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ABSTRACT

The nuclear receptor superfamily comprises a group of ligand-activated transcription

factors that regulate the expression of target genes. They play a central role in

diverse physiological pathways, and are therefore extremely important in the
aetiology of various human disorders and as pharmaceutical therapeutic targets. This

thesis describes molecular analyses of the thyroid hormone receptor (TR) and the

peroxisome proliferator-activated receptor gamma (PPARγ), in disorders of thyroid

hormone and insulin action respectively.
The syndrome of Resistance to Thyroid Hormone (RTH), characterized by reduced

tissue responsiveness to circulating thyroid hormones, is associated with diverse
mutations in the ligand-binding domain of the thyroid hormone β receptor, localizing

to three clusters around the hormone binding cavity. The first part of this thesis

describes three novel RTH mutations (S314C, S314F, S314Y), due to different

amino acid substitutions in the same codon, occurring in six separate families.
Characterization of these mutant receptors showed marked differences in their

functional impairment. In the second part of the thesis I report detailed functional
studies of natural and synthetic receptor agonists with loss-of-function PPARγ

mutants (P467L; V290M), previously identified in patients with severe insulin
resistance, type 2 diabetes mellitus and hypertension. Both PPARγ mutants act as

dominant negative inhibitors of wild type receptor  (WT) action because of their

failure to fully dissociate from corepressors. My results provide evidence that
tyrosine-based rather than thiazolidinedione PPARγ agonists, may represent a more

rational therapeutic approach to restoring mutant receptor function and ameliorating

insulin resistance in our patients. Then, in an unrelated kindred a different, digenic

mechanism of insulin resistance, with a combination of loss-of-function mutations in
PPARγ  and PPP1R3 (muscle-specific subunit of protein-phosphatase 1 mediating

glycogen synthesis) is described. Functional characterisation of these mutant

proteins provides unique insights into the complex interplay between this nuclear

receptor and a second metabolic signalling pathway.  Finally, three novel
heterozygous mutations, in the ligand and DNA binding domains of PPARγ,

identified in three unrelated subjects with partial lipodystrophy, severe insulin

resistance, dyslipidaemia and hypertension are described. Their functional
characterization suggests that they inhibit WT action via a novel, non DNA-binding

interference mechanism.
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Chapter 1

GENERAL INTRODUCTION

1.1 The nuclear receptor superfamily

1.1.1 A general overview

The development of a complex endocrine system is one of the most striking features

of multicellular organism evolution, and allows the organism to coordinate its
reaction to the environment, to regulate its development, and to maintain

homeostasis in the face of external challenges. Among the numerous proteins
involved in these complex processes, the nuclear receptor superfamily is a key player

involved in a diverse array of functions from embryonic development to

metamorphosis and from regulation of homeostasis to the control of metabolism.
Members of this receptor family act as ligand-inducible transcription factors, thus

providing a direct link between signaling pathway that control these processes and
transcriptional responses of individual target genes. Many members of the nuclear

receptor superfamily mediate the actions of known hormones including steroids,

retinoids, thyroid hormones and vitamin D3. These hormones are important
regulators of development, cell differentiation and organ physiology but it is only

relatively recently that we have begun to understand the molecular basis for their
actions. In the 1960s, Tata and colleagues observed an increase of RNA and protein

synthesis after the administration of triiodothyronine (T3) in hypothyroid rats.  These

effects were blocked by the addition of actinomycin D, an inhibitor of gene
transcription (Tata, 1963; Tata and Widnell, 1966). These observations suggested

that thyroid hormone action is mediated, at least in part, through mechanisms
involving the transcriptional regulation of T3-responsive genes. Development of

radiolabeled ligands allowed the identification of protein binding for several

hormones within the nuclear compartment, supporting the hypothesis that specific
intracellular receptors mediate the transcriptional effects of these lipophilic

molecules (Oppenheimer et al., 1974; Sibley and Tomkins, 1974; Samuels et al.,

1976).
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The cloning of the steroid receptors was an essential prerequisite for ultimately

understanding the molecular basis of their actions. The glucocorticoid and estrogen

receptors were the first RNA polymerase II-dependent transcription factors to be
cloned (Hollenberg et al., 1985; Miesfeld et al., 1986; Green et al., 1986).

Following this, several groups reported the cloning of the receptors for progesterone
(PR) (Conneely et al., 1986), thyroid hormone (TR) (Sap et al., 1986; Weinberger et

al., 1986) and all-trans retinoic acid (RAR) (Petkovich et al., 1987). By 1990, a total

of 15 highly homologous proteins had been identified, comprising a superfamily of
nuclear receptors (Mangelsdorf, 1995). To date, there are more than 150 different

members of the protein superfamily spanning a large diversity of species from the fly

Drosophila melanogaster (with 21 genes) (Adams et al., 2000) and the nematode
Caenorhabditis elegans  (with unexpectedly 270 genes) (Sluder et al., 1999) to

humans (with 48 genes) (Robinson-Rechavi et al., 2001) but not from yeast,
suggesting that this family of proteins evolved at the metazoan stage.  A large

number of nuclear receptors have been identified by virtue of their sequence

homology with known receptors, but have been designated “orphan receptors” as no
cognate ligand has yet been identified. A list of classical and orphan human

receptors and their corresponding ligands is shown in Table 1.1.

On the basis of sequence alignment and phylogenetic tree construction the

superfamily has been grouped into 6 subfamilies (Laudet, 1997). The diversity of
nuclear receptors appears to have been generated mainly by two waves of gene

duplication during evolution. The first occurred very early during metazoan
evolution and resulted in the 6 subfamilies, while the second wave of gene

duplication, which led to diversification within each group of receptors was

contemporaneous to the diversification of early vertebrates (Laudet, 1997).  It has
been suggested that the ancestor of all nuclear receptors was likely to be an orphan

transcription factor whose activity was regulated by conformational changes driven
by events such as phosphorylation or protein-protein interaction which then evolved

to acquire the ability to bind a ligand  (Escriva et al., 1997).  However, the

possibility that the ancestral receptor was ligand-dependent and that mutations
changed its ligand-binding specificity or led to loss of ligand binding during

evolution cannot be excluded.
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Based on knowledge of their ligands and functions nuclear receptors can now be

divided into three categories: i) the classical endocrine receptors; ii) the “adopted”

orphan receptors; iii) the remaining orphan receptors as shown in Figure 1.1 (Chawla
et al., 2001; Berkenstam and Gustafsson, 2005). The endocrine receptors, whose

ligands were known before the receptors where identified, consist of two groups: the
classic nuclear steroid hormone receptors and the non-steroid hormone receptors.

Steroid hormones are synthesized mainly in endocrine organs that are regulated by

negative-feedback control and reach their target tissues (where they bind to their
receptor with high affinity) through the circulation. Non-steroid hormones are

derived from dietary lipids (vitamin A or cholesterol) or require exogenous elements

for their synthesis (sunshine for vitamin D or iodine for thyroid hormone) and
regulate endocrine or lipid-sensing pathways (Chawla et al., 2001). Unlike the

steroid hormone receptors, which are mainly cytoplasmic and bind to DNA as
homodimers only after ligand binding, the non-steroid receptors localize to the

nucleus even in absence of their ligands and often function as heterodimers with the

retinoic X receptor (RXR). The adopted orphan receptors, whose ligands have been
identified after the gene was cloned, also function as heterodimers with RXR and

bind their ligands with low affinity. These receptors are considered lipid sensors and
maintain nutrient lipid homeostasis by regulating genes involved in lipid

metabolism, storage, transport and elimination. The final group of orphan receptors

contains proteins whose ligands have not yet been identified. It is not known whether
all orphan receptors have the potential to bind natural or synthetic ligands or whether

they are “true” orphans that do not possess a ligand-binding pocket and might be
regulated through alteration of their expression or by covalent modification or by

interaction with other proteins (Gronemeyer et al., 2004). The latter may particularly

to be the case for the NURR1 and DHR38 orphan receptors, whose crystal structures
revealed the absence of a discernible ligand-binding cavity (Baker et al., 2003;

Wang et al., 2003).

One in ten of the most commonly prescribed drugs act via nuclear receptors,

attesting to their importance as therapeutic targets to combat disorders that have
abnormal nuclear receptor signalling as a key pathological determinant  (Table 1.2).

Therefore characterization of the roles of nuclear receptors in normal physiology and

abnormal disease processes is one of the major goals of biomedical research.
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Over the last decade, our understanding of regulation of gene expression by nuclear

receptors has grown greatly, with the knowledge that not only is the interaction of

receptors with DNA necessary to elicit a transcriptional response, but also that many
cofactors (coactivators and corepressors) are involved in transmitting receptor

signalling to the basal transcriptional machinery. Moreover, a very recent study with
expression profiling of all 49 mouse nuclear receptors mRNAs in a large variety of

tissues, revealed the existence of a hierarchical transcriptional circuitry that extends

beyond individual tissues to form a mega-network governing physiology on a whole
organism scale (Bookout et al., 2006). Furthermore, crystal structures of the ligand-

binding domains (LBDs) of many nuclear receptors have been solved, providing an

understanding of the structural basis of receptor action.

1.1.2 Receptor structure and domains

The nuclear receptors share similar properties, including the ability to recognise and

bind to specific DNA sequences usually located in the promoter regions of target
genes and to interact in a co-operative fashion (dimerise) with each other or with

other members of the family.
On the basis of primary amino acid sequence homologies, it has been possible to

identify distinct functional domains, which are highly conserved amongst family

members: a variable amino-terminal region (A/B) containing a ligand-independent
transcriptional activation function (AF-1); a conserved central region (C) which is

the DNA-binding domain (DBD); a linker region (D), followed by E/F domains that
mediate ligand binding. The carboxy-terminal domain of many receptors also

includes a strong, ligand-dependent, transcriptional activation function (AF-2)

(Figure 1.2).

1.1.2.1 The N-terminal (A/B) domain

The A/B domains of receptors are the most variable both in size,  (ranging from 23

amino acids in the vitamin D receptor [VDR] to 602 amino acids in the
mineralocorticoid [MR]) and sequence. Alternative splicing and differential

promoter usage mediates the variability of these domains. No structural information

is yet available for the A/B domains, and their functional role is not fully elucidated.
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They may contain a constitutive transcriptional activation function (AF-1), whose

mechanism and functional significance is relatively poorly understood.  For some

receptors (e.g. ER), a co-operative interaction between the AF-1 and AF-2 functions,
perhaps mediated by bridging of cofactors between the N- and C-terminal domains,

has been proposed (Kraus et al., 1995).
Phosphorylation of key residues within the A/B domain of some receptors, e.g., by

protein kinase A in RAR (Rochette-Egly et al., 1995) or MAP kinase in peroxisome

proliferator-activated receptor gamma (PPARγ) (Adams et al., 1997), may also play

an important role in the regulation of AF-1 activity and could represent an important
point of integration between cell surface and nuclear receptor signalling pathways.

1.1.2.2 The DNA-binding (C) domain

Together with the ligand-binding domain, the DNA-binding domain represents the
most highly conserved region among different members of the nuclear receptor

family, with the exception of two divergent members (dosage-specific sex reversal-

adrenal hypoplasia congenita critical region on the X chromosome 1 [DAX1] and
short heterodimeric partner [SHP]), suggesting that these domains mediate a

common receptor function.  The hallmark of most nuclear receptors is their ability to
bind to specific regulatory DNA sequences termed hormone response elements

(HREs), which are usually located within the promoter regions of target genes.

HREs consist of a 6 bp core recognition motif derived from the archetypal AGGTCA
sequence, termed a “half-site”, which is: a) a part of an extended single motif

preceded by a 5’-flanking A/T-rich sequence that binds nuclear receptors which
interact as monomers; b) duplicated to form an inverted palindrome which bind

steroid receptor homodimers; c) duplicated to form an everted palindrome in some

special cases; d) duplicated to form direct repeats which bind nuclear receptors that
heterodimerise with RXR (RXR itself and some orphan nuclear receptors  can also

bind such direct repeats as homodimers) (Figure 1.3a). The length of nucleotide

sequence, which forms a “spacer region” between the half sites, is an important
determinant of the specificity of hormonal responses.

The C domain of receptors consists of two zinc-finger motifs each containing four
highly conserved cysteine molecules co-ordinating binding of a zinc atom. Together
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with additional amino acid sequences in the hinge (D) domain which represent a C-

terminal extension (CTE) of the DBD, the whole motif mediates monomeric DNA

binding (Figure 1.3b). Nuclear magnetic resonance and crystallographic studies have
provided insights into the mechanism by which NRs bind to DNA.  Residues which

are critical in mediating response element recognition are located at the distal end of
the first zinc finger in a region termed the "P box"; other residues within the second

finger form the so called "D box" which is involved in dimerization. The core of the

DBD consists of two amphipathic α-helices packed at right angles: the first helix

which encompasses the ‘P’ box is orientated towards the major groove of DNA and
makes direct contact with the core hexanucleotide response element; the second α-

helix is located at the carboxy-terminal end of the second zinc finger and supports

the first helix. The NMR and crystal structures of RXRα and TR have identified an

additional α-helix located within the CTE, which makes contact with bases in the

minor groove of DNA to provide further stability (Rastinejad et al., 1995; Kumar

and Thompson, 1998). This third α-helix functions not only in the context of

receptor homodimers (e.g., RXR) but also mediates interaction of receptors (e.g.,
RAR-RXR, TR-RXR) in heterodimers.

1.1.2.3 The hinge (D) domain

This region situated between the DBD and the more distal ligand-binding domain is
poorly conserved among the different receptors. It acts as a hinge between the DBD

and the LBD, allowing rotation of the DBD. In the last few years interest in studying

the hinge region has increased, as it appears to be more than a simple flexible
connector and mediates important receptor functions. It contains the Nuclear

Localization Signal (NLS), a peptide motif required for nuclear pore recognition and
also residues whose mutation abolishes interaction with cofactors which are

necessary for transcriptional regulation, e.g. the Nuclear CoRepressor protein, NCoR

(Horlein et al., 1995). Recently a region has been identified in the hinge domain of
the liver receptor homologous protein 1 (LRH-1), which represses the activity of the

receptor. This repressive activity can be abolished by mutations within the hinge
domain (Xu et al., 2003).
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1.1.2.4 The C-terminal ligand-binding (E, F) domain

The C-terminal domain of nuclear receptors is the second most conserved region and
approximately 250 amino acids long. It is a multifunctional domain, which in

addition to the binding of ligand, mediates homo- and heterodimerization, interaction
with heat shock proteins, and contains a strong ligand-dependent transcription

activation function (AF-2).

Elucidation of the crystal structures of several receptors either in the absence (apo-)
or in presence (holo-) of ligand has dramatically enhanced our understanding of how

nuclear receptor ligands exert their effects at the molecular level. These structures

have revealed that the hallmark of nuclear receptors is a common fold conserved
between ligand-binding domains, consisting of 12 α-helices (H1-H12) and one

conserved β turn arranged as a "triple-layered sandwich". These form a central

hydrophobic cavity, the ligand-binding pocket, into which the ligand can be

accommodated. However some variations have been observed; for example in RARγ

helix 2 (H2) has not been reported (Renaud et al., 1995), while an additional short
helix (H2') is present in PPARγ (Nolte et al., 1998). The ligand-binding pockets of

receptors are variable both in size, from 0Å (NURR1) to 1400Å (PPAR) and shape,
in keeping with the structural diversity of their ligands. For example the large pocket
seen in PPARs has a distinct, three-arm Y-shape, allowing it to bind numerous fatty

acids and fatty acid derivates with low affinity, while that of PXR has an elliptical
shape which allows it to bind to the cholesterol lowering drug SR12813 in three

different conformations and to larger ligands such as hyperforin and the antibiotic

rifampicin, the largest known ligand for any nuclear receptor. Beside its size and the
shape, the hydrophobic/hydrophilic nature of the surface of the pocket also plays a

role in determining ligand-binding specificity (Li et al., 2003).
Helix 12, at the C-terminal end of the ligand-binding domain, corresponds to the

region which mediates hormone-dependent transcriptional activation or AF-2

activity. Thus, the AF-2 domain in most receptors adopts an amphipathic α-helical

conformation encompassing a highly conserved peptide motif ΦΦXEΦΦ (where Φ

= hydrophobic, X = any, E = glutamic acid residues), which is directly involved in
interaction with transcriptional coactivators (Barrettino et al., 1994; Gronemeyer and

Laudet, 1995). Comparison of the apo-RXRα structure with that of RARγ in the
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presence of all-trans retinoic acid led to the “mouse trap” model for nuclear receptor

activation in which H12 undergoes a dramatic conformational change in response to

ligand. Rather than protruding into solution as observed in the apo- RXRα structure

(Bourguet et al., 1995), in liganded RARγ H12 folds back against the core LBD

thereby “closing” the ligand-binding pocket (Renaud et al., 1995).  Moreover the
transconformation of H12 upon binding of ligand together with other additional

structural changes (e.g. the bending of H3) generates a hydrophobic cleft on the

surface of the receptor which facilitates the binding of coactivators. In an extension
of this model, it has been demonstrated that binding of the antagonists raloxifene or

dihydroxytamoxifen to the estrogen receptor (ER) results in a different position of
H12, which is rotated and shifted with respect to its position when bound to the full

agonist estrogen (Brzozowski et al., 1997). As a consequence, H12 fails to

reconstitute the hydrophobic surface, thus precluding coactivator binding (Figure
1.4).

However, some variations from this common structural organization are worthy of
note: for example, in both unliganded PPARγ and PXR structures, H12 is packed

against the body of the receptor in a position which is very similar to that seen in the

holo-structures (Nolte et al., 1998; Uppenberg et al., 1998; Watkins et al., 2001). It

has been suggested that this position, which appears permissive for coactivator
interaction, may account for the constitutive transcriptional activity of these

receptors that is observed in vivo. Recently Kallenberger and colleagues have used

fluorescence anisotropy to directly assess the mobility of H12 in PPARγ. They

observed that H12 is significantly more mobile than the main body of the protein.
Upon ligand binding H12 shows reduced mobility, accounting for its role as a

molecular switch  (Kallenberger et al., 2003).
As described previously, other regions within the LBD mediate important functions.

For example in TR, it was first proposed that a series of nine heptads repeats of

hydrophobic residues (analogous to a leucine-zipper motif) mediated dimerization
(Forman et al., 1990). The observation that a leucine to arginine mutation (L428R)

in the ninth heptad reduces heterodimer formation supported this model (Au-
Fliegner et al., 1993). However, crystal structures of RXRα and TRα have shown

that, in addition to the ninth heptad contained within H11, other residues in helices 8,

9 and 10 are also involved in dimerization (Bourguet et al., 1995; Wagner et al.,
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1995). The first structure of a nuclear receptor LBD heterodimer to be reported,

namely RARα-RXRα, revealed that the heterodimerization interface mainly

involves residues from H10, H9, loop 8-9 and H7 (Bourguet et al., 2000). In

addition, the crystal structure of the liganded PPARγ/RXRα  heterodimer has also

been described showing that the heterodimer interface is composed of conserved
motifs within H10 of PPARγ and RXRα with additional charge interactions from

residues in helices 7 and 9 (Gampe et al., 2000).

With nuclear receptors heterodimers, some such as PPAR-RXR and LXR-RXR, are

permissive for transcriptional activation when RXR is occupied by its cognate
ligand, whereas others such as RAR-RXR and TR-RXR, are not (Mangelsdorf and

Evans, 1995).

1.1.3 Transcriptional regulation by nuclear receptors

1.1.3.1 Basal transcription

Nuclear receptors constitute a family of transcription factors that regulate gene

expression in a ligand-dependent manner. According to an initial simple model of

action, it was proposed that nuclear receptors interacted directly with components of
the basal transcription machinery which includes a number of transcription factors

such as TFIIA, TFIIB, TFIID and RNA polymerase II (Baniahmad et al., 1993).

Subsequently, biochemical approaches demonstrated that, for efficient
transcriptional regulation, nuclear receptors require the recruitment of intermediary

proteins or coregulators.
In general, unliganded or antagonist-bound receptors are either transcriptionally inert

or actively promote transcriptional repression by interacting with a corepressor

complex. Conversely agonist-bound receptors promote transcriptional activation by
interaction with a coactivator complex.

It is also recognized that alterations of chromatin structure play an important role in
gene expression, as chromatinized transcription units are repressed when compared

to naked DNA (Wu, 1997; Wade and Wolffe, 1999). Two general classes of

chromatin remodeling factors have been identified: 1) ATP-dependent nucleosome
remodeling complexes, which use the energy derived from ATP hydrolysis to
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catalyze nucleosome mobilization, and 2) factors that contain histone

acetyltransferase or deacetylase activity.

There is evidence that increased acetylation of key lysine residues in nucleosomal
histone tails correlates with transcriptional activation, whereas their hypoacetylation

is associated with transcriptional repression (Pazin and Kadonaga, 1997). It has been
suggested that acetylation causes unfolding of nucleosomes which makes the DNA

more accessible to the transcription machinery, whereas hypoacetylation enhances

chromatin condensation and transcriptional repression. Finally, the nucleosomal core
can also be modified by phosphorylation, methylation and ADP-ribosylation,

although the role of histone modifications other than acetylation is less well

understood.

1.1.3.2 Coactivator families

Coactivators represent a group of proteins that serve to enhance the ability of nuclear

receptors to activate transcription via their associated enzymatic activities which
include histone acetyltransferases, methyltransferases, ubiquitin ligases or as agents

that integrate signaling via kinase-signaling pathways (Lonard and O’Malley, 2005).
The earliest indications of the existence of a family of nuclear receptor

transcriptional coactivators stemmed from observations of a phenomenon known as

transcriptional interference or "squelching". This can be classically seen in transient
transfection assays in which ligand-dependent transcriptional activation by one

nuclear receptor can be attenuated by the presence of a second nuclear receptor,
suggesting that the latter is in some way able to compete for a common entity, which

is utilized by both receptors. Mutational analysis has shown that the receptor AF-2

domain which consists of a short conserved α-helical (H12) sequence usually at the

C terminus of the LBD, is involved in this interference.  Moreover crystal structures
of several nuclear receptor LBDs have shown that AF-2 plays a key role in

facilitating coactivator recruitment and transactivation in response to hormone

binding.
Initial biochemical studies performed with ER led to the identification of several

proteins of a molecular mass of between 160 and 140kD, which only associated with
the receptor in the presence of estradiol, and they were designated as ER-associated
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proteins (ERAP) 160 (p160), ERAP 140 (p140) and receptor-interacting protein 140

(RIP 140) (Halachmi et al., 1994; Cavailles et al., 1995) respectively. Subsequently,

different groups have cloned many similar proteins and to date a large number of
factors that interact with nuclear receptors has been characterized. Many of these

proteins appear to function as components of large multiprotein complexes.

1.1.3.2.1 The p160 family

This family of proteins referred to as SRC-1/NCoA1, SRC-2/TIF2/GRIP1/NCoA2
and SRC-3/AIB-1/pCIP/ACTR/TRAM1/RAC3/NCoA3 consists of three members

which share a common domain structure and exhibit sequence similarity of

approximately 40% (Figure 1.5) (McKenna et al., 1999; Aranda and Pascual, 2001).
Investigation of the nuclear receptor interaction domain of the p160 protein family

led to the identification of a specific LXXLL motif (where L is Leucine and X is any
amino acid), and one or more of these motifs are present in all members. The

LXXLL motif has been found to be necessary for interactions with nuclear receptors

(Heery et al., 1997; Torchia et al., 1997).  Recently, structures of several receptor
LBDs complexed to parts of the p160 receptor interaction domain have been solved,

revealing that these motifs form short α-helices, which interact with a hydrophobic

groove on the surface of the nuclear receptor LBD. For example, in PPARγ, the

LXXLL coactivator helix is held in a "charge clamp" formed by a conserved lysine
in H3 and a conserved glutamic acid in the C-terminal AF-2 helix (Nolte et al.,

1998).  Several investigators have demonstrated the existence of intrinsic Histone

Acetyl Transferase (HAT) activity within the C-terminal region of various members
of the p160 family, including SRC-1 (Spencer et al., 1997) and ACTR (Chen et al.,

1997).

1.1.3.2.2 CBP/p300

The conserved C-terminal transcriptional activation (AF-2) domain of receptors also
mediates interaction with either the cointegrator CREB binding protein (CBP), and

the p300/CBP-associated factor (pCAF). The CREB (Cyclic AMP Response

Element Binding Protein) Binding Protein (CBP) (Chakravarti et al., 1996) and its
homologue p300 (Shikama et al., 1997) are large conserved proteins that serve

essential coactivator roles for many different transcription factors, functioning in part
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as a molecular scaffold but also by acetylating diverse substrates. In fact CBP/p300

not only directly binds to nuclear receptors via its amino-terminal region, but also

associates with the p160 family of coactivators through a different domain in its C-
terminus (Chen et al., 1997; Spencer et al., 1997; Korzus et al., 1998). CBP/p300

together with pCAF are coactivators with potent HAT activity and they can also
acetylate other (non-histone) transcriptional proteins, thereby regulating their activity

(Chen et al., 1999). Deletion or mutation of the HAT domain in CBP results in loss

of function for many transcription factors, revealing the importance of this activity.

1.1.3.2.3 The TRAP/DRIP complex

Recently, a multiprotein complex called TRAP or DRIP that interacts with thyroid
hormone (Fondell et al., 1996) and vitamin D receptors (Rachez et al., 1999)

respectively in a ligand-dependent manner has been identified. Both complexes,
which consist of more than a dozen polypeptides ranging in size from 70 to 230 kD,

are recruited to the AF-2 region in nuclear receptors via LXXLL interaction motifs.

Unlike the other previously described coactivators, the TRAP/DRIP complex does
not possess intrinsic histone acetyl transferase activity, but is able to interact directly

with both nuclear receptors and the basal transcripion machinery (Yuan et al., 1998;
Rachez et al., 1999).

1.1.3.2.4 Other coactivators

In addition to the aforementioned families, many other proteins have been shown to

enhance transactivation by nuclear receptors. Some of them exhibit relative
preference for a subset of nuclear receptors such as ARA70 (androgen receptor

activator-70), which specifically enhances the activity of the androgen receptor in a

ligand-dependent manner through its AF-2 domain (Yeh and Chang, 1996). Another
interesting example is SRA (steroid receptor RNA activator) which activates the AF-

1 function of steroid hormone receptors and interacts with SRC-1 (Lanz et al., 1999).
Recent studies suggest that cell-specific coactivators may also play critical roles in

gene-specific transcriptional activation. One example is represented by PGC-1

(PPARγ coactivator 1) which is expressed specifically in brown fat and skeletal

muscle and which enhances transactivation by TR and PPARγ on genes such as the

uncoupling protein–1 (UCP-1). Exposure to low temperatures dramatically increases
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PGC-1 mRNA expression and this has been suggested to be a key mechanism in the

regulation of adaptive thermogenesis   (Puigserver  et al., 1998).

Taken together, these observations indicate an increasingly complex model for

transcriptional regulation and the current challenge is to understand how so many
different proteins cooperate in gene activation. Kinetically, transcription may be

viewed as a multistep process, in which the binding of receptors to their DNA-

binding sites is followed by derepression and then by transcriptional initiation. In
this model, it is proposed that chromatin remodeling complexes and complexes

containing HAT activity are initially recruited to the promoter to relieve the

repression imposed by the highly condensed state of chromatin and to facilitate the
recruitment of additional coactivators. The combinatorial action of proteins finally

leads to the assembly of the RNA polymerase II-containing transcription complex
and the initiation of transcription (Figure 1.6).

1.1.3.3 Active repression by nuclear receptors

In addition to the ligand-dependent transcriptional activation described previously, it
has been observed that selected members of the nuclear receptor superfamily,

including TR and RAR, repress basal transcription in the absence of ligand.

Bahniahmad and colleagues first demonstrated the existence of active silencing
domains in TR and showed that fusion of these domains to the heterologous DBD of

the yeast Gal4 protein transferred repressor activity (Bahniahmad et al., 1992).
Subsequently, with the observation that the unliganded TR LBD could interact with

TFIIB (Bahniahmad et al., 1993), it was suggested that the receptor might inhibit the

formation of the pre-initiation complex, by sequestering TFIIB and therefore acting
directly as a repressor (Fondell et al., 1993). However, following the identification

of intermediary factors acting as repressors, this notion is less favoured and the
current model assumes that unliganded receptors which mediate silencing activity

are associated with such corepressors.
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1.1.3.4 Nuclear receptor corepressors

Biochemical studies led to the identification of a 270kD protein associated with

unliganded TR and RAR named Nuclear CoRepressor or NCoR (Horlein et al.,
1995). At the same time the 168kD Silencing Mediator for Retinoid and Thyroid

hormone receptors, (SMRT) was isolated through yeast two-hybrid screening of a

human lymphocyte cDNA library (Chen and Evans, 1995). Although NCoR and

SMRT are not identical, they are related both structurally and functionally and

appear to be the products of a gene duplication event that occurred prior to the

vertebrate evolutionary diversification. However, they exhibit distinct molecular and

biological properties (Goodson et al., 2005). Mutational analysis of TRβ led to the

identification of an interaction domain for NCoR (called the COR box) located in the

hinge region (αα 203-230) with additional contributions to this interaction from the

N-terminal portion of the LBD (αα 230-260). Sequence comparison of this region in

TR and RAR with that of other nuclear receptors which do not interact with
corepressors indicated that the COR box is a conserved region. However, other

residues that are also important in mediating transcriptional repression have been

identified in the distal part of the receptor LBD (Zhang et al., 1997). Moreover,
corepressors appear to bind receptor dimers but not monomers on DNA (Zamir et

al., 1997). Mapping studies have revealed that NCoR and SMRT share two receptor

interaction domains (ID-1 and ID-2) in the C-terminal region, and three independent

repressor domains that can actively repress a heterologous DNA-binding domain

located principally in the N-terminal and central region of SMRT and NCoR

(Privalsky, 2004). Interestingly, more recently it has been shown that NCoR has an

additional third ID located N-terminal of the two conserved IDs, that seems to be

responsible for preferentially binding to TR (Webb et al., 2000; Makowski et al.,

2003). Analogous to coactivators, each interaction domain contains sequences
corresponding to a consensus LXXI/HIXXXI/L (where L = leucine,  I = isoleucine,

H = histidine and X = any amino acid) motif,  which are also predicted to adopt an
amphipathic α-helical conformation (Hu and Lazar, 1999; Nagy et al., 1999; Perissi

et al., 1999). However, compared with the LXXLL coactivator motif, the

corepressor consensus motif represents an amino-terminally extended helix, which
appears to mediate effective binding to the unliganded receptor. Moreover, this
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observation suggests that the LXXI/HIXXXI/L motif in NCoR and SMRT and the

LXXLL motif in coactivators may utilize overlapping sites on the receptor LBD for

interaction, with an inability of the larger corepressor helix to fit within a "charge
clamp". The recent co-crystallisation of antagonist-bound PPARα with a peptide

from the SMRT corepressor fulfils this prediction with the AF-2 helix in the receptor

being displaced to accommodate the larger corepressor peptide (Xu et al., 2002).

Further insight into the potential mechanism of transcriptional repression by nuclear
receptors came from the discovery of mammalian homologs of the yeast Sin3 protein

(Ayer et al., 1995; Schreiber-Agus et al., 1995) and the subsequent observation that
these proteins interact with NCoR and SMRT (Nagy et al., 1997; Alland et al., 1997;

Heinzel et al., 1997).  In turn, these proteins are components of a larger corepressor

complex that also contain Histone Deacetylases (HDAC1/HDAC2), suggesting a
model for repression in which histone deacetylation and subsequent chromatin

condensation results in reduced access of the transcription machinery to the gene

promoter (Heinzel et al., 1997; Alland et al., 1997). Since then several independent

groups have reported the existence of multiple SMRT and NCoR complexes in

which many component factors, including histone deacetylases, TBL-1, TBLR-1,

GPS-2 and a number of other modulatory and effector proteins are recruited through

docking surfaces (repression domains) located principally in the N-terminal and

central regions of SMRT and N-CoR (Jepsen and Rosenfield, 2002; Privalsky,

2004), although the precise composition and the relationship of these complexes

remain to be determined. However, it is noteworthy that SMRT and NCoR not only

serve as factors which recruit these complexes, but also play a role in the activation

of the enzymatic mechanism of their associated histone deacetylase HDAC3

(Guenther et al., 2001; Codina et al., 2005). Moreover, it is now clear that the

functions of both SMRT and NCoR are further diversified through alternative

mRNA splicing, yielding a series of corepressor protein variants that participate in

distinctive transcription factor partnerships and display distinguishable repression

properties which can be modulated in different cell types and to different

developmental stages ( Goodson et al., 2005).

In addition to NCoR and SMRT other corepressor proteins have been identified

which interact directly with nuclear receptors and repress their transcriptional

activity. For example the Small Ubiquitous Nuclear Corepressor (SUN-COR), which
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shows no homology to NCoR and SMRT, interacts directly with TR and RevErb.

The observation that SUN-COR interacts with NCoR and SMRT suggested that it

may function as an additional component of a larger corepressor complex involved

in transcriptional repression (Zamir et al., 1997). Alien is another corepressor

unrelated to SMRT and NCoR which was first identified in Drosophila. It is a very

highly conserved protein among different species which interacts with a number of

nuclear receptors, including TR, VDR and the ecdysone receptor. Its function has

been well established for the orphan receptor Dax-1 (dosage–sensitive sex reversal

adrenal hypoplasia critical region on the X chromosome, gene 1), where mutations

which impair its binding to Alien seems to play an important role in the pathogenesis

of adrenal hypoplasia congenita (Altincicek et al., 2000). Hairless is another TR

associated corepressor which can recruit HDACs independently from NCoR or

SMRT and which has been shown to play an important role in mediating the effects

of TH on brain development (Potter et al., 2001).

1.1.3.5 Negative transcriptional regulation

There is also evidence to suggest that corepressors can participate in ligand-
dependent transcriptional inhibition by nuclear receptors. One of the best

characterized examples of this alternative form of transcriptional regulation is the

feedback loop through which T3, impairs transcription of the TRH, TSHα and TSHβ

genes, thereby suppressing the production of hypothalamic TRH and pituitary TSH.
In general, it has been observed that when bound to negative hormone response

elements (HREs) in these gene promoters, the unliganded receptor increases basal

levels of transcription, and that addition of ligand initially reverses this stimulation
and then mediates active repression of transcription (Wondisford et al., 1993;

Hollenberg et al., 1995). Unlike their positive counterparts, the mechanism by which
negative HREs act are poorly understood but their location frequently in the vicinity

of the TATA box, may suggest interference with the basal transcription complex.

Tagami and colleagues proposed a model in which corepressors mediate basal
activation of the TSHα  and TRH promoters by unliganded TRs, since

overexpression of NCoR and SMRT unexpectedly enhanced the basal activity of

these promoters (Tagami et al., 1997).  In another study, it has been demonstrated
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that T3 induces recruitment of HDAC2 and TR to a negative response element in the

TSHβ promoter (Sasaki et al., 1999).  As yet, it is not possible to reconcile all these

observations into a satisfying, unifying mechanism.  One possibility is that the

corepressor/HDAC complex mediates different responses in positive versus negative
hormone response element contexts. Several lines of evidence indicate that

coactivators may also play a role in ligand-dependent repression or negative

transcriptional regulation: mutations in TRβ which disrupt its interaction with

coactivators are associated with  impaired negative regulation by TR in vivo

(Collingwood et al., 1997; Collingwood et al., 1998); experiments in our own

laboratory (R. Clifton-Bligh unpublished data) and by others (Tagami et al., 1999)
suggest that hormone-dependent repression by TR involves coactivator recruitment;

targeted disruption of the SRC-1 coactivator gene in mice results in impaired

negative feedback regulation of TRH and TSH genes by thyroid hormones (Weiss et

al., 1999).

In addition to the ligand-dependent repression through negative regulatory elements

described above, recent studies have identified a novel mechanism of

transrepression, by which NRs can inhibit transcription without direct, sequence-

specific binding to DNA. Many NRs have been suggested to exert inhibitory effects

on inflammatory response genes through direct interactions with the nuclear factor

kB (NF-kB) and activator protein 1 (AP-1) transcription factors (Pascual and Glass,

2006). Recently, ligand-dependent sumoylation of PPARγ, which prevents exchange

of corepressor for coactivators, has been proposed as a novel mechanism through

which PPARγ represses the transcriptional activation of inflammatory genes in

mouse macrophages (Pascual et al., 2005). Finally, cofactors containing an intrinsic

repression function can be recruited by NRs in a ligand-dependent manner although

their role in negative regulation remains to be elucidated. Examples of such cofactors

are the receptor interacting protein of 140 kDa (RIP140) and the ligand-dependent

corepressor (LCoR). RIP140 was initially reported as a coactivator, but subsequent

studies showed that it is a widely expressed corepressor for nuclear receptors which

controls energy homeostasis by regulating the expression of metabolic gene

networks in adipose tissue and muscle (Parker et al., 2006). LCoR was identified in a

screen for proteins that interacted with the estrogen receptor α (ERα) LBD in an

estradiol-dependent manner (Fernandes et al., 2003). Despite their very limited
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homology, LCoR and RIP140 share a similar mechanism of action. Both interact

with a number of receptors in the presence of agonist but not antagonist, and recruit

similar cofactors including HDACs. Finally, the orphan receptor short heterodimer

partner (SHP) which interacts and inhibits the action of several NRs, mediates most

of its repressive effect through recruitment of HDACs (Gobinet et al., 2005).
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1.2 Thyroid hormones, their receptors and the syndrome of Resistance to Thyroid
Hormone

1.2.1 Thyroid hormones

Thyroid hormones (TH) are essential for the regulation of a diverse array of

physiological processes including growth, myocardial contractility, differentiation of

the nervous system and metabolic rate. Disorders of the thyroid gland are among the
most common endocrine maladies, thus the study of TH action has important

biological and medical implications. Thyroxine (T4) and, to a lesser extent, 3,5,3'-

triiodothyronine  (T3), which is the biologically active hormone, are synthesized in
the thyroid gland and secreted into the bloodstream under the control of

hypothalamic thyrotropin-releasing hormone (TRH) and pituitary thyroid-
stimulating hormone (TSH).  In turn, T3 and T4 regulate TRH and TSH production

as part of a negative feedback loop ensuring remarkable stability of serum thyroid

hormones levels (Figure 1.7).
The primary effects of thyroid hormones on physiological processes are mediated

through a nuclear thyroid hormone receptor (TR), which is intimately associated
with chromatin and binds TH with high affinity and specificity. In addition to the

receptor it is recognized that thyroid hormone action in tissue is modulated by other

factors: for example, recently the monocarboxylate transporter 8 (MCT8), a
membrane transporter, has been shown to be critical for T3 delivery to the human

central nervous system (CNS) (Friesema et al., 2004; Dumitrescu et al., 2004).
While T4 is produced entirely by the thyroid, T3 is mainly produced in the periphery

through the deiodination of T4. Three types of deiodinases (DIOs), which are

selenoenzymes that catalyze iodothyronine deiodination, have been described: the
type I deiodinase (DIO 1) is widely distributed and is responsible for the generation

of most T3 in peripheral tissues; DIO 2 generates T3 in the CNS and is involved in
hypothalamic-pituitary negative feedback; the type 3 (DIO 3) deiodinase mediates

TH catabolism (Bianco et al., 2002). Recently a mutation in the human SECISBP2

gene, which encodes a common regulator that mediates selenium incorporation into
proteins including the deiodinases, has been reported in association with low or

normal circulating levels of T3 but elevated T4 levels, highlighting the importance of

selenoproteins in thyroid feedback regulation  (Dumitrescu et al., 2005).



20

1.2.2 Thyroid hormone receptors

In 1986, two groups independently identified the c-erb A protein as a high-affinity
receptor for thyroid hormone (Sap et al., 1986; Weinberger et al., 1986). This

protein represents a cellular homologue of v-erb A, an avian retroviral oncogene,
which shares significant similarity with other members of the nuclear receptor

superfamily. Subsequent studies demonstrated that there are two different subtypes

of the thyroid hormone receptor, TRα and TRβ, which are highly homologous in

their ligand-binding and DNA-binding domains, but exhibit sequence divergence in
the amino-terminal regions (Figure 1.8). These subtypes are encoded by two

different genes on human chromosomes 17 (TRα) and 3 (TRβ) (Dayton et al., 1984;

Weinberger et al., 1986). Alternate splicing of each gene generates several isoforms:

TRα1 and TRα2 are derived from the α gene, and TRβ1 and TRβ2 from the β gene

(Benbrook and Pfahl, 1987; Thompson et al., 1987; Hodin et al., 1989). In contrast
to the other isoforms, TRα2 or c-erb Aα2 does not bind TH and has been suggested

that it may act as a negative modulator of thyroid hormone action (Lazar, 1993).

Interestingly, another novel TRα variant, TRα-ΔE6), which has been recently

described in mouse, (Casas et al., 2006) has been postulated to have a similar

functional role. The phenotypic analysis of numerous TR knock-out animal models
has revealed that the relative expression of the two TR isoforms varies from tissue to

tissue and also temporally during development. TRα1 is widely expressed from an

early stage of development being predominantly found in the central nervous system
(CNS), myocardium and skeletal muscle, and appears to be crucial for postnatal

development, whereas expression of TRβ  is highly restricted until later in

embryogenesis and is mainly involved in control of TH synthesis, hepatic

metabolism, and development of retinal and auditory functions (Flamant & Samurat,
2003). Of the two TRβ isoforms, TRβ1 is found in almost all tissues but is most

abundant in liver and kidney, whereas TRβ2 is expressed in the anterior pituitary and

specific areas of the hypothalamus, in addition to the developing brain and inner ear.

Recently two other isoforms (TRβ3 and TRΔβ3) have also been described, although

their role and tissue distribution in humans remains to be defined (Williams, 2000).

Like other nuclear receptors, TRs have a modular structure comprising six regions



21

(A–F) and three functional domains (Amino-terminal, DBD and LBD) as described

in Section 1.1.2.

1.2.3 Resistance to Thyroid Hormone

1.2.3.1 Clinical Features

The syndrome of resistance to thyroid hormone (RTH), which has an estimated
population prevalence of 1:50000 live births, is an uncommon rather then rare

disorder, and is characterized by reduced responsiveness of target tissues to

circulating TH. The biochemical hallmark of RTH is elevated levels of circulating
free thyroid hormones (FT4 and FT3) associated with non-suppressed pituitary TSH

secretion.  RTH was first described in 1967 by Refetoff and collegues in two siblings
from a consanguineous marriage, who exhibited the classical hormonal profile

described above (Refetoff et al., 1967). Since both central and peripheral tissues

appeared to be equally affected, the disorder was named generalized resistance to
thyroid hormone (GRTH). In 1975, a young woman with the same biochemical

signature of GRTH but with peripheral signs and symptoms of hyperthyroidism was
described as a case of "selective" pituitary resistance to thyroid hormone (PRTH)

(Gershengorn and Weintraub, 1975). Thus RTH, which occurs at any age and with

no sex preference, can present with a wide range of different clinical features (Table
1.3) which vary both between different families with the disorder and amongst

affected individuals within a single family.
Depending on the degree of associated peripheral thyrotoxic symptoms, the

phenotype is either GRTH, which may be relatively asymptomatic except for the

presence of goiter, or PRTH in which some features of hyperthyroidism are present
(Chatterjee, 1997).

1.2.3.2 Molecular genetics of RTH

In the majority of cases, RTH is familial and dominantly inherited. In 1988 Usala
and colleagues first demonstrated linkage between the TRβ locus on chromosome 3

and RTH by restriction fragment length polymorphism analysis. Since then many
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groups have reported that affected individuals are heterozygous for mutations in the

TRβ gene. Interestingly, all the mutations cluster within the hormone-binding

domain and are located in three "hot spot" regions (αα 234-282, 310-353 and 426-

461; Figure 1.9) (Collingwood et al., 1998), with receptor regions involved in DNA

binding, dimerization and corepressor interaction being devoid of natural mutations.
This is in contrast to other nuclear receptor disorders (e.g. androgen resistance) in

which mutations have been identified throughout all domains of the androgen

receptor (Quigley et al., 1995). Consistent with these observations, a recent study
has shown that knock-in of a heterozygous mutation in the murine TRβ DBD which

abolishes DNA binding, does not result in a RTH phenotype (Shibusawa et al.,

2003). Most patients have missense mutations due to single codon substitutions,
although in frame codon deletions, frameshift mutations, and truncations due to

premature stop codons have also been identified. Functional studies of the mutant

receptors typically show negligible or reduced T3-binding and an impaired ability to
activate or repress target gene transcription in a hormone dependent manner

(Refetoff et al., 1993). Interestingly, affected individuals from the very first family
with recessively inherited RTH were shown to be homozygous for a complete

deletion of both alleles of the TRβ receptor gene, while heterozygous family

members harboring a deletion of one TRβ allele were completely normal with no

evidence of thyroid dysfunction. This observation suggested that receptor

haploinsufficiency is not a mechanism for this disorder. Therefore, it has been
proposed that the mutant receptors in dominantly inherited RTH are not simply

functionally impaired, but also capable of inhibiting wild-type receptor action

(Sakurai et al., 1990; Chatterjee et al., 1991). Indeed, in vitro experiments have
shown that the function of wild-type receptor is markedly inhibited by mutant

receptors, a phenomenon known as dominant negative activity. The degree of
dominant negative inhibition exerted by mutant TR depends in part on the level of

mutant receptor expression.  Genetic evidence supporting this notion has been

provided by two rare cases of RTH. The first patient who was homozygous for
dominant negative mutations in both T Rβ  alleles had severe RTH and mental

retardation, whereas his parents who had mutations in only one TRβ allele had

milder RTH (Ono et al., 1991). Recently a second patient who was found to be either

homozygous or hemizygous for a TRβ mutation exhibited a particularly severe
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clinical phenotype with hypermetabolism, severe mental retardation and hearing loss

while the only clinical manifestation of RTH in his heterozygous mother was a

simple goiter (Frank-Raue et al., 2004). One model to explain the molecular
mechanism for dominant negative inhibition proposes that mutant receptor-RXR

heterodimer complexes directly compete with their wild type counterparts for
binding to TREs in target gene promoters (Figure 1.10). This model is supported by

the observation that dominant negative action of RTH TRβ mutants is abolished by

artificial mutations which disrupt their DNA binding or dimerisation with RXR

(Collingwood et al., 1994). A further attribute which is preserved in RTH
T Rβ  mutants is their ability to silence basal gene transcription via corepressor

recruitment. Indeed some RTH TRβ mutants show enhanced corepressor binding

and disruption of such interaction by introduction of additional mutations abolishes

their dominant negative activity (Yoh et al., 1997). As a corollary to these findings,

natural mutations occurring within TRβ domains which are essential for these key

functions (DNA binding, dimerization, corepressor interaction) might be predicted to
be clinically and biochemically silent, due to their inability to exert a dominant

negative effect. Interestingly the functional characterization of a RTH TRβ mutant,

unusually located outside the three mutation clusters, showed that it was selectively

impaired for corepressor release and negative regulation of the TRH and TSHα

genes, suggesting that this may be the minimum receptor abnormality required to
produce an RTH phenotype (Clifton-Bligh et al., 1998). To date over 100 different

defects, including point mutations, in-frame deletions and frame-shift insertion have
been reported in RTH patients from over 300 families. In general, analyses show that

both GRTH and PRTH are associated with mutations in the TRβ gene indicating that

the two disorders represent phenotypic variants of a single genetic entity.

It is of note that in a small but significant number of cases (10-15%) with clinical
and biochemical features indistinguishable from those of subjects with RTH

harbouring TRβ mutations, no receptor mutations have been identified. These cases

are often referred to as “non-TRβ RTH”. Linkage analysis has excluded the TRβ and

TRα genes as a cause of the disorder in several kindreds (Weiss et al., 1996; Pohlenz

et al., 1999). These findings suggest the possibility that mutations in other proteins

involved in TR signalling or dysregulation of their production might be involved in
the non-TRβ RTH cases. Although some knock-out mouse models seem to support
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this notion, in spite of extensive linkage studies and direct sequence analyses of

several cofactor genes (SRC-1, SRC-3, SMRT) no post-receptor defects have been

described in RTH patients to date (Refetoff et al., 2004). However very recently a
case of mosaicism for the R338W TRβ mutation in some cell lineages has been

reported, including germline but not fibroblasts in a RTH patient  (Mamanasiri et al.,

2006). This suggests that the possibility of mosaicism should be considered and

DNA from several different tissues examined in so-called “non-TRβ RTH” cases.

1.2.3.3 Animal Model of RTH

The generation of various receptor knock-out (KO) mice has provided a great

opportunity to understand the physiological roles of individual TR isoforms and

demonstrate a critical function for TRβ in regulation of the pituitary-thyroid axis.

Homozygous TRβ gene deletion (TRβ KO) mice in which both the TRβ1 and TRβ2

isoforms are absent, showed an increase in circulating thyroid hormone levels and an
inappropriately elevated TSH, recapitulating the clinical features exhibited by

recessively inherited cases of RTH (Forrest et al., 1996). In addition to the hormonal

disorder, the TRβ KO mice showed impaired auditory function indicating that the

deaf-mutism in recessive human RTH is also likely to be related to a defect in TRβ,

rather than a deletion of a contiguous gene. TRβ2 null mice, with preserved

expression of the TRα  and TRβ1 isoforms, exhibited a similar biochemical

phenotype to that of TRβ KO, consistent with the fact that TRβ2 plays a central role

in the regulation of the hypothalamic-pituitary-thyroid axis (Abel et al., 1999). In
contrast mice with deletion of the TRα1 isoform had low or normal serum TH, a

decreased heart rate and lower body temperature with a phenotype quite dissimilar to

RTH (Wikstrom et al., 1998). To investigate the properties of mutant TRβs in RTH

in vivo, several groups have generated transgenic mice in which dominant negative
TRβ mutants have been over-expressed either ubiquitously (Wong et al., 1997) or

selectively in tissues (Hayashi et al., 1998; Abel et al., 1999) and these models have

provided valuable insights into mutant receptor function and pathophysiological
mechanisms which mediate RTH (Reviewed in Yen, 2003 and Cheng, 2005). For

example, selective targeting of a RTH TRβ mutant (Δ337T) to the pituitary using a

tissue-specific promoter (Abel et al., 1999), generated transgenic mice with elevated
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TSH but only marginally raised T4 levels, suggesting that the additional dominant

negative effect of mutant receptors on the hypothalamic TRH gene is required to

elevate TH levels in patients with RTH. In contrast, ubiquitous transgenic mutant
TRβ expression resulted in an animal model with more generalized tissue resistance

(Wong et al., 1997). These mice exhibited decreased body weight and a behavioural

phenotype characterized by hyperactivity, which are recognized features of the

human syndrome. However, in these animal models the expression of the mutant
receptor transgene is not controlled by the TRβ gene promoter and as consequence

the pattern of mutant receptor expression or the resulting phenotype might not

correspond with that of human RTH.
Recently this issue has been addressed by the generation of two different knock-in

(KI) mice models in which either a frame-shift mutation involving 14 carboxy-

terminal amino acids (TRβ PV) (Kaneshige et al., 2000) or an in-frame deletion of a

threonine residue (Δ337T) (Hashimoto et al., 2001) were introduced into the

endogenous TRβ gene locus. Both of these mutations have been identified in human

RTH and the mutant receptors exhibit markedly impaired transcriptional activation
and potent dominant negative activity in vitro. Over the last few years the

phenotypes of TRβ PV and Δ337T KI mice have been extensively characterized and

they are clearly reminiscent of the human RTH phenotype.  Δ337T KI mice showed

higher levels of TH and TSH in comparison to the TRβ KO mice, supporting the

notion that dominant negative inhibition by the mutant receptor antagonizes residual

TRα1 activity in the hypothalamic-pituitary-thyroid axis. Both heterozygous and

homozygous Δ337T mice exhibited abnormalities of vestibulomotor function, which

correlated with a general reduction in cerebellar size and in the area of the Purkinje
cell layer (Hashimoto et al., 2001). Consistent with phenotypes of RTH patients,

TRβ PV KI mice also showed growth retardation (Kaneshige et al., 2000), abnormal

regulation of serum cholesterol (Kamiya et al., 2003), hearing defects (Griffith et al.,

2002) and a thyrotoxic skeletal phenotype (O’Shea et al., 2003). Homozygous mice
had markedly raised levels of serum thyroid hormone and TSH and a much more

severely pathological phenotype. Interestingly, homozygous mice had an increased

incidence of thyroid cancer suggesting that dominant-negative activity by mutant TR
might contribute to oncogenesis in this tissue (Suzuky et al., 2002). The TRβ PV KI

animal model has provided insights into the molecular basis for dominant negative
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activity in vivo, confirming that mutant receptor homodimers and heterodimers

compete with wild type TRβ for binding to target gene TREs. The interplay of

receptor isoform predominance (e.g.TRβ1 in liver, TRα1 in heart), together with the

promoter context of target gene TREs can influence the degree of dominant negative

inhibition observed in different tissues (Cheng, 2005). Interestingly, crossing

TRβ PV mice with SRC-1 knock-out animals enhanced the degree of resistance in

the hypothalamic-pituitary-thyroid axis in heterozygous TRβ PV mice, providing

evidence that coactivator ‘availability’ can also modulate mutant TRβ action in vivo

(Kamiya et al., 2003). To confirm this hypothesis, very recently another study of

TRβPV mice deficient in SRC-3 has been reported (Ying et al., 2005). However, the

profiles of tissue-dependent modulation of phenotype caused by the lack of SRC-1

versus SRC-3 in TRβ PV mice are not identical, suggesting that in addition to

regulating nuclear receptor-dependent signalling, SRCs could also function

independent of the nuclear receptor-signalling pathway. In fact, the lack of SRC-3

reduces the growth of both the pituitary and thyroid in TRβ PV mice, therefore

lessening the dysregulation of the pituitary-thyroid axis, although growth impairment

was worsened by the reduction of signalling via the IGF/P13K/AKT/mTOR pathway

which has recently been reported to mediate cell growth and proliferation (Torres-

Arzayus et al., 2004).
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1.3 Peroxisome proliferator-activated receptor gamma (PPARγ)

1.3.1 General overview of PPARs

Peroxisome proliferator-activated receptors (PPARs) form an important subgroup of

the nuclear receptor superfamily. The name PPAR originates from the initial cloning

of a receptor subtype which was shown to be activated by various xenobiotic
compounds (e.g. clofibrate) which induce proliferation of peroxisomes in the liver of

rodents. This protein was called peroxisome proliferator-activated receptor, now
known as PPARα  (Issemann and Green, 1990). Since then PPARs have been

extensively investigated and evolved from uncharacterized orphan receptors to the

most studied nuclear receptors. There are three PPAR subtypes which are products

of distinct genes and they are designated PPARα, PPARδ (also called β, NUC-1 or

FAAR) and PPARγ. The three PPARs subtypes are very similar in their DBDs,

sharing approximately 90% amino acid identity, but are more divergent in their
LBDs (Figure 1.11a). As members of the nuclear receptor family, they exhibit the

canonical domain structure and bind to specific DNA elements called PPAR

response elements (PPAREs) in the 5' flanking region of target genes as obligate
heterodimers with the retinoid X receptor (RXR) (Figure 1.11b). Indeed, PPARs

cannot bind DNA as monomers or homodimers but depend strictly on RXR as a
binding partner. Interestingly, PPAR:RXR heterodimers are "permissive" in that they

can be activated synergistically when occupied by ligands for either PPAR or RXR.

Functional PPAREs are tandem repeats of an AGGNCA half-site separated by one
nucleotide designated a direct repeat + 1 (DR-1) motif.  Nucleotide sequences

located immediately upstream of the first half-site confer polarity to the bound
heterodimer such that PPARγ  interacts with the 5’ hexamer within the DR-1

element, whereas RXR occupies the downstream site (Juge-Aubry et al., 1997; Di

Rienzo et al., 1997). Interestingly, this arrangement represents a reversal of polarity

compared with VDR:RXR and TR:RXR heterodimers, where RXR occupies the
upstream core hexamer of the direct repeat.

The three PPARs exhibit different expression patterns: PPARα is most highly

expressed in liver, kidney, heart and muscle; PPARγ is most abundant in fat cells,

large intestine and cells of the monocyte lineage; PPARδ is expressed in nearly all
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tissues, with highest expression in skin, brain and adipose tissue (Braissant et al.,

1996). These differences in tissue distribution suggested that the different PPARs are

not simply functionally interchangeable but likely to mediate distinct biological
actions. Several studies have established an essential role for PPARγ  in both

adipocyte differentiation and function, while PPARα is known to play an important

role in fat catabolism in the liver. PPARα  ligands have been shown to induce

expression of genes involved in fatty acid uptake and β-oxidation (Desvergne and

Wahli, 1999). PPARδ is less well characterized, but increasing evidence suggests it

plays a role in the control of fatty acid oxidation adipose tissue and skeletal muscle

with PPARδ agonists improving plasma lipid profiles (Wang et al., 2003; Evans et

al., 2004). In a very recent study Hummasti and Tontonoz used retroviral expression

vectors to ectopically express each of the three PPAR isotypes in NIH-3T3 cells,
measuring changes in gene expression in the presence of selective receptor agonists.

The results of microarray analyses revealed many target genes common to all three

receptors, but also unique targets for each receptor (Hummasti and Tontonoz, 2006).
In the same study the investigators demonstrated that the differing biological activity

of the PPARs not only results from their distinct expression patterns, but also stems
from intrinsic differences localized to the N-terminal region of each receptor as

demonstrated by analysis of chimeric constructs. For example, the amino-terminal

domain of PPARγ confers the ability to promote adipogenesis on the DBD and LBD

of PPARδ, whereas the amino-terminal region of PPARδ fused to the DBD and LBD

of PPARγ mediates upregulation of fatty acid oxidation genes in differentiated

adipocytes (Hummasti and Tontonoz, 2006).

1.3.2 PPARγ  gene, mRNA and protein

PPARγ is the most extensively studied of the three PPAR subtypes to date. The gene

has been cloned from a number of species including salmon, mice, hamster, frogs,

pigs, rhesus monkeys and human and shows a high level of conservation, which may
reflect the pivotal role that this receptor plays in regulating glucose and lipid

homeostasis which is an essential function in many species. The human PPARγ gene

contains nine exons which extend over more than 100 kb of genomic DNA and has

been mapped to chromosome 3p25 (Greene et al., 1995). Four different receptor
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isoforms have been identified as products of differential promoter usage. PPARγ1,

PPARγ3 and PPARγ4 mRNAs differ in their 5' untranslated regions but encode the

same protein, whilst the PPARγ2 mRNA generates a protein which contains an

additional 28 amino acids at its amino-terminus (encoded by an additional exon B)
(Figure 1.12). Analyses of the tissue distribution of receptor isoforms reveals some

differences: PPARγ1 is most widely expressed in adipose tissue, large and small

intestine, haemopoietic cells, kidney, liver and skeletal muscle (Fajas et al, 1997),
whereas the PPARγ2 and PPARγ3 isoforms have a more restricted distribution.

Thus, PPARγ3 is found in adipose tissue, macrophages and colon and PPARγ2 is

expressed only in adipose tissue where it constitutes approximately 20% of the total
PPARγ mRNA (Auboeuf et al., 1997). PPARγ4 has been described more recently

and its tissue distribution is still to be defined (Sundvold and Lien, 2001). Moreover,

the relative importance of these different receptor isoforms remains to be further
elucidated.

1.3.3 Transcriptional activity of PPARγ

PPARγ-mediated transactivation results from the binding of PPARγ:RXR

heterodimers to a PPARE in the promoter region of target genes, and ligand

activation of this complex. Binding of ligands to PPARγ causes a conformational

change with exposure of new interfaces at the protein surface which mediate

recruitment of transcriptional coactivators, including members of the p160/SRC
family, the mediator complex via (also known as PBP, TRAP220, and DRIP205) and

histone acetyltransferases CBP and p300 (McKenna and O’Malley, 2002). PGC-1 is
another PPARγ coactivator, which plays an important role in metabolic regulation

(Puigserver and Spiegelman, 2003). Interestingly, unlike most coactivators, which

contain specific LXXLL peptide motifs mediating binding to the AF2 domain in the

LBD of nuclear receptors, PGC-1 also binds PPARγ in a ligand-independent manner

to a region that overlaps the DNA binding and hinge region (Puigserver et al., 1998).
Moreover it also plays critical roles in gene-specific transcriptional activation, being

for example a potent coactivator on the uncoupling protein-1 gene, but not the aP2

gene. In the absence of ligand PPARγ can bind to corepressors (NCoR and SMRT),

which repress target gene expression until ligand triggers their release and
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recruitment of coactivators. Recently, Guan and colleagues have shown that

corepressors control the transcriptional activity of PPARγ selectively on different

target genes (Guan et al., 2005). Thus, whilst many PPARγ genes are induced (e.g.

aP2) during adipogenesis, others such as glycerol kinase (GyK) are expressed at low

basal level and are dramatically up-regulated only following treatment with TZDs.
Unlike the aP2 promoter, where PPARγ is constitutively associated with coactivators

even in the absence of ligand, the receptor is bound to corepressors on the GyK

promoter such that basal gene transcription is very low. Treatment of cells with

ligand induces GyK expression by two different mechanisms: (i) corepressor release
and coactivator recruitment as a consequence of receptor conformational change (ii)

additional destabilization of corepressor binding to receptor as consequence of
cellular upregulation of PGC-1, which specifically binds to PPARγ  on the GyK

promoter (Guan et al., 2005).

In addition, post-transcriptional modification can also modulate the activity of both

PPARγ isoforms. For example phosphorylation of serine 112 in the amino-terminal

region of PPARγ2 reduces its transcriptional activity (Adams et al., 1997) and

promotes receptor sumoylation at lysine 107, which further lowers its ability to act
as transcriptional activator (Yamashita et al., 2004).

Finally, there is also evidence to suggest that PPARγ  may exert negative

transcriptional regulatory effects when not bound directly to promoter DNA by

interference with other transcriptional pathways (e.g. NF-kB, AP-1), and such
transrepression (Pascual et al., 2005) mechanisms have already been described

earlier in section 1.1.3.5 of this introduction.

1.3.4 Natural and synthetic ligands of PPARγ

As part of the nuclear receptor family, PPARγ is a sensor of changes in levels of

lipophilic ligands and responds by modifying gene transcription, but the precise
nature of its endogenous ligand(s) remains to be defined. To date a variety of natural

ligands have been reported including long-chain polyunsaturated fatty acids,
arachidonic acid metabolites derived from the cycloxygenase and lipoxygenase

pathway (such as 15-deoxy ∆12,14 prostaglandin J2 [15d-PGJ2] and 15-

hydroxyeicosatetraenoic [15-HETE]), fatty acid derived components of oxidized low
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density lipoproteins (OxLDL) (e.g. 9-hydroxyoctadecadienoic acid [9-HODE] and

13-HODE) (Willson et al., 2000). However, most of these ligands bind with lower

affinity compared with the affinity of well-established ligands for other nuclear
receptors. The cyclopentone prostaglandin 15d-PGJ2 was suggested to be the most

potent endogenous ligand for PPARγ  and is commonly used as the prototype for

naturally-occurring PPARγ  agonists (Forman et al., 1995). However, doubt as to

whether this is a true PPARγ ligand in vivo was recently raised when it was shown to

be produced at extremely low levels during adipocyte differentiation in vitro and

when PPARγ activity is high in humans (Bell-Parikh et al., 2003). Recently another

higher-affinity, lipophilic, PPARγ-specific ligand has been shown to be generated

endogenously in the early stages of murine 3T3-L1 preadipocytes differentiation
(Tzameli et al., 2004), but further investigation is required to define the exact nature

of this molecule(s) and to determine its biological relevance. Overall, despite

intensive research, whether PPARγ has a unique, highly affinity natural ligand or

whether it operates as a physiological lipid sensor (activated by exposure to a variety
of weakly activating fatty acids and eicosanoids) still remains to be answered.

Several synthetic compounds have been recognized as high affinity PPARγ ligands.

The anti-diabetic thiazolidinedione (TZD) class of drugs which includes
troglitazone, rosiglitazone and pioglitazone has been shown to act via PPARγ, as

have several more recently identified compounds e.g. tyrosine-based agonists.
However, although these PPARγ “full agonists” improve insulin resistance, they

paradoxically cause weight gain, through a combination of increased adipogenesis

and enhanced fat storage, and possibly fluid retention. In an attempt to separate the
beneficial effects (e.g. improvement in insulin sensitivity) from the less desirable

side effects (e.g. increased adipogenesis) of TZDs, several biotechnology and

pharmaceutical companies have sought to develop new classes of drugs with better
therapeutic properties. The term “SPPARMs” has been coined to denote compounds

which can selectively modulate PPARγ function, often by virtue of differentially

regulating target genes, as consequence of differential binding of coregulators and
dissociation of corepressors. An example of a selective PPARγ modulator or

SPPARM is N-(9-fluorenylmethyloxycarbonyl) F-MOC-L-leucine, which
selectively improves insulin sensitivity but without promoting weight gain in mice

(Rocchi et al., 2001). Interestingly, when activated by F-MOC-L-leucine, PPAR
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recruits the coactivator SRC-1, whereas TZD agonists induce association of PPARγ

with transcriptional intermediary factor 2 (TIF-2). Such differential cofactor

recruitment could explain differential in vivo biological effects of these agents. TIF-2

is an important determinant of adipogenesis and can inhibit adaptive thermogenesis
and lipid oxidation as demonstrated by the fact that mice lacking TIF-2 exibit

reduced weight gain despite increased caloric intake, hyperactive brown adipose

tissue and increased adaptive thermogenesis (Picard et al., 2002). Another partial
agonist is MCC555 which also induces a different pattern of coactivator recruitment,

with a diminished ability to recruit SRC-1 when compared to rosiglitazone (Reginato
et al., 1998). The discovery of such compounds has prompted widespread screening

of libraries of both structurally-related and chemically distinct molecules with the

subsequent identification of an array of potential SPPARMs: PAT5a, an unsaturated
TZD with partial agonist activity, is a potent antidiabetic agent with only weak

adipogenic activity (Misra et al., 2003); similar properties have been reported for the
novel non-TZD selective PPARγ modulators nTZDpa (Berger et al., 2003) and KR-

62980 (Kim et al., 2006); a panel of N-benzyl-indole selective PPARγ modulators,

with partial agonist activity in vitro, exhibited potent glucose-lowering activity in

db/db mice, but attenuated increases in heart weight and brown adipose tissue when

compared with full agonist (Liu et al., 2005). Although the potential role of these
new classes of drugs in the treatment of insulin resistance is promising, their

molecular mechanism needs to be fully characterized.

Finally, it is also worth noting that several “herbal” antidiabetic remedies (such as
Punica granatum flower (PGF), mulberry, Korean red ginseng and banaba) have

been shown to enhance PPARγ activity (Huang et al., 2005; Park et al., 2005).

1.3.5 PPARγ  and adipogenesis

Adipose tissue is composed principally of adipocytes, which store energy in the form

of triglyceride and release it as free fatty acids. Together with skeletal muscle,
adipose tissue is the main regulator of energy balance in the body. Excessive

accumulation of adipose tissue results in obesity whereas its absence is associated
with lipodystrophic syndromes. There are several lines of evidence to indicate that

PPARγ plays a crucial role in adipocyte formation and function (Tontonoz et al.,
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1994; Hu et al., 1995).  During adipocyte differentiation, the expression of numerous

genes involved in lipid storage and control of metabolism including adipocyte P2

(aP2) (Tontonoz et al., 1994), acyl-CoA synthase (Schoonjans et al., 1995),
phosphoenol pyruvate carboxykinase (PEPCK) (Tontonoz et al., 1995), fatty acid

transporter (FATP-1) (Martin et al., 1997) and lipoprotein lipase (LPL) (Schoonjans
et al., 1996) are regulated by PPARγ. Furthermore, adipose mass is reduced in

PPARγ knock-out (KO) mice, with homozygous null animals being completely

devoid of adipose tissue and heterozygous null mice exhibiting decreased adipose
tissue mass (Kubota et al., 1999; Miles et al., 2000). In addition to PPARγ, other

transcription factors such as the CCAAT enhancer binding proteins (C/EBPs), ADD-

1/SREBP and several secreted factors also regulate the complex process of
adipogenesis (Fajas et al., 2001). However, recently Rosen and colleagues showed

that rather than being an equal codirector of the adipocyte differentiation program,

PPARγ plays a leading role in the adipogenic transcriptional hierarchy (Rosen et al.,

2002). In order to determine which receptor isoform (PPARγ2 or PPARγ1) is the

master regulator of adipocyte differentiation, Ren and colleagues retrovirally
expressed either PPARγ1 or PPARγ2 in receptor null preadipocytes. Despite a

comparable expression level of both proteins, only PPARγ2 was able to mediate

adipogenesis, suggesting that it is the most important isoform in adipogenesis (Ren

et al., 2002). On the other hand using a similar experimental paradigm, another

group obtained contrasting results, which suggested that the adipogenesis could be
mediated by either PPARγ1 or PPARγ2 (Mueller et al., 2002). However, they found

that the pro-adipogenic activity of PPARγ2 was greater than that of PPARγ1. The

notion that PPARγ2 is the master regulator of adipocyte differentiation is also

supported by the phenotype of partial lipodystrophy in mice with selective disruption

of PPARγ2 and by the failure of preadipocytes isolated from these mice to

differentiate in vitro (Zhang et al., 2004).

1.3.6 PPARγ,  insulin resistance and diabetes

Type 2 diabetes is characterized by resistance of peripheral tissues, including

skeletal muscle, fat and liver to the action of insulin. The thiazolidinediones (TZDs)
represent a novel class of anti-diabetic agents that are capable of lowering circulating
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glucose levels without enhancing pancreatic insulin secretion. The discovery that

TZDs are high affinity agonists for PPARγ, suggested a role for this receptor in

controlling insulin sensitivity and prompted us to screen the human gene in a cohort
of subjects with severe insulin resistance in collaboration with Professor Steve

O’Rahilly (University of Cambridge), leading to the identification of two
heterozygous missense mutations (P467L and V290M) in the ligand-binding domain

of PPARγ (Barroso et al., 1999). P467L and V290M were found in three subjects

with extreme insulin resistance, type 2 diabetes and early-onset hypertension from

two unrelated families. Functional characterization of these mutant receptors
revealed that, in addition to being functionally impaired, when co-expressed with

equal amounts of the wild type receptor, the mutants inhibited wild type PPARγ

action in a dominant negative manner, consistent with heterozygosity for PPARγ

mutations in affected subjects, and dominant inheritance of the disorder in one

family (Barroso et al., 1999). These data provided the first genetic evidence that
PPARγ is critical for the control of tissue insulin sensitivity in humans. Following

this two other groups have identified other loss-of-function mutations in the ligand-

binding domain of human PPARγ (Agarwal and Garg, 2002; Hegele et al., 2002).

Together, these reports describe eight subjects with similar features, and have helped

to define the clinical phenotype of the PPARγ ligand resistance syndrome (PLRS)

(Gurnell et al., 2003; Semple et al., 2006). Virtually all affected patients were

severely insulin resistant and exhibited a stereotyped form of partial lipodystrophy,
with loss of subcutaneous fat from the limbs and gluteal region but relative

preservation of both subcutaneous and visceral abdominal depots. The observation
that two children with the P467L mutation were also hyperinsulinaemic, suggests

that insulin resistance is a very early feature of this condition (Savage et al., 2003),

and adult consequences of this include polycystic ovarian syndrome (PCOS) and
acanthosis nigricans.  Additional features of PLRS include a propensity to develop

early-onset diabetes, dyslipidaemia, fatty liver and hypertension.
Recently, an animal model equivalent to human P467L mutation (P465L) has been

independently generated by two groups (Tsai et al., 2004; Gray et al., 2006). The

heterozygous mice have normal total adipose tissue weight, but exhibit reduced
intra-abdominal fat mass and increased extra-abdominal subcutaneous fat compared

to wild type animals, i.e. altered body fat distribution, but in a manner which is
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different from that observed in human subjects. Surprisingly, unlike their human

counterparts, the mice were also insulin sensitive. Interestingly, hypertension was the

only phenotypic abnormality observed in P465L mice which was in common with
human P467L subjects. These findings initially raised concerns about the validity of

rodent models in exploring the consequences of loss-of-function mutation in human
PPARγ. However, Gray and colleagues have generated P465L mutant mice on a

hyperphagic, leptin deficient (ob/ob) backgrounds and this grossly exacerbated the
insulin resistance and metabolic disturbances associated with leptin deficiency,

despite a reduction in excess whole body fat mass and adipocyte abnormalities
(Gray et al., 2006), recapitulating the clinical  phenotype observed in human

subjects.

Following the identification of these earlier mutations in the ligand-binding domain
of PPARγ, we have described a different, digenic mechanism of insulin resistance in

an unrelated kindred with a combination of heterozygous, loss-of-function mutations

in PPARG and PPP1R3 (muscle-specific protein-phosphatase 1 regulatory subunit,
involved in glycogen synthesis) (Savage et al., 2002; Chapter 5). Recently, other

PPARγ mutations have been identified in patients with similar clinical features and

they will be discussed in more detail in Chapters 6 of this thesis (Agostini et al.,

2006; Al-Shali et al., 2004; Gordon et al., 2006; Francis et al., 2006; Hegele et al.,

2006).
In addition to these mutations, a different type of genetic defect which may affect the
function of PPARγ  in adipogenesis has been described. A Proline to Glutamine

substitution at codon 115 (P115Q) has been described in four markedly obese

subjects (Ristow et al., 1998). This heterozygous mutation, which disrupts mitogen-

activated protein kinase-dependent phosphorylation of the receptor at an adjacent
residue (serine 112) (Adams et al., 1997), results in a constitutively active receptor

which enhances adipocyte differentiation thus promoting obesity. Recently, a mutant

mouse model in which PPARγ phosphorylation is abolished analogous to the human

mutation has been described. Interestingly, in contrast to the human subjects
harbouring the P115Q mutation, these mice were not obese, but were protected

against insulin resistance in the context of diet-induced obesity (Rangwala et al.,

2003).
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In population studies, a much more common PPARγ  genetic variant is a

polymorphism replacing Proline with Alanine at codon 12  (Pro12Ala) in the amino-

terminal domain of PPARγ2, with an allelic frequency ranging between 2% and 23%

in different ethnic groups (Deeb et al., 1998; Masugi et al., 2000). This amino acid

variant has been associated with increased protection against the development of

type 2 diabetes and insulin resistance (Deeb et al., 1998; Altshuler et al., 2000) and,

more recently, a decreased incidence of cardiac disease (Ridker et al., 2003).

However, its effect on body mass index (BMI) remains unclear, being variably

associated with either increased (Beamer et al., 1998) or decreased weight (Deeb et

al., 1998). A further paradox is that heterozygous PPARγ null mice are protected

from developing insulin resistance relative to wild type controls when they are

challenged with a high fat diet and develop normally otherwise, with no apparent

metabolic defect (Kubota et al., 1999; Miles et al., 2000). Despite the knowledge

that TZDs act via PPARγ and that natural human PPARγ mutations are associated

with severe insulin resistance, the mechanisms by which PPARγ controls insulin

action in vivo remain unclear and the target tissue(s) where TZDs act remain to be

defined. One line of evidence favours receptor action in adipose tissue, where

PPARγ is predominantly expressed. In keeping with this, mice lacking adipose tissue

have been shown to be refractory to the antidiabetic effects of TZDs (Chao et al.,

2000). PPARγ activation in adipocytes increases levels of GLUT4, the insulin-

stimulated glucose transporter (Young et al., 1995; Wu et al., 1998) and may have

direct effects on other genes important for glucose homeostasis. To explain the

insulin-sensitizing effects of TZDs it has also been hypothesised that PPARγ

activation in adipose tissue exerts whole body effects on free fatty acid (FFA) flux,

promoting their uptake/trapping in fat rather then in muscle and liver, where such

excess fatty acid delivery is believed to cause insulin resistance via a “lipotoxic”

mechanism and simultaneously decreasing FFA release by lipolysis from adipose

tissue, thus enhancing insulin sensitivity by a reduction in circulating FFA. This has

become known as the “lipid steal” hypothesis and has recently been supported by

observations made in rodents (Ye et al., 2004). Consistent with this, PPARγ ligands

enhance the expression level of several genes involved in hydrolysis of plasma TGs

(lipoprotein lipase, LPL) (Desvergne and Wahli, 1999), fatty acid uptake and

esterification (fatty acid translocase, CD36; fatty acid transport protein, FATP;
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acylCoA synthase, ACS) (Desvergne and Wahli, 1999), lipogenesis and TG

synthesis (phosphoenolpyruvate carboxykinase, PEPCK; glycerol kinase, GyK)

(Tontonoz et al., 1995; Guan et al., 2002) (Figure 1.13). TZDs also induce changes

in adipose tissue morphology and typically higher number of smaller adipocytes are

seen in TZD-treated rodents (Okuno et al., 1998). In addition there is now a general

consensus that adipose tissue should not be simply considered a reservoir for energy

storage but also as a true endocrine organ, which secretes a diverse series of

hormones, collectively referred to as adipokines (Ahima and Flier, 2000). These

adipokines (e.g. leptin, adiponectin, tumour necrosis factor-α [TNFα], interleukin-6

[IL-6], resistin) are capable of exerting profound effects on whole-body insulin

sensitivity, allowing a cross talk between adipose tissue, skeletal muscle and liver in

the regulation of glucose homeostasis. Leptin, which is the best established of these

adipokines, is positively correlated to adipose tissue mass and acts as suppressor of

appetite in humans (Farooqi et al., 1999). Leptin administration to lipodystrophic,

leptin-deficient humans markedly improves insulin sensitivity (Oral et al., 2002).

Moreover transplantation of normal, but not leptin-deficient white adipose tissue

(WAT) into totally lipodystrophic mice also improves insulin sensitivity (Colombo

et al., 2002) suggesting that this hormone may have some direct role in regulating

insulin action. Adiponectin is one of the most abundant plasma proteins in humans

whose levels (in contrast to leptin) are inversely related to the total WAT mass.

TZDs increase adiponectin gene expression, suggesting that this adipokine may

represent a critical link between PPARγ activation and insulin sensitization (Maeda

et al., 2001). In keeping with this, circulating levels of adiponectin in three

individuals harbouring loss of function mutations in PPARγ were markedly lower

than in normal controls or severely insulin resistant subjects with normal

PPARγ  (Combs et al., 2002). Recently, these observations were confirmed in five

additional patients with PPARγ mutations, but direct evidence for insulin

sensitization by adiponectin is still awaited (Semple et al., 2006). Resistin, a small

secreted protein, enhances systemic insulin resistance and there is evidence that

TZDs inhibit production of this factor (Steppan et al., 2001) but in humans this

peptide may be mainly monocyte-derived rather then secreted from adipose tissue as

in the rodent. PPARγ agonists also reduce the expression of 11β-hydroxysteroid

dehydrogenase type 1 (11β-HSD1), which mediates the production of active cortisol
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from inactive cortisone in liver and fat, thus facilitating cortisol-induced adipocyte

differentiation (Berger et al., 2001). Alternatively, PPARγ may act directly on

skeletal muscle, where it is also expressed, albeit at much lower levels than in

adipocytes. TZDs enhance PPARγ expression in muscle (Park et al., 1998) and their

action in vivo includes promote glucose uptake into human skeletal muscle (Inzucchi

et al., 1998).  In addition TZD have also been shown to decrease blood glucose and

improve insulin sensitivity in transgenic mice lacking adipose tissue (Burant et al.,

1997). However two different studies of mice with muscle-specific PPARγ deletion

showed discordant effects on insulin sensitivity. One study reported modest whole-

body insulin resistance and normal glucose disposal into muscle (Norris et al., 2003),

whilst the second reported progressive and severe insulin resistance as consequence

of markedly impaired muscle glucose uptake in response to insulin (Hevener et al.,

2003), and these differences may reflect the age or genetic background of animals

studied.

1.3.7 Other diverse roles of PPARγ

It is now recognized that PPARγ may play an important role in diverse biological

processes. As already described PPARγ  plays an important role in adipocyte

differentiation and lipid metabolism; the receptor also has a role in macrophage

function and in neoplasia (Lehrke and Lazar, 2005; Savage, 2005; Semple et al.,

2006).
Initially, PPARγ was reported to induce expression of CD36, a cellular scavenger

receptor for atherogenic LDL and therefore increase lipid uptake and storage, and

ultimately drive conversion of the macrophage into an atherogenic foam cell
(Tontonoz et al., 1997). In keeping with this it was found to be expressed at a

relatively high level in human atherosclerotic plaque macrophages in addition to

being expressed in blood monocytes and induced during macrophage differentiation
(Ricote et al., 1998).  However, despite these observations however, TZD treatment

has been shown to be vasoprotective and capable of reducing atherosclerosis in

mouse models, through activation of lipid efflux pathways in macrophages that
prevent lipid accumulation (Chawla et al., 2001; Chinetti et al., 2001). Moreover

PPARγ has also been shown to have anti-inflammatory action in macrophages where
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receptor activation inhibits the production of pro-inflammatory cytokines such as IL-

6 and TNF-α (Ricote et al., 1998). Evidence that PPARγ may play a role in the

control of blood pressure is provided by the observation that patients with dominant

negative mutations in PPARγ exhibit severe early-onset hypertension (Barroso et al.,

1999) and that mice with the homologous P465L mutation, are significantly
hypertensive despite normal insulin sensitivity, suggesting that hypertension is not a

consequence of insulin resistance (Tsai et al., 2004). In addition, TZDs treatment

lowers blood pressure in diabetic patients (Ogihara et al., 1995) and in a range of
animal models of hypertension (Pershadsingh et al., 1993; Walker et al., 1999).

Since PPARγ is expressed in vascular endothelial cells (Libby et al., 1999; Iijima et

al., 1998), receptor agonists may exert their effects by regulating the production of
factors which control vascular tone, promoting release of the vasodilator C-type

natriuretic peptide (Doi et al., 1998) or inhibiting release of the vasoconstrictor

endothelin (Satoh et al., 1999). Likewise it has been reported that PPARγ agonists

block calcium channel activity in vascular smooth muscle cells (Nakamura et al.,
1998).

The interest in studying the effects of PPARγ  on neoplastic processes originated

from the observation that TZDs promote cell cycle arrest in logarithmically growing

NIH-3T3 fibroblasts and in malignantly transformed adipogenic HIB-1B cells
(Altiok et al., 1997). Subsequently it was shown that activation of PPARγ by

pioglitazone blocked the cell cycle and caused differentiation of human liposarcoma

cells (Tontonoz et al., 1997) and troglitazone has been successfully used to induce
adipogenesis in cases of advanced liposarcoma in man (Demetri et al., 1999). In

addition, TZDs have been shown to arrest cell growth and to reduce secretion of the

tumor marker prostate-specific antigen (PSA) from cultured prostate cell lines, and
an encouraging response to TZD treatment has been observed in metastatic prostate

cancer (Mueller et al., 2000). Moreover, PPARγ expression has been demonstrated

in human breast and colon tumours and in corresponding cell lines and studies in

these cellular contexts have shown a significant antiproliferative effect of
PPARγ agonists (Elstner et al., 1998; Sarraf et al., 1998). However, contrary to these

results, a recent study showed that enhanced PPARγ signalling in mice constitutively

expressing high levels PPARγ in their breast tissue exacerbates mammary gland

tumor development of breast cancer (Saez et al., 2004). In addition, somatic, loss-of-
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function mutations in PPARγ have been described in human colon cancer tumours

(Sarraf et al., 1999); contradictory observation show an increase in polyp size and

frequency in a mouse model of colonic cancer following treatment with PPARγ

agonists (Lefebre et al., 1998; Saez et al., 1998). These findings indicate that further

studies are needed to elucidate the role of PPARγ in the pathophysiology of cancer.

Finally, a somatic chromosomal translocation involving the PAX8 and PPARG genes
has been documented in approximately 20% of human follicular thyroid carcinoma,

resulting in the expression of a chimaeric fusion protein consisting of Pax-8 lacking

its C-terminal activation domain linked to full length PPARγ1. This chimaeric

protein exerts a dominant negative inhibitory effect on the transcriptional activity of
wild type PPARγ (Kroll et al., 2000). The exact molecular mechanism of action of

the PAX8-PPARγ oncogene in thyroid cells remains to be elucidated.
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Table 1.1 Human nuclear receptors (adapted from Germain et al., 2006). *FXRβ is

a pseudogene in humans and does not encode a functional receptor. TZDs,

thiazolidinediones; DES, diethylstilbestrol; DSS-ACH, dosage-sensitive sex
reversal-adrenal hypoplasia congenital; NGF, nerve growth factor 1; PCN,

pregnenolone 16a-carbonitrile.

Names Abbreviation Nomenclature Ligand
Thyroid hormone receptor TRα

TRβ
NR1A1
NR1A2

Thyroid hormone (T3)
Thyroid hormone (T3)

Retinoic acid receptor RARα
RARβ
RARγ

NR1B1
NR1B2
NR1B3

Retinoic acid
Retinoic acid
Retinoic acid

Peroxisome proliferator
activated receptor

PPARα
PPARβ
PPARγ

NR1C1
NR1C2
NR1C3

Fatty acids, Leukotriene B4, Fibrates
Fatty acids
Fatty acids, TZDs, prostaglandin J2

Rev ErbA RevErbα
RevErbβ

NR1D1
NR1D2

Unknown
Unknown

Retinoic Acid-related orphan receptor RORα
RORβ
RORγ

NR1F1
NR1F2
NR1F3

Cholesterol, cholesteryl sulphate
Retinoic acid
Unknown

Liver X receptor LXRα
LXRβ

NR1H3
NR1H2

Oxysterols, T0901317, GW3965
Oxysterols, T0901317, GW3965

Farnesoid X receptor FXRα
FXRβ*

NR1H4
NR1H5

Bile acids, Fexaramine
Lanosterol

Vitamin D receptor VDR NR1I1 1-25(OH)2 vitamin D3, lithocholic acid
Pregnane X receptor PXR NR1I2 Xenobiotics, PCN, hyperforin
Constitutive androstane Receptor CAR NR1I3 Xenobiotics, phenobarbital
Human nuclear factor 4 HNF-4α

HNF-4β
NR2A1
NR2A2

Unknown
Unknown

Retinoid X receptor RXRα
RXRβ
RXRγ

NR2B1
NR2B2
NR2B3

9-cis-Retinoic acid
9-cis-Retinoic acid
9-cis-Retinoic acid

Testis receptor TR2
TR4

NR2C1
NR2C2

Unknown
Unknown

Tailless TLL NR2E2 Unknown
Photoreceptor-specific Nuclear receptor PNR NR2E3 Unknown
Chicken ovalbumin
upstream promoter Transcription factor

COUP-TFI
COUP-TFII

NR2F1
NR2F2

Unknown
Unknown

ErbA2-related gene-2 EAR2 NR2F6 Unknown
Estrogen receptor ERα

ERβ
NR3A1
NR3A2

Estradiol-17b,  tamoxifen, raloxifene
Estradiol-17b, various synthetic
compounds

Estrogen-related receptor ERRα
ERRβ
ERRγ

NR3B1
NR3B2
NR3B3

Unknown
DES, 4-OH tamoxifen
DES, 4-OH tamoxifen

Glucocorticoid receptor GR NR3C1 Cortisol, dexamethasone, RU486
Mineralcorticoid receptor MR NR3C2 Aldosterone, spironolactone
Progesterone receptor PR NR3C3 Progesterone, medroxyprogesterone

Acetate, RU486
Androgen receptor AR NR3C4 Testosterone, flutamide
NGF-induced factor B NGFI-B NR4A1 Unknown
Nur related factor 1 NURR1 NR4A2 Unknown
Neuron-derived orphan receptor 1 NOR1 NR4A3 Unknown
Steroidogenic factor 1 SF1 NR5A1 Oxysterols
Liver receptor homologous protein 1 LRH1 NR5A2 Oxysterols
Germ cell nuclear factor GCNF NR6A1 Unknown
DSS-ACH critical region on the
Chromosome, gene 1

DAX-1 NROB1 Unknown

Short heterodimeric partner SHP NROB2 Unknown
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    Table 1.2 Examples of diseases associated with altered nuclear receptor function.
    APML, acute promyelocytic leukaemia.

NUCLEAR RECEPTORS ASSOCIATED DISEASES

Androgen Receptor (AR) Androgen Resistance, Kennedy’s
Syndrome, Prostate cancer

DAX1 Adrenal hypoplasia congenita

Estrogen Receptor (ER) Breast cancer, osteoporosis
Alzheimer’s disease

Nuclear Receptor related-1 (NURR1) Parkinson’s disease

Photoreceptor-specific Nuclear Receptor (PNR) Enhanced S cone syndrome

Peroxisome Proliferator Activated Receptor (PPARγ) Type 2 diabetes, obesity,
atherosclerosis, cancer

RAR, RXR APML, acne, psoriasis,
hepatocarcinoma, melanoma

Steroidogenic factor 1 Gonadal and adrenal dysgenesis

Thyroid Hormone Receptor (TRβ) Resistance to thyroid hormone

Vitamin D Receptor (VDR) Vitamin D resistant Rickets

HNF4α MODY (Maturity-onset diabetes of
the young)
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        Table 1.3 Recognized Clinical Features of RTH

Elevated serum free thyroid hormones

Normal TSH with enhanced bioactivity

Goitre

Growth retardation, short stature

Low body mass index in childhood

Attention-deficit hyperactivity disorder, low IQ

Tachycardia, atrial fibrillation, heart failure

Hearing loss

Ear, nose, and throat infections

Osteopenia
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Figure 1.1 Nuclear receptor superfamily. Nuclear receptors are grouped according to

the source and type of their ligand. All 48 human receptors and the insect ecdysone
receptor (EcR), which is the only non vertebrate nuclear receptor with a known

ligand, are shown. Figure adapted from Chawla et al., 2001.

Endocrine
Receptors
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Figure 1.2 Schematic representation of a nuclear receptor. The variably sized N-
terminal region (A/B) in many receptors contains a ligand-independent transcription

activation function (AF-1). The conserved DNA-binding domain (DBD), or region
C, mediates recognition of specific regulatory DNA sequences usually located in

target gene promoters. Domain D, a flexible hinge region, connects the DBD to the

E/F region which contains the ligand binding domain (LBD) as well as a
dimerization interface and a ligand-dependent transactivation function (AF-2), that

localizes to the extreme C-terminal portion of the LBD.
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Figure 1.3 DNA binding by nuclear receptors a. Nuclear receptors can bind DNA as

monomers, homodimers and heterodimers with RXR to specific binding sites
(response elements) composed of one or two half-core motifs (generally AGGTCA)

represented by the arrow, which can be arranged as inverted, everted or direct

repeats. N denotes any nucleotide and variable number of these (N) constitute a
“spacer” found in some response elements.  b. Schematic representation of the

DNA-binding domain of the thyroid hormone receptor. Key amino acids within this
domain include two groups of cysteine residues which each coordinate a single zinc
atom to form two ‘zinc-finger’ DNA binding motifs. Residues within the P box aid

in the discrimination of the response element, whilst those in the D box contribute to

the formation of a dimerisation interface. A sequence (underlined) within the C-
terminal extension of the DBD mediates nuclear localisation.

46a
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Figure 1.4  Schematic representations of three distinct conformational states adopted
by the ligand-binding domain (LBD) of the estrogen receptor (ER). 12 α-helices

(H1-12 - shown as cylinders) and a single β-turn (shown by the arrow) form a triple

layered structure enclosing a hydrophobic ligand-binding cavity (LBC). a. apo-ER

modelled on the apo-RXRα structure. b. holo-ER demonstrating realignment of

H11, H12 and the Ω loop between H2 and H3 upon binding of oestradiol (E2). c.

Raloxifene (antagonist - R) binding induces an alternate receptor conformation from

that seen in the holo-receptor such that H12 no longer reconstitutes the coactivator
binding cleft with helices 3 and 4. Adapted from Moras and Gronemeyer, 1998.
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Figure 1.5 Schematic representation of the domain structure of steroid receptor
coactivator 1 (SRC-1), a member of the p160 family of coactivators. The receptor

interaction domain contains three LXXLL motifs each denoted by an asterisk. The

brackets denote functional regions mediating histone acetyltransferase (HAT)
activity and interaction with CBP, PCAF and the arginine methyltransferase

CARM1.
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Figure 1.6 Schematic representation of transcriptional regulation by TR. In the
absence of ligand, TR recruits a protein complex consisting of corepressors (e.g.

NcoR or SMART) which function as a platform for the further binding of exchange

factors (TBL1/TBLR1) and histone deacetylase (HDAC) protein, which remodels
chromatin into a condensed conformation, rendering the DNA promoter less

accessible to the basal transcription factors machinery (BTFs). Binding of T3
facilitates dissociation of the corepressor complex and recruitment of a protein

complex (e.g. SRC-1, PCAF and CBP) with histone acetylase activity (HAT) which

transforms chromatin into an open conformation. Exchange of the HAT complex for
a DRIP/TRAP mediator complex, leads to interaction with the basal transcriptional

machinery including RNA polymerase II (Pol II), increasing gene transcription.
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Figure 1.7 The hypothalamic-pituitary-thyroid axis. TRH promotes release of TSH

which in turn induces the secretion of T3 and T4. Negative feedback regulation by
T3/T4 exerts control at both hypothalamic and pituitary levels.  Some of the effects

of thyroid hormones on peripheral target tissues are shown.
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Figure 1.8 Schematic comparison of amino acid homologies among human TR
isoforms. The length of receptors is indicated and the percent amino acid homology

with TRβ1 is included in the receptor diagrams.
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Figure 1.9 TRβ mutations in the syndrome of resistance to thyroid hormone (RTH)

cluster within three regions (I, II and III) of the ligand-binding domain. The location

of helices (H) involved in corepressor binding or dimerisation is also shown. a.

Schematic representation of TRβ showing the boundaries of the three clusters in

relation to the primary protein structure. Note the R383H mutation is an exception to

the rule. b. Mutations identified to date in RTH, classified according to cluster,

include different missense substitutions at each codon, in-frame codon deletion
(Δ), premature termination codons (X), and frame-shift mutations (*).
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Figure 1.10 Schematic model of dominant negative inhibition by TRβ mutants in

RTH. Mutant TR-RXR heterodimers compete with their wild type  counterparts at

binding sites (TREs) within target gene promoters, with  failure to release the
corepressor complex leading to transcriptional silencing. BTFs, basal transcription

factors.
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Figure 1.11 a. Comparison of the human PPARs. The A/B, DNA binding (DBD)

and ligand-binding (LBD) domains are indicated. Numbers represent percent amino
acid identity with PPARα. b. The PPARs bind as a heterodimer with RXR to

specific tandem repeat regulatory DNA sequences separated by one nucleotide (DR-

1 response element). The PPAR/RXR heterodimer can be synergistically activated
by ligands for PPAR and RXR.
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Figure 1.12 Human PPARγ isoforms. The organization of the hPPARγ  gene and the

four mRNAs that differ at their 5’-end as a consequence of differential promoter

usage and alternative splicing are shown. Exons 1-6 are common to all three

transcripts, exon B encodes an unique amino-terminal region (28 amino acids) that is
specific to the PPARγ2 isoform and A1 and A2 encode differing 5’-untranslated

regions. The length of predicted protein products is also indicated.
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Figure 1.13 PPARγ target genes and adipocyte metabolism. PPARγ regulates

adipocyte metabolism by inducing expression of several genes which are boxed or

circled. Plasma triglycerides (TG) are hydrolysed by lipoprotein lipase (LPL) to non-
esterified fatty acids (NEFA) and glycerol. Fatty acid transport protein (FATP) and

fatty acid translocase (CD36) facilitate uptake of NEFA, whilst aquaporin channels
facilitates glycerol transport. Within the adipocyte NEFAs are esterified into TG via

the action of acylCoA synthase (ACS), while glycerol is converted into glycerol-3-

phosphate (G3P) by glycerol kinase (GyK). In addition G3P can be also generated
through glyceroneogenesis mediated by phosphoenolpyruvate carboxykinase

(PEPCK). Dashed lines indicate several intermediate steps; PEP, phosphoenol
pyruvate. PPARγ can also influence lipolysis by inducing the expression of perilipin,

which is an important determinant of hormone-sensitive lipase (HSL) activity.
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Chapter 2

MATERIAL AND METHODS

2.1 Chemicals

Unless otherwise specified, all chemicals were obtained from Sigma. Specific
exceptions included reagents supplied by BDH laboratories (agarose, chloroform,

acetic acid, hydrochloric acid, Triton X-100, propan-2-ol/isopropanol and

ethylenediaminetetraacetic acid-EDTA), Difco (tryptone, yeast extract and bacto-
agar), Fisher Scientific (NaOH, glycerol, methanol), Pharmacia (glutathione

sepharose G50) and Bio-Rad (Acrylamide).

2.2 Buffers

The following commonly used buffers were prepared according to standard recipes

(Sambrook et al., 1989)

TE 10mM Tris HCl pH 8.0, 1mM EDTA pH 8.0

TBE 45mM Tris-borate, 1mM EDTA pH 8.0

PBS 137mM NaCl,  2.7mM KCl, 10mM Na2HPO4, 1.7mM KH2PO4

STE 0.1mM NaCl, 10mM Tris HCL pH 8.0, 1mM EDTA pH 8.0

PIC Phenol: isoamylalcohol: chloroform – 25 : 1 : 24

IC isoamylalcohol: chloroform – 1 : 24

5x agarose gel loading buffer: 0.25% w/v bromophenol blue, 0.25% w/v xylene

cyanol, 30% v/v glycerol in deionised H2O
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2x SDS gel loading buffer: 125mM Tris HCl pH 6.8, 4% w/v SDS, 20% v/v

glycerol, 10% v/v 2-mercaptoethanol

2.3 Nucleic acid preparation and analysis

2.3.1 Oligonucleotides

Oligonucleotide primers were synthesized by Sigma Genosys, usually at 0.05 µM
synthesis scale and without modification. Notable exceptions were those

oligonucleotides used in site-directed mutagenesis, which were subjected to

polyacrylamide gel electrophoresis (PAGE) purification.

2.3.2 DNA

2.3.2.1 Extraction of genomic DNA from peripheral blood leukocytes

Genomic DNA was prepared using the QIAamp blood extraction kit (Qiagen). The
initial sucrose lysis step was performed using the following buffer:

Lysis buffer : 10mM Tris HCl  pH8.0, 320 mM sucrose, 5mM MgCl2, 1% v/v
Triton-X-100

Usually 2-5 ml of blood sample was mixed with 30-50ml of lysis buffer, rotary

mixed for 5 minutes and then leukocytes were recovered by centrifugation at

2,400rpm for 5 minutes, and resuspended in 200µl of sterile PBS. DNA was then

extracted according to the manufacturer's instructions.

2.3.2.2 Plasmid DNA

3 ml of Luria Bertani (LB) ampicillin (amp) cultures were inoculated with single

bacterial colonies from LB amp plates and incubated overnight in an orbital shaker at

370C. These cultures were then used either directly for miniprep preparation or for
further inoculation of megaprep cultures. All plasmid preparations were performed

using Qiagen kits according to the manufacturer's instructions. Typical yields were:
minipreps up to 50µg and megapreps up to 2mg.
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2.3.2.3 Ethanol precipitation of DNA

This technique was used to purify and concentrate DNA.  Two and a half volumes of

100% ethanol and 1/10 volume 3M NaOAc or 1M KOAc were added to the sample,
mixed and placed on dry ice for at least 20 minutes.  The mixture was then

centrifuged at 13,000rpm for 15 minutes and 50-300µl of 70% ethanol was added to

the pelleted DNA to wash off co-precipitated salts.  The sample was re-centrifuged

at 13,000rpm for 3-5 minutes, the supernatant decanted and the tubes placed at room
temperature with lids open until residual ethanol had evaporated. All DNA

preparations were then dissolved in an appropriate amount of distilled sterile water
or TE.

2.3.2.4 PEG precipitation of nucleic acid

This technique was used to purify DNA and to remove unincorporated bases and

primers following PCR reactions. The aqueous phase of the PCR sample was
transferred to a 1.5ml centrifuge tube, one volume of PEG solution (26.2% w/w

polyethylene glycol MW 8000, 0.6M KOAc, 6.6mM MgCl2) was added, vortexed

and placed at room temperature (RT) for 15 minutes. It was then centrifuged for 15
minutes at 13,000rpm, the supernatant aspirated and the pellet was washed and

resuspended as described in section 2.3.2.3.

2.3.3 RNA

2.3.3.1 RNA extraction from Immature Dendritic Cells

Total RNA from immature dendritic cells (IDC) was extracted with TRIZOL

Reagent (Invitrogen Life Technologies). This reagent is a mono-phasic solution of
phenol, which allows separation of RNA from other cellular constituents, and

guanidine isothiocyanate, a ribonuclease inhibitor. To prevent RNAse
contamination, before proceeding to extract RNA, pipettes gloves and bench were

cleaned with RNAzap detergent and all the procedures were carried out using sterile,

disposable plastic ware and pipettes reserved for RNA work.
IDC cells were collected into RNAse free eppendorf tubes by centrifugation and

lysed in 1 ml of TRIZOL by repetitive pipetting. The homogenized samples were
incubated for 5 minutes at RT to permit the complete dissociation of nucleoprotein
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complexes and then 200 µl of chloroform was added. The samples were shaken

vigorously for 15 seconds and incubated at RT for 10 minutes and then centrifuged

at 14,000rpm for 15 minutes at 40C. The (upper) aqueous phase was then transferred

into a clean tube and a similar volume of isopropyl alcohol was added and mixed
well to precipitate the RNA. Following incubation for 10 minutes at RT the RNA

was centrifuged at 14,000rpm for 10 minutes at 40C and the supernatant removed.

The RNA pellet was then washed once with 1 ml of 75% ethanol and centrifuged
again at 14,000rpm for 5 minutes. At the end of the procedure the RNA was left to

air-dry for not more then 10 minutes and dissolved in nuclease free water, incubated
for 10 minutes at 600C and stored at -700C.

2.3.4 Nucleic acid quantification

All nucleic acid preparations were quantitated by measurement of their absorbance at
260nm (A260) and purity calculated as A260 / A280 ratio with 1.8 representing the

desired purity for DNA. The UV-160A spectrophotometer (Shimadzu, Japan) or the

Genequant II DNA/RNA calculator (Pharmacia, UK) were used to measure the
absorbances and nucleic acid concentrations calculated according to the following

formula:

concentration (ng/µl) =dilution factor x A260 x OD value

OD values are 50 for double stranded DNA, 40 for RNA and between 30 to 40 for
oligonucleotides (exact OD values for oligonucleotides were provided by Sigma

Genosys, UK).

2.3.5 Radio-labelling of nucleic acids

32P-labelled probes used in electrophoretic mobility shift assay (EMSA) were

generated using annealed, semi-overlapping oligonucleotide duplexes (0.3 µM)

which were filled in using the Klenow fragment of DNA polymerase I (Roche

Diagnostics) in the presence of 5µl α32PdCTP (1000µCi/µl; Amersham) and 70 µM

unlabelled dATP, dGTP and dTTP. To remove unincorporated nucleotides and



61

random hexamer-labelled probes the resultant probes were purified using a Sephadex

G-50 column according to a standard protocol (Sambrook et al., 1989).

2.3.6 Enzymatic modification of DNA

2.3.6.1 Restriction enzyme digestion

Restriction enzymes were obtained from either New England Biolabs (USA) or

Roche Diagnostics (Germany). Reaction conditions varied according to the
supplier’s instructions, but typically involved incubation at 370C for 60 minutes

followed by heat inactivation at 650C for 15 minutes.

2.3.6.2 Dephosphorylation

To prevent the re-ligation of compatible ends of digested vectors, shrimp alkaline
phosphatase (Roche Diagnostics, Germany) was used to catalyse the hydrolysis of

the 5' phosphate group. Following dephosphorylation for 1 hour at 370C, the alkaline

phosphatase was inactivated by heating to 650C for 15 minutes.

2.3.6.3 Agarose gel electrophoresis

Agarose gels of 1% and 2% w/v were prepared in 1x TBE buffer containing

0.5mg/ml ethidium bromide and used to separate large (500-7000bp) and small (100-

1000bp) DNA fragments respectively. The samples (mixed in loading dye) were
loaded onto the gel and electrophoresed at 130V for 30-90 minutes in 500ml of 1x

TBE. To estimate the size of nucleic acid fragments, standard size markers were also
included. Images were obtained using an Eagle-eye II or Biorad gel imager.

2.3.6.4 Agarose gel extraction

This technique was used to isolate DNA fragments following restriction digestion.

The plasmid DNA insert and backbone vectors were separated by agarose gel
electrophoresis, visualized using an UV light source and cut from the gel using a

clean razor blade. The fragments were then purified using a commercial Kit

(QIAquick kit, Qiagen, UK) according to the manufacturer's instructions and
resuspended in dH2O or TE.
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2.3.6.5 DNA ligation

DNA ligation was carried out using the Roche Diagnostics T4 standard ligation

(requiring overnight incubation at 160C) or rapid ligation (5-10 minutes at room
temperature) kits. Ligations were performed with a 3:1 molar ratio of insert to vector

for fragments with complementary overhangs as recommended in the manufacturer's
instructions.

2.3.7 Polymerase chain reaction (PCR)

All reactions were mixed on ice and performed in an Omnigene (Hybaid, UK) or

Geneamp (Perkin Elmer, UK) thermal cycler. The volumes of reaction were between
10 and 50µl with the following concentrations of constituent parts:

dNTPs (A, G, C, T) 0.2mM each
10x reaction buffer 1x

primers (supplied by Sigma Genosys, UK) 0.2µM

MgCl2 1.5-2.5mM

template DNA variable (typically 1µg)

Taq polymerase 0.2-0.5µl

dH2O to final reaction volume

Cycle parameters were set using the following guidelines:

denaturation temperature: 92-94˚C

denaturation time: 15 seconds for templates < 500bp, 30 seconds if larger

annealing temperature: 2˚C below lowest Tm of primers.

annealing time: 30 seconds

polymerase temperature: 720C
polymerase time: 30 seconds per kb DNA to be amplified.

Cycles: 30-35.
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2.3.8 DNA sequencing

DNA sequencing was performed using the Perkin Elmer (USA) dye-terminator kit
and an ABI Avant 3100 automated sequence analyser.  This kit consists of a pre-

mixed solution containing dye-labelled dideoxynucleotides, sequencing buffer, Taq

polymerase and magnesium. Typically 1µg of DNA was mixed with 4µ l of

sequencing mix and 1µl of the appropriate primer (5-10µM) in a final volume of

10µl. Either miniprep, maxiprep or PCR products were used as template; the latter

were purified by PEG precipitation as outlined in section 2.3.2.4 prior to use. Cycle
sequencing was performed at 940C for 30 seconds, 600C for 2 minutes and 720C for

30 seconds, with a final extension step at 720C for 5 minutes. The products were
ethanol-precipitated and resuspended in 10µ l of Hi-DiTM Formamide (Applied

Biosystem). Samples were denatured by heating to 95˚C for 2 minutes and placed on

ice prior to loading. Details of apparatus and solutions required for sequencing using

the ABI 3100 can be found in their respective operation manuals.

2.3.9 Site-directed mutagenesis

Site-directed mutagenesis was performed using the Stratagene “Quik-changeTM” Kit

according to the manufacturer's instructions. In brief, the basic procedure involves
annealing of complementary primers (containing the desired mutation) to the wild

type plasmid DNA. Following replication of both strands using PfuTurbo DNA

polymerase, the parental strands were digested with Dpn I demethylation enzyme.
The newly synthesised strands, each containing a "nick" at the 5' end of the

oligonucleotide primer sequence, were transformed into XL-1 blue Escherichia Coli

(E. Coli) with subsequent repair of the "nicked" strands by the supercompetent cells.

Mini-prepping of DNA, followed by direct sequencing, identified colonies

containing the desired mutations, which were then used to prepare megapreps.

2.3.10 Reverse transcription-PCR

Reverse transcription was perfomed using the SuperScriptTM II Reverse

Transcriptase (Invitrogen).  The following component were added to 20µl final
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volume and mixed gently:

RNA 100ng/µl 4µl

5X SSII buffer 4µl

100 mM DTT 2µl

2.5 mM DNTs 4µl

100 mM specific primer 0.06µl

SuperScriptTM  Enzyme 0.1µl

RNAse free water 5.84µl

The reaction was incubated at 420C for 30 minutes followed by 10 minutes at 720C.

2.4 Protein preparation and analysis

2.4.1 In vitro translation

A TNT coupled reticulocyte lysate kit (Promega, UK) was used to synthesize "cold"

and "hot" (35S-labelled) TRβ1, RXRα,  PPARγ and CBP proteins from their

corresponding expression vectors. A typical 50µl reaction contained:

TNT lysate 25µl

TNT buffer 2µl

RNasin 1µl

Amino acid minus methionine mix 1µl
35S-methionine (or 'cold' methionine containing mix) 4µl

T7 RNA polymerase 1µl

Plasmid DNA 1µl

Nuclease-free dH2O to a final volume of 50µl

Reactions were incubated at 300C for 90 minutes and the integrity of products
checked by running 2-4µl of the translation (in duplicate) on an SDS gel followed by

autoradiography with storage at -700C.
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2.4.2 Polyacrylamide gel electrophoresis (SDS-PAGE)

Proteins were analyzed under denaturing conditions by electrophoresis through an
SDS-polyacrylamide gel, whose components are detailed below.

Stacking gel:

30% acrylamide 0.67ml

0.5M Tris pH 6.8 1.25ml
10% sodium dodecyl sulphate (SDS) 50µl

dH2O 3ml

10% ammonium persulfate (APS) 25µl

(N,N,N',N') tetramethylethylenediamine (TEMED) 2.5µl

Separating gel:

30% acrylamide 3.33ml

1.5M Tris pH 8.8 2.5ml

10% SDS 100µl

dH2O 4ml

10% APS 50µl

 TEMED 5µl

Protein samples were mixed with an equal volume of loading buffer (1.25M Tris (pH

6.8), 2.5% SDS, 20% w/w glycerol, 10% w/w β-mercaptoethanol, 0.1% w/w

bromophenol blue), denatured and electrophoresed at 30mA for 60 minutes using a
SE 250 Duel Gel II apparatus (Hoefer Scientific, Germany).  The stacking layer was

excised and the separating gel stained for 20 minutes using Coomassie blue, prior to

gentle washing in fixing solution (10% w/v glacial acetic acid, 20% w/v methanol)
for 15 minutes. Thereafter the gel was placed on 3mm Whatman paper and dried

under vacuum at 80˚C for 45 minutes. Gels containing 35S-labelled proteins were
placed in an X-ray cassette and the film exposed overnight.
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2.4.3 Electrophoretic mobility shift assay (EMSA)

This technique was useful to examine the ability of nuclear receptors to bind to DNA
and, in the case of TR and PPAR, to heterodimerise with RXR. Approximately 1nM

labelled oligonucleotide probe (see section 2.3.4) was incubated for 20 minutes at
room temperature with in vitro translated receptor protein in shift buffer (20mM

Hepes pH 7.8, 50mM KCl, 10% glycerol, 2mM DTT).  The reactions were loaded

onto a 5-6% native polyacrylamide gel measuring 0.1 x 14 x 14 cm, which had been
pre-run at 300V for 30 minutes in a gel electrophoretic apparatus cooled to 0-5°C

(Biorad).  Electrophoresis was usually performed for 90 minutes at 300V and

subsequently the gel was fixed, dried and exposed as outlined in section 2.4.2.

2.4.4 Ligand binding assays

2.4.4.1 TRβ

The ligand binding affinities of in vitro translated wild type and mutant receptor

proteins were determined using a previously described filter binding assay (Adams et

al., 1994). In brief each receptor was incubated with 0.02nM 125I-T3 in binding

buffer (20mM Tris pH 8, 50mM KCl, 1mM MgCl2, 10% glycerol, 5mM DTT) in the

presence of increasing amounts of unlabelled cold competing T3 (0-1µM).

Following 2 hours of incubation at 300C, bound T3 was separated from unbound T3
by passage through a filter membrane (Millipore HA filters, 0.45µm) under vacuum

followed by three washes with 2ml of ice-cold binding buffer. Filters were then

transferred into LP3 tubes and counted in a γ-counter. The binding affinity constants

(Ka's) were calculated using Scatchard analyses from three separate experiments,
each carried out in duplicate.

2.4.4.2 PPARγ

The abilities of wild type and mutant PPARγ proteins to bind to [3H]-rosiglitazone

and [3H]-farglitazar were determined using a modification of the previously
described filter binding assay (Adams et al., 1994). GST-PPARγ LBD fusion

proteins were incubated with approximately 1nM of tritiated ligand in binding buffer

(50mM HEPES pH 7.9, 100mM KCl, 2mM DTT, 10% glycerol). Following 45
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minutes incubation at 250C, an excess of competing cold ligand (BRL49653 or

GI262570) was added and the reaction was incubated for a further 2 hours. Bound

ligand was separated from free ligand as outlined in section 2.4.4.1 by passage
through filters, which were pre-incubated with BSA (1%) and Tween (1%) to reduce

non-specific binding with the [3H]-farglitazar compound.

2.4.5 GST protein synthesis

Glutathione S-transferase (GST) fusion proteins were prepared as previously

described (Adams et al., 1997) with minor modifications. E. Coli were grown for 3

hours at 370C prior to induction with 0.4mM isopropylthio-β-D-galactosidase

(IPTG) at 300C for a further 2 hours. Following purification, the proteins, bound to
glutathione-sepharose beads, were quantified by SDS gel and aliquoted at -700C.

2.4.6 Pulldown assays

This technique was employed to investigate receptor-coactivator interactions. GST-
PPARγ ligand binding domain (LBD) (see section 2.4.5) in binding buffer (40mM

HEPES pH 7.8, 100mM KCL, 5mM MgCl2, 0.2 mM EDTA, 1% Nonidet P-40, 10%

glycerol, 2mM DTT) were mixed with 5µl of 35S-labelled in vitro translated CBP,

together with ligand or vehicle, and incubated at 40C for 2 hours. Following three

washing steps with NETN buffer (20mM Tris pH 8.0, 100mM NaCl, 1mM EDTA,
0.5% Nonidet P-40), bound CBP was determined by SDS-PAGE. Coomassie

staining was used to verify equal protein loading, followed by fixation and exposure
by autoradiography.

2.5 Bacterial cell culture

Routine bacterial cell culture was carried out according to standard protocols
(Sambrook et al., 1989).
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2.5.1 Media

LB broth 10g/l bacto-tryptone, 5g/l bacto-yeast extract, 10g/l NaCl;
adjusted to pH 7.4 with NaOH

LB agar as above but with the addition of 16g/l of bacto-agar

LB + Amp As for LB broth or LB agar but containing 50µg/ml of

ampicillin

Minimal media 7.5g agarose in 450ml dH2O, autoclaved and cooled to <500C.

Then add:
50ml 10x M9 salts solution (60g/l Na2HPO4, 10g/l NH4Cl, 5g/l

NaCl)
0.5ml 1M MgSO4

50µl 1M CaCl2

2.5ml thiamine (2.5mg/ml)

5ml glucose (20% w/v)

2.5.2 Preparation of competent cells

DH5α E. Coli were rendered competent using standard techniques (Sambrook et al.,

1989) and the following buffers:

RF1 100mM RbCl, 50mM MnCl2, 30mM K acetate pH 7.5, 10mM CaCl2,

15% v/v glycerol, adjusted to pH 5.8 with glacial acetic acid and filter

sterilised (store at 40C)

RF2 100mM MOPS pH 6.8, 10mM RbCl, 75 mM CaCl2, 15% v/v
glycerol, adjusted to pH 6.8 with NaOH and filter sterilised (store at

40C)



69

Briefly, a glycerol stock of the E. coli DH5α strain was streaked out onto minimal

medium plates. Following growth for 4-5 days, a single colony was innoculated into

10ml of LB broth and cultured over night at 370C in a shaking incubator. On the

following day 1ml of culture was used to innoculate 200ml of LB media and then
grown until the OD595 was between 0.3 and 0.5. Bacteria were pelleted by

centrifuging the broth at 2000rpm for 10 minutes and then resuspended in 50ml of

ice-cold RF1 buffer and incubated in ice for 20 minutes. The suspensions were re-
centrifuged as before and resuspended in 25ml of ice-cold RF2 buffer. Aliquots of

200µl were frozen in dry ice and then stored at -700C. Alternatively, competent XL-1

or XL-2 blue E.Coli strains were purchased from Stratagene.

2.5.3 Transformation of competent cells

Aliquots of competent cells were thawed on ice. 2-5µl of ligation product or 1-2µl of

plasmid DNA were then added, gently mixed by pipetting and the mixture incubated

on ice for 10 minutes. Thereafter cells were heat shocked at 420C for 45 seconds and
returned to ice for 2 minutes. Cells were rescued by the addition of 500µl of LB

media and incubated at 370C for 30-60 minutes before plating on LB Amp plates.
The plates were then incubated at 370C over night.

2.5.4 Glycerol stock

Glycerol stocks of E. Coli containing key plasmids were generated by adding 0.15ml
of the appropriate LB culture to 0.85ml of sterile glycerol with subsequent storage at

-700C.

2.6 Cell culture

2.6.1 Routine cell culture and maintenance of cell lines

All mammalian cell culture work was carried out in a laminar airflow cabinet

(Gelaire BSB4, Airflow) to maintain a sterile environment. Monolayer cultures of

human cells were cultured in 10cm dishes and maintained in 10ml medium at 37°C
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in humidified air supplemented with 5% CO2 (IR 1500 automatic CO2 incubator,

Flow Laboratories).

JEG3 cells (derived from a human choriocarcinoma) and 293EBNA cells (derived

from human kidney fibroblasts) were obtained from either the European Collection

of Animal Cell Culture (ECACC) or the American Tissue and Cell Culture (ATCC).
JEG3 cells were grown in Optimem supplemented with 2% fetal calf serum (FCS)

and 1% penicillin/streptomycin/fungizone (PSF). 293EBNA cells were grown in

Dulbecco's modified Eagle medium (DMEM), supplemented with 10% FCS and 1%
PSF. To study the effects of ligands on trascriptional regulation, FCS was depleted

of steroid hormones by mixing with Dowex ion exchange resin (AG-1-X8) for 24
hours.

Optmem, DMEM, FCS and PSF were all obtained from GIBCO-BRL.

2.6.2 Transient transfection assays

Introduction of plasmid DNA into cultured JEG3 and 293EBNA cells was performed

using the calcium phosphate transfection method as described in Sambrook et al.,

1989. In brief, calcium phosphate-DNA co-precipitates were prepared by slowly

mixing 2M CaCl2 solution with the mammalian expression vector DNAs in HEPES-
buffered saline (HBS: 140mM NaCl, 5mM KCl, 0.75mM Na2HPO4.2H20, 6mM

dextrose, 25mM HEPES, pH 7.05). The mixture was left at room temperature for 45

minutes prior to use. 50µl of the appropriate suspension was then added to the

appropriate wells of a 24-well tissue culture plate (containing cells grown to 60-70%

confluency) with 500µl of fresh medium. Cells were incubated with the calcium

phosphate-DNA precipitates for 4-6 hours before replacement with fresh medium,
prior to harvesting 36-40 hours later. At this point cells were then lysed, and reporter

gene assays subsequently performed as described in the following section.
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2.6.3 Luciferase and β-Galactosidase assays

At completion of the transfection, the medium was aspirated and the cells were

washed once with 500µl PBS then lysed in 200 µL of gly-gly buffer (containing

25mM glycine-glycine pH 7.8, 15mM MgSO4, 4mM EGTA) with 1mM DTT and

1% Triton X-100 at RT for 10 minutes. Cell lysates were removed to a 1.5ml
eppendorf tube and centrifuged briefly to pellet cell debris. 100µl of supernatant was

assayed for luciferase activity by the addition of 300µl assay buffer (gly-gly buffer
with 16.5mM KH2PO4, 2.2mM ATP and 0.1Mm DTT) in a 5ml LP3 tube and

immediately transferred to a luminometer (Autolumat LB 953, Berthold) to measure

light emission over 10 seconds following addition of 100µl of luciferin solution (gly-

gly buffer with 0.2mM luciferin and 10 mM DTT).

β-galactosidase activity in 20µl cell lysate was determinate by the addition of 150µl

reaction buffer (63mM Na2HPO4.2H20, 14mM NaH2PO4.2H20, 1mM MgCl2, 14mM

β-mercaptoethanol, and 0.9% o-nitrophenyl-β-D-galactopyranoside (ONPG) in a

flat-bottomed microtitre plate. After incubating at 370C for 5-30 minutes, the relative
activity in each reaction was determined by measuring absorbance at 415nm in a

microtitre plate reader (Molecular Devices).

2.6.4 Isolation and culture of Immature Dentric Cells from peripheral blood

Anticoagulant-treated blood was diluted 1:1 with PBS and layered very carefully on

the Ficoll-Paque Plus (Amersham Bioscences), which provides a sterile ready to use
Ficoll-sodium diatrizoate solution of the proper density, viscosity and osmotic

pressure for use in a simple and rapid lymphocyte isolation procedure (10ml of

Ficoll / 20ml of diluted blood). Following 30 minutes centrifugation at 2,500rpm
without brake, lymphocytes at the interface between the plasma and the Ficoll-Paque

Plus were recovered and transferred in a clean tube, washed with PBS in 45ml final
volume and centrifuged at 1,500rpm for 10 minutes. The supernatant was then

removed and the cells were suspended with 25ml of PBS by gently drawing them in

and out of a Pasteur pipette and centrifuged again at 1,500rpm for 10 minutes. This
wash step to remove platelets and any excess of Ficoll-Paque Plus was repeated

twice.
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Following the last wash step, cells were suspended in 10 ml of PBS and run through

a pre-separation filter (Miltenyi Biotec) to remove cell aggregates, centrifuged again

at 1,500rpm for 10 minutes. The pellet cells were then incubated with the magnetic
labeling mix [100µl of MACS CD14 MicroBeads  (Miltenyi Biotec) and 400µl

buffer A (PBS, 0.5% BSA and 2mM EDTA)] at 4oC x 20 minutes.

The labeling mix was washed with Buffer A until 10ml final volume and centrifuged

at 1500rpm for 10 minutes. The supernatant was removed and the cells resuspended
with 5ml of Buffer A and applied onto LS Columns (Miltenyi Biotec) in a high-

gradient magnetic field to retain the labeled cells. The flowthrough consists mainly
of lymphocytes, because CD14 positive monocytes are retained on the column being

linked to the antibody-coated beads. After washing twice to remove the unlabeled

cells, LS Columnn were removed from the separator and placed in a new tube and
positively selected cell fraction was finally eluted. Monocytes were resuspended into

6-well culture plates at a density of 1.5 x 106 cell/ml and cultured in RPMI 1640
supplemented with 10% FBS containing 800U/ml GM-CSF (Leucomax) and

500U/ml IL-4 (Peprotech), to induce differentiation into immature dendritic cells, for

24 hours with vehicle (DMSO) or 1µM Rosiglitazone.
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Chapter 3

THREE NOVEL MUTATIONS AT SERINE 314 IN THE THYROID
HORMONE β RECEPTOR DIFFERENTIALLY IMPAIR LIGAND BINDING

IN THE SYNDROME OF RESISTANCE TO THYROID HORMONE

3.1 Introduction

Recognition that the syndrome of Resistance to Thyroid Hormone (RTH) is linked to

the thyroid hormone β receptor (TRβ) gene locus (Usala et al., 1988) has led to the

identification of an increasing number of natural mutations whose functional

characterization has provided important insights into structure-function relationships
in this receptor. RTH is characterized by elevated serum free thyroid hormones (FT4

and FT3) in the presence of unsuppressed thyrotropin (TSH) levels, reflecting
resistance to the normal negative feedback mechanisms within the hypothalamus and

pituitary (Refetoff et al., 1993). The degree of resistance within peripheral tissues

determines whether thyrotoxic clinical features are associated with the condition
(Beck-Peccoz and Chatterjee, 1994). An autosomal dominant mode of inheritance, in

conjunction with the recognition that receptor mutants are functionally impaired, has
led to the proposal that these abnormal proteins are able to inhibit the function of

their wild type (WT) counterparts in a dominant negative manner (Sakurai et al.,

1990; Chatterjee et al., 1991). Such dominant negative inhibition requires the
preservation of DNA binding and heterodimerization functions in mutant receptors

(Collingwood et al., 1994; Nagaya et al., 1992; Nagaya and Jameson, 1993),

consonant with the observation that no RTH mutants have hitherto been reported in
the DNA binding or dimerization domains of TRβ. In fact the majority of natural

mutations cluster around the ligand-binding pocket (Clifton-Bligh et al., 1998) and

impair hormone binding.
This chapter describes the molecular characterization of three novel single

nucleotide substitutions in TRβ associated with RTH, which result in different

missense mutations at residue 314 (S314C, S314F, S314Y). Examination of the

crystal structure of TRβ suggests that Ser 314 plays a structural role in ligand
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binding. Functional characterization of the natural mutants permits understanding as

to how the different amino acid substitutions at this position affect receptor function.

Although all the mutations affected ligand binding, there were significant differences
in the extent of the alteration with corresponding variation in their transcriptional

and dominant negative properties.
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3.2 Methods

3.2.1 Clinical and genetic analyses

All studies were approved by the local research ethic committees (REC ref: 98/154),

and informed consent was provided by each affected and control subject for all

investigations. Serum free T4 (FT4) and free T3 (FT3) levels were measured with a
Delfia fluoroimmunometric assay (Wallac, Milton Keynes, UK). TSH levels were

determined with a sensitive ‘second generation’ assay (Delfia, Wallac, Milton

Keynes, UK). The coefficient of variation was less than 10% in all instances.
Genomic DNA was extracted from peripheral blood leukocytes using standard

techniques. Exons 7-10 of TRβ1 from each index case were amplified by PCR using

intronic primers (Table 3.1) and sequenced as previously described (Chapter 2;
Adams et al., 1994). Each mutation was verified in three independent PCR reactions,

and other family members were screened for the presence of the identified mutation.

3.2.2 Plasmid constructs

Receptor mutations were generated by site directed mutagenesis of wild type (WT)
human TRβ1 cDNA and confirmed by direct sequencing (Chapter 2). Both wild type

and mutant receptors were subcloned into pGEM7z and the eukaryotic expression

vector RSV (containing the Rous sarcoma virus enhancer and promoter) for in vitro

and transfection studies respectively. For functional assays, a reporter gene

containing a direct repeat thyroid response element (TRE) spaced by four

nucleotides (DR+4) from the malic enzyme gene upstream of the thymidine kinase
promoter and luciferase (MAL-TKLUC) was cotransfected with receptor expression

vectors and a β-galactosidase reference plasmid (Bos-β-gal)(chapter 2).

3.2.3 Hormone and DNA binding assays

Receptor proteins were synthesized by coupled transcription and translation (TNT,
Promega, Southampton, UK). T3 binding affinities were determined using a

modification of a filter assay, and binding affinity constants (Ka's) calculated using
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Scatchard analyses from three separate experiments on independently generated

protein samples (Chapter 2).

Receptor binding to DNA was assessed by electrophoretic mobility shift assays

using in vitro translated receptors quantitated by SDS-PAGE analysis and a 32P-
labelled oligonucleotide duplex corresponding to an everted repeat (F2) TRE from

the chicken lysozyme gene. TR exhibits both homodimeric and heterodimeric (with

the retinoid X receptor, RXR) binding to this TRE, with dissociation of the
homodimer on addition of ligand. Details of the oligonucleotide duplex sequences

and reaction conditions have been described previously (Collingwood et al., 1994).

3.2.4 Cell culture and transient transfection assays

JEG-3 (human choriocarcinoma) cells were grown in Optimem containing 2%

(vol/vol) fetal calf serum and 1% (vol/vol) penicillin, streptomycin and fungizone
(GIBCO BRL, Paisley, Scotland). 18 hours prior to transfection the medium was

changed to Optimem with 2% AG-1-X8 resin-stripped fetal calf serum. Twenty-four

well plates of cells were transfected by a 5 hours exposure to calcium phosphate
containing the reporter plasmid MAL-TKLUC (500ng), TRβ1 expression vectors

(50ng) and the internal control plasmid Bos-β-gal (200ng). After a further 36 hours,

cells were lysed and extracts assayed for luciferase and β-galactosidase activity

using standard methods (Chapter 2).
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3.3 Results

3.3.1 Clinical and genetic analyses

 The clinical features and biochemistry in six families with RTH are shown in Table
3.2. All patients exhibited thyroid function tests characteristic of RTH - namely

elevated serum free T4 and free T3 with an inappropriately normal TSH. Whilst

index cases presented with goitre or thyrotoxic symptoms, most affected family
members were asymptomatic and detected by screening. One patient (IV), first

presented with Graves' disease, but subsequent thyroid function tests in remission

were consistent with RTH. Direct sequencing of exons 7-10 of TRβ1 of index cases

showed that each individual was heterozygous for a single nucleotide substitution at
codon 314 in exon 9. A single nucleotide change in the wild type sequence TCC

(serine), corresponding to a missense mutation, was noted in each family: cases I, II,
III TTC substitution (phenylalanine)-S314F; cases IV and V TAC substitution

(tyrosine)-S314Y; case VI TGC substitution (cysteine)-S314C (Figure 3.1). There

was complete concordance between the presence of a receptor defect and the
abnormal biochemistry associated with RTH, suggesting that these receptor

abnormalities were highly likely to be causative.

3.3.2 Hormone and DNA binding

All natural mutations in TRβ cluster in the ligand-binding domain and consequently

the majority exhibit reduced hormone binding. Accordingly, each mutation was

introduced into the WT TRβ1 cDNA and in vitro synthesised proteins assayed for

binding of 125I-T3. As expected from their location within the ligand-binding
domain, mutant receptors demonstrated impaired binding compared with wild type

receptor. Scatchard analyses indicated that their ligand affinities were reduced with a
marked difference in the magnitude of the abnormality between mutations. Thus, in

comparison to a wild type Ka (+/-SEM) of 0.68 x 1010 M-1 (0.11), the S314C

mutant bound ligand with a slightly reduced affinity (Ka = 0.48 x 1010 M-1 (0.07)).
In contrast, with the S314F and S314Y mutant receptor proteins, no specific

radiolabelled T3 binding was detected, suggesting a profound ligand binding defect.
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Previous studies have shown that TR is able to bind DNA both as a homodimer and

heterodimer with RXR and that homodimeric complexes dissociate following the

binding of ligand (Yen et al., 1992). Accordingly both homo and heterodimeric
binding of WT and mutant receptors were examined using an everted repeat TRE

configuration, to test the hypothesis that mutant receptor homodimer dissociation
would be variably altered depending on the degree of impairment in hormone

binding. In the absence of ligand, WT receptor formed homo and heterodimer

complexes and following the addition of (100nM) T3 the homodimer complex
dissociated readily (Figure 3.2). In comparison, the addition of 100nM T3 resulted in

a differential displacement of homodimer between mutants, with a rank order of

WT>S314C>S314F>S314Y.

3.3.3 Functional activity and dominant negative inhibition

To evaluate their transcriptional properties, expression vectors encoding WT or

mutant receptors were cotransfected with a reporter gene (MAL-TKLUC) containing
a direct repeat TRE configuration. In comparison with WT receptor, S314Y was

transcriptionally inactive even at the highest concentration of T3 (1000nM), whilst
S314F produced detectable activity (10-15% of the maximal wild type response)

only at 100 and 1000nM T3. In marked contrast, although impaired relative to WT at

the lower concentrations of ligand (0.1 and 1.0nM), the S314C mutant exhibited a
right-shifted activation profile attaining a maximal transcriptional response

comparable to WT at 100nM T3 (Figure 3.3).
Consonant with its dominant mode of inheritance, it has been suggested that the

mutant receptors in RTH inhibit the action of their wild type counterparts in a

dominant negative manner (Sakurai et al., 1990; Chatterjee et al., 1991). The
dominant negative potency of each RTH mutant was therefore examined in transient

transfection analyses using the same TRE. Either WT receptor alone or equal
amounts of WT and mutant receptor were cotransfected with MAL-TKLUC, and

transcriptional activity was assayed at either low (1nM) or high (1000nM) T3

concentrations. At 1nM T3, coexpressed S314F or S314Y mutants reduced
transactivation by WT receptor comparably (WT alone 100%; WT + S314F or WT +

S314Y 45%) whereas cotransfected S314C mutant was less inhibitory (WT 100%;
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WT + S314C 68%). At the higher T3 concentration, dominant negative inhibition by

the S314C mutant was more readily reversible with 80% transactivation of WT

alone, whereas the S314F and S314Y continued to exert significant inhibitory effects
(transactivation 60% of WT alone)  (Figure 3.4).

In view of the marked differences in ligand binding affinity, transactivation and

dominant negative activity of the S314 mutants in vitro, we sought to determine

whether this might be reflected in the degree of resistance to thyroid hormone action
in vivo. A previous study has suggested that the magnitude of elevation of circulating

free T4 (reflecting the degree of resistance within the pituitary-thyroid axis) may

correlate with the degree of impairment in hormone binding affinities of mutant
receptor protein in vitro (Weiss et al., 1993). A comparison was therefore made

between the circulating free T4 levels in individuals harboring the three different
codon 314 mutations (Figure 3.5). Interestingly, those with the S314Y or F

mutations exhibited higher FT4 levels on average than patients with the S314C

mutation, with a trend which, although not significant, suggested a correlation
between the degree of resistance and the extent of mutant receptor dysfunction.
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Primer Sequence

Exon 7 Forward 5' - TGT AAA ACG ACG GCC AGT CAG TGC TCC CAC TCC
TGA GGC - 3'

Exon 7 Reverse 5' - GAT TCT AGA AAT TGA GGT AGA AAA CAC TGG - 3''

Exon 8 Forward 5' - TGT AAA ACG ACG GCC AGT GTTCAG AAG ATG ATT
TTC TGC - 3'

Exon 8 Reverse 5' - GAT CTG CAG ACC CAG TAT TCC TGG AAA CTG - 3'

Exon 9 Forward 5' - TGT AAA ACG ACG GCC AGT ACA GAA GGT TAT TCC

TAT TGC - 3'

Exon 9 Reverse 5' - GAT CTG CAG GCT CTT TGG ATG CCC ACT AAC - 3'

Exon 10 Forward 5' - TGT AAA ACG ACG GCC AGT AGG CCT GGA ATT GGA

CAA AGC - 3'

Exon 10 Reverse 5' - GGA ATT ATG AGA ATG AAT TCA GTC AGT - 3'

Table 3.1 Primers used to amplify and sequence coding exons 7-10 of human TRβ1.
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Table 3.2 Biochemical and genetic data from 6 RTH families
° index case and affected relatives: f=father; m=mother; d=daughter; so=son;

s=sister;    b=brother; n=niece

* Subtotal thyroidectomy; no thyroid hormone replacement therapy; #Thyroid
function tests when AITD in remission
X ADHD = attention deficit hyperactivity disorder; AITD = autoimmune thyroid
disease
$ Codon nomenclature based on a predicted protein sequence of 1-461 residues (Sakurai

et al., 1990)
+ @ = Free T3 on other occasions = 10.7; 8.0; 8.3.

 # = Free T3 on another occasion = 9.

Case° Age/Sex Clinical FeaturesX FT4
9.0-20
pmol/L

FT3+

3.0-7.5
pmol/L

TSH
0.4-4.0
mU/L

Nucleotide change Codon
change$

I 35/F Goitre, thyrotoxic 24 6.4@ 2.3 1226 TCC to TTC S314F
I.I f 69/M Asymptomatic 21 4.7# 2.6 " S314F
I.II b 31/M Asymptomatic 28 9.5 5.1 " S314F
I.III s 28/F Asymptomatic 24 8.5 2.1 " S314F
I.IV b 33/M Asymptomatic 36 12 0.9 " S314F

II 37/M Goitre 37 11 0.6 1226 TCC to TTC S314F
II.I so 5/M Goitre, Otitis media 38 15 3.0 " S314F

III 51/M Asymptomatic 41 13 1.0 1226 TCC to TTC S314F

IV# 47/F AITD 28 13 1.5 1226 TCC to TAC S314Y
IV.I so 29/M Asymptomatic 34 17 1.9 " S314Y
IV.II b 48/M Asymptomatic 23 9.4 1.2 " S314Y
IV.III n 10/F Failure to thrive,

ADHD
55 16 2.3 " S314Y

V* 51/F Goitre 30 11 6.1 1226 TCC to TAC S314Y
V.I so 13/M Asymptomatic 48 17 1.1 " S314Y

VI 26/F Goitre, anxiety,
palpitations

24 9 1.5 1226 TCC to TGC S314C

VI.I b 40/M Goitre, anxiety,
palpitations

25 11 1.3 " S314C

VI.II m 63/F Goitre, anxiety,
palpitations

25 9 0.9 " S314C
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Figure 3.1 Electropherograms showing sequences corresponding to wild type

receptor and S314 hTRβ mutations. Partial sequence of exon 9 from an unaffected

individual and three index cases are shown. A single nucleotide substitution in the
wild type sequence at codon 314 changes TCC (serine) to TGC (cysteine), or TTC

(phenylalanine) or  TAC (tyrosine) respectively.
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Figure 3.2 Differential dissociation of TRβ homodimers in response to T3 on the F2

everted repeat TRE from the chicken lysozyme gene. Using an electrophoretic
mobility supershift assay, in vitro translated TRβ (wild type - WT, or mutants -

S314C, S314F, S314Y) and RXR were coincubated with the F2 TRE in the absence

or presence of T3 (100nM). Complexes were resolved by PAGE. The location of

homodimer (TR-TR) and heterodimer (RXR-TR) complexes is indicated. RL,
reticulocytes lysate; NS, non specific complex
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Figure 3.3 T3-dependent transcriptional activation of a thyroid response element
containing reporter gene (MAL-TKLUC) by wild type (WT) and mutant (S314C,

S314F, S314Y) thyroid hormone receptors. JEG-3 cells were cotransfected with

either 50ng WT or mutant TRβ expression vectors together with the reporter

construct MAL-TKLUC (500ng) and an internal control plasmid (Bos-β-gal, 200ng).

Hormone dependent activation in response to increasing amounts of T3 was
normalised against the internal control and expressed as a percentage of the

maximum WT receptor response. Data shown represent the mean +/- s.e.m. of at

least 3 experiments, each done in triplicate.
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Figure 3.4 Dominant negative inhibition of wild type (WT) receptor activity by

mutant receptors. JEG-3 cells were cotransfected with 500ng of the reporter plasmid

MAL-TKLUC, 200ng of the internal control Bos-β-gal and either 100ng of WT

expression vector alone or 50ng each of wild type and mutant receptor vectors. 50ng
and 100ng of wild type receptor expression vector yield similar transcriptional

responses. Corrected luciferase activity was measured after incubation with low
(1nM) or high (1000nM) T3 concentrations and values expressed as a percentage of

the maximal WT receptor response. Data shown represent the mean +/- s.e.m. of at

least 3 experiments, each done in triplicate.
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Figure 3.5 Circulating Free T4 (FT4) levels in individuals harbouring each of the
three codon 314 mutations. FT4 levels expressed as fold elevation relative to the

upper limit of the normal reference range (denoted as 1.0) were calculated for all

individuals shown in Table 3.2, except the index case in pedigree 5 in whom the
pituitary-thyroid axis had been disrupted by previous thyroid surgery. For each

mutation, values shown represent the mean +/- s.e.m.
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3.4 Discussion

In this chapter I have compared the functional properties of three novel mutations
(S314C, S314F, S314Y), due to different nucleotide substitutions in the same codon

in the thyroid hormone receptor β gene (Figure 3.1), occurring in six kindreds with

RTH.

All affected individuals exhibited characteristic biochemical features with elevated
circulating free thyroid hormones and a non-suppressed TSH, in keeping with the

notion that this disorder is characterised by resistance within the hypothalamic-
pituitary-thyroid axis. Two of the mutations (S314F, S314Y) were identified in

separate families with no apparent shared ancestry, suggesting that they had arisen

independently in a mutation-prone GC rich region as has been documented
previously in RTH (Weiss et al., 1993). Most affected individuals were

asymptomatic or noted to have a goitre, but in four cases thyrotoxic features were
present. There was no clear correlation between clinical features and the underlying

genetic defect, underscoring the variable clinical phenotype in this disorder (Beck-

Peccoz and Chatterjee, 1994).
RTH also exhibits molecular heterogeneity, being associated with diverse mutations

which all localize to the ligand-binding domain of the TRβ gene. On the basis of

their transcriptional and hormone binding properties, it has been suggested that RTH
mutants can be subdivided into three categories (Meier et al., 1993): type I mutants

exhibit reduced transactivation consistent with the degree of impairment in their

ability to bind ligand; type II mutants show a disproportionate loss of transactivation
relative to their altered ligand binding affinity; type III mutants exhibit negligible

ligand binding and comparably impaired transactivation. In this study, the mutations

that have been identified in codon 314 of TRβ exhibited divergent functional

properties. The S314C substitution resulted in a moderate impairment in hormone
binding. Consonant with this, it exhibited a Type I transactivation profile with

functional impairment at lower T3 levels but full transactivation at higher T3
concentrations. In contrast, the S314F and S314Y substitutions resulted in a

complete loss of ligand binding. These mutants showed Type III transcriptional

responses with S314Y being unable to activate transcription and S314F achieving
only 15% of the maximal WT response at 1000nM T3 (Figure 3.3).
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All three codon 314 mutants are capable of inhibiting the transcriptional activity of

wild type TR when they are coexpressed (Figure 3.4). This dominant negative effect

has been observed previously with a large number of other RTH mutants and is in
keeping with the dominant mode of inheritance of this disorder (Collingwood et al.,

1994; Collingwood et al., 1998; Meier et al., 1992). Gel mobility shift assays
indicate that all three codon 314 mutants retain the ability to bind to DNA and

heterodimerise with RXR (Figure 3.2). This observation supports previous

hypotheses that DNA binding and heterodimerisation are functional properties which
are critical for RTH mutants to exert dominant negative activity (Collingwood et al.,

1994; Nagaya et al., 1992; Nagaya and Jameson, 1993). In addition to differences in

transcriptional function, these studies also suggest that the three S314 mutants differ
in dominant negative potency:  the S314F and S314Y mutants inhibited WT receptor

function more strongly (55%) than S314C (32%) (Figure 3.4); in addition, the
inhibition by S314F/Y mutants was less readily reversible with higher T3 levels than

S314C. It has been suggested that the ability of some RTH mutants to form TR

homodimers which constitutively repress basal transcription, may contribute to their
dominant negative inhibitory potency (Piedrafita et al., 1995; Yen et al., 1995;

Kitajima et al., 1995). In keeping with this hypothesis, it was noted that the weaker
dominant negative mutant S314C formed TR homodimers which dissociated more

readily with T3 whereas the more potent S314F and S314Y mutants formed

homodimer complexes that were less T3 reversible (Figure 3.2). Interestingly, the
extent of thyroid dysfunction in vivo appeared consistent with the magnitude of

receptor dysfunction in vitro (Figure 3.5).
To investigate the potential reasons for the marked divergence in their functional

properties, the effect of the different amino acid mutations in Ser 314 in human TRβ

has been modelled in collaboration with Dr J.W.R. Schwabe (Laboratory of

Molecular Biology, Cambridge, UK) (Wagner et al., 1995). Figure 3.6a shows that
the side-chain of Ser 314 plays a structural role in the periphery of the hydrophobic

ligand binding cavity, consistent with the functional data indicating its importance in

hormone binding. When viewed in greater detail (Figure 3.6b), it is evident that this
serine is tightly packed in van der Waal’s contact with the side-chains of Ile 353, Ile

431 and Leu 428, with the hydroxyl group of Ser 314 within hydrogen bonding
distance of the carbonyls of Met 310 and Glu 311. Mutation of Ser 314 to a cysteine
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would probably weaken these hydrogen bonds. However, since the side-chain

volumes of serine and cysteine are so similar, few structural perturbations might be

anticipated, explaining the relatively modest effect of this mutation on ligand
binding. In contrast, when Ser 314 is replaced by a phenylalanine, the bulky

aromatic side-chain of the latter clashes sterically with Ile 431, Met 310 and ligand
(Figure 3.6c). Rotation of the sidechain of Met 310 to accommodate this, results in a

clash with His 435 and Phe 459. It is likely that such steric effects would prove more

deleterious and indeed, it is known that different substitutions of His 435 in TRβ

markedly impair ligand binding  (Sakurai et al., 1990).

In conclusion, this chapter describes three novel mutations in TRβ in RTH due to

distinct nucleotide substitutions at a single codon (314), which differentially impair

receptor function. The data presented suggest that the degree of functional
impairment in vitro correlates with the extent to which interaction of Ser 314 with

T3 is disrupted and might also be related to the magnitude of thyroid dysfunction in
vivo.
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Figure 3.6 a. The crystal structure of human TRβ is shown, with Ser314 located in

the periphery of the ligand-binding cavity. b. Enlarged view showing the residues in
contact with Ser314. c. The mutation of Ser314 to Phe was modelled by replacing

the side-chain and then selecting the most favourable rotamer conformation. The

orientation for the phenylalanine shown here is the only one that did not clash badly
with the peptide backbone. However, this orientation clashed with the side-chain of

Met310 and Ile431. The orientation of Met310 could be adjusted to avoid the clash
with the phenylalanine, but this caused it to clash with both Phe459 and His435. In

conclusion the bulky aromatic side-chain cannot readily be accommodated without

significant structural perturbations.

a. b.

c.
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Chapter 4

TYROSINE AGONISTS REVERSE THE MOLECULAR DEFECTS
ASSOCIATED WITH DOMINANT NEGATIVE MUTATIONS IN HUMAN

PPARγ.

4.1 Introduction

Peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear

receptor superfamily, was first characterized as a transcriptional regulator of
adipocyte-specific gene expression (Tontonoz et al., 1994a) and preadipocyte

differentiation (Tontonoz et al., 1994b). A number of unsaturated fatty acids
(arachidonic, linoleic, γ-linolenic, eicosapentaenoic) activate PPARγ  and may

represent endogenous ligands for the receptor in this context (Kliewer et al., 1997;

Desvergne and Wahli, 1999). Eicosanoid derivatives of fatty acids can act as

endogenous PPARγ activators in other biological contexts: in the macrophage,

hydroxyoctadecadienoic acid (HODE) and hydroxyeicosatetraenoic acid (HETE), the
15-lipooxygenase products of arachidonic and linoleic acids, inhibit the production

of inflammatory cytokines (Huang et al., 1999) and promote the uptake and

catabolism of oxidised LDL (Nagy et al., 1998); 15-deoxy ∆12,14 prostaglandin J2

(15d-PGJ2), a terminal metabolite of prostaglandin D2, which binds PPARγ and

promotes adipocyte differentiation, has been most widely studied as a putative

naturally-occurring ligand (Forman et al., 1995; Kliewer et al., 1995).
The thiazolidinediones (TZDs) were synthesised as potentially hypolipidaemic

derivatives of clofibrate, but then developed as antidiabetic agents on account of their

unexpected insulin sensitising action in vivo. TZDs are high affinity PPARγ ligands

(Lehmann et al., 1995), with the rank order of their binding affinities mirroring
antihyperglycaemic activity, suggesting a role for this receptor in mediating their

antidiabetic action. Previously, we described two different mutations (P467L,

V290M) in the ligand-binding domain (LBD) of human PPARγ (Barroso et al.,

1999) in two families, with affected individuals exhibiting severe insulin resistance,
early onset type 2 diabetes mellitus and hypertension, providing direct evidence that
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this receptor regulates human glucose homeostasis. In addition to being functionally

impaired, the mutant receptors inhibit wild type PPARγ action in a dominant

negative manner, consistent with heterozygosity for mutant PPARγ in affected

subjects and dominant inheritance of the disorder in one family (Barroso et al.,

1999).
The syndrome of Resistance to Thyroid Hormone (RTH), a disorder characterised by

elevated circulating thyroid hormones with tissue refractoriness to thyroid hormone

action, is associated with similar dominant negative mutations in the human thyroid
hormone β receptor (TRβ) (Refetoff et al., 1993). Here, functional studies have

shown that higher concentrations of ligand can overcome dominant negative

inhibition by many TRβ mutants in vitro (Collingwood et al., 1994) and that the

administration of supraphysiological doses of thyroid hormone can restore target
tissue responsiveness in vivo (Hayashi et al., 1995). By analogy, it was reasoned that

the administration of a PPARγ agonist to enhance mutant receptor function and

reverse dominant negative activity, might represent a rational approach to the

treatment of the severe insulin resistance in our affected subjects. Three TZD PPARγ

agonists have been developed for clinical use: troglitazone, the first insulin-
sensitising antidiabetic agent to be licensed, was later withdrawn due to

unpredictable and potentially fatal hepatotoxicity; however the newer agents,

pioglitazone and rosiglitazone, offer comparable efficacy and appear to be devoid of
this side-effect (Krentz et al., 2000). Recently, high affinity, tyrosine-based, PPARγ

agonists, eg. farglitazar (GI 262570), with potent glucose-lowering activity in vivo

(Brown et al., 1999) and proven antidiabetic efficacy in Type 2 diabetes patients

(Fiedorek et al., 2000), have been developed.
In this chapter the functional characterisation of dominant negative natural PPARγ

mutants is reported. Consonant with the severe clinical phenotype, a range of

putative natural ligands are unable to activate mutant PPARγ. The mutant receptors

exhibit markedly impaired transcriptional responses with TZDs, but in contrast,
tyrosine-based receptor agonists correct defects in ligand binding, corepressor release

and coactivator recruitment, permitting transcriptional activation comparable to wild-

type receptor. In comparison to the TZD rosiglitazone, the tyrosine agonist
farglitazar completely reverses dominant negative inhibition by both mutant

receptors in vitro and activates PPARγ target gene (adipocyte P2) expression in
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P467L mutant peripheral blood mononuclear cells (PBMCs) more effectively.

Crystallographic modelling reveals a structural basis for these observations: both

mutations destabilise helix 12 (Kallenberger et al., 2003), and, as in the recently
elucidated PPARα/silencing mediator of retinoid and thyroid receptors (SMRT)

structure (Xu et al., 2002) this may facilitate corepressor interaction; conversely,

unlike rosiglitazone, the synthetic ligand farglitazar is able to make additional

contacts within the receptor ligand-binding pocket, thereby providing additional
stability to helix 12, which mediates transactivation. Tyrosine-based PPARγ agonists,

rather than TZDs, may represent a more rational approach to restoring mutant

receptor function in vivo and ameliorating insulin resistance in our patients.
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4.2 Methods

4.2.1 Plasmid constructs

Full-length human PPARγ1 cDNA was cloned by reverse transcription polymerase

chain reaction from total human preadipocyte RNA and introduced into the pcDNA3

expression vector (Invitrogen, Groningen, Netherlands). The P467L and V290M
mutants were generated by site-directed mutagenesis of the wild type (WT) receptor

template as previously described (Chapter 2; Barroso et al., 1999). DNA sequences
encoding residues 173 - 475 of the WT and mutant PPARγ ligand-binding domains

(LBDs) were cloned into pGEX4T (Amersham Pharmacia Biotech, Bucks, UK) and

AASV (Tone et al., 1994) to yield GST-PPARγ and VP16-PPARγ LBD fusions

respectively. Gal4-SMRT consists of the 468 C-terminal amino acids of SMRT fused

in-frame to the Gal4 DNA-binding domain (DBD) in pCMX (Chen and Evans,
1995). Gal4-ID1 (amino acids 2302-2352), Gal4-ID2 (amino acids 2131-2201) and

Gal4-ID1+2 (amino acids 2131-2352) contain one or more of the nuclear receptor
interaction domains of SMRT as reported previously (Nagy et al., 1999).

(PPARE)3TKLUC (Forman et al., 1995) and UASTKLUC (Tone et al., 1994) have
been described previously.

4.2.2 Protein-protein interaction assays

Bacterially expressed GST fusion proteins were prepared according to standard
protocols (Chapter 2; Barroso et al., 1999). After purification, proteins bound to

glutathione-Sepharose beads (Amersham Pharmacia Biotech, Bucks, UK) in binding
buffer (40mM HEPES pH 7.8, 100mM KCl, 5mM MgCl2, 0.2 mM EDTA, 1%

Nonidet P-40, 10% glycerol, 2mM DTT) were mixed with 5µl of 35S-labelled in vitro

translated CREB-binding protein (CBP) together with ligand or vehicle, and

incubated at 4oC for 2 hours. Following washing with NETN buffer (20mM Tris pH
8.0, 100mM NaCl, 1mM EDTA, 0.5% Nonidet P-40), bound CBP was determined

by SDS-PAGE. Comparable loading of the GST-PPARγ LBD fusion proteins was

confirmed with Coomassie staining prior to autoradiography.



95

4.2.3 Ligand binding assays

Hormone-binding assays were performed using bacterially expressed GST-PPARγ

LBD fusion proteins and the PPARγ ligands [3H]-rosiglitazone and [3H]-farglitazar in

a modification of a previously described filter binding assay (Chapter 2; Adams et

al., 1994). Filters were pre-incubated with BSA (1%) and Tween (1%) to reduce

non-specific binding with the [3H]-farglitazar compound. Again, addition of

comparable amounts of PPARγ LBD fusion proteins was confirmed through

Coomassie staining of aliquots subjected to SDS-PAGE. Results denote the mean ±

s.e.m. of experiments performed on three separate occasions.

4.2.4 Transfection assays

Calcium phosphate-mediated transfection was performed in 24-well plates of

293EBNA cells. Each well was cotransfected with 50-100ng of receptor expression
vector, 500ng of reporter construct, 100ng of the internal control plasmid Bos-β-gal

and, where indicated, 50-100ng of additional construct. Cells were harvested and

assayed as outlined in Chapter 2. Results represent the mean ± s.e.m. of at least three

independent experiments, each performed in triplicate.

4.2.5 aP2 assays in Peripheral Blood Mononuclear Cells (PBMCs)

These experiments were performed by Dr D.B. Savage (Cambridge, UK) and

accordingly the methods are outlined in brief. Blood was obtained from the index

case harbouring the P467L PPARγ mutation (Barroso et al., 1999) and peripheral

blood mononuclear cells (PBMCs) were isolated by ficoll gradient centrifugation,
washed in PBS and cultured in RPMI 1640 (Sigma-Aldrich, Dorset, UK) with 1%

charcoal-stripped fetal bovine serum (FBS) in 6-well plates with 3x106 cells/well.

Following exposure to either rosiglitazone or farglitazar for 24 hours, RNA was
isolated from cells using a commercial kit (Qiagen, West Sussex, UK) and reverse-

transcribed to generate first-strand cDNA. This was serially diluted and analysed by
quantitative PCR as described previously (Savage et al., 2001). Results shown are

the mean of two independent experiments in the individual carrying the P467L
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mutation (a deterioration in her clinical condition precluded venesection for a third

determination).
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4.3 Results

4.3.1 Transcriptional activation

The transcriptional activities of wild type receptor and PPARγ mutants were assayed

by cotransfection of receptor expression vectors together with a reporter gene

(PPARE)3TKLUC containing three copies of the PPARE from the acyl-CoA oxidase
gene linked to the thymidine kinase promoter and luciferase, in the absence or
presence of an array of putative natural ligands (Figure 4.1). As has been previously

described, WT PPARγ exhibited some constitutive basal transcriptional activity

(Zamir et al., 1997), but showed a further transcriptional response to unsaturated
fatty acids (linoleic acid, arachidonic acid, γ-linolenic acid), 15d-PGJ2 and

eicosanoids (13-HODE, 15-HETE) which ranged from 50 to 80% of that obtained

with a synthetic PPARγ agonist rosiglitazone. In contrast, the P467L and V290M

mutants were completely unresponsive to all the natural ligands tested, despite their

partial response to the synthetic receptor agonist.
To evaluate the potential therapeutic role of synthetic PPARγ agonists the

transcriptional properties of the PPARγ mutants were examined with each of the

TZDs licensed for clinical use. In comparison to WT PPARγ, the P467L and V290M

mutant receptors were virtually unresponsive to both troglitazone (Figure 4.2c) and
pioglitazone (Figure 4.2d) only achieving 40 to 50% of wild type receptor activity at

the highest concentration (10µM) of ligand. Similarly, only 1 to 10µM rosiglitazone

elicited partial transcriptional responses (50 to 75% of WT) from the mutant
receptors (Figure 4.2e). Replacement of the 2,4-thiazolidinedione head group (Figure

4.2a) with tyrosine-based substituents has led to the development of a series of high

affinity PPARγ agonists (Figure 4.2b). In marked contrast to the TZDs, these

compounds showed greater activity with PPARγ mutants. GW1929 (Figure 4.2f) and

GW7845 (Figure 4.2g) induced significant transcriptional activation by both P467L
and V290M mutant receptors even at low concentrations (10 to 100nM) of ligand,

enabling both mutants to achieve maximal responses comparable to WT receptor.

Farglitazar, which is being developed for clinical use, showed the greatest activity,
with the PPARγ mutants achieving >75% of wild type receptor activity at 10nM

concentration of ligand (Figure 4.2h).  Importantly, such greater potency of tyrosine
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agonists compared to thiazolidinedione was more evident with PPARγ mutants than

WT receptor.  Thus, whereas farglitazar was 100 times more potent than

rosiglitazone with WT PPARγ (WT activation with 100nM rosiglitazone (Figure

4.2e) versus 1nM farglitazar (Figure 4.2h), the tyrosine agonist was 1000 times more

potent than rosiglitazone with the PPARγ mutants (P467L and V290M activation

with 10,000nM rosiglitazone (Figure 4.2e) versus 10nM farglitazar (Figure 4.2h).

4.3.2 Hormone binding assay and coactivator recruitment

It has previously been shown that the impaired transcriptional function of the P467L

PPARγ mutant reflects a combination of defects in binding to ligand and recruitment

of coactivator (Barroso et al., 1999). A comparison of these properties of the P467L
and V290M receptor mutants was therefore made with TZD versus tyrosine-based

PPARγ agonists. In ligand binding assays with bacterially expressed WT or mutant

GST-PPARγ LBD fusion proteins and [3H]-rosiglitazone or [3H]-farglitazar, neither

mutant receptor exhibited specific binding to the radiolabelled TZD, whereas both

mutant proteins showed significant specific binding to the tyrosine agonist (Figure
4.3). In a protein-protein interaction assay, both rosiglitazone and farglitazar ligands

mediated strong recruitment of 35S-labelled coactivator CBP to wild type receptor.

However, the P467L and V290M mutants showed negligible coactivator binding
even at high concentrations (10µM) of thiazolidinedione, whereas a lower

concentration (1µM) of tyrosine agonist promoted recruitment of CBP (Figure 4.4).

4.3.3 Basal repression and corepressor recruitment

Some members of the nuclear receptor family (e.g., TR and RAR) are able to silence

basal gene transcription through ligand-independent interaction with specific
corepressor proteins such as NCoR (Horlein et al., 1995) and SMRT (Chen and

Evans, 1995) with ligand binding promoting corepressor dissociation. The effects of

P467L and V290M mutant receptors on basal gene transcription and their interaction
with corepressor were therefore examined. In comparison to cells transfected with

empty expression vector, WT PPARγ activated basal reporter gene activity (~5-fold);

in striking contrast, both PPARγ mutants not only lacked such activation but
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significantly repressed basal gene transcription (pcDNA3 = 1.0; P467L = 0.44;

V290M = 0.53) (Figure 4.5), suggesting that they might interact aberrantly with

corepressors in vivo. Several studies have identified domains (ID1 and ID2) within
NCoR and SMRT that mediate interaction with nuclear receptors (Nagy et al., 1999;

Perissi et al., 1999). To study the interaction between PPARγ mutants and

corepressor, mammalian two-hybrid assays were performed, with cotransfection of

fusions consisting of the ID1+2, ID2 or ID1 domains of SMRT linked to the DNA-
binding domain of Gal4, together with VP16 linked to either WT, P467L or V290M

PPARγ LBDs. In the absence of ligand, WT receptor and both PPARγ mutants were

recruited comparably to Gal4-ID1+2, and additional experiments with individual ID
domain fusions indicated that this interaction was mediated through the ID1 region

(Figure 4.6). Next, the effect of thiazolidinedione versus tyrosine-based PPARγ

agonists on receptor-corepressor interaction was investigated. With the addition of

increasing concentrations (100 to 1000nM) of TZD ligand (rosiglitazone), both
mutant receptors exhibited significantly attenuated and incomplete dissociation from

a Gal4-ID1 corepressor fusion when compared to the WT receptor (Figure 4.7).
However, the addition of tyrosine agonist (farglitazar) induced progressive and

nearly complete dissociation of both mutant receptors from Gal4-ID1 similar to WT

PPARγ (Figure 4.7).

4.3.4 Dominant negative activity

Previous studies indicate that inhibition of wild type receptor function by the P467L
and V290M PPARγ mutants is a likely mechanism for impaired receptor action in

vivo (Barroso et al., 1999). A comparison of the relative efficacy of both natural and

synthetic agonists in ameliorating such dominant negative inhibition by PPARγ

mutants was made. Cells transfected with WT receptor plus an equal amount of

either P467L or V290M PPARγ mutants were studied with increasing concentrations

of natural (15d-PGJ2) or synthetic ligands (rosiglitazone or farglitazar). In keeping
with their transcriptional activities with each ligand when tested alone, the P467L

and V290M mutants exhibited significant dominant negative inhibition (30-35%) of
wild type receptor function even at maximal concentrations of 15d-PGJ2 (Figure

4.8). Moreover, both mutants exerted strong dominant negative activity at low
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(10nM) concentrations of TZD and such inhibition was retained at higher (1µM)

levels of ligand with the V290M mutant (Figure 4.8). In contrast, low (10nM) or high

(1µM) concentrations of tyrosine agonist farglitazar completely reversed dominant

negative inhibition by the PPARγ mutants (Figure 4.8).

Failure of ligand-dependent corepressor release has been shown to mediate dominant

negative inhibition by natural TRβ mutants in RTH (Yoh et al., 1997). We therefore

sought to determine whether corepressor interaction is important for dominant

negative activity of the natural PPARγ mutants. The crystal structure of a PPARα-

SMRT complex has recently been elucidated (Xu et al., 2002) and residues in

PPARα that mediate binding to a polypeptide from SMRT are highly conserved in

PPARγ (Fig 4.13). One of these conserved residues in PPARγ (Leu 318) was mutated

to Alanine on either wild type or P467L mutant PPARγ backgrounds, with

comparison of their transcriptional properties in the absence of ligand. The L318A

receptor mutant showed comparable constitutive activity to WT PPARγ; however,

the P467L/L318A double mutation exhibited attenuated repression of basal

transcription when compared with the P467L mutant (Figure 4.9: pcDNA3 = 1.0;

P467L = 0.48; P467L/L318A = 0.85). Consistent with this, in a mammalian two-

hybrid assay, the L318A mutation abolished interaction of the P467L mutant with the

ID1 domain of SMRT corepressor (Figure 4.9, inset). Moreover, in comparison to

the P467L mutation alone, the P467L/L318A double mutant exhibited almost

negligible dominant negative inhibition of WT PPARγ activity (Figure 4.10).

4.3.5 aP2 expression in primary human monocytes harbouring dominant negative

PPARγ 

The adipocyte P2 (aP2) gene, a well-validated PPARγ target gene has previously

been shown to be expressed and regulated by PPARγ ligands in peripheral blood

mononuclear cells (PBMCs) (Pelton et al., 1999). To determine whether the

differences in mutant PPARγ responses to synthetic agonists observed in vitro might

correlate with ligand-dependent responses in cells from our affected subjects, the
ability of both rosiglitazone and farglitazar to induce aP2 expression in cultured

PBMCs taken from the index case harbouring the P467L mutation (Barroso et al.,

1999) was examined. Rosiglitazone induced aP2 expression in patient PBMCs in a
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dose dependent manner, but with farglitazar the dose response curve of the target

gene activation was significantly left shifted (Figure 4.11). The magnitude of

maximal aP2 target gene induction in response to either ligand was similar. The
results suggest that the tyrosine agonist is a more potent activator of PPARγ-

mediated transcription than its thiazolidinedione counterpart in primary cells from an

affected subject.
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Figure 4.1 A panel of putative endogenous ligands fail to transactivate mutant

PPARγ.  24-well plates of 293EBNA cells were transfected with 500ng of

(PPARE)3TKLUC reporter gene, 100ng of Bos-β-gal control plasmid and 100ng of

empty (pcDNA3) or different receptor expression vectors as shown.  Transcriptional

activity in response to a variety of endogenous ligands is shown.  Results represent

the mean ± s.e.m. of at least 3 independent experiments, each performed in triplicate,

and are expressed as a percentage of the maximal wild type observed response.  15 d-

PGJ2 - 15 deoxyΔ12, 14 prostaglandin J2; 13-HODE–hydroxyoctadecadienoic acid;

15-HETE– hydroxyeicosatetraenoic acid.
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Figure 4.2 a,b. Synthetic PPARγ agonists.  Comparison of the chemical structures of

a .  rosiglitazone (thiazolidinedione) and b. farglitazar (tyrosine agonist). c-h.

Tyrosine-based but not thiazolidinedione receptor agonists restore the transcriptional

activity of P467L and V290M PPARγ mutants. 24-well plates of 293EBNA cells

were transfected as outlined in Figure 4.1. Transcriptional activity in response to

ligand is shown for c. troglitazone d. pioglitazone e. rosiglitazone f. GW1929 g.

GW7845 and h. farglitazar.  Results (expressed as a percentage of the wild type

maximum) denote the mean ± s.e.m. of at least 3 independent experiments each

performed in triplicate. The gray circle in h. denotes the transcriptional response of

WT PPARγ to 100 nM rosiglitazone, indicating that it is the same magnitude as

maximal receptor responses to farglitazar.
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Figure 4.3 Binding of thiazolidinedione (3H-rosiglitazone) and tyrosine agonist (3H-

farglitazar) radioligands to GST-PPARγ ligand-binding domain (LBD) chimaeras.

Bacterially expressed GST-PPARγ LBD fusion proteins were incubated with

radioligand as indicated, in the absence or presence of 10µM cold competing ligand

(rosiglitazone or farglitazar respectively). Inset: Coomassie-stained gel of proteins

used in ligand binding assays confirming comparable expression of WT and mutant

receptors, with GST present in excess. Results represent the mean ± s.e.m. of 3

independent experiments each performed in duplicate.
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Figure 4.4 Coactivator recruitment to mutant PPARγ is greater with tyrosine agonist

(farglitazar) than thiazolidinedione (rosiglitazone). WT and mutant GST-PPARγ

LBD fusion proteins (quantitated as in Figure 4.3) were tested for interaction with
35S-labelled in vitro translated CREB-binding protein (CBP) in the presence of

increasing concentrations of ligand (rosiglitazone or farglitazar). Control assays were

performed with GST alone. Histograms below each panel quantify the amount of

CBP bound. An asterisk (*) denotes the band corresponding to full-length CBP.
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Figure 4.5 PPARγ mutants repress basal transcription. a. Unlike their Wild Type

(WT) counterpart, both the P467L and V290M mutants silence basal gene

transcription. 293EBNA cells were transfected with 500ng reporter gene

(PPARE)3TKLUC, 100ng Bos-β-gal (internal control) and 100ng of receptor

expression vectors (empty vector, WT, P467L or V290M). Results represent the

mean ± s.e.m. of 3 independent experiments each performed in triplicate.
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Figure 4.6 WT and mutant PPARγ interact with the ID1 domain of SMRT.

293EBNA cells were transfected with 500ng of the reporter construct UASTKLUC,

100ng of the internal control Bos-β-gal, 50ng of expression vectors encoding the

Gal4 DNA-binding domain (Gal4) alone or fused to the ID1, ID2, or ID1+2 domains

of SMRT, and 50ng of expression vector encoding VP16 alone or VP16 fused to the

ligand-binding domain of WT PPARγ (WT), P467L PPARγ (P467L) or V290M

PPARγ (V290M). Results represent the mean ± s.e.m. of 3 independent experiments

each performed in triplicate.
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Figure 4.7 Farglitazar is more effective than rosiglitazone in promoting corepressor

dissociation from mutant PPARγ. 293EBNA cells were transfected with 500ng of the

reporter construct UASTKLUC, 100ng of the internal control Bos-β-gal, 50ng of

expression vectors encoding the Gal4 DNA-binding domain (Gal4) alone or fused to

the ID1 domains of SMRT, and 50ng of expression vector encoding VP16 alone or

VP16 fused to the ligand-binding domain of WT PPARγ (WT), P467L PPARγ

(P467L) or V290M PPARγ (V290M) and treated with vehicle (dimethylsulfoxide,

DMSO), rosiglitazone or farglitazar. In all cases, results represent the mean ± s.e.m.

of 3 independent experiments each performed in triplicate.
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Figure 4.8 Tyrosine agonist (farglitazar) reverses dominant negative inhibition by

PPARγ mutants more effectively than putative natural ligand (15d-PGJ2) or

thiazolidinedione (rosiglitazone). 293EBNA cells were transfected with 100ng of

wild type (WT) receptor plus an equal amount of either WT or mutant (P467L;

V290M) expression vector (with the same reporter gene and internal control

constructs as described in figure 4.1), in the presence of increasing concentrations of

ligand. The transcriptional responses mediated by either 100ng or 200ng of WT

receptor were identical (data not shown). Results are expressed as a percentage of the

wild type maximum response and represent the mean ± s.e.m. of 3 independent

experiments each performed in triplicate.   **, P < 0.001; ns, not significant.
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Figure 4.9 Basal transcriptional repression by the P467L natural mutant is reversed,

but constitutive activity of WT PPARγ is not affected by the addition of an L318A

mutation. Inset, Interaction of P467L with the ID1 domain of SMRT in two hybrid

assays is abolished after introduction of the L318A mutation. 293EBNA cells were

transfected and results analyzed as in Figures 4.5 and 4.7.  **, P < 0001.
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Figure 4.10 Introduction of the L318A mutation significantly attenuates the

dominant negative activity of the P467L PPARγ mutant through abolition of its

interaction with corepressor. 293EBNA cells were transfected as in Figure 4.8 and

treated with vehicle (dimethylsulfoxide, DMSO) or rosiglitazone.
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Figure 4.11 The tyrosine agonist (farglitazar) enhances target gene (aP2) expression

in P467L mutant receptor containing peripheral blood mononuclear cells (PBMCs)

more effectively than thiazolidinedione (rosiglitazone). Following 24 hours exposure

to increasing concentrations of rosiglitazone or farglitazar, aP2 gene expression in

PBMCs was quantitated by RT-PCR. The results are expressed as a percentage of the

maximum response and represent the mean of two (P467L) independent experiments.

The s.e.m was less than 10% and has been omitted for clarity. The data shown in this

figure has been kindly provided by Dr D. Savage (University of Cambridge).
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4.4 Discussion

We have previously described two different heterozygous, loss-of-function mutations
(P467L, V290M) in the ligand-binding domain of human PPARγ. Affected

individuals exhibited marked fasting hyperinsulinaemia and the skin lesion

acanthosis nigricans signifying severe insulin resistance; importantly, subjects had

developed complications secondary to insulin resistance, including characteristic
dyslipidemia (elevated triglycerides, low high-density lipoprotein cholesterol),

ovarian dysfunction and type 2 diabetes mellitus; they also showed early-onset
hypertension unrelated to diabetic comorbidity (Barroso et al., 1999).  Whereas both

receptor mutants were very functionally impaired and dominant negative inhibitors

of wild type receptor action, they retained some transcriptional activity at highest
concentrations of ligand (Barroso et al., 1999). We therefore reasoned that if either

higher levels of endogenous natural ligands or synthetic receptor agonists could
overcome the functional defect and dominant negative inhibition by PPARγ mutants

in vitro, they might be useful to treat the severe clinical phenotype when

administered in vivo.

Despite being able to activate transcription via wild type PPARγ, even micromolar

concentrations of putative endogenous ligands, including omega-3 (γ-linolenic) and

omega-6 (linoleic, arachidonic) polyunsaturated fatty acids, eicosanoids (13-HODE,
15-HETE) and 15d-PGJ2, were unable to induce transcriptional activity from the

mutant receptors (Figure 4.1). Furthermore, high levels of 15d-PGJ2 were unable to

reverse significant dominant negative inhibition of wild type receptor function by the
P467L and V290M PPARγ mutants (Figure 4.8). Such unresponsiveness of mutant

receptors to endogenous ligands correlates with the clinical findings of partial

lipodystrophy in adults and significant insulin resistance even in two young children
aged 4 and 7yrs with the P467L mutation (Savage et al., 2003), which underscore the

severity of the clinical phenotype. In addition, such unresponsiveness in vitro

suggests that raising levels of endogenous PPARγ ligands in affected subjects is

unlikely to be a successful therapeutic approach.
With thiazolidinedione PPARγ agonists, both the lower affinity (WT PPARγ

EC50=500nM) agents troglitazone and pioglitazone and the more potent (WT PPARγ

EC50=43nM) rosiglitazone, induced significant transcriptional activity with the
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P467L and V290M mutants only at 10µM or 1µM concentrations of ligand (Figure

4.2c-e). A novel class of synthetic PPARγ  ligands (GW1929, GW7845 and

farglitazar), where N-tyrosine moieties have been substituted for the 2,4-
thiazolidinedione head group, have been developed (Henke et al., 1998) and are

known to be high affinity (EC50=0.3-6nM) agonists for wild type PPARγ. In marked

contrast to TZDs, the tyrosine-based agonists proved capable of rescuing mutant
PPARγ function even at low concentrations of ligand (1-10nM), eliciting a maximal

transcriptional response comparable to WT receptor (Figure 4.2f-h).  Furthermore,

the greater potency of tyrosine versus thiazolidinedione agonist is more marked with

the PPARγ mutants than wild type receptor, indicating that this class of ligand acts

specifically to restore mutant receptor function.
Further comparisons of rosiglitazone versus farglitazar, indicated that the ability of

the tyrosine agonist to correct deficits in ligand binding, coactivator recruitment and

corepressor displacement mediated its enhancement of mutant receptor function
(Figures 4.3, 4.4 and 4.7). To elucidate the molecular basis for the observed

differences between the two classes of PPARγ ligand, the crystal structures of the

PPARγ/RXRα  heterodimer complexed with either rosiglitazone or farglitazar

(Gampe et al., 2000) were examined in collaboration with Dr J.W.R. Schwabe
(Laboratory of Molecolar Biology, Cambridge, UK). In keeping with other nuclear

receptors, an amphipathic α-helix (H12) at the receptor carboxy-terminus mediates

important interactions with both ligand and coactivator (SRC-1) (Nolte et al., 1998):

in both crystal structures, Tyr473 makes contact with ligand, forming hydrogen
bonds with either the 2,4-thiazolidinedione headgroup of rosiglitazone or the

carboxylate headgroup of farglitazar; the side chain of Leu468 from the opposite side

of H12 contributes to a hydrophobic cleft on the receptor surface which
accommodates the coactivator peptide whereas Glu471 acts in concert with Lys 301

to form a “charge clamp” that stabilises interaction with coactivator. Pro467 forms
the amino-terminal boundary of helix 12 and Val290 (within helix 3) packs against

H12. It has been previously demonstrated, using fluorescence anisotropy, that

mutation of either residue disrupts the position and orientation of helix 12, thereby
compromising interactions with both ligand and coactivator (Kallenberger et al.,

2003). Comparison of the TZD versus tyrosine agonist-bound PPARγ structures

reveals that farglitazar occupies more (~ 40% vs. 25%) of the ligand-binding pocket
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with a 5-methyl-2-phenyloxazole tail and benzophenone head group, making

additional hydrophobic interactions in the cavity, which probably account for its

increased PPARγ-binding affinity, compared with rosiglitazone (Figure 4.12). Unlike

a subset of nuclear receptors (including TR and RAR) which are capable of
repressing basal transcription in the absence of ligand through recruitment of

corepressor proteins such as NCoR (Horlein et al., 1995) and SMRT (Chen and

Evans, 1995), in transfection assays wild type PPARγ exhibits constitutive

transcriptional activity (Figure 4.5) (Zamir et al., 1997). Whether such activity
represents receptor activation by endogenous PPARγ ligands or is an intrinsic

property of unliganded PPARγ, with H12 being in an “active” conformation in the

apo-receptor crystal structure (Nolte et al., 1998) remains unclear. In contrast, both

the P467L and V290M PPARγ mutants not only lack such constitutive activity but

also act as potent transcriptional repressors in the absence of exogenous ligand

(Figure 4.5). These properties are similar to those of artificial dominant negative
human [L468A/E471A (Gurnell et al., 2000)] and murine [L466A (Park et al.,

2003)] PPARγ mutants described previously. However, in a two-hybrid assay, both

WT and natural PPARγ mutants recruited corepressors (Figure 4.6). To reconcile

these apparently discordant observations, we suggest that corepressor is greatly over

expressed relative to endogenous coactivators in the two-hybrid assay, probably

promoting its interaction with WT PPARγ in a manner which is not relevant to its

normal action in cells containing more physiological levels of each cofactor type.

Evidence in favour of this notion is provided by our observation that the introduction

of a mutation (L318A), which disrupts corepressor interaction with both WT PPARγ

and the P467L mutant, has no discernible effect on the constitutive transcriptional

activity of WT receptor, whereas it reverses transcriptional silencing and dominant

negative inhibition by the P467L mutant (Figures 4.9 and 4.10).

The ability to silence basal gene transcription is also a characteristic of dominant
negative inhibition by mutant nuclear receptors in other disorders e.g. thyroid

hormone receptor β (TR β) mutants in resistance to thyroid hormone (RTH) (Yoh et

al., 1997), the PML-RAR fusion protein in acute promyelocytic leukaemia (APML)

(Lin et al., 1998), and the oncogene v-erbA (Damm et al., 1989). Furthermore, some
TRβ mutants in RTH have been shown to interact aberrantly with corepressor,

exhibiting failure to dissociate fully with ligand (Clifton-Bligh et al., 1998; Safer et
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al., 1998), and corepressor dissociation from PLZF-RAR fusions in APML is

refractory to retinoic acid treatment (Lin et al., 1998; Grignani et al., 1998; He et al.,

1998). In this context, both PPARγ mutants exhibited delayed and incomplete

corepressor release in the presence of saturating levels (1µM) of rosiglitazone

(Figure 4.7), whereas a moderate concentration (100nM) of farglitazar promoted near

normal dissociation of corepressor (Figure 4.7). Furthermore, such failure of natural

PPARγ mutants to release corepressor fully with TZD is analogous to the properties

of the artificial helix 12 PPARγ  mutants (L468A/E471A; L466A) described

previously (Gurnell et al., 2000; Park et al., 2003).
Recently, the crystal structure of a ternary complex consisting of the PPARα LBD

bound to an antagonist and a polypeptide motif from the corepressor SMRT has been

solved (Xu et al., 2002). Notable features of this structure include 1) displacement of
helix 12 such that it adopts a different position compared to its active conformation

in the agonist-bound structure and 2) docking of a SMRT motif in a hydrophobic

groove formed by helices 3, 4 and 5 of the receptor. The LBDs of PPARγ and

PPARα are similar (~71% homology) and an alignment of residues in helix 3 from

the receptors (Figure 4.13) indicates striking homology, with 12 out of 14 amino
acids mediating PPARα-SMRT interaction being identical in PPARγ. These

observations permit crystallographic modelling to provide insights into how the

natural PPARγ mutations (P467L, V290M) facilitate interaction with corepressor.

Both mutations destabilise helix 12, preventing it from adopting the agonist-bound

conformation (Kallenberger et al., 2003). By analogy with the altered conformation
of helix 12 in the antagonist-bound PPARα/SMRT structure, we suggest that such

displacement of H12 favours corepressor recruitment. In addition, with the V290M

mutation, an additional factor may stabilise corepressor binding. A crystallographic

model of  PPARγ complexed with SMRT (Figure 4.14) shows that the side chain of

V290 is in contact with an isoleucine residue (I + 4) of the SMRT motif. However
the interaction is relatively weak due to the distance (~4Å) between the isoleucine

and valine residues and the fact that these hydrophobic side chains are partially
solvent exposed. In contrast, when residue 290 is substituted by methionine, its

extended side chain has improved van der Waals contacts, predicting stabilization of

corepressor interaction.
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Whereas both PPAR γ mutants inhibited wild type receptor function significantly at

lower (10nM) concentrations of rosiglitazone (Figure 4.8), the same concentration of

farglitazar fully relieved dominant negative inhibition by both mutant receptors

(Figure 4.8).  To determine whether differential responses of the mutant receptors to
the two ligands in vitro might translate into differences in clinical efficacy in vivo,

the abilities of both rosiglitazone and farglitazar to induce PPARγ target gene (aP2)

expression in PBMCs from a patient with the P467L receptor mutation were

compared. As anticipated, even at low concentrations (1 to 10nM), farglitazar evoked

a greater target gene response from mutant PBMCs than was observed with

rosiglitazone, indicating greater efficacy of the tyrosine agonist versus its TZD

counterpart (Figure 4.11). Although peak plasma drug levels following oral
administration of farglitazar (5mg) are slightly lower (300nM) (Sorbera et al., 2001)

than after 8mg of rosiglitazone (1µM) (Cox et al., 2000), these studies indicate that

they still exceed concentrations of agonist required to restore the function and
abrogate dominant negative activity of mutant receptors in vitro. A trial of

rosiglitazone therapy in a subject with the P467L mutation was more effective than

in the subject with the V290M PPARγ mutation, mirroring the dominant negative

properties of these mutant receptor in vitro (Savage et al., 2003). Accordingly, the
tyrosine-based PPARγ agonist may have greater potential efficacy in vivo and future

clinical studies will determine whether it does represent a more rational therapeutic

approach to treating the severe insulin resistance in our affected patients.
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Figure 4.12 Crystallographic modelling showing how the tyrosine agonist

(farglitazar) may preferentially stabilise helix 12 in mutant PPARγ. Superimposition

of PPARγ structures bound to either tyrosine (farglitazar) or thiazolidinedione

(rosiglitazone) agonists showing part of the cavities (grey mesh) containing either

ligand. On the helical backbone (green), the side chains (pink) of residues (P467,

V290) mutated in our patients with severe insulin resistance are depicted. Both

mutations are predicted to disrupt the orientation of helix 12 as described previously

(Barroso et al., 1999), thereby perturbing known important interactions of this helix

with ligand [rosiglitazone (yellow) or farglitazar (red)] and coactivator. However, in

the tyrosine agonist bound structure, the existence of an additional van der Waal’s

interaction between ligand and the side chain (orange) of a residue (L465) which

precedes H12, may stabilise its position and preserve functional interactions.
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Figure 4.13 An alignment of amino acid sequences corresponding to the corepressor

interaction interface in PPARα in the three PPAR subtypes.  Residues in PPARα

mediating contact with the peptide motif from SMRT are highlighted (∗) and boxes

denote complete conservation of 12 out of 14 of these amino acids between the

receptors. L318 in PPARγ is highlighted in bold.
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Figure 4.14 A molecular model showing the interface between peptide from SMRT

(white) and PPARγ (green) with the location of the V290M mutation also depicted

(purple).  The key SMRT residues that are predicted to form the interface (I+4, I+5,

L+1, L+9) are numbered as reported in the PPARα/SMRT crystal structure (Xu et

al., 2002).
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Chapter 5

DIGENIC INHERITANCE OF SEVERE INSULIN RESISTANCE IN A
HUMAN PEDIGREE

5.1 Introduction

Diabetes mellitus, defined as a state in which carbohydrate and lipid metabolism are

improperly regulated by insulin, is a major public health problem.

There are an estimated 143 million people worldwide with the disorder representing
an approximate five-fold increase over the last 10 years. It has been estimated that

the number will probably double by the end of the current decade as a consequence
of our shift towards a more sedentary lifestyle predisposing to obesity and insulin

resistance (Harris et al., 1998). The cost of caring for affected individuals is likely to

be prohibitively high, even for the more financially “well-off” Western Economies.
Although the aetiology of diabetes mellitus can be divided into a number of different

categories, broadly speaking most patients are considered to be either type 1 or type
2 in origin.

Type 1 diabetes mellitus (T1DM) results from the autoimmune destruction of the

insulin-producing β cells of the islets of Langerhans. Patients with this form are

absolutely dependent on exogenous insulin. Type 2 diabetes mellitus (T2DM) is the
most common form of the disorder and, in the majority of instances, is characterized

by  progressive resistance to the action of insulin in multiple tissues including
skeletal muscle, liver and fat, followed by a gradual decrease in insulin secretion as a

consequence of diminishing pancreatic β-cell function. However, even when insulin

resistant individuals are able to secrete sufficient insulin to remain euglycemic, they

are at increased risk of developing a cluster of abnormalities, which include
hypertension, dyslipidemia and hypercoagulability, that have been brought together

under the umbrella term “metabolic syndrome”. Although the value of diagnosing

the presence of the metabolic or insulin resistance syndrome over and above paying
due attention to individual cardiovascular risk factors is currently a matter of debate,

if nothing else it emphasises that premature atherosclerosis and vascular
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complications of insulin resistance and T2DM, are a major cause of excess morbidity

and mortality. Accordingly improving insulin sensitivity is an important goal for

those involved in the management of this condition.
It is clear that genetic factors significantly influence insulin sensitivity. For example

relatives of type 2 diabetics are more likely to manifest insulin resistance, whilst
offspring of type 2 diabetic parents are almost invariably resistant (Rewers and

Hamman, 1995). Moreover studies in monozygotic twins reveal a high heritability of

diabetes, with a 50%-75% estimate in the heritability of insulin resistance (Rewers
and Hamman, 1995). The complexity of insulin signalling and the capacity of

multiple factors to interfere with normal insulin action make the range of candidate

genes for insulin resistance very large. Although the inherited susceptibility to
insulin resistance is thought to involve the interplay of variants at multiple genetic

loci, no clear examples of gene-gene interaction have as yet been reported.

This chapter describes a kindred in which five severely insulin resistant subjects (but

none of their unaffected family members), were doubly heterozygous for
frameshift/premature stop mutations in two unrelated genes, namely PPARγ, a gene

highly expressed in adipocytes, and PPP1R3A, which encodes the muscle-specific

regulatory subunit of protein phosphatase-1. The finding that genetic defects in
proteins primarily involved in either carbohydrate or lipid metabolism can combine

to result in an extreme phenotype of insulin resistance provides a model for the type

of gene-gene interaction that may underlie insulin resistance associated with
commoner human metabolic disorders such as Type 2 diabetes.
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5.2 Methods

5.2.1 Clinical studies

Family A, a pedigree with multiple affected members was identified through
screening a cohort of subjects with severe insulin resistance (S.I.R.). The inclusion

criteria for this cohort are extreme hyperinsulinaemia (fasting plasma insulin >

150pmol/l; or plasma insulin > 1000pmol/l at 2 hours post-glucose load; or daily
insulin requirement of > 200U if lean, >300U if obese) but with a BMI < 37Kg/m2

and the presence of the skin lesion acanthosis nigricans (S’O Rahilly, 2002).

Routine biochemical measurements were undertaken using standard commercially
available assays in the Department of Clinical Biochemistry, Addenbrooke’s

Hospital, Cambridge. Measured total body fat was quantified by magnetic resonance
imaging (MRI) as described previously (Thomas et al., 1998) in the Department of

Radiology, Addenbrooke’s Hospital, Cambridge. Homeostatic model assessment was

used to calculate insulin sensitivity (Matthews et al., 1985). Intramyocellular lipid
content (IMCL) was determined by Magnetic Resonance Spectroscopy (MRS) as

described previously (Rico-Sanz et al, 1999) and plasma leptin concentration was
measured using an in-house two-site immunoassay.

5.2.2 Screening of PPARG gene

Genomic DNA was extracted from peripheral blood using standard techniques as
outlined in Chapter 2, section 2.3.2.1. All coding exons of PPARG, including exon B

encoding the unique N-terminal of PPARγ2, were PCR amplified with gene specific

primers (Table 5.1). PCR cycle conditions were as follows: initial denaturation at

94oC for 3 minutes, then 34 cycles at 94oC for 30 seconds, 60oC for 30 seconds, 72oC
for 1 minute, with a final extension at 72oC for 10 minutes. Following standard

purification of the PCR products (Chapter 2, section 2.3.2.4) sequencing was

performed using an ABI 310 PRISM automated sequencer as previously described
(Chapter 2, section 2.3.7).
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5.2.3 Screening of PPP1R3A gene

This work was undertaken by Dr Ines Barroso, Incyte Genetics Ltd (Cambridge,
UK).

In brief, genomic DNA from subjects was randomly pre-amplified in a primer
extension pre-amplification (PEP) reaction (Zhang et al., 1992). All coding exons

and splice junctions of the human PPP1R3A gene were PCR amplified from PEP

DNA with gene specific primers. PCR products were studied by single-stranded
conformation polymorphism (SSCP) analysis and those exhibiting anomalous

migration were sequenced directly to identify the nucleotide change (Thorpe et al.,

1999). Evidence for the presence of the PPP1R3A FS mutation was screened for in
participants in two independent population-based case-control studies in East Anglia,

UK. Diabetes was assumed to be of the type 2 form if its onset was after the age of
30 years and insulin therapy was not required during the first year following

diagnosis. Controls were individually age- and gender-matched to each of the cases,

but excluded if they had an HbA1c > 6.0%.

5.2.4 Plasmid and constructs

Full-length human PPARγ1 and PPARγ2 cDNAs were cloned by reverse

transcription polymerase chain reaction from total human preadipocyte RNA and

introduced into the pcDNA3 expression vector (Invitrogen, Groningen, Netherlands)
as XhoI/Xba I fragments. The PPARγ FS mutant was generated by site-directed

mutagenesis of both wild type (WT) isoforms (γ1 and γ2) receptor templates as

previously described (Chapter 2, section 2.3.8) and verified by direct sequencing.

WTγ1, WTγ2, FSγ1 and FSγ2 expression vectors for in vitro transcription/translation

were generated by cloning Xho I/Xba I fragments of corresponding pcDNA3 fusions

into pGEM11Zf(+) (Promega). Comparable expression of the 35S-labelled proteins
was verified by coupled transcription and translation in vitro (TNT, Promega).

(PPARE)3TKLUC (Forman et al., 1995) and UASTKLUC (Tone et al., 1994) have
been described previously. The HA-tagged WT or PPP1R3Afs (Fsh) mutant

expression vectors (pACCMV.pLpA-HA-PPP1R3) were kindly provided by P.

Cohen (Rasmussen et al., 2000).
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5.2.5 DNA binding assays

Receptor binding to DNA was assessed using electrophoretic mobility assays as

described previously (Chapter 2, section 2.4.3) using 35S-labelled in vitro translated
receptors quantitated by SDS-PAGE analysis and a 32P-labelled oligonucleotide

duplex corresponding to the PPARE from the acyl-CoA oxidase gene (Zamir et al.,

1997).

5.2.6 Transactivation assays

293EBNA cells were cultured in 24-well plates in DMEM containing 10% fetal

bovine serum and changed to medium containing AG-1-X8 resin-stripped serum
prior to transfection. Each well was cotransfected with 500ng of (PPARE)3TKLUC

(Forman et al, 1995) reporter construct together with 100ng of receptor expression

vector (wild type, frameshift mutant or empty vector pcDNA3) using the calcium
phosphate method (Chapter 2, section 2.6.2). The ligand was added 5 hours after

transfection and cells were harvested 36 hours later.  Luciferase values were
normalised to β-galactosidase activity from the internal control plasmid Bos-β-gal as

previously described (Collingwood et al., 1994), and represent the mean ± s.e.m. of

at least three independent experiments, each performed in triplicate.

5.2.7 Immunoprecipitation and Western blot analysis

Expression levels of the PPP1R3A mutant were examined by Western blotting of

CHO cell extracts. These experiments were performed by Dr David Savage
(University of Cambridge). In brief, CHO cells were transiently transfected with

epitope tagged PPP1R3A wild type (WT) or mutant (Fsh) expression vectors.
Following immunoprecipitation of the whole-cell lysates with an antibody direct

against the epitope tag, the proteins were separated, blotted and analyzed with an

antibody targeted against the protein phospatase 1 catalytic subunit (PP1C). To
confirm the expected size of the proteins,  western blotting of whole-cell lysates,

using a sheep monoclonal N-terminal PPP1R3A antibody was performed.
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5.2.8 Immunofluorescence Microscopy

This experiment was performed by Dr Gudrun Ihrke (Cambridge Institute for
Medical Research, Cambridge). Cells were fixed in 3% paraformaldehyde/0.05%

glutaraldehyde in 100 mM K-Hepes/3 mM MgCl2 buffer (pH 7.5) for 15 minutes,
treated with 0.5% borohydride/PBS for 10 minutes, and then blocked and

permeabilised in 1% BSA/0.1% saponin for 20 minutes. When cells were

permeabilised before fixation, they were incubated for 5 minutes in 0.05% saponin in
80 mM K-Pipes/5 mM EGTA/1 mM MgCl2 (pH 6.8) at room temperature. Cells

were labelled with a rat anti-HA antibody (Boehringer; 1:100) followed by Texas

Red goat anti-rat (Molecular Probes; 1:200). Confocal images were collected using a
Leica TCS SP system and processed using Adobe Photoshop software (Adobe

Systems).
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5.3 Results

5.3.1 Clinical and genetic analyses

As part of an ongoing programme of investigation into the aetiology of inherited
syndromes of severe insulin resistance (S O’Rahilly, Cambridge) we identified a

pedigree (Family A) with multiple affected members (Figure 5.1c). The grandparents

(subjects Ii and Iii) had typical late-onset Type 2 diabetes with no clinical features of
severe insulin resistance. However, three of their six children and two of their

grandchildren had acanthosis nigricans, a dermatological marker of extreme insulin

resistance. All five subjects with acanthosis nigricans had markedly elevated fasting
plasma insulin levels, indicative of severe insulin resistance (Figure 5.1d).

Mutational screening studies identified a heterozygous frameshift/premature stop
mutation in the PPARγ gene [(A553∆AAAiT)fs.185(stop 186) – denoted hereafter as

PPARγ FS] (Fig. 5.1a), which was present in the grandfather (Ii), all five severely

insulin resistant relatives, and one other relative who was normo-insulinaemic (IIvi).

Further candidate gene studies revealed that a heterozygous frameshift/premature

stop mutation in the gene encoding the muscle-specific regulatory subunit of protein
phosphatase-1 (PPP1R3A) [(C1984∆AG)fs662(stop668) – denoted hereafter as

PPP1R3A FS] (Figure 5.1b) was also present in this family. In this case the mutation
was present in the grandmother (Iii), all five severely insulin resistant subjects and

one other relative. Thus, all five severely insulin resistant subjects, and no other

family members, were doubly heterozygous for frameshift mutations in the two
unrelated genes. Fasting insulin levels in the singly heterozygous and wild-type

family members were similar and within the range seen in the normal population

(Figure 5.1d). In contrast, the double heterozygotes showed extreme
hyperinsulinaemia (Figure 5.1d). In addition to hyperinsulinaemia and acanthosis

nigricans, T2DM, hyperlipidaemia and hypertension were present in the double
heterozygotes to a variable extent (Figure 5.1c and Table 5.2).

In light of these findings, all probands from our severe insulin resistance (SIR)

cohort (n-129) were screened for mutations in PPARγ and PPP1R3A. Other than the

two dominant negative (P467L and V290M) mutations in PPARγ previously reported

(Barroso et al., 1999), and the common Pro12Ala population polymorphism variant
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(Deeb et al., 1998), no other missense, nonsense or frameshift mutations were

identified. However, one other unrelated subject had the same heterozygous

frameshift mutation in PPP1R3A that was found in Family A. This subject (IIi,
Family B) presented with acanthosis nigricans aged 20 years. At that age he had a

body mass index of 36.5 kg/m2 and a fasting plasma insulin of 437 pmol/L (N<80
pmol/L). He inherited the mutation from his moderately obese father (BMI 30 kg/m2)

who also had marked hyperinsulinemia (fasting plasma insulin 178 pmol/L) (Figure

5.1e). The two other wild-type family members were clinically and biochemically
normal. Of note, the proband subsequently lost 40 kg and reduced his BMI to 27

kg/m2. At that stage his fasting insulin level fell dramatically to 93 pmol/L. This

observation is consistent with normal fasting insulin levels (31 pmol/L) in a lean 20-
year-old male carrier of the PPP1R3A mutation in family A (Figure 5.1c, subject

IIIii).

5.3.2 DNA binding of PPARγ FS

PPARγ is a ligand-inducible transcription factor that regulates target gene

transcription as a heterodimer with the retinoid X receptor (RXR). This
heterodimeric complex can be activated synergistically by antidiabetic PPARγ

agonists (e.g. thiazolidinediones) and RXR-specific ligands (Mukherjee et al., 1997).

PPARγ exhibits a modular structure consisting of a central DNA-binding domain, an

amino-terminal activation domain, and a carboxy-terminal ligand-binding domain

(Figure 5.1a). The frameshift premature stop mutation leads to a mutant receptor
which is truncated within the second zinc finger of the DNA-binding domain – a

region common to both the γ1 and γ2 isoforms of the receptor (Figure 5.1a), and

which is critical in mediating receptor interaction with PPAR-specific response
elements (PPAREs) in target gene promoters. Accordingly, the ability of the PPARγ

mutants to bind DNA as heterodimers with RXR was examined in an electrophoretic
mobility shift assay. Unlike their wild type (WT) counterparts, neither FS PPARγ1

(FSγ1) nor FS PPARγ2 (FSγ2) mutants formed heterodimeric complexes when

coincubated with a radiolabelled probe encoding the acyl-CoA oxidase PPARE

(Figure 5.2).
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5.3.3 Functional activity and dominant negative activity of PPARγ FS

Consistent with their inability to bind DNA in contrast to WT receptor, neither

mutant mediated transactivation when cotransfected with a reporter gene containing
a PPARE and increasing concentrations of the thiazolidinedione, rosiglitazone

(Figure 5.3). Moreover, unlike the previously reported naturally occurring missense

PPARγ mutants (P467L and V290M) (Barroso et al., 1999), the truncated mutants

did not exhibit dominant negative activity when co-expressed with WT receptor
(Figure 5.4).

5.3.4 Characterization of the PP1R3A mutant

PPP1R3A is a skeletal- and cardiac muscle-specific regulatory subunit of protein
phosphatase 1. The PPP1R3A FS mutation is predicted to truncate the protein

prematurely (Figure 5.1b), resulting in the loss of its C-terminal sarcoplasmic
reticulum-binding domain (Newgard et al., 2000). When transiently expressed in

CHO cells the frameshift mutant expression vector produced a detectable protein of

the expected reduced size (approximately 83 kD) (Figure 5.5a). Furthermore, the
truncated protein was capable of interacting with the catalytic subunit of PP1 (PP1C)

with an efficiency similar to WT PPP1R3A (Figure 5.5b). However, confocal
microscopy revealed strikingly different intracellular distributions of the WT and

mutant PPP1R3A. A significant fraction of WT PPP1R3A localised, as expected, to

intracellular membranes and was therefore resistant to release following saponin
permeabilisation of cells, whereas mutant PPP1R3A was almost completely lost from

cells following permeabilisation suggesting it is mislocalised intracellularly and

probably cytosolic (Figure 5.5c).
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Primer Sequence

Exon B Forward 5' – ATA TCA GTG TGA ATTBACA GC – 3’

Exon B Reverse 5' – CCT GGA AGA CAA ACT ACA AG – 3’
Exon 1 Forward 5' – AGA TTG CTG TGT TCT CTA G – 3'

Exon 1 Reverse 5' – CCT AGT AGT CTG AAA AGT G – 3'

Exon 2 Forward 5' – CAT GGG ATA ATT ATC CTC TCA C – 3'
Exon 2 Reverse 5' – GGT TCT GCT GAA ATG AA – 3'

Exon 3 Forward 5' – TTC GTG CTT CCA TGT GTC – 3'
Exon 3 Reverse 5' – CTG GTC TGG CAG CTA TAA TG – 3'

Exon 4 Forward 5' – GCA CAG TGT GTG TTC AGA GC – 3’

Exon 4 Reverse 5' –CCA ATG AAG ACA GCA GAA G – 3’
Exon 5 Forward 5' –AGT TAG AAA TCT CCA AGT CAT CCC ACG – 3'

Exon 5 Reverse 5' – TCA TCC CAC CCT CTT TCA TAG AAG ATC – 3'
Exon 6 Forward 5' – TGA ACC CCC TGT TGT GTT TTC CAT ATG – 3'

Exon 6 Reverse 5' – AGG GAA ATG TTG GCA GTG GCT CAG GAC – 3'

Table 5.1 Primers used to amplify and sequence coding exons of the human PPARG

gene, including exon B encoding the unique N-terminal region of the PPARγ2

isoform.
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Table 5.2 Clinical and biochemical characteristics of mutant allele carriers. All samples were

obtained following an overnight fast.  *, Measurements undertaken on anti-hypertensive

therapy; †, Measurements undertaken by lipid lowering therapy; ‡, Abnormalities detected at
the time of screening; Body fat was quantified by magnetic resonance imaging (MRI) as

described previously (Thomas et al., 1998). Predicted body fat (Black et al., 1983): for
women = (1.48*BMI (kg/m2)) – 7.00; for men = (1.281*BMI (kg/m2)) – 10.13; ¶, HOMA

(homeostasis model assessment) (Matthews et al., 1985); § IMCL reference values represent

mean and SD of measurements from 76 control subjects (unpublished observations EL
Thomas and JD Bell). HDL, high-density lipoprotein; NEFA, non-esterified fatty acids;
IMCL, intramyocellular lipid.

Family A Family B

Doubly
heterozygous
subjects

PPARγ FS
mutant
heterozygotes

PPP1R3A FS
mutant
heterozygotes

Reference
values

Fig. 5.1
reference

IIii            IIiii IIiv IIIiii IIIiv Ii       IIvi Iii          IIIii IIi Ii

Age 49 47 41 25 21 71 32 71 20 20 65

Gender F F F F F M M F M M M

BMI (kg/m2) 26.8 26.0 28.0 31.4 29.0 24.2 25.8 32.9 18.9 36.5 30

Blood
pressure

190/
110

140/
80*

130/
84

130/
70

150/
110

170/
90*

125/
90

170/
105*

105/
69

135/
82*

172/
93*

Measure total
body fat as
percentage
of predicted
body fat

84.3 63.5 83.7 46.8 79.4 n/a 75.2 n/a n/a n/a n/a 100%

Glucose 5.6 6.4 4.4 9.2‡ 3.9 12‡ 4.6 4.5 5.2 4.4 6.2 3.5 – 6.3
 mmol/L

Insulin 195 359 197 411 346 61 46 56 31 437 178 < 80
 pmol/L

% insulin
sensitivity
(HOMA) ¶

27 15 28 14 20 87 115 95 168 13 30 100%

Triglycerides 6.1 2.1† 3.4 34.6 10.1 6.6 1.5 1.1 0.7 1.5 2.4 Desirable
< 2mmol/L

HDL 0.82 0.63 0.81 0.52 1.04 0.71 1.02 1.84 1.36 0.7 0.91 Desirable
> .9mmol/L

NEFA 1442 202† 526 2532 867 1219 584 933 n/a n/a n/a 280 – 920
umol/L

Uric acid 0.31 0.24 0.23 0.23 0.28 0.35 0.31 0.23 0.32 0.17 0.44 0.15 – 0.35
mmol/L

Leptin 12.1 4.4 8.2 17.3 12.4 1.2 0.9 13.2 0.6 14.6 19.8 ug/L

IMCL/Creatine
        ratio
(soleus muscle)

19.8 19.1 25.5 28.3 44.9 n/a 28.3 n/a n/a n/a n/a 13.6 ± 6.6§
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    Leptin concentrations (ng/ml)

percentiles

SEX  BMI

(kg/m2)

n   mean median 5 25 75 95 min max

Men ≤25 278 3.3 2.5 0.4 1.2 4.4 8.3 0.1 22.8

25-30 375 5.9 4.7 1.5 3.0 7.5 13.0 0.5 26.3

30-35 98 10.9 9.5 4.2 6.3 13.8 26.0 2.1 36.7

>35 8 18.8 15.5 7.8 12.4 27.6 31.7 7.8 31.7

Women ≤25 535 10.6 8.9 2.4 5.4 13.9 24.4 0.2 45.8

25-30 348 21.1 18.9 8.6 13.8 26.8 38.9 3.0 65.7

30-35 126 34.6 32.3 14.9 25.4 43.6 60.2 8.1 79.1

>35 60 58.0 52.4 22.7 43.6 70.4 113.6 11.9 137.4

Table 5.3 Distribution of leptin concentrations among individuals in the population-

based MRC Ely cohort study stratified by sex and BMI.
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Figure 5.1 Identification of Novel Mutations in PPARγ and PPP1R3A in two

families with severe insulin resistance.

a, Heterozygous P P A Rγ  frameshift / premature stop mutation

[(A553∆AAAiT)fs.185(stop186)]. The frameshift leads to truncation of the receptor
within the second zinc-finger of the DNA-binding domain (DBD) and is predicted to

involve both γ1 and γ2 receptor isoforms. M, methionine; K, lysine; S, serine; X,

Stop; LBD, ligand-binding domain.
b, Heterozygous PPP1R3A frameshift mutation [(C1984∆AG)fs.662(stop 668)]. The

frameshift results in a premature Stop codon (X) at position 668 (N, asparagine) with

predicted subsequent loss of the carboxyterminal putative sarcoplasmic reticulum-
binding domain (SRBD) (Newgard et al., 2000) but preservation of the

aminoterminal PP1C/ GBD, PP1C- and glycogen binding domains.

c, Pedigree of Family A indicates complete concordance between features of severe
insulin resistance and the presence of both mutations. The age and genotype (+, wild-

type; P, PPARγ mutation; R3, PPP1R3A mutation) of members is indicated. Doubly

heterozygous individuals were variably affected by additional features of metabolic
syndrome. Dyslipidaemia is defined by triglycerides  > 2mmol/L and high-density

lipoprotein (HDL) < 1mmol/L.

d, Fasting plasma insulin concentrations plotted against body mass index [BMI
(kg/m2)] in Family A. The solid line represents the log-linear regression line between

fasting insulin and BMI in 1121 normal participants in the MRC Ely population-
based cohort study. The 95% confidence intervals (broken lines) include 95% of

individuals at any given BMI.

e, Pedigree of Family B which suggests that carriers of the PPP1R3A mutation
develop fasting hyperinsulinaemia when obese. The age, BMI (kg/m2), fasting

plasma insulin (FI in pmol/L) and genotype (+, wild-type; R3, PPP1R3A mutation)
are indicated.

133a
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Figure 5.2 Mutant PPARγ mutants fails to bind to DNA heterodimerically with their

partner RXR. Using an electrophoretic mobility supershift assay, in vitro translated WT

PPARγ1 (WTγ1), WT PPARγ2 (WTγ2), FS PPARγ1 (FSγ1) or FS PPARγ2 (FSγ2) and

RXR were coincubated with oligonucleotide duplexes encoding the acyl-CoA oxidase

PPARE. Complexes were resolved by PAGE. The open arrow indicates the location of

the PPARγ-RXR heterodimer, whilst the solid arrowhead denotes free unbound probe.

Inset, 35S-labelled in vitro translated WT and FS mutant PPARγ1 and PPARγ2 analysed

by SDS-PAGE showing that wild type (open arrowhead) and truncated mutant (closed

arrowead) proteins are synthesised. RL, reticulocyte lysate; Mw, molecular weight.

γ2 proteins. RL, reticulocyte lysate; Mw, molecular weight.

+ - - - - -
- + - - + +
- - + - + -
- - - + - +

RL
RXR
WTγ1
FSγ1

+ - - - - -
- + - - + +
- - + - + -
- - - + - +

RL
RXR
WTγ2
FSγ2

 WT     FS
 γ1 γ2  γ1 γ2

66

Mw (kD)

30
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Figure 5.3 The FS PPARγ mutants are transcriptionally inactive in the context of both

the γ1 and γ2 isoforms. 293EBNA cells were transfected with WTγ1, WTγ2, FSγ1, FSγ2

or empty (pcDNA3) expression vectors (100ng) together with a reporter gene

(PPARE)3TKLUC (500ng), in the presence of increasing concentrations of the

thiazolidinedione (rosiglitazone). Results are expressed as a percentage of the maximum

activation obtained with WTγ1 and represent the mean ± s.e.m. of at least three

indipendent experiments.
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Figure 5.4 The FS PPARγ mutants do not exhibit dominant negative activity

when co-expressed with their WT counterparts. 293EBNA cells were transfected

with 100ng of WT plus an equal amount of either WT or FS mutant expression

vectors, together with the same reporter construct as in Figure 5.3. Results are

expressed as a percentage of the maximum activation obtained with WTγ1. The

transcriptional responses attained with either 100ng or 200ng of WT receptor are

identical (data not shown).
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Figure 5.5 Characterisation of the PPP1R3A FS (Fsh) mutant.

CHO cells were transiently transfected (Fugene) with HA-tagged wild type (WT) or

PPP1R3A FS (Fsh) mutant expression vectors [pACCMV.pLpA-HA-PPP1R3

(Rasmussen et al., 2000), gift from P. Cohen].

a, Western blotting of whole cell lysates using a sheep monoclonal N-terminal

PPP1R3A antibody (gift from P. Cohen). Note that PPP1R3A undergoes rapid

proteolysis (Tang et al., 1991) and one of the proteolytic fragments is of similar size

to the Fsh mutant.

b, Whole cell lysates from non-transfected (Con) and transfected CHO cells were

immunoprecipitated with an anti-HA antibody (Santa Cruz) and Western blotted with

an anti-PP1C antibody (Santa Cruz), showing that interaction between wild type and

mutant regulatory subunits with catalytic subunit is preserved.

c, Confocal microscopy of wild type (WT) and mutant  (Fsh) PPP1R3A. Cells

transiently transfected with HA-tagged versions of PPP1R3A were fixed either

without (left panel) or with prior permeabilisation in saponin to release cytosolic

PPP1R3A (right panel), then fixed and labelled with an anti-HA antibody. The loss

of mutant Fsh protein in cells permeabilised with saponin prior to fixation indicates

that the proteins are freely cytosolic whereas the WT protein is probably attached to

intracellular membranes.

137a
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5.4 Discussion

In this chapter I have described a family in which five members had acanthosis
nigricans and severe hyperinsulinemia. Intriguingly, genetic screening revealed that

all five subjects, but none of their unaffected relatives, were double heterozygotes for
frameshift mutations in two unrelated genes, peroxisome proliferator activated

receptor (PPARγ) and the muscle-specific regulatory subunit of protein phosphatase

1 (PPP1R3A). The frameshift premature stop mutation in PPARγ generates a protein,

which is unable to bind to DNA and is transcriptionally nonfunctional with no

dominant negative activity. Is a loss of function mutation in a single allele of human
PPARγ a plausible contributor to insulin resistance?  PPARγ agonists clearly enhance

insulin sensitivity (Olefsky, 2000) whilst humans with dominant negative mutations

in PPARγ (Barroso et al., 1999) and mice with severe PPARγ deficiency (Yamauchi

et al., 2001) are markedly insulin resistant. Surprisingly however, heterozygous

PPARγ deficient mice appear to be more insulin sensitive than their wild-type

littermates, particularly after high fat feeding (Kubota et al., 1999; Miles et al.,
2000). While both of the subjects from Family A who only carry the PPARγ FS

mutation have fasting insulin levels in the normal range, the co-existence of this

mutation with the PPP1R3A frameshift mutation results in severe insulin resistance.

These findings might appear to conflict with those in the heterozygous PPARγ null

mice. There are several possible explanations for this apparent discrepancy. Firstly,
the combination of a genetic defect in muscle glycogen synthesis with the haploid

PPARγ state has not yet been specifically examined in mice. Secondly, while the

particular PPARγ mutation found in Family A does not appear to have any dominant

negative activity when tested in the assays shown, it is conceivable that it might have

some properties that are distinct from a purely null allele in vivo. Finally, it is
possible that species-specific differences in adipose tissue biochemistry (Bjorntorp

and Sjostrom, 1978) may mean that quantitative decrements in PPARγ function have

different metabolic implications for humans and rodents.
The mutation found in both Family A and Family B profoundly affects the structure

of PPP1R3A, a key molecule in the regulation of glycogen metabolism. Insulin

activates glycogen synthase (GS), the rate-limiting enzyme in glycogen synthesis, by
promoting its dephosphorylation, via the inhibition of kinases (glycogen synthase
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kinase-3 and protein kinase-A) and the activation of protein phosphatase-1 (PP1)

(Newgard et al., 2000).  Insulin specifically activates discrete pools of PP1 in the

vicinity of glycogen by facilitating binding of the PP1 catalytic subunit (PP1C) to
glycogen targeting regulatory  (PPP1R) subunits (Newgard et al., 2000). The

glycogen targeting subunit appears to serve as ‘molecular scaffolds’, bringing PP1C
with its substrates glycogen synthase together in a macromolecular complex, and in

the process significantly enhances PP1C activity (Newgard et al., 2000).

Is the PPP1R3A FS mutation a plausible contributor to a state of insulin resistance?
Mice rendered null for PPP1R3A have major defects in muscle glycogen synthesis

although somewhat unexpectedly, the effects of insulin on this process are

maintained in these animals (Suzuky et al., 2001). The PPP1R3A FS mutation results
in a major mislocalisation of the truncated protein within the cell and could have

biological effects distinct from those resulting from a simple null allele. The
truncated mutant PPP1R3A maintains its ability to interact with the catalytic subunit

and may therefore be capable of actively interfering with the latter’s normal function.

While previous studies have demonstrated that intracellular localisation influences
GS activity (Nielsen et al., 2001), the precise functional consequences of the

mislocalisation of PP1R3 are still to be determined.
As a result of 1) the a priori knowledge that both genes are intimately involved in

insulin action 2) the fact that the mutations found result in truncated proteins with

clear abnormalities in their function or localisation and 3) the observation that only
the five doubly heterozygous members of family A and not the other seven members

had unequivocal severe insulin resistance, it appears highly likely that the extreme
insulin resistant phenotype seen in this family is the result of an interaction between

the two mutations. Thus, familial extreme insulin resistance can now be added to the

short list of human inherited conditions in which digenic inheritance has been
described. These include some forms of retinitis pigmentosa (Goldberg and Molday,

1996) and junctional epidermolysis bullosa (JEB) (Floeth and Bruckner-Tuderman,
1999). It has been suggested that Bardet-Biedl syndrome (BBS) may be a complex

trait requiring three mutant alleles in at least two genes to manifest the phenotype

(Katsanis et al., 2001).
While no previous human examples of digenic inheritance of human insulin

resistance or Type 2 diabetes have been described, a number of experimental genetic

manipulations in murine models have established the principle that such gene-gene
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interaction might result in metabolic disorders. Thus Bruning and colleagues

demonstrated that while mice heterozygous for insulin receptor or IRS-1 (insulin

receptor substrate-1) knock-outs had minor metabolic abnormalities, doubly
heterozygous animals were markedly insulin resistant and had a high incidence of

diabetes (Bruning et al., 1997). Similarly Terauchi and colleagues crossed insulin
receptor substrate-1 (IRS-1) and glucokinase knock-out mice, and produced a digenic

model of Type 2 diabetes (Terauchi et al., 1997).  How might the mutations in

Family A interact to result in extreme insulin resistance?  Of note, all previous well-
documented examples of human digenic disease have involved direct protein-protein

interactions between the two mutant gene products. Family A differs strikingly from

this paradigm as, in their case, the genes concerned are predominantly expressed in
different tissues, namely skeletal muscle and fat. Therefore, the interaction

presumably occurs through a subtle amplifying effect of a metabolic derangement in
one tissue on the other. Both skeletal muscle and adipose tissue are key players in

insulin-stimulated nutrient storage and may communicate by as yet ill-defined

mechanisms (Birnbaum, 2001). The development of muscle insulin resistance in fat-
specific GLUT4 knock-out mice (Abel et al., 2001) recently provided compelling in

vivo evidence for such a dialogue between fat and muscle. As well as regulating fatty
acid fluxes, adipocytes secrete several proteins (‘adipokines’) with potential

endocrine effects, including leptin, TNFα, interleukin-6, resistin and adiponectin, all

of which may alter insulin sensitivity (Steppan and Lazar, 2002). The precise

mechanism by which loss of a single PPARγ allele might contribute to maladaptive

metabolic cross talk awaits elucidation, but deficiency of such a key transcriptional
regulator of adipocyte biology may well alter plasma fatty acid flux and/or adipokine

concentrations. In this regard it is notable that plasma leptin levels were < 25th

percentile of BMI and sex-matched controls in all doubly heterozygous subjects
(Table 5.3). Additionally, the levels of intramyocellular lipid (IMCL) were elevated

in the soleus muscle from doubly heterozygous subjects compared to controls
(IMCL: creatine ratio 27.5±10.5 vs. 13.6±6.6, p<0.05). Levels of IMCL are highly

correlated with whole body and muscle insulin sensitivity and are thought to reflect

excessive delivery of non-esterified fatty acids from adipose stores to myocytes
(Kelley and Goodpaster, 2001). It is tempting to hypothesise that, in family B who

carry only the PPP1R3A mutation, the expanded fat mass of obesity acted as the
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“second hit” by altering adipose tissue function. This notion is supported by the

dramatic effect of weight loss on fasting hyperinsulinaemia in subject IIi in Family

B.
The PPARγ frameshift mutation was not detected in 1034 UK Europid subjects (517

diabetics and 517 controls) and is therefore likely to be “private” to the index

pedigree. In contrast the PPP1R3 frameshift mutation was found in two independent

case-control studies in a total of 20/1029 UK Type 2 diabetics and 8/1033
normoglycaemic controls (weighted Mantel-Haenszel odds ratio 2.53 (95%

confidence limits 1.06 – 6.70, p = 0.03.) suggesting that this mutation may also
predispose to Type 2 diabetes in the general UK population. Given the rarity of this

mutation further large multicentre population genetic studies will be required to

robustly test this hypothesis.
These findings provide the most tangible evidence yet available that mutations

which, when present alone, have, at most, subtle effects on different, metabolically
relevant tissues can combine to result in extreme disturbances of human insulin

action. Of note the two genes involved, PPP1R3A and PPARγ have their major roles

in the regulation of carbohydrate and lipid metabolism respectively.  There has been

considerable debate about the relative roles of disturbances of carbohydrate or lipid
metabolism as the ‘prime mover’ in the development of insulin resistance, the

metabolic syndrome and Type 2 diabetes (McGarry, 1992). The illustration that a
combination of modest primary defects in both processes can have such catastrophic

consequences for insulin sensitivity emphasises the requirement for taking an

integrated approach to the search for aetio-pathogenic pathways in common
metabolic diseases such as Type 2 diabetes.



142

Chapter 6

A NOVEL CLASS OF HUMAN PPARγ MUTATIONS CAUSES

LIPODYSTROPHIC INSULIN RESISTANCE BY DOMINANT NEGATIVE
INHIBITION VIA

A NON-DNA BINDING, INTERFERENCE MECHANISM

6.1 Introduction

The nuclear receptor PPARγ plays an important role in adipogenesis and glucose

homeostasis. The presence of heterozygous loss-of-function mutations within the
ligand-binding domain (LBD) of PPARγ in patients with insulin resistance provides

direct genetic evidence of a link between PPARγ action and the regulation of

mammalian glucose homeostasis (Barroso et al., 1999; Agarwal and Garg, 2002;

Hegele et al., 2002). Originally we described three individuals, each heterozygous

for one of two mutations (V290M, P467L), within the LBD of PPARγ, all of  whom

exhibited marked insulin resistance with early onset T2DM, together with numerous
features of the metabolic syndrome including dyslipidaemia (high triglycerides, low

levels of high density lipoprotein (HDL) cholesterol) and hypertension (Barroso et

al., 1999). Subsequent studies revealed each of the affected individuals to have a

reduction of subcutaneous limb and buttock fat (Chatterjee, 2001; Savage et al.,

2003) i.e. a stereotyped pattern of partial lipodystrophy.
At a molecular level, both mutations retained DNA binding but were severely

deficient in their ability to transactivate by virtue of attenuated ligand binding and
failure to recruit transcriptional coactivators in response to synthetic (Barroso et al.,

1999) or putative natural ligands (Chapter 4; Agostini et al., 2004). Moreover, they

were able to recruit corepressors to silence transcription and to suppress the
transcriptional activity of cotransfected wild type receptor through dominant

negative inhibition in a manner analogous to that seen with naturally occurring
thyroid hormone receptor β (TRβ) mutants in the syndrome of resistance to thyroid

hormone (RTH Refetoff et al., 1993).
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Subsequently two other groups have reported the presence of mutations in the LBD

of PPARγ in patients with partial lipodystrophy and insulin resistance. Hegele and

colleagues identified four heterozygotes for the PPARγ2 F388L (F360L in PPARγ1)

mutation in a three-generation Canadian kindred (Hegele et al., 2002). Agarwal and

Garg found an R425C (R397C in PPARγ1) PPARγ2  mutation in a single patient

who was ascertained based on a clinical diagnosis of partial lipodystrophy (Agarwal
and Garg, 2002).

Previously, we have also identified a heterozygous frameshift premature stop codon

mutation in the DNA-binding domain (DBD) of PPARγ in several individuals in a

large UK kindred. This mutation (FS) yields a truncated protein lacking a significant
proportion of the DBD and the entire LBD. FS PPARγ is unable to bind DNA, fails

to regulate a PPARγ target gene and exhibits no discernible dominant negative

activity. Significantly, only individuals who were doubly heterozygous for the FS

mutant and an additional defect in an unrelated gene which encodes the muscle-

specific regulatory subunit of protein phosphatase 1 (PPP1R3A), exhibited severe
insulin resistance (Savage et al., 2003 and chapter 5) suggesting that PPARγ

haploinsufficiency alone is insufficient to bring about the full clinical phenotype.

However, in contrast, Hegele and colleagues have reported that heterozygosity for a
single base mutation in the PPARγ4 gene promoter leading to reduced receptor

expression and possible haploinsufficiency was associated with partial lipodystrophy
and insulin resistance in two individuals from one family (Al-Shali et al., 2004);

more recently the same group has identified a frameshift mutation designated
E138fsΔAATG PPARγ2 and predicted to truncate the receptor at the junction of the

N-terminus and DBD in a single female subject with similar phenotype (Hegele et

al., 2006).  However, it should be noted that the possibility of interaction with a

second gene defect to produce the clinical phenotype was not excluded in either of
these cases.

Taken together these findings have helped to refine our understanding of the clinical
phenotype of the disorder associated with human PPARγ mutations, which includes

as core features stereotyped partial lypodystrophy, involving the limbs and buttocks

with relative sparing of the face and central abdominal adipose depots, insulin

resistance, dyslipidaemia and hypertension. Non HIV-related, gluteal and limb
partial lipodystrophy (PLD) is also largely associated with mutations in the LMNA
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gene (lamin A/C) (Cao and Hegele, 2000; Shackleton et al., 2000; Speckman et al.,

2000).

We therefore decided to continue screening for mutations in PPARγ in individuals

exhibiting these clinical features focusing particularly on a subset of patients with
partial lipodystrophy in whom sequencing of the LMNA gene had revealed no

abnormalities.

This chapter will describe three novel heterozygous mutations, one in the LBD and

two in the DBD of PPARγ, which we have identified in three unrelated subjects with

partial lipodystrophy, severe insulin resistance, dyslipidaemia and hypertension. No
associated defect in the PPP1R3A gene or other mutations in the coding or promoter

regions of PPARγ were identified in these subjects. These novel PPARγ mutations

are unable to bind to DNA and are transcriptionally inactive. However, in contrast to

the previously described FS mutation, the novel mutant proteins retain the ability to
translocate appropriately to the nucleus and exhibit dominant negative activity when

co-expressed with wild type receptor in cotransfection assays.
Ex vivo evidence for such dominant negative inhibition is provided through the study

of primary monocyte-derived immature dendritic cells from subjects harbouring the

novel mutations, which are markedly refractory to stimulation with PPARγ agonist.

These observations suggest that dominant negative inhibition is exerted by the new
PPARγ mutants and occurs via a novel mechanism, possibly through competition for

coactivators, thus interfering with transcriptional activation by their WT counterpart.

Analogous heterozygous mutations, lacking DNA binding activity, in TRβ or VDR

are not associated with a pathogenic phenotype, raising the possibility that the

PPARγ signalling pathway mediating adipocyte differentiation or lipogenesis is

uniquely sensitive to interference by depletion of critical cofactors or a cofactor
complex.
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6.2 Material and methods

6.2.1 Clinical studies

All studies were approved by the local research ethic committees (REC ref: 03/114),

and informed consent was provided by each affected and control subject for all

investigations. Case histories of each proband harboring the C114R, C131Y and

R357X mutations are outlined in Figures 6.2, 6.3 and 6.4.

6.2.2 Screening for PPARγ  and PPP1R3A mutations

A cohort of patients with insulin resistance and partial lipodystrophy was screened

for mutations in PPARG and PPP1R3A genes. Genomic DNA was extracted from
peripheral blood leucocytes using a standard technique as described in Chapter 2,

section 2.3.2.1. The coding regions of PPP1R3A (exons 1-4) and PPARγ (exons 1-6,

exon B and the promoter region of PPARγ4) genes were amplified using gene

specific primers (Tables 5.1 and 6.1) and a protocol previously described (Chapter 2,

section 2.3.8). Purified PCR products were subjected to automated sequencing using
the Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystem), with the

same primers used for PCR amplification, and analysed using an ABI Prism 3100

sequencer (Chapter 2, section 2.3.9).

6.2.3 Plasmids and constructs

Full-length human PPARγ1 and PPARγ 2 cDNAs were cloned by reverse

transcription polymerase chain reaction from total human preadipocyte RNA and
introduced into the pcDNA3 expression vector (Invitrogen, Groningen, Netherlands)

as XhoI/XbaI fragments. The PPARγ mutants were generated by site-directed

mutagenesis of both wild type (WT) isoform  (γ1 and γ2) receptor templates as

previously described (Chapter 2, section 2.3.10) and verified by direct sequencing.

The expression of 35S-labelled proteins was verified by coupled transcription and
translation in vitro (TNT, Promega). Fusion proteins of PPARγ and VP16 were

generated by cloning full-length PPARγ cDNAs in to the KpnI/NheI site of pCMX-

VP16-N (kind gift of R. Evans) resulting in an amino-terminal fusion of VP16 to
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PPARγ. The full-length sequences of WT and PPARγ1 mutants were inserted

between the XmaI/BamHI site of pEGFP-C1 (Clontech) to produce expression

vectors encoding for EGFP-tagged-WT or mutants PPARγ1 proteins. Gal-4 RXRα

(Collingwood et al., 1994), (PPARE)3TKLUC (Forman et al., 1995) and

UASTKLUC constructs (Tone et al., 1994) have been described previously. The
haP2-LUC reporter gene consists of 5400 kb of human aP2 promoter sequence

cloned upstream of luciferase and has been described previously (Rival et al., 2004).

6.2.4 DNA binding assay

The ability of WT and mutant receptors to bind to DNA or heterodimerize with RXR
was assessed in electrophoretic mobility shift assays as described previously

(Chapter 2, section 2.4.3) using 35S-labelled in vitro translated full-length PPARγ

proteins quantitated by SDS-PAGE analysis and RXRα co-incubated with various
32P-labelled oligonucleotide duplexes encoding the following native human (h)
PPARE: aP2, adipocyte protein 2 or fatty acid binding protein 4 (FABP4) (h), which

was identified by alignment of the human promoter sequence with the response

element identified in the murine gene (Graves et al., 1992); Adiponectin (h) (Iwaki et

al., 2003): ACoABP, acyl coenzyme A binding protein (h) (Helledie et al., 2002);

mCPT1, muscle carnitine palmitoyl transferase 1 (h) (Mascaro et al., 1998); LXRα,

liver X receptor α  (h) (Laffitte et al., 2001); CAP1, cbl associated protein (h)

(Baumann et al., 2000); LPL, lipoprotein lipase (Schoonjans et al., 1996); ACoAOx,

acyl coenzyme A oxidase (h) (Varanasi et al., 1996); ACoAOx (r) (Zamir et al.,
1997). The sequences of these native PPAREs are shown in Figure 6.9a.

6.2.5 Transfection assays

293EBNA cells were cultured in 24-well plates in DMEM containing 10% fetal

bovine serum and changed to medium containing AG-1-X8 resin-stripped serum

prior to transfection. Each well was cotransfected with 500ng of (PPARE)3TKLUC
(Forman et al., 1995) reporter construct together with 25-100ng of receptor

expression vector (wild type, mutants or empty vector pcDNA3) using the calcium
phosphate method (Chapter 2, section 2.6.2). Where appropriate, ligand was added 5
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hours after transfection and cells were harvested 36 hours later. For mammalian-2-

hybrid transfections each well was transfected with 50ng of VP16-PPARγ expression

vectors and Gal-4 RXRα together with 500ng of UASTKLUC reporter.

3T3-L1 cells were transfected using the following conditions: for each well of a 24-

well plate, a mixture of 50µl Optimem (GIBCO) and 1µl Lipofectamine2000

(Invitrogen) was, after 5 minutes incubation, added to a mixture of 66ng of receptor
expression vector (wild type, mutants or empty vector pcDNA3), 265ng haP2-luc

and 65ng Bos-β-gal. Following 30 minutes incubation, this mixture was added to the

cells cultured in 500µl DMEM containing 10% FCS without antibiotics. After 5

hours the medium was replaced by 0.5ml normal growth medium containing the

appropriate ligand. The cells were harvested after 36 hours.
Luciferase values were normalised to β-galactosidase activity from the internal

control plasmid Bos-β-gal (65-100ng) as previously described (Collingwood et al.,

1994), and represent the mean ± s.e.m. of at least three independent experiments,

each performed in triplicate.

6.2.6 Cellular localisation of EGFP- PPARγ  fusion

This experiment was performed by my colleague Dr Erik Schoenmakers. In brief

293EBNA cells were grown in glass well slides (Nalgene Nunc International) to

30% confluence and then transfected using Lipofectamine2000 (Invitrogen)
according to manufacturer’s instructions with 1µg of expression vector encoding

EGFP alone (GFP), or EGFP-wild type PPARγ1 or EGFP-mutant PPARγ1 fusion

proteins for each well. After fixation using 4% paraformaldehyde and nuclear

staining with 4,6-diamidino-2-phenylindole (DAPI), slides were mounted

(Vectashield medium, Vector Laboratories) and fluorescence visualized by digital

microscopy using a Nikon DXM1200 camera system.

6.2.7 Peripheral blood monocyte purification and IDC culture

Monocytes were derived from peripheral blood from the index cases harbouring

PPARγ mutations and from normal control subjects by Ficoll gradient centrifugation

and immunomagnetic cell separation using anti-CD14-conjugated microbeads
(VarioMACS; Miltenyi Biotec). Immature dendritic cells (IDCs) were prepared as
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described previously (Sallusto and Lanzavecchia, 1994; Chapter 2, section 2.6.4).

Briefly, monocytes were resuspended into 6-well culture plates at a density of 1.5 x

106 cell/ml and cultured in RPMI 1640 supplemented with 10% FBS containing
800U/ml GM-CSF (Leucomax) and 500U/ml IL-4 (Peprotech) for 24 hours in the

presence of vehicle (DMSO) or 1µM Rosiglitazone.

6.2.8 Quantitative real-time PCR analysis of gene expression

Total RNA from IDCs was isolated using TRIZOL reagent (Invitrogen), and 100ng
subjected to reverse transcription (performed at 420C for 30minutes) using the

Superscript II reverse transcriptase kit (Invitrogen). Quantitative real-time PCR

(qPCR) (ABI PRISM, Applied Biosystems), was carried out as follows: 40 cycles at
950C for 12 seconds and 600C for 40 seconds using Taqman assays. All qPCR

reactions were performed in triplicate with one control reaction without RT enzyme.

The comparative Ct method was used to quantify transcripts and normalize for
expression levels of the 36B4 housekeeping gene, which did not vary with ligand

treatment. The sequences of the primers and probes are showed in Table 6.2.
Taqman qPCR low density arrays (TLDA) were used to quantify the expression of

multiple target genes in IDCs, according to the manufacturer’s instructions.  To

obtain cDNA, RNA was reverse transcribed using the High Capacity cDNA Archive

kit (Applied Biosystems). The following commercially available Taqman assays

(Applied Biosystems) were used: ADRP/ADFP (Hs00605340_m1), APOC1

(Hs00155790_m1), CLDN1 (Hs00221623_m1), aP2/FABP4 (Hs00609791_m1),

CLECSF5 (Hs00183780_m1), CD1E (Hs00229421_m1), MYO1B

(Hs00362654_m1), IL1R2 (Hs00174759_m1), OAS1 (Hs00242943_m1), p30

(Hs00396457_m1), cyclophilinA/PPIA (Hs99999904_m1). The comparative Ct

method was used to quantify transcripts and normalize to cyclophilinA expression

levels, which did not vary with ligand treatment. Thereafter, data were further

normalized to the expression level of ligand-treated WT PPARγ cell samples. TLDA

data analysis and normalization was carried out using GeneSpring 7.2 (Agilent).

6.2.9 RFLP analysis of PPARγ  transcripts

Following reverse transcription of RNA obtained from immature dendritic cells of
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the patient carrying the R357X mutation and a normal control, as described in 6.2.8,

2µ l of cDNAs were amplified by PCR using the PPAR-FOR and PPAR-REV

primers shown in table 6.2. PCR conditions were initial denaturation for 3 minutes at

95oC followed by 30 cycles of 95oC denaturation for 1 minute, 55oC annealing for 1
minute and 72oC elongation for 1 minute. After column purification (QIAGEN), the

PCR products were digested with Cac8I enzyme at 37oC for 2 hours and the

digestion products analysed by electrophoresis on a 2% (w/v) agarose gel.

6.2.10 Immunoprecipitation and Western blot analysis

IDCs generated from 200ml of peripheral blood (from a normal control subject and

the R357X patient) as described in paragraph 6.2.7, and 293EBNA cells transfected
with WT or mutant PPARγ1 constructs, were lysed in ice-cold RIPA buffer

containing no SDS but with a mixture of protease inhibitors (Roche Molecular

Biochemicals). Following centrifugation at 12,000g for 10 minutes at 40C, cell

supernatants were immunoprecipitated at 40C over night with anti-human PPARγ

common monoclonal mouse antibody (K8713 Perseus Proteomics) and protein A
beads and separated by electrophoresis. For Western blot analysis, detection was

performed with anti-PPARγ (H-100) rabbit antibody (Santa Cruz Biotechnology).

6.2.11 Adenoviral PPARγ  construction and expression

This experiment was performed by my colleague Dr Erik Schoenmakers. Briefly
recombinant type 5 adenoviruses (Ad5) expressing GFP alone, or GFP plus either

wild type or C114R mutant PPARγ1 were generated using the AdEasy Vector System

(Quantum Biotechnologies, Montreal) and amplified and purified as previously

described (Gurnell et al., 2000). Chub-S7 human preadipocyte cells were cultured in
6-well plates and differentiation was induced as previously reported (Darimont et al.,

2003) in the presence of 100nM rosiglitazone. Cells were transduced with 2x107

pfu/well of recombinant virus one day prior to induction of differentiation and

comparable infection efficiency was verified by fluorescence microscopy. Samples

for qPCR were collected at day 0 (start of differentiation), day 3, day 5 and day 7.
Fully differentiated Chub-S7 cells were fixed and stained with Oil Red O as

described previously (Adams et al., 1997).
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6.3 Results

6.3.1 Screening of PPARG and PPP1R3A genes

All coding exons of PPARγ including exon B encoding the amino-terminal splice

variant PPARγ2 and the promoter region of PPARγ4 were PCR amplified and direct

sequenced in a cohort of 32 patients with insulin resistance and partial lipodystrophy.

Three individuals were found to be heterozygous for different single nucleotide
substitutions which are predicted to generate three novel missense receptor

mutations: for consistency, the codon nomenclature of all PPARγ mutations

described is in the γ1 isoform context, based on a predicted protein sequence of 477

amino acids. Subject 1 (S1, the index case from kindred A) was found to be
heterozygous for a single nucleotide substitution (T to C) resulting in a cysteine to

arginine mutation at codon 114 (C114R) within the first zinc-finger in the DBD of

the receptor (Figures 6.1 and 6.7); Subject 2 (S2, the index case from kindred B) also
had a mutation in the DBD of the receptor - a single G to A nucleotide substitution

resulting in cysteine to tyrosine transition at codon 131 (C131Y), again within the

first zinc-finger of the DBD within the P box region (Figures 6.1 and 6.7). Her father
and one of her two sisters were found to be heterozygous for the same mutation,

while her unaffected mother and other sister were homozygous for the wild type
receptor sequence; Subject 3 (S3, the index case from Kindred C) was heterozygous

for a single nucleotide substitution (C to T) replacing Arginine with a premature stop

codon at residue 357 (R357X) in the LBD of the receptor. Her similarly affected
deceased mother was also found to harbor the R357X mutation (Figure 6.1 and 6.7).

Other unaffected family members did not carry the mutation. No other nucleotide
changes in PPARγ were found in the three subjects. All coding exons and splice

junctions of PPP1R3A were sequenced in each index case and we identified no

mutations or polymorphisms, thereby excluding the possibility of a second genetic

defect at this locus as described previously (Savage et al., 2002; Chapter 5). None of
these mutations have been identified in sequencing PPARG in cohorts of normal

subjects (122) or in insulin resistant subjects (93).
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6.3.2 Clinical results

The three probands were identified by screening a cohort of patients with
unexplained insulin resistance and partial lipodystrophy. Clinical details together

with the results of investigations undertaken on the index cases harbouring the
different mutations are provided in Table 6.3 and Figures 6.2, 6.3 and 6.4 and

confirm many of the features associated with the previously reported cases (Barroso

et al., 1999; Savage et al., 2002; Hegele et al., 2002; Agarwal and Garg, 2002). All
subjects exhibited marked fasting hyperinsulinaemia with acanthosis nigricans in S3.

On physical examination all of the probands had loss of subcutaneous fat from the

gluteal region and a muscular appearance of the upper and lower extremities (Figures
6.2, 6.3 and 6.4). In addition, MRI of fat distribution revealed a consistent and

remarkable paucity of subcutaneous limb and buttock fat (Figure 6.5). Marked
dyslipidaemia (raised triglycerides, low HDL) with hepatic steatosis was a feature of

all cases. S2 and S3 exhibited early onset hypertension unrelated to comorbidities. S3

had suffered recurrent bouts of pancreatitis.

6.3.3 Novel PPARγ  mutants are non DNA binding, with complete loss-of-function

When assayed by cotransfection with a PPARE-containing reporter gene

[(PPARE)3TKLUC], the novel PPARγ mutants exhibited negligible transcriptional

activity, lacking both the constitutive basal activity previously noted with WT

PPARγ (Chapter 4; Agostini et al., 2004; Zamir et al., 1997) as well as any response

to rosiglitazone, a potent thiazolidinedione receptor agonist (Figure 6.8). Such
complete loss-of-function was reminiscent of the properties of the previously

reported FS PPARγ mutant and might be anticipated in an analogous truncation

mutant (R357X) not possessing the transactivation (AF-2) domain at the receptor

carboxyterminus (Figure 6.7) (Zamir et al., 1997, Wu et al., 2003), but the lack of
activity with the receptor DBD mutants (C114R and C131Y) prompted further

investigation of their DNA binding properties.
P P A R γ  is a ligand-dependent transcription factor that regulates target gene

transcription by binding to specific response elements as a heterodimer with retinoid

X receptor (RXR). This complex has been shown to bind a DNA response element,
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usually consisting of a direct repeat (DR1) of the consensus sequence (AGGTCA)

separated by a single nucleotide, derived from PPAR-responsive target genes

(Ijpenberg et al., 1997); a recent study has suggested that the stringency of PPARγ

binding to some response elements is relatively relaxed, and does not require
complete integrity of its DNA binding domain (Temple et al., 2005). Like all nuclear

receptors PPARγ exhibits a modular structure consisting of a central DBD, which

contains two zinc-fingers, an amino-terminal activation domain, and a carboxy-

terminal LBD (Fig 6.7). The R357X premature stop mutation leads to a mutant
receptor that is truncated between helices 6 and 7 of the LBD – a region common to

both the γ1 and γ2 isoforms of the receptor (Figure 6.7). R357X protein lacks the

carboxy terminal region containing the dimerization interface for RXR, and as
consequence, we predicted that it would be unable to form a heterodimeric complex

with RXR and therefore fail to bind DNA despite preservation of its DBD. The

C114R and C131Y mutations are located in the DBD, which is common to both γ1

and γ2 isoforms of the receptor, and which is critical in mediating receptor

interaction with PPAR-specific response elements (PPAREs) in target gene
promoters (Figure 6.7). In particular the two mutated cysteine residues coordinate the

zinc ion within the first zinc-finger. Accordingly, the ability of the PPARγ mutants to

bind DNA as heterodimers with RXR was tested using a range of previously

documented or predicted PPAREs from known target genes using an electrophoretic
mobility shift assay (EMSA). As a control we also included the FS PPARγ mutant,

which has previously been shown to lack DNA binding (Savage et al., 2002; Chapter

5). Unlike the wild type (WT) receptor, both DBD and LBD truncation receptor

mutants showed negligible heterodimeric binding on an array of PPAREs (Figure
6.9). However, it was still conceivable that the DBD (C114R, C131Y) mutants could

be recruited indirectly to a PPARE by binding RXR via the known dimerisation
interface within their intact LBD (Gampe et al., 2000), or conversely, that the R357X

LBD truncation mutants might bind a PPARE monomerically as has been

documented for TR (Lazar et al., 1991). To test this possibility, fusions of the VP16
activation domain linked to full-length PPARγ  were coexpressed with

(PPARE)3TKLUC and, in comparison to WT the mutant receptors showed no

reporter gene activity, suggesting negligible recruitment to its response element
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(Figure 6.10). Thus, like the FS receptor mutant, the novel DBD and LBD truncation

PPARγ mutants lack DNA binding.

6.3.4 Novel PPARγ  mutants translocate to the nucleus and interact with RXR

To function as transcription factor PPARγ interacts with transcriptional machinery

within the nucleus, and therefore the inability of mutant receptors to bind DNA

raised the question as to whether the novel mutations simply resulted in null alleles

or whether they encoded proteins which could conceivably interfere with WT
signalling. We speculated that if the latter possibility were to be the case, the mutant

receptors would need to target normally to the nucleus. So to visualize the
localization of receptor proteins in living cells, we generated fusion of green

fluorescent protein (GFP) linked to WT and PPARγ mutants. Confocal microscopy

showed that while GFP alone remained mainly in the cytoplasm the GFP-WT

PPARγ fusion localized to the nucleus as expected (Figure 6.11). The GFP-mutant

PPARγ proteins revealed differing distributions inside the cells: the R357X, C114R

and C131Y GFP fusion proteins were able to translocate appropriately to the nucleus
in a manner similar to the WT receptor, in keeping with preservation of the putative

nuclear localization signal (NLS) located in the hinge region between the DNA and

the ligand-binding domains; in contrast the GFP-FS truncation mutant, which lacks
this targeting sequence, remained cytoplasmic like GFP (Figure 6.11). Having

observed appropriate nuclear localisation, we next examined whether the PPARγ

mutants might interact with RXR in a mammalian two-hybrid assay. Cotransfection

of full-length wild type PPARγ protein fused to the activating domain of VP-16 with

the expression vector GAL4-RXRα encoding the DBD of the yeast transcription

factor GAL4 linked to the LBD of RXRα (residues 198-467), resulted in a marked

induction of luciferase activity (Figure 6.12) as did the VP16-C114R and VP16-
C131Y. Negligible induction was observed with VP16-R357X indicating markedly

impaired heterodimeric interaction between this truncation mutant and RXRα. This

result suggested that defective dimerisation was responsible for the impaired DNA

binding properties observed with the R357X mutant in EMSA.
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6.3.5 Novel PPARγ  mutants inhibit WT receptor action

Having established that the novel PPARγ mutants could translocate to the nucleus

and interact with RXR, we next sought to determine whether they might interfere

with WT receptor signalling. Using the (PPARE)3TKLUC reporter gene, we
investigated whether mutant receptors were able to inhibit wild type receptor action

in a dominant negative manner. Mutant receptors R357X, C114R and C131Y were

coexpressed at ratio of 1:1 & 2:1 with the WT receptor and reporter gene activities
assayed at two ligand concentrations (10nM and 1000nM). Although mutant to wild

type receptor ratios of 2:1 demonstrated the greatest dominant negative activity,
these inhibitory effects were also apparent with equal ratios of transfected receptors

(Figure 6.13a), unlike the FS PPARγ mutant previously described, which did not

exhibit any dominant negative activity (Chapter 5, Figure 5.4).

The murine adipocyte P2 (aP2) gene is a classical target of PPARγ action (Tontonoz

et al., 1994; Guan et al., 2005) and the human homologue (FABP4) is similarly
responsive (Pelton et al., 1999). Therefore we decided to assess the dominant

negative activity of mutant receptors with the human aP2/FABP4 gene promoter in

3T3-L1 adipocytes. Both the DBD and R357X LBD truncation PPARγ mutants

inhibited WT PPARγ activation, whereas the FS mutant lacked such dominant

negative inhibitory activity (Figure 6.13b).
The fatty acid binding protein 4 / adipocyte P2 (FABP4 or aP2) gene, is also a well-

validated PPARγ target gene in other tissues, having previously been shown to be

expressed and regulated by PPARγ ligands in peripheral blood mononuclear cells

(PBMCs) (Pelton et al., 1999). Moreover, very recently it has been shown that

PPARγ is promptly up-regulated and transcriptionally active in differentiating

dendritic cells (DCs), with the highest levels of receptor expression and ligand
responsiveness occurring within the first 24 hours of differentiation (Szatmari et al.,

2004). We therefore, decided to examine the expression levels of PPARγ and

aP2/FABP4 in IDCs generated from controls subjects and probands harbouring
different PPARγ mutations to determine whether the dominant negative activity of

PPARγ mutant observed in vitro, might be reflected also ex vivo. Compared with a

normal control subject of similar age and sex, ligand-dependent induction of aP2
expression in R357X and C114R containing IDCs was markedly impaired even at
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the highest concentration of rosiglitazone tested (Figure 6.14). Importantly both WT

and mutation-containing cells exhibited similar levels of PPARγ expression (data not

shown). On at least three different occasions we examined aP2 induction in IDCs

obtained from a number of subjects harbouring the C114R, C131Y, R357X and FS
mutations in the absence and presence of ligand (1µM Rosiglitazone). In parallel we

also examined the induction of aP2 in IDCs from 2 normal controls (one male and

one female) and 2 comparably insulin resistant patients known not to harbour

mutations in PPARγ (one male and one female). As shown in Figure 6.15a aP2

expression was consistently and significantly up regulated as a result of ligand
treatment in all four controls, whereas such induction was markedly attenuated in

C114R, C131Y and R357X patients. Interestingly, aP2 expression in FS mutation-
containing cells was also up regulated in a similar manner to that observed in control

IDCs. Of note is that despite variability in aP2 induction, all cells demonstrated

comparable PPARγ expression levels (Figure 6.15b). These results suggest that the

dominant negative inhibition by mutant receptors observed on the human aP2 gene
promoter in vitro  (Figure 6.13), appears to correlate with reduced aP2 induction in

response to PPARγ activation in novel mutation-containing cells ex vivo.

To exclude the possibility that the attenuated aP2 induction observed with R357X

mutation-containing cells ex vivo might be the result of haploinsufficiency as a
consequence of nonsense-mediated decay of the R357X mRNA transcript

(Culbertson, 1999), we investigated expression of the mutant transcript in immature
dendritic cells generated from the proband. Because the presence of the R357X

mutation destroys a Cac8I restriction enzyme site, which is present in the wild type

sequence, it was possible to test for the presence of both the mutant and wild type
mRNA transcripts in R357X cells using this restriction fragment length

polymorphism. In addition to the two fragments of 161bp and 74bp corresponding to
the pattern of Cac8I digestion of cDNA from wild type allele, an extra specific band

of 235bp corresponding to an undigested cDNA fragment was detected only in the

cells harboring the R357X allele (Figure 6.17). Moreover, Western blotting revealed
expression of both wild type and truncated R357X mutant PPARγ proteins in

immature dendritic cells (Figure 6.18). These observations indicate that the mutant

R357X transcript is not subject to nonsense-mediated decay.
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To determine whether the differences in PPARγ responsiveness between novel

mutation (C114R, R357X) versus FS mutation-containing cells were observed in

other target gene contexts, we compared expression profiles of other PPARγ-

responsive genes identified from extensive microarray profiling of normal IDCs

(Szatmari & Nagy, manuscript in preparation); target gene responses to PPARγ

agonist in DBD (C114R) and (R357X) LBD truncation mutation-containing cells
were markedly attenuated whereas FS mutation-containing cells exhibited

intermediate responses that were either similar to or only slightly attenuated

compared to WT cells (Figure 6.16).
Finally, we determined whether dominant negative inhibition by a novel, non DNA-

binding PPARγ mutant (C114R) could interfere with a receptor-mediated biological

process. Compared to control non-transduced, WT PPARγ or GFP adenovirus treated

cells, both adipocyte differentiation (Figure 6.19a) and aP2 target gene expression

(Figure 6.19b) in human preadipocytes transduced with C114R mutant PPARγ

adenovirus were significantly attenuated.
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Primer
number

Forward Primer sequence 5’-3’ Reverse Primer Sequence 5’-3’

200 TGATATCAGAGAGCCCAATGGA CGGTAATTCCCAGCAATCAA

220 GGTTTCTCCCCTCAACCAAG TCAAACAGTGGGCTAAAACA

23 CGGACATTTTCCACACAGAAG GAACTGGTCAGTTTCACCATCA

260 TGACTGGCAGACACATTATGACA GCTCCGGCTCTTGTTCTTTC

280 TTTTGGTCAAATAATAATGGCACA GTTAAAGCCTGGCACCATTG

300 AACCAAATTTGTCTCTTTTGTGAAA TGCAGCATCTTTGAAGCAGA

22 TGATTGAATTTCCCCCTGTG TGGCTTCCAAATCTTCCTTG

24 AGAAGATGCAGTCCCAGAAAAA TTCGATTACTGGCTTCCAAATC

25 TCCCAACAATCATTTGTTCTCAT GCAGCATCTTTGAAGCAGAAA

320 ATAGCCTGCAAGGATTTCCC AACCCCTCTGCTTTATTTGGAA

340 CTGCTTCCAGAGATGAAAGGAA ACGGAGCTTTCTGCTGATGA

360 GAAGAAGCAAATCCATGGTGA AGGGGCAAGGTATTTGCATT

380 CTGGCAGCAAAGAAGTCCCTG TCATCATCCTTACCATTGCCA

400 CCATTCAGATACGTCGGCAT GACACATCTGCTGTGATTGCC

420 CTGAGCGAACATACCGCAAT TTTTCCCTGACTTTCCAGAACA

440 TCAGGATAATAGCCCACAGCA CAGCACACTGTTTCTTGGCA

460 GTGAAGACGTGTGGGGAAAA TTCATGTGGATCAAACGCTG

480 GCCCATCGAGGTAAAGGAAA GACCCATGAGGATTCTTCCAC

500 GGAGAAATGTGGCACTGGAA ACAGCAATTGCCTGCTCATT

520 GCCATTGTGCATTCTGCTTT GGTGCTTCTCAATACCCTGGA

540 TGAGCAGGCAATTGCTGTAG TCATGCCTTGCTTCTTCCAT

560 TGCATAGGCCAGATTTTCCA TGCCTTGAGCTTGACTTTCC

580 GCAAGGCATGAAAATGAAGG CCCAGGATAGCCAGGACAAT

600 CAAGCTCAAGGCAACGAATC CCCATTCACCAATCCAAATG

Table 6.1 Sequences of primers used to amplify and sequence the coding region of the

PPP1R3A gene (exons 1-4).   
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Table 6.2 Sequences of primers and probes used to amplify and quantitate gene

expression in immature dendritic cells by qPCR. FAM = 6-carboxy-fluoescein;

PPAR-FOR and PPAR-REV are primers used to detect wild type and R357X mutant
cDNAs in IDCs

h36B4 Probe FAM-AGGCTGTGGTGCTGATGGGCAAGAA

h36B4 Reverse primer ATATGAGGCAGCAGTTTCTCCAG

h36B4 Forward primer AGATGCAGCAGATCCGCAT

hFABP4 Probe FAM-ATTCCACCACCAGTTTATCATCCTCTCGTT

hFABP4 Reverse primer GGAAGTGACGCCTTTCATGA

hFABP4 Forward primer GGATGGAAAATCAACCACCA

hPPARγ Probe FAM-CAAACCTGGGCGGTCTCCACTGAG

hPPARγ Reverse primer CTTCAATGGGCTTCACATTCA

hPPARγ Forward primer GATGACAGCGACTTGGCAA

PPAR-FOR CTCCTTGATGAATAAAGATGGGG

PPAR-REV ATGTCTTCAATGGGCTTCACAT
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Table 6.3 Clinical, biochemical and body composition data from index cases
harbouring the 3 novel PPARγ mutations. All biochemical analyses were performed

on fasting samples. BMI, body mass index; WC, waist circumference; T2DM, type 2

diabetes mellitus: PCOS, polycystic ovarian syndrome; HDL, high density

lipoprotein; Predicted total body fat was calculated as follows (Black et al., 1983):
males % fat = (1.281xBMI) – 10.13; females % fat: (1.48xBMI) – 7.00; Measured

total and depot-specific body fat were determined using dual-energy X-ray

absorptiometry – with corresponding z-scores for total body fat shown in superscript;
Hepatic steatosis was diagnosed according to standard radiological criteria; F,

female, * on therapy

Subject S1 S2 S3 Reference

Mutation C114R C131Y R357X

Gender F F F

Age (and at presentation)(yr) 41 (34) 42 (35) 35 (26)

BMI (kg/m2) 30.8 24.2 29.3 Non obese <30

WC 97 80 96 Female <80 cm

Blood Pressure 155/95* 220/120 125/80* <130/85 (mmHg)

Diabetes (age at diagnosis)(yr) T2DM (41) T2DM (42) T2DM(26)

Lipodystrophy Y Y Y

PCOS Y Y Y

Hepatic steatosis Y Y Y

Fasting insulin 310 174 170* <60 pmol/L

Triglycerides 8.9* 4.5 34.8* <1.7 mmol/L

HDL Cholesterol 0.47* 0.89 0.56* >1.29 mmol/L

Predicted total body fat (%) 37.4 28.8 36.4

Measured total body fat (%) 26-0.8 23-1.2 21-1.1

Measured lower limb fat (%) 20 17 11

Measured truncal fat (%) 30 27 28
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Figure 6.1 Identification of novel mutations in PPARγ gene in subjects with partial

lipodystrophy and insulin resistance. N denotes wild type, M mutant, and NA not
available for testing. Squares represent male family members, circles female family

member, symbols with a slash deceased family members. Arrows denote probands

(S1-S3). DM, type 2 diabetes mellitus; IGT, impaired glucose tolerance; IHD,
ischaemic heart disease; HT, hypertension; TG, hypertriglyceridaemia.
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Figure 6.2 Subject 1 (S1), a 43-year-old female was heterozygous for a cysteine-

114-arginine (C114R) PPARγ  mutation. She presented with subfertility and

oligoamenorrhoea aged 34yrs at which time hyperlipidaemia was incidentally noted.

Two subsequent pregnancies were uneventful. At the time of investigation aged
41yrs medication included fenofibrate and atorvastatin and clinical examination

revealed partial lipodystrophy. Diabetes mellitus was diagnosed aged 41yrs on oral
glucose tolerance testing and subsequentely managed with dietary treatment.

Investigation for secondary amenorrhoea and hyperprolactinaemia revealed an

incidental pituitary mesoadenoma treated with cabergoline with restoration of
menses. She developed ischaemic heart desease aged 42yrs with severe triple vessel

disease confirmed at coronary angiography. Despite percutaneous revascularisation,
triple anti-anginal medical therapy and smoking cessation, she continued to suffer

from ischaemic cardiac pain. Her mother and sister were unaffected at the PPARγ

locus; her father (genotype unknown) died aged 60yrs from a myocardial infarction.

C114R
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Figure 6.3 Subject 2 (S2), a 45-year-old female was heterozygous for a cysteine-

131-tyrosine (C131Y) PPARγ mutation. She presented aged 35yrs with hypertension

and syncopal episodes presumed secondary to rebound hypoglycaemia associated
with severe hyperinsulinaemia. Initial clinical examination and investigation

highlighted partial lipodystrophy and dyslipidaemia. PCOS was diagnosed on the
basis of oligoamenorrhoea and confirmatory pelvic ultrasound. Diabetes mellitus

diagnosed aged 42yrs was managed with dietary treatment. At the time of

investigation aged 35yrs medication consisted of lacidipine and lisinopril. As a
lifelong non-smoker she developed ischaemic heart disease aged 44yrs. Angiography

confirmed single vessel disease which is managed medically. Her mother and older
sister were unaffected at the PPARγ locus but family screening confirmed the C131Y

mutation in her younger sister and father. At the time of investigation the sister (a 34-

year-old triathlon athlete) was asymptomatic but hyperinsulinaemic and

hypertriglyceridaemic. The father, a 74-year old male, showed no evidence of
metabolic disturbance in the context of a lifelong “slim” body habitus (BMI at

investigation 22.5). As a long-term smoker he developed inoperable lung carcinoma

aged 73yrs which was treated palliatively and he died aged 74yrs.

C131Y
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Figure 6.4 Subject 3 (S3), a 38-year-old female, heterozygous for an argine-357-stop
(R357X) mutation, presented with oligomenorrhoea and hirsutism following

menarche aged 11yrs. Gestational diabetes and hypertension were diagnosed aged

26yrs and her pregnancy was complicated by pre-eclampsia. Persistent
hyperglycaemia and hypertension post-partum required metformin and atenolol

therapy respectively and glycaemic control remained poor despite subsequent
introduction of insulin. Dyslipidaemia was diagnosed aged 29yrs and she

commenced fibrate treatment following two episodes of acute pancreatitis. Clinical

examination revealed partial lipodystrophy and axillary acanthosis. At the time of
investigation her treatment included insulin, metformin, atenolol and fenofibrate.

Genetic screening found her mother, now deceased, to also be heterozygous for the
R357X mutation. The mother had suffered from longstanding menstrual irregularity

and hirsutism, was diagnosed with hypertension in her thirties, type 2 diabetes and

dyslipidaemia in her forties and suffered a sudden cardiac death aged 57yrs.

R357X
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Figure 6.5 T1-weighted MRI images at the level of the gluteal fat pad in a lean

healthy female (WT, top panel on the left) and in the R357X, C114R and C131Y
probands. Note the decreased amount of gluteal subcutaneous fat (arrowed) in the

affected individuals as compared with the control.

WT R357X

C131YC114R



165

Figure 6.6 Fasting plasma insulin concentrations versus body mass index (BMI,

kg/m2) showing that probands (S1-S3) exhibit marked hyperinsulinaemia when

compared with normal subjects. The solid black line represents the log-linear
regression between fasting insulin levels and BMI in 1121 normal subjects recruited

to on MRC (UK) Ely population-based cohort study. The 95% confidence intervals
are shown as dotted lines.
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Figure 6.7 a. Schematic representation of the structural and functional organization of
PPARγ showing the amino-terminal (A/B), DNA binding (DBD) and ligand-binding (LBD)

domains. The position of the three novel mutations and the previously described FS

mutation (Chapter 5) is indicated. Two mutations involve cysteine residues (shown in bold)

in the first zinc-finger of the DBD (C114R and C131Y respectively), the third mutation
introduces a stop codon in the LBD (R357X). b. and c. Crystallographic modelling of the

DNA binding domain and the ligand-binding domain of PPARγ showing the location of the

novel mutations and previously described mutation (FS). In pale blue are represented the

two zinc-fingers with the cysteine residues in yellow co-ordinating binding of a zinc atom
(b.). Ribbon representation of the LBD of PPARγ bound to rosiglitazone (in red). Arginine

at codon 357 is shown in blue (c.). The arrows indicate the position of the novel mutations.
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Figure 6.8 The PPARγ mutant receptors are transcriptionally inactive. a .

Transcriptional activity of wild type (WT) and mutant (C114R, C131Y and R357X)

receptors in response to increasing concentrations of Rosiglitazone. 24-wells plates
of 293EBNA cells were transfected with 100ng of wild type, mutant or empty

(pcDNA3) expression vector together with a reporter gene (PPARE)3TKLUC

(500ng) and the internal control plasmid Bos-β-gal (100ng). Data shown are

expressed as a percentage of the maximum activation obtained with WTγ1 and as the

mean +/- s.e.m. of at least three indipendent experiments, each performed in
triplicate, with a correction for transfection efficiency using the β-galactosidase

activity. b. Comparable expression levels of wild type and mutant PPARγ  in

transfected 293EBNA cells. Whole cell lysates were immunoprecipated with anti-

PPARγ antibody and Western-blotted.
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Figure 6.9 Novel PPARγ mutants are unable to bind to DNA. a. Electrophoretic

mobilty shift assays (EMSA) in which in vitro translated wild type (WT) or mutant

(C114R, C131Y, R357X and FS) PPARγ1 were co-incubated with RXRα  and

oligonucleotide duplexes encoding various native PPREs. Note the complete absence
of DNA binding by all mutants compared to the WT-RXRα  heterodimer. b.

Coomassie-stained gel of 35S-labeled in vitro translated proteins used in the EMSAs

confirms comparable expression of WT and mutant receptors. The various arrows
indicate the size of full length WT and C114R, C131Y (*), R357X (+) and FS (§)

receptor proteins. aP2, adipocyte protein 2 (FABP4); ACoABP, acyl coenzyme A

binding protein; mCPT1, muscle carnitine palmitoyl transferase 1; LXRα, liver X

receptor; CAP1, cbl associated protein; LPL, lipoprotein lipase, ACoAOx, acyl
coenzyme A oxidase; h, human; m, mouse; r, rat.
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Figure 6.10 Chimaeric fusion proteins consisting of the VP16 activation domain
linked to the amino-terminus of full-length PPARγ1 (WT or mutants) were co-

expressed in 293EBNA cells with a PPARE-containing reporter gene

[(PPARE)3TKLUC]. Interaction of WT VP16-PPARγ with (PPARE)3TKLUC

markedly increased transactivation, whereas reporter gene activity in cells expressing

mutant chimaeras was similar to mock-transfected cells. 96-well plates of 293EBNA
cells were transfected with 9ng of (PPARE)3TKLUC, 1.6ng of Bos-β-gal, and 1.6ng

of the respective VP16-PPARγ1 chimaeras as shown. Results are expressed as fold

induction relative to cells transfected with VP16 alone and represent the mean ±

s.e.m. of at least three independent experiments, each performed in triplicate. Inset,
35S-labeled in vitro translated wild type and mutant VP16-PPARγ fusion proteins.

Arrows indicate the position of WT, C114R, C131Y (*), R357X (+) and FS (§)
fusion protein products.
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Figure 6.11 C114R, C131Y and R357X PPARγ mutants translocate to the nucleus

whereas the FS PPARγ mutant remains cytoplasmic.  DAPI-staining (blue) of

293EBNA nuclei (left panels) and cellular location of GFP fluorescence (middle

panels) are shown. Merged images (right panels) confirm nuclear translocation of

wild type (WT) PPARγ1 and the C114R, C131Y and R357X mutants (with co-

localisation of the green fluorescent and DAPI signals), but not the FS mutant.

293EBNA cells were transfected with expression vectors (1µg) encoding EGFP

alone (GFP), or GFP-PPARγ1 [wild type (WT) or mutant] fusion proteins as shown.

This figure has been kindly provided by Dr Erik Schoenmakers.

170a
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Figure 6.12 Interaction between VP16-WT or mutant PPARγ fusions and Gal4-

RXRα chimeras. 293EBNA cells were transfected with 50ng of VP16-PPARγ and

Gal-4 RXRα expression vectors together with 500ng of UASTKLUC reporter and

100ng of Bos-β−Gal internal control to correct for transfection efficiency. The

results are expressed as a percentage of the WT maximum response and are the mean

± s.e.m. of three independent experiments each done in triplicate.
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Figure 6.13 Dominant negative inhibition of wild type receptor activity by mutant
receptors. a. 293EBNA cells were cotransfected with 25ng of wild type plus an equal

amount of either wild type (white bar) or each mutant expression vector (black bar),

together with the (PPARE)3TKLUC reporter gene (500ng) in the presence of
increasing concentrations of ligand (Rosiglitazone). The striped bars denote

cotransfection of 25ng of wild type plus a two fold excess (X2) of mutant receptors.
The transcriptional responses mediated by either 25ng, 50ng or 75ng of WT receptor

were virtually identical (data not shown). Results are expressed as a percentage of

WT maximum response, corrected for Bos-β-gal activity (100ng). b. 3T3-L1 cells

were cotransfected with 33ng of wild type plus an equal amount of either empty
(pcDNA3), wild type (WT) or each mutant expression vector, together with a human

aP2-LUC reporter gene in the presence of DMSO (black bar) or 100nM

Rosiglitazone (striped bar). Unlike the FS mutation, which did not exhibit any
dominant negative activity, the C114R, C131Y and R357X mutant receptors were

able to inhibit WT function. The results shown are the mean +/- s.e.m. of  at least
five independent experiments, each done in triplicate, with correction for transfection

efficiency using the β-galactosidase activity.
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Figure 6.14 Comparison of aP2 (FABP4) expression in cells from a normal control
subject (WT) and patients carrying the R357X or C114R PPARγ mutations.

Monocytes were cultured for 24 hours in the presence of 500U/ml IL-4 and 800U/ml

GM-CSF to generate immature dendritic cells (IDCs) together with increasing

concentrations of rosiglitazone. The mRNA levels for aP2 were determined by real-
time quantitative qPCR as described in the section 6.2.8. Data are expressed as a

ratio of the aP2 transcripts relative to 36B4 expression and represent the mean

expression +/- s.e.m. of three independent experiments. Although all cells showed
comparable PPARγ expression (data not shown), ligand-dependent induction of aP2

expression in R357X and C114R mutation-containing IDCs was markedly impaired

in comparison to the response in WT cells.
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Figure 6.15 Levels of aP2 (FABP4) (a.) and PPARγ (b.) gene expression in cells

from normal controls and individuals carrying mutations in PPARγ. Peripheral blood

monocytes obtained from two healthy individuals (WT), two insulin resistant

subjects without mutations in PPARγ and patients with C114R, C131Y, R357X or

FS mutations were cultured for 24 hours as described in section 6.2.7 to generate
immature dentritic cells (IDCs) in absence (-) or presence  of 1µM rosiglitazone (+).

The levels of aP2 and PPARγ gene expression were determined by real-time

quantitative qPCR (Taqman assays) as described in section 6.2.8. Data are expressed

as a ratio of aP2 (a) or PPARγ (b) transcripts relative to 36B4 expression and

represent the mean +/- s.e.m. of at least three independent experiments. M, male; F,

female; * denotes the father of the C131Y index case.
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Figure 6.16 Relative expression of several PPARγ target genes (5 down-regulated

and 5 up-regulated right panel) in WT and receptor mutation-containing (FS, C114R,
R357X) IDCs, quantified by real-time quantitative qPCR using Taqman Low

Density Arrays (TLDA). Gene expression in ligand-treated (1µM rosiglitazone) WT

versus mutant cells IDCs was compared and the results are shown as heat maps.
Thus, red indicates higher, and blue lower, levels of gene expression relative to

rosiglitazone-treated WT cells, whose levels have been uniformly designated yellow.

The fold changes in expression of each gene in rosiglitazone (RSG) versus vehicle
(DMSO) treated WT cells is also listed (left panel).
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Figure 6.17 RT-PCR with cDNA amplification confirms the presence of both the
mutant and wild type mRNA transcripts in the R357X patient. Following reverse

transcription of RNA from wild type (WT) or R357X mutation-containing immature
dendritic cells, the cDNAs were amplified by PCR and digested with Cac8I enzyme.

The size of the DNA following digestion was determined by electrophoresis on a 2%

(w/v) agarose gel. The presence of the R357X mutation destroys a Cac8I restriction
site in one allele and as consequence an undigested fragment of 235bp was detected

only in cells from the patient.
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Figure 6.18 R357X mutant PPARγ is expressed in peripheral blood monocyte

derived immature dendritic cells (IDCs). IDCs were generated from S3 and an age-
and sex-matched control subject as described in paragraph 6.2.7. Whole cell lysates

of WT and R357X mutation-containing IDCs were immunoprecipated with anti-

PPARγ antibody and Western-blotted together with a control extract of 293EBNA

cells transfected with R357X mutant PPARγ. An open arrow denotes the position of

WT PPARγ,  a solid arrow shows R357X protein and non-specific bands are denoted

by solid arrow heads.
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Figure 6.19 Adenoviral expression of C114R mutant PPARγ inhibits rosiglitazone-

induced preadipocyte differentiation. a. Human preadipocyte (Chub-S7) cells were

cultured in 6-wells plates and differentiated in the presence of rosiglitazone (100nM).
24 hours prior to differentiation, cells were mock infected or transduced with 2x107

pfu/well of recombinant adenoviruses expressing either GFP alone, GFP and WT

PPARγ, or GFP and C114R PPARγ. Comparable degrees of viral infection efficiency

were verified by fluorescence microscopy. Following differentition Chub-S7 cells
were fixed and stained with Oil-red-O to show accumulation of intracellular lipid. b.
aP2 (FABP4) gene expression was determined by real-time quantitative RT-PCR at
days 0, 3, 5 and 7 of differentiation. This figure has been kindly provided by Dr Erik

Schoenmakers.
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6.4 Discussion

In this chapter I have reported the functional characterization of three novel
mutations in the human PPARG gene, identified in a cohort of patients with clinical

features of partial lipodystrophy together with insulin resistance, dyslipidemia and
hypertension, which extend the range of heterozygous PPARγ mutations identified to

date. The first two mutations to be reported (P467L and V290M) were able to bind
DNA but showed significant impairment of transcriptional activation and coactivator

recruitment in response to synthetic (Barroso et al., 1999) or putative natural ligands
(Chapter 4; Agostini et al., 2004) as a consequence of the mutations destabilizing the

C-terminal alpha helix (AF2) of PPARγ (Kallenberger et al., 2003), which is crucial

for ligand and coactivator interaction. Moreover, they have been shown to exert

dominant negative activity over their wild type counterpart (Barroso et al., 1999;
Agostini et al., 2004). Subsequently, we described another heterozygous

frameshift/premature stop mutation (FS) in the DNA binding domain of PPARγ in an

unrelated kindred. The functional characterization of this mutation revealed
properties which were in marked contrast to those of the previously described

mutations. Consistent with the mutation truncating its DBD, the FS PPARγ mutant

lacked DNA binding and transcriptional activity and did not exert dominant negative

activity over its WT counterpart. Significantly, in this kindred only individuals who
were doubly heterozygous for the FS mutant and an additional defects in an

unrelated gene, PPP1R3A, exhibited severe insulin resistance (Chapter 5; Savage et

al., 2002). Interestingly however, a heterozygous loss-of-function mutation in the
promoter region of PPARγ4 has been reported in a proband with partial

lipodystrophy (Al-Shali et al., 2004), whilst a further heterozygous nonsense

mutation Y355X (Y327X in PPARγ1) within the LBD, whose protein product in

vitro was transcriptionally inactive, with no apparent dominant negative activity

(Francis et al., 2006) have been recently reported. Very recently, another frameshift
mutation designated as E138fsΔAATG has been identified in a subject with partial

lypodistrophy, with the mutant allele predicted to encode a truncated protein lacking

the DNA and ligand-binding domain (Hegele et al., 2006). In these cases, it has been
proposed that the clinical phenotype is a consequence of PPARγ haploinsufficiency,

which contrasts with the absence of insulin resistance in FS mutation containing
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subjets reported by us (Savage et al., 2002).

Two of the three novel mutations (C114R and C131Y) reported in this chapter are

situated in the DBD and the third (R357X) within the LBD of the receptor.
Specifically, the two DBD mutations (C114R and C131Y) involve two of the four

highly conserved zinc-coordinating cysteines in the first zinc-finger, whose intact
structure is required to permit DNA binding (Figure 6.7). Accordingly, their ability

to bind DNA as heterodimer with RXR was assessed using electrophoretic mobility

shift assays. The results showed that C114R and C131Y were unable to bind to a
variety of PPAREs from well known PPARγ target genes in the presence of RXRα

(Figure 6.9a). Similar results were recently reported by Temple and colleagues, who

created three different mutations in the P-box region of zinc-finger one of PPARγ in

order to elucidate the role of DNA binding in PPARγ  function; two of their mutants

maintained the structure of the zinc-finger and a third mutation at cysteine 131,

analogous to a mutation shown previously to prevent DNA binding of thyroid
receptor (Chatterjee et al., 1989), disrupted the entire zinc-finger I structure.

Interestingly, only this third mutation was incapable of binding DNA under any
conditions, highlighting the importance of the cysteine residue to maintain

tetrahedral coordination of a zinc ion and subsequently the stability of the entire

zinc-finger structure. Without the tertiary structure of the DBD being intact, the
protein cannot make contact with the DNA (Temple et al., 2005).

Despite the presence of an intact DBD, the R357X mutant also failed to bind to the

panel of PPAREs (Figure 6.9a).  However, this finding was not unexpected as the
R357X premature stop mutation results in a protein which is truncated between

helices 6 and 7 of the LBD of the receptor and lacks the carboxy-terminal region
which contains a key dimerization interface with RXR. Subsequently, R357X was

shown to be unable to form a heterodimeric complex with RXR and therefore failed

to bind DNA (Figure 6.9).  A mammalian two-hybrid assay with Gal4-RXRα and the

different VP16-full length PPARγ mutants confirmed defective dimerisation of

R357X with RXR, whereas all the DBD mutants recruited RXR similarly to the WT
receptor, in keeping with preservation of this dimerisation interface within their

intact LBD (Figure 6.12). Consistent with their inability to bind DNA, C114R,
C131Y and R357X showed markedly impaired transactivation profiles (Figure 6.8).

However, in contrast to the previously described FS mutant, which lacks the putative
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nuclear localization signal (NLS) and remained cytoplasmic, all the novel mutant

PPARγ (C114R, C131Y, R357X) proteins, which have a preserved hinge region

containing the NLS, retain the ability to translocate appropriately to the nucleus

(Figure 6.11).
Such retention of nuclear translocation function prompted us to examine whether the

novel receptor mutants might be able to interfere with the transcriptional function of

WT PPARγ. The novel mutants inhibited PPARγ-mediated transactivation of both a

reporter gene [(PPARE)3TKLUC] containing a synthetic, multimerised PPARE as
well as a reporter gene (haP2-LUC) containing a natural target gene promoter,

whereas the FS mutant lacked dominant negative activity in either context (Figure
6.13). Significantly, these observations with cotransfected receptors and reporter

genes in vitro, were mirrored by profiles of PPARγ-mediated aP2 induction in

mutation-containing primary blood mononuclear-derived cells from subjects studied

ex vivo (Figures 6.14 and 6.15). More extended gene expression profiling supported
these differences, with induction of other PPARγ target genes being markedly

attenuated in novel mutation-containing versus WT cells with FS mutation-

containing cells exhibiting an intermediate profile (Figure 6.16). Taken together,

these data suggest that the FS null mutation limits PPARγ responsiveness via

haploinsufficiency of functional receptor, whereas the greater restriction of PPARγ

action in the novel DBD and LBD mutation-containing cells is attributable to their
dominant negative activity. Recently, Francis and colleagues have reported a novel

nonsense mutation, causing premature termination at tyrosine 355 in PPARγ2 (or

Y327X in PPARγ1), in a Canadian patient with insulin resistance and partial

lipodystrophy (Francis et al., 2006). This mutation, similar to our R357X codon

change, results in a protein which is truncated in the LBD of the receptor. However,
the in vitro characterization of this truncation mutant showed, in contrast to our

findings, that the Y327X protein was transcriptionally inactive and markedly
unstable, with no dominant negative interference with wild type receptor function,

leading the authors to conclude that the clinical phenotype in their kindred was due

to haploinsufficiency (Francis et al., 2006). However, the manner in which the
mutant receptor expression vector was generated for in vitro studies was somewhat

unusual. In contrast to their wild type PPARγ  construct, all DNA sequences down-

stream of the stop codon at R327 were deleted. Clearly this could result in altered



182

transcription or stability of RNA and thus protein translation from this vector, in

comparison with the wild type construct. Moreover, their in vitro observations were

not tested with any ex vivo studies using mutation-containing cells from patients.
We have shown previously that dominant negative inhibition by P467L and V290M

PPARγ is abolished by disrupting their ability to interact with corepressors (Chapter

4; Agostini et al., 2004), suggesting transcriptional interference via repression of

target genes by DNA-bound mutant receptors, analogous to mechanisms of dominant
negative inhibition by mutant nuclear receptors (e.g. the v-erbA oncogene, thyroid

hormone receptor β mutants in Resistance to Thyroid Hormone, PZLF-RARα fusion

proteins in promyelocytic leukaemia) in other contexts (Love et al., 2000).  In
contrast, the missense DBD and LBD R357X truncation mutants are unable to bind

DNA, yet can inhibit WT PPARγ action, suggesting a different mechanism of

transcriptional interference. Meyer and colleagues postulated competition for shared

cofactors by receptors to explain antagonism of progesterone and estrogen receptor
signalling (Meyer et al., 1989) and the subsequent observation that SRC-1, a shared

coactivator, could relieve such “squelching”, validated this hypothesis (Onate et al.,

1995). Following this, it has been shown that ligand-dependent activation of nuclear

receptors can inhibit either their own function (Barettino et al., 1994) or that of

heterologous receptors (Zhang et al., 1996), by limiting the availability of
coactivators that are recruited to their C-terminal activation function 2 (AF-2)

domains. In keeping with this observation, we have tested the ability of the novel

mutant receptors to recruit a variety of coactivators. Protein-protein interaction
assays showed ligand-dependent binding of SRC-1 or TRAP220 to the DBD mutants

with an intact AF-2 domain while the R357X with a preserved DBD domain showed
interaction with PGC-1α or PDIP (data generated by E. Schoenmakers and not

shown but published in Agostini et al., 2006).

Overall our observations therefore provide a plausible mechanism whereby non

DNA-binding PPARγ mutants can titrate functionally limiting coactivator(s) to

restrict WT receptor function (Figure 6.20). It is quite conceivable that multiple
different coactivators or cofactor complexes could be limiting in different tissue and

target gene contexts in vivo. Evidence from other biological contexts provides
support for similar mechanisms operating to inhibit PPAR signalling in vivo:

analogous to our natural, PPARγ DBD mutant inhibiting human adipocyte
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differentiation (Figure 6.19), others have generated artificial, dominant negative,

PPARγ DBD mutants which block either adipogenesis (Park et al., 2003) or neural

stem cell differentiation (Wada et al., 2006) in the murine context; γORF4, a human

PPARγ splice variant in which the LBD is truncated at residues 273 which has

dominant negative activity, is selectively overexpressed in colorectal carcinoma cells

and cancer tissues (Sabatino et al., 2005); a dominant negative, PPARα splice

variant with a truncated LBD (αα174) is expressed in human tissues including liver

(Gervois et al., 1999).

In summary, in this chapter I have described three novel non-DNA binding PPARγ

mutations (two missense DBD and one truncated LBD receptor mutants), occurring

in unrelated kindreds, which extend the range of heterozygous mutations reported to
date. Each index case exhibited clinical features of insulin resistance with fasting

hyperinsulinaemia (Figure 6.6), partial lipodystrophy (Figure 6.5), dyslipidaemia and

early-onset hypertension (Table 6.3) described in the first subjects in whom
dominant negative PPARγ mutations were identified (Barroso et al., 1999; Savage et

al., 2003). The functional characterization of these receptor mutants has provided

evidence that they act through a novel dominant negative mechanism involving
transcriptional limitation by sequestration of coactivators or cofactors complexes,

which has not been yet described in any other inherited human disorder caused by

nuclear receptor defects.
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Figure 6.20 Proposed model of transcriptional interference by naturally occurring

PPARγ R357X, C114R and C131Y mutants. Although unable to bind DNA, the

natural mutants which translocate to the nucleus, can interfere with the
transcriptional activity of the WT receptor by sequestering component(s) of the

coactivator complex that are limiting in certain target gene or cellular context.
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Chapter 7

CONCLUDING DISCUSSION

The work reported in this thesis describes abnormal nuclear receptor signaling and
human disease, principally focusing upon the study of the molecular properties of the

thyroid hormone receptor (TR) and the peroxisome proliferator-activated receptor

gamma (PPARγ) in genetic disorders of thyroid hormone and insulin action

respectively.

Chapter 3 reports the functional characterization of three novel RTH mutations

(S314C, S314F, S314Y), due to different nucleotide substitutions in the same codon,
occurring in six separate families. These mutant receptors showed marked

differences in their functional impairment. Molecular modelling of the different
mutations using the crystal structure of TRβ explains how ligand binding is

perturbed and why phenylalanine or tyrosine substitutions at this codon are more

deleterious than cysteine. Our data suggest that there may be a correlation between

mutant receptor function in vitro and resistance within the pituitary-thyroid axis in
vivo.

Until now attempts to correlate individual mutations with clinical phenotype has not
proved successful, because of the extreme variability of RTH, with kindreds with the

same TRβ  mutation showing different degree of resistance in the same tissues and

even different spectra of resistance in different tissues in the same individual. In

collaboration with the Clinical Biochemistry Department, Addenbrooke’s Hospital,
we will continue to screen for TRβ mutations in subjects with thyroid function tests

that are consistent with a diagnosis of RTH. Although with much lower frequency,

we are still identifying novel mutations, which offer an opportunity to enhance our

understanding of structure-function relationships in the receptor. For example, we
have recently found a novel de novo mutation in a sporadic case of RTH with the

typical biochemistry, which results in mutation of a highly conserved glutamic acid
to glutamine (E457Q) in helix 12. A homologous mutation (E457A) in a murine

model, which has been recently described by Ortiga-Carvalho and colleagues,

completely abolished coactivator recruitment by mutant receptor in vitro, but
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preserved normal T3 binding and corepressor interactions � � (Ortiga-Carvalho et al.,

2005). These animals showed abnormal regulation of the hypothalamic-pituitary-

thyroid axis suggesting that the AF2 domain of TRβ is required for both positive and

negative transcriptional regulation by TH in vivo  (Ortiga-Carvalho et al., 2005). In
keeping with these results, preliminary functional characterization of the human

E457Q TRβ mutant has revealed normal ligand binding and dissociation from

corepressors, but complete transcriptional inactivity due an inability to recruit

coactivator (Mitchell and Agostini, unpublished data). This observation that negative
transcriptional regulation in the pituitary-thyroid axis in both human and murine

contexts is mediated by cofactors that are recruited to TR in a ligand-dependent
manner may be of significance in identifying candidate genes that can be screened in

cases of RTH where no TRβ mutations have been identified.

Recently, using cDNA microarray analysis, Moeller and colleagues have identified

several genes regulated by TH in human skin fibroblasts, whose expression is
attenuated in skin fibroblasts from patients with RTH. These findings suggest that

profiling of gene expression patterns may have a key role to play in the study of
individuals with defects of TH action  (Moeller et al., 2005). Thus, in addition to

continued screening for TRβ  mutations, we are also planning to study gene

expression profiles of peripheral blood-derived cells (T cells, B cells and

macrophages) from RTH patients, which are more widely and readily accessible.
This will provide an opportunity to further understand the molecular actions of TRβ

mutants and to elucidate the affected cellular pathways in vivo. Through comparison

of microarray profiles from RTH patients versus normal subjects we may be able to

determine specific cell types with altered patterns of T3-dependent gene expression
that indicate hormone signaling mediated predominantly via either α or β receptors.

We may therefore be able to identify peripheral target genes whose expression

correlates with the dominant negative potency of TRβ mutants as suggested in

Chapter 3, or alternatively to identify genes regulated mainly via TRα, whose altered

expression correlates with the degree of thyrotoxic symptoms in patients.

Whereas most cases of RTH are associated with TRβ gene mutations, 15% of cases

are of unknown etiology without TRβ gene defects. Potential mechanisms of non-

TRβ-mediated RTH include abnormalities in cofactors or other proteins, which

mediate thyroid hormone action. It will be of particular interest to compare gene
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expression profiles of blood cells derived from these “non-TRβ" RTH cases with

those obtained from TRβ mutation-containing cells. A distinctly different expression

profile may identify a novel candidate gene or pathogenetic mechanisms mediating
this disorder.

Chapters 4, 5 and 6 outline the results of functional studies of several naturally

occurring human mutations in the PPARγ gene and their role in the human metabolic

syndrome.

P467L and V290M (both involving residues in the ligand binding domain of the
receptor) were the first missense, loss-of-function mutations to be identified in three

patients with severe insulin resistance. Initial functional studies showed that the
mutant receptors were transcriptionally impaired with reduced ligand binding and

coactivator recruitment and, analogous to TRβ mutations in RTH, the mutants

inhibited wild type PPARγ action in a dominant negative manner. In chapter 4 I

have extended the functional characterization of these mutations showing clearly that

P467L and V290M destabilize helix 12 favouring receptor interaction with
corepressor and resulting in dominant negative activity via repression of target genes

by DNA-bound mutant receptors. Using fluorescence anisotropy these deleterious

mutations have been shown to enhance the mobility of helix 12 in PPARγ,

supporting my experimental findings (Kallenberger et al., 2003). Consistent with this
model, dominant negative inhibition by the P467L mutant is abolished by

introduction of an additional artificial mutation (L318A) that disrupts corepressor
interaction (Agostini et al., 2004). Furthermore, I have shown that a higher-affinity,

tyrosine-based agonist, such as farglitazar, has the potential to overcome this

proposed disease mechanism in both mutant receptors in vitro, and thus represents a
more rational therapeutic approach to restoring mutant receptor function and

ameliorating insulin resistance in our patients.

Subsequently, two other groups have independently identified mutations in the
ligand-binding domain of the PPARgamma (F388L and R425C in PPARγ2; F360L

and R397C in PPARγ1) in patients with partial lipodystrophy and insulin resistance.

Although the authors reported F388L as a mutant lacking dominant negative activity,

subsequent studies in our own laboratory with both the F360L and R397C receptor
mutants have shown that these two mutants can interfere with wild type receptor



188

signalling (Figure 7.1), in a dominant negative manner similar to that seen with the

P467L and V290M mutants.

More recently, we have identified five, novel heterozygous mutations in unrelated
cases of lipodystrophic insulin resistance: three missense mutations (C114R, C131Y,

C161W) involve highly conserved cysteine residues in the DBD and two premature
stop mutations (FS315X, R357X) in the LBD of PPARγ (Agostini et al., 2006). In

chapter 6 I have described the functional properties of C114R, C131Y and R357X.
Unlike P467L and V290M, these mutant receptors lack the ability to bind to DNA.

However despite this, they retain the ability to translocate to the nucleus, bind
PPARγ coactivators and inhibit wild type PPARγ action in a dominant negative

manner, possibly via a novel mechanism of transcriptional interference which

involves sequestration of functionally-limiting cofactor(s) to restrict WT receptor

function (Figure 6.20). In vitro observations of dominant negative activity were
mirrored by profiles of PPARγ-mediated target gene (aP2/FABP4) expression in

mutation-containing primary blood mononuclear-derived cells from subjects studied

ex vivo (Figure 6.15).
In contrast, chapter five describes a different, digenic mechanism of insulin

resistance in a large UK family, with a combination of loss-of-mutations in PPARγ

and PPP1R3 (muscle-specific protein-phosphatase 1 regulatory subunit 3) genes. In

this kindred only individuals who were doubly heterozygous for frameshift stop
mutations in both PPARγ and PPP1R3 were severely insulin resistant, whereas two

individuals who were heterozygous only for the PPARγ mutation and two other

subjects who were heterozygous only for the PPP1R3 mutation had normal fasting

insulin levels. This family illustrates that mutations in different proteins regulating

separate metabolic pathway in adipose tissue or skeletal muscle can combine to
result in extreme insulin resistance, while alone they have only modest metabolic

effects. This represents the first clear-cut demonstration of gene/gene interaction

mediating insulin resistance in humans.
The complete loss-of-function together with absence of dominant negative activity

of the FS null mutation suggests that it limits PPARγ  signaling via

haploinsufficiency of functional receptor. Consistent with this, an individual who
was heterozygous for the FS PPARγ mutation did not exhibit insulin resistance or
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other metabolic abnormalities associated with other patients harboring dominant

negative mutations in PPARγ.

Overall, our observations together with those of other groups have documented 14

different human genetic mutations in PPARG associated with clinical phenotypes.
Except for a PPARγ2 P115Q mutation which was identified in four morbidly obese

subjects (Ristow et al., 1998), all of the other mutations have been associated with a

stereotyped syndrome of severe insulin resistance with or without partial

lipodystrophy (Barroso et al., 1999; Agarwal and Garg, 2002; Hegele et al., 2002;
Savage et al., 2002; Savage et al., 2003; Al-Shali et al., 2004; Agostini et al., 2006;

Francis et al., 2006; Hegele et al., 2006).
Unlike RTH where the majority of natural mutations in TRβ are located in the

carboxy-terminal part of the receptor, clustering in three “hot” areas around the

ligand-binding pocket (Collingwood et al., 1998), PPARγ mutations are distributed

across several domains of the receptor (Figure 7.2a). Moreover these mutations have

been shown to have different functional properties leading to disease through
mechanisms of either: i) gain-of-function; ii) dominant negative activity; or iii)

haploinsufficiency.

A P115Q substitution in PPARγ is the only “gain of function” mutation described to

date. This amino acid change, with constitutive transcriptional function and
enhanced adipogenic activity due to defective phosphorylation of the adjacent serine

114, was originally described in four morbidly obese German patients. However,
recently another German individual carrying the same P115Q mutation was reported

to be only moderately overweight, contrasting with the finding of the original study

(Bluher and Pashke, 2003). Further studies are required to clarify the role of this
particular genetic variant in the development of obesity in the general population.

To date, we have described seven different dominant negative PPARγ mutations,

which can either compete directly with the wild type receptor for binding to a

PPARE in the promoter region of target genes or indirectly interfere with the wild

type receptor function by reducing the availability of other components of the
transcriptional machinery, such as coactivators, through sequestration.  Two further

receptor mutations (PPARγ2 F388L, R425C or PPARγ1 F360L, R397C) do exhibit

dominant negative activity when tested in some assays (Figure 7.1) but not by others
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(Hegele et al., 2002). All the cases described (including another female patient with

the P467L mutation in an unrelated kindred [Gurnell and Chatterjee, unpublished

data]) show very similar clinical phenoptype whose main features are summarized in
Figure 7.2b.

However, several loss-of-function mutations in PPARγ are likely to operate via a

haploinsufficiency mechanism, yet have been associated with a similar clinical

phenotype which includes severe insulin resistance. A heterozygous, single
nucleotide substitution in the PPARγ4 promoter (-14A>G, Al-Shali et al., 2004),

leading to reduced receptor expression from one allele of the PPARγ gene, can only

lead to receptor haploinsufficiency; two other mutations, described either by onother

group (E138fsΔAATG, Hegele et al., 2006) or us (FS, Savage et al., 2002), generate

prematurely-truncated receptor variants and we have shown that the latter is clearly
devoid of dominant negative activity. However, the FS PPARγ mutation was only

associated with insulin resistance when combined with a second gene defect and this
possibility was not excluded in the other published cases with haploinsufficent

receptor mutations (Al-Shali et al., 2004; Hegele et al., 2006). Recently, on going
surveillance of our subject with a haploinsufficent PPARγ mutation (FS), has

provided evidence for a mechanism other then a second genetic defect, which could

generate the clinical phenotype. When first studied in 2002, our subject with the FS

mutation showed normal circulating insulin and lipid levels. However, in response to
an altered lifestyle (over-nutrition and reduced physical activity) he gained weight

substantially and his phenotype has changed markedly (Table 7.1), with the
development of numerous features (insulin resistance, dyslipidaemia) of metabolic

syndrome. In this context, it is noteworthy that the patients harbouring the -14A>G

and E138fsΔAATG mutations presented with hyperinsulinaemia and dyslipidaemia

also on a background of significantly increased body weight (BMI 34.4 kg/m2 and 33
kg/m2 respectively) (Al-Shali et al., 2004; Hegele et al., 2006). Expression profiling

of PPARγ target genes in peripheral blood mononuclear cells has shown that gene

expression in dominant negative mutation-containing versus WT cells is markedly

attenuated, whereas haploinsufficient FS mutation-containing cells exhibit an
intermediate phenotype (Chapter 6, Figure 6.16). It would be very interesting to

expression profile blood cell from all the published cases described to date as this
may help to distinguish true dominant negative versus haploinsufficient states.
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On the basis of our genetic and phenotypic observations, we propose a model in

which limitation of PPARγ function, either alone, or together with environmental or

other genetic factors, can cause a metabolic phenotype in the human context (Figure

7.3). PPARγ plays a pivotal role in the regulation of target genes mediating both

adipocyte formation (differentiation) and function (lipogenesis) (Lehrke and Lazar,
2005). Therefore, it is plausible that any reduction in cellular PPARγ activity

occurring either through haploinsufficiency (50% loss-of-function) or dominant

negative mechanisms (>50% loss-of-function), is deleterious in the human context.

The identification of further novel receptor mutations and the characterization of
murine models of natural human mutations will enable us to better understand the

biological role of PPARγ and its involvement in human metabolic disease.

Therefore, we will continue screening for further PPARγ  mutations in different

cohorts of patients presenting with: (i) partial lipodystrophy; (ii) severe insulin

resistance; (iii) preeclampsia plus severe insulin resistance; (iv) PCOS plus severe
insulin resistance but with a lean phenotype. However, regarding the use of mouse

models, there may be significant physiological differences between humans and
mice. For example, the adverse metabolic consequences of human PPARγ

haploinsufficiency (Al-Shali et al., 2004; Hegele et al., 2006; Table 7.1) are in

contrast to the preservation of insulin sensitivity seen in heterozygous PPARγ null

mice even following high-fat diet (Kubota et al., 1999; Miles et al., 2000) or in

heterozygous P465L animals (equivalent to the human P467L mutation) which do
not have a metabolic phenotype unless they are crossed with severely obese, leptin

deficient (ob/ob) mice and challenged with extreme positive energy balance (Gray et

al., 2006). These observations suggest that mouse metabolic physiology is different
and does not become deranged unless the dietary load is severe, whereas human

physiology is more sensitive; therefore caution needs to be exercised when
translating insights from rodent models to humans. On the other hand, it is

interesting to note that the P465L PPARγ mutation mouse model does exhibit

hypertension as in the human cases, indicating that this feature is probably truly

associated with PPARγ dysfunction.

PPARγ is highly expressed in macrophages within human atherosclerotic lesions as

well as in normal human blood monocyte-derived macrophages (HMDMs). It is

activated by oxidised LDL and its derivatives and the receptor regulates genes
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mediating both cholesterol uptake (e.g. CD36) and efflux (e.g. ABCA1, ABCG1)

pathways. PPARγ regulates macrophage expression of LXR, and this receptor

independently regulates macrophage cholesterol homeostasis and inflammation.

Interestingly, in our human PPARγ mutation cohort three females (C131Y, C114R,

R357X) with no other obvious risk factors, have developed significant coronary

atherosclerosis prematurely (age 35-52yrs). We therefore wish to study PPARγ

function in mutation-containing HMDMs ex vivo. Using microarray and qPCR

analyses we will investigate expression profile of these cells and compare this with

profiles from normal controls in the absence and presence of both PPARγ and LXR

selective ligands to explore the potential link between abnormal PPARγ and/or LXR

signalling and the atherosclerotic phenotype. Preliminary microarray data indicates
that PPARγ agonist-dependent induction of many known target genes (e.g. FABP4,

CD36, ApoE, LPL) is attenuated in C131Y mutation-containing HMDM cells.

Finally, another observation worthy of note is that heterozygous females with

PPARγ mutations appear to be more severely affected then male carriers. However,

ascertainment of additional subjects and families and detailed physiological studies
are required to define a link between gender and phenotypic severity in syndromes of

human PPARγ insufficiency and to elucidate the mechanisms that mediate this

divergence.
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Table 7.1 Changes in clinical, biochemical and body composition parameters in the

subject carrying the FS mutation (Subject vi in Figure 5.1) between 2002 when he
was first studied and later in 2006. Key: BMI, body mass index; WC, waist

circumference; BP, blood pressure; T2DM, type 2 diabetes mellitus; IGT, impaired

glucose tolerance; TG, triglycerides; HDL-C, high density lipoprotein cholesterol;
FI, fasting insulin; Predicted total body fat was calculated as follows (Black et al,

1983): males % fat = (1.281×BMI) − 10.13; Measured total and depot-specific body

fat were determined using dual-energy X-ray absorptiometry – with corresponding z-

scores for total body fat shown as superscript; M, male; healthy adult values where
available are shown in parentheses [ ]; N/A, not applicable; nd, not determined.

27.825.122.9Predicted total body fat (%)

MGender

23 +0.520 +0.1ndMeasured total body fat (%)

5.73.41.5TG (mmol/L) [< 1.7]

3027ndMeasured truncal fat (%)

1614ndMeasured lower limb fat (%)

1465146FI (pmol/L) [<60]

0.560.841.02
HDL-C (mmol/L)
[M>1.03; F>1.29]

N/AN/AN/AT2DM/IGT
(age at diagnosis - yr)

140/80nd125/90BP (mmHg) [< 130/85]

103ndndWC (cm) [M <94; F <80]

29.6
2006

27.5
2004

25.8
2002

BMI  (kg/m2) [non obese <30]

363432 (32)Age (and at presentation) (yr)

FSMutation

viSubject
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Figure 7.1 R397C and F360L human PPARγ1 mutants exhibit dominant negative

activity when coexpressed with their wild type receptor (WT) counterpart.
293EBNA cells were transfected with WT alone or with en equal amount of either

empty vector (pcDNA3), or additional WT, or mutant receptors (R397C or F360L)

together with (PPARE)3TKLUC reporter gene (500ng) in the presence of increasing
concentrations of ligand. As a control an artificial mutant (AF2), which we have

previously shown to exhibit strong dominant negative inhibition (Gurnell et al.,

2000), was also tested in this experiment. Both R397C and F360L receptor mutants

exhibit significant dominant negative activity even at the maximal levels of ligand.

Dominant negative inhibition by those mutant receptors was also evident when
tested using a human aP2 reporter gene in 3T3-L1 adipocyte cells (Schoenmakers,

unpublished data). The results shown are the mean +/- s.e.m. of  at least five

independent experiments, each done in triplicate, with a correction for transfection
efficiency using β-galactosidase activity.
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Figure 7.2 Mutations in human PPARγ causing either receptor insufficiency or gain-

of-function. a. Schematic representation of PPARγ 1 and 2 isoforms showing the

position of known natural genetic mutations identified to date. Except for the -

14A>G nucleotide substitution, which is in the PPARγ 4 promoter controlling

expression of PPARγ1, all other mutations affect both receptor isoforms. Note that

mutations are shown on either the γ1 or γ2 background depending on the

nomenclature used by authors in their publications. Mutants documented to have

dominant negative activity (red) or leading to receptor haploinsufficiency (black) are
shown. The P115Q (green) mutation results in a constitutively active receptor. b.
Overview of phenotypic characteristics of subjects with loss-of-function PPARγ

mutations. The denominator n refers to the number of subjects for whom information
is available.
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Figure 7.3 Schematic representation of the pathogenesis of insulin resistance in

subjects with PPARγ mutations. Mutations in the PPARG gene variably limit

receptor activity, leading to a reduction in both adipocyte mass and function.
Consequently, the ability to metabolize and store a dietary lipid load is

compromised, with subsequent deposition and toxicity of lipid intermediates

mediating insulin resistance in target tissues (e.g. liver, skeletal muscle). Dominant
negative PPARγ mutations, associated with greater restriction of WT receptor

function (>50%), can mediate a clinical phenotype, whereas PPARγ

haploinsufficiency (50% loss-of-function) may require a second “hit” (e.g.

overnutrition/dietary excess or combination with an unrelated genetic defect) to

cause metabolic dysfunction.
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ABSTRACT
The syndrome of resistance to thyroid hormone is associated with

diverse mutations in the ligand-binding domain of the thyroid hor-
mone b receptor, localizing to three clusters around the hormone
binding cavity. Here, we report three novel resistance to thyroid
hormone mutations (S314C, S314F, and S314Y), due to different
nucleotide substitutions in the same codon, occurring in six separate
families. Functional characterization of these mutant receptors
showed marked differences in their properties. S314F and S314Y
receptor mutants exhibited significant transcriptional impairment in
keeping with negligible ligand binding and were potent dominant

negative inhibitors of wild-type receptor action. In contrast, the
S314C mutant bound ligand with reduced affinity, such that its func-
tional impairment and dominant negative activity manifest at low
concentrations of thyroid hormone, but are more reversible at higher
T3 concentrations. The degree of functional impairment of mutant
receptors in vitro may correlate with the magnitude of thyroid dys-
function in vivo. Modelling these mutations using the crystal struc-
ture of thyroid hormone receptor b shows why ligand binding is
perturbed and why the phenylalanine/tyrosine mutations are more
deleterious than cysteine. (Endocrinology 140: 5901–5906, 1999)

RECOGNITION that the syndrome of resistance to thy-
roid hormone (RTH) is linked to the thyroid hormone

b receptor (TRb) gene locus (1) has led to the identification
of an increasing number of natural mutations whose func-
tional characterization has provided important insights into
structure-function relationships in this receptor. RTH is char-
acterized by elevated serum free thyroid hormones (FT4 and
FT3) in the presence of unsuppressed TSH levels, reflecting
resistance to the normal negative feedback mechanisms
within the hypothalamus and pituitary (2). The degree of
resistance within peripheral tissues determines whether thy-
rotoxic clinical features are associated with the condition (3).
An autosomal dominant mode of inheritance, in conjunction
with the recognition that receptor mutants are functionally
impaired, has led to the proposal that these abnormal pro-

teins are able to inhibit the function of their wild-type (WT)
counterparts in a dominant negative manner (4, 5). Such
dominant negative inhibition requires the preservation of
DNA-binding and heterodimerzation functions in mutant
receptors (6–8), consonant with the observation that no RTH
mutants have hitherto been reported in the DNA-binding or
dimerization domains of TRb. In fact the majority of natural
mutations cluster around the ligand binding pocket (9) and
impair hormone binding.

Here we describe three novel single nucleotide substitu-
tions in TRb associated with RTH that result in different
missense mutations at residue 314 (S314C, S314F, and S314Y).
Examination of the crystal structure of TRb suggests that
Ser314 plays a structural role in ligand binding. Functional
characterization of the natural mutants allowed us to study
how the different amino acid substitutions at this position
affected receptor function. Although all the mutations af-
fected ligand binding, there were significant differences in
the extent of the alteration with corresponding variation in
their transcriptional and dominant negative properties.

Materials and Methods
Clinical and genetic analyses

Serum FT4 and FT3 levels were measured with a Delfia fluoroim-
munometric assay (Wallac, Inc., Milton Keynes, UK). TSH levels were
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determined with a sensitive second generation assay (Delfia, Wallac,
Inc.). The coefficient of variation was less than 10% in all instances.

Genomic DNA was extracted from peripheral blood leukocytes using
standard techniques. Exons 7–10 of TRb1 from each index case were
amplified by PCR using intronic primers and sequenced as previously
described (10). Each mutation was verified in three independent reac-
tions, and other family members were screened for the presence of the
identified mutation.

Plasmid constructs

Receptor mutations were generated by site-directed mutagenesis of
WT human TRb1 complementary DNA and confirmed by direct se-
quencing as reported previously (6). Both wild-type and mutant recep-
tors were subcloned into pGEM7z and the eukaryotic expression vector
RSV (containing the Rous sarcoma virus enhancer and promoter) for in
vitro and in vivo studies, respectively. For functional assays, a reporter
gene containing a direct repeat thyroid response element (TRE) spaced
by four nucleotides (DR14) from the malic enzyme gene upstream of the
thymidine kinase promoter and luciferase (MAL-TKLUC) was cotrans-
fected with receptor expression vectors and a b-galactosidase reference
plasmid (Bos-bgal) as described previously (6).

Hormone and DNA binding assays

Receptor proteins were synthesized by coupled transcription and
translation (Promega Corp., Southampton, UK). T3 binding affinities
were determined using a modification of a filter assay, and binding
affinity constants (Ka) were calculated using Scatchard analyses from
three separate experiments on independently generated protein samples
(11).

Receptor binding to DNA was assessed by electrophoretic mobility
shift assays using in vitro translated receptors quantitated by SDS-PAGE
analysis and a 32P-labeled oligonucleotide duplex corresponding to an
everted repeat (F2) TRE from the chick lysozyme gene. TR exhibits both
homodimeric and heterodimeric [with the retinoid X receptor (RXR)]
binding to this TRE, with dissociation of the homodimer on addition of
ligand. Details of the oligonucleotide duplex sequences and reaction
conditions have been described previously (6).

Cell culture and transient transfection assays

JEG-3 (human choriocarcinoma) cells were grown in Optimem con-
taining 2% (vol/vol) FCS and 1% (vol/vol) penicillin, streptomycin, and

fungizone (Life Technologies, Inc., Paisley, Scotland). Eighteen hours
before transfection the medium was changed to Optimem with 2%
charcoal-stripped FCS. Twenty-four-well plates of cells were transfected
by a 5-h exposure to calcium phosphate containing the reporter plasmid
MAL-TKLUC (500 ng), TRb1 expression vectors (50 ng), and the internal
control plasmid Bos-bgal (200 ng). After an additional 36 h, cells were
lysed, and extracts were assayed for luciferase and b-galactosidase ac-
tivity using standard methods (11).

Results
Clinical and genetic analyses

The clinical features and biochemistry in six families with
RTH are shown in Table 1. All patients exhibited thyroid
function tests characteristic of RTH: namely, elevated serum
free T4 and free T3 with an inappropriately normal TSH.
Although index cases presented with goiter or thyrotoxic
symptoms, most affected family members were asymptom-
atic and were detected by screening. One patient (no. IV) first
presented with Graves’ disease, but subsequent thyroid
function tests in remission were consistent with RTH. Direct
sequencing of exons 7–10 of TRb1 of index cases showed that
each individual was heterozygous for a single nucleotide
substitution at codon 314 in exon 9. A single nucleotide
change in the WT sequence TCC (serine), corresponding to
a missense mutation, was noted in each family: cases I, II, and
III, TTC (phenylalanine)-S314F; cases IV and V, TAC (ty-
rosine)-S314Y; and case VI, TGC (cysteine)-S314C. There was
complete concordance between the presence of a receptor
defect and the abnormal biochemistry associated with RTH,
suggesting that these receptor abnormalities were highly
likely to be causative.

Hormone and DNA binding

All natural mutations in TRb cluster in the ligand binding
domain, and consequently, the majority exhibit reduced hor-
mone binding. Accordingly, each mutation was introduced

TABLE 1. Biochemical and genetic data from six RTH families

Casea Age (yr)/sex Clinical featuresb FT4
(9.0–20 pmol/liter)

FT3
(3.0–7.5 pmol/liter)

TSH
(0.4–4.0 mU/liter) Nucleotide change Codon

changec

I 35/F Goiter, thyrotoxic 24 6.4d 2.3 1226 TCC to TTC S314F
I.I f 69/M Asymptomatic 21 4.7e 2.6 1226 TCC to TTC S314F
I.II b 31/M Asymptomatic 28 9.5 5.1 1226 TCC to TTC S314F
I.III s 28/F Asymptomatic 24 8.5 2.1 1226 TCC to TTC S314F
I.IV b 33/M Asymptomatic 36 12 0.9 1226 TCC to TTC S314F
II 37/M Goiter 37 11 0.6 1226 TCC to TTC S314F
II.I so 5/M Goiter, otitis media 38 15 3.0 1226 TCC to TTC S314F
III 51/M Asymptomatic 41 13 1.0 1226 TCC to TTC S314F
IVf 47/F AITD 28 13 1.5 1226 TCC to TAC S314Y
IV.I so 29/M Asymptomatic 34 17 1.9 1226 TCC to TAC S314Y
IV.II b 48/M Asymptomatic 23 9.4 1.2 1226 TCC to TAC S314Y
IV.III n 10/F Failure to thrive, ADHD 55 16 2.3 1226 TCC to TAC S314Y
Vg 51/F Goiter 30 11 6.1 1226 TCC to TAC S314Y
V.I so 13/M Asymptomatic 48 17 1.1 1226 TCC to TAC S314Y
VI 26/F Goiter, anxiety, palpitations 24 9 1.5 1226 TCC to TGC S314C
VI.I b 40/M Goiter, anxiety, palpitations 25 11 1.3 1226 TCC to TGC S314C
VI.II m 63/F Goiter, anxiety, palpitations 25 9 0.9 1226 TCC to TGC S314C

a Index case and affected relatives: f, father; m, mother; so, son; s, sister; b, brother; n, niece.
b ADHD, Attention deficit hyperactivity disorder; AITD, autoimmune thyroid disease.
c Codon nomenclature based on a predicted protein sequence of 1–461 residues (22).
d Free T3 on other occasions, 10.7, 8.0, and 8.3.
e Free T3 on another occasion, 9.5.
f Thyroid function tests when AITD in remission.
g Subtotal thyroidectomy, no thyroid hormone replacement therapy.
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into the WT TRb1 complementary DNA, and in vitro syn-
thesized proteins were assayed for binding of [125I]T3. As
expected from their location within the ligand binding do-
main, mutant receptors demonstrated impaired binding
compared with wild-type receptor. Scatchard analyses indi-
cated that their ligand affinities were reduced with a marked
difference in the magnitude of the abnormality between mu-
tations. Thus, in comparison with a wild-type Ka (6sem) of
0.68 3 1010 m21 (0.11), the S314C mutant bound ligand with
a slightly reduced affinity [Ka, 0.48 3 1010 (0.07) m21]. In
contrast, with the S314F and S314Y mutant receptor proteins
no specific radiolabeled T3 binding was detected, suggesting
a marked ligand binding defect.

Previous studies have shown that TR is able to bind DNA
as both a homodimer and a heterodimer with RXR and that
homodimeric complexes dissociate after binding of ligand
(12). We tested homo- and heterodimeric binding of WT and
mutant receptors using an everted repeat TRE configuration
and hypothesized that mutant receptor homodimer dissoci-
ation would be variably altered depending on the degree of
impairment in hormone binding. In the absence of ligand,
WT receptor formed homo- and heterodimer complexes and
after the addition of 100 nm T3, the homodimer complex
dissociated readily (Fig. 1). In comparison, the addition of
100 nm T3 resulted in a differential displacement of ho-

modimer between mutants, with a rank order of WT .
S314C . S314F. S314Y.

Functional activity and dominant negative inhibition

To evaluate their transcriptional properties, expression
vectors encoding WT or mutant receptors were cotransfected
with a reporter gene (MAL-TKLUC) containing a direct re-
peat TRE configuration. In comparison with WT receptor,
S314Y was transcriptionally inactive even at the highest con-
centration of T3 (1000 nm), whereas S314F produced detect-
able activity (10–15% of the maximal WT response) only at
100 and 1000 nm T3. In marked contrast, although impaired
relative to WT at the lower concentrations of ligand (0.1 and
1.0 nm), the S314C mutant exhibited a right-shifted activation
profile, attaining a maximal transcriptional response com-
parable to that of WT at 100 nm T3 (Fig. 2).

Consonant with its dominant mode of inheritance, it has
been suggested that the mutant receptors in RTH inhibit the
action of their WT counterparts in a dominant negative man-
ner (4, 5). We therefore examined the dominant negative
potency of each RTH mutant in transient transfection anal-
yses using the same TRE. Either WT receptor alone or equal
amounts of WT and mutant receptor were cotransfected with
MAL-TKLUC, and transcriptional activity was assayed at
either low (1 nm) or high (1000 nm) T3 concentrations. At 1
nm T3, coexpressed S314F or S314Y mutants reduced trans-
activation by WT receptor comparably (WT alone 100%; WT
plus S314F or WT plus S314Y, 45%), whereas cotransfected
S314C mutant was less inhibitory (WT, 100%; WT plus
S314C, 68%). Similarly, at the higher T3 concentration, dom-
inant negative inhibition by the S314C mutant was less
marked with 80% trans-activation of WT alone, whereas
S314F and S314Y continued to exert significant inhibitory
effects (trans-activation, 60% of WT alone; Fig. 3).

FIG. 1. Differential dissociation of TRb homodimers in response to T3
on the F2 everted repeat TRE. Using an electrophoretic mobility
supershift assay, in vitro translated TRb (WT or mutants: S314C,
S314F, and S314Y) and RXR were coincubated with the chick ly-
sozyme F2 TRE in the absence or presence of T3 (100 nM). Complexes
were resolved by PAGE. The locations of homodimer (TR-TR) and
heterodimer (RXR-TR) complexes are indicated.

FIG. 2. T3-dependent transcriptional activation of the malic enzyme
(MAL-TKLUC) reporter gene by WT and mutant (S314C, S314F,
S314Y) TRs. JEG-3 cells were cotransfected with WT or mutant TRb
expression plasmids together with the reporter construct MAL-TK-
LUC and an internal control plasmid (Bos-bgal). Hormone-dependent
activation in response to increasing amounts of T3 was normalized
against the internal control and expressed as a percentage of the
maximum WT receptor response. The data shown represent the
mean 6 SEM of at least three experiments, each performed in tripli-
cate.
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In view of the marked differences in ligand binding af-
finity, trans-activation, and dominant negative activity of the
S314 mutants in vitro, we sought to determine whether this
might be reflected in the degree of resistance to thyroid
hormone action in vivo. A previous study has suggested that
the magnitude of elevation of circulating free T4 (reflecting
the degree of resistance within the pituitary-thyroid axis)
may correlate with the degree of impairment in hormone
binding affinities of mutant receptor proteins in vitro (13). We
therefore compared circulating free T4 levels in individuals
harboring the three different codon 314 mutations (Fig. 4).
Interestingly, those with the S314Y or F mutation, on the
average, exhibited higher FT4 levels than patients with the
S314C mutation, with a trend that, although not significant,

suggests a correlation between the degree of resistance and
the extent of mutant receptor dysfunction.

Discussion

We have identified six kindreds with RTH harboring three
different amino acid substitutions (S314C, S314F, and S314Y)
at the same codon in the TRb gene. All affected individuals
exhibited pathognomonic biochemical features with ele-
vated circulating free thyroid hormones and nonsuppressed
TSH, in keeping with the idea that this disorder is charac-
terized by resistance within the hypothalamic-pituitary-thy-
roid axis. Two of the mutations (S314F and S314Y) were
identified in separate families with no apparent shared an-
cestry, suggesting that they had arisen independently in a
mutation-prone GC-rich region as has been documented pre-
viously in RTH (14). Most affected individuals were asymp-
tomatic or noted to have a goiter, but in four cases thyrotoxic
features were present. There was no clear correlation between
clinical features and the underlying genetic defect, underscor-
ing the variable clinical phenotype in this disorder (3).

RTH also exhibits molecular heterogeneity, being associ-
ated with diverse mutations that all localize to the ligand
binding domain of the TRb gene. On the basis of their tran-
scriptional and hormone binding properties, it has been sug-
gested that RTH mutants can be subdivided into three cat-
egories (15): type I mutants exhibit reduced trans-activation
consistent with the degree of impairment in their ability to
bind ligand, type II mutants show a disproportionate loss of
trans-activation relative to their altered ligand binding af-
finity, and type III mutants exhibit negligible ligand binding
and comparably impaired trans-activation. In this study, the
mutations we have identified in codon 314 of TRb exhibited
divergent functional properties. The S314C substitution re-
sulted in a moderate impairment in hormone binding. Con-
sonant with this, it exhibited a type I trans-activation profile,
with functional impairment at lower T3 levels but full trans-
activation at higher T3 concentrations. In contrast, the S314F
and S314Y substitutions resulted in severely attenuated li-
gand binding. These mutants showed type III transcriptional
responses, with S314Y being unable to activate transcription,
and S314F achieving only 15% of the maximal WT response
at 1000 nm T3.

We have shown that all three codon 314 mutants are able
to inhibit the transcriptional activity of WT TR when they are
coexpressed. This dominant negative effect has been ob-
served previously with a large number of other RTH mutants
and is in keeping with the dominant mode of inheritance of
this disorder (6, 11, 16). Gel mobility shift assays indicate that
all three codon 314 mutants retain the ability to bind to DNA
and heterodimerize with RXR. This observation supports
previous hypotheses that DNA binding and heterodimer-
ization are functional properties that are critical for RTH
mutants to exert dominant negative activity (6–8). In addi-
tion to differences in transcriptional function, our studies
suggest that the three S314 mutants differ in dominant neg-
ative potency, as at both low (1 nm) and high (1000 nm)
concentrations of T3, the S314F and S314Y mutants inhibited
WT receptor function more strongly than S314C. It has been
suggested that the ability of some RTH mutants to form TR

FIG. 3. Dominant negative inhibition of wild-type (WT) receptor ac-
tivity by mutant receptors. JEG-3 cells were cotransfected with 500
ng of the reporter plasmid MAL-TKLUC, 200 ng of the internal control
Bos-bgal and either 100 ng WT expression vector alone or 50 ng each
of wild-type and mutant receptor vectors. Corrected luciferase activity
was measured after incubation with low (1 nM) or high (1000 nM) T3
concentrations, and values are expressed as a percentage of the max-
imal WT receptor response. The data shown represent the mean 6
SEM of at least three experiments, each performed in triplicate.

FIG. 4. Circulating FT4 levels in individuals harboring each of the
three codon 314 mutations. FT4 levels, expressed as the fold incre-
ment relative to the upper limit of the normal reference range (de-
noted 1.0), were calculated for all individuals shown in Table 1, except
the index case in pedigree V, in whom the pituitary-thyroid axis had
been altered by previous thyroid surgery. For each mutation, values
shown represent the mean 6 SEM.
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homodimers that constitutively repress basal transcription
may contribute to their dominant negative inhibitory po-
tency (17–19). In keeping with this hypothesis, we note that
the weaker dominant negative mutant S314C formed TR
homodimers that dissociated more readily with T3, whereas
the more potent S314F and S314Y mutants formed ho-
modimer complexes that were less T3 reversible. Interest-
ingly, the extent of thyroid dysfunction in vivo appeared
consistent with the magnitude of receptor dysfunction in
vitro.

To investigate the potential reasons for the marked diver-
gence in their functional properties, we modelled the effect
of the different amino acid changes in Ser314 in human TRb
(20). Figure 5a shows that the side-chain of Ser314 plays a
structural role in the periphery of the hydrophobic ligand
binding cavity, consistent with our functional data indicating
its importance in hormone binding. When viewed in greater

detail (Fig. 5b), it is evident that this serine is tightly packed
in van der Waal’s contact with the side-chains of Ile353, Ile431,
and Leu428, with the hydroxyl group of Ser314 within hydro-
gen bonding distance of the carbonyls of Met310 and Glu311.
Mutation of Ser314 to a cysteine would probably weaken
these hydrogen bonds. However, as the side-chain volumes
of serine and cysteine are so similar, few structural pertur-
bations might be anticipated, explaining the relatively mod-
est effect on ligand binding. In contrast, when Ser314 is re-
placed by a phenylalanine, the bulky aromatic side-chain of
the latter clashes sterically with Ile431, Met310, and ligand (Fig.
5c). Rotation of the side-chain of Met310 to accommodate this
results in a clash with His435 and Phe459. We suggest that such
steric effects may be more deleterious, and indeed, it is
known that different substitutions of His435 in TRb markedly
impair ligand binding (21).

In conclusion, we have described three novel mutations in

FIG. 5. a, The crystal structure of human TRb is shown, with Ser314 located in the periphery of the ligand binding cavity. b, Enlarged view
showing the residues in contact with Ser314. c, The mutation of Ser314 to Phe was modelled by replacing the side-chain and then selecting the
most favorable rotamer conformation. The orientation for the phenylalanine shown here is the only one that did not clash badly with the peptide
backbone. However, this orientation clashed with the side-chains of Met310 and Ile431. The orientation of Met310 could be adjusted to avoid the
clash with the phenylalanine, but this caused it to clash with both Phe459 and His435. In conclusion, the bulky aromatic side-chain cannot readily
be accommodated without significant structural perturbations.
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TRb in RTH due to distinct nucleotide substitutions at a
single codon (314) that differentially impair receptor func-
tion. Our data suggest that the degree of functional impair-
ment in vitro correlates with the extent to which interaction
of Ser314 with T3 is disrupted and might also be related to the
magnitude of thyroid dysfunction in vivo.
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Loss-of-function mutations in the ligand-binding domain of
human peroxisome proliferator-activated receptor � (PPAR�)
are associated with a novel syndrome characterized by partial
lipodystrophy and severe insulin resistance. Here we have
further characterized the properties of natural dominant-
negative PPAR� mutants (P467L, V290M) and evaluated the
efficacy of putative natural ligands and synthetic thiazo-
lidinedione (TZD) or tyrosine-based (TA) receptor agonists in
rescuing mutant receptor function. A range of natural ligands
failed to activate the PPAR� mutants and their transcrip-
tional responses to TZDs (e.g. pioglitazone, rosiglitazone)
were markedly attenuated, whereas TAs (e.g. farglitazar) cor-
rected defects in ligand binding and coactivator recruitment
by the PPAR� mutants, restoring transcriptional function
comparable with wild-type receptor. Transcriptional silenc-
ing via recruitment of corepressor contributes to dominant-
negative inhibition of wild type by the P467L and V290M mu-

tants and the introduction of an artificial mutation (L318A)
disrupting corepressor interaction abrogated their domi-
nant-negative activity. More complete ligand-dependent core-
pressor release and reversal of dominant-negative inhibition
was achieved with TA than TZD agonists. Modeling suggests
a structural basis for these observations: both mutations de-
stabilize helix 12 to favor receptor-corepressor interaction;
conversely, farglitazar makes more extensive contacts than
rosiglitazone within the ligand-binding pocket, to stabilize
helix 12, facilitating corepressor release and transcriptional
activation. Farglitazar was a more potent inducer of PPAR�
target gene (aP2) expression in peripheral blood mononuclear
cells with the P467L mutation. Having shown that rosiglita-
zone is of variable and limited efficacy in these subjects, we
suggest that TAs may represent a more rational therapeutic
approach. (Endocrinology 145: 1527–1538, 2004)

PEROXISOME PROLIFERATOR-ACTIVATED RECEP-
TOR � (PPAR�), a member of the nuclear receptor

superfamily, was first characterized as a transcriptional reg-
ulator of adipocyte-specific gene expression (1) and preadi-
pocyte differentiation (2). A number of unsaturated fatty
acids (arachidonic, linoleic, �-linolenic, eicosapentaenoic) ac-
tivate PPAR� and may represent endogenous ligands for the
receptor in this context (3, 4). Eicosanoid derivatives of fatty
acids can act as endogenous PPAR� activators in other bi-
ological processes: in the macrophage, hydroxyoctadecadi-

enoic acid (HODE) and hydroxyeicosatetraenoic acid
(HETE), the 15-lipooxygenase products of arachidonic and
linoleic acids, inhibit the production of inflammatory cyto-
kines (5) and promote the uptake and catabolism of oxidized
low-density lipoprotein (6); 15-deoxy �12, 14 prostaglandin J2

(15d-PGJ2), a terminal metabolite of prostaglandin D2, which
binds PPAR� and promotes adipocyte differentiation, has
been most widely studied as a putative naturally occurring
ligand (7, 8).

The thiazolidinediones (TZDs) were synthesized as po-
tentially hypolipidemic derivatives of clofibrate but then de-
veloped as antidiabetic agents because of their unexpected
insulin sensitizing action in vivo. TZDs are high-affinity
PPAR� ligands (9), with the rank order of their binding
affinities mirroring antihyperglycemic activity, suggesting a
role for this receptor in mediating their antidiabetic action. In
keeping with this, we have previously described two differ-
ent mutations (P467L, V290M) in the ligand-binding domain
(LBD) of human PPAR� (10) in two families, with affected
subjects exhibiting severe insulin resistance and early-onset
type 2 diabetes mellitus (T2DM), together with other features
of the human metabolic syndrome (e.g. dyslipidemia [low

Abbreviations: aP2, Adipocyte P2; CBP, CREB (cAMP response ele-
ment binding protein) binding protein; 15d-PGJ2, 15-deoxy �12, 14 pros-
taglandin J2; GST, glutathione-S-transferase; HETE, hydroxyeicosatet-
raenoic acid; HODE, hydroxyoctadecadienoic acid; LBD, ligand-binding
domain; NCoR, nuclear receptor corepressor; PBMC, peripheral blood
mononuclear cell; PPAR�, peroxisome proliferator-activated receptor �;
RAR, retinoic acid receptor; RTH, resistance to thyroid hormone; SMRT,
silencing mediator of retinoid and thyroid receptors; TA, tyrosine-based
receptor agonist; T2DM, type 2 diabetes mellitus; TR�, thyroid hormone
�-receptor; TZD, thiazolidinedione; WT, wild-type.
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high-density lipoprotein cholesterol, high triglycerides], hy-
pertension). Consonant with a central role for PPAR� in
adipogenesis, these individuals also exhibit a stereotyped
pattern of partial lipodystrophy (11), a feature that has also
been observed in other reported cases with receptor muta-
tions (12, 13).

In addition to being functionally impaired, the P467L and
V290M mutant receptors inhibit wild-type (WT) PPAR� ac-
tion in a dominant-negative manner, consistent with het-
erozygosity for mutant PPAR� in affected subjects and dom-
inant inheritance of the disorder in one family (10). The
syndrome of resistance to thyroid hormone (RTH), a disorder
characterized by elevated circulating thyroid hormones with
tissue refractoriness to thyroid hormone action, is associated
with similar dominant-negative mutations in the human thy-
roid hormone �-receptor (TR�) (14). Here functional studies
have shown that higher concentrations of ligand can over-
come dominant-negative inhibition by many TR� mutants in
vitro (15) and that the administration of supraphysiological
doses of thyroid hormone can restore target tissue respon-
siveness in vivo (16). By analogy, we reasoned that the ad-
ministration of a PPAR� agonist to enhance mutant receptor
function and reverse dominant-negative activity might rep-
resent a rational approach to the treatment of the severe
metabolic disturbance observed in our affected subjects.
Three TZD PPAR� agonists have been developed for clinical
use: troglitazone, the first insulin-sensitizing antidiabetic
agent to be licensed, was later withdrawn due to unpredict-
able and potentially fatal hepatotoxicity; however, the newer
agents, pioglitazone and rosiglitazone, offer comparable ef-
ficacy and appear to be devoid of this side effect (17). Clinical
studies with rosiglitazone in two subjects harboring the
P467L and V290M PPAR� mutations have demonstrated
variable efficacy in ameliorating the insulin resistance and
metabolic phenotype (11), suggesting a role for more potent
receptor agonists. Recently high-affinity tyrosine-based
PPAR� agonists, with potent glucose-lowering activity in
vivo (18) and proven antidiabetic efficacy in patients with
T2DM (19), have been developed. The lead compound, far-
glitazar (GI262570), is currently being evaluated in human
clinical trials.

Here we report more detailed functional characterization
of the previously reported dominant-negative natural
PPAR� mutants. Consonant with the severe clinical pheno-
type, an array of putative endogenous natural ligands were
unable to activate mutant PPAR�. The mutant receptors ex-
hibited markedly impaired transcriptional responses with
TZDs, but in contrast, tyrosine-based receptor agonists (TAs)
corrected defects in ligand-binding, corepressor release, and
coactivator recruitment, permitting transcriptional activa-
tion comparable with WT receptor. In comparison with the
TZD rosiglitazone, the TA farglitazar completely reversed
dominant-negative inhibition by both mutant receptors in
vitro and activated PPAR� target gene (adipocyte P2) ex-
pression in P467L mutant peripheral blood mononuclear
cells (PBMCs) more effectively. Crystallographic modeling
suggests a structural basis for these observations: both mu-
tations in PPAR� destabilize helix 12 (20), and, as in the
recently elucidated PPAR�/silencing mediator of retinoid
and thyroid receptors (SMRT) structure (21), this may facil-

itate corepressor interaction; conversely, unlike rosiglita-
zone, the synthetic ligand farglitazar is able to make addi-
tional contacts within the receptor ligand-binding pocket,
thereby providing additional stability to helix 12, which me-
diates transactivation. Tyrosine-based PPAR� agonists,
rather than TZDs, may therefore represent a more rational
approach to restoring mutant receptor function in vivo,
thereby ameliorating insulin resistance in our patients.

Materials and Methods
Plasmid constructs

Full-length human PPAR�1 cDNA was cloned by RT-PCR from total
human preadipocyte RNA and introduced into the pcDNA3 expression
vector (Invitrogen, Groningen, The Netherlands). The P467L and V290M
natural mutants and L318A artificial mutant were generated by site-
directed mutagenesis of the WT receptor template as previously de-
scribed (10). DNA sequences encoding residues 173–477 of the WT and
mutant PPAR�1 LBDs were cloned into pGEX4T (Amersham Pharmacia
Biotech, Buckinghamshire, UK) and AASV (22) to yield glutathione-S-
transferase (GST)-PPAR� and VP16-PPAR� LBD fusions, respectively.
Gal4-SMRT consists of the 468 C-terminal amino acids of SMRT-fused
in-frame to the Gal4 DNA-binding domain in pCMX (23). Gal4-ID1
(amino acids 2302–2352), Gal4-ID2 (amino acids 2131–2201), and Gal4-
ID1 � 2 (amino acids 2131–2352) contain one or more of the nuclear
receptor interaction domains of SMRT as reported previously (24). PPA-
RETKLUC (7) and UASTKLUC (22) have been described previously.

Protein-protein interaction assays

Bacterially expressed GST fusion proteins were prepared according
to standard protocols (10). After purification, proteins bound to gluta-
thione-Sepharose beads (Amersham Pharmacia Biotech) in binding
buffer [40 mm HEPES (pH 7.8), 100 mm KCl, 5 mm MgCl2, 0.2 mm EDTA,
1% Nonidet P-40, 10% glycerol, 2 mm dithiothreitol, 4 mg/ml BSA] were
mixed with 5 �l of 35S-labeled in vitro-translated cAMP response ele-
ment-binding protein (CBP) together with ligand or vehicle and incu-
bated at 4 C for 2 h. After washing with NETN buffer [20 mm Tris (pH
8.0), 100 mm NaCl, 1 mm EDTA, 0.5% Nonidet P-40], bound CBP was
determined by SDS-PAGE. Comparable loading of the GST-PPAR� LBD
fusion proteins was confirmed with Coomassie staining before autora-
diography. The assay shown is representative of three separate exper-
iments with similar results.

Ligand-binding assays

[3H]-farglitazar was synthesized as follows: Crabtree’s catalyst (25) (3
mg, 200 mol %) was added to a solution of farglitazar (1.0 mg) in
methylene chloride (1.0 ml). The mixture was subjected to three freeze-
pump-thaw cycles on a steel manifold before introduction of 1.96 Ci
tritium gas. The reaction mixture was allowed to warm to room tem-
perature and vigorously stirred for 18 h. After workup and exchange of
labile tritium, 129 mCi crude [3H]-farglitazar was obtained at 50% ra-
diochemical purity by HPLC. A 25.8-mCi portion of the crude product
was purified by HPLC (Zorbax SB C18, 5 �m, 4.6 � 250 mm, 70:30:0.1
acetonitrile/water/trifluoroacetic acid at 1.0 ml/min, UV detection at
240 nm). The desired product fraction was collected, concentrated in
vacuo, frozen, and lyophilized under vacuum to give a pale yellow solid.
The solid was dissolved in 5 ml of absolute ethanol to provide 6.05 mCi
[3H]-farglitazar (1.21 mCi/ml; 41 Ci/mmol) at 97.6% radiochemical pu-
rity by HPLC: 1H-NMR (CDCl3, 400 MHz), 8.84 (m, 1H), 7.94 (m, 2H),
7.58 (m, 2H), 7.51 (m, 1H), 7.46 (m. 1H), 7.43 (m, 2H), 7.38 (m, 2H), 7.34
(m, 1H), 7.21 (m, 2H), 6.80 (m, 2H), 6.69 (d, J � 8.3 Hz, 1H), 6.61 (ddd,
J � 7.6, 7.6, 0.9 Hz, 1H), 4.38 (m, 1H), 4.134 (t, J � 6.6 Hz, 2H), 3.25 (dd,
J � 13.9, 5.7 Hz, 1H), 3.14 (dd, J � 13.9, 7.1 Hz, 1H), 2.94 (t, J � 6.6 Hz,
2H), 2.33 (s, 3H). 3H-NMR (CDCl3, 426 MHz) 8.03 (dm, J � 1.2 Hz).
Hormone-binding assays were performed using bacterially expressed
GST-PPAR� LBD fusion proteins and the PPAR� ligands [3H]-rosigli-
tazone (9) and [3H]-farglitazar in a modification of a previously de-
scribed filter binding assay (26). Filters were preincubated with BSA
(1%) and Tween (1%) to reduce nonspecific binding with the [3H]-
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farglitazar compound. Again, addition of comparable amounts of
PPAR� LBD fusion proteins was confirmed through Coomassie staining
of aliquots subjected to SDS-PAGE. Results denote the mean � sem of
experiments performed on three separate occasions.

Transfection assays

Calcium phosphate-mediated transfection was performed in 24-well
plates of 293EBNA cells. Each well was cotransfected with 50–100 ng of
receptor expression vector, 500 ng of reporter construct, 100 ng of the
internal control plasmid Bos-�-gal, and, where indicated, 50–100 ng of
additional construct. Cells were harvested and assayed as described
previously (15). Results represent the mean � sem of at least three
independent experiments, each performed in triplicate.

aP2 assays in PBMCs

Blood was obtained from the index case harboring the P467L PPAR�
mutation (10) and PBMCs were isolated by ficoll gradient centrifugation,
washed in PBS, and cultured in RPMI 1640 (Sigma-Aldrich, Dorset, UK)
with 1% charcoal-stripped fetal bovine serum in 6-well plates with 3 �
106 cells/well. After exposure to either rosiglitazone or farglitazar for
24 h, RNA was isolated from cells using a commercial kit (Qiagen, West
Sussex, UK) and reverse transcribed to generate first-strand cDNA. This
was serially diluted and analyzed by quantitative PCR as described
previously (27). Results shown are the mean of two independent ex-
periments in the individual carrying the P467L mutation (a deterioration
in her clinical condition precluded venesection for a third determination).

Statistical analyses

All results are expressed as mean � sem; where appropriate, com-
parisons between values were made using the Student’s t test.

Results

The transcriptional activities of WT receptor and PPAR�
mutants were assayed by cotransfection of receptor expres-
sion vectors together with a reporter gene (PPARETKLUC)
containing three copies of the PPARE from the acyltrans-
ferase-coenzyme A oxidase gene linked to the thymidine
kinase promoter and luciferase, in the absence or presence of
an array of putative natural ligands (Fig. 1). Western blotting
of cell extracts after transfection of WT PPAR� or P467L and
V290M mutants confirmed that their expression levels were
equivalent in these assays (data not shown). As has been
previously described, WT PPAR� exhibited some constitu-
tive basal transcriptional activity (28) but showed a tran-
scriptional response to unsaturated fatty acids (linoleic acid,

arachidonic acid, �-linolenic acid), 15d-PGJ2, and eicosanoids
(13-HODE, 15-HETE), which ranged from 50% to 80% of that
obtained with a synthetic PPAR� agonist rosiglitazone (1
�m). In contrast, the P467L and V290M mutants were com-
pletely unresponsive to all the natural ligands tested, despite
their partial response to the synthetic receptor agonist.

To evaluate the potential therapeutic role of synthetic
PPAR� agonists, we next examined the function of PPAR�
mutants with each of the TZDs, including rosiglitazone,
which is the most potent receptor agonist in this class that is
licensed for clinical use. In comparison with WT PPAR�, the
P467L and V290M mutant receptors were virtually unre-
sponsive to both troglitazone (Fig. 2C) and pioglitazone (Fig.
2D), achieving only 40–50% of WT receptor activity at the
highest concentration (10 �m) of ligand. Similarly, only 1–10
�m rosiglitazone elicited partial transcriptional responses
(50–75% of WT) from the mutant receptors (Fig. 2E). Re-
placement of the 2,4-thiazolidinedione head group (Fig. 2A)
with tyrosine-based substituents has led to the development
of a series of high-affinity PPAR� agonists (Fig. 2B). In
marked contrast to the TZDs, these compounds showed
greater activity with PPAR� mutants. GW1929 (Fig. 2F) and
GW7845 (Fig. 2G) induced significant transcriptional activa-
tion by both P467L and V290M mutant receptors even at low
concentrations (10–100 nm) of ligand, enabling both mutants
to achieve maximal responses comparable with WT receptor.
Farglitazar, which is being developed for clinical use,
showed the greatest activity, with the PPAR� mutants
achieving greater than 75% of WT receptor activity at 10 nm
concentration of ligand (Fig. 2H). Importantly, such greater
potency of tyrosine agonists, compared with thiazolidinedio-
nes, was more evident with PPAR� mutants than WT re-
ceptor. Thus, whereas farglitazar was 100 times more potent
than rosiglitazone with WT PPAR� [WT activation with 100
nm rosiglitazone (Fig. 2E) vs. 1 nm farglitazar (Fig. 2H)], the
tyrosine agonist was up to 1000 times more potent than
rosiglitazone with the PPAR� mutants [P467L and V290M
activation with 10,000 nm rosiglitazone (Fig. 2E) vs. 10 nm
farglitazar (Fig. 2H)].

We have shown previously that the impaired transcrip-
tional function of the P467L PPAR� mutant reflects a com-

FIG. 1. A panel of putative endogenous ligands fail to transactivate mutant PPAR�. Twenty-four-well plates of 293EBNA cells were transfected
with 500 ng of PPARETKLUC reporter gene, 100 ng of Bos-�-gal control plasmid, and 100 ng of receptor expression vector as shown.
Transcriptional activity in response to a variety of endogenous ligands is shown. Results are expressed as a percentage of the maximal WT
observed response.
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bination of defects in binding to ligand and recruitment of
coactivator (10). We therefore compared these properties of
the P467L and V290M receptor mutants with TZD vs. ty-
rosine-based PPAR� agonists. In ligand-binding assays with
bacterially expressed WT or mutant GST-PPAR� LBD fusion
proteins and [3H]-rosiglitazone or [3H]-farglitazar, neither
mutant receptor exhibited detectable specific binding to the
radiolabeled TZD, whereas both mutant proteins showed
significant specific binding to the TA (Fig. 3A). In a protein-
protein interaction assay, both rosiglitazone and farglitazar
mediated strong recruitment of the 35S-labeled coactivator
CBP to WT receptor. However, the P467L and V290M mu-
tants showed negligible coactivator binding even at high
concentrations (10 �m) of TZD, whereas a lower concentra-
tion (1 �m) of TA promoted recruitment of CBP (Fig. 3B).
Some members of the nuclear receptor family [e.g. TR and
retinoic acid receptor (RAR)] are able to silence basal gene
transcription through ligand-independent interaction with
specific corepressor proteins such as nuclear receptor core-
pressor (NCoR) (29) and SMRT (23), with ligand-binding

promoting corepressor dissociation. We therefore examined
the effects of the P467L and V290M mutant receptors on basal
gene transcription and their interaction with corepressor. In
comparison with cells transfected with empty expression
vector, WT PPAR� activated basal reporter gene activity
(�5-fold); in striking contrast, both PPAR� mutants not only
lacked such activation but also significantly repressed basal
gene transcription (pcDNA3 � 1.0; P467L � 0.44; V290M �
0.53) (Fig. 4A), suggesting that they might interact aberrantly
with corepressors in vivo. Several studies have identified
domains (ID1 and ID2) within NCoR and SMRT that mediate
interaction with nuclear receptors (24, 30, 31).

To study the interaction between PPAR� mutants and
corepressor, mammalian two-hybrid assays were per-
formed, with cotransfection of fusions consisting of the ID1
� 2, ID1, or ID2 domains of SMRT linked to the DNA-
binding domain of Gal4, together with VP16 linked to WT,
P467L, or V290M PPAR� LBDs. In the absence of ligand, WT
receptor and both PPAR� mutants were recruited compara-
bly with Gal4-ID1 � 2, and additional experiments with

FIG. 2. A and B, Synthetic PPAR� agonists. Comparison of the chemical structures of rosiglitazone (thiazolidinedione, A) and farglitazar
(tyrosine agonist, B). C–H, Tyrosine-based but not thiazolidinedione receptor agonists restore the transcriptional activity of P467L and V290M
PPAR� mutants. Twenty-four-well plates of 293EBNA cells were transfected as outlined in Fig. 1. Transcriptional activity in response to ligand
is shown for troglitazone (C) pioglitazone (D) rosiglitazone (E) GW1929 (F) GW7845 (G) and farglitazar (H). Results are expressed as a percentage
of the WT maximum. The gray circle in H denotes the transcriptional response of WT PPAR� to 100 nM rosiglitazone, indicating that it is of
the same magnitude as the receptor response to farglitazar.
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individual ID domain fusions indicated that this interaction
was mediated through the ID1 region (Fig. 4B). Next, we
examined the effect of thiazolidinedione vs. tyrosine-based

PPAR� agonists on receptor-corepressor interaction. With
the addition of increasing concentrations (100–1000 nm) of
TZD ligand (rosiglitazone), both mutant receptors exhibited

FIG. 3. A, Binding of thiazolidinedione
(3H-rosiglitazone) and tyrosine agonist
(3H-farglitazar) radioligands to GST-
PPAR� LBD chimaeras. Bacterially ex-
pressed GST-PPAR� LBD fusion pro-
teins were incubated with radioligand
as indicated in the absence or presence
of 10 �M cold competing ligand (rosigli-
tazone or farglitazar, respectively). In-
set, Coomassie-stained gel of proteins
used in ligand-binding assays confirm-
ing comparable expression of WT and
mutant receptors, with GST present in
slight excess. B, Coactivator recruit-
ment to mutant PPAR� is greater with
TA (farglitazar) than thiazolidinedione
(rosiglitazone). WT and mutant GST-
PPAR� LBD fusion proteins (quanti-
tated as in A) were tested for interaction
with 35S-labeled in vitro-translated
CBP in the presence of increasing con-
centrations of ligand (rosiglitazone or
farglitazar). Control assays were per-
formed with GST alone. Histograms be-
low each panel quantify the amount of
CBP bound. An asterisk (*) denotes the
band corresponding to full-length CBP.
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FIG. 4. PPAR� mutants repress basal
transcription and are recruited to the
ID1 domain of the corepressor SMRT.
A, Unlike their WT counterpart, both
the P467L and V290M mutants silence
basal gene transcription. 293EBNA
cells were transfected with 500 ng re-
porter gene (PPARETKLUC), 100 ng
Bos-�-gal (internal control), and 100 ng
of receptor construct (empty vector, WT,
P467L, or V290M). B, WT and mutant
PPAR� interact with the ID1 domain
of SMRT. 293EBNA cells were trans-
fected with 500 ng of the reporter
construct UASTKLUC, 100 ng of the
internal control Bos-�-gal, 50 ng of ex-
pression vectors encoding the Gal4
DNA-binding domain (Gal4) alone or
fused to the ID1, ID2, or ID1 � 2 do-
mains of SMRT, and 50 ng of expression
vector encoding VP16 alone or VP16
fused to the LBD of WT PPAR� (WT),
P467L PPAR� (P467L), or V290M
PPAR� (V290M). C, Farglitazar is more
effective than rosiglitazone in promot-
ing corepressor dissociation from mu-
tant PPAR�. 293EBNA cells were
transfected as in B and treated with
vehicle (dimethylsulfoxide, DMSO),
rosiglitazone, or farglitazar. **, P �
0.001.
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significantly attenuated and incomplete dissociation from a
Gal4-ID1 corepressor fusion when compared with the WT
receptor (Fig. 4C). However, the addition of TA (farglitazar)
induced progressive and nearly complete dissociation of
both mutant receptors from Gal4-ID1 in a manner compa-
rable with WT PPAR� (Fig. 4C).

Our previous studies indicated that inhibition of WT re-
ceptor function by the P467L and V290M PPAR� mutants is
a likely mechanism for impaired receptor action in vivo (10).
We therefore compared the relative efficacy of both natural
and synthetic agonists in ameliorating such dominant-neg-
ative inhibition by PPAR� mutants. Cells transfected with
WT receptor plus an equal amount of either P467L or V290M
PPAR� mutants were studied with increasing concentrations
of natural (15d-PGJ2) or synthetic ligands (rosiglitazone or
farglitazar). In keeping with their transcriptional activities
with each ligand when tested alone, the P467L and V290M
mutants exhibited significant dominant-negative inhibition
(30–35%) of WT receptor function even at maximal concen-
trations of 15d-PGJ2 (Fig. 5). Moreover, both mutants exerted
strong dominant-negative activity at low (10 nm) concentra-
tions of TZD, and such inhibition was retained at higher (1
�m) levels of ligand with the V290M mutant (Fig. 5). In
contrast, low (10 nm) or high (1 �m) concentrations of far-
glitazar completely reversed dominant-negative inhibition
by the PPAR� mutants (Fig. 5).

Failure of ligand-dependent corepressor release has been
shown to mediate dominant-negative inhibition by natural
TR� mutants in RTH (32). We therefore sought to determine
whether corepressor interaction is important for dominant-
negative activity of the natural PPAR� mutants. The crystal

structure of a PPAR�-SMRT complex has recently been elu-
cidated (21), and residues in PPAR� that mediate binding to
a polypeptide from SMRT are highly conserved in PPAR�
(see Fig. 8B). One of these conserved residues in PPAR� (Leu
318) was mutated to alanine on either WT or P467L mutant
PPAR� backgrounds, with comparison of their transcrip-
tional properties in the absence of ligand. The L318A receptor
mutant showed comparable constitutive activity to WT
PPAR�; however, the P467L/L318A double mutation exhib-
ited attenuated repression of basal transcription when com-
pared with the P467L mutant (Fig. 6A: pcDNA3 � 1.0;
P467L � 0.48; P467L/L318A � 0.85). Consistent with this, in
a mammalian two-hybrid assay, the L318A mutation abol-
ished interaction of the P467L mutant with the ID1 domain
of SMRT corepressor (Fig. 6A, inset). Moreover, in compar-
ison with the P467L mutation alone, the P467L/L318A dou-
ble mutant exhibited almost negligible dominant-negative
inhibition of WT PPAR� activity (Fig. 6B).

The adipocyte P2 (aP2) gene, a well-validated PPAR� tar-
get gene, has previously been shown to be expressed and
regulated by PPAR� ligands in PBMCs (33). To determine
whether the differences in mutant PPAR� responses to syn-
thetic agonists observed in vitro might correlate with ligand-
dependent responses in cells from our affected subjects, we
examined the ability of both rosiglitazone and farglitazar to
induce aP2 expression in cultured PBMCs taken from the
index case harboring the P467L mutation (10). Rosiglitazone
induced aP2 expression in patient PBMCs in a dose-depen-
dent manner, but with farglitazar the dose-response curve of
the target gene activation was significantly left shifted (Fig.
7). The magnitude of maximal aP2 target gene induction in

FIG. 5. TA (farglitazar) reverses dominant-negative inhibition by PPAR� mutants more fully than natural ligand (15d-PGJ2) or thiazolidinedi-
one (rosiglitazone). 293EBNA cells were transfected with 100 ng of WT receptor plus an equal amount of either WT or mutant (P467L; V290M)
expression vector (with the same reporter gene and internal control constructs as described in Fig. 1) in the presence of increasing concentrations
of ligand. The transcriptional responses mediated by either 100 or 200 ng of WT receptor were virtually identical (data not shown). Results
are expressed as a percentage of the WT maximum response. **, P � 0.001; ns, not significant.
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response to either ligand was similar. The results suggest that
the tyrosine agonist is a more potent activator of PPAR�-
mediated transcription than its thiazolidinedione counter-
part in primary cells from an affected subject.

Discussion

We have previously described two different heterozygous,
loss-of-function mutations (P467L, V290M) in the LBD of
human PPAR�. Affected individuals exhibited marked hy-
perinsulinemia and the skin lesion acanthosis nigricans, sig-
nifying severe insulin resistance; importantly, subjects had
developed complications secondary to insulin resistance, in-
cluding characteristic dyslipidemia (elevated triglycerides,
low high-density lipoprotein cholesterol), ovarian dysfunc-
tion, and T2DM; they also showed early-onset hypertension
unrelated to diabetic comorbidity (10). Whereas both recep-
tor mutants were markedly functionally impaired and dom-
inant-negative inhibitors of wild-type receptor action, they
retained some transcriptional activity at the highest concen-
trations of ligand (10). We therefore reasoned that if either
higher levels of endogenous natural ligands or synthetic
receptor agonists could overcome the functional defect and
dominant-negative inhibition by PPAR� mutants in vitro,
they might be useful to treat the severe clinical phenotype
when administered in vivo.

Despite being able to activate transcription via WT PPAR�,
even micromolar concentrations of putative endogenous li-
gands, including omega-3 (�-linolenic) and omega-6 (lino-
leic, arachidonic) polyunsaturated fatty acids, eicosanoids
(13-HODE, 15-HETE) and 15d-PGJ2, were unable to induce
transcriptional activity from the mutant receptors (Fig. 1).
Furthermore, high levels of 15d-PGJ2 were unable to reverse
significant dominant-negative inhibition of WT receptor
function by the P467L and V290M PPAR� mutants (Fig. 5).
Such unresponsiveness of mutant receptors to endogenous
ligands correlates with recent clinical findings of partial li-
podystrophy in adults and significant insulin resistance,
even in two young children aged 4 and 7 yr with the P467L
mutation (11), which underscore the severity of the clinical

FIG. 7. The TA (farglitazar) enhances target gene (aP2) expression in
P467L mutant receptor containing PBMCs more effectively than thia-
zolidinedione (rosiglitazone). After 24 h exposure to increasing con-
centrations of rosiglitazone or farglitazar, aP2 gene expression in
PBMCs was quantitated by RT-PCR. The results are expressed as a
percentage of the maximum observed response. The SEM was less than
10% and has been omitted for clarity.

FIG. 6. Introduction of the L318A mutation attenuates both tran-
scriptional repression and dominant-negative activity of P467L
through abolition of its interaction with corepressor. A, Basal tran-
scriptional repression by the P467L natural mutant is reversed, but
constitutive activity of WT PPAR� is not affected by the addition of
an L318A mutation. Inset, Interaction of P467L with the ID1 domain
of SMRT is abolished after introduction of the L318A mutation.
293EBNA cells were transfected and results analyzed as in Fig. 4, A
and B. B, Introduction of the L318A mutation significantly attenuates
the dominant-negative activity of P467L. 293EBNA cells were trans-
fected as in Fig. 5 and treated with vehicle (dimethylsulfoxide, DMSO)
or rosiglitazone. **, P � 0.001.
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phenotype. In addition, such unresponsiveness in vitro sug-
gests that raising levels of endogenous PPAR� ligands in
affected subjects is unlikely to be a successful therapeutic
approach.

With thiazolidinedione PPAR� agonists, both the lower-
affinity (WT PPAR� EC50 � 500 nm) agents, troglitazone and
pioglitazone, and the more potent (WT PPAR� EC50 � 43 nm)
rosiglitazone, induced significant transcriptional activity
with the P467L and V290M mutants only at 10- or 1-�m
concentrations of ligand, respectively (Fig. 2, C–E). A novel
class of synthetic PPAR� ligands (GW1929, GW7845, and
farglitazar), where N-tyrosine moieties have been substi-
tuted for the 2,4-thiazolidinedione head group, have been
developed (34) and are known to be higher-affinity (EC50 �
0.3–6 nm) agonists for WT PPAR�. In marked contrast to
TZDs, the TAs proved capable of rescuing mutant PPAR�
function, even at low concentrations of ligand (1–10 nm),
eliciting a maximal transcriptional response comparable
with WT receptor (Fig. 2, F–H). Furthermore, the greater
potency of tyrosine vs. thiazolidinedione agonist is more
marked with the PPAR� mutants than WT receptor, indi-
cating that this class of ligand acts specifically to restore
mutant receptor function.

Further comparisons of rosiglitazone vs. farglitazar indi-
cated that the ability of the TA to correct deficits in ligand
binding, coactivator recruitment and corepressor displace-
ment mediated its enhancement of mutant receptor function
(Figs. 3 and 4). To elucidate the molecular basis for the
observed differences between the two classes of PPAR� li-
gand, we examined the crystal structures of the PPAR�/
retinoid X receptor-� heterodimer (35) complexed with either
rosiglitazone or farglitazar. In keeping with other nuclear
receptors, an amphipathic �-helix (H12) at the receptor car-
boxyterminus mediates important interactions with both li-
gand and coactivator (steroid receptor coactivator-1) (36): in
both crystal structures, Tyr473 makes contact with ligand,
forming hydrogen bonds with either the 2,4-thiazolidinedi-
one head group of rosiglitazone or the carboxylate head
group of farglitazar; the side chain of Leu468 from the op-
posite side of H12 contributes to a hydrophobic cleft on the
receptor surface, which accommodates the coactivator pep-
tide, whereas Glu471 acts in concert with Lys301 to form a
charge clamp that stabilizes interaction with coactivator.
Pro467 forms the amino-terminal boundary of helix 12 and
Val290 (within helix 3) packs against H12. We have previ-
ously demonstrated, using fluorescence anisotropy, that mu-
tation of either residue disrupts the position and orientation
of helix 12, thereby compromising interactions with both
ligand and coactivator (20). Inspection of the TZD vs. TA-
bound PPAR� structures reveals that farglitazar occupies
more (�40% vs. 25%) of the ligand-binding pocket with a
5-methyl-2-phenyloxazole tail and benzophenone head
group, making additional hydrophobic interactions in the
cavity, which probably account for its increased PPAR�-
binding affinity, compared with rosiglitazone (35) (Fig. 8A).

Unlike a subset of nuclear receptors (including TR and
RAR), which are capable of repressing basal transcription in
the absence of ligand through recruitment of corepressor
proteins such as NCoR (29) and SMRT (23), WT PPAR�
exhibits constitutive transcriptional activity (Fig. 4A) (28).

Whether such activity represents receptor activation by en-
dogenous PPAR� ligands or is an intrinsic property of un-
liganded PPAR�, with H12 being in an active conformation
in the apo-receptor crystal structure (36), remains unclear. In
contrast, both the P467L and V290M PPAR� mutants not
only lacked such constitutive activity but also acted as potent
transcriptional repressors in the absence of exogenous ligand
(Fig. 4A). These properties are similar to those of artificial
dominant-negative human [L468A/E471A (37)] and murine
[L466A (38)] PPAR� mutants described previously. How-
ever, in a two-hybrid assay, both WT and natural PPAR�
mutants interacted with corepressor (Fig. 4B). To reconcile
these apparently discordant observations, we suggest that
corepressor is greatly overexpressed relative to endogenous
coactivators in the two-hybrid assay, probably promoting its
interaction with WT PPAR� in a manner that is not relevant
to its normal action in cells containing more physiological
levels of each cofactor type. Evidence in favor of this notion
is provided by our observation that the introduction of a
mutation (L318A), which disrupts corepressor interaction
with both WT PPAR� and the P467L mutant, has no dis-
cernible effect on the constitutive transcriptional activity of
WT receptor, whereas it reverses transcriptional silencing
and dominant-negative inhibition by the P467L mutant (Fig.
6, A and B).

The ability to silence basal gene transcription is also a
characteristic of dominant-negative inhibition by mutant nu-
clear receptors in other disorders, e.g. TR� mutants in RTH
(32), the promyelocytic leukemia-RAR fusion protein in
acute promyelocytic leukemia (39), and the oncogene v-erbA
(40). Furthermore, some TR� mutants in RTH have been
shown to interact aberrantly with corepressor, exhibiting
failure to dissociate fully with ligand (41, 42) and corepressor
interaction with PLZF-RAR fusions in acute promyelocytic
leukemia is refractory to retinoic acid treatment (39, 43, 44).
In this context, both PPAR� mutants exhibited delayed and
incomplete corepressor release in the presence of saturating
levels (1 �m) of rosiglitazone (Fig. 4C), whereas a moderate
concentration (100 nm) of farglitazar promoted near normal
dissociation of corepressor (Fig. 4C). Furthermore, such fail-
ure of natural PPAR� mutants to release corepressor fully
with TZD is analogous to the properties of the artificial helix
12 PPAR� mutants (L468A/E471A; L466A) described pre-
viously (37, 38).

Recently the crystal structure of a ternary complex con-
sisting of the PPAR� LBD bound to an antagonist and a
polypeptide motif from the corepressor SMRT has been
solved (21). Notable features of this structure include dis-
placement of helix 12 such that it adopts a different position,
compared with its active conformation in the agonist-bound
structure, and docking of a SMRT motif in a hydrophobic
groove formed by helices 3, 4, and 5 of the receptor. The LBDs
of PPAR� and PPAR� are similar (�71% homology) and an
alignment of residues in helix 3 from the receptors (Fig. 8B)
indicates striking homology, with 13 of 14 amino acids me-
diating PPAR�-SMRT interaction being identical in PPAR�.
These observations permit crystallographic modeling to pro-
vide insights into how the natural PPAR� mutations (P467L,
V290M) facilitate interaction with corepressor. Both muta-
tions destabilize helix 12, preventing it from adopting the
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agonist-bound conformation (20). By analogy with the al-
tered conformation of helix 12 in the antagonist-bound
PPAR�/SMRT structure, we suggest that such displacement
of H12 in the natural PPAR� mutants favors corepressor

recruitment. In addition, with the V290M mutation, an ad-
ditional factor may stabilize corepressor binding. A crystal-
lographic model of PPAR� complexed with SMRT (Fig. 8C)
shows that the side chain of V290 is in contact with an

FIG. 8. A, Crystallographic modeling
demonstrating how the TA (farglitazar)
may preferentially stabilize helix 12 in
mutant PPAR�. Superimposition of
PPAR� structures bound to either ty-
rosine (farglitazar) or thiazolidinedione
(rosiglitazone) agonists showing part of
the cavities (gray mesh) containing ei-
ther ligand. On the helical backbone
(green), the side chains (pink) of resi-
dues (P467, V290), mutated in our pa-
tients with severe insulin resistance,
are depicted. Both mutations are pre-
dicted to disrupt the orientation of helix
12 as described previously (10), thereby
perturbing known important interac-
tions of this helix with ligand [rosigli-
tazone (yellow) or farglitazar (red)] and
coactivator. B, An alignment of amino
acid sequences corresponding to the
corepressor interaction interface in
PPAR� in the three receptor subtypes.
Residues in PPAR� mediating contact
with the SMRT motif are highlighted
(*), and boxes denote complete conser-
vation of 13 of 14 of these amino acids
between the receptors. L318 in PPAR�
is denoted in bold. C, A molecular model
showing interface between SMRT
(white) and PPAR� (green) with the
V290M mutation (purple). The key
SMRT residues that form the interface
(I�4, I�5, L�1, L�9) are numbered as
reported in the PPAR�/SMRT crystal
structure (21).
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isoleucine residue (I � 4) of the SMRT motif. However, the
interaction is relatively weak due to the distance (�4 Å)
between the isoleucine and valine residues and the fact that
these hydrophobic side chains are partially solvent exposed.
In contrast, when residue 290 is substituted by methionine,
its extended side chain has improved van der Waals contacts,
predicting stabilization of corepressor interaction.

Whereas both PPAR� mutants inhibited WT receptor func-
tion significantly at lower (10 nm) concentrations of rosigli-
tazone (Fig. 5), the same concentration of farglitazar fully
relieved dominant-negative inhibition by both mutant re-
ceptors (Fig. 5). To determine whether differential responses
of the mutant receptors to the two ligands in vitro might
translate into differences in clinical efficacy in vivo, we com-
pared the ability of both rosiglitazone and farglitazar to
induce PPAR� target gene (aP2) expression in PBMCs from
one patient with the P467L receptor mutation. As antici-
pated, even at low concentrations (1–10 nm), farglitazar
evoked a greater target gene response from mutant PBMCs
than was observed with rosiglitazone, indicating greater ef-
ficacy of the tyrosine agonist vs. its TZD counterpart (Fig. 7).
Although peak plasma drug levels after oral administration
of farglitazar (5 mg) are slightly lower (300 nm) (45) than after
8 mg (1 �m) of rosiglitazone (46), our studies indicate that
they still exceed concentrations required to restore the func-
tion and abrogate dominant-negative activity of mutant re-
ceptors in vitro. Accordingly, the tyrosine-based PPAR� ag-
onist may have greater potential efficacy in vivo, and future
clinical studies will determine whether it does represent a
more rational therapeutic approach to treating the severe
insulin resistance in our affected patients.
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Impaired insulin action is a key feature of type 2 diabetes and is
also found, to a more extreme degree, in familial syndromes of
insulin resistance. Although inherited susceptibility to insulin
resistance may involve the interplay of several genetic loci, no
clear examples of interactions among genes have yet been
reported. Here we describe a family in which five individuals
with severe insulin resistance, but no unaffected family mem-
bers, were compound heterozygous with respect to frameshift/
premature stop mutations in two unlinked genes, PPARG and
PPP1R3A these encode peroxisome proliferator activated recep-
tor γ, which is highly expressed in adipocytes, and protein
phosphatase 1, regulatory subunit 3, the muscle-specific regu-
latory subunit of protein phosphatase 1, which are centrally
involved in the regulation of carbohydrate and lipid metabo-
lism, respectively. That mutant molecules primarily involved in
either carbohydrate or lipid metabolism can combine to pro-
duce a phenotype of extreme insulin resistance provides a
model of interactions among genes that may underlie common
human metabolic disorders such as type 2 diabetes.
As part of an investigation into the etiology of inherited syn-
dromes of severe insulin resistance1, we identified a Europid
pedigree (family A) with several affected members (Fig. 1). The
grandparents (individuals Ii and Iii) had typical late-onset type 2
diabetes with no clinical features of severe insulin resistance.
Three of their six children and two of their grandchildren had
acanthosis nigricans, a dermatological marker of extreme insulin
resistance. All five individuals with acanthosis nigricans had
markedly elevated fasting plasma insulin levels, indicative of
severe insulin resistance (Fig. 1). Using mutational screening
(Fig. 1a), we identified a heterozygous frameshift resulting in a
premature stop mutation of PPARG (A553∆AAAiT)fs.185(stop
186) that was present in the grandfather (Ii), all five relatives with
severe insulin resistance and one other relative with normal
insulin levels (IIvi). Further candidate-gene studies (Fig. 1b)
revealed a heterozygous frameshift/premature stop mutation in
PPP1R3A (C1984∆AG)fs.662(stop 668) that was also present in
this family. In this case, the mutation was present in the grand-
mother (Iii), in all five individuals with severe insulin resistance
and in one other relative (IIIii). Thus, all five family members
with severe insulin resistance, and no other family members,

were compound heterozygous with respect to two frameshift
mutations of these two unlinked genes. Fasting insulin levels in
the singly heterozygous and wildtype family members were
within the normal range. By contrast, the compound heterozy-
gotes showed extreme hyperinsulinemia (Fig. 1d) and, to a vari-
able extent, diabetes, hyperlipidemia and hypertension (Fig. 1c
and Table 1). As diabetes, hypertension or dyslipidemia were also
present in some other members of the kindred, these phenotypes
do not seem to require mutations in both PPARG and PPP1R3A.

We screened our cohort of probands with syndromes of severe
insulin resistance (n = 129) for the PPARG and PPP1R3A
frameshift mutations. The PPARG frameshift mutation was not
detected in any other individuals, whereas one Europid individual
carried the same heterozygous frameshift mutation of PPP1R3A
that was found in family A. This individual (IIi, family B) presented
with acanthosis nigricans at age 20 years. He had a body mass index
(BMI) of 36.5 kg m−2 and a fasting insulin level of 437 pmol l−1

(normal <80 pmol/l). He inherited the mutation from his moder-
ately obese father (BMI 30 kg m−2), who also has marked hyperin-
sulinemia (fasting insulin 178 pmol l−1; Fig. 1e). The two other
family members who did not carry these mutations were clinically
and biochemically normal. Notably, subject IIi (family B) subse-
quently lost 40 kg and reduced his BMI to 27 kg m−2. By that time,
his fasting insulin level had fallen to 93 pmol l−1.

The PPARγ protein is a ligand-inducible transcription factor
that regulates target gene transcription as a heterodimer with the
retinoid X receptor (RXR)2. This heterodimeric complex can be
activated synergistically by antidiabetic PPARγ agonists (thiazo-
lidinediones) and RXR-specific ligands3. The modular structure
of PPARγ consists of a central DNA-binding domain, an amino-
terminal activation domain, and a carboxy-terminal ligand-
binding domain (Fig. 1a). The frameshift/premature stop
mutation reported here is predicted to lead to a mutant receptor
that is truncated within the second zinc finger of the DNA-bind-
ing domain. This region is common to both the γ1 and γ2 iso-
forms of the receptor (Fig. 1a) and is crucial in mediating
receptor interaction with PPAR-specific response elements
(PPAREs) in target gene promoters. We therefore examined
whether the PPARγ mutants could bind to DNA as heterodimers
with RXR, using an electrophoretic mobility shift assay. Unlike
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their wildtype counterparts, neither mutant PPARγ isoform
formed heterodimeric complexes when co-incubated with a
radiolabeled probe encoding the acyl-CoA oxidase PPARE (Fig.
2a). Accordingly, and in contrast to wildtype receptors, neither
mutant receptor mediated transactivation when cotransfected
with a reporter gene containing the PPARE and increasing con-
centrations of the thiazolidinedione rosiglitazone (Fig. 2b).
Moreover, unlike the previously reported, naturally occurring
missense PPARγ mutants (Pro467Leu and Val290Met)1, the
truncated mutant proteins did not show dominant-negative
activity when co-expressed with the wildtype receptor (Fig. 2c).

Is a loss-of-function mutation in a single allele of PPARG a
plausible contributor to insulin resistance? It has been shown that
PPARγ agonists enhance insulin sensitivity4, and humans with
dominant-negative mutations in PPARG1 and mice with severe

PPAR-γ deficiency5 show marked insulin resistance. Heterozy-
gous PPAR-γ−deficient mice seem to be less insulin resistant than
their wildtype littermates6,7, however. Although both individuals
from family A who carry only the PPARG frameshift mutation
have fasting insulin levels in the normal range, the co-occurrence
of this mutation with the PPP1R3A frameshift mutation results in
severe insulin resistance. This might seem to conflict with the
findings in heterozygous Pparg mice. There are several possible
explanations for this apparent discrepancy. First, the combination
of a genetic defect in muscle glycogen synthesis with the haploid
PPARG state has not yet been examined in mice. Second,
although the particular PPARG mutation found in family A does
not seem to exert a dominant-negative effect, it might have some
properties distinct from a purely null allele. Finally, it is possible
that species differences in adipose-tissue biochemistry8 may mean
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Fig. 1 Detection of mutations in PPARG and in PPP1R3A families with severe insulin
resistance. a, Heterozygous PPARG frameshift mutation (A553∆AAAiT)fs.185(stop186).
The frameshift leads to truncation of the receptor within the second zinc finger of the
DNA-binding domain (DBD). WT, wild type; FS, frameshift mutation; M, methionine;
K, lysine; S, serine; X, stop186; LBD, ligand-binding domain. b, Heterozygous PPP1R3A
frameshift mutation (C1984∆AG)fs.662(stop 668). The frameshift results in a premature
stop codon (X) at position 668 with subsequent loss of the putative sarcoplasmic retic-
ulum−binding domain (SRBD)9. N, asparagine; PP1C/GBD, PP1C- and glycogen-bind-
ing domains. c, Family A pedigree indicates complete concordance between features
of severe insulin resistance and the presence of both mutations. The age and geno-
type (+, wild type; P, PPARG mutation; R3, PPP1R3A mutation) of members is indi-
cated. Compound heterozygous individuals were variably affected by additional
features of syndrome X. Dyslipidemia is defined by triglycerides >2 mmol l−1 and high-
density lipoprotein (HDL) <1 mmol l−1. d, Fasting plasma insulin concentrations plot-
ted against BMI (kg/m2) in family A. The solid line represents the log-linear regression
line between fasting insulin and BMI in 1,121 participants in the MRC Ely population-
based cohort study. The 95% confidence intervals (broken lines) include 95% of indi-
viduals at any given BMI. e, Family B pedigree suggests that carriers of the PPP1R3A
frameshift mutation develop fasting hyperinsulinemia when obese. The age, BMI
(kg/m2), fasting plasma insulin (FI, pmol l−1) and genotype (+, wild type; R3, PPP1R3A
mutation) are indicated.
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that quantitative decrements in PPARγ function have different
metabolic implications for humans and mice.

The PPP1R3A protein is a key molecule in the regulation of
glycogen metabolism. Insulin activates glycogen synthase, the
rate-limiting enzyme in glycogen synthesis, by promoting its
dephosphorylation through the inhibition of kinases (glycogen
synthase kinase-3 and protein kinase-A) and the activation of
protein phosphatase 1 (PP1)9. Insulin activates discrete pools of
PP1 in the vicinity of glycogen by facilitating binding of the PP1
catalytic subunit (PP1C) to glycogen-targeting regulatory sub-
units9. These subunits serve as ‘molecular scaffolds’, bringing
PP1C together with its substrates glycogen synthase and phos-
phorylase in a macromolecular complex, and in the process have
significant effects on PP1C activity9.

The PPP1R3A regulatory subunit is specific to skeletal and car-
diac muscle. The PPP1R3A frameshift mutation is predicted to
truncate the protein prematurely (Fig. 1b), resulting in the loss of

its C-terminal sarcoplasmic reticulum–binding domain9. When
transiently expressed in CHO cells, the frameshift-mutant vector
produced a detectable protein of the expected reduced size
(approximately 83 kD; Fig. 3a). In addition, the truncated pro-
tein interacted with PP1C with an efficiency similar to that of
wildtype PPP1R3A (Fig. 3b). Confocal microscopy revealed dif-
ferent intracellular distributions of wildtype and mutant
PPP1R3A. A significant fraction of wildtype PPP1R3A localized,
as expected, to intracellular membranes, whereas mutant
PPP1R3A was almost exclusively cytosolic (Fig. 3c).

Is the PPP1R3A frameshift mutation a plausible contributor to a
state of insulin resistance? Mice rendered null for Ppp1r3a have
major defects in muscle glycogen synthesis, although, somewhat
unexpectedly, the effects of insulin on this process are maintained
in such animals10. The PPP1R3A frameshift mutation in humans
results in a major intracellular mislocalization of the truncated pro-
tein and is likely to have phenotypic effects distinct from those

Table 1 • Clinical and biochemical characteristics of frameshift mutation carriers

Family A Family B

Compound FS PPARγ FS PPP1R3A
heterozygous mutant mutant Normal
subjects heterozygotes heterozygotes values

Fig.1 IIii IIiii IIiv IIIiii IIIiv Ii IIvi Iii IIIii IIi Ii
reference

Age 49 47 41 25 21 71 32 71 20 20 65

Gender F F F F F M M F M M M

BMI 26.8 26 28 31.4 29 24.2 25.8 32.9 18.9 36.5 30
(kg/m2)

Blood 190/ 140/ 130/ 130/ 150/ 170/ 125/ 170/ 105/ 135/ 172/
pressure 110 80a 84 70 110 90a 90 105a 69 82a 93a

Measured/ 84.3 63.5 83.7 46.8 79.4 n/a 75.2 n/a n/a n/a n/a 100%
predicted
body fatb (%)

Glucose 5.6 6.4 4.4 9.2c 3.9 12c 4.6 4.5 5.2 4.4 6.2 3.5−6.3
mmol/l

Insulin 195 359 197 411 346 61 46 56 31 437 178 <80
pmol/l

Insulin 27 15 28 14 20 87 115 95 168 13 30 100%
sensitivity
(HOMA; %)e

TG 6.1 2.1d 3.4 34.6c 10.1 6.6 1.5 1.1 0.7 1.5 2.4 desirable
<2.0
mmol/l

HDL 0.82 0.63d 0.81 0.52 1.04 0.71 1.02 1.84 1.36 0.7 0.91 desirable
>0.9
mmol/l

NEFA 1442 202d 526 2532 867 1219 584 933 n/a n/a n/a 280–920
µmol/l

Uric acid 0.31 0.24 0.23 0.23 0.28 0.35 0.31 0.23 0.32 0.17 0.44 0.15–0.35
mmol/l

Leptin 12.1 4.4 8.2 17.3 12.4 1.2 0.9 13.2 0.6 14.6 19.8 µg/l

IMCL/ 19.8 19.1 25.5 28.3 44.9 n/a 28.3 n/a n/a n/a n/a 13.6
creatine ± 6.6f

ratio
(soleus)

All samples were obtained after an overnight fast. aMeasurements affected by anti-hypertensive therapy. bBody fat was quantified by magnetic resonance imag-
ing (MRI) as described previously27. Predicted body fat28: for women = (1.48 × BMI (kg/m2)) – 7.00; for men = (1.281 × BMI (kg/m2)) – 10.13. cAbnormalities
detected at the time of screening. dMeasurements affected by lipid-lowering therapy. eHOMA (homeostasis model assessment)29 may be influenced by the dia-
betic status of some individuals. fIMCL reference values represent mean ± s.d. of measurements from 76 control subjects (E.L. Thomas and J.D. Bell, unpublished
observations). TG, triglycerides; HDL, high-density lipoprotein; NEFA, non-esterified fatty acids; IMCL, intramyocellular lipid.
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resulting from a null allele. As the truncated PPP1R3A can still
interact with the catalytic subunit, it may actively interfere with the
normal function of the subunit. Previous studies have shown that
intracellular localization influences glycogen synthase activity11;
however, the precise functional consequences of the mislocalization
of PP1 have yet to be determined.

Familial extreme insulin resistance can now be added to the list of
conditions for which digenic inheritance has been described12.
Although no previous examples of digenic inheritance of insulin
resistance or type 2 diabetes have been described in humans, many
experimental genetic manipulations in mouse models have shown
that such interactions among genes might result in metabolic disor-
ders. For example, mice heterozygous for the insulin receptor or
Irs1 (insulin receptor substrate-1) have minor metabolic abnor-
malities, whereas compound heterozygous animals show marked
insulin resistance and had a high incidence of diabetes13.

How might the mutations in family A interact to result in
extreme insulin resistance? All previous reports of human
digenic disease involve direct protein−protein interactions
between two mutant proteins. Family A differs from this para-
digm as, in their case, the genes concerned are predominantly
expressed in different tissues, namely skeletal muscle and fat.
Thus, the interaction presumably occurs through a subtle ampli-
fying effect of a metabolic derangement in one tissue on the
other. As PPARγ is expressed, albeit at much lower levels, in other
insulin-sensitive tissues including muscle, however, we cannot
exclude a contributory role of such tissues to the insulin resis-
tance seen in family A. Both skeletal muscle and adipose tissue
are involved in insulin-stimulated nutrient storage and may
communicate by poorly understood mechanisms14. Moreover,

Fig. 3 Characterization of the PPP1R3A mutant. a, Western blot of whole-cell
lysates from CHO cells transiently transfected with vectors containing wild-
type or mutant PPP1R3A, using a sheep monoclonal antibody against the
PPP1R3A N terminus. Note that PPP1R3A undergoes rapid proteolysis26, and
one of the proteolytic fragments is of similar size to the PPP1R3A mutant (FS).
b, Whole-cell lysates from non-transfected (con) and transfected CHO cells
were immunoprecipitated with anti-HA and analyzed by western blot with a
PP1C antibody. c, Confocal microscopy of wildtype and mutant PPP1R3A. Cells
transiently expressing HA-tagged versions of PPP1R3A were fixed either with-
out (left panel) or with prior permeabilization with saponin to release cytoso-
lic PPP1R3A (right panel), then fully permeabilized and labeled with anti-HA.
The loss of mutant PPP1R3A in cells permeabilized with saponin prior to fixa-
tion indicates that the protein is largely cytosolic, whereas wildtype PPP1R3A
is associated with intracellular membranes.

Fig. 2 Functional properties of the PPARγmutant
receptors. a, Mutant PPARγ fails to bind to DNA
with its heterodimeric partner RXR. Using an
electrophoretic mobility supershift assay, in
vitro−translated wildtype PPARγ1 (WTγ1), wild-
type PPARγ2 (WTγ2), mutant PPARγ1 (FSγ1) or
mutant PPARγ2 (FSγ2) and RXR were co-incu-
bated with oligonucleotide duplexes encoding
PPARE. The open arrow indicates the location of
the PPARγ−RXR heterodimer; the solid arrow-
head denotes the free unbound probe. Inset,
35S-labeled, in vitro−translated wildtype and
mutant PPARγ1 and PPARγ2. RL, reticulocyte
lysate; Mw, molecular weight. b, Both the γ1 and
γ2 isoforms of the PPARγ mutant proteins are
transcriptionally silent. The 293EBNA cells were
transfected with WTγ1, WTγ2, FSγ1, FSγ2 or
empty expression vectors together with a
reporter gene (PPARE)3TKLUC in the presence of
increasing concentrations of rosiglitazone.
Results are expressed as a percentage of the
maximum activation obtained with WTγ1. c, The
PPARγ mutants do not show dominant-negative
activity when co-expressed with their wildtype
counterparts. The 293EBNA cells were trans-
fected with wildtype plus wildtype or frameshift-
mutant expression vectors, together with the
same reporter construct as in a. Results are
expressed as a percentage of the maximum acti-
vation obtained with WTγ1. The transcriptional
responses to 100 ng or 200 ng of wildtype recep-
tor did not differ significantly (data not shown).
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the development of muscle insulin resistance in fat-specific Glut4
knockout mice15 recently provided in vivo evidence of such an
interaction between fat and muscle.

The precise mechanism by which loss of a single PPARG allele
might contribute to maladaptive metabolic cross-talk is not yet
known. The generation of a mouse model is currently in progress
and will help to reveal the details of such cross-talk. But deficiency
of this key transcriptional regulator of adipocyte biology may alter
plasma fatty-acid flux or adipokine concentrations16. Thus, it is
notable that plasma leptin levels were below the 25th percentile of
healthy BMI and sex-matched normal controls in all compound
heterozygous individuals (see Web Table A online). In addition, the
levels of intramyocellular lipids (IMCL) were higher in the soleus
muscle of compound heterozygous individuals than in controls
(mean ± s.d. IMCL creatine ratio 27.5 ± 10.5 as compared to 13.6 ±
6.6, P < 0.05). Levels of IMCL are correlated with whole-body and
muscle-specific insulin sensitivity and are thought to reflect exces-
sive delivery of non-esterified fatty acids from adipose stores to
myocytes17. We hypothesize that in family B, carrying only the
PPP1R3A mutation, the expanded fat mass of obesity produces the
‘second hit’ by altering adipose tissue function. This notion is sup-
ported by the marked effect of weight loss on fasting hyperinsuline-
mia in individual IIi of family B.

The PPARG frameshift mutation was not detected in 1,034 UK
Europid individuals (517 diabetics and 517 controls). By contrast,
the PPP1R3A frameshift mutation was found in two independent
case-control studies in a total of 20/1,029 UK individuals with type
2 diabetes and 8/1,033 normoglycemic controls (weighted Mantel-
Haenszel odds ratio 2.53; 95% confidence limits 1.06–6.70, P =
0.03), indicating that this mutation may result in a predisposition
to type 2 diabetes in the general UK population. Given the rarity of
this mutation, further large multicenter population genetic studies
are required to test this hypothesis.

These findings provide evidence that mutations that, when
present alone, have at most subtle effects on different, metaboli-
cally relevant tissues can combine to result in extreme distur-
bances of human insulin action. There has been considerable
debate about the relative roles of disturbances of carbohydrate or
lipid metabolism in the development of insulin resistance, the
metabolic syndrome and type 2 diabetes18. Our finding that a
combination of modest primary defects in both processes can
have significant consequences for insulin sensitivity emphasizes
the need for an integrated approach to the search for etio-patho-
genic pathways in common metabolic diseases.

Methods
Screening of PPARG and PPP1R3A. Genomic DNA from subjects was
randomly pre-amplified in a primer extension pre-amplification (PEP)
reaction19. All coding exons and splice junctions of PPARG transcripts and
PPP1R3A were amplified by PCR from PEP DNA with gene-specific
primers (primer sequences are available upon request). We studied PCR
products using single-stranded conformation polymorphism analysis and
direct sequencing of all abnormal conformers20. We screened for the
PPP1R3A frameshift mutation in participants in two independent, popula-
tion-based, case-control studies in East Anglia, UK. The presence of type 2
diabetes was assumed if the onset of diabetes was after the age of 30 y and
insulin therapy was not used in the first year after diagnosis. Controls were
individually age- and gender-matched to each of the cases. We excluded
controls that had glycated hemoglobin (HbA1c) levels   >6.0%. We did not
detect the PPARG frameshift mutation in any individuals from the first
population-based cohort.

DNA-binding assays. We assessed receptor binding to DNA in elec-
trophoretic mobility supershift assays as described previously21, using
35S-labeled, in vitro translated receptors quantified by SDS−PAGE

analysis, and a 32P-labeled oligonucleotide duplex corresponding to the
PPARE derived from the acyl-CoA oxidase gene22.

Transactivation assays. We transfected 293 EBNA cells in 24-well plates with
500 ng of (PPARE)3TKLUC23 and 100 ng of receptor expression vector (wild
type, frameshift mutants or empty vector pcDNA3) using the calcium phos-
phate method21. Luciferase values were normalized to β-galactosidase activity
from the internal control plasmid Bosβgal21 and represent the mean ± s.e.m.
of at least three independent experiments, each carried out in triplicate.

Immunofluorescence microscopy. CHO cells were transiently trans-
fected (Fugene) with N-terminal, HA-tagged expression vectors con-
taining wildtype or mutated PPP1R3A (pACCMV.pKpA-HA-PPP1R3A,
gift from P. Cohen24).

Cells were fixed in 3% paraformaldehyde/0.05% glutaraldehyde in
100 mM potassium HEPES/3 mM MgCl2 buffer (pH 7.5) for 15 min,
treated with 0.5% borohydride/PBS for 10 min, and then blocked and per-
meabilized in 1% BSA/0.1% saponin for 20 min. When permeabilizing
cells before fixation, we incubated them for 5 min in 0.05% saponin in
80 mM potassium PIPES/5 mM EGTA/1 mM MgCl2 (pH 6.8) at room
temperature. Cells were labeled with a rat anti-HA (Boehringer; 1:100),
followed by Texas Red goat anti-rat (Molecular Probes; 1:200). We col-
lected confocal images using a Leica TCS SP system and processed them
using Adobe Photoshop software (Adobe Systems).

Clinical studies. We obtained informed consent from all individuals
involved in the study, and ethics committee approval from both the local
(Cambridge) and regional ethics committees. We determined IMCL con-
tent as described previously25 and measured plasma leptin concentration
using an in-house, two-site immunoassay (see Web Note A online).

Note: Supplementary information is available on the Nature
Genetics website.
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Supplemental experimental procedures 

Case Histories of Subjects 

Subject 1 (S1), presented at age 34yrs with oligomenorrhoea and subfertility, when 

dyslipidaemia was found. At age 41, partial lipodystrophy was noted; type 2 diabetes was 

diagnosed and diet-treated. She has developed severe three vessel coronary artery disease 

that was not alleviated by percutaneous revascularisation and is on triple antianginal 

therapy. She is heterozygous for a cysteine to arginine mutation at codon 114 (C114R) in 

PPARγ1 and her mother and sister are genetically unaffected with normal biochemistry; 

her father (genotype unknown) died age 60yrs from a myocardial infarction. 

Subject 2 (S2), presented at age 35yrs with hypertension and syncopal episodes 

secondary to hyperinsulinaemia. Partial lipodystrophy and dyslipidaemia were noted and 

polycystic ovarian syndrome (PCOS) was diagnosed based on oligomenorrhoea and 

pelvic ultrasound appearances. At age 42, she developed type 2 diabetes which is diet 

controlled; although a non-smoker, she has developed single vessel coronary artery 

disease age 44yrs. She is heterozygous for a cysteine to tyrosine mutation at codon 131 

(C131Y) of PPARγ1. A genetically affected younger sister is insulin resistant and 
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dyslipidaemic (fasting insulin [FI] 168 pmol/L; triglycerides [TG] 8.6mmol/L, high 

density lipoprotein cholesterol [HDL-C] 1.0mmol/L), whereas an unaffected older sister 

is biochemically normal (FI 79 pmol/L; TG 0.8mmol/L, HDL-C 1.4mmol/L). Her 

genetically affected father was a long-term smoker and deceased from lung carcinoma.  

Subject 3 (S3), presented at age 19yrs with eruptive xanthomata secondary to severe 

hypertriglyceridaemia. Retrospectively, partial lipodystrophy was present since age 8, 

PCOS was diagnosed in her twenties and hypertension and acanthosis nigricans together 

with impaired glucose tolerance were noted age 29yrs. She is heterozygous for a cysteine 

to tryptophan mutation at codon 162 (C162W) in PPARγ1. Significant 

hypertriglyceridaemia (TG 26mmol/L) has been diagnosed since age 49yrs in her 

genetically affected mother together with hypertension, type 2 diabetes and ischaemic 

heart disease age 52yrs; her genetically affected grandfather has type 2 diabetes and 

ischaemic heart disease. 

Subject 4 (S4), presented at age 8yrs with diabetes mellitus and partial lipodystrophy, 

acanthosis nigricans and severe hypertriglyceridaemia with eruptive xanthomata were 

noted; she is currently on metformin, pioglitazone and insulin therapy. She is 

heterozygous for a frameshift mutation predicting a premature stop mutation at codon 

315 ([A935∆C]fs.312[stop315]; FS315X) in PPARγ1. Her mother is known to have 

developed type 2 diabetes aged 16 and possible hypertension but is deceased and of 

unknown genotype. Her maternal grandfather is genetically unaffected and family 

members are untraceable. 

Subject 5 (S5), presented at age 26yrs with gestational diabetes and hypertension and 

pregnancy was complicated by preeclampsia. Type 2 diabetes and hypertension persisted 
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post-partum and dyslipidaemia was noted subsequently leading to episodes of 

pancreatitis. Partial lipodystrophy and acanthosis nigricans were present. Treatment 

includes metformin, fenofibrate and insulin. She is heterozygous for a mutation changing 

arginine at codon 357 to a stop mutation (R357X). Her deceased mother, who was found 

to be genetically affected retrospectively, developed hypertension in her thirties, type 2 

diabetes and dyslipidaemia (TG 4.9mmol/L, HDL-C 0.6mmol/L) in her forties and died 

suddenly from cardiovascular cause age 57.  

 
C131Y (S2)C114R (S1)normal subject

R357X (S5)FS315X (S4)C162W (S3)

 

Figure S1. T1-weighted MRI scans at the level of the gluteal fat pad in PPARγ mutation 

carriers and a gender-matched healthy control subject. Note the striking diminution of the 

gluteal fat depot in all probands (S1-S5) with PPARγ mutations. 
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Figure S2. PPARγ mutants differ in their ability to interact with RXR. In a mammalian 

2-hybrid assay, the DNA-binding domain mutants (C114R, C131Y and C162W) are 

recruited to RXR comparably to WT, whereas the FS315X, R357X and FSX truncation 

mutants, which lack an RXR interaction domain, exhibit negligible interaction. 

293EBNA cells were transfected with 500ng of UASTKLUC reporter construct, 100ng of 

the internal control Bos-β-gal, 50ng of Gal4DBD-RXRα and 50ng of expression vector 

encoding either VP16 alone or VP16-full length WT or mutant PPARγ fusions. Results 

are expressed as a percentage of the WT maximum response and represent the mean ± 

s.e.m. of at least 3 independent experiments, each performed in triplicate. 
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Figure S3. PPARγ mutants fail to bind to DNA. Chimaeric fusion proteins consisting of 

the VP16 activation domain linked to the N-terminus of full-length PPARγ1 (WT or 

mutant) were co-expressed in 293EBNA cells with a PPARE-containing reporter gene 

[(PPARE)3TKLUC]. Interaction of WT VP16-PPARγ with (PPARE)3TKLUC markedly 

increased transactivation. In contrast, levels of reporter gene activity in cells expressing 

mutant chimaeras were similar to mock-transfected cells, suggesting no significant 

promoter interaction. 96-well plates of 293EBNA cells were transfected with 9ng of 

(PPARE)3TKLUC, 1.6ng of Bos-β-gal, and 1.6ng of the respective VP16-PPARγ1 

chimaeras as shown. Inset, 35S-labeled in vitro translated wild type and mutant VP16-

PPARγ fusion proteins. Results are expressed as fold induction relative to cells 

transfected with VP16 alone and represent the mean ± s.e.m. of at least three independent 

experiments, each performed in triplicate. 
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Summary

PPARg is essential for adipogenesis and metabolic homeostasis. We describe mutations in the DNA and ligand binding
domains of human PPARg in lipodystrophic, severe insulin resistance. These receptor mutants lack DNA binding and tran-
scriptional activity but can translocate to the nucleus, interact with PPARg coactivators and inhibit coexpressed wild-type
receptor. Expression of PPARg target genes is markedly attenuated in mutation-containing versus receptor haploinsufficent
primary cells, indicating that such dominant-negative inhibition operates in vivo. Our observations suggest that these
mutants restrict wild-type PPARg action via a non-DNA binding, transcriptional interference mechanism, which may involve
sequestration of functionally limiting coactivators.
Introduction

The nuclear receptor (NR) peroxisome proliferator-activated re-
ceptor g (PPARg) is a ligand-inducible transcription factor that is
essential for adipocyte differentiation (Tontonoz et al., 1994b;
Barak et al., 1999; Rosen et al., 1999). Alternative splicing and
differential promoter usage generates two protein isoforms:
PPARg2, expressed from a single g2 promoter, contains an ad-
ditional 28 amino-terminal amino acids and is nearly adipose-
specific; PPARg1, whose expression can be regulated by multi-
ple (g1, g3, g4) promoters, is more ubiquitously distributed. In
addition to adipogenesis, PPARg also plays an important role
in adipocyte lipid metabolism, regulating target genes (lipopro-
tein lipase, fatty-acid transport protein, aquaporin) that mediate
triglyceride hydrolysis and fatty acid and glycerol uptake, to-
gether with genes (acylCoA synthetase, PEPCK, glycerol ki-
nase) involved in fatty acid re-esterification and lipid storage
(Lehrke and Lazar, 2005; Savage, 2005). The thiazolidinedione
(TZD) class of antidiabetic agents are synthetic, high-affinity
PPARg ligands (Lehmann et al., 1995) and putative endogenous
activators include fatty acids, eicosanoids, and prostaglandin
derivatives (Desvergne and Wahli, 1999) as well as undefined
ligands produced during adipocyte differentiation (Tzameli
et al., 2004).
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The most common population genetic variant of PPARg is
a polymorphism replacing alanine for proline at codon 12
(Pro12Ala) in PPARg2, with a meta-analysis of association
studies showing that the Pro allele confers a modest but signif-
icant increase in diabetes risk (Altshuler et al., 2000). The dis-
covery that PPARg is a target for TZDs, which act by enhanc-
ing tissue insulin sensitivity, prompted screening of a cohort of
subjects with severe insulin resistance, with identification of
two missense PPARg mutations (P467L, V290M) in unrelated
cases (Barroso et al., 1999). Functional studies showed that
these mutant receptors retain DNA binding but exhibit signifi-
cant impairment of transcriptional activation and coactivator
recruitment in response to different ligands (Barroso et al.,
1999; Agostini et al., 2004), due to the mutations destabilizing
the carboxyterminal a helix of PPARg (Kallenberger et al.,
2003), which mediates these functions. Consonant with het-
erozygosity in affected subjects and dominant inheritance in
one kindred, the P467L and V290M mutant receptors inhibited
the transcriptional activity of wild-type (WT) PPARg in a domi-
nant-negative manner (Barroso et al., 1999). Subsequently,
two further heterozygous mutations in the ligand binding do-
main (LBD) of PPARg (R425C; F388L) have been described,
with recognition that in addition to insulin resistance the
phenotype also includes a stereotyped pattern of partial
. DOI 10.1016/j.cmet.2006.09.003 303
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lipodystrophy (PLD) (Hegele et al., 2002; Agarwal and Garg,
2002; Savage et al., 2003).

Following this, we described several individuals who were
heterozygous for a frameshift/premature stop codon mutation,
([A553DAAAiT]fs.185[stop186]-hereafter abbreviated to FSX) in
the DNA binding domain (DBD) of PPARg, with this truncation
mutant lacking DNA binding, transcriptional, and dominant-neg-
ative activity. Significantly, heterozygosity for the FSX mutation
alone was not associated with insulin resistance, but individuals
who were doubly heterozygous, with an additional defect in an
unrelated gene encoding the muscle-specific regulatory subunit
of protein phosphatase 1 (PPP1R3A), exhibited severe insulin
resistance (Savage et al., 2002). Heterozygosity for a single nu-
cleotide substitution in the promoter of human PPARg4 leading
to its altered expression in vitro has been associated with PLD
and insulin resistance in one family, but the authors did not ex-
clude the possibility of interaction with a defect at a second
genetic locus to produce this phenotype (Al-Shali et al., 2004).

Here, we describe the identification of five heterozygous
human PPARg mutations (C114R, C131Y, C162W, R357X,
[A935DC]fs.312[stop315]-hereafter abbreviated to FS315X) not
associated with a PPP1R3A gene defect, in unrelated cases of
lipodystrophic insulin resistance and show that these mutants
inhibit WT receptor action via a non-DNA binding, dominant-
negative mechanism.

Results and Discussion

Heterozygous PPARg mutations are associated
with lipodystrophic insulin resistance
The case histories (see the Supplemental Data available with
this article online) and characterization (Table 1) of index sub-
jects (S1–S5) harboring PPARg mutations indicate many of the
features associated with previously described cases (Barroso
et al., 1999; Hegele et al., 2002; Agarwal and Garg, 2002; Sav-
age et al., 2003). All subjects showed marked fasting hyperinsu-
linaemia (Table 1) with acanthosis nigricans in a subset (S3, S4,
S5), denoting severe insulin resistance; total body fat was re-
duced in all individuals, and imaging indicated a stereotyped
pattern of partial lipodystrophy affecting gluteal (Figure S1)
and peripheral limb depots; hepatic steatosis and marked dys-
lipidaemia (raised triglycerides, low high-density lipoprotein
cholesterol [HDL-C]) with secondary complications (cutaneous
eruptive xanthomata S3, S4; pancreatitis S5) were features of
all cases; several individuals (S2, S3, S5) exhibited early-onset
hypertension.

We sequenced the g4 promoter, coding exons and splice
junctions of PPARG and identified heterozygous, missense mu-
tations in the DBD (S1–S3), or premature stop mutations in the
LBD (S4, S5) of the receptor in index cases. PPARG has also
been sequenced by us in 215 additional subjects, comprising
93 patients from our severe insulin resistance cohort (Barroso
et al., 1999), 48 CEPH individuals of European descent and 27
Europid, hyperinsulinaemic participants in the Ely study (Wil-
liams et al., 1995), and 47 controls from four different ethnic
groups, or sequenced by others in 24 African and 23 CEPH
European individuals (Seattle SNPs project, http://pga.gs.
washington.edu), and other than the Pro12Ala polymorphism
neither these or other mutations have been identified. We also
sequenced PPP1R3A in each proband and identified no muta-
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tions or polymorphisms, excluding a second genetic defect at
this locus as described previously (Savage et al., 2002).

Heterozygosity for PPARg mutations in a parent and grand-
parent of S3 and a parent of S5 segregated with phenotype,
constituting a dominant inheritance pattern in two families;
one sibling of S2 with dyslipidaemia and insulin resistance was
heterozygous for the PPARg mutation whereas another geneti-
cally unaffected sibling was biochemically normal; the ascer-
tainable family members of S1 were unaffected and normal
and no relatives of S4 could be contacted (Figure 1B).

PPARg mutants fail to bind DNA and are
transcriptionally inactive
Three missense mutations involve highly conserved cysteine
residues within (C114R, C131Y, C162W) the DBD and two fur-
ther nonsense (R357X) or frameshift/premature stop (FS315X)
mutations truncate the receptor within the central part of its
LBD (Figure 1A), predicting loss-of-function of the mutant pro-
teins. We therefore characterised and compared the properties
of these PPARg mutants with the FSX mutant described previ-
ously (Savage et al., 2002).

The receptor mutants exhibited negligible transcriptional ac-
tivity, lacking constitutive basal activity noted previously with
WT PPARg (Agostini et al., 2004; Zamir et al., 1997) as well as
any response to rosiglitazone, a TZD receptor agonist (Fig-
ure 1C). Such complete loss of function was similar to the FSX
mutant and might be anticipated with analogous truncation

Table 1. Clinical, biochemical, and body composition details

Subject (gender) S1 (F) S2 (F) S3 (F) S4 (F) S5 (F)

Mutation C114R C131Y C162W FS315X R357X

Age (and at

presentation,

year)

41 (34) 42 (35) 31 (19) 13 (8) 35 (26)

BMI (kg/m2)

(nonobese < 30)

30.0 24.2 30.5 25.9 29.3

BP (mmHg)

(< 130/85)

155/95 220/120 150/100* 125/65 125/80*

T2DM/IGT

(age at

diagnosis, yr)

T2DM (41) T2DM (42) IGT (29) T2DM (8) T2DM (26)

PCOS Y Y Y N/A Y

Hepatic steatosis Y Y Y Y Y

TG (mmol/L) (<1.7) 8.9* 4.5 5.0* 8.3* 34.8*

HDL-C (mmol/L)

(>1.29)

0.47* 0.89 0.71* 0.72* 0.56*

FI (pmol/L) (<60) 310 174 220* 475* 170*

Predicted total

body fat (%)

37.4 28.8 38.1 31.3 36.4

Measured total

body fat (%)

26 20.8 23 21.2 nd 26 nd 21 21.1

Measured lower

limb fat (%)

20 17 nd 21 11

Measured truncal

fat (%)

30 27 nd 31 28

BMI, body mass index; BP, blood pressure; T2DM, type 2 diabetes mellitus; IGT,

impaired glucose tolerance; PCOS, polycystic ovarian syndrome; TG, triglycerides;

HDL-C, high-density lipoprotein cholesterol; FI, fasting insulin; Predicted total body

fat was calculated as follows (Black et al., 1983): males % fat = (1.281 3 BMI) 2

10.13: females % fat = (1.48 3 BMI) 2 7.00; measured total and depot-specific

body fat were determined using dual-energy X-ray absorptiometry, with corre-

sponding z scores for total body fat shown as superscript; Hepatic steatosis was

diagnosed according to standard radiological criteria; F, female; healthy adult

values where available are shown in parentheses; asterisk denotes patient studied

on treatment; N/A, not applicable; nd, not determined.
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Non-DNA binding, dominant-negative PPARg mutants
mutants (FS315X, R357X) not possessing the transactivation
(AF2) domain at the receptor carboxyterminus (Figure 1A) (Zamir
et al., 1997; Wu et al., 2003), but the lack of function with DBD
mutants (C114R, C131Y, C162W), prompted further investiga-
tion of their DNA binding properties.

PPARg heterodimerizes with the retinoid X receptor (RXR) and
this complex has been shown to bind a DNA response element
(PPARE), consisting of a direct repeat (DR1) of the consensus
sequence (AGGTCA) separated by a single nucleotide (Ijpen-
berg et al., 1997) and a recent study has suggested that the
stringency of PPARg binding to some response elements is rel-
atively relaxed, not needing complete integrity of its DBD (Tem-
ple et al., 2005). A range of previously documented or predicted
PPAREs from known target genes were therefore tested in elec-
trophoretic mobility shift assays and both DBD and LBD trunca-
tion receptor mutants showed negligible heterodimeric binding
(Figure 1D). To examine interaction of mutant receptors with
RXR, we coexpressed VP16-full length PPARg fusions with
Gal4DBD-RXR in a mammalian two-hybrid assay. In keeping
with preservation of the dimerization interface (Gampe et al.,
2000) within their intact LBD (Figure 1A), the DBD mutants inter-
acted readily whereas the FS315X, R357X, and FSX mutants
lacking this interface failed to be recruited to Gal4-RXR
(Figure S2). It was therefore conceivable that the DBD mutants
could be recruited indirectly to a PPARE by binding RXR
(Gampe et al., 2000), or conversely, that the LBD truncation
mutants might bind a PPARE monomerically as has been docu-
mented with the thyroid hormone receptor (TR) (Lazar et al.,
1991). However, unlike WT receptor, VP16-full length, mutant
PPARg fusions were unable to activate a PPARE-containing re-
porter gene (Figure S3), indicating that like FSX, these PPARg
mutants do not bind DNA directly or indirectly.

PPARg mutants translocate to the nucleus and interact
with cofactors
The intracellular localization of WT PPARg is predominantly nu-
clear (Akiyama et al., 2002) and, analogous to steroid/thyroid
hormone receptors, may be dependent on a putative nuclear
localisation signal (NLS) located between its DBD and LBD
(Figure 1A) (Guiochon-Mantel and Milgrom, 1993; Zhu et al.,
1998). Studies of GFP- PPARg fusions showed that, in keeping
with preservation of the putative NLS, both DBD and LBD trun-
cation mutants localized to the nucleus comparably to WT,
whereas the FSX truncation mutant, which lacks this sequence,
remained cytoplasmic similar to GFP alone (Figure 1E).

We next examined whether the PPARg mutants might also
retain the ability to interact with transcriptional coactivators. Ste-
roid receptor coactivator-1 (SRC1/NCoA1) (Onate et al., 1995)
and PPARg binding protein/thyroid receptor-associated protein
220 (PBP/TRAP220) interact directly with the AF2 domain of
PPARg, with the latter cofactor being required for receptor-
mediated adipogenesis (Zhu et al., 1996, 1997; Ge et al.,
2002). Consistent with preservation of their AF2 domains, pro-
tein-protein interaction assays showed ligand-dependent bind-
ing of SRC1 or TRAP220 to the DBD mutants, but no specific in-
teraction with FSX or LBD truncation mutants, which lack this
region (Figure 1F). Conversely, we hypothesized that the PPARg
LBD truncation mutants would retain the ability to recruit coacti-
vators, which can interact with receptor independently of its AF2
domain. PPARg coactivator-1 (PGC1), which augments receptor
action in fat cells (Puigserver and Spiegelman, 2003), can bind
CELL METABOLISM : OCTOBER 2006
PPARg via its DBD and hinge region (aa 128-229) (Puigserver
et al., 1999); PDIP, isolated in a two hybrid assay using the
DBD/hinge region of PPARg (Tomaru et al., 2006), is a coactiva-
tor that also enhances PPARa activity (Surapureddi et al., 2002).
Both PGC1 and PDIP bound WT or FS315X and R357X LBD trun-
cation mutants in protein-protein interaction assays, whereas
the FSX mutant showed negligible interaction (Figure 1G).

PPARg signaling is reduced in mutation-containing
primary cells ex vivo or mutant-expressing cells in vitro
The observation that these PPARg mutants translocate to the
nucleus and interact with coactivators raised the possibility
that they might interfere with WT receptor signaling. The murine
adipocyte P2 (aP2) gene is a classical target of PPARg action
(Tontonoz et al., 1994a; Guan et al., 2005) and the human homo-
log (FABP4) is similarly responsive (Pelton et al., 1999). When
coexpressed with WT PPARg at equivalent levels in 3T3-L1
adipocytes, the DBD and LBD mutants blocked WT receptor
mediated activation of the human aP2/FABP4 gene promoter
comparably to an artificial, dominant-negative PPARg mutant
(AF2) described previously (Gurnell et al., 2000), whereas FSX
lacked dominant-negative inhibitory activity (Figure 2A).

We wished to determine whether such divergent dominant-
negative inhibition by these PPARg mutants versus FSX might
operate in vivo. PPARg is highly expressed in immature dendritic
cells (IDCs) derived from primary human blood monocytes and
mediates marked receptor responsiveness, with strong ligand-
dependent induction of aP2 expression in these cells (Szatmari
et al., 2004). Induction of aP2/FABP4 expression in IDCs con-
taining DBD or LBD PPARg mutations was severely attenuated
compared to responses in control cells from either normal indi-
viduals (WT) or from subjects (IR) with comparable insulin resis-
tance without a PPARg gene defect. Significantly, aP2 induction
in FSX mutation-containing cells was comparable to responses
from control subjects (Figure 2B). We examined other PPARg
target genes, identified from extensive microarray profiling of
normal IDCs (I.S. and L.N., unpublished data) and found that re-
sponses to PPARg agonist in DBD and LBD truncation muta-
tion-containing cells were markedly attenuated whereas FSX
mutation-containing cells exhibited responses that were either
similar or only slightly reduced compared to WT cells (Figure 2C).
PPARg mRNA levels in control and mutation-containing primary
cells were similar (data not shown), suggesting that differential
responsiveness was not due to altered receptor expression.
Furthermore, PPARg mRNA from both WT and R357X alleles
was expressed in mutation-containing IDCs (Figure 2D), indicat-
ing that the R357X transcript is not subject to nonsense-medi-
ated decay (Culbertson, 1999) and both WT and R357X mutant
PPARg proteins were also expressed in these cells (Figure 2E).

Finally, we determined whether dominant-negative inhibition
by a non-DNA binding PPARg mutant could interfere with a re-
ceptor-mediated biological process. Compared to control, WT
PPARg or GFP adenovirus-transduced human preadipocyte
cells, both cellular differentiation (Figure 3A) and aP2 gene ex-
pression (Figure 3B) in cells transduced with C114R mutant
PPARg adenovirus were significantly reduced.

Transcriptional interference via a non-DNA
binding mechanism
We have shown previously that dominant-negative inhibition by
PPARg mutants (P467L, V290M), is mediated by repression of
305
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Non-DNA binding, dominant-negative PPARg mutants
target genes by DNA-bound mutant receptors, analogous to
mechanisms of other mutant nuclear receptors (e.g., the v-erbA
oncogene, TRb mutants in Resistance to Thyroid Hormone,
PZLF-RARa fusion proteins in promyelocytic leukaemia) (Love
et al., 2000). In contrast, the missense DBD and LBD truncation
mutants identified here are unable to bind DNA, yet can inhibit
WT PPARg action, suggesting a different mechanism of tran-
scriptional interference. Competition for shared cofactors by
NRs was postulated to explain mutual antagonism of progester-
one and estrogen receptor signaling (Meyer et al., 1989) and the
subsequent observation that SRC1, a shared coactivator, could
relieve such ‘‘squelching’’, validated this hypothesis (Onate
et al., 1995). Ligand-activated NRs have been shown to inhibit
either their own function (Barettino et al., 1994) or that of heter-
ologous receptors (Zhang et al., 1996) by limiting the availability
of coactivators that are recruited to their transactivation do-
mains. Our observations indicate that non-DNA binding, domi-
nant-negative PPARg mutants can recruit coactivators, sug-
gesting an analogous cofactor sequestration mechanism for
thereby restricting WT receptor function. Evidence suggests
that similar mechanisms operate to inhibit PPAR signaling in
other contexts: analogous to our natural DBD mutants, others
have generated artificial, dominant-negative, PPARg DBD mu-
tants, which block either adipogenesis (Park et al., 2003) or neu-
ral stem cell differentiation (Wada et al., 2006); gORF4 is a newly
identified human PPARg splice variant with a truncated LBD
(aa273), which has dominant-negative activity and is selectively
overexpressed in colorectal neoplasia (Sabatino et al., 2005);
a dominant-negative PPARa splice variant with a truncated
LBD (aa 174), is expressed in human tissues including liver (Ger-
vois et al., 1999). Interestingly, heterozygous, non-DNA binding
mutations in some nuclear receptors do not mediate a pheno-
type: mutations in the DBD of VDR only cause vitamin D resis-
tance in the homozygous state (Malloy et al., 1999); a ‘‘knock-
in’’ mutation in the DBD of murine TRb does not produce thyroid
hormone resistance (Shibusawa et al., 2003). Possibly due to its
pivotal role in regulating transcription of genes mediating both
adipocyte formation and function (Lehrke and Lazar, 2005), we
suggest that PPARg signaling may be particularly sensitive to in-
terference via the postulated ‘‘squelching’’ mechanism, with
deleterious metabolic consequences. A corollary of this may
be that even modest enhancement of normal receptor activity
in key tissues could be beneficial, supporting attempts to de-
CELL METABOLISM : OCTOBER 2006
velop partial or tissue-specific PPARg agonists (Reginato
et al., 1998; Rocchi et al., 2001; Berger et al., 2003).

Experimental procedures

Sequencing of PPARg and PPP1R3A genes

The PPP1R3A (exons 1-4) and PPARg (exons 1-6, B and promoter region of

PPARg4) genes were amplified using specific primers (available upon re-

quest) and sequenced as decribed previously (Savage et al., 2002).

Construction of PPARg mutants and other vectors

Full lengthWT and mutantPPARg1 cDNAs were cloned in pGEX4T (Amersham

Pharmacia Biotech), pCMX-VP16 (kind gift from R. Evans), pSG424 (Sadowski

and Ptashne, 1989) and pEGFP-C1 (Clontech), to yield GST-PPARg1,

VP16-PPARg1, Gal4DBD-PPARg and GFP-PPARg1 fusions respectively.

Electrophoretic mobility shift assays

Electrophoretic mobility shift assays (EMSA) were performed as described

(Collingwood et al., 1994) with different natural PPAREs: aP2, derived by

alignment of human and murine promoter sequences (Graves et al., 1992);

Adiponectin (Iwaki et al., 2003): ACoABP (Helledie et al., 2002); mCPT1,

(Mascaro et al., 1998); LXRa, (Laffitte et al., 2001); CAP1, (Baumann et al.,

2000); LPL, (Schoonjans et al., 1996); ACoAOx, (Varanasi et al., 1996);

ACoAOx (Zamir et al., 1997).

Transfection assays

293EBNA cells, cultured in DMEM/10%FCS were transfected with Lipofect-

amine2000- or calcium phosphate-mediated in 96- or 24-well plates respec-

tively and assayed for luciferase and b-galactosidase activity as described

(Collingwood et al., 1994) following 36 hr with or without ligand. 3T3-L1

adipocyte cells were cultured and transfected with Lipofectamine2000 in

24-well plates as described above.

Cellular localisation of EGFP-tagged mutants

293EBNA cells, grown on glass well slides were transfected using Lipofect-

amine 2000 with 1mg of EGFP-PPARg1 fusions, fixed with 4% paraformalde-

hyde, mounted using vectashield and fluorescence was visualized by digital

microscopy.

Peripheral blood monocyte purification and IDC culture

With ethical approval, monocytes were harvested from peripheral blood by Fi-

coll gradient centrifugation and immunomagnetic cell separation using anti-

CD14-conjugated microbeads (VarioMACS; Miltenyi Biotec), resuspended

in 6-well plates at a density of 1.5 3 106 cells/ml and cultured in RPMI 1640

plus 10% FBS containing 800U/ml GM-CSF (Leucomax) and 500U/ml IL-4

(Peprotech) to generate IDCs as described (Sallusto and Lanzavecchia,

1994) with or without exposure to ligand for 24 hr.
Figure 1. Identification and characterization of loss-of-function mutations in human PPARg

A) Schematic representation of the three major domains of PPARg, showing the locations of the five mutations (C114R, C131Y, C162W, FS315X, and R357X – PPARg1

nomenclature) and the previously reported FSX mutation. NLS, nuclear localisation signal; RXR ID, retinoid X receptor interaction domain; AF2, activation function 2 domain.

B) Family pedigrees showing genotypes (N, wild-type allele; M, mutant allele; NA, not available) and phenotypes (colored segments denote the presence of specific traits:

green, type 2 diabetes mellitus/impaired glucose tolerance/hyperinsulinaemia; yellow, hypertriglyceridaemia; blue, hypertension; red, ischemic heart disease). Squares and

circles represent male and female family members; slashed symbols denote deceased family members and arrows denote probands.

C) PPARg mutants are unable to mediate ligand-dependent transactivation. 293EBNA cells were transfected with 100 ng of wild-type (WT), mutant, or empty (pcDNA3) ex-

pression vectors, together with 500 ng of (PPARE)3TKLUC reporter construct and 100 ng of Bos-b-gal internal control plasmid, and increasing concentrations of rosiglitazone.

Results are expressed as a percentage of the maximum activation with WT PPARg1 and represent the mean 6 SEM of at least three independent experiments in triplicate.

D) PPARg mutants are unable to bind to DNA. EMSA with in vitro translated wild-type (WT) or mutant PPARg1 (C114R, C131Y, C162W, FS315X, R357X, or FSX) and RXR

proteins coincubated with oligonucleotide duplexes corresponding to various natural PPAREs. aP2, adipocyte protein 2; ACoABP, acyl coenzyme A binding protein;

mCPT1, muscle carnitine palmitoyl transferase 1; LXRa, liver X receptor a; CAP, cbl-associated protein; LPL, lipoprotein lipase, ACoAOx, acyl coenzyme A oxidase;

h, human; m, mouse; r, rat; RL, reticulocyte lysate.

E) The C114R, C131Y, C162W, FS315X, and R357X mutants translocate to the nucleus whereas the FSX mutant remains cytoplasmic. 293EBNA cells were transfected as

described. Top panels show DAPI-staining (blue) of nuclei, middle panels the cellular localisation of GFP-tagged receptors, and lower panels merged images.

F) The DBD PPARg mutants recruit SRC1 and TRAP220 coactivators, whereas the FS315X, R357X, and FSX truncation mutants do not interact. GST alone or WT and mutant

GST-PPARg fusion proteins were tested with 35S-labeled in vitro translated SRC1 (upper panel) or TRAP220 (lower panel) in the absence or presence of rosiglitazone. Coo-

massie-stained gels confirmed comparable protein loading (data not shown). G) The LBD truncation mutants (FS315X, R357X) recruit PGC1a and PDIP1a coactivators,

whereas the FSX mutant fails to interact. GST alone or WT and mutant GST-PPARg fusion proteins were tested with 35S-labeled in vitro translated human PGC1a and human

PDIP1a in the absence of ligand. Coomassie-stained gels confirmed comparable protein loading (data not shown).
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Figure 2. PPARg mutants exhibit dominant-negative activity

A) The C114R, C131Y, C162W, FS315X, and R357X PPARg mutants inhibit transactivation by wild-type (WT) receptor, comparably to AF2, an artificial PPARg mutant

described previously, whereas the FSX mutant lacks dominant-negative activity (upper panel). 3T3-L1 cells were cotransfected with 33 ng of WT receptor plus an equal

amount of either empty (pcDNA3) or WT or mutant expression vector, together with 265 ng of human aP2LUC reporter plasmid and 65 ng of the internal control plasmid

Bos-b-gal. The dotted and dashed lines denote transcriptional activity of WT receptor in the absence and presence of ligand respectively. Results are expessed as fold

induction relative to empty vector (pcDNA3 + pcDNA3) and represent the mean 6 SEM of at least three independent experiments in triplicate. Expression of wild-type and

mutant receptor proteins was confirmed by Western blotting (lower panel) and the positions of WT, C114R, C131Y, C162W, and AF2 PPARg (open arrow) and FSX, FS315X

and R357X truncation mutants (solid arrows) are indicated.

B and C) Ligand-dependent regulation of PPARg target genes in IDCs from subjects with PPARg mutations. (B) Induction of the aP2 gene by rosiglitazone, measured by

qPCR, is markedly impaired in IDCs derived from subjects with the C114R, C131Y, FS315X, and R357X mutations, compared to responses in cells from normal (WT), se-

verely insulin resistant (IR) subjects without mutations in PPARg and cells with the FSX, haploinsufficient, mutation. Results represent the mean 6 SEM of more than three

independent experiments in triplicate, except for cells with the FS315X mutation where a single representative experiment is shown. (C) Relative expression of several

PPARg target genes (5 downregulated and 5 upregulated) in WT and mutation-containing (FSX, C114R, R357X) IDCs, measured by qPCR using TLDA. Red indicates

higher, and blue lower, levels of gene expression relative to rosiglitazone-treated (1000 nM) WT cells, whose responses are uniformly designated yellow. Fold changes

in expression of each gene in rosiglitazone (RSG) versus vehicle (DMSO) treated WT cells are also listed.

D and E) The R357X PPARg mutant is expressed in IDCs. (D) PPARg cDNA flanking the R357 codon was amplified by RT-PCR in IDCs from patient S5 and a control subject.

Cac81 enzyme digestion of PCR products derived from the WT allele yields two fragments (161 and 74 bp), whereas abolition of this restriction site in the R357X mutant

allele yields a larger 235 bp product. (E) Whole-cell lysates of WT and R357X mutant IDCs and 293EBNA cells transfected with R357X mutant were immunoprecipitated and

Western blotted. The positions of WT PPARg (open arrow), R357X (solid arrow), and nonspecific bands (solid arrowheads) are indicated.
Quantitative real-time PCR analysis of gene expression

100ng of total RNA from IDCs, isolated using TRIZOL (Invitrogen), was re-

verse transcribed and analyzed by Taqman quantitative real-time PCR

(qPCR) as described (Szatmari et al., 2004). The sequences of primers and

probes are available upon request.

Taqman qPCR low density arrays (TLDA) were used to quantify the ex-

pression of multiple target genes in IDCs, according to the manufacturer’s

instructions.
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To obtain cDNA, RNA was reverse transcribed using a High Capacity

cDNA Archive kit (Applied Biosystems). The following commercially available

Taqman assays (Applied Biosystems) were used: ADRP/ADFP

(Hs00605340_m1), APOC1 (Hs00155790_m1), CLDN1 (Hs00221623_m1),

aP2/FABP4 (Hs00609791_m1), CLECSF5 (Hs00183780_m1), CD1E

(Hs00229421_m1), MYO1B (Hs00362654_m1), IL1R2 (Hs00174759_m1),

OAS1 (Hs00242943_m1), p30 (Hs00396457_m1), cyclophilinA/PPIA

(Hs99999904_m1). The comparative Ct method was used to quantify
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transcripts and normalize to cyclophilinA expression levels, which did not

vary with ligand treatment. Thereafter, data were further normalized to ex-

pression levels in ligand-treated WT IDC samples using GeneSpring 7.2 soft-

ware (Agilent).

RFLP analysis of PPARg transcripts

PPARg cDNAs were amplified from WT or R357X mutation-containing IDCs

by RT-PCR using forward (CTCCTTGATGAATAAAGATGGGG) and reverse

(ATGTCTTCAATGGGCTTCACAT) primers, the PCR products were digested

Figure 3. Adenoviral-mediated expression of the C114R PPARg mutant inhibits

human preadipocyte differentiation

Chub-S7 human preadipocyte cells were infected with comparable efficiency us-

ing recombinant adenoviruses expressing GFP, GFP-WT, or GFP-C114R mutant

PPARg and differentiated in the presence of rosiglitazone (100nM).

A) Fully differentiated Chub-S7 cells fixed and stained with oil red O.

B) aP2 expression quantitated by real-time qPCR at days 0, 3, 5, and 7 postdiffer-

entiation with results representing the mean 6 SEM of at least three independent

experiments in triplicate.

C) Western blotting of Chub-S7 cells at day 4 posttransduction with recombinant

adenoviruses confirming comparable levels of total receptor expression. Nondif-

ferentiated, (day 0) nontransduced, cell extracts (ND) are shown for comparison.

The positions of PPARg (open arrow) and nonspecific band (solid arrowhead)

are indicated.
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with Cac8I enzyme (New England Biolabs) and analyzed by agarose gel

electrophoresis.

Immunoprecipitation and Western blot analysis

IDCs, harvested from 200ml of peripheral blood, were lysed in RIPA buffer

containing a protease inhibitor cocktail (Roche) and cell supernatants immu-

noprecipitated using a mouse monoclonal anti-PPARg antibody (K8713, Per-

seus Proteomics) and analyzed by SDS-PAGE. Western blotting was carried

out using a rabbit polyclonal anti-PPARg antibody (H-100, Santa Cruz

Biotechnology).

Adenovirus construction and expression

Recombinant type 5 adenoviruses (Ad5) expressing GFP alone or with either

WT or C114R mutant PPARg1 were generated using the AdEasy Vector Sys-

tem (Quantum Biotechnologies, Montreal), amplified and purified as de-

scribed (Gurnell et al., 2000). 6-well plates of Chub-S7 human preadipocyte

cells were cultured and infected with 2x107 pfu/well of recombinant virus 24

hr prior to differentiation in the presence of 100nM rosiglitazone as described

(Darimont et al., 2003). Comparable infection efficiency was verified by fluo-

rescence microscopy with subsequent qPCR analysis on days 0, 3, 5 and 7.

Fully differentiated cells were fixed and stained with Oil Red-O as described

(Adams et al., 1997).

Supplemental data

Supplemental Data include Supplemental Experimental Procedures and

three figures and can be found with this article online at http://www.

cellmetabolism.org/cgi/content/full/4/4/303/DC1/.
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