during	the	metadynamics	system	in	Maestro.	

Three	binding	points	can	be	seen	between	the	host	and	the	surrounding	solvent.		

The	same	effect	is	also	seen	for	methanol	solvent	systems.	Methanol	is	a	polar	protic	solvent	that	has	

the	ability	 to	act	as	both	hydrogen	bond	acceptor	and	donor.	 It	can	be	seen	 in	Figure	6.18	that	 in	

methanol	 without	 the	 presence	 of	 mephedrone,	 Host	 1	 also	 hydrogen	 bonds	 to	 the	 solvent.	

Interestingly	methanol	 is	only	seen	to	act	as	a	hydrogen	bond	acceptor	in	this	system.	Despite	this	

effect	Host	1	and	mephedrone	are	seen	to	interact	at	the	lowest	system	energy	(-39.04	kJ	mol-1)	at	a	

distance	of	5.65	Å	(Figure	6.19).		

	

Figure	 6.19	 -	 An	 imagine	 showing	 Host	 1	 and	 mephedrone	 in	 methanol	 in	 the	 lowest	 energy	 conformation	 for	 the	

simulation	in	Maestro	(CV=	5.65	Å,	E=	-39.04	kJ	mol-1).	
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Despite	an	interaction	occurring	in	silico	the	interactions	seen	are	not	in	agreement	with	those	seen	

experimentally,	with	no	hydrogen	bonding	seen.	As	seen	in	Figure	6.19	this	NH	group	in	Host	1	does	

not	appear	to	be	hydrogen	bonding	with	methanol,	which	leaves	it	open	to	bind	to	the	mephedrone	

molecule.	This	would	mean	that	a	lower	energy	barrier	is	overcome	to	displace	the	solvent	from	this	

position	and	allow	for	binding	to	occur.	

Interestingly,	we	see	methanol	hydrogen	bonding	with	mephedrone	whilst	bound	to	Host	1	at	the	

minimum	energy	conformation	of	the	system	(Figure	6.20).	The	amine	functionality	in	mephedrone	

in	the	experimental	results	is	an	important	binding	feature	for	the	host-guest	interaction.	However,	

in	the	presence	of	a	competitive	binding	solvent	this	site	is	blocked	by	the	presence	of	methanol.	This	

may	suggest	that	the	solvent	 interaction	 is	more	favourable	then	the	host-guest	 interaction	at	the	

position;	therefore,	preventing	the	same	binding	seen	experimentally,	to	occur	in	silico.		

	

Figure	 6.20	 -	 An	 image	 showing	 mephedrone	 hydrogen	 bonding	 with	 methanol	 taken	 from	 the	 minimum	 energy	

conformation	during	a	metadynamics	simulation	in	Maestro,	where	mephedrone	is	bound	to	Host	1.	

It	is	not	possible	to	quantify	the	effect	solvent	has	on	the	binding	between	the	host	and	guest	using	

metadynamics	techniques.	However,	it	does	demonstrate	that	it	is	an	effect	that	needs	to	be	taken	

into	consideration	when	choosing	a	solvent	system	for	small	molecule	binding,	something	which	has	

not	previously	been	discussed	in	this	context.	This	further	highlights	the	need	for	parameterisation	for	

solvent	boxes	for	solvents	such	as	acetone,	which	is	known	to	be	a	non-competitive	binder,	so	as	to	

simulate	the	experimental	conditions.	

6.3.3.2 Anthracene	selectivity	testing		

In	order	to	examine	selectivity	of	cutting	agents	and	structurally	similar	compounds	in	silico,	caffeine	

and	 methamphetamine	 were	 also	 tested	 against	 Host	 1	 (Table	 6.7).	 This	 was	 carried	 out	
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experimentally	in	Chapter	5,	and	neither	were	seen	to	bind	to	Host	1.	In	silico	there	was	also	no	binding	

affinity	observed	between	caffeine	and	the	host	at	the	minimum	energy	but	complexation	is	seen	at	

an	energy	of	-48.20	kJ	mol-1	which	is	only	1.00	kJ	mol-1	away	from	the	minimum	energy,	and	more	

favourable	 then	 the	 interaction	 seen	 for	 methamphetamine.	 At	 this	 energy	 we	 see	 π-stacking	

between	the	caffeine	and	the	anthracene	moiety.	Caffeine’s	ability	to	π-stack	is	well	known,	as	seen	

in	 Chapter	 5,	 where	 most	 of	 the	 interactions	 seen	 with	 proteins	 are	 non-specific	 π-stacking	

interactions.	Methamphetamine	binds	to	Host	1	at	the	minimum	free	energy	for	the	system	(-43.26	

kJ	mol-1),	which	is	in	contrast	to	what	is	seen	experimentally.		

Table	6.7	-	Metadynamics	results	for	Host	1	with	caffeine	and	methamphetamine	in	water.	

1	Complexation	at	minimum	free	energy		

The	complexation	of	methamphetamine	with	Host	1	 (Figure	6.21)	shows	non-specific	binding	with	

face/face	π-stacking	between	the	two	molecules,	but	no	hydrogen	bonding.	It	does	show	a	lower	free	

energy	value,	which	is	more	favourable	than	that	seen	for	mephedrone	and	Host	1.	This	suggests	that	

methamphetamine	would	have	a	higher	binding	constant	with	Host	1	than	mephedrone,	which	is	in	

contrast	 to	 the	 experimental	 data,	 where	 binding	 is	 not	 observed	 between	 Host	 1	 and	

methamphetamine	with	up	to	10	equivalent	additions	of	the	guest.		

	

Figure	6.21	-	An	image	showing	Host	1	complexed	with	methamphetamine	in	water	(CV=	5.42	Å,	E=	-43.26	kJ	mol-1)	during	

a	metadynamics	simulation	in	Maestro.		

Ligand	 Simulation	
Time	(ns)	

Charge/
ions	

System	
Size	(Å)	

CV	 Minimum	
Free	Energy	
(kJ	mol-1)	

CV	 Distance	
(Å)	

Complexation1	

Caffeine	 5	 No	ions	 30	 1	 -49.12	 5.84	 no	

Methamphetamine	 5	 Charged	 30	 1	 -43.26	 5.42	 yes	
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As	 already	 seen	 in	 Chapter	 5,	 choice	 of	 solvent	 has	 a	 significant	 effect	 on	 the	 conformation	 of	 a	

complex,	for	this	reason	the	metadynamic	studies	for	methamphetamine	and	caffeine	were	repeated	

using	DMSO	and	methanol.	In	both	DMSO	and	methanol,	methamphetamine	was	not	found	to	form	

a	complex	with	Host	1	at	the	minimum	energy	conformation.	However,	in	methanol	with	an	energy	

of	 -33.43	 kJ	 mol-1	 there	 is	 non-specific	 binding	 with	 the	 methamphetamine	 π-stacking	 with	 the	

anthracene	 moiety.	 Nevertheless	 experimentally	 no	 π-stacking	 interaction	 was	 observed.	

Methamphetamine	and	Host	1	in	DMSO	show	consensus	to	the	experimental	results,	as	there	is	no	

favourable	 complexation	 seen	 throughout	 the	 simulation.	 This	 is	 likely	 due	 to	 both	 the	 host	 and	

methamphetamine	hydrogen	bonding	to	DMSO;	therefore,	preventing	complexation	occurring.	

Table	6.8	-	Metadynamics	results	for	Host	1	with	caffeine	and	methamphetamine	in	methanol	and	DMSO.	

Ligand	 Solvent	 Charge/ions	 Minimum	
Free	Energy	
(kJ	mol-1)	

CV	Distance	(Å)	 Complexation1	

Caffeine	 Methanol	 No	charge	 -39.24	 8.21	 Yes	

Caffeine	 DMSO	 No	charge	 -45.98	 19.87	 No	

Methamphetamine	 Methanol	 Charged	 -37.17	 25.17	 No	

Methamphetamine	 DMSO	 Charged	 -53.64	 21.93	 No	

1	Complexation	at	minimum	free	energy		

Caffeine	and	Host	1	in	methanol	showed	complexation	at	the	minimum	energy.	The	caffeine	molecule	

positions	itself	to	π-stack	with	the	benzyl	units	on	Host	1.	This	is	not	seen	experimentally	where	no	

interaction	is	seen	with	the	benzyl	groups	using	NMR	analysis	(Chapter	5).	However,	the	minimum	

energy	of	this	system	is	not	as	 favourable	as	that	seen	for	using	DMSO	where	Host	1	and	caffeine	

favour	 being	 uncomplexed.	 The	 caffeine	 and	Host	 1	 in	DMSO	 shows	 positive	 correlation	with	 the	

experimental	results	as	at	no	point	in	the	simulation	is	complexation	seen.	The	lowest	energy	of	the	

system	occurs	when	caffeine	is	19.87	Å	away	from	Host	1.		
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Table	 6.9	 -	Mephedrone,	 caffeine	 and	methamphetamine	metadynamics	 results	with	Host	 1.	 In	 final	method	of	 5	 ns	

simulation,	30	Å	system	in	varying	solvents.	

Ligand	 Solvent	 Complexation	at	
minimum	energy	

Minimum	energy	
(kJ	mol-1)	

Correlates	to	
experimental?	

Mephedrone	 Water	 No	 -63.93	 No	

Mephedrone	 DMSO	 No	 -56.23	 No	

Mephedrone	 Methanol	 Yes	 -39.04	 No	-	non-specific	binding	

Caffeine	 Water	 No	 -49.12	 Yes	

Caffeine	 DMSO	 No	 -45.98	 Yes	

Caffeine	 Methanol	 Yes	 -39.25	 No	

Methamphetamine	 Water	 Yes	 -43.26	 No	

Methamphetamine	 DMSO	 No	 -53.64	 Yes	

Methamphetamine	 Methanol	 No	 -37.15	 Yes	

	

The	 data	 in	 Table	 6.9	 shows	 the	 final	 results	 for	 the	 metadynamics	 simulations	 for	 Host	 1	 with	

mephedrone,	caffeine	and	methamphetamine.	The	results	shown	are	for	the	final	approach	which	

was	 a	 5	 ns	 simulation	 time	 in	 a	 30	Å	 system	with	 the	 three	 solvents	 that	were	 examined,	water,	

methanol	and	DMSO.	The	association	to	the	experimental	data	is	in	relation	to	not	only	whether	the	

host	and	guest	bind	in	the	system,	at	the	minimum	free	energy,	but	also	whether	the	interaction	(in	

the	case	of	mephedrone,	which	binds	experimentally)	is	the	same	as	that	observed	experimentally.	

Hence,	it	is	expected	that	hydrogen	bonding	should	be	observed	between	Host	1	and	mephedrone	

rather	than	just	π-stacking	interactions,	which	is	not	the	case.		

6.3.3.3 Anthraquinones	and	Calixarenes		

The	metadynamic	results	obtained	with	Host	1	were	used	in	an	attempt	to	produce	a	quality	model;	

however,	 no	 significant	 correlation	 between	 the	 experimental	 and	 in	 silico	 results	 was	 achieved.	

Results	so	far	show	no	substantial	evidence	to	warrant	applying	the	developed	method	to	Host	2	and	

3,	as	any	data	obtained	will	not	be	reliable	and	it	 is	unlikely	that	the	 in	silico	data	would	positively	

compare	to	experimental	results.	For	this	reason	metadynamic	simulations	for	Host	2	and	3	have	not	

been	 reported.	 Once	 further	 development	 has	 been	 carried	 out	 on	 establishing	 parameters	 for	 a	

working	solvent	model	that	is	in	agreement	with	experimental	results,	it	would	then	be	worthwhile	

revisiting	the	above	approach	with	an	acetone	solvent	system.	The	aim	of	this	chapter	was	to	attempt	

to	mimic	the	experimental	results	obtained	in	Chapter	5	in	an	in	silico	system,	to	improve	future	host	

molecule	design.	However,	metadynamic	simulations	are	limited	by	the	parameters	available	in	the	
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software,	such	as	available	parametrized	solvent	systems;	therefore,	 further	development	was	not	

continued	at	this	stage.		

6.4 Conclusion		

A	novel	approach	for	the	use	of	in	silico	analysis	to	study	host-guest	binding	of	small	molecules	was	

explored	 in	order	 to	 improve	the	process	of	sensor	development.	The	binding	data	collected	 from	

Chapter	5	was	used	as	an	experimental	comparison.	The	strength	of	binding	observed	experimentally	

is	 relatively	 weak	 compared	 to	 systems	 that	 are	 usually	 studied	 in	 silico.	 This	makes	 it	 harder	 to	

replicate	 such	 binding,	and	 this	 can	 be	 considered	 to	 be	 one	 of	 the	major	 limitations	 of	 applying	

metadynamics	analysis	to	this	work.		

Simulated	annealing	and	conformational	searching	give	different	minimum	conformations	for	Host	1	

and	3.	Conformational	searching	gives	absolute	energy	values	which	are	ideal	for	direct	comparison	

of	conformers	but	it	is	carried	out	with	implicit	solvent.	While	simulated	annealing	is	carried	out	in	

explicit	 solvent	which	 is	more	applicable	 to	metadynamics	 applications.	A	 consensus	between	 the	

minimum	conformations	for	Host	2	was	found	using	the	two	techniques.	This	would	suggest	that	the	

minimum	energy	of	Host	1	is	not	largely	affected	by	thermodynamic	effects	as	increased	enthalpy	has	

less	effect	on	conformation	compared	to	Host	1	and	3.	Both	energy	and	explicit	solvent	need	to	be	

taken	 into	 account	 when	 determining	 the	 minimum	 conformation	 for	 starting	 structures	 for	

metadynamic	 studies.	 Simulated	 annealing	 highlighted	 the	 difference	 in	 conformations	 using	 the	

three	chosen	solvents;	water,	methanol	and	DMSO.	For	each	of	the	three	host	molecules	different	

representative	conformations	were	found	in	each	of	the	solvent	systems.	Therefore,	it	was	important	

to	study	the	effect	different	solvent	systems	have	when	used	in	the	metadynamic	studies,	to	try	and	

develop	a	quality	model.	The	importance	of	solvent	choice	in	binding	studies	was	seen	experimentally	

in	Chapter	5,	with	no	complexation	seen	for	Host	1	and	mephedrone	in	DMSO.	This	was	reiterated	

with	methanol	and	DMSO	hydrogen	bonding	to	the	host	and	guest	molecules	in	silico,	i.e.	acting	as	

competitive	 binding	 solvent	 and	 thus,	 preventing	 complexation.	 This	 was	 further	 seen	 in	

metadynamics	where	Host	1	shows	no	consensus	with	the	experimental	data	for	mephedrone	binding	

in	any	of	the	solvent	systems;	water,	DMSO	and	methanol.		

In	 water,	 caffeine	 and	 Host	 1	 do	 not	 show	 any	 interactions.	 This	 agrees	 with	 what	 is	 observed	

experimentally.	However,	methamphetamine,	does	show	binding	at	the	minimum	energy	with	Host	

1.	Therefore,	in	water	we	do	not	see	a	full	consensus	with	the	experimental	results	for	mephedrone,	

caffeine	and	methamphetamine.	This	could	not	be	tested	experimentally,	as	Host	1	is	not	soluble	in	

water.	To	ensure	a	complete	comparison	between	the	 in	silico	binding	and	experimental	work	the	

same	parameters	would	have	to	be	applied	to	both,	i.e.	the	same	solvent	system	used	for	both	studies.	
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As	previously	discussed,	due	to	the	lack	of	parametrization	for	an	acetone	solvent	box	in	silico,	and	

the	lack	of	solubility	in	methanol	experimentally,	there	was	no	solvent	system	available	that	could	be	

applied	to	both	techniques.	It	would	be	interesting	to	study	complexation	in	acetone	if	a	solvent	box	

were	to	be	developed.	DMSO	does	appears	to	be	the	most	favourable	solvent	for	the	metadynamic	

simulations,	 as	 mephedrone,	 caffeine	 and	 methamphetamine	 do	 not	 show	 complexation	 at	 the	

minimum	energy	which	is	what	is	seen	experimentally.	Ideally	comparison	between	experimental	and	

in	silico	data	would	be	carried	out	when	complexation	has	occurred,	to	study	the	conformation	of	the	

complex	as	opposed	to	just	showing	a	correlation	in	the	lack	of	complexation.		

Therefore,	 it	can	be	concluded	that	out	of	the	three	solvents	applied;	methanol,	DMSO	and	water,	

none	of	them	show	complete	consensus	with	complexation	seen	in	the	experimental	results	(Chapter	

5).	Consequently,	given	the	lack	of	a	quality	model	based	on	the	Host	1	experimental	results	it	seemed	

futile	to	apply	the	model	to	Hosts	2	and	3,	until	a	suitable	force	field	and	parameters	are	built	that	can	

allow	 for	 simulations	 to	 be	 explored	 in	 acetone.	 Until	 the	 solvent	 used	 experimentally	 can	 be	

replicated	 in	 silico	 as	 a	 implemented	 solvent	 box	 it	 is	 not	 possible	 to	 determine	 whether	

metadynamics	is	an	appropriate	technique	for	small	molecule	binding	analysis.	An	important	finding	

that	became	evident	from	this	work	is	the	importance	of	solvent	choice,	as	metadynamics	showed	

what	 is	already	known	experimentally,	 that	DMSO	is	a	competitive	binding	solvent	and	can	hinder	

binding	in	silico	in	the	same	way	observed	experimentally.	

	



	

	

Chapter	7 General	Discussion	and	Future	Work	

7.1 General	Discussion		

The	primary	aim	of	this	project	was	to	design,	synthesise	and	test	host	molecules	for	the	detection	of	

amphetamine-related	new	psychoactive	substances	(NPS).	The	two	classes	of	NPS	chosen	were	the	

cathinones,	because	of	their	continuing	prevalence	in	society	even	after	they	were	controlled	in	2010,	

and	the	uncontrolled	aminoindanes	which	were	predicted	at	the	commencement	of	this	project	to	be	

the	new	popular	amphetamine-like	NPS.	With	226	amphetamine-like	substances	currently	available	

in	Europe,	current	methods	available	 for	 the	detection	of	NPS	 lack	selectivity	 for	use	with	an	ever	

expanding	number	of	NPS.	The	lack	of	selectivity	from	current	detection	mechanism	is	largely	caused	

by	their	mechanism	of	detection	relying	on	just	one	functional	group	in	a	molecule	for	a	positive	result.	

Therefore,	in	an	attempt	to	improve	selectivity	a	novel	approach	was	applied	to	the	design	of	the	host	

molecules	that	incorporates	the	entire	structure	of	the	molecule	using	host/guest	design.	Selectivity	

is	 one	 of	 the	 leading	 problems	 facing	 NPS	 analysis,	 as	 there	 are	 so	many	 amphetamine-like	 NPS	

available	that	are	structurally	similar,	as	well	as	the	numerous	cutting	agents	used	in	formulations,	

whose	presence	can	lead	to	false	positives.		

The	first	stage	of	designing	a	host	molecule	was	to	gain	first-hand	knowledge	of	the	constituents	in	

internet	samples	of	the	NPS	selected,	cathinones	and	aminoindanes.	Cathinones	have	been	controlled	

since	 the	 start	 of	 this	 study,	 and	 subsequently	 it	 was	 not	 possible	 to	 purchase	 them	 for	 analysis	

purposes.	On	the	other	hand,	aminoindane	internet	products	were	uncontrolled	and	thus	purchased	

and	 analysed.	 The	 analysis	 of	 the	 aminoindane	 products	 led	 to	 a	 number	 of	 valuable	 findings	 for	

development	 of	 a	 sensory	 molecule.	 The	 most	 important	 being	 a	 deeper	 understanding	 of	 the	

complexity	of	NPS	products.	The	concentration	range	of	active	 ingredients	was	found	to	vary	from	

between	17	and	95	%.	The	most	common	cutting	agent	was	found	to	be	caffeine,	which	was	taken	

into	consideration	in	relation	to	the	selectivity	of	a	host	molecule.	Only	between	31	and	99	%	of	the	

composition	 of	 the	 internet	 products	 were	 identified.	 The	 inability	 to	 determine	 the	 remaining	

proportion	of	the	samples	using	HPLC	and	GC-MS	indicates	that	there	is	a	high	proportion	of	inorganic	

material.	These	inorganic	cutting	agents	can	not	only	mask	the	active	ingredients,	making	detection	

of	the	active	ingredient	more	challenging,	but	they	also	dilute	the	active	ingredient	leading	to	a	need	

for	more	sensitive	detection	mechanisms.	The	selectivity	of	host-guest	systems	means	that	the	sensor	

probe	should	have	no	affinity	for	the	additional	constituents	in	the	products,	and	will	detect	the	target	

guest	in	the	complex	matrix.		
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It	is	imperative	that	the	device	is	selective	over	not	only	the	large	variety	of	cutting	agents,	but	also	

against	other	common	drugs	of	abuse,	as	it	cannot	be	assumed	that	the	only	active	ingredient	is	the	

one	specified	on	the	 label.	Equally	 it	highlights	the	complexity	of	developing	a	simple	 ligand	based	

sensory	molecule	for	mephedrone,	given	the	structural	similarities	of	amphetamine-like	derivatives,	

as	well	as	the	numerous	cutting	agents	that	may	be	present,	such	as	caffeine	and	lidocaine.	In	Chapter	

2	is	was	found	that	active	ingredients	not	listed	on	the	packaging	are	commonly	present	in	samples.	

There	are	also	reports	of	structurally	related	cutting	agents	like	benzocaine	and	paracetamol	that	have	

been	found	in	mephedrone	samples,	which	have	also	been	known	to	cause	false	positives	in	current	

detection	mechanisms.		

At	the	commencement	of	this	project	aminoindanes	were	believed	to	become	the	next	big	wave	in	

NPS,	following	the	control	of	the	cathinone	class.	For	this	reason,	the	project	started	out	being	aimed	

at	producing	two	sensory	molecules	for	amphetamine-like	NPS;	one	for	the	controlled	cathinones	and	

another	 for	 uncontrolled	 aminoindanes.	 However,	 as	 discussed	 previously	 the	 popularity	 of	

aminoindanes	did	not	rise	to	the	levels	predicted	in	2011.	This	in	part	is	thought	to	be	due	to	their	

reduced	potency	compared	to	other	amphetamine-like	compounds.	For	this	reason,	it	was	decided	to	

focus	 exclusively	 on	 the	 cathinone	 class,	whose	 popularity	 has	 not	 dramatically	 changed	over	 the	

course	of	this	project.	Since	the	introduction	of	cathinones	onto	the	drug	market,	mephedrone	has	

consistently	remained	the	most	prevalent,	and	yet	there	still	remains	a	lack	of	selective	in-field	sensory	

mechanisms.	It	is	for	this	reason	that	mephedrone	was	chosen	as	the	primary	target	for	the	design	of	

a	sensory	molecule.	

In	order	 to	develop	a	selective	sensory	molecule	 for	mephedrone,	biomimetic	design	was	applied.	

Biomimetic	design	works	on	the	principle	that	the	most	selective	interactions	that	occur	are	in	nature.	

It	 is	 an	 approach	 that	 aims	 at	 isolating	 the	 features	 that	 makes	 systems	 in	 nature	 selective	 and	

imitating	them	synthetically.	In	this	project	it	was	applied	to	mimicking	the	selectivity	of	protein-ligand	

interactions	 in	a	 small	host	molecule.	To	achieve	 this,	 the	 second	 stage	of	 this	project	was	 to	use	

protein-ligand	 binding	 to	 achieve	 a	 greater	 understanding	 of	 how	 structurally	 similar	 compounds	

interact	with	proteins,	and	therefore	try	and	mimic	this	selectivity	in	a	small	molecule.	This	technique	

is	 commonly	used	 for	drug	design,	but	has	not	yet	been	 reversed	and	used	 for	 the	design	of	host	

molecules.	Mephedrone	was	chosen	as	the	target	guest	molecule	upon	which	a	host	molecule	would	

be	designed.		

Protein-ligand	 interactions	 are	 incredibly	 selective,	 and	 are	 known	 to	 have	 very	 high	 sensitivity.	

However,	these	advantages	can	often	be	associated	with	their	size	and	the	quantity	of	intermolecular	

interactions	between	the	protein	and	target	molecule.	It	is	not	possible	to	mimic	the	strength	of	the	
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van	der	Waals	interactions	seen	in	proteins	with	a	small	molecule	host.	Therefore,	it	was	important	to	

deduce	the	essential	intermolecular	interactions	that	occur	between	the	protein	and	ligand	that	can	

be	mimicked	 on	 a	 small	 scale,	 i.e.	 hydrogen	 bonding	 and	p-stacking.	 A	 complete	 data	 set	 of	 the	

interactions	between	proteins,	cutting	agents	of	interest	(highlighted	from	the	aminoindane	analysis	

as	well	as	a	comprehensive	literature	search).	

One	 limitation	 of	 the	 pharmacophore	 development	was	 the	 lack	 of	 experimental	 protein	 binding	

information	for	mephedrone,	or	any	cathinone	derivative	in	the	Protein	DataBank.	Currently	there	is	

no	experimental	data	for	any	cathinone	binding	to	proteins.	This	is	likely	due	to	the	types	of	proteins	

they	 interact	 with,	 transmembrane	 proteins.	 There	 is	 very	 little	 structural	 information	 on	 these	

proteins	as	they	are	hydrophobic,	and	therefore	it	is	not	easy	to	crystallise	them	out	in	their	natural	

state.	 However,	 there	 was	 still	 information	 relating	 to	 the	 cutting	 agents	 identified,	 endogenous	

psychoactive	substances	and	amphetamine	derivatives.	A	database	was	developed	based	on	these	

compounds,	 considering	 a	 number	 of	 criteria	 for	 validation;	 B	 factors,	 occupancy,	 resolution,	

mutations,	solvation	and	the	quality	of	the	 interactions	extracted.	Validation	of	the	extracted	data	

ensured	that	all	binding	information	included	in	the	final	pharmacophore	design	was	robust	and	could	

be	mimicked	in	a	small	molecule	(Figure	3.2).		

A	flow	chart	was	developed	for	treatment	of	the	data,	to	ensure	the	integrity	of	the	results	extracted	

(Figure	3.2).	This	methodology	of	protein-ligand	interactions	to	develop	a	small	molecule	probe	could	

potentially	 be	 utilised	 for	 any	 target	 molecule,	 assuming	 protein-binding	 information	 is	 readily	

available.	 This	 is	 the	 first	 time	 such	 methodology	 has	 been	 developed,	 and	 could	 have	 useful	

applications	 for	 future	 host	molecule	 development.	 Given	 the	 lack	 of	 binding	 information	 for	 the	

target	 drug,	 mephedrone,	 the	 final	 pharmacophore	 design	 was	 based	 on	 amphetamine-like	

structures,	as	well	as	cutting	agents	that	the	host	molecule	needs	to	be	selective	against.	Individual	

pharmacophores	for	dopamine,	MDMA,	methamphetamine	and	paracetamol	were	developed.	From	

these,	a	consensus	pharmacophore	was	developed	based	on	 the	 interactions	most	 likely	 to	mimic	

mephedrone	 binding.	 These	 were	 found	 to	 be	 a	 hydrogen	 bond	 acceptor	 and	 two	 p-stacking	

interactions	(Figure	3.11).		

From	 the	 analysis	 of	 the	 aminoindanes	 and	 reviewed	 literature	 it	 has	 already	 been	 deduced	 that	

selectivity	 over	 caffeine	 is	 very	 important	 (Chapter	 2).	 The	 binding	 information	 from	 the	 PDB	 for	

caffeine	with	a	number	of	proteins,	shows	that	it	could	be	considered	to	be	a	promiscuous	binder.	

Caffeine	is	a	hydrophilic	molecule,	with	strong	p-stacking	capabilities	due	its	polarised	p	system.	These	

electrostatic	effects	 lead	to	caffeine	p-stacking	with	numerous	proteins,	with	no	correlation	to	the	

types	of	amino	acids	and	the	spacial	orientation	of	the	interactions.	It	was	found	however	that	caffeine	
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primarily	p-stacks	in	an	edge/face	orientation,	whereas	amphetamine-like	structures	were	found	to	

bind	in	a	face/face	orientation.	It	is	the	promiscuous	nature	of	caffeine	that	presents	a	problem	when	

just	considering	the	geometrical	orientation	of	the	three	pharmacophoric	features.	This	is	significant	

for	the	future	design	of	any	amphetamine-like	sensors,	as	caffeine	has	been	found	to	be	a	common	

cutting	agent	 in	a	number	of	amphetamine-like	products.	Caffeine	 is	 larger	 than	mephedrone	and	

structurally	different;	therefore,	another	characteristic	that	was	considered	for	host	molecule	design	

was	the	steric	size	of	the	binding	cavity.	By	studying	how	amphetamine	derivatives	and	cutting	agents	

bind	to	proteins,	it	was	possible	to	gain	an	understanding	of	how	the	host	molecule	should	not	bind,	

and	what	types	of	orientations	were	likely	to	prevent	binding	to	molecules	other	than	mephedrone.	

It	 was	 concluded	 that	 designing	 a	 supramolecular	 flexible	 probe	molecule	 that	 re-organises	 itself	

around	 mephedrone,	 would	 be	 the	 ideal	 solution.	 It	 is	 this	 implementation	 of	 supramolecular	

chemistry	in	a	concerted	design	that	includes	all	the	pharmacophore	features	identified	that	would	

appear	to	be	the	key	to	the	selectivity	of	the	host	molecule.		

From	 the	 pharmacophore	 model,	 the	 synthesis	 of	 two	 proposed	 host	 molecules	 were	 studied,	

macrocyclic	 calixarenes	 and	 acyclic	 anthraquinones.	 Both	 designs	 incorporated	 functional	 groups	

capable	 of	 hydrogen	 bonding	 and	 p-stacking.	 Synthesis	 of	 the	 anthraquinone	 analogue	 proved	

unsuccessful,	due	to	the	strength	of	the	intramolecular	hydrogen	bonding	preventing	the	synthesis	

progressing.	Therefore,	the	anthraquinone	was	reduced	down	to	the	anthracene	to	make	the	final	

probe	molecule,	1,8-dibenzylthiourea	anthracene	(Figure	7.1)	in	80	%	yields.	Probe	1	encompasses	all	

the	features	noted	from	the	pharmacophore;	benzene	and	anthracene	for	the	two	p-stacking	features	

and	thiourea	groups	as	hydrogen	bond	donors/acceptors.		

	

Figure	7.1	-	Chemical	structure	for	Probe	1,	1,8-dibenzylthiourea	anthracene.		

A	limitation	to	the	pharmacophore	work,	was	the	lack	of	binding	data	for	mephedrone,	this	means	

that	the	carbonyl	in	the	cathinone	analogue	was	not	considered	in	the	model.	Given	that	the	carbonyl	

group	 is	what	makes	cathinones	distinctive	compared	to	other	amphetamine-like	compounds,	 this	

still	 needed	 to	be	 considered	 in	 the	probe	molecule	design,	 to	 improve	 selectivity.	 To	 include	 the	
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carbonyl	in	the	host	molecule	binding	motif,	a	hydrogen	bond	donor	was	included	in	the	design.	To	

prevent	altering	the	geometrical	design	of	the	pharmacophore,	upon	which	the	host	molecule	was	

designed,	 the	 thiourea	 groups	 incorporated	 were	 selected	 so	 they	 could	 act	 as	 both	 donors	 and	

acceptors.	The	 sulphur	not	only	 improves	 the	hydrogen	bond	donor	 capabilities	of	 the	amines	 for	

binding	to	the	carbonyl,	due	to	its	electronegativity,	but	can	also	acts	as	a	hydrogen	bond	acceptor	

itself	for	the	amino	group219.		

As	previously	discussed,	mephedrone	is	usually	found	as	a	hydrochloride	salt.	The	freebase	is	known	

to	be	an	unstable	oil	and	is	not	preferential	as	a	street	drug.	Consequently,	 it	was	essential	to	test	

chloride	ions	with	the	probe	molecule	before	anything	else,	to	ensure	selectivity.	Chloride	ions	were	

found	to	have	a	strong	affinity	with	Probe	1,	showing	a	1:1	binding	stoichiometry.	In	order	to	fully	test	

mephedrone	 binding	 independently	 of	 chloride	 ions,	 binding	 studies	were	 conducted	without	 the	

presence	 of	 chloride,	 i.e.	 the	 freebase	 form	 of	 the	 drug	 was	 used.	 Stability	 studies	 showed	 that	

mephedrone	 freebase	 is	 stable	 for	up	 to	18	hours.	Having	 to	extract	 the	 freebase	of	mephedrone	

before	 analysis	 works	 in	 a	 laboratory	 based	 environment;	 however,	 it	 is	 not	 ideal	 for	 in-field	

applications.		

From	the	1H-NMR	it	was	found	that	mephedrone	binds	to	Probe	1	with	equilibrium	achieved	at	4	molar	

equivalents	 of	 mephedrone	 to	 Probe	 1.	 When	 adding	 mephedrone,	 the	 two	 NH	 peaks	 from	 the	

thiourea	 groups	 were	 significantly	 shifted	 down-field.	 These	 shifts	 were	 concluded	 to	 be	 due	 to	

binding	of	both	the	carbonyl	and	the	amine	functionalities	in	mephedrone	to	Probe	1.	Interestingly,	

the	 amine	 in	 mephedrone	 acts	 as	 a	 hydrogen	 bond	 acceptor,	 not	 a	 donor	 as	 predicted	 in	 the	

pharmacophore	model.		

The	pharmacophore	identified	two	p-stacking	interactions	between	the	host	and	mephedrone.	One	

of	these	is	seen	between	the	C(9)H	and	the	C(10)H	on	the	anthracene,	and	the	tolyl	methyl	moiety	in	

mephedrone.	A	strong	p-stacking	interaction	with	anthracene	would	be	predicted	to	induce	a	strong	

optical	response	in	both	UV/Vis	and	fluorescence	spectroscopy.	However,	this	is	not	seen,	with	high	

concentrations	 of	 mephedrone	 needed	 to	 induce	 a	 noticeable	 response.	 It	 could	 therefore	 be	

deduced	that	this	is	not	a	particularly	strong	interaction.	The	relatively	weak	binding	constant	of	104	

M-1	calculated	for	Probe	1-mephedrone	complexation	may	be	a	reflection	of	this198.		

The	two	methyl	groups	in	mephedrone	do	show	a	change	in	chemical	shift	upon	binding;	however,	

there	is	no	corresponding	shift	change	for	the	benzyl	groups	in	the	host	molecule.	The	benzyl	groups	

were	positioned	based	on	the	pharmacophore	design	to	interact	with	mephedrone.	Instead	the	shift	

in	the	methyl	group	was	concluded	to	be	due	to	the	methine	and	two	methyl	groups	being	in	close	

proximity	to	the	β-carbonyl	and	amine	functionalities,	which	undergo	hydrogen	bonding	with	Probe	
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1,	as	opposed	to	p-stacking.	Therefore,	only	one	p-stacking	interaction	is	seen	between	Probe	1	and	

mephedrone,	contrary	to	the	two	predicted	in	the	pharmacophore	model.		

Systematic	 analysis	 of	 flephedrone,	 methamphetamine	 and	 mephedrone	 precursor	 using	 NMR	

provided	more	rational	as	 to	how	mephedrone	and	Probe	1	were	binding,	 through	analysis	of	 the	

chemical	shifts.	The	hydrogen	bonding	of	the	amine	and	carbonyl	functionalities	of	mephedrone	were	

concluded	to	be	the	two	main	binding	interactions	with	Probe	1.	By	removing	the	amine	functionality	

(mephedrone	 precursor)	 binding	 still	 occurred	 through	 the	 carbonyl;	 however,	 the	 association	

constant	 was	 tenfold	 lower.	 Removal	 of	 the	 carbonyl	 functionality	 (methamphetamine)	 saw	 no	

binding	 interaction	 up	 to	 8	molar	 equivalents.	 This	 indicates	 that	 hydrogen	 bonding	 between	 the	

carbonyl	and	the	amine	of	the	thiourea	is	the	primary	interaction.	The	carbonyl	was	predicted	to	be	

the	key	 to	 the	selectivity	of	 the	host	molecule	over	other	amphetamine-like	compounds.	This	was	

found	to	be	true,	with	Probe	1	exerting	selectivity	over	methamphetamine,	despite	it	containing	the	

other	 binding	 points	 found	 in	mephedrone;	 the	 amine	 and	 aromatic	 groups.	 Based	 on	 systematic	

analysis	 the	 selectivity	 of	 Probe	 1	 is	 concluded	 to	 be	 for	 the	b-keto	 arrangement,	 unique	 to	 the	

cathinone	 class.	 This	 selectivity	 of	 a	 potential	 in-field	 detection	mechanism	 for	mephedrone	 over	

methamphetamine	is	what	makes	Probe	1	unique	to	other	mechanisms	currently	 in	 literature.	The	

concerted	design	of	Probe	1,	as	designed	based	on	protein-ligand	interactions	would	appear	to	be	key	

to	this	selectivity.	This	becomes	even	more	apparent	when	studying	the	interactions	between	Probe	

1	and	flephedrone.	As	discussed	in	Chapter	5,	flephedrone	differs	to	mephedrone	by	the	addition	of	

a	fluorine	in	place	of	a	methyl	functionality	on	the	para	position	of	the	aromatic	ring.	This	change	in	

electronegativity	on	the	aromatic	ring	had	very	noticeable	effects	on	the	binding	to	Probe	1.	1H-NMR	

binding	 studies	 showed	 that	 flephedrone	 had	 a	 reduced	 affinity	 to	 Probe	 1	 in	 comparison	 to	

mephedrone,	 although	 the	 same	 atoms	 were	 involved	 in	 binding.	 This	 would	 suggest	 that	

complexation	occurs	in	the	same	way	as	mephedrone.	In	order	to	rationalise	the	binding	of	Probe	1	

further,	molecular	modelling	calculations	were	performed.		

The	 minimum	 energy	 conformations	 were	 generated	 for	 both	 mephedrone	 and	 Probe	 1.	 The	

maximum	 RMSD	 for	 the	 change	 in	 conformation	 between	 the	 bound	 and	 unbound	 Probe	 1	 was	

calculated	 as	 36.29	 Å,	 which	 shows	 that	 Probe	 1	 is	 reorganising	 itself	 upon	 the	 addition	 of	

mephedrone.	The	optimised	structure	shows	mephedrone	bound	in	the	cleft	of	Probe	1	via	an	array	

of	hydrogen	bonding	interactions	and	a	π-π	interaction	(Figure	5.8).	The	proposed	geometry	based	on	

the	NMR	studies	of	the	Probe	1–mephedrone	interaction	is	supported	by	the	DFT	calculations.		

Molecular	modelling	calculations	conducted	on	Probe	1	and	flephedrone	suggested	that	flephedrone	

does	not	bind	 in	 the	same	orientation	as	mephedrone,	but	does	 interacts	with	 the	same	atoms	 in	
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Probe	1,	as	seen	in	from	NMR	(Figure	5.18).	An	interaction	energy	of	-32.97	kJ	mol-1	was	calculated,	

which	is	more	favourable	then	that	seen	for	mephedrone.	However,	this	is	not	reflected	in	the	NMR	

binding	 studies	 which	 showed	 preferential	 binding	 for	 mephedrone.	 It	 appears	 that	 the	

electronegativity	of	fluorine	reduces	the	hydrogen	bonding	capabilities	of	the	carbonyl	and	amine	in	

flephedrone,	thereby,	reducing	the	affinity	to	Probe	1.	The	effect	fluorine	has	on	the	electrostatics	of	

the	aromatic	ring,	to	which	it	is	directly	attached,	appears	to	increase	its	affinity	to	the	electron	rich	

anthracene,	thus	causing	the	change	in	conformation	compared	to	mephedrone.	This	draws	attention	

to	the	consensus	design	of	Probe	1,	where	binding	is	effected	by	even	a	small	change	in	the	chemical	

structure	of	the	guest	molecule.	This	consensus	approach	for	host	molecule	design	has	never	before	

been	shown	for	detection	of	NPS.	It	was	predicted	that	this	 increased	binding	with	the	anthracene	

unit	 could	 increase	 the	 optical	 response	 of	 flephedrone	 upon	 binding.	 As	 with	 mephedrone,	 no	

binding	is	seen	in	UV/Vis	even	at	high	concentrations.	At	low	concentrations	there	is	also	no	noticeable	

fluorescence	 response,	 again	 the	 same	 seen	 for	 mephedrone.	 However,	 at	 high	 concentrations	

flephedone	 does	 show	 an	 increased	 optical	 change	 upon	 binding	 compared	 to	mephedrone.	 This	

difference,	despite	it	only	occurring	at	high	concentrations,	is	an	important	binding	effect	that	needs	

to	be	taken	into	consideration	if	further	development	into	using	Probe	1	as	an	optical	sensor	is	to	be	

carried	out.		

Binding	studies	carried	out	using	ESI-MS	suggest	a	stronger	 interaction	than	calculated	using	NMR.	

ESI-MS	 indicates	 that	 the	 strength	 of	 the	 interaction	 is	 very	 favourable,	 as	 it	 remains	 complexed	

through	harsh	 ionisation	 conditions.	 This	 could	be	due	 to	 the	 large	deformation	energy	predicted	

through	DFT	calculations,	suggesting	that	once	the	complex	is	formed	it	 is	more	favourable	to	stay	

complexed	 then	 to	 overcome	 the	 energy	 to	 rearrange.	 The	 MS	 analysis	 also	 indicates	 that	 the	

complexation	 is	 reversible,	 as	 changing	 the	 instrument	 conditions	 alters	 the	 ratio	 of	 bound	 and	

unbound	observed	in	the	spectrum.	This	is	also	supported	by	MS/MS	experiments,	whereby	the	Probe	

1-mephedrone	 complex	 fragments	 into	 the	 free-drug	 and	 Probe	 1	 upon	 dissociation	 to	 form	 two	

distinct	 signals	at	m/z	 179	and	507	 respectively.	 Interestingly,	when	mephedrone	hydrochloride	 is	

studied	using	ESI-MS,	mephedrone	 still	 binds	 to	Probe	1,	 in	 the	 same	proportions	as	 seen	 for	 the	

freebase.	It	was	not	possible	to	distinguish	between	the	binding	of	mephedrone	and	chloride	by	NMR,	

as	the	same	atoms	are	effected	when	both	guest	molecules	bind.	However,	the	MS	studies	suggest	

that	despite	chloride	having	a	stronger	binding	constant	with	Probe	1	according	to	NMR,	mephedrone	

appears	to	still	bind	preferentially,	at	 least	 in	the	conditions	used	in	ESI-MS.	This	 is	a	phenomenon	

that	could	be	further	explored	to	understand	whether	there	is	a	way	of	utilising	this	in-field,	to	prevent	

the	free	base	of	mephedrone	needing	to	be	extracted	before	analysis.		
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The	 importance	 of	 selectivity	 for	 any	 potential	 host	 molecule	 has	 been	 discussed	 in	 detail.	

Mephedrone	products	are	not	pure,	they	can	be	cut	with	a	number	of	other	substances.	Selectivity	

over	these	cutting	agents	appears	to	be	the	primary	limitation	of	current	in-field	mechanisms133.	From	

literature	 searches	 and	 the	 aminoindane	 product	 analysis,	 a	 number	 of	 cutting	 agents	 and	

psychoactive	 substances	 were	 identified,	 to	 which	 the	 probe	 molecule	 must	 ideally	 be	 selective	

against.	 The	 most	 crucial	 were	 identified	 as:	 caffeine,	 benzocaine,	 lidocaine,	 paracetamol	 and	

methamphetamine.	For	this	reason,	Probe	1	was	tested	against	all	of	these	compounds	using	1H-NMR	

binding	studies.	 It	was	concluded	 from	this	work	 that	Probe	1	displays	selectivity	over	all	of	 these	

compounds	up	to	the	10	molar	equivalents	tested.	Probe	1	was	also	tested	against	a	simulated	street	

samples	containing	equal	proportions	of	mephedrone	hydrochloride,	benzocaine	and	caffeine;	 the	

two	most	common	cutting	agents	identified	from	literature.	It	was	found	that	mephedrone	could	still	

be	detected	when	studied	in	a	simulated	street	sample.	This	is	very	promising,	as	previous	sensory	

approaches	for	mephedrone	have	lacked	selectivity	against	one	or	more	of	these	cutting	agents.	The	

selectivity	over	methamphetamine	is	particularly	encouraging,	as	the	chemical	structure	only	differs	

from	mephedrone	by	the	removal	of	the	carbonyl	and	tolyl	 functionalities.	This,	 to	the	best	of	the	

author’s	 knowledge,	 has	 never	 been	 achieved	 for	 a	 small	molecule	 detection	mechanism	 before.	

Interestingly,	when	Probe	1	 is	bound	 to	mephedrone	 the	 sigmoidal	behaviour	 seen	 in	the	binding	

isotherm	 (Figure	 7.2)	 suggests	 that	 cooperativity	 is	 occurring.	 With	 the	 three	 non-covalent	

interactions	occur	in	a	cooperative	manner.	The	DFT	calculations	also	suggests	that	the	rearrangement	

of	Probe	1	to	incorporate	mephedrone	requires	all	three	binding	points	to	overcome	the	predicted	

deformation	energy	of	1824	kJ	mol-1.	This	cooperativity	can	be	attributed	to	the	consensus	design	of	

Probe	1	and	appears	to	be	the	reason	behind	the	selectivity	of	the	host	molecule.	Neutral	molecule	

detection	can	be	difficult	with	flexible	probes	as	there	is	often	a	high	degree	of	flexibility	whereby	a	

multitude	of	non-covalent	interactions	are	required	to	work	in	a	concerted	fashion	to	overcome	any	

entropic	considerations;	however,	this	appears	to	be	the	key	to	the	selectivity	of	Probe	1.	
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Figure	7.2	-	NMR	binding	isotherm	for	mephedrone	with	Probe	1.	

This	substantiates	the	importance	of	understanding	protein-ligand	interactions,	meaning	selectivity	

of	proteins	 is	achieved	through	an	array	of	 interactions	specifically	designed	to	occur	concurrently	

with	 the	 target	 molecule.	Without	 all	 of	 these	 binding	 features,	 in	 a	 predetermined	 geometrical	

arrangement,	re-organisation	of	the	probe	molecule	does	not	occur,	and	therefore	no	complexation	

is	seen.		

Currently	the	design	and	development	of	effective	host	molecules	is	very	time	consuming.	One	of	the	

aims	of	this	project,	was	to	develop	new	methodology	from	which	this	process	could	be	improved.	

Pharmacophore	design	based	on	protein-ligand	interactions	has	shown	promise	as	one	way	in	which	

this	 could	be	achieved.	Another	possible	method	 that	was	considered	 in	 this	work	was	 the	use	of	

molecular	dynamics	analysis,	specifically	metadynamics.	This	is	a	novel	approach	that	has	never	been	

applied	to	small	molecule	binding	before.	The	idea	behind	this	was	to	develop	a	new	approach	that	

could	 predict	 small	molecule	 binding	 affinity	 in	 silico.	 If	 successful	 this	 could	 greatly	 improve	 the	

development	of	host	molecules,	and	decrease	the	amount	of	time	and	money	spent	on	laboratory	

based	development.		

To	 try	 and	 develop	 a	 protocol	 that	 could	 achieve	 this,	 a	 number	 of	 factors	were	 studied	 such	 as	

conformational	 space,	 consideration	 of	 explicit	 and	 implicit	 solvation	 and	 parametrisation	 of	 the	

system.	Given	that	this	approach	has	never	been	applied	to	small	molecule	systems,	the	analysis	was	

validated	 with	 the	 experimental	 work	 carried	 out	 in	 Chapter	 5.	 The	 aim	 was	 to	 then	 apply	 this	

approach	 to	 the	 host	 molecules	 that	 were	 not	 successfully	 synthesised	 in	 Chapter	 4	 and	 gain	

information	into	whether	they	could	be	predicted	to	bind	to	mephedrone	selectively.		
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Probe	 1	 was	 studied	 with	 three	 of	 the	 same	 guest	 molecules	 that	 were	 studied	 experimentally:	

mephedrone,	caffeine	and	methamphetamine.	Mephedrone	was	studied	as	both	the	hydrochloride	

salt	 and	 the	 freebase.	 After	 varying	 a	 number	 of	 parameters	 in	 the	 system	 including;	 buffer	 size,	

simulation	time,	starting	conformation,	collective	variable	and	solvent,	no	correlation	was	found	with	

the	experimental	results.	The	analysis	of	mephedrone	and	Probe	1	in	DMSO	did	show	a	correlation	

with	the	experimental	with	no	complexation	seen.	However,	no	complexation	was	seen	in	water	or	

methanol	 either	 so	 it	 is	 hard	 to	 deduce	 whether	 these	 results	 are	 a	 limitation	 of	 the	 system,	 or	

indicative	of	experimental	results,	as	no	experimental	results	could	be	collected	in	methanol	or	water.	

Ideally	acetone	would	be	used	as	the	solvent	for	simulation;	however,	in	silico	modelling	is	limited	by	

the	 resources	 available	 from	 the	 software	 package	 used	 and	 there	 is	 currently	 no	 solvent	 box	

developed	for	the	use	of	acetone	in	silico.	Unsuccessful	correlation	between	the	experimental	and	in	

silico	 binding	 data	 was	 concluded	 to	 be	 due	 to	 three	 reasons.	 The	 first,	 and	 probably	 the	 most	

significant	being	 the	weak	binding	 constant	 found	 for	 this	 system	experimentally.	 In	 silico	 binding	

studies	are	usually	applied	to	large	molecules	with	much	high	association	constants,	making	It	easier	

to	observe	the	binding	occurring.	The	second	limitation	was	the	inability	to	study	the	host	molecules	

in	acetone	(the	solvent	used	experimentally).	The	NMR	binding	study	performed	in	DMSO	shows	the	

importance	of	solvent	choice,	with	no	complexation	observed.	The	other	reason	could	be	due	to	the	

choice	of	force	field	applied	to	the	system.	At	the	time	of	this	work,	there	was	no	force	field	available	

that	fully	incorporated	the	electronic	properties	and	torsional	space	of	small	molecules.	The	force	field	

used	was	OPLS_2005,	which	at	the	time	of	the	project	was	the	most	appropriate	choice.	However,	its	

average	coverage	for	prediction	of	torsional	space	per	bond	is	25	%.	This	is	not	as	much	of	a	problem	

when	looking	at	macromolecules	such	as	proteins,	as	the	error	 is	averaged	out	over	a	much	larger	

number	of	atoms;	however,	for	small	molecules	this	error	is	exaggerated	and	could	be	the	cause	of	

the	poor	emulation	of	experimental	results.	OPLS_2005	also	assumes	that	charges	on	atoms	are	fixed,	

which	is	not	often	true	when	studying	intermolecular	interactions.	Therefore,	it	is	possible	given	that	

intermolecular	interactions	are	driven	by	the	electronic	considerations	between	the	host	and	guest	

molecule,	 that	 poor	 emulation	 of	 small	 molecules	 could	 prevent	 accurate	 prediction	 of	 binding	

information	from	being	collected.		

7.2 Future	work		

7.2.1 Host	Molecule	Improvements	

Currently	Probe	1	is	a	good	working	model	for	a	potential	in-field	detection	mechanism,	as	it	shows	a	

clear	selectivity	for	the	b-keto	arrangement	of	the	cathinone	class.	However,	there	are	still	a	number	

of	limitations	that	need	to	be	considered.	Currently	the	mechanism	by	which	a	change	in	fluorescence	
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occurs	upon	binding	is	not	fully	characterised,	as	there	appears	to	be	multiple	competing	mechanisms.	

This	could	be	further	explored	with	the	possibility	of	using	single	photon	fluorescence.	Upon	deeper	

understanding	of	the	concentration	effects	associated	with	the	binding	mechanism	of	Probe	1	and	

mephedrone,	 the	possibly	of	using	1,8	dibenzylthiourea	anthracene	as	a	 fluorescent	 in-field	probe	

could	be	explored	further.	NMR	and	fluorescence	spectroscopy	techniques	both	show	good	selectivity	

for	 Probe	 1	 to	 mephedrone,	 over	 methamphetamine,	 caffeine,	 paracetamol,	 benzocaine	 and	

lidocaine.	Differences	are	seen	in	respect	to	sensitivity,	with	NMR	and	MS	analysis	showing	a	response	

upon	binding	at	low	concentrations	while	a	fluorescence	response	upon	binding	can	only	be	observed	

at	 high	 concentrations.	 Understanding	 the	 lack	 of	 an	 optical	 response	 at	 low	 concentrations	 is	

imperative	to	understanding	the	sensitivity	of	Probe	1	for	use	in-field.	Another	limitation	is	the	affinity	

of	chloride	ions	to	Probe	1.	Ideally	a	simple	in-field	detection	device	should	require	little	to	no	sample	

preparation.	However,	it	could	be	possible	to	explore	the	use	of	a	microfluidic	device	that	incorporates	

a	liquid	separation,	to	extract	the	freebase	followed	by	optical	detection	using	Probe	1.	Such	a	device	

could	still	allow	for	the	end	user	to	have	little	technical	knowledge,	while	retaining	the	selectivity	and	

sensitivity	required.	Ideally	to	be	used	in-field	the	sensory	molecule	would	be	soluble	in	an	aqueous	

media	 to	 prevent	 the	 use	 of	 organic	 solvents	 such	 as	 acetone	which	 is	 currently	 used.	 Therefore,	

further	development	should	be	applied	to	improving	the	solubility	of	Probe	1.		

One	conclusion	that	is	clear	from	this	work	is	that	the	complexity	of	in-field	NPS	detection	has	grown	

with	the	ever-increasing	number	of	substances	being	abused.	It	is	for	this	reason	that	is	seems	unlikely	

that	a	simple	test	such	as	the	Marquis	test	for	methamphetamine,	or	Scott’s	test	for	cocaine	will	be	

applicable	 to	NPS	detection,	due	 to	 their	 lack	of	 specificity.	Therefore,	 the	notion	of	using	a	more	

sophisticated	technique	such	as	a	microfluidic	device	for	future	in-field	detection,	is	not	as	excessive	

as	it	may	have	been	deemed	a	few	years	ago.			

The	pharmacophore	design	showed	promise	as	one	way	that	the	design	of	host	molecules	could	be	

improved.	 The	 one	 key	 limitation	 in	 this	 project	 was	 the	 lack	 of	 experimental	 binding	 data	 for	

cathinones.	 This	 was	 due	 to	 their	 affinity	 for	 transmembrane	 proteins,	 which	 have	 proven	 to	 be	

difficult	to	isolate	and	therefore	there	is	a	lack	of	structural	X-ray	crystallography	data.	However,	there	

was	 recently	 a	 study	 that	 isolated	 the	 human	 cannabinoid	 receptor	 (CB1)	 bound	 to	 endogenous	

compounds220.	This	shows	that	in	future	there	may	be	a	larger	selection	of	experimental	data	upon	

which	 to	 base	 the	 pharmacophore	 model.	 This	 could	 help	 to	 improve	 the	 development	 of	

pharmacophore	models	upon	which	the	host	molecules	could	be	designed.		
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7.2.2 Metadynamics		

Ideally	the	host	molecules	need	to	be	tested	in	silico	in	the	same	conditions	used	experimentally	to	

be	sure	of	complete	consensus	between	systems.	Therefore,	Probe	1	needs	to	be	tested	in	an	acetone	

solvent	system,	this	will	give	more	evidence	as	to	whether	it	is	the	force	field	or	the	solvent	choice	

that	 is	 preventing	 binding	 from	 being	 observed.	 Currently,	 the	 use	 of	 an	 acetone	 solvent	 box	 for	

simulations	has	not	been	parametrised	and	therefore	it	is	not	possible	to	carry	out	these	simulations	

in	acetone	with	a	good	level	of	accuracy.	

It	would	also	be	interesting	to	carry	out	the	same	metadynamics	experiments	from	Chapter	6	using	

the	new	OPLS3	software	that	has	recently	been	launched,	which	has	been	specifically	designed	for	

small	drug-like	molecules	in	mind.	It	has	been	shown	to	have	improved	accuracy	across	all	aspects	of	

small	molecule	analysis221.	OPLS3	reportedly	has	a	30	%	improvement	over	earlier	OPLS	versions	for	

prediction	 of	 ligand	 binding.	 Specifically,	 it	 accounts	 for	 polarizable	 charges	 on	 atoms	 which	 is	

particularly	 significant	 when	 dealing	 with	 intermolecular	 interactions.	 This	 could	 provide	 useful	

information	as	to	whether	the	lack	of	viable	results	was	due	to	the	force	field	limitations.		

Ideally	the	development	of	metadynamics	analysis	would	be	based	on	host-guest	 interactions	that	

show	a	high	binding	constant.	Using	such	experimental	data,	along	with	the	above	 improvements,	

metadynamics	analysis	could	show	promise	for	the	analysis	of	small	molecule	binding.	Only	once	an	

approach	 is	 developed	 that	 shows	 good	 consensus	 with	 proven	 experimental	 results,	 will	 it	 be	

reasonable	to	then	apply	this	to	novel	host	molecules	to	explore	small	molecule	binding	in	an	attempt	

to	guide	the	synthetic	process.			
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