
Energy Efficient Branch Prediction

Michael Andrew Hicks

A thesis submitted in partial fulfilment of the requirements of the
University of Hertfordshire for the degree of Doctor of Philosophy

December 2007

To my family and friends.

Contents

1 Introduction 1
1.1 Thesis Statement . 1
1.2 Motivation and Energy Efficiency 1
1.3 Branch Prediction . 3
1.4 Contributions . 4
1.5 Dissertation Structure . 5

2 Energy Efficiency in Modern Processor Design 7
2.1 Transistor Level Power Dissipation 7

2.1.1 Static Dissipation . 8
2.1.2 Dynamic Dissipation . 9
2.1.3 Energy Efficiency Metrics 9

2.2 Transistor Level Energy Efficiency Techniques 10
2.2.1 Clock Gating and Vdd Gating 10
2.2.2 Technology Scaling . 11
2.2.3 Voltage Scaling . 11
2.2.4 Logic Optimisation . 11

2.3 Architecture & Software Level Efficiency Techniques 11
2.3.1 Activity Factor Reduction 12
2.3.2 Delay Reduction . 12
2.3.3 Low Power Scheduling 12
2.3.4 Frequency Scaling . 13

2.4 Branch Prediction . 13
2.4.1 The Branch Problem . 13
2.4.2 Dynamic and Static Prediction 14
2.4.3 Dynamic Predictors . 15
2.4.4 Power Consumption . 18

2.5 Summary . 18

3 Related Techniques 20
3.1 The Prediction Probe Detector (Hardware) 20

3.1.1 Implementation . 20
3.1.2 Pipeline Gating . 22

i

3.2 Software Based Approaches . 23
3.2.1 Hinting and Hint Instructions 23

3.3 Analysis and Summary . 24

4 Initial Investigation and Preliminary Research 26
4.1 Research Question Focus . 26
4.2 Static Methods to Avoid Dynamic Branch Prediction 27

4.2.1 Delay Region Scheduling 27
4.2.2 Static Prediction and Instruction Hints 29
4.2.3 Guarded Execution . 30

4.3 Hardware Multithreading . 31
4.4 Initial Experiments . 31

4.4.1 Removing Dynamic Branch Predictors 31
4.4.2 Instruction Stream Research (HTracer) 33
4.4.3 I-Cache Experimentation 34

4.5 Summary . 34

5 The Combined Approach 36
5.1 Local Delay Region Scheduling 36
5.2 Profiling . 38

5.2.1 Assigning a Static Branch Behaviour 39
5.2.2 Adaptive Branch Bias Measurement (ABBM) 40

5.3 The Combined Algorithm . 40
5.4 Hardware Implementation . 41

5.4.1 Instruction Set Modifications 42
5.4.2 Hardware Modifications 44

5.5 Summary . 46

6 Simulation Tools 47
6.1 Introduction . 47
6.2 Simulator (HWattch) . 47

6.2.1 Architecture Model . 49
6.2.2 Architecture Modifications 52
6.2.3 Profiling Enhancement 55
6.2.4 Instruction Set (PISA) 56
6.2.5 Compiler (Custom GCC) 59

6.3 Scheduler and Static Prediction Assigner (HACA) 59
6.3.1 Combined Algorithm: Practical Implementation 59

6.4 EEMBC . 63
6.4.1 Sub-Suites and Benchmarks 63
6.4.2 Bespoke Build System for the Combined Algorithm . . . 65

6.5 Summary . 65

ii

7 Simulations and Results 66
7.1 Introduction . 66
7.2 The Baseline Models . 66

7.2.1 The Branch Predictor . 67
7.2.2 Scalar Processor . 67
7.2.3 Multiple Instruction Issue Processor 68

7.3 Preamble To Results . 70
7.3.1 Metrics . 70
7.3.2 Calculation of Averages and ‘Weighted Averages’ 74
7.3.3 Important Summary Notes 75

7.4 Scalar Processor Results . 75
7.4.1 Benchmark Breakdown 75
7.4.2 Averages . 78

7.5 Two Instruction Issue Processor Results 79
7.5.1 Benchmark Breakdown 79
7.5.2 Averages . 79

7.6 Sixteen Instruction Issue Processor Results 83
7.6.1 Benchmark Breakdown 83
7.6.2 Averages . 86

7.7 Overall Analysis . 86
7.7.1 Results Summary . 88

8 Comparisons and Enhancements 90
8.1 Comparison of ABBM with Fixed Bias Level and Compiler Heuris-

tics . 90
8.1.1 Results and Analysis . 91

8.2 Reducing Set Associativity in the Branch Target Buffer 92
8.2.1 Results and Analysis . 92

8.3 Summary . 94

9 Conclusion and Discussion 96
9.1 Thesis Summary . 96

9.1.1 Key Novelties and Contributions 97
9.2 Generalisation . 97
9.3 Critique . 99

9.3.1 Local Delay Region . 99
9.3.2 Hint Bits . 100
9.3.3 Timing Issues . 101
9.3.4 Profiling Duration . 102
9.3.5 Profiling on a ‘Real’ Architecture 102
9.3.6 Dependency on Datasets 104

9.4 Related Work Comparison . 104
9.4.1 Prediction Probe Detector 105

9.5 Future Work . 106

iii

9.5.1 Maximising the Fetch Window of Wide Issue Processors . 106
9.5.2 Hinting Libraries . 107
9.5.3 Combining with the Prediction Probe Detector 107
9.5.4 Hints and Context Switching 108
9.5.5 Profiling and Processor-Wide Power Saving 109

9.6 Concluding Remarks . 109

Bibliography 111

Glossary 120

Appendix A: Published Papers
i Towards an Energy Efficient Branch Prediction Scheme. . .
ii Reducing the Branch Power Cost In Embedded Processors. . .
iii HTracer: A Dynamic Instruction Stream Research Tool
iv Enhancing the I-cache to Reduce the Power Consumption. . .

Appendix B: Technical Reports
i An Introduction to Power Consumption Issues in Processor Design
ii HTracer V0.5: A User Guide

Appendix C: Additional Background

Appendix D: Raw Data

iv

List of Figures

2.1 An example five stage processor pipeline 14
2.2 An example of a modern dynamic predictor architecture 15

3.1 The Prediction Probe Detector 21

5.1 An example of local delayed branch scheduling 37
5.2 The basic structure of profiling 39
5.3 Block model of the profiling and hinting regime 42
5.4 Hardware modifications required in the instruction fetch stage . . 45

6.1 The Wattch simulator in relation to SimpleScalar 48
6.2 The Wattch simulator pipeline 49
6.3 A logical represention of the IF stage hint-bits showing ‘1,1’ . . . 53
6.4 A logical represention of the EXE stage hint-bits showing ‘1,0’ . . 54
6.5 The PISA instruction format . 56
6.6 The location of the two hint-bits within the branch instruction format 58

7.1 Scalar baseline global power savings (%) compared with ideal (free)
prediction . 77

7.2 Scalar baseline average global power savings (%) compared with
ideal (free) prediction . 78

7.3 2-way issue baseline global power savings (%) compared with ideal
(free) prediction . 81

7.4 2-way issue baseline average power savings (%) compared with
ideal (free) prediction . 82

7.5 16-way issue baseline global power savings (%) compared with
ideal (free) prediction . 85

7.6 16-way issue baseline average power savings compared with ideal
(free) prediction . 87

8.1 Average Change in the dynamic instruction stream after resizing
the BTB from four-way to two-way set-associativity 93

8.2 Additional power saving after resizing the BTB 94

v

9.1 Series and parallel i-cache/branch predictor access. (1) and (2)
represent the direction and target address predictors, respectively . 101

vi

List of Tables

5.1 Static and dynamic branch occurrence for each PISA branch, and
its occurrence across the whole EEMBC benchmark suite 43

6.1 Static and dynamic branch occurrence for each PISA branch, and
its occurrence across the whole EEMBC benchmark suite 57

6.2 The full EEMBC benchmark suite with descriptions 64

7.1 Scalar Processor Baseline Configuration 69
7.2 2-Way Issue Processor Baseline Configuration 71
7.3 16-Way Issue Processor Baseline Configuration 72
7.4 Benchmark breakdown results for scalar baseline processor 76
7.5 Average benchmark results for scalar baseline processor 78
7.6 Benchmark breakdown results for two-way issue baseline processor 80
7.7 Average benchmark results for two-way issue baseline processor . 82
7.8 Benchmark breakdown results for sixteen-way issue baseline pro-

cessor . 84
7.9 Average benchmark results for sixteen-way issue baseline processor 86

8.1 Average benchmark results for fixed bias hinting 91

vii

Acknowledgements

I would first like to thank Colin Egan. His continual support, both academic and
personal, played an essential role in this work. I would also like to thank Bruce
Christianson for his insightful assistance and knowledge of the research process.
The work described in this dissertation was also greatly aided by rational discussion
with Patrick Quick – thankyou.

I am indebted to my parents and family. This work would not have been possible
without them.

Finally, I would like to thank all of those remaining people that have, either directly
or indirectly, assisted me in the completion of this project.

viii

Abstract

Energy efficiency is of the utmost importance in modern high-performance em-
bedded processor design. As the number of transistors on a chip continues to in-
crease each year, and processor logic becomes ever more complex, the dynamic
switching power cost of running such processors increases. The continual progres-
sion in fabrication processes brings a reduction in the feature size of the transistor
structures on chips with each new technology generation. This reduction in size
increases the significance of leakage power (a constant drain that is proportional to
the number of transistors). Particularly in embedded devices, the proportion of an
electronic product’s power budget accounted for by the CPU is significant (often
as much as 50%).

Dynamic branch prediction is a hardware mechanism used to forecast the di-
rection, and target address, of branch instructions. This is essential to high per-
formance pipelined and superscalar processors, where the direction and target of
branches is not computed until several stages into the pipeline. Accurate branch
prediction also acts to increase energy efficiency by reducing the amount of time
spent executing mis-speculated instructions. ‘Stalling’ is no longer a sensible op-
tion when the significance of static power dissipation is considered. Dynamic
branch prediction logic typically accounts for over 10% of a processor’s global
power dissipation, making it an obvious target for energy optimisation.

Previous approaches at increasing the energy efficiency of dynamic branch pre-
diction logic has focused on either fully dynamic or fully static techniques. Dy-
namic techniques include the introduction of a new cache-like structure that can
decide whether branch prediction logic should be accessed for a given branch, and
static techniques tend to focus on scheduling around branch instructions so that a
prediction is not needed (or the branch is removed completely).

This dissertation explores a method of combining static techniques and pro-
filing information with simple hardware support in order to reduce the number of
accesses made to a branch predictor. The local delay region is used on uncondi-
tional absolute branches to avoid prediction, and, for most other branches, Adaptive
Branch Bias Measurement (through profiling) is used to assign a static prediction
that is as accurate as a dynamic prediction for that branch. This information is
represented as two hint-bits in branch instructions, and then interpreted by simple
hardware logic that bypasses both the lookup and update phases for appropriate
branches.

The global processor power saving that can be achieved by this Combined Al-
gorithm is around 6% on the experimental architectures shown. These architectures
are based upon real contemporary embedded architecture specifications.

The introduction of the Combined Algorithm also significantly reduces the exe-
cution time of programs on Multiple Instruction Issue processors. This is attributed
to the increase achieved in global prediction accuracy.

ii

Chapter 1

Introduction

This dissertation investigates one of the most important areas of contemporary re-
search in computer engineering: energy efficiency [117] [68]. With evermore high
performance embedded devices appearing on the market each year [71], requir-
ing more and more power from a fixed capacity battery, the need to improve the
energy efficiency of processor designs is paramount to the viability of new archi-
tectures [13]. This project proposes a thesis that the energy efficiency of the costly
branch predictor unit can be further increased by a combination of traditional and
new techniques [44].

This chapter introduces the motivation and scope of this project. The broad
thesis and contributions are described, and the structure of the rest of dissertation
is shown.

1.1 Thesis Statement

The resulting thesis of this PhD project is that software and hardware prediction
techniques, traditionally used exclusively, can be combined to reduce the power
consumption of dynamic branch prediction units in modern processors. This is
achieved with minimal hardware modification and shows that hardware and soft-
ware prediction strategies can be further combined to increase global processor
energy efficiency.

1.2 Motivation and Energy Efficiency

We’re projecting by 2010 there will be more than 2.5 billion wireless
handheld devices capable of providing the communications functions
combined with the processing power of today’s high-performance PCs.

1

– Paul Otellini, Intel, 2003 [75]

Energy efficiency is an increasingly important issue in the field of computer
engineering. This can be said because power consumption affects so many factors
in real world implementations:

Battery Life - The most obvious restriction on mobile devices is the length of
time that the device can be used for and the performance that can be ex-
pected. Power efficient designs can extend this but, as shown later, careful
consideration must be taken in assessing the relative advantages of a design.

Thermal Issues - Power dissipation results in heat. Excessive heat dissipation
will affect the design of relevant cooling systems (and thus device packag-
ing/size), reliability and precise timing. One of the most important issues
on the desktop machine is packaging size and cost. On large scale servers
packaging size will represent a volumetric limit on rack capacity.

Large Scale Power Consumption - This aspect often seems irrelevant when ex-
amining the desktop and small scale market, but when one looks at mas-
sive arrays of machines the resulting power consumption can be substantial.
Small power savings over a large number of processors account for a signif-
icant saving for a single user/organisation.

Given the prediction quoted by Intel, one can see the extreme importance of
power efficient designs in the coming decades. In fact, power efficiency is a likely
lynchpin for new high speed processor designs. If new portable devices are to
achieve the prediction of Intel then they must be both energy efficient and high per-
formance [38]. Such requirements are pulling processor design in two directions
at once; high performance and low power was often considered to be a dichotomy.

Processors consume power at the transistor level by both switching and main-
taining their state. When a transistor switches it leaks a small amount of electricity
into the circuit. When transistors are maintaining their state a small amount of
electricity can escape through the gate due to imperfections in the production pro-
cess. Transistors are caused to switch when activity occurs in the processor. This
includes accesses to caches, functional units and the algorithms used to manage
processor activity. With processors now containing over one billion transistors, the
issues of power consumption and energy efficiency are more important than ever,
particularly to the embedded market.

The thesis of this document is that it is possible to maintain the high perfor-
mance of a processor, through the use of branch prediction, but relieve some of
the significant power burden of high performance designs. The central focus is the
embedded market as this is where energy efficiency is of the utmost importance.
To date, most research into energy efficiency has followed the traditional separa-
tion of transistor level, dynamic and static approaches. There has been little in the
way of handshaking between static and dynamic techniques. The result of the work

2

conducted in this report demonstrates how static and dynamic techniques can be
combined into a more effective energy scheme.

If embedded processors continue to increase in performance, there must be
a coordinated effort to develop energy efficient algorithms [69]. If this does not
happen, the new generation of embedded devices will have an insatiable rate of
power consumption for current battery technology.

1.3 Branch Prediction

Modern high performance embedded processors use a technique known as pipelin-
ing to increase instruction level parallelism. Pipelining breaks down the processor
into a series of different stages with an intermediate store between each stage [84].
This allows a number of instruction to be undergoing execution at any given time.
This increases the throughput of the processor, in instructions per second, because
a higher number of instruction complete during each clock cycle (as opposed to a
single instruction using the entire processor for several cycles). Increasingly com-
mon is that a processor can fetch and issue several instructions in a given clock
cycle. This is referred to as Multiple Instruction Issue (MII) and increase instruc-
tion level parallelism still further [84].

The process of pipelining means that each instruction requires several stages
of ’execution’ before the result of the given instruction is known. This means
that there are several instructions undergoing execution in the preceding pipeline
stages. When fetching instructions, this delay before the result of execution poses
a particular problem for one class of instructions – branches. A branch instruction
changes the flow of instructions, and hence the fetch unit in the processor must
know which part to fetch instructions from in order to fully utilise all of the pipeline
stages behind the branch instruction. However, the correct path to fetch from is not
known until the branch resolution pipeline stage. Filling these pipeline slots is
paramount to the performance of the processor when it is considered that around
one in every eight instructions is a branch [31].

The technique generally used to overcome this performance problem is called
branch prediction [31]. Branch prediction attempts to predict which way a branch
instruction will go before the actual behaviour is known. Dynamic Branch pre-
dictors, which use dedicated hardware, can be highly accurate (as high as 98%
correct), but do still inevitably make mispredictions. These mispredictions require
recovery logic to stop the pipeline and flush the incorrectly fetched instructions.
Such mispredictions pose a severe performance penalty and should be avoided at
all costs [93].

Branch prediction has traditionally taken place statically or dynamically. Static
prediction takes place at compile time of a program and can involve a variety of
techniques such as hint-bits (which give the processor an idea of which way the
branch might go) and delay region scheduling (a decision is made about which way

3

the branch might go, and relevant instructions are used to fill the stages behind the
branch). Dynamic prediction uses a special unit in the processor hardware which is
updated each time a branch is encountered with information about how it behaved.
This prediction unit is then used by the instruction fetch logic to decide which
way a branch is likely to go. Dynamic branch predictors are largely the favoured
method for branch prediction as they are the most accurate and simple to use. A
fuller discussion of dynamic branch prediction and branch predictor types is given
in the next chapter (2.4).

A dynamic branch predictor accounts for a significant portion of a processor’s
global power budget (around 10%), but it’s accuracy is integral to the energy effi-
ciency of the processor as a whole [82].

This thesis is the result of an investigation where the global processor power
consumption was reduced by increasing the energy efficiency of the dynamic branch
predictor, but without negatively impacting on its accuracy. This was achieved
through the realisation that not all branches require a dynamic prediction, and that,
with appropriate logic, the number of accesses made to a dynamic branch predic-
tor can be significantly reduced by a combination of profiling and static scheduling
techniques [44].

1.4 Contributions

This thesis makes contributions in both the fields of branch prediction and energy
efficiency. All experimentation is conducted using the EEMBC embedded bench-
marks and a variant of the Wattch processor power simulator.

The experimental work contained within this document demonstrates that the
power consumption of a dynamic branch predictor unit can be reduced by lower-
ing the number of accesses made to it by the processor logic at run time. This
is achieved by combining several existing techniques, and some new, to form a
modified branch prediction scheme.

Traditionally, branch prediction has occurred as either a static or dynamic pro-
cess [33]. Either there was no dynamic branch predictor, and the compiler assigned
static branch predictions, or the dynamic predictor negated the need to static pre-
diction. Some architectures, such as the PowerPC, allow for assigning hints in
certain heavily biased branch instructions to override a dynamic prediction in the
hope of increasing accuracy.

A key proposal of this thesis is the use of an Adaptive Branch Bias Measure-
ment (ABBM). The combined algorithm uses profiling data about the behaviour
of branches and the dynamic branch predictor to permit the use of static hints in
an instruction for only those instructions that do not require a dynamic prediction.
This is combined with static scheduling, for certain branches, in order to signifi-
cantly reduce the number of accesses made to the dynamic predictor unit. Simple
modification of hardware logic permits the avoidance of accessing the predictor

4

and advanced calculation of the target address of certain branches. As a result of
the application of the algorithm discussed in this report, a significant global power
saving can be achieved.

The proposed algorithm is also shown to increase performance (by increasing
branch predictor accuracy) and so is of interest to the branch prediction community
in general.

The significance of this thesis lies in its elegance and ease of implementation
using existing hardware and software. Large gains in energy efficiency can be
achieved with minimum modifications in the design hierarchy.

1.5 Dissertation Structure

This dissertation is broken down into chapters. Each chapter builds on the last and
leads into the next. Individual chapters are not intended to be entirely independent,
and should be read with respect to their context in the structure. The chapters deal
with the following areas:

1. Introduction.

2. Energy Efficiency in Modern Processor Design – This chapter provides a
review of energy efficiency through all levels of abstraction in the design
process. This includes an explanation of how power is dissipated in elec-
tronic circuits from an elementary level. Finally the chapter concludes with
an introduction to dynamic branch predictors and how they consume power.

3. Energy Efficient Branch Prediction (related work)

4. Preliminary Research – This chapter investigates some of the questions which
need to be answered before a viable energy efficient branch prediction scheme
can be proposed. Existing static scheduling and prediction methods are ex-
amined, along with hardware multithreading. The results of some initial
experiments are presented.

5. The Combined Approach – This chapter proposes the energy efficient branch
prediction scheme for experimentation. The algorithm combined some tradi-
tional techniques with a new metric and hardware modifications. The specifi-
cation of the algorithm here is intentionally abstract for discussion purposes.

6. Simulation – This chapter describes and discusses the experimental method,
tools and architecture used to conduct experimentation with the combined
algorithm in the next chapter. This chapter also provides a more concrete,
implementation based, description of how the combined algorithm is imple-
mented in hardware and software.

5

7. Experimentation and Results – This chapter uses the simulation tools and
methods discussed in the previous chapter to evaluate the proposed com-
bined algorithm on a number of baseline processor models. These models
are discussed and the results are presented with a description of the evalua-
tion metrics chosen.

8. Comparisons and Enhancements – This chapter compares the combined al-
gorithm with some other techniques and examines how it could be extended
by modifying the hardware of a processor to achieve further power savings.
The applicability to a real architecture is then briefly discussed by compari-
son to the PowerPC instruction set.

9. Conclusion and Discussion – Finally, the overall novelties and contributions
are stated in condensed form. This is followed by a discussion of any criti-
cisms of the combined algorithm and the experimentation method. The ef-
fectiveness of the combined algorithm is compared to the most closely re-
lated work. The opportunities for future work are then presented. Finally,
following this, are the concluding remarks of the thesis.

6

Chapter 2

Energy Efficiency in Modern

Processor Design

The task of constructing energy efficient processors has been extensively examined
at almost all levels of abstraction [115]. This chapter offers a basic introduction to
the important low-level causes of energy loss in modern processors and explains
the main areas of research in processor energy efficiency. Additional background,
from an elementary level, can be found in Appendix B and Appendix C.

2.1 Transistor Level Power Dissipation

All CMOS circuits require a power source, and do not function without using some
energy/power from this source. There are several ways in which this power is
dissipated in CMOS circuits; the key areas of power dissipation are discussed in
this section. While there is much research into reducing the loss of power in CMOS
circuits [22] [27] [15], it must be noted that this power dissipation can never be
reduced to zero as a current always needs to flow.

Equation 2.1 is the accepted [46] approximation for power dissipation in mod-
ern CMOS circuits.

Power ∼ 1
2
CV 2fA (2.1)

Each term in the equation is defined as follows:

C – The Capacitance of the circuit. This is a function of all of the transistor inter-
connects which must be charged and discharged during circuit activity.

7

V – The Voltage that the circuit is running at. It is important to note that the
Voltage is found to have a quadratic effect on power dissipation.

f – The clock Frequency of the circuit/processor.

A – The average Activity Factor of the circuit. That is, how often do transis-
tors/gates, on average, make the transition from 1 → 0 and 0 → 1. A
number between zero and one.

The power lost according to this general rule can be divided into two main va-
rieties (and then subdivided further): static and dynamic power dissipation. These
are explained in the following two sections.

2.1.1 Static Dissipation

Static power dissipation, or leakage, refers to a constant ‘per-cycle’ energy drain
on the on the power source by the circuit. Traditionally, CMOS circuits have been
classed as having almost no power leakage. However, this is no longer true [73].
Consequently, anything that increases the delay of a circuit (stalling in branch pre-
diction, for instance) is now inefficient in terms of energy.

Sub-Threshold Leakage

For a transistor to function as a switch it has a property called the ‘Switching
Threshold’. This is the voltage on the gate terminal at which the transistor will
permit a current to flow between the source and drain (or base and emitter in some
nomenclature) – see Appendix C. The threshold is generally set by the chemical
properties of the semiconductor material used by the circuit designers, but can be
controlled dynamically in some circuits [6].

Equation 2.1 shows that voltage has a quadratic effect on the power dissipation
of a circuit/processor. As such, processor designers have been reducing the core
voltage at which processors run at in order to save power [27]. This means that all
of the transistors in the control logic of the processor must be built with a lower
threshold in order to maintain the correct behaviour. The result of this is that the
difference between the drain voltage (i.e. 0 Volts) and the threshold of the transistor
becomes much smaller. When the gap between the ‘off’ and ‘on’ voltage that a
CMOS transistor is designed to work with becomes very close, the transistor will
begin to allow small amounts of current to flow even when it is supposed to be
switched off. These currents are known as Sub-Threshold Leakage currents, and
are now the leading cause of static power dissipation in CMOS circuits [73].

As core voltages have been progressively scaled down to save power, sub-
threshold leakage has increased to the extent that it can now account for up to 50%
of all CMOS processor power loss [73]. The amount of power lost to sub-threshold
leakage is proportional to the number of transistors in the circuit/processor.

8

2.1.2 Dynamic Dissipation

Dynamic dissipation is still generally the leading cause of power dissipation in
most CMOS circuits, and is entirely proportional to the behaviour of the circuit.
As such, it is highly interesting to hardware designers at all levels of abstraction.

Capacitive

Capacitive power is dissipated when a transistor changes state from high to lower or
vice-versa. It is proportional to the energy that is stored on all of the interconnects
between two state-changing transistors. During a state transition, the interconnects
from the output of the changing transistor must be either charged or discharged
in order to change to the correct output level. This process necessarily consumes
power from the source. The factors directly affecting this dissipation are: intercon-
nect thickness, circuit layout design, voltage and circuit activity [22].

Short Circuit

When a coupling of CMOS transistors change state, such as those shown in Ap-
pendix C, it does not happen instantly. There is a propagation delay while the input
interconnects are charged/discharged to the required voltage. During this transition
time, there is a brief point at which both transistors in a CMOS coupling are con-
ducting (since they are both ‘mid-threshold’). This allows a short circuit current to
flow directly between the source and drain, and dissipates power. The factors di-
rectly affecting this dissipation are: transistor design properties, voltage and circuit
activity [22].

2.1.3 Energy Efficiency Metrics

In order to properly quantify and compare the energy efficiency of different circuit
designs, the following metrics are often used:

Power × time (Energy Per Operation) – A measure of the Power used during
the course of a particular operation. This is equal to the Average Power used
multiplied by the duration of the operation. In effect, this is a measure of
how much electrical energy was used performing a particular operation.

Et2 – Energy multiplied by time squared (also rewriteable as Pt3) [68]. The Et2

metric was developed as a comparison metric for cross-processor analysis
since it is designed to be voltage independent. It is proportional to MIPS3

Power .
However, by eliminating dependence on voltage, this metric gives a heavy
bias to delay/execution time.

A more detailed discussion of these and other metrics is available in Appendix
A.

9

2.2 Transistor Level Energy Efficiency Techniques

Although the focus of this dissertation will be on a higher level of energy ab-
straction, there are several transistor level efficiency techniques which should be
explained. The behaviour of these techniques can be affected by higher level deci-
sions.

2.2.1 Clock Gating and Vdd Gating

‘Gating’ refers to the process of using a logic gate to switch off something in a
circuit. In the case of energy efficiency, this usually refers to two processes: clock
gating and Vdd gating [73].

Clock Gating

The clock signal of a synchronous circuit has a direct effect on the power dissi-
pation in that circuit. This occurs as a result of the switching activity associated
with that signal. As clock rates have increased, the problem of clock signal power
dissipation has become important. In response to this, clock gating was introduced.
When different units of a processor are found to be idle, the control logic of the
processor will switch off the clock signal for that particular unit. This avoids dis-
sipating power for the unit’s period of inactivity. Clock gating stops a unit from
functioning, but does not cause its state to be lost [73].

Vdd Gating

Additionally, when a unit is found to be idle, Vdd gating can also be used. When the
on-chip control logic has found a unit to be idle, the entire drain connection to that
part of the chip can be gated. This has the effect of actually powering down that
unit of the chip. The advantage of this is a period of near zero power dissipation.
However, Vdd gating can only be carried out when the unit is not required to store
a particular state [73].

Defining Idle

When a unit should be marked as idle, and thus use a gating procedure, is decided
by complex on-chip control logic. The control logic must monitor the activity of
particular units and also use information about what kind of instructions are in the
pipeline. Crucially, the behaviour of the program can decide how effective a gating
regime will be; long bursts of unit inactivity make for an easier gating decision
by the control logic. For instance, when the control logic of the chip is deciding
whether to clock gate a branch predictor, a larger cycle-distance between dynamic
branch instructions would result in more effective gating performance.

10

2.2.2 Technology Scaling

The amount of power dissipated dynamically during circuit activity is linearly pro-
portional to the capacitance of the given circuit. This means that the thickness of
the interconnects between transistors, and the transistor sizes themselves, directly
affect the power dissipated during each switching event. In order to fit more tran-
sistors on a single chip die, the size of the technology process used continually
decreases. This has the benefit of decreasing dynamic power dissipation (although,
as discussed earlier, it does increase leakage). Furthermore, layout designers can
use thinner transistor interconnects. This can drastically reduce power dissipation,
but is eventually limited by performance degradation; a thinner interconnect means
a higher resistance, and thus transition latency [27].

2.2.3 Voltage Scaling

Equation 2.1 importantly stated that the core voltage of a chip has a quadratic effect
on its power dissipation. Hence, it can be seen that the biggest impact of the any
modification to save power is to simply reduce the core voltage. This has been
the case, and in the late nineteen-ninetees and early twenty-first century the core
voltage of CPUs dropped dramatically. Unfortunately however, reducing the core
voltage past 1.5 Volts causes severe problems. First of all, as discussed earlier in
this section, the transistors must operate at a lower threshold. This has the effect
of drastically increasing sub-threshold leakage currents. Additionally, core voltage
directly affects signal propagation time in a chip; a lower voltage applies serious
performance limitations.

2.2.4 Logic Optimisation

Due to the sheer size and complexity of modern processors, they are usually de-
signed using a Hardware Definition Language (HDL). An HDL is a high level
language which enables the processor designer to concentrate on high level logic
issues, and avoid circuit layout considerations. A compiler for an HDL can then
convert this high level behaviour specification into an actual circuit layout. This
process means that there is often a detachment of the behaviour designer and the
actual layout of the chip. A great deal of research has been carried out into HDL
compiler optimisation techniques, and power compiler techniques, to improve the
power efficiency of the resulting circuit layout [15].

2.3 Architecture & Software Level Efficiency Techniques

The important level of energy abstraction for this dissertation is at the architecture
level. Before moving onto the main architecture focus (branch prediction), this

11

section will cover some of the other significant areas of architecture level research;
both in architecture design and compiler design.

2.3.1 Activity Factor Reduction

When designing energy efficient architectures, the central aim of the designer, or
computer scientist, is to reduce the activity factor of the underlying circuit. At the
architecture level of abstraction, this is achieved by reducing the number of transi-
tions that must occur to generate a particular result. This can be a different consid-
eration to that of high-performance design: if a modification reduces the activity
factor significantly enough, it can be accompanied by a performance degradation
whilst still improving energy efficiency. That is to say, it is possible for something,
a program for instance, to be more energy efficient even if it does not always exe-
cute as fast as it would on a high performance architecture. The activity factor is
the most important term in determining the dynamic power consumption of a pro-
cessor, and dependent upon the software running on the processor [117] [87] [69].

2.3.2 Delay Reduction

Having stated that even a slower architecture can be more energy efficient, it is
important to note that this is not ideal. The energy actually consumed from a
power source during an operation, the execution of a program for example, is the
product of the activity factor and the duration of the program. This means that,
ideally, a modification made to an architecture to reduce the activity factor should
be made without impacting on performance; it is very easy to reduce the average
activity factor of a program by simply halving the speed at which it executes [58].
This would, however, double the duration of execution, and thus likely consume
more energy. This is one of the reasons that the et2 efficiency metric gives a heavy
weighting to the duration of an operation; a considerable energy cost in a processor
is the general overhead of control logic through time [67].

2.3.3 Low Power Scheduling

Many modern processors have a large instruction set that contains many similar
instructions. These instruction can often be used by a compiler to achieve equiva-
lent results in different combinations and frequencies. The principal of low power
(static) scheduling is to use a simple energy model of the instruction set to make
decisions about how to translate high level computer programs into assembly code.
For instance, in some cases it may be more energy efficient to use a series of add
instructions instead of a multiply instruction, or use predicated instruction execu-
tion instead a branch. The decisions require an intelligent compiler, capable of
weighing individual instruction cost against performace delay [80] [104] [79].

12

2.3.4 Frequency Scaling

Frequency scaling is not really an architecture or compiler design technique; it is a
technique used by an architecture aware Operating System Kernel. The Kernel of
an Operating System can measure the instruction throughput of a processor over
time. By comparing this throughput to a known peak performance throughput, the
Kernel can then reduce the hardware clock frequency that the CPU is running at to
a level that is suitably matched to the current utilisation. The ideal result of this is
that power is saved, because the clock frequency has a linear effect on power dissi-
pation, and there is no performance degradation as the Kernel constantly monitors
and adjusts the clock frequency when required. This reduces the activity factor of
the CPU and control logic, and, when performed correctly, should not increase the
delay [106].

2.4 Branch Prediction

This chapter has so far examined low-level efficiency applications. This section in-
troduces the target subject of this project. Branch prediction is a mechanism used
to overcome the possible delay introduced by machine instructions that change the
control flow of a program during execution. It has become an extremely important
part of almost all processor architectures [40]. Although it is not the purpose of
this dissertation to act as a complete introduction to branch prediction, this sec-
tion discusses the principles of branch prediction, and its significance, in terms of
energy/power, to this research project. A more indepth examination of dynamic
prediction techniques and their inner workings can be found in the referenced lit-
erature.

2.4.1 The Branch Problem

Modern processors use a design method called pipelining. Pipelining is used to
increase the parallelism of processor architectures by breaking down the entire
processor into relatively independent stages. Each stage progressively ’processes’
an instruction, from fetch to execute to commit, and passes its result into the next
stage. This technique enables several instructions to be undergoing execution at a
given time [40]. Although this causes the execution time of an individual instruc-
tion to increase, it can dramatically increase the throughput of a processor [84].
Figure 2.1 shows an example five stage pipeline.

Different architectures break the processor down into a different number of
pipeline stages. Modern high performance processors often include as many as 28
pipeline stages [5]. Breaking the processor down into more pipeline stages can fur-
ther increase performance, and permits high clock speeds as the clock signal does
not need to propagate through the entire processor – only through each pipeline
stage.

13

Figure 2.1: An example five stage processor pipeline

When a processor is pipelined, the problem of the branch delay region is intro-
duced. A branch instruction can potentially change the flow of control in a program
during execution based on the result of some preceding, or included, operations.
In a pipelined architecture, the result of such an operation (for instance a compar-
ison by the branch instruction) is not available until the instruction passes what is
conventionally known as the execution stage. In Figure 2.1 this is shown by the
third stage. The instruction fetch stage/unit must continue to fetch a stream of in-
structions to fill the pipeline stages behind the branch instruction (two stages in
the example). These instructions could be from either path of the branch instruc-
tion – the actual direction is not known until the branch has passed the execution
stage. If the processor fetches instructions from what turns out to the be the wrong
path, the processor must be stalled while the incorrect instructions are flushed from
the pipeline, and the correct ones are fetched to fill their places. In a high perfor-
mance processor, this delay causes a significant performance penalty, particularly
when it is considered that one in every six to eight instructions in the dynamic
instruction stream is a branch. The branch problem is further exacerbated in MII
processor (Multiple Instruction Issue – a processor with parallel pipelines), where
many branch instructions may be undergoing execution at any given time [31].

2.4.2 Dynamic and Static Prediction

Several approaches have been devised to ameliorate the effects of the branch prob-
lem on performance. These approaches typically fall into the dichotomy of either
a purely static or purely dynamic technique. A simple description of these two
techniques is:

Dynamic Branch Prediction – Techniques which use processor hardware to dy-
namically (during a programs execution) decide from which branch path to
fetch instructions when a branch instruction is encountered. These tech-
niques typically base their prediction on the behaviour of previously encoun-
tered branch instructions (and their outcomes). The prediction can change
each time a branch is encountered dynamically.

Static Branch Prediction – Techniques which use data available at compile time
to provide a single, unchanging, prediction for each static branch instruction.
The data used can either be from static code analysis, or from execution
profiling data.

14

The best dynamic branch predictors are generally far more accurate than the
best static prediction methods [83]. This is because they can better adapt to changes
in datasets that affect the behaviour of branch instructions, and also the context
sensitive nature of many branch instructions (the nature of the preceding basic
block – there can be several).

2.4.3 Dynamic Predictors

Most modern processors, particularly the high performance variety, exclusively use
dynamic branch predictors to help solve the branch problem [5]. Indeed, the focus
of this project is on the existing dynamic predictor technology.

When a branch instruction is encountered dynamically it can change the ex-
ecution path by changing the address of the next instruction to be fetched. Dy-
namic branch predictors are split into two complementary units: the first decide on
whether branch will be taken or not-taken, and the second (for a taken branch) will
attempt to predict the target address for the branch. If both of these predictions
are correct, then the branch delay problem is solved for that encounter. Figure 2.2
shows a logical representation of how a dynamic branch predictor would look when
located in the instruction fetch stage of the pipeline.

Figure 2.2: An example of a modern dynamic predictor architecture

In Figure 2.2 it can be seen how the branch predictor is segregated into a di-
rection and target predictor, and how these units work together to produce the next
fetch address for the processor.

15

Target Prediction

Target prediction is, conceptually, the most straight forward part of the prediction.
A typical target predictor unit is a branch target buffer [84]. A branch target buffer
is a small cache with a variable number of entries (typically 256-1024) which is
indexed using the program counter (fetch address). The way that the program
counter is used to index the cache varies depending on the implementation, but
typically a hash or simple remainder-on-division operation is used. The cache can
either be direct-mapped or set associative. Typically, set associativity is used since
this will yield the best results when address conflicts occur.

When a branch instruction is resolved in the execution stage, its coordinating
entry in the branch target address buffer is updated. Branch target address buffers
tend to work very well because individual branches often have a fixed target ad-
dress, or a stable target address for a relatively long period of time. When set
associativity is used, the target address prediction can be very accurate when a
branch instruction has been encountered once, due to the principles of temporal
and spatial locality; the target of a branch tends to remain constant, at least for a
relatively long period of time.

Direction Prediction

The greatest difficulty in dynamic branch prediction is predicting whether a branch
instruction will cause a change of flow to its target address or not. This problem
is referred to as direction prediction, and there are several hardware approaches
that can be used to solve this. Many approaches were, originally, divided into
two groups: local and global predictors [40]. A local predictor would use the
behavioural history of a given branch to form a prediction, and a global predic-
tor would use the behavioural history of the contextually preceding n dynamic
branches when forming a prediction for the current branch. Both prediction tech-
niques form a direction prediction in the update pipeline stage, and are updated
during the execution or commit pipeline stage.

Though the focus of this project is not on the internals of a branch predictor,
some of the most common dynamic branch predictors, and a brief description, are
listed below:

Predict Not-Taken – This is the same as not predicting the direction/target pre-
diction of the branch at all, and just assuming that the next instruction in
the stream will be executed. This is inaccurate as most branches are taken.
A similar, though more accurate, effect is achieved by predicting ‘always
taken’ [40].

Predict Backward Pointing Branches as Taken – This is more accurate as many
loop branches will be predicted correctly [40].

16

Bimodal Branch Prediction – These predictors have tables containing two bit
entries. The table is indexed by some part, or all, of the program counter.
Each entry holds a counter that represents a prediction of strongly taken,
weak taken, weak not-taken, strongly not-taken. This entry is used to form
a prediction of which branch path will be taken. During the execution stage,
the relevant entry is updated by incrementing or decrementing the counter
appropriately. Very large Bimodal predictors have been shown to saturate
(reach their effective ceiling) at up to 93.5% correct [40].

Local Branch Prediction – Local branch predictors are implemented using two
tables. The first table is indexed by some low-order bits of the program
counter, and stores the taken/not-taken history of the given branch. The sec-
ond table consists of a similar structure to the bimodal history table, but is
indexed by the contexts of the indexed entry in the first table. This produces
an appropriate direction prediction for the given branch based on its previous
behaviour. Very large local branch predictors have been shown to saturate at
up to 97.1% correct [40].

Global Branch Prediction – Global branch predictors use the context sensitive
nature of branch instructions to predict the likely direction that will be taken
on a given encounter. A basic global predictor keeps a ‘shift’ register, con-
taining the history of the last n branches, which is used to index a table of
bimodal counters. This simple global predictor is only slightly better than a
bimodal scheme for large table sizes, and never as good as local prediction.
An accurate version of a global predictor, called the GShare predictor, XORs
the branch instruction address with the shift register, and then indexes the bi-
modal counter table with the result. The GShare predictor has been shown
to saturate at around 96.6% correct – almost as accurate as local prediction,
but can use smaller table sizes. Global prediction is easier to implement
faster than local prediction as the table lookups are indepedent, but fast local
implementations are possible [31].

Combined Branch Prediction – This technique uses three predictors in parallel:
a bimodal predictor, gshare predictor and a bimodal-like predictor to select
which of the previous two predictors to ‘listen’ to on a per-branch basis.
Combined branch predictors are about as accurate as large local predic-
tors [40].

Agree Prediction – A technique used in conjunction with multiple predictors to
help reduce aliasing between table entries. This technique can increase ac-
curacy, but at the cost of complexity [40].

Neural Branch Prediction – Neural branch predictors use neural network struc-
tures to form directional branch predictions. Still an emergent type of branch
predictor, the main challenge is the high latency of prediction formation, but

17

neural predictors can become accurate more quickly during a programs exe-
cution than other prediction techniques [109].

The internals of each of these predictors are not particularly examined in this
dissertation, but there are important references made to the choice of branch pre-
dictor used in the experimental architectures.

2.4.4 Power Consumption

The relative power consumption of a dynamic branch predictor varies highly de-
pending on the size of the rest of the processor. However, in high performance
architectures, the branch predictor unit will typically account for over 10% of a
processors global power consumption [82]. This significant consumption figure
is accounted for by the regularity of accesses and the complexity of the dynamic
predictor when accessed.

A dynamic branch predictor is accessed in two situations: when furnishing
a prediction in the instruction fetch pipeline stage, and when being updated with
the branches behaviour in the execution/commit stage. When it is considered that
around one in every eight dynamic instructions is a branch, it can be seen by branch
predictors are a significant drain. Both the direction predictor and the target address
predictor account for this power consumption. The ratio of power consumption
between the direction and target address predictor is variable, and depends upon
the configuration of both predictors. This is because a structure such as a BTB has
not only a large number of entries, but also a large entry width and associativity.

The internals of dynamic branch predictors are highly optimised and have been
subjected to many years of scholarly research [81]. Optimising their existing ac-
curate and well-studied behaviour is unlikely to achieve big gains. An interesting
remaining question is to what extent can the activity factor of a dynamic branch
predictor be reduced without affecting its accuracy?

2.5 Summary

This chapter has shown the various mechanisms, at various levels of abstraction,
that can be used to save power/energy in modern transistor based digital circuits.
At the lowest level, fabrication based improvements have allowed for more energy
efficient (and smaller) transistors that can be used as part of any processor design.
There are also various techniques that can be used at the logic level in order to
improve the energy efficiency of a designed circuit. The most relevant level for this
project is the highest level of abstraction, the algorithm level, where careful design
consideration can reduce the activity and time factors of a a given unit/operation.

Dynamic branch predictors consume a significant amount of global processor
power [81]. The amount of power consumed is proportional to the number of ac-
cesses made to the control logic (the activity factor of the predictor). Although

18

this varies from processor to processor, the amount of global power consumed is
always non-trivial. Dynamic branch prediction hardware has been subject to con-
siderable research in recent decades, but this has consistently focused on improv-
ing accuracy. While accuracy (one means of improving performance) is important
to energy efficiency, it is not the only variable that needs to be considered. The
next chapter introduces, and discusses, the contemporary approaches proposed to
increase the energy efficiency of dynamic branch predictors.

19

Chapter 3

Related Techniques

There are many techniques that can be used to reduce the power consumption of a
dynamic branch predictor. The previous chapter discussed the broad background
of power consumption and the external details of branch prediction. This chapter
introduces only the most relevant contemporary hardware and software techniques
for energy efficient branch prediction. The most closely related technique is the
Prediction Probe Detector, and this is discussed in the most detail. The software
techniques are discussed more briefly, but are expanded on in the continuation of
related work in the next chapter.

3.1 The Prediction Probe Detector (Hardware)

The Prediction Probe Detector (PPD) is a cache-like hardware unit introduced into
a processor to reduce the number of lookups made to a dynamic branch predictor
unit. It was developed and published in 2004 by, principally, Dharmesh Parikh and
Kevin Skadron at the University of Virginia [82] [81].

3.1.1 Implementation

Figure 3.1 shows the logic form of the PPD in relation to the direction and target
predictors for branch instructions in the instruction fetch pipeline stage.

The prediction probe detector is a small cache consisting of the same number of
lines/entries as the i-cache. It is indexed in the same manner as the i-cache, using
the program counter, and produces a corresponding entry for each instruction in
the i-cache. Each entry in the prediction probe detector consists of two bits; one
bit controls accesses to the direction predictor and the other bit controls accesses
to the branch target buffer. The two bits are used to avoid accessing the dynamic
branch predictor logic for non-branch instructions, and the direction predictor logic

20

Figure 3.1: The Prediction Probe Detector

21

for branches that are unconditional. The entries in the PPD are updated with new
predecode bits during an i-cache miss (when a new entry is fetched), and reflect
the required branch predictor access levels.

The PPD avoids having to access the dynamic branch predictor logic for non-
branch instructions in a high performance environment by using the properties of
a small cache to permit a parallel access of the branch predictor with the i-cache;
in highly clocked processors, it is not always possible to wait for the i-cache fetch
to complete before accessing the branch predictor. Instead of having to access
the entire branch prediction logic in every cycle, the processor now needs only to
consult the relatively small PPD unit, which will then dictate if a branch predictor
access is necessary. In processors with a slower cycle time (lower clock rate), a
parallel branch predictor access is not always required, and hence a proportion of
this effect can be achieved with simple pre-decode logic.

The PPD was shown to conserve, on average, 3.1% [82] of global processor
power. This result is significant, but the introduction of additional processor logic
clearly introduces additional power dissipation into the processor (although this
was accounted for in the study).

An extension to the PPD was then implemented that allowed the PPD to recog-
nise highly biased, or ‘unchanging’, branches. Never taken branches were repre-
sented using the existing two bits in the PPD entry (by disabling access to both
the direction and target predictors). Highly-biased taken branches require an ad-
ditional bit in the PPD that is used to assume a taken direction prediction. The
implementation of this was not made completely clear in publication, however, it
seems that an experimental implementation involved using profiling data to mark
commonly taken/not-taken branches in a compacted trace. This trace was then read
by the processor simulator at execution to set the additional bit(s) in the PPD. This
is not a plausible implementation, but did show encouraging results: an additional
global processor power saving of 2%. It is unclear how the decision was made as to
whether a branch was heavily biased or not, and how many branches were marked
in this way. Any errors incurred by the assumed branch behaviours are simply a
new source of branch misprediction.

3.1.2 Pipeline Gating

Pipeline gating is a technique implemented alongside the PPD to further save
power consumed executing misspeculated branch paths [82]. Pipeline gating works
only in conjunction with certain branch predictors, and assigns each branch either
a high or low confidence estimation based on the coherence of the two internal pre-
dictions of the hybrid predictor. Assigning a confidence to a branch prediction is
difficult [39] [56]. When the number of sequentially fetched low-confidence branch
instructions exceeds a specified threshold, the pipeline is stalled as it is considered
likely to be executing on a mispeculated path. Each time a low-confidence branch
is resolved, the counted number of low-confidence branches is decremented.

22

Pipeline gating is not discussed in great detail here, since it was found to have
very poor power conservation potential (much less than was suggested by previ-
ous studies). Pipeline gating introduces significant logic into the processor itself,
and erroneous pipeline gating behaviour can potentially impact heavily on per-
formance and power consumption. Additionally, as the pipeline depth increases,
pipeline gating becomes less effective. Finally, pipeline gating can be implemented
irrespective of other branch prediction techniques being used, and so isn’t on the
critical path of this investigation.

3.2 Software Based Approaches

There are many software based approaches that have been used to increase the
energy efficiency of microprocessors. The general concepts of these methods were
discussed in the previous chapter. However, none of these methods are explicitly
designed to exploit the potential energy savings available in the dynamic branch
predictor logic of a processor. The next chapter investigates, and discusses, some
older applicable software methods, but the next subsection introduces the most
prominent and investigated technique in use.

3.2.1 Hinting and Hint Instructions

Branch prediction, as discussed in the previous chapter, can generally be achieved
using two methods: static prediction or dynamic prediction. Static prediction as-
signs a prediction for a branch at compile time, which is interpreted by the hard-
ware, and dynamic prediction introduces hardware logic that will produce a pre-
diction based on the dynamic behaviour of the branch(es). When considered sep-
arately, dynamic branch prediction is found to have significantly higher accuracy.
However, this is not the case for all branch instructions, but rather the program as
a whole.

The principle of hinting, to conserve energy, is to assign a static prediction to
only certain branches, with the aim of reducing the number of accesses made to
a dynamic branch predictor. The hint is some way of communicating the likely
direction of the branch to the dynamic hardware. This should, ideally, have the
benefits of dynamic accuracy, but without all of the costs in terms of energy.

Assigning such static predictions, with the aim of conserving energy, has been
experimented with in a variety of ways. Some studies, implemented in VLIW
processors have introduced a new instruction, called a hint instruction, which is
inserted with the instruction word in front of a branch to inform the hardware of
an upcoming branch instruction [76], and that a prediction must be furnished. This
avoids the need to predict for non-branch instructions. Static predictions can be as-
signed using either compiler heuristics or profiling. Profiling is the most accurate,
however it is limited in previous studies [70] by the method used to decide whether

23

a branch should be marked as biased or not; generally a fixed bias threshold is
used, and if this is exceeded, then the branch is assigned a hint [35]. This does not
work well with dynamic predictors as it is possible a biased branch could still be
predicted better by the dynamic predictor (some branch patterns can be predicted
with almost total accuracy).

An implementation of compiler based VLIW hint instructions, to avoid direc-
tion prediction for some biased branches, was demonstrated by a research group at
Politecnico di Milano to reduce the number of branch predictor accesses by up to
86% [70]. However, no reliable indication was given of the possible power savings,
and these results were for selected benchmarks only (not a full suite). It is possible
that the results published were not fully representative of a cross section of tasks.

The principle of the hint instructions has also been further extended to provide
a simple direction prediction for heavily biased branches, or branches which will
never been taken. These static direction predictions are relatively crude and were
assigned based on compiler heuristics that decided on how likely biased a branch
is. Again, these static predictions only removed the burden of direction prediction,
not target prediction.

3.3 Analysis and Summary

The most closely related and significant work in the field of energy-efficient branch
prediction is the Prediction Probe Detector. This is a hardware unit that is used
to store information about which cache lines contain branch instructions and, for
certain branches, whether they should be assumed taken or not taken. Previously
investigated software methods of energy-efficient branch prediction take a similar
approach, but use hint instructions in VLIW instruction bundles to communicate
the same information.

There are several key limitations with both approaches:

1. The focus of energy saving is on the lookup of a branch predictor in the in-
struction fetch stage, when furnishing a prediction. This is important, but all
committed branch instructions will also update the branch predictor, which
is equally, if not more, costly than the lookup phase, in terms of energy. The
update phase has possibly been ignored [82] due to the lack of reliable static
prediction assignments for many branches (the focus was on not predicting
for non-branches, in highly clocked processors).

2. The assignment of any static prediction to a branch was achieved using rudi-
mentary methods. Branches were given a statically predicted direction based
on whether they appeared ‘likely’ to be biased.

3. Neither technique makes use of any of the existing methods of branch re-
moval/avoidance and scheduling techniques. These are discussed in further
detail in the next chapter.

24

In additional to the problems stated above, the PPD also introduces significant
hardware. While this hardware was accounted for, and did save global processor
energy, the actual cost in power was not specified. The PPD is the size of a small
cache and would hence have significant power and timing implications. The hinting
methods used in previous software efficiency studies have principally focused on
VLIW processors (due to the availability of instruction slots in instruction bundles).

The area of energy-efficient branch prediction is not well investigated at the
level of the hardware software interface. It is likely that there is room for improve-
ment if hardware and software techniques can be used in cooperation to achieve a
more successful result. This has been considered in the performance arena [83].
The next chapter progresses to discuss some early stage investigations into branch
prediction and energy, and also discusses more of the existing software branch
avoidance techniques.

25

Chapter 4

Initial Investigation and

Preliminary Research

The previous chapter has introduced the key related work on energy-efficient branch
prediction. Previous work [82] has shown that, in order to save power during a
programs execution, the key variable to be optimised is the number of accesses
made to the dynamic branch predictor. This chapter investigates several other ex-
isting methods that could possibly be used to remove the number of accesses to a
dynamic branch predictor. Their initial use was not for energy efficiency but, as
discussed in this chapter, it is possible to make use of them to reduce the load on a
dynamic branch predictor.

4.1 Research Question Focus

The existing work in the area exhibits the typical dichotomy of static versus dy-
namic methods with little handshaking between the two. The main research ques-
tion being addressed in this project is whether it is possible to use a combination of
dynamic branch prediction with static methods to achieve a more beneficial result,
in terms of power, than using the two paradigms in isolation. To properly achieve
this goal, it is necessary to conduct a review and critique of existing static meth-
ods of branch removal and prediction, and examine how these could potentially be
used.

Dynamic predictors have been extensively researched and can achieve a very
high degree of accuracy. It is unlikely that modifying their highly optimised com-
position would achieve any great results in terms of power. The question, and goal,
of this project is to evaluate a possible method whereby the activity factor of a
dynamic branch predictor can be reduced, and thus conserve power/energy.

26

4.2 Static Methods to Avoid Dynamic Branch Prediction

Dynamic branch predictors are not always a popular method of handling the branch
delay problem in pipelined processors. Indeed, when silicon space on in a proces-
sor is at absolute premium, and the fabrication process does not permit any addi-
tional complex logic, several different methods for statically removing/predicting
the behavioural outcome of a branch can be used. Although fabrication technolo-
gies and feature sizes now readily permit units like a dynamic branch predictor, it
is useful to review the existing static methods and evaluate how useful these meth-
ods may be when applied to reducing the power consumption of a dynamic branch
predictor.

4.2.1 Delay Region Scheduling

The branch delay region, as discussed previously, is a number of cycles during
which the outcome (direction and target) of a branch instruction has not been cal-
culated. The number of ‘slots’ for instructions in this region typically equates to
the number of pipeline stages between the instruction fetch stage (IF) and execution
(EXE) stage, inclusively.

Delay region scheduling is a static process whereby the compiler tries to move
an appropriate number of instructions into the delay slots following a branch in-
struction in the static code [84] [40]. Rather than the processor dynamically taking
any action upon encountering a branch in the dynamic stream, the processor sim-
ply ignores the fact that a branch instruction may affect the control flow of the
program, until the execution stage. The instructions immediately following the
branch are sequentially fetched as normal. In the execution stage, when the target
of the branch instruction is known, the program counter is updated to reflect the
appropriate target of the branch.

The method used by delay region scheduling implicitly requires that all instruc-
tions moved into the delay region are independent of the outcome of the branch in-
struction dynamically. There are two approaches to this, which are discussed here.
Both approaches are similar, but move candidate instructions into the delay region
from different types of locations. They are generally used as separate exclusive
methods and rarely in conjunction with one another.

Local

Scheduling a branch delay region ‘locally’ refers to moving branch independent
instructions into the delay region from the same basic block as the branch. This
means the instructions precede the branch in the static code.

Instructions can be moved into the delay region from the same basic block
when they do not modify registers that either directly, or indirectly, affect the direc-
tion or target of a branch instruction. The compiler steps through each instruction

27

in a static basic block in reverse, starting from the branch, and checks for direct
or indirect branch dependencies. If there are no dependencies then an instruction
can be scheduled (moved) into the delay region. This process is discussed in more
detail in the next chapter, and then in practical detail in the simulation chapter.

Local delay region scheduling has the advantage that, where the delay region
can be filled, it is always a ‘win’. It is relatively simple to implement and requires
little in the way of hardware logic. However, if a delay region cannot be filled for
a given branch, the (remaining) delay slops must be filled with NOP instructions
which essentially waste processor cycles. Processors with shallow pipelines, and
thus small delay regions, are ideal candidates for the use of the local delay region
as it is easy to find candidate instructions to scheduling into the delay region. How-
ever, even in this case, using local delay region scheduling as an exclusive branch
resolution mechanism is increasingly difficult with modern compilers that highly
optimise code and tend to make branches highly dependent on closely preceding
instructions.

Global

Global delay region scheduling is a process where the delay slots for a given branch
are filled with instructions from other basic blocks. The ‘other’ source for candi-
date instructions can be chosen by two methods:

1. A statically predicted target basic block

2. Analysing the directed graph structure of basic blocks to discover indepen-
dent instructions from succeeding basic blocks that are always executed after
the current basic block

The first method requires some way to decide which basic block, of the two
possible targets, would be most profitable to schedule from. The simplest way is
to assume that forward pointing branches are taken as this is statically the most
accurate simple heuristic. However, a more accurate way is to use profiling data to
find the most commonly taken dynamic direction for the branch in question. The
instructions do not need to be branch independent; simply the first N instructions
are selected to fill the delay region (as this is a form of static speculation).

The second method requires very complicated static analysis by the compiler.
This process can be very difficult in modern optimised code for the very same
reasons that plague local delay region scheduling.

Additionally, both methods of global delay region scheduling implicitly cause
code expansion. This is because a basic block can have multiple entrants. Rather
than actually moving the instruction statically, the appropriate instructions are
copied from the target basic block into the delay region, and a new entry point
is created in the target basic block. The delay scheduled branch in question is then
changed to point at the new entry point, while other entrants to the target basic

28

block use the original entry point (as they have not been scheduled with the same
instruction). The copied instructions result in code expansion as they still exist in
the target.

A simple example of this is shown below for a processor with three delay slots:

SCHEDULED_BRANCH_BLOCK:

INS1

INS2

INS3

INS4

BRANCH: TARGET_BLOCK’

T_INS1

T_INS2

T_INS3

TARGET_BLOCK:

T_INS1

T_INS2

T_INS3

TARGET_BLOCK’:

T_INS4

T_INS5

T_INS6

The globally scheduled delay region can be used for all branches, but has the
problem that it requires hardware support when speculatively scheduling from a
target basic block. The delay region, in case number two, is scheduled specula-
tively and thus requires some way for the hardware to throw away falsely executed
instruction, and then recover. This is usually accomplished using a hardware unit
such as a reorder buffer.

4.2.2 Static Prediction and Instruction Hints

Static branch prediction, using instruction hints, is a method of assigning an un-
changing prediction to a given branch, and this prediction is then used dynamically

29

by the processor to decide which direction to assume for the branch. Static branch
prediction has been used either as a stand-alone method of branch prediction, or
to override the dynamic predictor [51] [47]. The processor, during the instruction
fetch stage, will examine the hint-bits in a branch instruction (usually in a fixed
location for logical simplicity) and determine which direction to fetch instructions
from.

The key difficulty in static branch prediction is deciding which direction to
assign as a static prediction. There are two main approaches:

1. Use compiler heuristics and analysis to determine, from the context of a
branch instruction, whether it is likely for part of a loop construct and thus
be iterated many times and be strongly taken

2. Use dynamic profiling data too determine which branches are strongly taken
and which branches are strongly not-taken

The most accurate method tends to be profiling as it takes into account the
dynamic behaviour with a target dataset [42].

Static prediction with instruction hints however has one key difficulty: while it
provides the likely branch direction, it does not provide the target. This is resolved
in different ways depending on the architecture [51] [5]. The simplest solution is
to introduce a hardware unit such as a branch target buffer which only provides the
target address of the branch on a hinted-taken branch. This usually works well as
the branch targets are commonly unchanging. However, it introduces significant
hardware. Another option, such as that used by the PowerPC architecture, is to
design the instruction set orthogonally, such that it is very simple to calculate a
target address in the Instruction Fetch stage using very simple decoding.

Static branch prediction fares poorly as a complete prediction mechanism in
modern processors. This is because a dynamic branch predictor is almost always
more accurate as most branches are not completely biased to one direction. Using
static predictions to override a dynamic prediction is usually fruitless when con-
sidering this accuracy, and only has benefit when passing a hint which advises the
processor of a very difficult-to-predict branch.

4.2.3 Guarded Execution

Guarded Execution is another method that can be used to overcome the branch
delay problem, and is often also referred to as conditional or predicated execu-
tion [98] [53] [97]. Guarded instructions are special instructions in the instruction
set that mimic a small subset of existing committal instructions, such as move, add,
load and store, but provide a built in condition detection. This condition will take
the same form as that evaluated by a branch instruction. Instructions from a target
path can be scheduled into the delay region and assigned to guarded instructions.

30

If the conditional guard on the instruction is true, the processor commits the in-
struction’s result. If the conditional guard is false, then the instruction is treated as
a NOP instruction, and no value is committed.

Successful utilisation of guarded execution scheduling will remove the need for
dynamic prediction for branch instructions, but the benefit, in terms of both per-
formance and power, are contingent on the compiler successfully deciding which
branch path to schedule from; this decision can be made in a similar way to global
delay region scheduling. In some situations, such as small loops and simple control
constructs, guarded execution can completely remove a branch instruction (up to
33% of branch instructions can be removed [97]).

The disadvantages to guarded execution are that it puts pressure on the register
file (in complex control structures) and is limited in accuracy in the same way as
global delay region scheduling: although it provides a method to avoid dynamic
prediction, it is likely to cause a performance penalty when instructions behave as
NOPs after poor compiler scheduling.

4.3 Hardware Multithreading

Hardware multithreading refers to an architecture design that has support for fol-
lowing multiple threads of execution in parallel. It has been argued that this ar-
chitecture design approach could be used to resolve the branch delay problem by
following both possible paths of a branch instructions. However, this approach
will, by definition, give the equivalent of only a 50% prediction accuracy. In terms
of both performance and power, this is useful only for branches that are particularly
difficult to predict. Furthermore, the parallel execution units can almost always be
better utilised when left to follow multiple threads, as opposed to speculatively
executing both paths of a branch instruction.

There are projects that use a large number of parallel units to achieve large scale
parallelism and, within this scheme, schedule different threads onto processor cells
while a thread is stalling in wait of branch resolution. One project that takes this
approach is called microThreading [57]. The problem with this approach lies in its
radical nature; it is more desirable, for this project, to have a smaller architecture
impact in any approach used to reduce branch predictor power consumption in
embedded processors.

4.4 Initial Experiments

4.4.1 Removing Dynamic Branch Predictors

The first, and most obvious, suggestion that is often made when considering the
power consumed by a dynamic branch prediction unit is to remove the dynamic

31

branch predictor completely. Indeed, a dynamic branch predictor was originally
conceived as a device to increase the performance of high speed processors [31] [84] [40].
It it is also true to say that in the embedded, power sensitive field the performance,
or execution time in seconds/cycles is not necessarily the metric that is being opti-
mised. Hence, a logical consequence of this often seems to be the outright removal
of a dynamic branch predictor: if we don’t care so much about performance, and a
branch predictor uses significant power, then perhaps it should just be removed?

The dynamic power cost of a branch predictor, often over 10% of the proces-
sor’s global power consumption [81] [82], is, in fact, offset by its power savings
in the number of cycles it reduces execution time by. This is because, when opti-
mising for energy efficiency, a key part of the metric is the amount of time a given
operation, or operations, take to complete. While a dynamic branch predictor may
use 10% of global power on a per-cycle basis, this does not take into account the
global power change. The total power used by a processor with a dynamic branch
predictor unit is, for example, equal to global power multiplied by the number of
cycles that the given program executes for. Simply removing the branch predictor
fails to take into account its important affect on the number of cycles that a pro-
gram executes for. The branch predictor will invariably reduce the total execution
time of a program.

Processor cycles are very important in energy efficiency. In each cycle, a vast
amount of logic is ‘clocked’ (a clock signal is propagated around the processor
logic) and various units within the processor will change state. Clock signals,
and state changes in general, are very expensive in terms of power. If these state
changes are occurring on redundant instructions, such as misspeculation or pipeline
‘bubbles’, then energy is wasted on instructions that will never be committed. In
this sense, it could well be the case that a branch predictor is actually a power
saving device.

A small experiment was carried out using the EEMBC benchmarks and and the
HWattch processor power simulator. Both of these are discussed in the simulation
chapter of this report, but are referenced here for completeness. The experiment
used the following general baseline:

• Scalar Processor

• Seven stage pipeline

• Separate instruction/data cache

• Full execution of the entire EEMBC benchmark suite

• With Branch Prediction: a large local predictor (1024 entries)

• Without BP: assume not-take (fetch the next instruction as normal – PC+4)

A more detailed specification of this baseline can be seen in the baseline section
of the experimentation chapter later in this report (7.2); however, for the basis of
this small experiment, the above information is sufficient to demonstrate the result.

32

The outcome of executing the entire EEMBC suite on the baseline shown was
that, using a weighted average, global power consumption increased by approxi-
mately 10% when the branch predictor was not present. This result confirms simi-
lar experiment conducted elsewhere [82].

The importance of this result is two-fold: firstly, it shows that a dynamic branch
predictor is actually a power-saving device and cannot simply be removed, and
secondly, it demonstrates that any attempt to decrease the power consumption of
the dynamic branch predictor logic must not come at the cost of a significant change
in accuracy.

The experiment shows that reducing the accuracy of any existing form of branch
prediction will, at some stage, have an extremely negative observable effect in
terms of power.

4.4.2 Instruction Stream Research (HTracer)

In the early stages of research, a dynamic instruction tracer tool was developed
called HTracer (Hertfordshire Tracer) [41] [45]. HTracer is capable of producing
selective traces of the dynamic instruction stream on any platform for which the
Linux operating system is available. This is achieved by close coupling the Linux
kernel calls, and with a flexible system of specifying which kinds of instructions to
trace. A more detailed description of the capabilities of HTracer can be seen in the
eponymous publication contained in Appendix A.

Extensive branch traces were produced for the execution of various isolated
benchmarks from both the EEMBC and the SPEC 2000 benchmark suite on the
PowerPC architecture. These were analysed to discover the extent to which branches
are biased to a particular direction, and which kinds of branches tend to account
for a large proportion of the dynamic instruction stream.

The results of the trace analysis showed that a large proportion (around 70%)
of the dynamic instruction stream was made up of a single branch format/type:
the offset type branch. This is logical, when considered, because offset branches
are used by relatively small, highly iterative loop constructs. These loops typically
execute a large number of times and would therefore likely account for a large
proportion of the branches in a given instruction stream. Nevertheless, this result
is useful as it verifies the behaviour of a ‘real’ instruction set.

The results gathered from the instruction traces also showed that a high prop-
ertion of branches are very biased to one direction:in many programs, up to 70%
of all dynamic branches encountered are more than 85% biased to one target di-
rection [43]. Branches that are so greatly biased are very easy to assign a static
prediction to, and it is possible that this static prediction could be as accurate as a
dynamic prediction for these branches.

33

4.4.3 I-Cache Experimentation

Additional experimentation was carried out with respect to the I-Cache and the
dynamic branch predictor [32]. The Wattch power analysis simulator was modified
to include two special additional bits in each line of the instruction cache. These
bits represented saturation information for each branch in the I-cache. The bits
were set based on the branch history stored in the directional predictor history
tables, and were used to bypass a dynamic prediction for very biased branches.
When a branch exceeded a certain level of bias to one direction, the bits would be
set to avoid accessing the dynamic branch predictor the next time(s) the branch is
encountered.

Although this could only be used to avoid accessing the direction part of the
dynamic branch predictor, and not the branch target predictor, it did show that it is
possible to save some power without significantly affecting branch accuracy. In-
troducing the additional bits saved around 1% of global processor power. Another
clear downside of this particular approach is that it increases the size and complex-
ity of the cache, and this is already a sizeable and complex processor unit. More
details of this implementation can be found in the publications appendix.

4.5 Summary

This chapter has introduced and discussed various methods that have been previ-
ously used to avoid the need for dynamic prediction. The first experiment described
in this section revealed that, in fact, a dynamic branch predictor is actually a power
saving device in most contexts. This means that a dynamic branch predictor saves
global processor power by reducing both the number of misspeculated instructions
executed and also by the avoidance of redundant cycles following a misprediction.
This is significant as it shows that any power saving modifications to a branch
prediction paradigm must not come at the cost of branch prediction accuracy; mis-
prediction is expensive in terms of both performance and power.

Delay region scheduling is an interesting concept as it, in theory, completely
removes the need of a dynamic predictor. However, the reality is that it is very dif-
ficult to schedule into the delay region effectively. Local delay region scheduling is
the most beneficial, but extremely difficult to find candidate instructions for, partic-
ularly in contemporary optimised assembly code. Global delay region scheduling
has the advantage of making it easier to find candidate instructions, but introduces
static speculation and code expansion.

Guarded instruction execution is an interesting concept, but suffers from simi-
lar scheduling problems to the global delay region, and also applies pressure on the
register file for the various guards required in complex control sequences. Hard-
ware multithreading is an inappropriate method of resolving the branch problem
for embedded processors as it is both energy-inefficient and inaccurate.

Preliminary research has shown that an ideal solution might be to use a com-

34

bination of the static methods discussed in this chapter in conjunction with an ex-
isting dynamic prediction paradigm. The static methods should be used on highly
biased branches, or those which can be scheduled with no speculative cost. Such
an algorithm could complement existing dynamic predictors by reducing the num-
ber of dynamic accesses, and thus reducing global power consumption over a pro-
gram’s execution. A formulation of this ideal was conceived which combined local
delay region scheduling and profiling data (in the form of hint-bits). This ‘com-
bined algorithm’ is discussed in great detail in the next chapter, and leads into an
in-depth investigation.

35

Chapter 5

The Combined Approach

The combined approach makes use of two traditional processes, with some novel
modifications, and uses them in conjunction with the architecture’s existing dy-
namic branch predictor. The impetus behind this approach is to represent runtime
information statically in a branch instruction. This can then be used by simple
hardware to bypass the need to access the dynamic branch predictor for as many
branches as possible. The most important goal of this approach is to have as little
impact on the overall prediction accuracy of a program as possible. Hence, the
algorithm should not increase the execution time of a program, or cost additional
power through mispredictions.

5.1 Local Delay Region Scheduling

In contrast to scheduling into the delay region from a target/fallthrough basic block,
a locally scheduled delay region takes branch independent instructions from the
same basic block that precede the branch in the static code.

A branch independent instruction is any instruction whose result is not directly
or indirectly depended upon by the branch to calculate its own behaviour. Moving
a non branch independent instruction into the delay region would affect program
semantics [80] [40].

Deciding which instructions can be moved into the delay region locally is
straightforward. Starting with the first instruction from the bottom of the given
basic block in the static stream, above the branch (the branch instruction’s prede-
cessor), examine the target register operand. If this target register is NOT used as
an operand in the computation of the branch instruction then it can be safely moved
into the delay region. This process continues with the next instruction up from the
branch in the static stream, with the difference that this time the scheduler must
decide whether the target of the instruction is read by any of the other instructions

36

Figure 5.1: An example of local delayed branch scheduling

below it (which are in turn used to compute the branch). This means the operands
and target must be checked for data hazards [33]. Figure 5.1 shows how the two
instructions from basic block ‘L1’ have been moved into the delay region of the
branch and will always be executed (and usefully committed) in the stages of the
pipeline behind the branch. The algorithm used is explained in more detail in the
next chapter, which discusses its implementation. In fact, the way in which the al-
gorithm is used in the implementation greatly simplifies the dependency checking,
so this is deliberately given a curt discussion here.

Local Delay Region Scheduling is an excellent method of utilising the delay
region where possible; it is always a win, with no penalty and completely avoids
the use of a branch predictor for the given branch. This is true because we can
be certain that the instructions moved into the delay region will always need to be
executed; by the time the processor needs to fetch instructions from a target path,
the target of the branch has already been calculated. Scheduling in this way avoids
any speculation at all for the given branch and requires no control logic to recover
from instructions that were scheduled from the wrong path of a branch.

The clear disadvantage with local delay region scheduling is that it cannot al-
ways be used. There are two causes that result in this:

1. In well optimised code, it is difficult to find branch independent instructions
in the same basic block that can be moved into the delay region.

2. In deeply pipelined processors, the delay region can be vast (e.g. 8 clock
cycles before branch resolution. This means finding 8 instructions within
the same basic block to the fill the delay region, which is extremely hard).
For a branch where it has been chosen to use the local delay region, any slots
which cannot be filled with useful instructions must be padded with NOPs.
This is wasteful.

However, the locally delayed branch is still very useful for unconditional ab-
solute branch instructions, particularly in embedded processors. This is because
an unconditional absolute branch instruction is not dependent on any preceding

37

instructions when calculating either its target or direction. This means that the
number of delay slots that can be scheduled is limited only by the size of the basic
block from which instructions are being scheduled. Furthermore, in an embedded
processor, the number of branch delay slots is much lower than desktop machines;
typically is it between 2 and 5 instructions (depending on the architecture).

Although the local delay region is no longer a useful method on its own, it
will prove profitable when used in combination with the methods proposed in the
following sections [46].

The Delay Region in SuperScalar Processors

The delay region in superscalar processors, which use dynamic scheduling algo-
rithms, can be of variable size. This means that it is possible there is no fixed
number of delay region slots to schedule into. However, this can be overcome by
using profiling data. Each branch instruction exists within a static context; during
execution there is a fixed number of entrants to a given basic block. The profiling
data can be used to determine the minimum number of delay slots available for a
given branch, and also the maximum, over an adequate dataset.

The delay region is scheduled with instructions to fill the minimum available
delay slots and then ‘NOP’ instructions are inserted up to the maximum number
of slots. This ensures program semantics are always maintained and allows the
use of the local delay region in a superscalar environment. However, this process
does rely on a dataset ‘touching’ each area of a program sufficiently. Typically,
particularly in shallow pipelines, the minimum and maximum numbers of delay
slots available for a given branch are extremely close (if not the same). In scalar
processors, which currently constitute the majority of embedded processors, there
exists no such problem.

5.2 Profiling

The central aim of the combined algorithm is to associate an accurate static pre-
diction with as many branches as possible, so as to reduce accesses to the dynamic
branch predictor (in order to save energy). This can also be achieved through static
analysis of the assembly code of a program; it is often clear that branches in loops
will commonly be taken and internal break points not-taken. However, such a
method does not take into account either the behaviour or accuracy of a coexisting
dynamic predictor.

A more reliable method is to observe the behaviour of a given program, at the
assembly/machine level while it is undergoing execution with a sample dataset or
datasets [41]. This means that the behaviour of each branch instruction can be
recorded in the form of a specially adapted program trace which logs a detailed
history of selected instructions while undergoing execution. Any relevant infor-

38

Figure 5.2: The basic structure of profiling

mation about a branch can be extracted and used to form static predictions where
possible. This is the essence of profiling in the context of static branch prediction.
The number of datasets that any given program is profiled with will affect the ac-
curacy of the profiling results. The more diverse datasets used, the more widely
applicable the results will be, but care must be taken in selecting only datasets that
represent the target execution domain.

Profiling derives its key abilities from the fact that a program will behave simi-
larly across datasets in the same domain. This means that, for instance, profiling a
JPEG compression program with one image dataset will yield results that can pre-
dict the behaviour of the program with another image dataset. This is particularly
useful for branch instructions as they commonly only behave differently across
datasets at a few key moments during the programs execution.

5.2.1 Assigning a Static Branch Behaviour

The key limitation of the traditional use of profiling to form static branch predic-
tions is that it can only be used to show the bias of any given branch instruction.
While this is useful for assigning a static branch prediction in a processor without
a dynamic predictor, it has a degrading effect on overall prediction accuracy when
used in conjunction with a dynamic predictor, and in turn actually increases power
consumption [82].

This limitation arises when one considers how profiled data about the direc-
tional history of a branch instruction undergoing execution could be used to assign
a static prediction. In a static-only prediction model, a branch instruction is as-
signed a prediction to instruct the processor to assume the path of profiled direc-
tional bias; it does not matter if the bias is only 1% (51%) to a specific direction as
this will still be the best prediction to make.

However, consider the situation where there exists a dynamic branch predic-
tor in the target processor, and we are trying to reduce accesses to this without
reducing overall branch prediction accuracy. It needs to be decided at what bias
level a branch is assigned a static prediction, but this is difficult since it is unknown
whether the dynamic predictor could achieve a higher accuracy than a static as-

39

signed prediction for a given branch. Given the general accuracy of dynamic pre-
dictors, it is clear that a fixed static prediction bias assignment level is likely to be
either:

1. Set so high that no branches are removed from dynamic prediction or

2. Set low enough to decrease dynamic prediction accesses, but also then often
removes branches that are better left for dynamic prediction, thus increasing
power consumption by the increased delay of mispredictions

5.2.2 Adaptive Branch Bias Measurement (ABBM)

The solution to this problem requires additional information to be recorded dur-
ing profiling execution. Instead of just storing the directional history of a branch
instruction, the profiler should also log the associated predicted direction of the dy-
namic predictor for the given branch. Using the full directional and dynamic pre-
diction trace of a program, a static prediction assigner can build up an individual
profile for each branch which shows the dynamic prediction accuracy for a given
branch verses its bias. This information can then be used to assign a static branch
prediction to only those branches whose dynamic prediction accuracy would not be
impaired by a static prediction – when a given branch’s bias is greater than or equal
to its dynamic prediction accuracy. It is corollary to say from this, that the more
accurate the dynamic predictor in use is, the fewer branches will be removable with
a static prediction.

5.3 The Combined Algorithm

The combined approach is a method designed to make use of the strengths of both
the local delay region and the novel Adaptive Branch Bias Measurement (ABBM)
through profiling. When these two methods are combined, it is expected that the
number of dynamic branch predictor accesses can be radically reduced due to the
principles of execution locality.

The information that needs to be conveyed in a given static branch instruction,
in order to avoid accessing a dynamic predictor, is as follows:

1. Statically predict taken. Do not access, or update, the dynamic predictor for
this branch.

2. Statically predict not-taken. Do not access, or update, the dynamic predictor
for this branch.

3. Use the locally scheduled delay region. Do not access, or update, the dy-
namic predictor for this branch.

4. Use the dynamic predictor (and update it).

40

It is important to remember that two accesses need to removed for a given
branch: the access to furnish a prediction and the access to update the branch
predictor. The representation of this information requires two bits in a branch
instruction (these bits are now referred to as hint-bits) and is discussed in further
detail in the next subsection.

Algorithm 1 shows a more precise definition of how the combination of the
two techniques should work. The algorithm relies on only setting the profiled hint-
bits if the branch is as, or more, biased than its prediction accuracy. This method
is novel because with an adequate data set(s) it should have minimal impact on
the prediction accuracy for the given branch instruction, and thus not increase the
execution time of the program as a whole (something which would actually likely
result in an increase in power consumption).

Input: All Assembly Files of Programs
Output: Appropriately Hinted Assembly Files
foreach Program do

foreach Assembly File do
foreach Branch Instruction do

Initially, set hint-bits to “Use the dynamic predictor for this
branch”
if Branch == Unconditional Branch then

Set hint-bits to use local delay region and move two
instructions preceding branch into delay region (if possible)

else
if Branch’s Profiled Bias ≥ Dynamic Branch Predictor’s
Accuracy for this Branch then

Set Hint-Bits to Predict Profiled Bias
end

end
end

end
end

Algorithm 1: Combined Dynamic Branch Prediction Reduction Algorithm

Figure 5.3 shows how Algorithm 1 would work in the familiar setting of com-
piling a program by introducing additional stages into the Gnu Compiler Collection
Chain.

5.4 Hardware Implementation

In order to save energy/power in a particular processor architecture, the hardware
needs to include some logic to take advantage of the four hint cases described pre-
viously. Fortunately, these hardware modification are relatively simple, but there

41

Figure 5.3: Block model of the profiling and hinting regime

are some subtle considerations that are required in order to gain the maximum ben-
efit from the combined algorithm. The following section discusses instruction set
modifications in further detail to clarify those points that have already been dis-
cussed.

5.4.1 Instruction Set Modifications

The simplest way to represent the four behaviours required by the combined algo-
rithm is to use hint-bits. Hint-bits are additional bits contained within an instruc-
tion, or instructions, in a given instruction set. In the case of avoiding accessing a
dynamic branch predictor, there is a decision to be made about whether to include
the behavioural hint-bits in all instructions or just in branch instructions. Many
modern processors already predecode instructions to determine whether to access
the dynamic predictor unit (they only access the dynamic predictor on a branch
instruction); in which case, hint information need only be included with the branch
instructions themselves. Including hint information in branch instructions alone is
much more acceptable since branch instructions typically have at least two redun-
dant bits. However, it could easily be the case that a designer may wish to use the
hint-bits themselves as branch predecode information, and thus implement them
throughout the entire instruction set. Some modern embedded instruction sets [51]
already include hint-bits in branch instructions, but they are currently only used
as a fallback and no compiler/hardware makes use of them as an energy saving
method. The model proposed in this study includes hint-bits only in the branch in-
structions as almost all energy efficient architectures already check to see whether
an instruction is a branch by using predecode logic and an appropriately designed
instruction format.

The most important point for consideration in the instruction set, and for com-
pilers, occurs when the hint-bits are required to represent an ‘assume taken’ branch.
As described in the Chapter 2, the energy cost of accessing a dynamic branch pre-
dictor is split between the direction predictor (pattern history tables) and the target
address predictor (branch target address buffer). In order to make energy sav-
ing as effective as possible, accesses to both parts of the dynamic predictor must

42

be avoided whenever possible. The target address of a branch instruction is not
known (at the earliest) until the instruction is decoded. This makes avoiding the
use of the branch target address buffer difficult without simply replicating branch
instruction decoding in the instruction fetch stage of the pipeline. In an energy
sensitive environment, this is counterproductive.

Fortunately, there does exist a simpler way to work around this problem. Most
instruction sets, particularly RISC variants (the most common type in an energy
sensitive environment [51] [7]), overwhelmingly use a particular branch instruc-
tion format. Although a large variety of branch instructions are usually available,
the majority of branch instructions actually used are offset type branches that are
used to jump a short distance in program memory (the principle of spatial local-
ity). These branches typically share the same instruction format. When a given
program is monitored dynamically, the skew toward offset branches becomes even
more pronounced. Table 5.1 shows the branch instructions of the PISA instruction
set used by HWattch (the simulator used for the experimentation). PISA is closely
related to MIPS, but is designed to give results similar to other RISC instruction
sets [16]. Table 5.1 also shows the static and dynamic occurrence of each branch,
its associated instruction format and the possible method from the combined algo-
rithm that can used with it.

Table 5.1: Static and dynamic branch occurrence for each PISA branch, and its
occurrence across the whole EEMBC benchmark suite

Branch Static Dynamic Branch Format
Instruction Occurrence Occurrence (Applicable Method)
j 10.21% 17.31% Unconditional Abs. (Local Delay Region)
jal 33.95% 3.58% Unconditional Abs. (Local Delay Region)
jr 15.54% 3.55% Register Jump Format (Not Hinted)
jalr 2.32% 0.04% Register Jump Format (Not Hinted)
beq 18.18% 20.23% Offset Format (Bias Profiling)
bne 16.46% 50.09% Offset Format (Bias Profiling)
blez 1.52% 2.58% Offset Format (Bias Profiling)
bgtz 0.27% 1.04% Offset Format (Bias Profiling)
bltz 0.48% 0.39% Offset Format (Bias Profiling)
bgez 1.06% 1.19% Offset Format (Bias Profiling)

It can be seen that the vast majority (75%) of dynamic branch instructions are
of the offset format. It is as a result of this that the decision was made to only
use the profiled ‘assume taken’ case with this branch format. This means that the
required hardware alterations (described next) can be extremely simple and require
little additional decoding; with a single branch format being used, the branch target
information will always be in the same bit positions within the instruction. While
this seems limiting, we can also see from Table 5.1 that another major class of
branch format can be covered by the local delay region. When the local delay

43

region is used with the unconditional absolute branch instructions, no target infor-
mation is needed.

In further support of only using the ‘assume taken’ case with a single branch
format it can be said that, even if an instruction set does not have a particular
dynamic skew towards offset branches, the types of branch instructions used can
be easily coerced to this end by the use of a readily available compiler techniques
used to generate position independent code for secure library reuse.

5.4.2 Hardware Modifications

The use of only one branch instruction format for ‘assume taken’ branches means
that the additional hardware logic is very simple. The modifications are imple-
mented in two pipeline stages: instruction fetch and instruction execution. With
respect to the dynamic branch predictor, this means in the prediction furnishing
stage and the predictor update stage.

Instruction Fetch / Furnish Prediction

The instruction fetch stage has the more logically complex modifications of the
two stages that must be altered. Out of the four statically assigned behaviours
possible in a branch instruction, only two new meta-behaviours essentially need to
be implemented:

1. Assume the fall-through path and do not access the predictor (local delay
region or predict not-taken)

2. Use a specific bit position off-set to the current program counter and follow
that target.

Alternatively, the hint-bits are both set to zero and no action is performed (the
dynamic branch predictor is accessed). Figure 5.4 shows a logical representation
of how these changes would be implemented in hardware.

It is difficult to state the exact hardware that would be required to implement
the static predictions because it is highly implementation specific and depends on
the existing predecode logic. However, the additional logic required is very limited.
At most, a binary adder, a small number of logic gates and some interconnects are
required. Compared to the existing control logic, the addition of these components
is almost insignificant, however these are accounted for in the simulations carried
out in the next chapter.

Instruction Execution / Predictor Update

The new logic required in the execution/update pipeline stage is much simpler to
understand than that required in the instruction fetch stage. There are only two

44

Figure 5.4: Hardware modifications required in the instruction fetch stage

modification required (represented in the previous hint-bits), and these can be eas-
ily incorporated into the existing control logic:

1. Do not update the dynamic predictor if the hint-bits are set.

2. Do not detect target misprediction for branch instructions that are hinted to
use the local delay region.

The branch predictor should not be updated because, if the hint-bits are set,
the updated data in the branch predictor will never be used to furnish a relevant
prediction. Such an update would waste as much energy as furnishing a prediction.

The processor should ignore any prediction checking for branch instructions
where the hint-bits are set to use the local delay region. In such a case, the compiler
should have already scheduled the correct number of instructions into the delay
slots and the calculated target of the branch instruction can be used to fetch the
next instruction. In other words, the processor should not flush any instructions
behind the branch in the pipeline.

These two cases can be easily incorporated into the existing hardware by using
just a few gates to modify the behaviour of the current logic.

Static Branch Misprediction

It is important to note that, despite the hinted predictions for branches being static,
they will still occasionally be incorrect. This does not require any special addi-
tional control logic or hardware structures (such as a reorder buffer) because there
will already be a coexisting dynamic prediction system and associated recovery

45

mechanism. Any hinted misprediction will be handled in the same way as a hard-
ware dynamic misprediction. The existing recovery mechanism will resolve any
inconsistencies in the pipeline.

5.5 Summary

The combined approach unifies two key methods for reducing the number of ac-
cesses to a dynamic branch predictor: local delay region scheduling and profiling
with an adaptive bias measurement. The selective hinting algorithm will schedule
into the local delay region for unconditional absolute branches and assign static
predictions to branches where profiling indicates this will not affect that branch’s
prediction accuracy during execution. The hinting information is reflected in two
hint-bits in every branch instruction. The hardware modifications are very simple
and create negligible additional energy dissipation.

The following chapters move on to experiment with the combined algorithm in
a set of carefully designed experiments. The next chapter introduces the simulation
tools used and created for the experiments, and discusses the specifics of how the
combined algorithm is implemented in the simulation environment.

46

Chapter 6

Simulation Tools

6.1 Introduction

This chapter describes, in detail, the experimental method, tools and benchmarks
used to generate the results for the combined algorithm, shown in the next chapter.
The main tools developed are ‘HWattch’ (and the associated profiling and compila-
tion tools), Hatfield Assembly Code Analyser (HACA) and a bespoke build system
for Electronic Embedded Microprocessor Benchmark Consortium (EEMBC).

6.2 Simulator (HWattch)

In order to model the effectiveness of the combined algorithm presented in the
previous chapter, it was necessary to choose a system of processor simulation.
The two main approaches that are possible to simulate such a processor model are
‘Execution-Driven’ and ‘Trace-Driven’.

A trace-driven simulator uses a tracing tool, such as HWattch, to generate a
dynamic instruction trace of a program on a given architecture. The program trace
is then stored and used as an ‘unrolled execution’ of a program which can then
be parsed by a more simple simulator to generate different results from a fixed
semantic behaviour. The main advantages of trace-driven simulation are simula-
tor simplicity and speed of simulation; a trace-driven simulator does not need to
actually execute a program, but rather just parse a fixed program trace.

In contrast, an execution-driven simulator is a program which models an actual
architecture and executes code in a simulated environment. A program is compiled
to the machine code of the simulator, which may or may not be the same as a ‘real’
architecture, and then the simulator proceeds to execute the code. The advantage of
this kind of simulation is that the code execution can be modelled at various levels
of detail, possibly all the way down to the gate level if the design dictates this.

47

For a project such as the evaluation of the combined algorithm, a trace-driven
simulation would be ideal as most of the detail required would seem to be contained
within the dynamic branch predictor logic. However, when measuring energy effi-
ciency/power consumption, a more holistic view of global energy consumption is
required to understand any processor-wide effects that emerge after modification of
the dynamic behaviour. This can be achieved with a trace-driven simulator, but the
level of simulation required is not only likely to result in only a small design sim-
plicity improvement over an execution-driven simulator, but also makes runtime
behaviour modification more difficult.

Fortunately, an existing simulation tool-chain already exists that is widely used
and recognised as a reliable source for experimental results. SimpleScalar [16] is
an execution-driven simulation toolkit that models various different levels of de-
tail in different simulator executables. However, SimpleScalar does not model the
energy/power consumption of a processor during execution. In 2000, a fork of
the out-of-order simulator of SimpleScalar was modified to include power sim-
ulation [14] data for the entirety of the processors components. This simulator
is called Wattch, and its relationship to SimpleScalar is shown in Figure 6.1. The
power model was shown to be highly accurate and comparable to detailed low-level
power simulation tools [14]. Wattch, as with SimpleScalar, is built in a modular
fashion with each logical section of the processor broken down into a separate mod-
ule. This design means that all components of the processor simulated by Wattch,
from the branch predictor to issue logic, are full parameterised. This facilitates the
tailoring of individual baseline models.

Figure 6.1: The Wattch simulator in relation to SimpleScalar

The Wattch simulator is suited to modelling the architecture necessary to anal-
yse the combined algorithm with the EEMBC benchmarks. For this reason, Wattch
was chosen as the tool to generate the results for this project. The architecture
model of Wattch, and the required modifications, are explained the following sub-
sections. The software resulting from the modifications described in this chapter,
and many other usability changes, is termed HWattch and this term will be used

48

after this chapter.

6.2.1 Architecture Model

The SimpleScalar simulation toolkit provided several simulators that simulated
various levels of detail and different functional units. The largest of these, called
‘sim-outorder’ is the union of all of the other simulators and provides the most
complex results. The Wattch simulator only implements ‘sim-outorder’, presum-
ably because this turned out to be the most used simulator and centralises all of the
features of the toolkit in a single executable. This made it easier to insert the power
model into the simulator.

‘Sim-outorder’ implements a full superscalar processor that uses a variant of
the Tomosulo algorithm with reservation stations to schedule instructions dynami-
cally. However, these features can be disabled and the simulator forced to behave
like an inorder processor.

Pipeline

Figure 6.2 shows the general structure of the pipeline simulated by Wattch.

Figure 6.2: The Wattch simulator pipeline

The pipeline contains, when in scalar mode, two delay slots. When running in
out-of-order mode the delay region is variable. The branch predictor is used in the
Fetch and Execute stages of the pipeline to furnish a prediction and then to update
the branch predictor. The cache hierarchy is broken into two levels and bifurcated
into a data and instruction cache model. The register file consisters of 32 general
purpose registers.

49

Power Model

The SimpleScalar simulator ‘sim-outorder’ is divided into relatively fine-grained
events. For the team that designed the power model in Wattch, this was very use-
ful [14]. The Wattch power model takes parameters for each component which
specify the size (in transistors/control logic) being used in the particular simula-
tion. From this, using a standard template for that particular unit verified from
industrial gate models, Wattch creates a static power cost and a dynamic access
power cost. The static power cost is a constant, per cycle, drain which is simply
accumulated over the total number of cycles. The dynamic power cost models
the power consumed during each transition event and is accumulated by summing
these power values at the appropriate places in the SimpleScalar event methods.

The results generated from this are relative power values rather than represent-
ing any absolute incarnation. That is to say, there are atomic power values for prin-
cipal events such as gate dissipation and wire capacitance which are represented as
the smallest operations. Every other event in the processor is a scaled up version of
these atomic interactions. The results are then consistent because the power model
is consistent through the scaling relationships between operations and can be used
to compare the difference between two architectures, compiler techniques and so
on.

Additionally, Wattch models conditional clocking (clock gating). This is a
power saving technique, described in Chapter Two, that disables the clock signal
for idle processor units. For the idle unit, this can potentially have a linear power-
saving effect. The clock gating models available are:

• No conditional clocking

• Simple conditional clocking (zero power dissipation with zero accesses)

• Ideal aggressive conditional clocking (linear power dissipation with frac-
tional accesses)

• Non-ideal aggressive conditional clocking (15% power dissipation with zero
accesses)

The non-ideal model is used in the results presented in the next chapter in order
to give a more realistic, indeed possibly pessimistic, result.

A more detailed specification and validation of the Wattch power model can be
found in the initial Wattch publication [14].

Parameters

The hardware specification of a Wattch simulation is highly configurable. The
main configuration options are as follows:

50

IF Queue Size – The number of instructions that can be stored in the instruction
fetch queue before decode/dispatch.

Prediction Latency – Although the Wattch architecture features two delay slots,
an additional misprediction penalty can be added to generate results that
correspond to much more deeply pipelined processors.

Front End Speed – A coefficient can be specified that Wattch will use to adjust
the performance difference between the fetch stage and decode stage. For
instance, one can allow x times as many instructions to be fetched as can be
decoded.

Branch Prediction – The type and size of branch predictor to be used. This can
include local prediction or global prediction (PAg & GAg), gshare and so on.
The size is used to specify the number of entries in each table and history
length in bits.

Return Address Stack – The size of the return address stack.

Branch Target Buffer – The number of entries in the branch target buffer and the
set associativity.

Decode Width – The number of instructions decoded in one cycle.

Issue Width – The number of instructions issued in one cycle.

Out-of-order Execution – The processor can disable its superscalar attributes and
behave as a standard scalar processor. This is only really useful when the
issue width and functional units are also set to appropriate values.

Commit Width – The number of instructions committed in each cycle.

Caches – The size and speed of the caches (levels one and two) for instructions
and data (separately). The associated cost of a cache miss can also be speci-
fied.

Memory Latency – The number of cycles required to access main memory.

Functional Units – The number of function units. This includes integer and float-
ing point ALUs, multipliers and dividers.

The configuration options listed above are specified for each of the baseline
experimental architectures shown in a later section.

51

6.2.2 Architecture Modifications

The previous chapter described the combined scheduling and profiling algorithm
that the next chapter uses to generate experimental results. In that chapter, several
small hardware modifications were specified so that the processor hardware can
exploit the hinting information containted within specific instructions.

As with most modern embedded processors, the Wattch architecture uses pre-
decode logic to determine if a dynamic instruction is a branch. This is relatively
straight forward to achieve with a well designed instruction set: a small number
of bits at the start of the instruction can be used to check if it is a control flow
instruction. This pre-decode logic means that, already, only a branch instruction
needs to access the dynamic branch predictor and will save a significant amount of
power for little cost.

When this pre-decode logic exists, it means that the hint-bits discussed in the
previous chapter need only be included within branch instructions. This is because
when the instruction has been found to be a branch, whatever logic has just deter-
mined this can enable a logic gate which enables the previously described static
prediction logic. Branch instructions invariably contain redundant bits to use for
the two hint-bits required for the combined algorithm, and so this implementation
is feasible. Since Wattch implements this pre-decode logic, the hint-bits are only
required in branch instructions for this study, and it is suggested that this should
be the case for almost all modern architectures.

Logic Modifications

The modifications required are:

1. Fetch Stage: If the existing pre-decode logic recognises a branch instruction
then the hint-bits must be checked to see if they are set (non-zero), and if
so, appropriate actions must be taken. If they are zero then nothing should
happen, and the branch predictor should be accessed as normal.

2. Execution Stage: If the hint-bits are set (non-zero) then the dynamic predic-
tor must not be updated. If the branch is found to be mispredicted, but the
delay region is in use, no instruction flush or recovery should occur (as the
delay region instructions must be executed and there is no misspeculation).

The above logic will ensure that power is saved and that the appropriate be-
haviours are modelled to generate results.

The chosen configuration of the hint-bits, detailed below, was used to simplify
logic in the instruction fetch stage.

• 0 0→ Access dynamic predictor as normal

• 0 1→ Do not access the dynamic predictor. Predict not taken (leave the
program counter alone)

52

• 1 0→ Do not access the dynamic predictor. Predict not taken (leave the
program counter alone) and utilise the scheduled delay region

• 1 1→ Do not access the dynamic predictor. Predict taken by enabling an
adder for a fixed mask of instruction bits (the target offset) against the current
PC. Then set the PC to this value. It is important to note that, as described
in the previous chapter, only one branch format will be used to hint a taken
branch. This ensures the simplicity of the logic required in the IF stage to
create the target address.

From this it can be seen that, in both the instruction fetch and execution stage,
a dynamic branch predictor access/update can be blocked immediately by simply
checking to see if either of the hint-bits is set. The dynamic branch predictor unit
logic could be bypassed using a single OR gate whose inputs are the two hint-bits.
This approach can be used in both pipeline stages. See Figures 6.3 and 6.4.

Figure 6.3: A logical represention of the IF stage hint-bits showing ‘1,1’

If the hints are set to ‘1,1’ then a predict taken branch has been encountered
(shown in Figure 6.3). This requires that the adder logic is enabled in the IF stage
to create the new program counter value:

NEW PC=CURRENT PC + SIGN EXTENDED OFFSET.
If the hints are set to ‘1,0’ then logic in the EXE stage must disable flushing of

the pipeline (but still set the correct program counter value in the case of a taken
branch).

The descriptions for the newly introduced logic are deliberately generic. This
is because any implementation of the hint-bit logic is entirely dependent on design
of the processor into which it is being placed. Since the aim of this project is to

53

Figure 6.4: A logical represention of the EXE stage hint-bits showing ‘1,0’

demonstrate the general applicability of the combined algorithm, the logic descrip-
tions have been kept as general as possible. The actual location of the hint-bits,
within an instruction form, is detailed in the PISA section of this chapter.

Power Consumption of Introduced Logic

Given the aim of modelling the energy efficiency of the combined algorithm, is it
prudent to make sure that any newly introduced logic is also included in the power
model. From the previous subsection it can be seen that any new logic introduced
into an implementation of the combined-algorithm hint-bits will be very limited.
Nevertheless, the following additional logic was included into the power model
(for ALL experiments):

• 1× 32-bit adder

• 1× 32-bit sign extender

• 1× 32-bit word-line

• 8× logic gates

• 20× short wire capacitance

These components were created by simply replicating the power cost of their
identical components containted elsewhere in the Wattch power model, and locat-
ing them in the appropriate places where the logic was introduced – the actual logic

54

was not explicitly introduced as Wattch is a behaviour model, and as such is written
in higher level terms than logic gates.

When taken in the context of the entire processor, the introduced logic is tiny,
particularly when the bulk of it will not be switching during most processor cycles,
but only on a hinted taken branch;the dynamic power cost will be low even in itself.

6.2.3 Profiling Enhancement

To work correctly, the combined algorithm requires profiling information. As dis-
cussed in the previous chapter, the combined algorithm will hint a static branch
direction prediction if the dynamic bias of the branch is greater than, or equal to,
the dynamic branch predictor’s accuracy for that branch.

The combined algorithm itself is implemented in the Hatfield Assembly Code
Analyser (HACA), but this algorithm requires certain raw data to be logged during
a programs execution in the form of a reduced trace. The raw information required,
for a given dynamic branch occurrence, is:

1. The static identifier of the branch (used to map back the trace entry to a static
assembly branch)

2. The dynamic prediction for the branch (taken or not-taken)

3. The actual dynamic behaviour of the branch (taken or not-taken)

4. Additionally, if a misprediction is detected, the number of instructions squashed.
This can be used to determine the size of the delay region for a particular
branch.

Before the profiling stage, HACA (detailed in 6.3) gives each static assembly
branch instruction a unique identifier. This is possible by virtue of PISA (also
detailed in a later section) being a 64-bit instruction set with 16 redundant bits per
instruction to facilitate instruction set research (Figure 6.5). The new profiling code
in Wattch then decodes this unique identifier and uses it to create the profiling entry
for each dynamic branch occurrence. All profiling is performed in the ‘Commit’
pipeline stage.

Below is a very small excerpt from an example program trace:

UNIQUE ID| BEHAVIOUR

...

14695 T N

22134 T T

55

13264 N N

...

Here, in line one, the predicted behaviour was taken, but the actual behaviour
was not-taken. HACA then uses this trace, from an entire program’s execution, to
build up the required statistics for each branch.

6.2.4 Instruction Set (PISA)

The Wattch simulator, in this investigation, uses the Portable Instruction Set Archi-
tecture (PISA). PISA is a relatively simple MIPS-like instruction set that extends
many of the features in Patterson and Hennessy’s DLX instruction set [84] [40].

The PISA instruction set is useful because it is essentially a 32-bit instruction
set that is implemented in a 64-bit form. In other words, while the PISA could
be implemented in 32-bits, it was implemented as a 64-bit format so that it could
include many redundant bits which can be used for instruction set research. These
redundant bits can be easily set in the assembly code of a program by adding some
switches to the end of an instruction. The PISA assembler then sets the appropriate
bits in the machine code. A researcher can then add code into the simulator that
makes use of these redundant bits. This technique was used in the development of
HWattch and is detailed in the following subsections.

Instruction Format

The 64-bit PISA instruction format is shown in Figure 6.5.

Figure 6.5: The PISA instruction format

Figure 6.5 shows three instruction formats. The bottom format is the r-type
format and is the most common. The absolute format is used for branching to
absolute addresses and replaces bits 0 to 26 with an absolute memory address. The
immediate format replaces bits 0 to 15 with an immediate value. Each field shown
has the following function:

rs – Source register one

56

rt – Source register two

rd – Destination register

ru – Used for shift instructions (shift amount)

opcode – Extended opcode section allowing for the introduction of new operations

immediate – In immediate type instruction, an immediate value is placed here for
use by the instruction

absolute jump – Absolute jump instructions make use of a 26-bit value that is left
shifted by two bits, combined with the most significant 4-bits of the current
program counter, to form an effective memory address

unused – A 16-bit space is unused that allows for the introduction of new infor-
mation in all instructions. These unused bits can be set using special syntax
in the assembly code which is then used by the PISA assembler to enable the
specified unused bits in a given instruction.

Branch Instructions

The PISA instruction set is fully featured and contains instructions for perform-
ing all required actions in a compiled program. However, the implementation of
the combined algorithm is concerned only with branch instructions. The branch
instructions of the PISA instruction set are shown in Table 6.1

Table 6.1: Static and dynamic branch occurrence for each PISA branch, and its
occurrence across the whole EEMBC benchmark suite

Branch Type Static Dynamic Branch Format
Instruction Occurrence Occurrence
j Unconditional Abs. 10.21% 17.31% Absolute Format
jal Unconditional Abs. 33.95% 3.58% Absolute Format
jr Unconditional Reg. 15.54% 3.55% Register Format
jalr Unconditional Reg. 2.32% 0.04% Register Format
beq Cond. Offset 18.18% 20.23% Immediate Format
bne Cond. Offset 16.46% 50.09% Immediate Format
blez Cond. Offset 1.52% 2.58% Immediate Format
bgtz Cond. Offset 0.27% 1.04% Immediate Format
bltz Cond. Offset 0.48% 0.39% Immediate Format
bgez Cond. Offset 1.06% 1.19% Immediate Format

From this table it can be seen that the vast majority of dynamic branches are
of the immediate format (around 75% of dynamic branches). This is somewhat

57

intuitive, but is particularly useful for the combined algorithm which will only
predict ‘taken’ for a single branch type.

Unconditional absolute branches (around 21% of dynamic branches)) perform
no evaluation and branch immediately to the specified absolute target. Uncondi-
tional register branches (around 18% of dynamic branches) perform no evaluation
and branch immediately to a value contained within a target register. Conditional
offset branches (around 35% of dynamic branches) compare the values in two spec-
ified registers and then, depending on the relevant evaluation criteria, branch to the
relative target offset specified within the instruction.

Hint-Bits

For the implementation of the combined algorithm in this section, two hint-bits
were included as the two most significant bits in each branch instruction. This is
illustrated in Figure 6.6.

Figure 6.6: The location of the two hint-bits within the branch instruction format

The hint-bits make use of two of the redundant bits included in the PISA in-
struction set. Although sufficient space existed in the opcodes of branches, it was
decided to use the redundant bits to simplify the implementation in Wattch. The
hint-bits are stored in a consistent bit position in all branch instructions (the two
highest order bits). However, two consistent bits in the branch opcode could have
been used instead.

Branch Labelling

HACA assigns each static branch instruction a unique identifier, referred to as a
label, so that the dynamic branch trace can be easily related back to the static
branches (for use when hinting). These static identifiers are stored in the unused
unused bits of the PISA instruction format. The maximum number of branches that
could be hinted (in an individual executable) in this study is thus 216.

58

6.2.5 Compiler (Custom GCC)

Version 2.7.3 of the Gnu Compiler Chain was distributed with the SimpleScalar
project to compile for the PISA instruction set. Unfortunately, an up-to-date ver-
sion of this was not available, and the distributed version required many modifi-
cations for the compiler to compile and work on modern distributions of Linux.
One criticism of the compiler version used is that it is quite old; stable versions of
GCC are currently considered to be around 3.4, but GCC 4 has also been released.
However, the benchmarks used for these experiments are all written in C code only.
There have been few advances in C optimisations techniques in GCC since version
2.7.3 as most effort has been directed at increasing C++ support. This means the
compiled benchmarks will still give a contemporary representation of optimised C
code.

6.3 Scheduler and Static Prediction Assigner (HACA)

The Hatfield Assembly Code Analyser (HACA) is the central tool used to control
the application of the combined algorithm to a code base (in this case EEMBC).
The tool was written from scratch and implements various features.

HACA interfaces with HWattch and interprets the extremely long dynamic
branch traces to decide how to set the static prediction hints. HACA also sched-
ules into the local delay region where appropriate by implementing the algorithm
described in Chapter 5.

6.3.1 Combined Algorithm: Practical Implementation

The most useful way to understand the features of HACA is to describe how it
practically controls and applies the combined algorithm to a code base. The stages
below are an approximate description of each stage in the actual application of
the combined algorithm to the EEMBC instruction set. This can be compared and
contrasted to the more formal description of the algorithm in the previous chapter.

1. Compile the benchmark to assembly code

2. Parse all of the assembly code and assign each static branch instruction a
unique label.

3. Assemble and link the assembly code into a PISA executable

4. Using HWattch, generate the ideal (free branch prediction – the same branch
predictor without any power cost) results for this benchmark using the ap-
propriate architecture configuration

5. Using HWattch, profile the benchmark (against a ‘training’ dataset) to gen-
erate the dynamic branch trace described in the previous section

59

6. Statically schedule into the local delay region for unconditional absolute
branches where possible, and set the appropriate hint-bits

7. Parse the dynamic branch trace and assign a static prediction where the
bias of a given static branch is greater than the prediction accuracy for that
branch. Set the appropriate hint-bits, but ONLY if the branch is an imme-
diate type branch (offset branch). The introduced hardware logic can only
create a target address from this kind of branch format.

8. Assemble and link the scheduled and hinted assembly code into a new PISA
executable

9. Using HWattch, execute the new benchmark (against a different ‘testing’
dataset) and produce results for the combined algorithm version of the exe-
cutable

It is important to note the use of two datasets for producing the static predic-
tions and then testing the related power/performance change. Two datasets were
used in order to reduce the possibility of overfitting to a single dataset. However, it
is interesting to note that the investigation revealed that biased branches, and dif-
ficult to predict branches, tend to perform almost exactly the same, on aggregate,
over all datasets within the program’s domain.

When actually carried out, the above steps were performed across the entire
EEMBC suite at each stage, rather than on one benchmark at a time. The entire
process takes around sixty minutes to complete on a 2.2 GigaHertz AMD Athlon64
Dual Core Gentoo Linux system with 2 GigaBytes of RAM.

Assigning the Static Prediction

The static branch instruction bias levels are generated by creating a table of all of
the static branch identifiers for that program, and then parsing the trace file for that
program. As each entry in the trace file is parsed, the dynamic branch label is used
to index the table of static branches and increment either the taken or not-taken
counter. Additionally, the predicted behaviour for the given dynamic occurrence is
compared to the actual behaviour. If these two behaviour differ then a mispredic-
tion has occurred and the misprediction counter is incremented at the appropriate
index position in the table. From this information, the bias and misprediction rate
can be prediction for each branch.

For a given static branch:

Branch Bias = either Dynamic Taken Total
Total Dynamic Occurrences or Dynamic Not−Taken Total

Total Dynamic Occurrences , de-
pending on whether Dynamic Taken Total > Dynamic Not−Taken Total

Misprediction Rate = Mispredictions Total
Total Dynamic Occurrences

60

Assignment Condition If Branch Bias > (1−Misprediction Rate) then set
the hint-bits to reflect the biased direction (can only be hinted taken for im-
mediate (offset) format branches)

The assigning of a static prediction was only enabled for branch instructions
not using the local delay region. From Table 6.1, in the previous section, this
means that approximately 80% of the dynamic instruction stream can be assigned
a static prediction. However, as a static predict taken can only be applied to offset
type branches, approximately 75% of dynamic branches are candidates for being
assigned a static prediction of taken or not-taken.

Utilising the Local Delay Region

The previous chapter described the general way to schedule into the local delay
region. This technique is only used for unconditional absolute branches. These
types of branch instruction have no dependency on preceding instructions as both
the direction and the target are included in the instruction itself, making them ideal
candidates for the local delay region scheduling. Additionally, in modern well
optimised code, it is difficult to find more than one branch independent instruction
from the same basic block (except for unconditional absolute branches). Ignoring
other branch formats for local delay region scheduling means the static prediction
through profiling can coexist more simply in the implementation.

Table 6.1, from the previous section, shows that unconditional absolute branches
account for approximately 21% of the dynamic stream, and are all candidates for
local delay region scheduling.

Local delay region scheduling works by filling the delay slots behind a branch
instruction with branch independent instructions from the same basic block (mov-
ing instructions from before the branch into the delay region after it). This pro-
cedure takes place statically. When a delay region can be utilised, the hint-bits
(discussed previously) are set to reflect this. In these experiments, the local de-
lay region is only scheduled for unconditional absolute branches. This means that
finding branch independent instructions is easy as no instructions from the same
basic block are used to compute the behaviour of the branch; filling the delay re-
gion requires selecting the required number of instructions and moving them into
the delay region without changing their order (so that program semantics are unaf-
fected).

A problem arises when deciding how many instructions to fill the delay region
with. On a scalar processor the delay region is of a fixed size so there is a predeter-
mined number of slots available for instructions. However, superscalar processors
use dynamic scheduling and thus have a variable delay region. Traditionally, this
has meant that utilising the delay region with any form of scheduling has been
difficult.

The solution used to overcome the variable delay region size is profiling. The
profiling information generated by HWattch includes information about the number

61

of instructions squashed on a mispredicted branch. This can be used to build three
useful values for each static branch: the minimum delay region slots, the mean
delay region slots and the maximum delay region slots. The minimum delay slots
calculated from profiling is accurate for code profiled with a dataset that ‘touches’
all areas of the code, however it does introduce the possibility of, under certain
execution circumstances, a smaller minimum number of delay slots existing. This
makes scheduling into the delay region difficult if semantics are to be maintained.
Instead, a more sensible value is the theoretical minimum delay slots for the given
architecture. This is determined by the number of pipeline stages before branch
resolution and the instruction fetch/decode width.

To schedule into the local delay region on a superscalar processor, instructions
must only be scheduled up to the minimum delay region size; if instructions were
scheduled past this size it is possible that they would not be executed under cer-
tain circumstances. However, when scheduling only up to the minimum number
of a delay slots, a problem still exists when considering how to stop the processor
continuing to fetch instructions from the fall-through path after the delay region
instructions (since the branch may be taken, and thus those instructions should not
be executed). A simple solution is to insert ‘NOP’ instructions up to the maximum
size of the delay region. This means that there could be significant code expansion
(but not necessarily wasted executed instructions). The ideal solution, if the archi-
tecture supports it, is to insert a ‘halt’ (or similar) instruction that stops the proces-
sor from continuing to fetch instructions. The correct program counter is then used
after branch resolution and the correct sequence of instructions is fetched. Execu-
tion continues. This is the method used to generate the results in this dissertation.

An alternative solution involves scheduling up to the minimum delay region
size and using some additional hint-bits to mark instructions in the delay region as
‘not to be flushed’. This requires additional hint-bits however, and also hardware
modification to the misprediction recovery logic. The requirement of additional
hardware for this technique means that it has not been investigated further in this
dissertation.

Finally, even with a superscalar solution, there still exists the problem of not
wasting power/clock cycles by scheduling up to the minimum delay region size
when the average delay region size is much bigger than the minimum. Doing
so would mean that cycles are commonly wasted since only a small number of
instructions have been scheduled into a commonly much larger delay region.

Since HWattch is, potentially, a superscalar architecture, the local delay region
was scheduled up to the minimum number of slots, but only if the the average
size of the delay region (from profiling) was a maximum of one instruction higher.
This ensures that program semantics are maintained and that a minimum number
of cycles are wasted. For low issue width superscalar processors, this method is
very effective.

62

6.4 EEMBC

EEMBC, the Embedded Microprocessor Benchmark Consortium [64], provide a
suite of benchmarks that are designed to model the activities that embedded pro-
cessors in a variety of different devices spend their time executing. Energy-efficient
branch prediction, although relevant to the high performance arena, is of the highest
important to high-end embedded processors. It is for this reason that the EEMBC
suite of benchmarks was chosen for use as the evaluation benchmark for the com-
bined algorithm. EEMBC is already used by several well known processor design-
ers and chip manufacturers including: ARM, IBM, FreeScale, MIPS and Trans-
meta [64]. The suite used to generate the results in this investigation is Version 1.1,
released in 2004.

6.4.1 Sub-Suites and Benchmarks

EEMBC is divided into several sub-suites: automotive, consumer, networking, of-
fice and telecom. Each of the sub-suites is designed to simulate a different kind of
application’s characteristics. Thirty-seven benchmarks were used in total for the
results shown in this dissertation, and these are listed in full in Table 6.2.

The four fields in Table 6.2 are:

Mnemonic – The short version of the name of the benchmark. These names are
used extensively in the results presented in the next chapter.

Sub-Suite – The sub-suite that each benchmark is a member of.

Relative Size – The relative dynamic size, as a percentage, of each benchmark
compared to the longest. In other words, the longest benchmark (rgbcmy) is
100% and every other benchmark is measured as a percentage of this. The
size of the benchmark is the number of instructions executed at runtime until
completion.

Description – A short description of the main task that the benchmark carries out
during execution

It can be seen that the largest benchmarks are within the consumer sub-suite
which is designed to simulate the load on consumer electronics. This is expected
given the high bias toward graphical algorithms that are used here; these tend to be
highly iterative and run for longer periods of time. Other notably lengthy bench-
marks include the networking ’qos’ benchmark which uses a complex algorithm to
measure the quality of service over a network hierarchy.

Although the benchmarks appear to be highly specialised, as with all bench-
mark suites, they tend to represent an overall whole that is not dissimilar from other
benchmarking systems such as SPEC [96]. However, using these benchmarks pro-
vides an interesting insight into how the combined algorithm performs in different
target applications.

63

Table 6.2: The full EEMBC benchmark suite with descriptions
Mnemonic Sub-Suite Relative Description

Size %
a2time01 Automotive 0.10 Angle-To-Time Conversion
aifftr01 Automotive 3.32 Fast Fourier Transform
aifirf01 Automotive 0.12 Finite Impulse Response(FIR)Filter
aiifft01 Automotive 3.48 Inverse Fast Fourier Transform
basefp01 Automotive 0.11 Basic Floating-Point
bitmnp01 Automotive 0.50 Bit manipulation
cacheb01 Automotive 0.19 Cache Buster
canrdr01 Automotive 0.97 Response to Remote Request
idctrn01 Automotive 0.42 Inverse Discrete Cosine Transfor
iirflt01 Automotive 0.12 Low-Pass Filter(IIR)and DSP functions
matrix01 Automotive 2.92 Matrix Math
pntrch01 Automotive 0.27 Pointer Chasing
puwmod01 Automotive 1.51 Pulse-Width Modulation
rspeed01 Automotive 0.36 Road Speed Calculation
tblook01 Automotive 0.24 Table Looku
ttsprk01 Automotive 0.69 Tooth-To-Spark
cjpeg Consumer 13.17 JPEG Compression
djpeg Consumer 89.26 JPEG Decompression
rgbcmy Consumer 100.00 RGB to CMY
rgbhpg Consumer 10.73 Grayscale image filter
rgbyiq Consumer 83.00 RGB to YIQ
ip pktcheck Network 10.70 IP Packet Check
ip reassembl Network 13.42 IP Reassembly
nat Network 14.31 Network Address Translation
ospfv2 Network 1.90 Open Shortest Path First
qos Network 46.33 Quality of Service
routelookup Network 5.07 Route Lookup
tcp Network 0.24 TCP-BM
bezier01 Office 2.83 Bezier Curve Interpolation
dither01 Office 17.13 Floyd-Stein Grayscale Dithering
rotate01 Office 4.91 Bitmap Rotation
text01 Office 11.09 Text Parsing
autcor00 Telecom 0.35 Autocorrelation
conven00 Telecom 0.81 Convolutional Encoder
fbital00 Telecom 1.00 Bit Allocation
fft00 Telecom 0.28 FFT/IFFT
viterb00 Telecom 0.63 Viterbi Decoder

64

6.4.2 Bespoke Build System for the Combined Algorithm

EEMBC is distributed with its own cross-platform build system. However, this sys-
tem does not allow the user to compile the benchmarks down to assembly code, and
then from the assembly code into binary form. This is a problem because the com-
bined algorithm, implemented in HACA, requires access to the assembly code of
the benchmarks in order to modify them and apply hinting/scheduling techniques.
The assembly code then needs to be built into binary form with this hinting and
scheduling information contained within it.

A bespoke build system was developed for the EEMBC suite to this end. This
was a non-trivial task that required an intimate understanding and interpretation of
the existing Makefiles for EEMBC. Additionally, any internal shared source files
within EEMBC were copied into each individual benchmark that used them, to
enable non-conflicting hinting of shared source code.

6.5 Summary

This chapter has introduced the experimental toolkit that will be used to evaluate
the effectiveness of the combined algorithm. The central tool is the parameteris-
able superscalar processor simulator ‘HWattch’. HWattch has a five stage MIPS-
like pipeline, but has a variable branch misprediction penalty (set via a runtime
parameter). The HWattch simulator is essentially the Wattch power-aware proces-
sor simulator (itself a version of SimpleScalar), but has been modified to include
some simple control logic that interprets two new hint-bits contained within branch
instructions. This logic can bypass the dynamic predictor for specified branches,
and also produce a target target address for a certain class of branches.

There are two hint-bits inside each branch instruction. These hint-bits, when
set by the compiler for a particular branch, allow for the use of a locally scheduled
delay region, to assume taken, to assume not taken or, finally, use the dynamic
branch predictor as normal.

The HACA tool is used to profile and set these hint-bits in the compiled assem-
bly code for those branches where either the local delay region can be scheduled,
or where a static prediction is possible (when the branch is more biased than its
profile dynamic prediction).

The EEMBC benchmark suite was chosen as the target application area is the
embedded, and hence power, sensitive market. The EEMBC suite represents the
most relevant cross-section of benchmark activities likely to be carried out in such
environments.

The next chapter uses the all of the tools discussed in this chapter to test the
combined algorithm against several baseline configurations of the HWattch sim-
ulator. These baselines are based on example embedded configurations, and the
results are presented and discussed separately for each baseline model.

65

Chapter 7

Simulations and Results

7.1 Introduction

This chapter presents the main body of simulation results generated by using the
combined algorithm to reduce dynamic branch predictor accesses in the EEMBC
benchmarks. All of the simulation results were generated using the tools and meth-
ods described in the previous chapter. Several baseline models are discussed and
described in detail before the results are presented in the following three sections.
Each result set is followed by a brief discussion, and then the chapter closes with a
final analysis of the results, and the questions arising from them.

7.2 The Baseline Models

When assessing the effectiveness of an alteration to a compilation process and pro-
cessor architecture, it is necessary to establish some model of comparison. With the
evaluation of the combined algorithm, the assessment criteria are: energy/power
saving, change in execution time and the reduction in the number of accesses made
to the dynamic predictor. However, any results generated are indicative only for
the given baseline model. To give a more varied context to the combined algo-
rithm, several baseline models have been chosen. These are based around a num-
ber of real embedded architectures and are described in detail on the following
pages. Although the baseline models are based around real architectures, it must
be noted that this is only achieved by the adjustment of the available parameters in
HWattch. Not all aspects of the architectures can be completely represented here,
but the baselines give an appropriate indication. Each baseline model was used to
generate a separate set of results.

66

7.2.1 The Branch Predictor

The dynamic branch predictor type used in these experiments is a local predictor.
Although the combined algorithm essentially treats the dynamic branch predictor
as a black box, some discussion and justification of this predictor type is required.

The efficacy of the directional hinting in the combined algorithm will likely
be closely linked to the accuracy of the dynamic branch predictor it is used with;
the less accurate the branch predictor, the greater the number of branches with a
bias higher than the predictors accuracy. The converse is also true. To achieve a
suitably rigorous and suitably sceptical result, it is sensible to use the most accurate
predictor available; a large local branch predictor will saturate at 97.1% correct.
This is higher than other common predictor configurations.

The traditional argument against local prediction, despite its accuracy, is that
it often requires large history tables to achieve this accuracy and also, originally,
requires two sequential table lookups (see chapter two). The rebuttal to these argu-
ments is that the additional size required for local prediction is no longer a partic-
ular concern given the increased number of transistors available in modern proces-
sors. Sequential table lookups are undeniably slower, but this is not the problem
it seems as a fast implementation can be achieved by using a separate bimodal
counter array for each instruction fetched, so that the second array access can pro-
ceed in parallel with instruction fetch. Additionally, this is likely to not even be
necessary as the clock speeds in embedded processors are considerably lower than
the high performance market (allowing plenty of time for two sequential lookups).

A salient alternative choice of dynamic branch predictor type would be a gshare
predictor. This implements a variant of global prediction. Large gshare predictors
are not quite as accurate as their local counter parts, but table lookups can be easily
made in parallel. Another noteworthy point about a gshare predictor is that, due
to it being a global predictor, it may be expected that the combined algorithm
by removing certain predictor updates, could affect the accuracy of the dynamic
predictor on the remaining branches by witholding required path information. This
was not noticed to any significant extent in our previous simulations [44].

If a global prediction paradigm had been chosen, and experimentation showed
prediction problems, the hardware could be modified to allow the updating of a
history register. The history register is a very small part of the direction predictor,
and would have minimal impact on the efficacy of the combined algorithm’s power
saving. Updating the history register removes the impact on the prediction accuracy
of a global predictor.

7.2.2 Scalar Processor

The scalar processor baseline is designed to give HWattch the behaviours and costs
associated with a common contemporary embedded processor. By far the most
common embedded processor designs currently in use are variants of the ARM ar-
chitecture. ARM processors are found in almost all varieties of electronic devices,

67

particularly in consumer electronics such as PDAs, mobile telephones and media
players. The configuration described here is shown in Table 7.1.

There is a large variety of ARM cores, and it is difficult to match exactly the
architecture of any in particular. However, the general functional units and the size
of caches can be modelled. This will give a strong indication of how effective the
combined algorithm will be for such existing embedded architectures.

The specific architectures on which this baseline is based are the: ARM9E,
ARM10E, ARM11 and embedded PowerPC implementations. All of these are
scalar uniprocessors (with the exception of the ARM11 which can be used in a
multicore configuration). The number of pipeline stages varies from three to eight.
All have relatively small caches compared to the performance market. The baseline
in Table 7.1 most closely models the ARM11 architecture.

It should be noted that HWattch, being essentially Wattch/SimpleScalar, mod-
els an out-of-order issue superscalar architecture. The parameters specified here
then force that architecture to behave as in-order and single issue. In terms of
simulated behaviour, this will behave exactly as an in-order processor would be
expected to. However, the Wattch power metrics take into account certain struc-
tures whose simulated power consumption is not completely affected by the forced
specification of an in-order processor. This means that the Wattch power model
still models the power consumption of scheduling logic even though this logic is
never used since the processor is scalar. The effects of this are discussed in the
results analysis.

7.2.3 Multiple Instruction Issue Processor

The vast majority of embedded processors are scalar by design. Superscalar pro-
cessors would appear, in theory, to offer a more efficient utilisation of resources
by issuing instructions into each kind of functional unit in parallel. However, the
scheduling and instruction issue logic required to achieve this has traditionally con-
sumed too much power to make superscalar processors a viable option.

Contemporary fabrication technologies have, as discussed in chapter two, re-
duced the feature size of logic components used to construct CMOS circuits. With
this, the overhead, in terms of power, of introducing new logic into a processor has
decreased. Many new embedded architectures are proposing Multiple Instruction
Issue (MII) techniques to achieve a higher performance. Typically, these take the
form of Very Long Instruction Word (VLIW) architecture, but some designs use
dynamic scheduling techniques too.

The HWattch simulator models a superscalar architecture, which means that
this study utilises dynamic scheduling. Although results generated from this method
will not be directly applicable to VLIW processors, they will show useful results
since the logical behaviour of the branch predictor in the instruction fetch stage
remains the same. Proportionally, this will still give a useful indication of the
throughput effects of the combined algorithm, and how much power can be saved

68

Table 7.1: Scalar Processor Baseline Configuration
HWattch Parameter Value
Instruction Fetch Size 1
Delay Slots/Mispredict Penalty 2
Branch Predictor 2-Level Local - 1024 Table Entries
Branch Target Buffer Size 512 Entries, 4-Way

Set Associative
Average Global Power Consumption of BP 9.9%
Decode Width 1
Out-of-order Issue No
Commit Width 1
L1 Data Cache Size 32 Entry, each entry 2-Way

Set Associative
L1 Instruction Cache Size 32 Entry, Direct Mapped
L1 Hit Latency 1 Cycle
L2 Data Cache Size 64 Entry, each entry 2-Way

Set Associative
L2 Instruction Cache Size 64 Entry, each entry 2-Way

Set Associative
L2 Latency 6
Memory Latency 18 Cycles for first block, 2 thereafter
Integer ALUs 1
Integer Multipliers/Dividers 1
Floating Point ALUs 1
Floating Point Multipliers/Dividers 1
Clock Gating Regime Non-Ideal

69

globally with its inclusion.
It is important to note that the delay region in these baseline models is now vari-

able. Consequently, the local delay region scheduler now employs the technique
for scheduling a variable size delay region.

Two Instruction Issue

The two instruction issue baseline model is intended to represent the next gener-
ation of embedded high performance processors. It is a modified version of the
scalar baseline model with a two instruction issue width and dynamic instruction
scheduling onto an appropriate number of functional units. This architecture is
shown in Table 7.2. Some current architectures, such as certain implementation of
the ARM11, already have multiple functional units and a multiple instruction issue
width; this baseline model can be considered similar to these architectures.

Sixteen Instruction Issue

It is possible that the combined algorithm could reduce the prediction accuracy
of branches that are assigned a static ‘hint’ prediction. Although it is currently
uncommon to see any embedded processors with an issue width of sixteen instruc-
tions, it is interesting to see how the combined algorithm changes the behaviour of
such high issue widths. It is for this reason that the architecture shown in Table 7.3
is used to generate results.

7.3 Preamble To Results

The previous two chapters have discussed both the abstract concept of the pro-
posed combined algorithm, and also the specific experimental implementation and
method. During these chapters, a great deal of information has been covered. This
section discusses the appropriate metrics used to display the experimental results,
and brings forward some important details that should be borne in mind before
examining the results.

7.3.1 Metrics

The combined scheduling, profiling and hinting algorithm could potentially affect:
dynamic branch predictor accesses, dynamic prediction accuracy and power con-
sumption. To facilitate the monitoring of this behaviour, the following metrics are
used in the results:

Benchmark – The mnemonic for the particular benchmark.

70

Table 7.2: 2-Way Issue Processor Baseline Configuration
HWattch Parameter Value
Instruction Fetch Size 2
Delay Region/Mispredict Penalty Variable (Average = 2)
Branch Predictor 2-Level Local - 1024 Table Entries
Branch Target Buffer Size 512 Entries, 4-Way

Set Associative
Average Global Power Consumption of BP 8.8%
Decode Width 2
Out-of-order Issue Yes
Commit Width 2
Register Update Unit Size 8
Load/Store Queue Size 4
L1 Data Cache Size 32 Entry, each entry 4-Way

Set Associative
L1 Instruction Cache Size 32 Entry, Direct Mapped
L1 Hit Latency 1 Cycle
L2 Data Cache Size 64 Entry, each entry 4-Way

Set Associative
L2 Instruction Cache Size 64 Entry, each entry 4-Way

Set Associative
L2 Latency 6
Memory Latency 18 Cycles for first block, 2 thereafter
Integer ALUs 2
Integer Multipliers/Dividers 1
Floating Point ALUs 2
Floating Point Multipliers/Dividers 1
Clock Gating Regime Non-Ideal

71

Table 7.3: 16-Way Issue Processor Baseline Configuration
HWattch Parameter Value
Instruction Fetch Size 16
Delay Region/Mispredict Penalty Variable (Average = 8)
Branch Predictor 2-Level Local - 1024 Table Entries
Branch Target Buffer Size 512 Entries, 4-Way

Set Associative
Average Global Power Consumption of BP 6.7%
Decode Width 16
Out-of-order Issue Yes
Commit Width 16
Register Update Unit Size 16
Load/Store Queue Size 16
L1 Data Cache Size 32 Entry, each entry 4-Way

Set Associative
L1 Instruction Cache Size 32 Entry, Direct Mapped
L1 Hit Latency 1 Cycle
L2 Data Cache Size 64 Entry, each entry 4-Way

Set Associative
L2 Instruction Cache Size 64 Entry, each entry 4-Way

Set Associative
L2 Latency 6
Memory Latency 18 Cycles for first block, 2 thereafter
Integer ALUs 8
Integer Multipliers/Dividers 8
Floating Point ALUs 8
Floating Point Multipliers/Dividers 8
Clock Gating Regime Non-Ideal

72

Dynamic Branches – The percentage of the dynamic stream accounted for by
branch instructions.

Hint Rate – The percentage of static branch instructions that are hinted to use
either the local delay region or a static branch prediction.

Access Reduction – The percentage reduction in accesses to the dynamic branch
predictor as a result of the hint-bits inserted into branch instructions by the
combined algorithm. This metric is the central goal of the combined algo-
rithm. It can be regarded as the central representative of the activity factor
in the general equation for power saving. Reducing the number of accesses
here will reduce the activity factor.

Stream Change – The percentage change in the number of instructions executed
during a given benchmark’s execution. This is affected by any change in
prediction accuracy caused by the combined algorithm. The stream change
percentage can be either positive (the number of instructions executed has in-
creased) or negative (the number of instructions executed has decreased). A
positive change indicates a relative reduction in branch prediction accuracy
over the baseline, but a decrease indicates the converse.

Cycles Change – The percentage change in the number of cycles during a given
benchmark’s execution. The implication of this change is almost identical to
the previous metric.

BP Power Saving – The percentage saving, in terms of power, within the branch
prediction unit. It would be logical for a reduction in accesses, and thus
switching activity, to reduce the amount of power consumed by the branch
prediction unit.

Global Power Saving (Central Power Metric)

The main metric used to model the effects of the combined algorithm on power
consumption, and energy efficiency, is “Average Percentage Power Saving Per
Committed Instruction”. This metric is labelled as simply ‘Power Saving” in the
results.

Deciding upon an appropriate metric for global power saving is difficult. It is
easy to measure the power saved within the dynamic branch predictor unit, but this
does not give an indication of how much power has been saved globally. Addi-
tionally, it does not take into account any power consumed by any change in the
duration of program execution; if the combined algorithm decreases branch predic-
tion accuracy, more instructions will be executed and global power consumption
could increase.

“Average Percentage Power Saving Per Committed Instruction” is calculated
as follows:

73

Power Saving= Total Processor Power Reduction
Number of Committed Instructions

Where “Total Processor Power” is the total power consumed by the processor
over the benchmark’s entire execution.

This metric gives a direct representation of global power saving resulting from
the use of the combined algorithm. Additionally, it implicitly takes into account
any change in branch prediction accuracy; if overall prediction accuracy is de-
creased, the power saving will decrease proportionally.

The power saving metric used here was chosen over the ‘et2’ metric because
the ‘et2’ metric is mostly useful for drawing an abstraction over the power con-
sumption of an actual implementation of hardware so that it can be compared to
other implementations. This is not necessary in the case of HWattch as the con-
stituent power metrics are already completely abstract. Additionally, it is argued
that ‘et2’ gives an unfair, quadratic, bias to any change in execution time of a given
hardware modification [46].

Free/Ideal Branch Prediction

In many of the graphs in the results section, a metric called ‘Free/Ideal’ branch
prediction is shown. This metric represents the ceiling power saving that could
be achieved with the combined algorithm. Free branch prediction is the baseline
dynamic predictor, but with zero power cost. It was debated whether or not to show
perfect branch prediction with zero power consumption instead, but giving a value
for perfect prediction would be too unrealistic for an algorithm that aims only to
affect the power consumption of a branch predictor.

7.3.2 Calculation of Averages and ‘Weighted Averages’

Each section of results consists of a breakdown for each benchmark, but also the
average values for each sub-suite. These averages are not just a simple mean of
all of the results, but rather they take into account the length/time, in executed
instructions, that each benchmark within a sub-suite lasts. This is achieved by
totalling and averaging the relevant values across the entire subsuite. For instance,
when calculating the average dynamic predictor access reduction for a sub-suite,
the total number of dynamic accesses removed for that sub-suite is calculated,
and then divided by the total number of access made for the sub-suite without the
algorithm. This gives an accurate average for the relative size, in execution time,
of each sub-suite. Hence, the term ‘weighted average’ is used to reflect the fact
that these average values are not a crude mean. The raw data from which all of the
average values were calculated, along with an explanation of their presentation, is
available in Appendix D.

74

7.3.3 Important Summary Notes

• All benchmarks shown in the following results were executed to completion.

• The combined algorithm can potentially work on a total of around 82% of
static branches. This is because the hint-bits are only set where the hardware
logic can handle a statically predicted behaviour (as discussed in the previous
chapter). Dynamically, the percentage of potential branches is around 96%
(around 18% by local delay region scheduling).

• All benchmarks were profiled individually.

• All results are in percentages.

• Details of the breakdown of the use of the local delay region versus static
hinting are not shown because, in the first two baseline models, the utilisation
of the local delay region is almost consistently 100% of applicable branch
types and the average amount of branches for which it is applicable remains
almost constant at around 17%.

• All of the raw data from which the averages and percentages were calculated
is available in Appendix D.

7.4 Scalar Processor Results

The results in this section demonstrate the effects of using the combined algorithm
on the EEMBC suite and scalar processor baseline.

7.4.1 Benchmark Breakdown

Table 7.4 shows the resulting change in the described metrics for each benchmark
on the scalar baseline processor after applying the combined algorithm to the entire
EEMBC suite. The graph in Figure 7.1 shows the global power saving metric
compared with free/ideal branch prediction.

It can be seen from Table 7.4 that the most successful results, in terms of power
saving, are in benchmarks: canrdr01, matrix01, pntrch01, puwmod01, rspeed01,
ttsprk01, rgbcmy, ip pktcheck, ospfv2, routelookup and rotate01; global processor
power savings are as high as 13.34%. These benchmarks are also generally asso-
ciated with the highest dynamic predictor access reductions – as high as 85.78%.
Additionally, these benchmarks are also associated with a significant decrease in
the number of instructions executed and the number of cycles that the simulation
lasted. Some benchmarks have a very slight increase in the number of instruc-
tions/cycles executed. The hint rate for the successful benchmarks does not cor-
relate with the power saving efficacy. The ‘successful’ benchmarks are spread,
in number, relatively equally across all of the EEMBC sub-suites. The degree

75

Table 7.4: Benchmark breakdown results for scalar baseline processor
All results are percentages

Benchmark Dynamic Hint Access Stream Cycles BP Power Global
Branches Rate Reduction Change Change Saving Saving

a2time01 19.45 27.03 9.43 1.42 1.58 12.66 1.32
aifftr01 12.59 28.08 61.26 -0.52 -0.17 58.49 3.36
aifirf01 15.79 26.53 23.15 -2.10 -1.77 25.13 2.06
aiifft01 12.61 26.42 57.76 4.80 4.30 56.32 3.37
basefp01 18.05 22.94 24.66 -0.04 0.02 28.75 2.94
bitmnp01 16.00 19.83 35.46 0.11 -0.07 34.52 2.52
cacheb01 14.22 18.18 56.26 -0.54 -0.18 55.46 3.42
canrdr01 22.79 19.41 69.27 -1.23 -0.51 66.11 9.85
idctrn01 12.02 16.25 37.72 -0.24 -0.29 39.79 3.46
iirflt01 16.47 37.08 15.38 -0.04 -0.05 17.98 1.86
matrix01 18.14 17.82 54.52 -8.52 -9.28 52.34 6.62
pntrch01 22.61 26.87 63.27 -0.80 -0.53 62.20 8.02
puwmod01 22.96 14.12 70.19 -1.26 -0.49 66.83 10.05
rspeed01 22.70 22.02 67.64 -4.02 -6.65 62.39 11.51
tblook01 21.43 30.11 20.03 0.64 1.11 23.00 2.51
ttsprk01 22.67 11.80 67.65 -1.10 -0.16 64.62 9.10
cjpeg 10.40 30.84 85.78 0.00 -0.12 87.75 5.93
djpeg 14.43 32.34 49.44 0.00 -0.04 52.20 4.65
rgbcmy 22.22 24.84 69.68 0.44 0.13 66.43 8.77
rgbhpg 12.78 20.00 74.78 -0.55 -0.21 72.23 4.74
rgbyiq 15.56 23.38 31.55 0.00 0.00 33.83 2.90
ip pktcheck 22.54 6.20 70.28 0.35 -0.06 67.48 9.38
ip reassembly 20.18 12.34 65.83 0.27 -0.04 62.21 5.62
nat 23.26 12.84 68.02 0.31 0.03 64.46 7.76
ospfv2 28.51 6.29 83.32 0.23 0.00 80.72 13.34
qos 20.92 12.67 35.29 -0.05 -0.01 36.29 3.93
routelookup 23.73 6.03 69.58 -1.05 -0.34 67.07 10.17
tcp 14.29 12.20 10.55 -0.77 -0.94 9.25 0.70
bezier01 10.95 17.93 57.49 -0.46 -0.17 53.42 2.46
dither01 16.12 18.54 28.93 0.00 -0.02 31.93 3.31
rotate01 25.69 44.29 66.32 -0.28 -1.28 63.49 9.75
text01 24.31 33.24 46.65 -0.40 -0.70 42.40 5.67
autcor00 9.21 20.28 65.69 -0.10 -0.12 68.34 4.79
conven00 16.21 18.75 25.45 0.00 0.00 25.87 2.07
fbital00 15.06 20.65 50.19 0.02 0.06 51.33 5.50
fft00 12.10 22.94 46.55 0.14 0.01 44.86 2.57
viterb00 9.49 18.24 49.45 -0.01 -0.01 58.35 3.55

76

Figure 7.1: Scalar baseline global power savings (%) compared with ideal (free)
prediction 77

to which the ideal power saving is achieved varies greatly between benchmarks,
proportionally to the reduction in dynamic predictor accesses. Importantly, every
benchmark registers a power saving.

7.4.2 Averages

Table 7.5 shows the weighted averages of the previous scalar results for each of
the EEMBC sub-suites. The graph in Figure 7.2 shows the same scalar averages
compared with free/ideal branch prediction.

Table 7.5: Average benchmark results for scalar baseline processor
All results are percentages

Benchmark Dynamic Hint Access Stream Cycles Global
Branches Rate Reduction Change Change Saving

Automotive 15.88 22.08 59.86 -0.44 -0.28 5.04
Consumer 16.19 30.65 61.17 0.1 -0.01 5.93
Network 21.97 10.57 58.18 0.08 -0.04 6.53
Office 18.76 30.88 45.62 -0.22 -0.45 4.88
Telecom 12.11 20.23 47.84 -0.01 -0.02 4.07
Overall 17.20 18.25 59.51 0.06 -0.05 5.92

Figure 7.2: Scalar baseline average global power savings (%) compared with ideal
(free) prediction

The sub-suite averages show that the combined algorithm is, overall, consis-
tently effective in terms of power saving. The most positively affected sub-suite
is ‘networking’, however this is also the sub-suite that consumes the most branch
prediction power. The sub-suite that most closely achieved its ideal is ‘consumer’.
Overall, the power savings were closely matched, at 6%, between the sub-suites,

78

and missed the ideal by around 3.5%. In no case is there a power increase. The use
of the local delay region is near 100% for those branches where it is applicable.

7.5 Two Instruction Issue Processor Results

The results in this section demonstrate the effects of using the combined algorithm
on the EEMBC suite and two-way instruction issue processor baseline.

7.5.1 Benchmark Breakdown

Table 7.6 shows the resulting change in the described metrics for each benchmark
on the scalar baseline processor after applying the combined algorithm to the entire
EEMBC suite. The graph in Figure 7.3 shows the global power saving metric
compared with free/ideal branch prediction.

In Table 7.6 it can be seen that the most successful benchmarks are similar to
those in the scalar baseline results. The best performing benchmarks, in terms of
global power saving, are: canrdr01, matrix01, pntrch01, puwmod01, rspeed01,
ttsprk01, rgbcmy, ip pktcheck, ospfv2, routelookup and rotate01. The highest
power saving is lower this time though: 12.42%. This is generally the same with all
of the power saving values. Internal power saving in the branch predictor remains
similar, but power savings generally come much closer to the ideal values of free
branch prediction. The hint rate of static branch instructions is almost exactly the
same. An important shift in the results for this MII processor is that the change in
the number of instructions/cycles executed is now more pronounced, and almost all
benchmarks are showing a decrease in the number of instructions/cycles executed.

7.5.2 Averages

Table 7.7 shows the weighted averages of the previous two-way issue results for
each of the EEMBC sub-suites. The graph in Figure 7.4 shows the same two-way
issue averages compared with free/ideal branch prediction.

The most salient fact from the average results is that the combined algorithm’s
power saving is much closer to the ideal of free branch prediction on this baseline
model. Overall there is only around a 2.5% difference between the actual saving of
6.25% and the ideal of 8.6%. The change in the number of instructions/executed
is more positive on this baseline model, with all sub-suites showing fewer cycles
during execution. The efficacy of the local delay region scheduling is not shown in
the averages, but remains close to 100% for those branches where it is applicable.

79

Table 7.6: Benchmark breakdown results for two-way issue baseline processor
All results are percentages

Benchmark Dynamic Hint Access Stream Cycles BP Power Global
Branches Rate Reduction Change Change Saving Saving

a2time01 19.88 27.03 9.12 1.03 0.76 11.92 1.58
aifftr01 13.64 28.08 63.14 1.05 0.03 59.49 3.72
aifirf01 16.22 26.53 20.16 -0.12 -0.06 24.37 1.79
aiifft01 13.70 26.42 64.30 0.20 -0.95 60.22 3.73
basefp01 18.48 22.94 22.89 0.11 0.16 28.19 2.10
bitmnp01 16.38 19.83 38.13 -0.29 -0.86 35.88 2.68
cacheb01 15.31 18.18 52.45 -0.32 -0.93 53.45 3.88
canrdr01 23.92 19.41 64.02 -1.56 -4.89 62.30 10.82
idctrn01 12.27 16.25 36.86 -0.35 -0.60 39.24 4.10
iirflt01 16.74 37.08 15.21 -1.60 -1.44 17.67 1.64
matrix01 19.08 17.82 50.79 -0.01 -0.73 53.43 6.13
pntrch01 23.33 26.87 59.62 0.13 -0.68 60.35 7.40
puwmod01 24.09 14.12 64.44 -1.02 -3.70 63.07 10.44
rspeed01 23.78 22.02 59.77 -0.39 -1.69 59.41 8.66
tblook01 22.42 30.11 24.17 -0.61 -0.75 24.11 3.29
ttsprk01 23.79 11.80 61.79 -0.35 -1.72 61.24 8.97
cjpeg 11.05 31.09 86.30 -0.22 -0.77 87.97 5.60
djpeg 15.23 32.44 51.40 -0.34 -0.86 52.63 4.78
rgbcmy 23.22 24.84 72.87 0.62 -1.50 68.09 9.13
rgbhpg 13.79 20.00 69.23 -0.13 -0.87 69.38 4.97
rgbyiq 16.69 23.38 36.46 -0.49 -1.16 35.72 3.79
ip pktcheck 23.39 6.20 69.08 1.22 -0.82 64.11 8.50
ip reassembly 21.10 12.25 69.41 0.94 -1.03 64.03 6.34
nat 23.87 12.88 71.47 0.43 -1.67 66.19 8.29
ospfv2 28.41 6.29 83.69 -2.43 -4.22 80.37 12.42
qos 23.36 12.72 55.84 -0.02 -0.08 53.69 5.91
routelookup 24.78 5.93 59.32 -0.30 -1.70 58.53 8.66
tcp 14.78 12.13 11.04 -0.66 -0.89 9.30 0.92
bezier01 12.16 17.93 56.14 -0.19 -0.79 53.06 3.18
dither01 16.54 18.54 29.69 -0.16 -0.36 32.33 3.17
rotate01 27.08 44.29 70.28 -1.22 -3.77 63.84 11.04
text01 24.84 33.24 46.19 -1.20 -3.51 40.51 6.62
autcor00 9.36 20.28 47.17 -0.12 -0.21 49.05 3.08
conven00 16.83 18.75 28.47 -0.47 -0.79 27.28 2.51
fbital00 15.19 20.65 49.96 -0.14 -0.21 51.20 4.81
fft00 12.72 22.94 39.88 -0.02 -0.57 36.56 2.49
viterb00 9.52 18.24 50.61 -0.13 -0.77 58.62 3.19

80

Figure 7.3: 2-way issue baseline global power savings (%) compared with ideal
(free) prediction 81

Table 7.7: Average benchmark results for two-way issue baseline processor
All results are percentages

Benchmark Dynamic Hint Access Stream Cycles Global
Branches Rate Reduction Change Change Saving

Automotive 16.95 22.08 59.61 0.11 -1.14 5.28
Consumer 17.23 30.80 63.56 -0.01 -1.1 6.17
Network 23.32 10.56 65.07 0.34 -0.89 7.19
Office 19.61 30.88 47.07 -0.6 -1.84 5.37
Telecom 12.11 20.23 44.62 -0.16 -0.45 3.39
Overall 18.29 18.28 62.64 0.01 -1.1 6.25

Figure 7.4: 2-way issue baseline average power savings (%) compared with ideal
(free) prediction

82

7.6 Sixteen Instruction Issue Processor Results

The results in this section demonstrate the effects of using the combined algorithm
on the EEMBC suite and sixteen-way instruction issue processor baseline.

Position Independent Code

The combined algorithm uses local delay region scheduling for unconditional abso-
lute branches. Unfortunately, in superscalar processors, this can only be used with
very small issue widths. This is because of the difficulty associated with scheduling
into a variable delay region; the delay region can only be filled up to the minimum
number of slots. On a high issue-width processor, such as sixteen instructions, the
minimum delay region size is markedly lower than the average delay region size.
This means that using local delay region scheduling will cause a high number of
wasted clock cycles and actually results in more power consumption than just us-
ing the dynamic predictor. Hence, local delay region scheduling must be disabled
for the sixteen instruction issue width experimental model.

The branches whose dynamic predictor accesses are reduced by the local delay
region scheduling account for around 30% of the dynamic instruction stream in the
EEMBC benchmarks. Disabling this part of the combined algorithm immediately
reduces its effectiveness by this amount. However, since the branch types that use
the local delay region are unconditional absolute branches, there is a method that
permits a way around this problem. GCC, and other modern compilers, allow for
the compiling of position independent code [74]. Used for library creation, this
compilation technique specifically removes unconditional absolute branches by re-
placing them with one or more PC-offset branches. Offset branches are the type
that can be fully utilised by the profling and hinting techniques in the combined
algorithm.

The simulation results for the sixteen instruction issue processor were gener-
ated by compilation with the GCC position independent code technique. Although
this seems to alter the terms on which the simulations are carried out, only a small
alteration occurs. The branches normally scheduled by the local delay region will
now become available to the profiling and hinting techniques.

7.6.1 Benchmark Breakdown

Table 7.8 shows the resulting change in the described metrics for each benchmark
on the sixteen-way issue baseline processor after applying the combined algorithm
to the entire EEMBC suite. The graph in Figure 7.5 shows the global power saving
metric compared with free/ideal branch prediction.

The results for the sixteen instruction issue processor, in Table 7.8 and Fig-
ure 7.5, show a similar pattern, in principle, to the previous two baseline archi-
tectures. The most successful power savings are, again, in benchmarks: canrdr01,

83

Table 7.8: Benchmark breakdown results for sixteen-way issue baseline processor
All results are percentages

Benchmark Dynamic Hint Access Stream Cycles BP Power Global
Branches Rate Reduction Change Change Saving Saving

a2time01 22.14 28.38 10.85 -1.06 -1.20 11.71 1.45
aifftr01 20.19 27.59 39.55 -1.06 -2.59 41.86 3.61
aifirf01 18.62 26.53 17.26 -0.57 0.47 23.41 0.45
aiifft01 20.48 25.91 44.18 -1.68 -1.13 41.60 2.35
basefp01 20.60 22.94 20.65 0.18 0.15 26.95 1.32
bitmnp01 20.93 19.55 31.78 -1.59 -1.08 28.85 1.69
cacheb01 21.43 17.65 35.51 -0.77 -1.81 39.07 2.88
canrdr01 33.29 18.99 40.97 -2.26 -5.04 42.95 7.04
idctrn01 13.37 16.97 35.79 -0.59 -0.39 39.42 2.08
iirflt01 18.86 37.50 12.33 -1.37 -0.76 16.43 1.55
matrix01 20.49 17.82 50.87 0.00 -0.52 53.70 4.45
pntrch01 29.20 26.37 44.49 -1.49 -2.90 48.28 5.52
puwmod01 33.63 13.73 41.44 -2.25 -5.39 43.35 7.35
rspeed01 32.75 20.83 22.05 0.81 -2.10 25.17 2.33
tblook01 29.30 30.11 17.74 0.60 -0.91 21.44 1.27
ttsprk01 33.24 11.48 40.06 -2.12 -4.77 42.09 6.67
cjpeg 13.53 30.97 83.57 -1.14 -1.91 85.80 5.19
djpeg 21.25 32.39 39.25 0.25 -1.98 46.37 3.70
rgbcmy 32.47 24.20 47.08 -3.34 -2.15 44.24 4.48
rgbhpg 20.97 19.26 45.43 -1.04 -3.09 50.12 4.54
rgbyiq 24.99 24.03 44.20 -1.75 -3.50 48.33 5.27
ip pktcheck 31.93 6.01 26.92 0.68 -2.84 29.51 3.82
ip reassembly 29.52 12.34 49.07 -3.23 -3.20 44.78 4.62
nat 32.23 12.84 48.93 -4.66 -3.17 45.21 5.29
ospfv2 34.88 6.19 64.26 -2.13 -2.00 64.78 7.67
qos 30.28 12.72 63.98 -1.07 -5.14 66.89 9.46
routelookup 34.63 5.84 29.33 0.65 -2.33 33.18 4.07
tcp 16.64 12.13 10.02 -0.96 -1.29 6.83 1.14
bezier01 18.15 17.24 38.97 -1.24 -2.88 39.27 3.69
dither01 20.09 18.54 29.55 0.05 -0.72 32.38 2.54
rotate01 36.95 44.29 70.81 -4.39 -7.18 67.04 11.58
text01 30.66 33.24 37.99 -2.65 -7.04 33.10 7.73
autcor00 9.43 19.58 78.55 -0.37 -0.33 84.88 2.93
conven00 21.78 20.14 37.68 0.19 -0.98 38.44 2.53
fbital00 16.02 20.00 47.47 -0.15 -0.31 49.79 3.07
fft00 15.73 22.35 27.32 -0.83 -0.40 23.77 1.12
viterb00 10.36 18.24 49.24 -0.13 -0.42 59.18 2.38

84

Figure 7.5: 16-way issue baseline global power savings (%) compared with ideal
(free) prediction 85

matrix01, pntrch01, puwmod01, rspeed01, ttsprk01, rgbcmy, ip pktcheck, ospfv2,
routelookup and rotate01. The highest power saving provides an interesting re-
sult: rotate01 registers a power saving of 11.58%. This is actually greater than the
‘ideal’ power saving result (due largely to the decrease in the number of execution
cycles). The static hint rate has remained approximately the same as previous base-
line models (see the use of position independent code). As a consequence, dynamic
branch predictor access reduction is relatively similar. An important point to note is
the general trend for benchmarks to register yet more significant instruction/cycle
execution reductions.

7.6.2 Averages

Table 7.9 shows the weighted averages of the previous scalar results for each of
the EEMBC sub-suites. The graph in Figure 7.6 shows the same scalar averages
compared with free/ideal branch prediction.

Table 7.9: Average benchmark results for sixteen-way issue baseline processor
All results are percentages

Benchmark Dynamic Hint Access Stream Cycles Power
Branches Rate Reduction Change Change Saving

Automotive 23.64 21.97 41.06 -1.31 -2.39 3.92
Consumer 24.63 30.70 48.03 -1.68 -2.38 4.54
Network 31.27 10.52 49.09 -1.82 -3.87 6.63
Office 25.35 30.76 43.57 -1.61 -3.85 5.59
Telecom 14.24 20.10 45.86 -0.23 -0.45 2.51
Overall 25.68 18.20 47.77 -1.68 -2.74 4.96

The first impression from examining the average results, shown in Table 7.9
and Figure 7.6, is that the sub-suites have come closer again to achieving the ideal
power saving metric. The overall stream/cycle change of -1.68%/-2.74% is very
significant and can be seen as something of a surprise; it was possible that any
negative effects on accuracy might be amplified by such a high issue width proces-
sor. Additionally, these results show that the use of position independent code is a
suitable alternative, where necessary, to the use of local delay region scheduling.

7.7 Overall Analysis

All three sets of results for the combined algorithm are very encouraging. They
show, under the circumstances of the three baseline models, that the combined
algorithm will always save power. The amount of power saved can vary greatly
between benchmarks, but the overall averages for each sub-suite consistently show
significant power savings. The overall success seen in the average results can be

86

Figure 7.6: 16-way issue baseline average power savings compared with ideal
(free) prediction

attributed to the high power savings in the benchmarks that execute for a greater
number of instructions (for instance in the networking sub-suite). Indeed, longer
executing benchmarks tend to have many tightly iterating loops that are ideal can-
didates for dynamic prediction removal by the combined algorithm.

One of the first general trends that becomes apparent after examining the re-
sults for all three baseline models is that a given dynamic predictor access reduc-
tion level does not guarantee the same overall power saving across different bench-
marks. This is because, for the branches that are removed/hinted by the combined
algorithm, the basic block size varies. The relative power saving will be higher in
programs where the basic blocks are smaller; a smaller average basic block size
means that branch instructions account for a higher percentage of the dynamic in-
struction stream. This can be seen best in benchmarks like ‘cjpeg’ and ‘djpeg’
which have a very high dynamic access reduction, but a low percentage of the dy-
namic stream is accounted for by branch instructions. The results is a lower overall
power saving compared to ‘less successful’ benchmarks such as ‘ospfv2’.

A surprising, and very important, trend in the results was quite unexpected:
most benchmarks register a decrease in the number of instructions and cycles exe-
cuted. As well as counting towards the overall power savings shown in the results,
this behaviour is also significant for the performance market. In terms of power
saving, the a decrease in the size of the dynamic stream is more significant as it
means that fewer instructions actually utilised the control logic inside the proces-
sor. However, the change in the number of cycles is also significant as this affects
the actual time for which the benchmark executes (even when not executing in-
structions, a processor will still consume power). The reason behind the reduction
in the number of instructions/cycles executed is because the combined algorithm
actually increases overall prediction accuracy by providing more accurate predic-

87

tions for some difficult-to-predict branches.
The scalar baseline model shows an overall power saving of 5.92%. The num-

ber of instructions/cycles executed remained relatively unchanged. This is an en-
couraging result in a processor where the ceiling value of branch prediction power
is around 10% of global processor power. The dynamic branch predictor in the
scalar model accounts for the highest proportion of the processor’s global power
when compared to the two-way or sixteen-way issue baseline models. This would
seem to indicate that the highest overall power savings were to be made here. How-
ever, this is not the case: the two-way issue baseline model registers a slightly
higher average global power saving at 6.25%.

Although the dynamic branch predictor accounts for a smaller proportion of
global power consumption in the two-way issue processor (due to the rest of pro-
cessor being ‘larger’), and the hint rate has remained relatively unchanged, the in-
creased power savings can be attributed to the combined algorithm’s static hinting
of dynamically difficult to predict branches. In a multiple instruction issue pro-
cessor, mispredictions are very costly. The combined algorithm ameliorates this
problem, and as such shows an increased reduction in dynamic predictor accesses
and the dynamic instruction stream. This results in an increased overall power
saving when compared to the scalar baseline model.

Finally, the sixteen-way instruction issue shows the most surprising results set.
Initially, it was suspected that the combined algorithm might result in a very slight
reduction in overall prediction accuracy during a program’s execution. It was ex-
pected that on scalar, and small issue, pipelines any slight decrease in accuracy
would be offset by power savings of the reduction in dynamic predictor accesses.
It was therefore possible that the sixteen-way instruction issue processor would ex-
acerbate any decrease in prediction accuracy by its huge misprediction penalty. In
actuality, the results show that the combined algorithm actually improves predic-
tion accuracy and shows almost a 3% reduction in execution time (cycles). This
result is significant for the performance market irrespective of any power saving
results. The overall power saving is 4.96%; while this saving is lower than on the
other baseline models, it is due to the branch predictor accounting for a much lower
proportion of overall power consumption as the processor logic is vaster and more
complex. Additionally, the dynamic predictor access reduction is much lower on
this architecture. This is because the unhinted branches account for more dynamic
predictor accesses on the sixteen-way baseline as a consequence of the mispredic-
tion window (up to 3 branches may needlessly access the dynamic predictor on a
misprediction.

7.7.1 Results Summary

The results show a significant power saving on all architectures. The savings range,
on average for each baseline, from between 4.96% to 6.25%. The algorithm was
marginally most successful on the two-way issue baseline model. The slightly

88

surprising behaviour shown in the results is that the combined algorithm has key
performance implications for MII, resulting in an execution speed up of almost 3%
in the sixteen-way baseline model.

The questions remaining after this analysis are:

• How does the profiling/hinting regime, using adaptive bias measurement,
compare to a fixed bias level or compiler hinting heuristics?

• Since certain branch addresses are permanently removed from dynamic pre-
dictor access during a program’s execution, does this decrease aliasing in the
predictor? As a consequence, can set associativity in the power-hungry BTB
be reduced?

• Are these results applicable to a ‘real’ instruction set?

The next chapter is dedicated to exploring the above questions by empirical
investigation and comparison to existing technologies.

89

Chapter 8

Comparisons and Enhancements

There are various comparisons and enhancements that appear logical after the pre-
vious experimentation with the combined scheduling and hinting algorithm. This
chapter explores the most prominent of these modifications using further experi-
mental results. Although relatively short, this chapter is important as it demon-
strates the possible further gains available from ‘tweaking’ hardware elements fur-
ther, and how the ABBM system compares with more traditional schemes.

8.1 Comparison of ABBM with Fixed Bias Level and Com-

piler Heuristics

One of the key novelties of the combined algorithm is the use of the adaptive branch
bias measurement, used to decide whether to insert a static behaviour for a branch
based on the dynamic predictor’s accuracy.

The use of this method, and profiling in general, raises two significant questions
that remain hitherto unanswered:

1. How does using an adaptive branch bias measurement, with profiled dynamic
branch predictor behaviour, compare to the use of a simple fixed bias level
for each branch?

2. How does using an ABBM compare to ‘intelligent’ compiler heuristics that
determine likely biased branches?

The answers to these questions are linked. The answer to question 1 can be
achieved by simply ‘turning off’ adaptive branch bias measurement, and replac-
ing it with a single, fixed bias level (not the ABBM). The results for this will also
provide a rough approximation for the answer to question 2. This is because a com-
piler that uses heuristics to determine biased branches will inevitably approximate

90

to a fixed bias level; it can only, by virtue of the absence of execution information,
determine whether a branch is ‘likely very biased’.

The fixed bias level used to generate the results shown in this section is 85%.
The baseline model used is the scalar processor. This means that if a dynamic
branch tended to one direction for at least 85% of its dynamic occurrences then
it would be assigned a static prediction hint in that direction. This bias level was
chosen as it was thought to be high enough so as to minimise interference with the
accuracy of the dynamic predictor, but not so high that too few branches would be
found for hinting. A higher bias level was found to be too fine-grained to apply a
significant number of hints.

8.1.1 Results and Analysis

Table 8.1 shows the average sub-suite results generated using the fixed bias level
of 85%.

Table 8.1: Average benchmark results for fixed bias hinting
All results are percentages

Benchmark Dynamics Hint Access Stream Cycles Power
Branches Rate Reduction Change Change Saving

Automotive 23.63 22.05 46.87 2.98 2.14 0.51
Consumer 24.63 28.17 51.63 2.17 2.81 0.06
Network 31.27 9.99 45.18 -1.16 -2.92 1.12
Office 25.35 28.30 53.94 1.00 0.14 1.51
Telecom 14.14 20.23 57.96 2.16 1.69 1.55
Overall 25.67 17.32 50.30 1.58 2.51 1.04

These results show that using a fixed bias level to assign static hints, which is
then used in conjunction with a dynamic predictor, is probably not a sensible idea.
It can be seen that although dynamic predictor accesses are reduced, on average
by 50%, there is a significant associated penalty. Overall, the average number
of instruction executed increases by 1.58%, and the number of cycles executed
increases by 2.51%. In terms of performance these figure are extremely significant,
and detrimental. The overall effect observed in power is that there is a saving of
about 1%, but it is not particularly significant.

The reason for this ill-effect is that the set of static branches hinted using a fixed
bias level will be significantly different in content when compared to those chosen
by the adaptive method. All branches that lie over the bias level will be assigned
a hint. However, many of these branches will quite possibly be almost perfectly
predicted by the dynamic predictor, and thus the fixed bias will decrease prediction
accuracy for the branch. This argues for a very high fixed bias, but this means that
fewer and fewer branches are available for hinting. Additionally, the ABBM has
the advantage of hinting difficult-to-predict branches. Although the fixed bias will

91

hint some branches that are heavily biased and difficult to predict, it will not hint
branches that are not heavily biased, but would still benefit from a static prediction.

The effects observed in this experiment also suggest that a similar effect is
likely to arise from the use of static analysis of the assembly code by a compiler.
This will depend on the heuristic used, but it is very difficult to determine, from
static code, which branches would be suitable to issue a static prediction.

These results show an overall power saving of 1%, but it is possible that this is
an artefact of the power metrics derived from the Wattch Simulator. It is suspected
that Wattch does not assign a sufficiently significant portion of the energy model
to static power dissipation during inactivity. This possible artefact does not affect
the validity of the main body of results because the the number of cycles actually
decreased (in fact, the results could be even better when this artefact is considered).
Such a high increase in the number of cycles executed should make a global power
saving very difficult, even with a 50% access reduction to the branch predictor.
This would almost mean that the results shown in the previous chapter could be
even stronger, given the decrease in the number of executed instructions/cycles. It
is, however, possible that the number of instructions executed is more significant
than the number of cycles (for power) and, as this was only 1.58%, the savings in
branch predictor power outweighed this.

The overall impression from these results is that using the novel ABBM is far
more beneficial than a system that uses a fixed bias level (or equivalent).

8.2 Reducing Set Associativity in the Branch Target Buffer

The results from the previous chapter show that, in general, almost 20% of static
branches are assigned a hint. This means that around one in five branch addresses
no longer access the branch target buffer. Additionally, the branches assigned a
static hint are generally highly iterative branches that account for a significant por-
tion of accesses to a dynamic predictor, and have a strong affect on the dynamic
stream. If these branches are not accessing the BTB then it is possible that the
number of collisions between branch addresses will decrease, and thus it may be
possible to reduce the set-associativity in the BTB.

The results in this section show the effect of reducing the set-associativity on
the 2-way issue baseline model from four to two. The EEMBC suite was scheduled
and hinted as normal using the combined algorithm.

8.2.1 Results and Analysis

The resulting change after altering the set associativity in the BTB can be seen in
two result metrics: the resulting change in the number of instructions executed (was
prediction accuracy affected?) and the resulting power saving. The effect on these
two variables can be observed centrally in the form of the change in the number

92

of executed instructions. The results show the change from standard application of
the combined algorithm. This means all results are measured from the baseline that
has already had the combined algorithm applied. Figure 8.1 shows the change in
the number of executed instructions. Figure 8.2 shows the change in global power
saving (a negative power saving is a power consumption increase).

Figure 8.1: Average Change in the dynamic instruction stream after resizing the
BTB from four-way to two-way set-associativity

The most important results to examine first are the changes in the number of
instructions executed for each sub-suite. It can be seen that, generally speaking,
the reduction in size of set-associativity has had little impact on the dynamic pre-
diction accuracy, and thus the number instructions executed. However, there is one
exception: the Telecom sub-suite, for which there is a major increase in the num-
ber of instructions executed. This is significant, as it shows that it is possible for a
negative impact to occur as a result of the reduced accuracy of the target address
predictor.

The results for global power saving reflect the changes in the instruction stream.
Power savings can be seen with the overall average being slightly under 0.4%. It
is significant to note that for the Telecom sub-suite there is an increase in global
power consumption as a result of decreasing the associativity in the BTB.

Although these results show that, overall, additional power can be saved by
altering the configuration of the BTB, they also demonstrate that doing so removes
the ‘always-a-win’ nature of the combined algorithm and mean that it is possible
for bigger problems to occur when compared to the benefits. Whether making these
alterations to the BTB will result in an additional power saving depends entirely
on which static branches are assigned hints.

93

Figure 8.2: Additional power saving after resizing the BTB

It is likely that altering the hardware is not sensible, for two reasons: firstly,
it is possible for a negative result to occur when the combined algorithm is used,
and secondly, once such alterations to the hardware are made, it demands the use
of the combined algorithm for all software. One usual advantage of the combined
algorithm is that is it relatively light in hardware implementation and does not
necessarily have to be used. Making the hardware dependent of its use removes
this advantage.

8.3 Summary

This chapter, although relatively small, has explored two significant questions
which arise from the main body of results shown in the previous chapter. The
initial question was concerned with whether or not the ABBM was better than a
fixed bias hint assignment method. The results show that, in terms of energy, the
ABBM gave much more favourable results. In terms of performance, the use of
a fixed bias level was clearly detrimental. It is likely that, in some architectures,
this performance impact could dramatically increase the global processor power
consumption as well.

The second question addressed was whether the BTB could be reduced in
size/associativity, since the combined algorithm significantly and permanently cuts
the number of branch addresses entering the BTB. The results show that it is pos-
sible to reduce from four-way to two-way set associativity without having a signif-
icant affect on the number of instructions executed (which is central to not causing
power incursions). However, the telecom sub-suite registered a significant increase
in the number of instructions executed. This means that hardware designer needs to

94

decide whether the meagre additional power savings of reducing set associativity
are worth the risk of increasing execution time (and also power consumption).

The next, and final, chapter discusses in depth the findings of the experimenta-
tion chapters and the investigation in general.

95

Chapter 9

Conclusion and Discussion

The previous two chapters have presented and discussed the results of using the
combined algorithm on a simulated architecture, and several baseline models. These
results were also then compared with the success of other methods and their appli-
cability to real architectures. This offers a summary of the key novelties presented
in this work, the criticisms that could be levelled against it and where the results lie
in the broader research area. Finally, the conclusions drawn from these experiments
are stated with the aim of leading into the future work.

9.1 Thesis Summary

This dissertation has proposed, and investigated, an approach to increasing the
energy efficiency of a dynamic branch predictor in a modern embedded proces-
sor. The approach taken combined several traditional methods: local delay region
scheduling, profiling and hint bits, however the combination is novel. The central
aim of the combined algorithm is to reduce the dynamic branch predictor activity
factor (by reducing the number of accesses to it) without increasing the execution
time of the program by negatively affecting the dynamic branch predictor’s ac-
curacy. This is achieved by bypassing the dynamic predictor for certain selected
branch instructions.

The local delay region can easily be used for unconditional absolute branches,
since they will always be taken to a fixed target, and profiling can be used to
generate static prediction data for offset branches (provided they share a single
branch format). The profiling mechanism uses an adaptive system of measurement
to decide whether or not to assign a static prediction to a branch by comparing
its dynamic bias to the dynamic branch predictor’s accuracy for that branch. For
branches more biased than their dynamic prediction, a static prediction is assigned.
This ensures minimum impact on prediction accuracy, which is itself crucial for

96

global processor energy efficiency. In fact, an increase in prediction accuracy was
measured.

The combined algorithm is supported by simple hardware modifications in the
instruction fetch and execution pipeline stages where the hint bits are used to pre-
vent a predictor access from occurring. In the course of this research, results have
shown that around 63% of dynamic branch predictor accesses can be avoided on
accurate (large local [PAg]) branch predictors, and this will have negligible impact
on execution time. In many instances, execution is even reduced by the static pre-
diction of dynamically difficult-to-predict branches. On a high powered embedded
processor, around a 6.2% global power saving could be expected. This saving can
be higher when the dynamic predictor is less accurate as more branches will be
hinted.

9.1.1 Key Novelties and Contributions

Although some of the methods used in this project already exist, there are several
key novelties presented in this thesis:

Combining Techniques – Static and dynamic techniques can be further combined
into a comprehensive system. Delay region scheduling has not been used in
conjunction with a dynamic predictor in this way before, and this combina-
tion is therefore a novel approach.

Adaptive Branch Bias Measurement – Assigning static branch predictions has,
until now, been conducted using either compiler heuristics or profiling with
a fixed bias level. In both situations, the static prediction assigned is given
no guarantee as to how it will affect the accuracy of that branch’s predic-
tion. Measuring the branch bias adaptively ensures that a static prediction
is only assigned for a branch where it will not adversely affect that branch’s
prediction accuracy. This technique is a significant and novel contribution.

Power Saving Hint Bit Logic – Although the use of hint-bits is by no means new,
using them to control the switching activity of a branch predictor has not
been fully researched. When used in the proposed novel way, simple logic
switches on/off the datapath of the branch predictor control logic by using the
information in two simple hint-bits. For hinted taken branches, the proposi-
tion is essentially to include a very simple ‘speculative’ decode, of a hinted
taken branch instruction, in the instruction fetch pipeline stage.

9.2 Generalisation

The previous two chapters presented results for the combined algorithm using vari-
ous different baseline configurations. However, these results do appear tied to those

97

architectures. A logical question from any processor designer is “how much power
can be saved on my architecture using this algorithm?” This section aims to gen-
eralise the power saving potential of the combined algorithm into an approximate
equation. It should be noted, however, that the sheer number and complexity the
of variables involved makes it difficult to give a precise estimate, and the equation
should be considered indicative only.

Equation 9.1 shows the relationship between global power saving and the ef-
fectiveness of the algorithm.

G ≈ R× P (9.1)

Where:

G = Global Power Saving. The power saved across the entire processor by the
application of the combined algorithm to the hardware and compilation pro-
cess.

P = Branch predictor power consumption as a fraction of global power. The pro-
portion of global processor power accounted for by the branch predictor unit.
This is affected by both software and hardware. In the hardware, the rela-
tive size of the branch predictor compared to the rest of the processor is key.
In the software, the average number of branch instructions in the dynamic
stream will affect how often the branch predictor is accessed on average.
Smaller basic blocks mean more frequent branch predictor accesses.

R = Fractional reduction in dynamic branch predictor accesses as a result of the
combined algorithm. The number of dynamic accesses that are avoided is
decided by the number of dynamic branches that are assigned a static hint
to use either local delay region or an assumed direction. This is, in turn,
decided by the number of branches/branch types available for hinting in a
given instruction set. The number of branches available is determined by
the dynamic total of the number of unconditional absolute branches and the
number of offset type branches. The proportion of these branches that are
assigned a hint depends upon how biased each branch is compared to the
kind of dynamic predictor being used in the existing architecture.

The availability of instructions in the instruction set in the experimental archi-
tecture used in this project was around 70% of the dynamic stream. From this,
using an accurate local predictor, around 65% of all dynamic branch predictor ac-
cesses were avoided through scheduling/hinting. Depending on the accuracy of
the dynamic branch predictor in use, this figure can vary between avoiding 60%
and 70% of all dynamic branch predictor accesses; a less accurate predictor results
in a higher proportion of instructions that can be assigned hints as their bias is
comparatively greater than the prediction accuracy in more cases.

Hence, if we assume that most instruction sets allow, on average, for 70% of
all dynamic branches to be subjected to the use of the combined algorithm, and this

98

results in, on average, an overall reduction of 65% of dynamic predictor accesses
then:

G ≈ 0.65× P (9.2)

If, for example, the dynamic branch predictor accounts for around 10% of
global power consumption then the combined algorithm could save 6.5% of global
processor power dissipation (Equation 9.2). This is both interesting and significant.

The factors in how effective the combined algorithm will be are highly variable
and cannot easily be estimated. But as a rough guide, and with the various baseline
models tested, this equation gives an engineer a good idea of the potential power
savings.

9.3 Critique

The combined algorithm discussed and presented in this dissertation has several
aspects, both in hardware and software implementation, that raise the possibility
for discussion. This section aims to address these criticisms and counter them with
an explanation of why the particular aspect is not necessarily the problem it appears
to be, or by demonstrating how the algorithm can be modified to work around the
particular problem.

9.3.1 Local Delay Region

Local delay region scheduling can attract a great deal of consternation from veteran
compiler designers. This is generally because of the following criticisms:

1. With well optimised assembly code, it is difficult to find instructions in a
basic block that do not affect the outcome of the branch direction.

2. To make matters worse, modern processors have many pipeline stages before
branch resolution. This means that there are many instruction delay slots to
fill.

3. Superscalar processors do not have a fixed delay region due to dynamic in-
struction scheduling, and as such the number of delay slots is dynamically
context sensitive.

The counter argument to these criticisms is the way in which local delay region
scheduling is used by the combined algorithm in the implementation specified. In
this thesis, the local delay region is used only for certain branches. It is no longer
burdened as being the sole method of delay region resolution. Furthermore, in this
research, the local delay region is used only for unconditional absolute branches.

99

This type of branch is not dependent on any of the preceding instructions in the ba-
sic block. As such, it is possible to find local candidate instructions for scheduling.
The number of candidate instructions, in this situation, is limited only by the size
of the basic block being scheduled.

Superscalar processors do present a distinct problem for using local delay re-
gion scheduling. However, this is not (always) the problem that is seems to be.
Most embedded processors are not superscalar, and since the target of this algo-
rithm is the embedded market, this algorithm is well suited. Furthermore, partic-
ularly in superscalar processors with a relatively small issue width, the dynamic
scheduling algorithm can be configured such that there will always be a minimum
number of delay slots (and, in many processors, this is already the case). Most
branches have a delay region which, through profiling, can be observed to have a
size which almost always conforms to the minimum delay region size. As a re-
sult of this, instructions can be scheduled into the delay region up to the minimum
number of slots without having a negative affect on performance. In order to main-
tain program semantics, the delay region, in this situation, must end with a HLT
or padded with NOPs in case the delay region in a particular context is larger than
the minimum size, and therefore stop the processor executing instructions from a
speculated path.

9.3.2 Hint Bits

Introducing new bits into an instruction set/format may cause concern among ar-
chitecture designers. The combined algorithm requires two additional bits in all
branch instructions. Although there is relatively little opposition to using redun-
dant bits in branch instructions, there remains one typical criticism:

• The use of two hint bits in only branch instructions requires, and as-
sumes, that there exists predecode logic in the instruction fetch stage to
discover branch instructions. How can you justify this?

The response is relatively straightforward: the combined algorithm, through its
hint bits, is focused on reducing the power consumption of a dynamic branch pre-
dictor. In a power sensitive architecture, with a dynamic branch predictor, the first
thing that should be done is to include predecode logic to disable branch predictor
accesses for non-branch instructions. Otherwise every fetched instruction performs
a branch predictor access; this makes no sense for a power sensitive architecture. In
fact, the logic required to identify a branch instruction is not complicated in a well
designed instruction set. The cost of introducing the ‘predecode logic’ is highly
likely to be offset by the associated power savings.

100

9.3.3 Timing Issues

To make full use of the two hint-bits included in branch instructions, the branch
predictor access must be performed in series with the i-cache access. This is be-
cause the hint bits are used to control whether or not to access the branch predictor,
and these are not known until the i-cache access is complete. Some modern high
performance architectures access the branch predictor in parallel with the i-cache
to reduce the clock window in the instruction fetch pipeline stage. This can be
accomplished as no contents of the instruction being fetched are required to access
the branch predictor (only the program counter value). These two timing scenarios
are shown in Figure 9.1 below.

Figure 9.1: Series and parallel i-cache/branch predictor access. (1) and (2) repre-
sent the direction and target address predictors, respectively

The series access shown in Figure 9.1 is required by the combined algorithm.
However, this problem is not necessarily significant. A parallel access is only
necessary on processors that derive their performance from very high clock rates.
Fortunately, most power-aware systems to do not function at extremely high clock
rates. This means that a series access is perfectly acceptable for most power aware
scenarios.

If a parallel branch predictor is absolutely necessary then there is still a rela-
tively simple modification that can be made to the hardware implementation. The
modification is the inclusion of a very small direct mapped cache, perhaps as few
as eight entries, that are indexed by the program counter and furnish hint-bits from
recently accessed branch instructions. This small cache would need to be updated
at some stage with a branches hint bits. This cache can then be accessed quickly
and in parallel with the i-cache to decide whether to access the full branch predic-
tor. This would, of course, reduce the effectiveness of the combined algorithm, but
allows it to be introduced into timing-sensitive processors. The use of such a cache
in this way could be seen as a statically initialised version of the Prediction Probe
Detector. The use of the combined algorithm in conjunction with the Prediction
Probe Detector is discussed in further detail in the Future Work section.

101

9.3.4 Profiling Duration

A particular criticism that is often levelled at algorithms which make use of profil-
ing is that profiling is generally a very slow process and consumes a large amount
of time and resources. In the context of the combined algorithm, the question is:
“how can this be justified?” In fact, the question is usually asked when the purpose
of the combined algorithm is not completely understood.

The combined algorithm only uses profiling at one point in the production stage
of a piece of software. The central aim of the combined algorithm is that it utilises
profiling data only once, and then the resulting hinted executable is dispatched to
multiple end users and the profiling is not carried out again. Profiling does not need
to be carried out again because the combined algorithm ensures that only branches
that are better served by a static prediction are assigned one. Because of the broad
profiling data sets this ensures that the true data dependent branches are left for
dynamic branch prediction.

A further argument against the duration of profiling is that the target audience
of the combined algorithm is the embedded market. In this market the execution
time of programs tends to be much lower and profiling is far less time consuming.
Additionally, it is not stipulated that the combined algorithm must be applied to a
piece of code, but rather the processor supports it if the software producer decides
(sensibly) to make use of it. Unprofiled/unscheduled code will simply be executed
in the normal, dynamically predicted way.

9.3.5 Profiling on a ‘Real’ Architecture

The profiling results for the implementation of the combined algorithm presented
in this dissertation were produced using a simulated architecture in a software pro-
cessor simulator (HWattch). This has attracted some criticism as the simulation
of an entire processor is often considered slow. In fact, simulation is actually a
very fast way to retrieve profiling information, particularly the kind of profiling
information required by the combined algorithm.

The combined algorithm needs only to record the following information during
a program’s execution:

1. The direction taken by each static branch at each dynamic occurrence

2. The dynamic predictor’s predicted direction for each dynamic branch occur-
rence

The most important aspect of these results is that it must be possible to di-
rectly map the dynamic branch execution history to the static assembly code of
the program. This is necessary in order to realise which dynamic behaviour corre-
sponds to which branch, and hence which assembly instruction should be assigned
a static hint. Additionally, it must be remembered that, in contrast to most pro-
filing schemes, the behaviour of the dynamic branch predictor is required. This
behaviour cannot be inferred from the actual semantic behaviour of the program.

102

Full Simulation

Achieving the required profiling results in a full processor simulator is relatively
straightforward. This is because, by definition, all elements of a simulator are
available for inspection and monitoring. This makes obtaining the required branch
prediction information simple.

Mapping dynamic behaviours to static instructions was achieved in simulation
by annotating each static assembly instruction with a unique identifier which was
recorded with each dynamic branch direction result. This simplified the process of
profile mapping and enabled reliable branch instruction annotating.

The advantage of full simulation is the simplicity of the solution. The disad-
vantage is that simulation makes it difficult to simulate a full system, for example
a full operating system, and any programs which make use of a fully ‘live’ system.

Hardware Trace

When profiling results are required under a realistic load, through direct interaction
with the operating system or when the program makes use of real hardware, the
only viable solution is to profile the program on a ‘real’ system/processor.

This can be achieved with the use of a runtime tracer, such as HTracer, which
can fully log the behaviour of an entire program by executing one instruction at a
time and stall the traced program after each instruction has been executed. This
process is straightforward and well documented. The difficulty is mapping the dy-
namic program trace back to the original assembly code, since the program counter
value does not necessarily indicate which instruction from a static assembly source
file is being executed. To overcome this problem, an additional instruction should
be inserted in the assembly code before each static branch instruction that needs to
be traced dynamically. This instruction would store an absolute value in a register
that indicates which part of the static source code is being executed. This is then
interpreted post-trace and used to map profiling data to the static code.

The key difficulty on a hard architecture is that the combined algorithm requires
information about the behaviour of the dynamic prediction logic. This is unlikely
to be available through the architecture dynamically. The simplest way to generate
this part of the profiling data is to take the previous compacted branch trace of
the program and parse it through a simple simulator that only models the branch
predictor used in the hard architecture. This can then produce the desired branch
predictor information for each dynamic branch in the unrolled program execution
contained in the compacted trace file.

Profiling on a real/hard architecture allows full use of the system in the profiled
program and a full operating system. It can be used to obtain more useful results
than perhaps are available in fully simulated environment.

103

9.3.6 Dependency on Datasets

The final significant point of contention over a system such as the combined algo-
rithm is its use of ‘strong’ static hinting. That is to say, the combined algorithm
uses hint bits, for certain branches, to reflect a static prediction that overrides all
dynamic prediction for that branch. The argument is that such a system could
significantly reduce the overall accuracy of branch prediction when the hinted pro-
gram is executed with a different dataset. Such an argument has a valid basis, but
can be seen to be unfounded in the case of the combined algorithm.

The first major point which must be considered is that all systems of profiling,
in order to be valid, must be carried out with an adequate dataset. This could either
be a significantly large dataset or several different datasets. The combined algo-
rithm uses this data to assign hints for only those branches where the static bias
of a branch, across this broad profiling dataset, is greater than or equal to the dy-
namic predictor’s accuracy for that branch. This process essentially assigns static
predictions for only heavily biased branches and difficult-to-predict-dynamically
branches. These branches are specifically less dependent on datasets and thus as-
signing them a static prediction will not, and does not, affect overall prediction
accuracy. This is confirmed by the results presented in this dissertation. All bench-
marks were profiled against two different datasets and then tested on a third dataset
to generate the actual results. This removed the possibility of over-fitting to a par-
ticular dataset. However, through experimentation, the same results can almost
always be obtained for this algorithm using a single dataset.

9.4 Related Work Comparison

An important point of discussion, now that the results are known for the combined
algorithm, is the significance of this work compared to other related approaches to
energy efficient branch prediction.

The combined algorithm essentially treats the dynamic branch prediction logic
as a blackbox; it does not interact with the internals of the dynamic branch predic-
tor, but rather interacts with its external behaviour. This is significant when con-
sidering related approaches. There are many approaches to energy efficient branch
prediction that have focused on designing inherently efficient dynamic branch pre-
dictor units. However, these are not actually in competition with the combined
algorithm directly as the combined algorithm can be used with almost any scheme
of dynamic branch prediction. The only significant piece of related work that it is
sensible to compare and contrast with is the Prediction Probe Detector which also
attempts to reduce the number of dynamic branch predictor accesses.

104

9.4.1 Prediction Probe Detector

The PPD, as discussed in Chapter 3, introduces a small cache-like structure into
the instruction fetch stage of a processor. This structure was initially intended sim-
ply to stop branch predictor accesses occurring for every fetched instruction in an
environment where it was not possible to wait for an instruction to be fetched from
the i-cache and then use predecode bits to prevent a branch predictor access. The
PPD essentially behaved as a control flow instruction predictor; it would predict
whether the next instruction to be fetched from the i-cache was a branch instruc-
tion, and hence whether the branch predictor should be accessed.

The PPD was then enhanced to predict whether the next instruction was a con-
ditional branch or an unconditional branch. This allowed the control logic to decide
whether a direction prediction or just a target prediction was required. This infor-
mation was stored in two bits (one controlling the direction predictor, and the other
controlling the target predictor) in a small cache where each line corresponds to a
line in the i-cache. The PPD is then updated once the actual instruction has been
decoded and its type is known. The PPD means that the branch predictor does not
need to be accessed in every cycle, even in systems where the branch predictor
logic has to be accessed in parallel with the i-cache.

Finally, the PPD was further extended to use compiler hints which indicate
whether a branch is biased to the extent that it is unchanging. This required an
additional bit in the PPD to indicate this new possibility. These hints were rela-
tively crude and only convey information for a small subset of branches that are
completely unchanging.

Overall, in the experimental baseline architecture used in the PPD investiga-
tion, a global processor powersaving of around 3% was observed.

It was noted as a final idea of the PPD journal paper [82] (published after the
start of this work) that much bigger power savings would be possible if some form
of hints could be used to convey information about branch behaviour to the PPD.
This gives reassurance to the methods used in this project, but is still very different
from the combined algorithm.

In contrast to the PPD, the combined algorithm assumes a series access with
the i-cache/branch predictor (possible in processors with a lower clock speed) and
the inclusion of predecode logic. These are not big assumptions, as discussed
previously, but do change the premise of the scheme used. In fact, if a parallel
access is required of the branch predictor and i-cache, then an approach similar to
that described in the future work (9.5.3) of combining the PPD with the combined
algorithm would be the most sensible.

All of this means that, in general terms, the power savings achieved by the
combined algorithm are in addition to those achievable by the PPD. That is to say
that most of the power savings achieved by the PPD are already assumed to have
occurred in the results for the combined algorithm. The combined algorithm re-
sults assume that only branches access the branch predictor logic (the chief power
saving achieved by the PPD). This means that, according to the results presented

105

in this dissertation, significant additional power savings could be achieved by the
extension of the PPD with the combined algorithm (where a parallel access is nec-
essary – otherwise the PPD is of no benefit to the combined algorithm).

The way the combined algorithm achieves the additional power savings over
the PPD is by the following methods:

1. The inclusion of full static predictions for branches, including the target ad-
dress for the most common branch type format. This enables not only to
completely avoid furnishing predictions for many branches, but also negates
the need to update the predictor for those branches (apart from the history
register in two-level predictors such as global predictors).

2. Adaptive Branch Bias Measurement through profiling maximises the number
of branches that can be assigned a static hint by using a per-branch bias
assignment system. This assigns a static prediction for all branches that are
more biased to one direction than the accuracy of their dynamic prediction.
This has the effect of removing both ‘very biased’ branches (though not just
traditional ones) and difficult-to-predict branches.

3. Local delay region scheduling is used for unconditional absolute branches.
This removes accesses for a large subset of dynamic branches.

4. Simple hardware support in the instruction fetch stage allows for very simple
calculation of the target address for the most common branch type format.
This is significant as the branch target predictor (BTB) is a major consumer
of power.

These key differences demonstrate that their are significant advantages that can
be achieved over the existing PPD scheme. These advantages could work together
with the PPD in a dynamic context.

9.5 Future Work

During the experimentation and design work conducted throughout this project
there have been several ideas for future work that have arisen. Some are very
closely related to the research conducted surrounding the combined algorithm, but
others are broader and more distant in context. This section takes a very brief look
at several possible avenues for future research.

9.5.1 Maximising the Fetch Window of Wide Issue Processors

Superscalar processors fetch multiple instructions in each cycle in order to fill a
multiple instruction fetch queue. In wider instruction issue processors, such as
sixteen instruction issue, there is likely to be more than one branch instruction

106

fetched in each cycle (assuming that the fetch queue can be somewhat emptied
each cycle – the number of function units is also high). This is a problem because
each time a branch instruction is encountered, a prediction must be formed by the
dynamic predictor as to which direction the branch will take, and, if the prediction
is taken, what the target address will be. Branch prediction logic is complex and
will generally use of the rest of the cycle time for a predicted taken branch. This
means that, potentially, it can be difficult to fill a wide instruction fetch window
when more than one branch is encountered per cycle.

The proposal for future work consists of measuring the effectiveness of the
hinting scheme described in this dissertation at ameliorating the branch prediction
bottleneck for filling a wide instruction fetch window. A dynamic branch pre-
diction is unnecessary for all branches hinted by the combined algorithm. The
combined algorithm can hint between 60%-75% of all dynamic branches. This
potentially means that a significant reduction in the branch bottleneck could oc-
cur and that the instruction fetch window could be significantly more successfully
utilised.

9.5.2 Hinting Libraries

Due to technical complexities, and design decisions, the libraries used by all of
the programs in the experimentation chapters of this report were unhinted. This
means that all branches in libraries used dynamic prediction, whether or not they
were biased. This means that there is a further source of potentially avoidable
dynamic branch predictor access, and therefore a further source of power saving.
The difficulty is that libraries, or more specifically shared libraries, are shared in
memory between one or more programs. Assigning a static prediction to branches
in a shared library, using profiling information, is very difficult. The branches in
the library can appear in any number of contexts within several different programs
where the static predictions may be highly inaccurate.

A possible solution to this is to statically link a program to the libraries that
it uses (or a subset of the libraries that it uses). This would remove the context
problem of a library appearing in various different programs. As such, it is then
possible to hint the library functions within the target program as normal.

However, statically linking a program to its libraries will increase the size of the
program (as the library calls must now be contained within it) and the library will
no longer be shared. An investigation would decide whether the overall increase
in the size of programs was worth the extra potential power saving that could be
obtained from hinting the newly hintable branches.

9.5.3 Combining with the Prediction Probe Detector

The combined algorithm cannot be used in a processor where the clock rate is so
high that the branch predictor must be accessed in parallel with the i-cache using

107

only the program counter. This is because the combined algorithm relies on the
availability of the hint-bits contained within a fetched instruction. These hint bits
are then used to decide whether the dynamic branch predictor should be accessed.

An initial solution to this seems to be the use of some kind of very small direct-
mapped, or even fully-associative, cache. This would be updated with the hint bits
for branch instructions and could double as a method to avoid predicting for non-
branch instructions.

The combination of the ‘combined’ algorithm with the PPD would provide re-
sults that would not only be interesting from the point of view of the combined
algorithm in parallel access contexts, but also because it would extend the predic-
tion PPD with some of the hinting methods that were suggested as enhancements to
the PPD. In fact, the hinting methods used by the combined algorithm are far better
than those suggested for the PPD. Such a combination would provide an analysis
of an energy efficient branch prediction scheme suitable for high performance pro-
cessors.

9.5.4 Hints and Context Switching

One area of branch prediction that has not been well examined is the effect of con-
text switching, in a real operating system environment, upon branch prediction.
When an operating system performs a context switch, one program is ‘switched
out’ of running execution for another. This means that all of the information in
the branch predictor is now irrelevant: any correct predictions from the dynamic
branch predictor are now by chance and the branch predictor must begin learning
the branch behaviours again. It is possible that context switching has a highly sig-
nificant effect upon dynamic branch prediction accuracy. The reason that this has
not been well quantified is because almost all branch prediction experimentation
and design is conducted using simulators. Generally, these simulators only execute
one program and do not run an operating system; running an operating system in
a simulated environment is difficult and very slow. Therefore, context switching is
rarely tested fully.

An interesting proposal for experimentation in the future would be to fully
quantify the relationship between context switching (under different loads) on the
accuracy of dynamic branch predictors. After this, experimental results of the use
of the combined algorithm in a context switching environment should be compared.
It seems both logical and probable that, under heavy context switching, the overall
accuracy of branch predictions would be higher with the use of the static hints from
the combined algorithm as they do not have to be re-learned each time a context
switch occurs and they will suffer no resulting interference.

108

9.5.5 Profiling and Processor-Wide Power Saving

The thesis presented in this dissertation is largely focused on the power savings
that can be achieved by the profiling of control flow instructions and the resulting
reduction in accesses to the dynamic branch predictor logic. However, this gives
motivation for the possible use of profiling and hinting for saving power in other
areas of processor design.

Two important factors in the power consumption of modern processors are the
clock frequency and static power dissipation. The clock frequency has a linear
affect on power consumption by the propagation of the clock signal throughout the
control logic. This power drain is ameliorated by control logic that performs clock
gating – the disconnecting of the clock signal from idle units. Deciding which units
are idle is performed by the clock gating control logic. Static power dissipation can
be reduced by the same gating logic, but to gate the entire power supply of units
that do not need to constantly maintain a state.

The key point about gating, of both varieties, is that the processor must decide
dynamically which units or clocks should be gated. Although the introduction of
this technology has saved significant power, it not optimal. Clock gating rarely
performs at the theoretically best performance.

An interesting area of investigation would be to use profiling data to insert
either hint-bits or hint-instructions which can be interpreted by the processor at
runtime in order to gate units or clocks more efficiently. For instance, with only
simple compile time analysis, the compiler can tell whether or not certain logic and
arithmetic units will be used. This could be represented in a hint instruction which
tells the processor to power down the appropriate units, and when to power them
back up again. Profling data could then also offer dynamic insight into which areas
of the processor are likely to be used at a given period of execution. A hint instruc-
tion could be a new type of instruction introduced into the instruction set where one
part of its field represents several different elements of the processor, and whether
they should be powered up or down (1 or 0). Of course, the processor could work
without any such hint information, but the presence of such hint information could
be used to enhance/override the dynamic behaviour.

The result of these experiments could be a more efficient and less hardware
intensive approach to general processor power savings.

9.6 Concluding Remarks

In conclusion it is appropriate to say that previous related work has not fully re-
alised the possible power savings and energy efficiency that can be achieved when
static scheduling/hinting and dynamic branch prediction work in synergy with one
another using minor hardware support. When profiling is performed on a target
program, with ABBM, a significant number of dynamic branch predictor accesses
can be avoided, and the consequent power consumed to perform those accesses can

109

be saved. In addition to the power savings that are possible, it can also be seen that
the system of adaptive branch bias measurement allows overall prediction accuracy
to be improved. Adaptive bias measurement, through profiling, has implications to
the performance market as well, particularly in architectures which already support
directional hinting (for example the PowerPC architecture).

The central message of this thesis, that should remain in the mind of the reader,
is that traditional techniques, namely delay region scheduling and profiling, can
be used to achieve significant power savings in modern dynamic branch predic-
tors. The addition of the novel ABBM, simple hardware and hint-bit configuration
is crucial to the significant effect that the combined algorithm can have for high
performance embedded processors.

110

Bibliography

[1] R. Adams, S. Gray and G. Steven. HARP: A Statically Scheduled Multiple-
Instruction-Issue Architecture and its Compiler. In 2nd Euromicro Workshop
on Parallel and Distributed Processing, p. 8. January 1994.

[2] R. Adams and G. Steven. A Parallel Pipelined Processor with Conditional
Instruction Execution. Tech. Rep. 107, University of Hertfordshire, October
1990.

[3] R. G. Adams, G. B. Steven, S. M. Gray and G. J. Green. Code Compaction
Algorithms for a Multiple Instruction Issue Processor. Tech. Rep. 127, Uni-
versity of Hertfordshire, January 1992.

[4] G. Albera and R. Bahar. Power and Performance Tradeoffs Using Various
Cache Configurations. In Power Driven Micro-Architecture Workshop, pp.
64–69. ACM, New York, NY, USA, June 1998.

[5] AMD. Athlon 64 X2 Processor Manual, 2006.
URL http://www.amd.com [navigate to manuals]

[6] S. Amos and M. James. Principles of Transistor Circuits. Butterworth-
Heinemann, London, UK, 1999. ISBN 0-7506-4427-3.

[7] ARM. ARM11 Reference Manual, 2005.
URL http://www.arm.com/manual/arm11 [May 2006]

[8] R. Arns. The other transistor: early history of the metal-oxide-semiconducor
field-effect transistor. Engineering Science and Education Journal, pp. 223–
240, 1998. ISSN 0963-7346.

[9] S. Asai and Y. Wada. Technology Challenges for Integration Near and Be-
low 0.1um. IEEE, vol. 85(4):pp. 505–520, April 1997.

[10] R. Bahar and S. Manne. Power and Energy Reduction via Pipeline Balanc-
ing. In 28th Annual International Symposium on Computer Architecture, pp.
218–229. IEEE, Washington D.C., USA, June 2001.

111

[11] S. Breach, T. Vijaykumar and G. Sohi. The Anatomy of the Register File
in a Multiscalar Processor. In 27th Annual International Symposium on Mi-
croarchitecture, pp. 181–190. ACM, New York, NY, USA, December 1994.

[12] D. Brooks. Power Aware Computing Notes. Tech. rep., Harvard University,
USA, September 2004.
URL http://www.eecs.harvard.edu/ dbrooks

[13] D. Brooks, P. Bose, S. Schuster, H. Jacobson and P. Kudya. Power-Aware
Microarchitecture: Design and Modeling Challenges for Next-Generation
Microprocessors. IEEE Micro, November 2000.

[14] D. Brooks, V. Tiwari and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In 27th annual inter-
national symposium on Computer architecture, pp. 83–94. IEEE, Washing-
ton D.C., USA, 2000. ISBN 0163-5964.

[15] J. Bunda, W. Athas and D. Fussel. Evaluating Power Implications of CMOS
Microprocessor Design Decisions. In International Workshop on Low Power
Design, pp. 147–152. ACM, New York, NY, USA, April 1994.

[16] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0. Tech.
rep., University of Wisconsin-Madison, 1997.

[17] D. Burger and J. Goodman. Billion-Transistor Architectures. IEEE Com-
puter, pp. 46–49, September 1997.

[18] M. Butler and Y. Patt. An Investigation of the Performance of Various Dy-
namic Scheduling Techniques. In 25th Annual International Symposium on
Computer Architecture, pp. 1–9. IEEE, Washington D.C., USA, December
1992.

[19] B. Calder and D. Grunwald. Fast and Accurate Instruction Fetch and Branch
Prediction. In 21st Annual Internation Symposium on Computer Architec-
ture, pp. 2–11. IEEE, Washington D.C., USA, May 1994.

[20] B. Calder, D. Grunwald, D. Lindsay, J. Martin, M. Mozer and B. Zorn.
Corpus-Based Static Branch Prediction. In SigPlan, pp. 79–92. ACM, New
York, NY, USA, 1995.

[21] B. Calder, G. Reinman and D. Tullsen. Selective Value Prediction. In
26th Annual International Symposium on Computer Architecture, pp. 64–
74. ACM, New York, NY, USA, 1999.

[22] A. Chandrakasan and R. Brodersen. Low Power Digital CMOS Design.
Springer, Berlin, Germany, 1995. ISBN 079239576X.

112

[23] J. Chang and M.Pedram. Register Allocation and Binding for Low Power.
In IEEE/ACM Design Automation Conference, pp. 29–35. ACM, New York,
NY, USA, 1995.

[24] P. Chang, E. Hao and Y. Patt. Alternative Implementations of Hybrid Branch
Predictors. In 28th Annual International Symposium on Microarchitecture,
pp. 252–257. IEEE, Washington D.C., USA, December 1995.

[25] P. Chang, E. Hao, T. Yeh and Y. Patt. Branch Classification: A New Mech-
anism for Improving Branch Predictor Performance. International Journal
of Parallel Programming, vol. 24(2):pp. 133–158, 1996.

[26] P. Y. Chang, M. Evers and Y. Patt. Improving Branch Prediction Accuracy
by Reducing Pattern History Table Interference. In International Conference
on Parallel Architectures and Compilation Techniques, pp. 48–57. IEEE,
Washington D.C., USA, October 1996.

[27] Z. Chen, J. Shott, J. Burr and J. Plummer. CMOS Technology Scaling for
Low Voltage Power Architectures. In IEEE Symposium on Low Power Elec-
tronics, pp. 56–57. IEEE, Cambridge, MA, USA, October 1994.

[28] R. Collins and G. Steven. An Explicitly Declared Branch Delay Mechanism
for a Superscalar Architecture. Microprocessing and Microprogramming,
vol. 40:pp. 677–680, 1994.

[29] T. Conte, K. Menezes, P. Mills and B. Patel. Optimization of Instruction
Fetch Mechanisms for High Issue Rates. In 22nd Annual Internation Sympo-
sium on Computer Architecture, pp. 333–344. ACM, New York, NY, USA,
1995.

[30] D. Dobberppuhl. The Design of a High Performance Low Power Micropro-
cessor. In International Symposium on Low Power Electronics and Design,
pp. 11–16. IEEE, Washington D.C., USA, August 1996.

[31] C. Egan. Dynamic Branch Prediction In High Performance Super Scalar
Processors. Ph.D. thesis, University of Hertfordshire, August 2000.

[32] C. Egan, M. Hicks, B. Christianson and P. Quick. Enhancing the I-Cache to
Reduce the Power Consumption of Dynamic Branch Predictors. p. 31. IEEE
Digital System Design, July 2005. ISBN 3-902457-09-0.

[33] C. Egan, F. Steven and G. Steven. Delayed Branches versus Dynamic
Branch Prediction in High-Performance Superscalar Architecture. In Eu-
romicro, p. 7. IEEE, September 1997.

[34] R. Evans. Energy Consumption Modeling and Optimization for SRAM’s.
Ph.D. thesis, North Carolina State University, July 1993.

113

[35] J. A. Fisher and S. Freudenberger. Predicting Conditional Branch Directions
from Previous Runs of a Program. In Proceedings of the 5th International
Conference on Architectural Support for Programming Languages and Op-
erating Systems, Boston, pp. 85–95. October 1992.

[36] S. Ghiasi, J. Casmira and D. Grunwald. Using IPC Variation in Workload
with Externally Specified Rates to Reduce Power Consumption. In Work-
shop on Complexity Effective Design, pp. 1–10. University of Colorado,
June 2000.

[37] K. Ghose and M. Kamble. Reducing Power in Superscalar Processor Caches
Using Subbanking, Multiple Line Buffers and Bit-Line Segmentation. In
International Symposium on Low Power Electronics and Design, pp. 70–75.
ACM, New York, NY, USA, August 1999.

[38] R. Gonzalez and M. Horowitz. Energy Dissipation in General Purpose Mi-
croprocessors. IEE Journal on Solid State Circuits, vol. 31(9), September
1996.

[39] D. Grunwald, A. Klauser, S. Manne and A. Pleszkun. Confidence Estima-
tion for Speculation Control. In 25th Annual International Symposium on
Computer Architecture, pp. 122–131. June 1998.

[40] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Ap-
proach. The Morgan Kaufmann Series in Computer Architecture and De-
sign. Morgan Kaufmann, 3 edn., 2004. ISBN 978-1558605961.

[41] M. Hicks, C. Egan, B. Christianson and P. Quick. HTracer: A Dynamic
Instruction Stream Research Tool. p. 10. IEEE Digital System Design, July
2005. ISBN 3-902457-09-0.

[42] M. Hicks, C. Egan, B. Christianson and P. Quick. Reducing the Branch
Power Cost in Embedded Processors Through Static Scheduling, Profiling
and SuperBlock Formation. In Advances In Computer Systems Architecture,
pp. 366–372. Springer, Berlin, Germany, September 2006. ISBN 3-540-
40056-7.

[43] M. Hicks, C. Egan, B. Christianson and P. Quick. The Static Removability
of Dynamic Branch Predictor Accesses in Embedded Programs Through the
Use of Adaptive Bias Measurement and Local Delay Region Scheduling.
Tech. rep., University of Hertfordshire, June 2007.

[44] M. Hicks, C. Egan, B. Christianson and P. Quick. Towards an Energy Ef-
ficient Branch Prediction Scheme Using Profiling, Adaptive Bias Measure-
ment and Delay Region Scheduling. In Design and Technology of Integrated
Systems. IEEE, September 2007.

114

[45] M. Hicks, C. Egan, B. Christianson, P. Quick and B. Dickerson. HTracer: A
User Guide. Tech. rep., University of Hertfordshire, July 2005.

[46] M. Hicks, C. Egan, P. Quick and B. Christianson. An Introduction to Power
Consumption Issues In Processor Design. Tech. rep., University of Hert-
fordshire, July 2005.

[47] R. B. Hilgendorf, G. J. Heim and W. Rosenstiel. Evaluation of branch-
prediction methods on traces from commercial applications. IBM Journal
of Research and Development, vol. 43(4), 1999.

[48] M. Horowitz, T. Indermaur and R. Gonzalez. Low Power Digital Design. In
IEEE Symposium on Low Power Electronics, pp. 8–11. October 1994.

[49] P. Horowitz, Paul and Hill. The Art of Electronics. Cambridge University
Press, 1989. ISBN ISBN 0-521-37095-7.

[50] Z. Hu, P. Juang, K. Skadron, D. Clark and M. Martonosi. Applying Decay
Strategies to Branch Predictors for Leakage. In International Conference of
Computer Design, pp. 442–445. IEEE, Washington D.C., USA, September
2002.

[51] IBM. PowerPC Instruction Set Manual. IBM, Austin, Texas, 2005.
URL http://www.ibm.com (no persistent link)

[52] Intel. Intel Architecture Software Developer’s Manual, September 2004.
URL http://www.intel.com/

[53] Intel. Intel Itanium Processor Manuals, 2007.
URL http://www.intel.com/manuals

[54] C. Isci and M. Martonosi. Run-time Power Monitoring and Estimation in
High-Performance Processors: Methodology and Experiences. In Micro-36,
pp. 93–104. IEEE, Washington D.C., USA, December 2003.

[55] K. Itoh, K. Sasaki and Y. Nakagome. Trends in Low-Power RAM Circuit
Technologies. In IEEE Symposium on Low Power Electronics, vol. 83, pp.
84–87. IEEE, Washington D.C., USA, April 1995.

[56] E. Jacobsen, E. Rotenberg and J. Smith. Assigning Confidence to Condi-
tional Branch Predictions. IEEE 29th International Symposium on Microar-
chitecture, 1996.

[57] C. Jesshope. Microthreading a model for distributed instruction-level con-
currency. Parallel Processing Letters, vol. 16(2):pp. 209–228, 2006.

[58] D. Jimenez, S. Keckler and C. Lin. The Impact of Delay on the Design of
Branch Predictors. In 33rd Annual IEEE/ACM International Symposium on

115

Microarchitecture, pp. 67–77. ACM, New York, NY, USA, December 2000.
ISBN 1-58113-196-8.

[59] J. Karlin, D. Stefanovic and S. Forrest. The Triton Branch Predictor. Tech.
rep., University of Texas, Austin, Texas, October 2004.

[60] A. Klauser. Reducing Branch Misprediction Penalty through Multipath Ex-
ecution. Ph.D. thesis, Dept. Computer Science, University of Colorado,
1999.

[61] U. Ko, P. Balsara and A. Nanda. Energy Optimization of Multi-Level Pro-
cessor Cache Architectures. In International Symposium on Low Power De-
sign, pp. 45–49. ACM, New York, NY, USA, 1995.

[62] C. Lee, J. K. Lee, T. Hwang and S. Tsai. Compiler optimization on VLIW
instruction scheduling for low power. ACM Transactions on Design Au-
tomation of Electronic Systems, vol. 8(2):pp. 252–268, 2003.

[63] J. Lee and J. Smith. Branch Prediction Strategies and Branch Target Buffer
Design. IEEE Computer, pp. 6–22, January 1984.

[64] M. Levy. The Embedded Microprocessor Benchmark Consortium. Online,
2005.
URL http://www.eembc.org

[65] J. Lorch and A. Smith. Software Strategies for Portable Computer Energy
Management. IEEE Personal Communications, pp. 60–73, June 1998.

[66] S. Malke, R. Hanke, R. Bringmann, J. Gyllenhaal, D. Gallagher and
W. Hwu. Characterizing the Impact of Predicated Execution on Branch Pre-
diction. In 27th International Symposium on Microarchitecture, pp. 217–
227. ACM, New York, NY, USA, December 1994.

[67] S. Manne, A. Klauser and D. Grunwald. Pipeline Gating: Speculation Con-
trol for Energy Reduction. In International Symposium on Computer Archi-
tecture, pp. 132–141. ACM, New York, NY, USA, June 1998.

[68] A. J. Martin, M. Nystrom and P. L. Penzes. ET2: A Metric for Time and
Energy Efficiency of Computation. In Power aware computing, pp. 293–
315. Kluwer Academic Publishers, Norwell, MA, USA, 2002. ISBN 0-306-
46786-0.

[69] H. Mehta. Techniques for Low Energy Software. In Proceedings of the 1997
international symposium on Low power electronics and design, pp. 72–75.
ACM, New York, NY, USA, August 1997. ISBN 0-89791-903-3.

116

[70] M. Monchiero, G. Palermo, M. Sami, C. Silvano, V. Zaccaria and
R. Zafalon. Low-Power Branch Prediction Techniques for VLIW Architec-
tures: a Compiler-Hints Based Approach. VLSI Integration, vol. 38(3):pp.
515–524, 2005. ISSN 0167-9260.

[71] G. Moore. Cramming More Components onto Integrated Circuits. Electron-
ics, vol. 38(8), April 1965.

[72] F. Najm. A Survey of Power Estimation Techniques in VLSI Circuits. In
IEEE Transactions in VLSI Systems, pp. 446–455. December 1994.

[73] S. Narendra and A. Chandrakasan. Taxonomy of Leakage: Sources, Im-
pact and Solutions, pp. 1–19. Leakage in Nanometer CMOS Technologies.
Springer-Verlag, 2006.

[74] G. Organisation. GCC Position Independent Code. Electronic.
URL http://gcc.gnu.org/onlinedocs/gcc-3.4.1/gccint/PIC.html

[75] P. Otellini. 2005 Intel Developers Conference. Presentation – Available
Online, 2003.
URL http://www.intel.com [search for conference
title]

[76] G. Palermo, M. Sam, C. Silvan, V. Zaccari and R. Zafalo. Branch Prediction
Techniques for Low-Power VLIW Processors. In 13th ACM Great Lakes
symposium on VLSI, pp. 225–228. 2003. ISBN 1-58113-677-3.

[77] S. Pan, K. So and J. Rahmeh. Improving the Accuracy of Dynamic Branch
Prediction Using Branch Correlation. In 5th International Conference on
Architectural Support for Programming Languages and Operating Systems,
pp. 76–84. ACM, New York, NY, USA, October 1992.

[78] P. Panda, N. Dutt and A. Nicolau. Architectural Exploration and Optimiza-
tion of Local Memory and Embedded Systems. In International Symposium
on System Synthesis, pp. 90–97. IEEE, Washington D.C., USA, September
1997.

[79] A. Parikh, M. Kandemir and N. Vijaykrishnan. Energy Aware Instruction
Scheduling. In International Conference on High Performance Computing,
pp. 335–344. Springer, London, UK, December 2000.

[80] A. Parikh, S. Kim, M. Kankemir, N. Vijaykrishnan and M. Irwin. In-
struction Scheduling for Low Power. Journal of VLSI Signal Processing,
vol. 37(1):pp. 129–149, 2004.

[81] D. Parikh, K. Skadron, Y. Zhang, M. Barcella and M. R. Stan. Power Issues
Related to Branch Prediction. In IEE High Performance Computer Archi-
tecture, pp. 233–244. Februrary 2002.

117

[82] D. Parikh, K. Skadron, Y. Zhang and M. Stan. Power-Aware Branch Pre-
diction: Characterization and Design. IEEE Transactions On Computers,
vol. 53(2):pp. 168 – 186, February 2004.

[83] H. Patil and J. Emer. Combining Static and Dynamic Branch Prediction to
Avoid Destructive Aliasing. In Sixth International Symposium on Computer
Architecture, pp. 251–261. IEEE, Washington D.C., USA, January 2000.

[84] D. A. Patterson and J. L. Hennessy. Computer Organization and Design:
The Hardware Software Interface. Morgan Kaufmann, Burlington, MA
01803, USA, third edn., 2005. ISBN 1558606041.

[85] C. Perleberg and J. Smith. Branch Target Buffer Design and Optimisation.
IEEE Transactions on Computers, vol. 4:pp. 396–411, 1993.

[86] M. Predko. Digital Electronics Demystified. McGraw-Hill, New York,
2005.

[87] K. Roy and M. Johnson. Software Design for Low Power. In Low Power
Design in Deep Sub-Micron Design, pp. 433–459. Kluwer Academic Press,
October 1996.

[88] J. Russel and M. Jacome. Software Power Estimation and Optimization for
High Performance, 32-bit Embedded Processor. In ICCD, p. 328. IEEE,
Washington D.C., USA, October 1998.

[89] S. Sandeep. Process Tracing Using Ptrace. Linux Gazette, vol. 81, 2002.

[90] T. Sato. Evaluation of Architecture-Level Power Estimation for CMOS
RISC Processors. In IEEE Symposium on Low Power Electronics, pp. 44–
45. IEEE, Washington D.C., USA, October 1995.

[91] J. S. Seng and D. M. Tullsen. Exploring the Potential of Architecture-Level
Power Optimizations. In PACS, pp. 132–147. Springer, Berlin, Germany,
2003.

[92] W. Shiue and C. Chakrabarti. Memory Exploration for Low Power Embed-
ded Systems. In DAC, pp. 250–253. IEEE, Washington D.C., USA, 1999.

[93] K. Skadron. Characterizing and Removing Branch Mispredictions. Ph.D.
thesis, Princeton University, June 1999.

[94] K. Skadron, D. Clark and M. Martonosi. Speculative Updates of Local and
Global Branch History: A Quantitative Analysis. Journal of Instruction
Level Parallelism, vol. 2:p. 33, January 2000.

118

[95] K. Skadron, M. Martonosi and D. Clark. A Taxonomy of Branch Mispredic-
tions, And Alloyed Prediction as a Robut Solution to Wrong-History Mis-
predictions. In International Conference of Parallel Architectures and Com-
pilation Techniques, pp. 199–206. IEEE, Washington D. C., USA, October
2000.

[96] SPEC. SPEC CPU2000 Benchmarks, 2000.
URL http://www.spec.org/cpu/

[97] F. Steven. An Introduction to the Hatfield Super Scalar Scheduler. Tech.
Rep. 316, University of Hertfordshire, June 1998.

[98] G. Steven, D. Christianson, R. Collins, R. Potter and F. Steven. A Super-
scalar Architecture to Exploit Instruction Level Parallelism. Microproces-
sors and Microsystems, vol. 20(7):pp. 391–400, 1997.

[99] C. Su and C. Tsui. Low Power Architecture Design and Compilation Tech-
niques for High-Performance Processors. In IEEE COMCON, pp. 489–498.
1994.

[100] V. Tiwari, S. Malik and A. Wolfe. Compilation Techniques for Low Energy:
An Overview. In IEEE Symposium on Low Power Electronics, pp. 38–39.
IEEE, Washington D.C., USA, October 1994.

[101] V. Tiwari, S. Malik and A. Wolfe. A First Step Towards Software Power
Minimization. In IEEE Transactions in VLSI Systems, pp. 437–455. De-
cember 1994.

[102] V. Tiwari, S. Malik and A. Wolfe. Power Analysis of Embedded Software:
A First Step Towards Software Power Minimization. In IEEE Transactions
in VLSI Systems, vol. 2, pp. 437–445. December 1994.

[103] V. Tiwari, S. Malik and A. Wolfe. Instruction Level Power Analysis and Op-
timization Software. Journal of VLSI Signal Processing Systems, vol. 13(2),
1996.

[104] M. Toburen, T. Conte and M. Reilly. Instruction Scheduling for Low Power
Dissipation in High Performance Architectures. In Power Driven Micro-
Architecture Workshop in Conjunction with ISCA, p. 10. ACM, New York,
NY, USA, June 1998.

[105] D. M. Tullsen. Complete Guide to Semiconductor Devices. Wiley-IEEE
Press, 2 edn., 1996.

[106] Various. The Linux Kernel Archives. Online, 2005.
URL http://www.kernel.org

[107] Various. Linux Operating System Manual Pages, 2005.

119

[108] Various. Tux.org Discussion Lists. Online, 2005.
URL http://www.tux.org/forums [May 2006]

[109] L. Vintan. Towards a High Performance Neural Branch Predictor. In The
International Joint Conference on Neural Networks, vol. 2, pp. 868–867.
IEEE, Washington D. C., USA, 1999.

[110] L. Vintan, A. Gellert, A. Florea, M. Oancea and C. Egan. Understanding
Prediction Limits Through Unbiased Branches. In Advances In Computer
Systems Architecture, vol. 4186-0480 of Lecture Notes In Computer Science,
pp. 480–487. Springer-Verlag, September 2006. ISBN 0302-9743.

[111] S. Wilton and N. Jouppi. Cacti: An Enhanced Cache Access and Cycle Time
Model. IEE Journal on Solid State Circuits, vol. 31(5):pp. 677–688, 1996.

[112] T. Yeh and Y. Patt. Two-Level Adaptive Training Branch Prediction. In 24th
Annual International Symposium on Microarchitecture, pp. 51–61. ACM,
New York, NY, USA, November 1991.

[113] Y. Zhang, X. Hu and D. Chen. Global Register Allocation for Minimizing
Energy Consumption. In International Symposium on Low Power Electron-
ics and Design, pp. 100–102. IEEE, Washington D.C., USA, August 1999.

[114] Z. Zhu and X. Zhang. Access-Mode Restrictions for Low-Power Cache
Design. IEEE Micro, vol. 22(2):pp. 58–71, March-April 2002.

[115] V. Zyuban. Inherently Lower-Power High-Performance SuperScalar Archi-
tectures. Ph.D. thesis, University of Nore Dame, Indiana, March 2000.

[116] V. Zyuban, P. G. Emma, D. Brooks, V. Srinivasan, M. Gschwind, P. Bose and
P. N. Strenski. Integrated Analysis of Power and Performance of Pipelined
Microprocessors. IEEE Transactions on Computers, vol. 53(8), August
2004.

[117] V. Zyuban and P. Kogge. Optimization of High-Performance Superscalar
Architectures for Energy Efficiency. In Proceedings of the 2000 Interna-
tional Symposium on Low Power Electronics and Design, pp. 84–89. ACM,
New York, NY, USA, 2000. ISBN 1-58113-190-9.

[]

120

Glossary

Vdd Voltage Drain, 7
Vss Voltage Source, 7

ABBM Adaptive Branch Bias Measurement. The process
of using profiling data to compare the bias of a
branch to its prediction accuracy by a dynamic
predictor, 40

Activity Factor The factor in power consumption determined by
the activity of the circuit, 11

Branch Prediction The methods utilised to predict the outcome of a
control flow instruction (a branch), 13

CMOS Complimentary Metal-Oxide-Semiconductor. A
technology process used to create most modern
processors from MOSEFETs, 7

Combined Algorithm An approach which aims to represent dynamic
branch behaviour statically using the ABBM and
use local delay region scheduling in order to re-
duce the number of accesses made to a dynamic
branch predictor, 36

CPU Central Processing Unit. The main processor in-
side a computer that is used to execute programs,
7

Delay The amount of time a particular operation or event
takes to complete, 12

Dynamic Dissipation A loss of power in a circuit that occurs during
switching events, 7

Frequency Scaling The process of reducing the clock frequency of a
processor during periods of lower activity, 12

121

Gating The process of disconnecting either the clock sig-
nal or power source from an idle unit, 10

Hint-Bits Used to pass information from the compiler to the
processor in the form of additional bits in an in-
struction, 42

Local Delay Region Scheduling The process of moving branch independent in-
structions into the n-slot delay region of a branch,
36

Nanometre Denotes 10−9 and also a technology feature size
when qualified with a number, 7

Profiling The process of monitoring a program during exe-
cution in order to produce statistics, 38

Static Dissipation A constant loss of power in a circuit that occurs
irrespective of switching activity, 7

Transistor Threshold The voltage level required on the gate terminal of
a transistor in order to allow a current to flow from
Vdd to Vss, 7

VLSI Very Large Scale Integration. The term com-
monly used to describe integrated circuits consist-
ing of thousands or more transistors, 7

122

Appendix A: Published Papers

Towards an Energy Efficient Branch Prediction
Scheme Using Profiling, Adaptive Bias

Measurement and Delay Region Scheduling
Michael Hicks, Colin Egan, Bruce Christianson, Patrick Quick

Compiler Technology and Computer Architecture Group (CTCA)
University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK

E-Mail: m.hicks@herts.ac.uk, c.egan@herts.ac.uk

Abstract—Dynamic branch predictors account for between
10% and 40% of a processor’s dynamic power consumption.
This power cost is proportional to the number of accesses made
to that dynamic predictor during a program’s execution. In
this paper we propose the combined use of local delay region
scheduling and profiling with an original adaptive branch bias
measurement. The adaptive branch bias measurement takes note
of the dynamic predictor’s accuracy for a given branch and
decides whether or not to assign a static prediction for that
branch. The static prediction and local delay region scheduling
information is represented as two hint bits in branch instructions.
We show that, with the combined use of these two methods, the
number of dynamic branch predictor accesses/updates can be
reduced by up to 62%. The associated average power saving is
very encouraging; for the example high-performance embedded
architecture n average global processor power saving of 6.22%
is achieved.

Keywords: Branch Prediction, Power Consumption, Biased
Branches, Profiling.

I. I NTRODUCTION

The latency associated with branch instructions can be
overcome by various means; these include branch predic-
tion (dynamic and static), hardware multithreading, delayed
branches and branch removal by aggressive static instruction
scheduling. Currently, state-of-the-art processors tend to use
dynamic branch prediction, but the use of dynamic predictors
can consume large amounts of the silicon space and they can
also consume large amounts of the power budget. In current
processors, a branch predictor can consume between 10% and
40% of the overall CPU power budget [1]. The power cost is
directly proportional to the number of accesses made to the
dynamic predictor [2] and the power cost of modern dynamic
branch predictors is comparable to that of a cache. In high
performance architectures such costs may be acceptable, but
we argue that such profligate use of silicon area is unlikely
to be cost effective in low-power applications and will be an
unnecessary drain on power. The effective use of silicon space
and low power consumption is crucial for the embedded pro-
cessor market. With the increasing pipeline depth of embedded
processors, the accuracy of branch prediction is now becoming
an important factor for embedded processor performance and

a mispredicted branch will severely impact on performance. At
the same time, power consumption must be kept to a minimum
to ensure device usage longevity.

There is an equally valid counter argument that considers
the power cost of a highly accurate dynamic predictor is offset
by the effects of its accuracy [2]. Even though a dynamic
predictor uses a great deal of power, the increased prediction
accuracy and improved processor performance it provides
results in power saving by the reduced number of branch
mispredictions, negating the necessity of stalling the processor.
This is because considerable power is consumed in a branch
misprediction by the execution of instructions that cannot be
allowed to be committed and recovery to some safe state.

In this paper, we present an approach for reducing the
number of accesses and updates made to a dynamic branch
predictor that combines scheduling the local delay region with
profiling using an adaptive bias measurement. In the latter half
of this paper, encouraging experimental results are presented.
The results detail the extent to which the number of dynamic
branch predictor accesses can be reduced, and also the amount
of power that can be saved in an example architecture.

II. PREDICTING BIASED BRANCHES

In many cases the direction of a branch tends to be biased
to either the taken path or to the not-taken path and therefore
demonstrates a skewed distribution, which is alternatively
referred to as bimodal. Using profiling, the frequency of
executed branch paths can be determined and then used as
a basis for predicting future runs of the program [4] [5]. In
profile based prediction methodologies a static prediction-bit,
or hint bit, is usually incorporated into the branch instruction
format. This bit is used by the compiler to specify the
prediction direction based on the branch’s bias (taken or not-
taken). Since they use the observed dynamic behaviour of
branches, profile based branch prediction schemes differ from
other static branch prediction schemes that use compile time
heuristics. Also unlike dynamic branch prediction schemes,
static profiling does not require large amounts of hardware
support.

In this paper we use statically profiled branch prediction in
conjunction with a dynamic predictor. The idea of statically
profiled branch prediction is to avoid accessing the dynamic
predictor whenever possible, thereby saving power. However,
the profiled static prediction must be accurate to ensure that
there is no impact on dynamic prediction accuracy, since
inaccurate predictions are expensive in terms of both perfor-
mance and power [6] [2] [7]. In the static code the number
of biased branches appears to be small, but during program
execution biased branches tend to be executed repeatedly and
are therefore executed frequently [8]. Dynamic prediction is
unnecessary for such biased branches as the direction of the
branch can be statically profiled. This approach will reduce
the number of accesses to the dynamic predictor and therefore
save power.

Using some form of hint bits, a profiled static prediction
can be used either to bypass the dynamic predictor or be
used as a fallback when no prediction information is available
dynamically. To save power in embedded processors it is
desirable to remove dynamic predictions whenever possible.
The drawback to removing biased branches from dynamic
prediction using traditional compiler loop analysis is that any
static prediction reflected by this method will almost always
be less accurate than a dynamic prediction.

This drawback is intertwined with the definition of a biased
branch. Previous approaches have used a fixed bias level [9],
or, in effect, no particular bias level at all; a branch is simply
marked as “likely to be taken” or “unlikely to be taken”. Scant
regard is given to how this will reconcile with the behaviour
of the dynamic predictor in which it will be executing, and
often the dynamic predictor will be more accurate [10]. Con-
sequently, branch removal in this way impacts on performance
and increases power consumption.

In our approach we take such problems into account and we
propose the use of the dynamic bias measurement technique
with profiling and local delay region scheduling. In local
delay region scheduling the compiler schedules instructions
from the same basic-block into the delay region following a
branch instruction. These instructions, are those that would be
executed irrespective of branch outcome and such that program
semantics remain unaffected.

III. A DAPTIVE BIAS MEASUREMENTTHROUGH

PROFILING

Removing branches statically has traditionally been used
either as an alternative to branch prediction, or, when used
in conjunction with a dynamic predictor, it has been used as
a fallback mechanism. The limitation of profiled static bias
prediction from compiler branch heuristic analysis is accuracy.
An improvement over simple heuristic static code analysis is
to profile the compiled program at runtime to monitor how it
behaves.

A. Profiling

Profiling, in this case, refers to the observation of a given
program, at the assembly/machine level, while undergoing ex-

ecution with a sample dataset [4] [5]. This means each branch
instruction can be monitored in the form of a program trace
by a detailed history of selected instructions and any relevant
information extracted and used to form profiled static pre-
dictions where possible. A profiler is any application/system
which can produce such data by observing a running program.
The number of datasets that any given program is profiled with
will affect the likely ‘real’ accuracy of the profiling results.
Using a diverse range of datasets means the results will be
more widely applicable.

The advantage of profiling over heuristic static code analysis
is that a more precise boundary, or bias percentage, can be set
for what constitutes a branch as heavily biased, and hence
could be removed from dynamic prediction. Profiled traces
permit the exact bias of a branch instruction to be known
resulting in higher prediction accuracies.

B. Adaptive Bias Measurement

Profiling will be out performed by dynamic prediction for
many branches unless the bias level is set so high that only
extremely biased branches are removed and therefore profiling
should be used with due caution. Consequently, we only
only assign a profiled prediction to a branch where avoiding
dynamic prediction has no significant negative impact on that
branch’s dynamic prediction accuracy.

When profiling each branch in a program’s execution, an
ideal profiler records the directional history for each branch,
and also the prediction history [10] [5]. From this record
or trace, we compute whether a branch’s bias is equal to,
or greater than its associated prediction accuracy from the
dynamic predictor. This computation is key to the results we
present in this paper. Assuming a program is profiled against
an adequately varied data set, we show that these branches can
safely be removed from dynamic prediction through the use of
profiled hint bits. This approach to bias measurement also has
a beneficial side-effect that it removes a significant number
of difficult-to-predict branches. Furthermore, a branch with a
very low prediction accuracy, but a higher bias will be caught
by this method. Difficult-to-predict branches have a significant
impact on both performance and power consumption [6] [8].

IV. L OCAL DELAY REGION

Local delay region scheduling is the process of scheduling
branch independent instructions from before the branch in the
same basic-block into the delay slots to be executed by the
processor after the branch. A branch independent instruction
is any instruction whose result is not directly, or indirectly,
depended upon by the branch to compute its own behaviour.
The locally scheduled delay region, for a given branch, is
executed irrespective of the branch direction outcome, and
removes the need to predict for any branch where it can be
used. Figure 1 demonstrates the process.

It is not beneficial to use local delay region scheduling in
well optimised code and, where the delay region is very large
such as in deeply pipelined processors. This study is focused
on the embedded market where the number of delay slots tend

Fig. 1. Local delayed branch scheduling

to be low. Local delay region scheduling can be useful by
careful use and leaving other branches untouched for dynamic
prediction. Local delay region scheduling works particularly
well for an unconditional absolute branch that has a fixed
target address. Consequently, we propose the use of the local
delay region in conjunction with adaptive bias measurement.

V. H/W I MPLEMENTATION

The hardware modifications required to convey information
about static predictions, and therefore avoid the dynamic
predictor for a given branch, are relatively simple.

Many modern processors already predecode instructions
to determine whether to access the dynamic predictor unit;
in which case, hint information need only be included with
the branch instructions themselves. Some modern embedded
instruction sets [11] already include hint bits in branch instruc-
tions, although they are only used as a fallback. We incorporate
two hint bits into the branch instruction format, where the two
hint bits provide profiled branch behaviour information. To our
knowledge no compiler makes use of the two hint bits as we
describe in this paper, which represent the following branch
behaviour:

1) Statically predict taken. Do not access, or update, the
dynamic predictor for this branch.

2) Statically predict not-taken. Do not access, or update,
the dynamic predictor for this branch.

3) Use the locally scheduled delay region. Do not access,
or update, the dynamic predictor for this branch.

4) Use the dynamic predictor.

By default all instructions would be set to case 4. The
algorithm that describes how these hint bits are set is explained
in the following section.

In case 1, we have hinted that the branch should always
be assumed taken. This means that no access is required to
the direction prediction logic in the branch predictor unit.
However, the processor does not know until the decode stage
what the target address will be. Rather than any complexities
of computation, this is largely down to there being several dif-
ferent formats for branch instructions, and thus the position of
the target bits in the instruction is not known. Our simulations
have shown us that this is not the problem it seems at first:
over 75% of dynamic branches found to be dynamically biased
fall into a single instruction format - typically a single kind of
offset-branch (another 18% are absolute jump instructions, but
for these we use local delay region scheduling). This means
that with minimal hardware modification, simple logic can be
introduced to produce the target address for case 1 branches,

and hence avoid accessing the Branch Target-address Cache
(BTC) for predicted taken branches; this is significant for
power aware designs. In the case that the hint bits provide an
incorrect prediction, the existing dynamic branch prediction
logic is used to recover in the same way as a dynamic
misprediction (case 4).

The hardware modifications are shown in Figure 2. The
block below the I-Cache represents a fetched example instruc-
tion (in this case a hinted taken branch). The simple decoder is
a very small piece of hardware required to decode the two hint
bits from an instruction into the relevant processor signals. The
label for the local delay region is simply to indicate that this
hint must be used later (in the exe pipeline stage). Additionally,
outside of this diagram, during execution pipeline stage, the
two hint bits must also be examined to ensure that no update
occurs to the branch predictor which is also very important
for power aware processors.

Fig. 2. A simplified block diagram representation of the hardware modi-
fications required in the Instruction Fetch stage for the hardware simplicity
approach, in order to implement the universal hint bits

VI. SIMULATIONS

This section details the process of implementation and
testing of our dynamic branch prediction reduction methods,
and the associated hardware modifications.

A. EEMBC and Wattch

We use the Electronic Embedded Microprocessor Bench-
mark Consortium (EEMBC) benchmarks [12]. EEMBC was
chosen instead of the SPEC benchmarks as they represent a
more appropriate target for this type of algorithm.

EEMBC [12] is a benchmark suite consisting of around
forty separate benchmarks that are divided into five sections,
or subsuites: Automotive, Consumer, Networking, Office and
Telecom. Each subsuite represents a further specialisation
towards a particular behaviour characterisation. Table I shows
a simple breakdown of the five subsuites in EEMBC. Every
benchmark in the suite was executed to completion to generate
the results shown in the next subsection.

We use a modified version of Wattch [13], which itself is
a variation of the SimpleScalar processor simulator. Wattch
uses the Portable Instruction Set [Architecture] (PISA), which

TABLE I
THE FIVE EEMBC SUBSUITES WITH A LIST OF SOME OF THE TYPES OF

BENCHMARKS CONTAINED WITHIN EACH SUITE

SubSuite Benchmarks (selection of largest)
Automotive Angle-To-Time Conversion, Fast Fourier Transform,

Matrix Math...
Consumer JPEG Compression/Decompression, RGB to CMYK,

Grayscale image filter...
Networking IP Reassembly, Network Address Translation,

Route Lookup...
Office Bezier Curve Interpolation, Floyd-Stein Grayscale

Dithering, Bitmap Rotation...
Telecom Autocorrelation, Convolutional Encoder,

Viterbi Decoder...

is is a variant of the Mips instruction set. The Wattch pipeline
has seven stages, and two branch delay slots before branch
resolution. Local delay region scheduling was used to remove
dynamic predictor accesses for the unconditional absolute-
jump instruction formats, and our profiled adaptive bias mea-
surement was used to remove dynamic predictor accesses for
appropriately biased offset branch format instructions. The
static prediction/delay region usage information was repre-
sented using two redundant bits in the branch instructions
of the PISA instruction set. The required simulated hardware
modifications were minimal and were configured as described
in the previous section.

B. Algorithm

The algorithm used to configure the two hint bits in each
branch instruction was implemented as shown in Algorithm 1.

Input : All Assembly Files of Programs
Output : Appropriately Hinted Assembly Files
foreach Programdo

foreach Assembly Filedo
foreach Branch Instructiondo

Initially, set hint bits to “Use the dynamic
predictor for this branch”
if Branch == Unconditional Branchthen

Set hint bits to use local delay region and
move two instructions preceding branch
into delay region (if possible)

else
if Branch’s Profiled Bias≥ Dynamic
Branch Predictor’s Accuracy for this
Branch then

Set hint bits to Predict Profiled Bias
end

end
end

end
end

Algorithm 1 : Dynamic Branch Prediction Reduction Algo-
rithm

Figure 4 3 shows our profiling and hinting mechanism.
All of the runtime profiling was conducted on a ‘training’
input dataset. The results shown in the next subsection were

Fig. 3. Block model of the profiling and hinting regime

produced using a different ‘test’ dataset to ensure that no bias
to a particular dataset was represented.

C. Simulation Results

The results presented and discussed in this section were
produced using the processor configuration shown in Table II.
Since the first part of these results is primarily observing
branch instruction accuracy, the most important variable to
note is branch predictor used. The GShare predictor [14]
was chosen for it’s accuracy, size and general applicability.
The other specifications of the system were selected as a
representation of a modest high-performance embedded CPU
for use in applications such as PDAs and mobile telephones.

TABLE II
BASELINE CONFIGURATION USED TO GENERATE THE RESULTS SHOWN IN

THIS SECTION

HWattch Parameter Value
Issue/Decode Width 2 Instructions
Delay Slots 3
Branch Predictor GShare
Direction Predictor Table Entries 1024
BP History Width 8Bits
BTB Sets/Associativity 512 Entries/4 Way
Data Cache Size 1024 Sets/64bit Block Size/4Way
Instruction Cache Size 512 Sets/32bit Block Size
Clock Gating Regime Modelled Aggressive conditional clocking

(non-ideal) 15% power dissipation
with zero accesses

Compiler for EEMBC gcc -O2

Table III shows the occurrence of different branch instruc-
tions across the execution of the entire EEMBC benchmark
suite. The static occurrence refers to the proportion of branches
accounted for by a particular branch type in the static as-
sembly code. Dynamic occurrence refers to the proportion of
branches accounted for dynamically by a particular branch
type. Additionally, the third column shows whether this branch
type can be removed from dynamic prediction by either of
the techniques proposed. From this table we can see that
the majority of dynamic branches are potential candidates for
removal by either technique. Why a particular method can be
used, or not, is explained in the previous section.

1) Dynamic Predictor Access Reduction:Table IV shows
the success of using local delay scheduling and adaptive bias
measurement to remove accesses to the branch predictor. All
values shown in Table IV are averages for each subsuite. Aver-
ages were used due to the vast number of benchmarks in each
suite, and also because of the high behavioural similarities of

TABLE III
STATIC AND DYNAMIC BRANCH OCCURRENCE FOR EACHPISA BRANCH

TYPE, AND WHICH DYNAMIC ACCESS REMOVAL METHOD CAN BE USED

Branch Static Dynamic Applicable
Instruction Occurrence Occurrence Method
j 10.21% 17.31% Local Delay Region
jal 33.95% 3.58% Local Delay Region
jr 15.54% 3.55% None Used
jalr 2.32% 0.04% None Used
beq 18.18% 20.23% Bias Profiling
bne 16.46% 50.09% Bias Profiling
blez 1.52% 2.58% Bias Profiling
bgtz 0.27% 1.04% Bias Profiling
bltz 0.48% 0.39% Bias Profiling
bgez 1.06% 1.19% Bias Profiling

each suite. The average results were calculated by taking the
total across a whole subsuite and using it as the divisor for
the sum of the measured variable across the whole subsuite.
For instance, ‘Static Hint Rate’ was calculated by summing
all statically hinted branches across an entire subsuite, and
dividing by the entire subsuite sum of branches – not by
unweighted averaging. Figure 4 represents the same results
in graphical form with the addition of an overall average.

TABLE IV
RESULTS OF LOCAL DELAY REGION AND ADAPTIVE BIAS HINTING FOR

EACH EEMBC SUBSUITE

SubSuite Dynamic Static Hint Dyamic Dynamic
Branch Rate Access Stream
Rate Reduction Change

Automotive 17.57% 22.10% 56.42% 0.92%
Consumer 17.22% 30.80% 63.53% 0.49%
Networking 24.56% 10.57% 62.50% 0.48%
Office 19.57% 30.76% 46.82% 0.1%
Telecom 12.37% 20.49% 51.71% -0.03%
Average 18.59% 18.29% 62.01% 0.48%

Fig. 4. The average percentage access reduction to the dynamic branch
predictor for each EEMBC Subsuite

Each column in Table IV demonstrates the following:

• Dynamic Branch Rate – The percentage of instructions
in the dynamic stream that were branch instructions

• Static Hint Rate – The percentage of static branches that
were hinted

• Dynamic Access Reduction – The resulting reduction

in accesses to the dynamic branch predictor (both the
direction predictor and BTB)

• Dynamic Stream Change – The change in size (number of
instructions executed) of the dynamic instruction stream
as a result of the static hinting

These results demonstrate the effectiveness of the com-
bination of local delay region scheduling and adaptive bias
measurement for removing the need to dynamically predict for
many branches. The overall average of 62% dynamic branch
prediction reduction is extremely promising. Unsurprisingly,
the Consumer subsuite performed most successfully with the
algorithm. This is because of the highly cyclic nature of many
of the algorithms included in this subsuite: JPEG compression
and decompression for instance.

Most importantly, we can see that our dynamic branch
prediction reduction algorithm has no significant detrimental
effects on the performance of the program: Table IV shows
that the size of the dynamic instruction stream was not signif-
icantly expanded with additional instructions from increased
missprediction. In fact, in many individual cases, the number
of instructions executed was reduced. This is likely accounted
for by the removal of poorly dynamically predicted branches;
a branch with a bias greater than its accuracy is automatically
removed from dynamic prediction.

Although the average results in Table IV are representative,
there were some intrasubsuite exceptions. Notably these were:
Angle-To-Time Conversion benchmark in Automotive and the
Viterbi Decoder benchmark in Telecom. These had dynamic
prediction removal percentages of 11% and 35%, respectively.

2) Subsequent Power Saving:After simulating the number
of dynamic branch predictor accesses that could be removed
for the predictor used in our example architecture we then used
our variant of Wattch to model the amount of power than can
be saved. The dynamic branch predictor accounts for between
10% and 15% of global power dissipation in the example
architecture when all branches use dynamic prediction.

Demonstrating how much power can be saved is indicative
only for the example architecture used. The amount of power
saved in the branch predictor itself is generally proportional
to the dynamic access reduction as a result of the application
of our algorithm. However, the power saved in the branch
predictor gives no indication of the global power saved over
the whole processor, and also does not take into account any
additional delay incurred by the use of the access reduction
algorithm. Providing global processor power results is thus
useful, but the results depend on the relative size of the rest
of the processor compared to the dynamic branch predictor
unit.

The average global processor power savings per committed
instruction, for the architecture in Table II, are shown in
Table V. The results per committed instruction were calcu-
lated by dividing the total global power consumed during a
program’s execution by the number of committed instructions.
The power saving per committed instruction implicitly takes
into account any change in the size/delay of the instruction
stream as the number of committed instructions remains the

same for all test executions of the benchmarks; an increase of
the number of instructions executed after the application of the
reduction algorithm would scale the power saved in the branch
predictor when calculated for the committed instructions even
though branch predictor accesses may have been reduced.

TABLE V
AVERAGE POWER SAVING PER COMMITTED INSTRUCTION FOR NON-IDEAL

CLOCK GATING REGIME AND * IDEAL CLOCK GATING REGIME

EEMBC Average Best/Worst
Subsuite Power

Saving
Automotive 5.43% (*12.38%) 14.87% / 10.15%
Consumer 6.17% (*12.69%) 10.66% / 9.73%
Networking 6.84% (*14.53%) 14.73% / 10.60%
Office 5.66% (*13.56%) 11.38% / 10.07%
Telecom 4.10% (*10.07%) 11.14% / 9.21%
Overall 6.22% (*13.47%) N/A

The standard power saving results in Table V are for
the non-ideal clock gating regime described in the processor
specification Table II. However, we have additionally included
the power saving results for a more ideal clock gating algo-
rithm with close to zero dissipation on zero accesses. These
additional results are denoted with an asterisk (*).

Figure 5 shows the standard, non-ideal results, but also
includes the average power saving per instruction as if no
accesses were made to the dynamic branch predictor (Free
BP – whilst still maintaining the same prediction accuracy).
This allows a comparison between the success of the power
saving and the absolute ceiling value possible.

Fig. 5. Average power saving per committed instruction

Although Figure 5 shows that the algorithm is not ‘perfect’,
we must remember that not all branch prediction accesses are
removed and as such it will not be possible to be ideal without
impacting heavily on performance, and thus power.

VII. C ONCLUSIONS ANDFUTURE WORK

Dynamic branch predictors cannot be removed from proces-
sors while high performance and low power consumption are
issues [6]. However, the results in this paper have shown that,
in an embedded context, the number of accesses that need to
be made throughout a program’s execution can be dramatically
reduced: in this example architecture by 62%. While previous
attempts at power saving have focused on the introduction of
hardware units to monitor dynamic behaviour, our approach

can achieve similar levels of access reduction, but without
the need to significantly modify hardware. The number of
dynamic predictor accesses that can be removed with this
approach is highly dependent on the accuracy of the dynamic
predictor being used. In this paper we used a very accurate
dynamic predictor, but a higher reduction can be achieved in
architectures with a less accurate dynamic branch predictor.
Additionally, this approach is applicable to both SuperScalar
and VLIW processors.

The amount of power saved, for the non-ideal clock gating
regime, averaged at 6.22% global power saving across the
EEMBC benchmark suites. This result is significant and very
encouraging; in architectures where the branch predictor is
relatively more expensive (in terms of power) this figure
will be higher. When considering the predecode logic that
already exists in most processors, the hardware modifications
are minor and easy to accommodate. The time required to
simulate, profile, assign static predictions and generate results
was under 90 minutes for the entire EEMBC suite on a
standard modern desktop machine, and this process is required
only once before a program’s distribution. For these small
costs, an average power saving of at least 6% is highly
attractive for processors in embedded devices that account for
a large proportion of the whole device’s limited energy budget.

REFERENCES

[1] Parikh, D., Skadron, K., Zhang, Y., Barcella, M., Stan, M.R.: Power
issues related to branch prediction, IEEE HPCA (2002)

[2] Egan, C., Hicks, M., Christianson, B., Quick, P.: Enhancing the i-cache
to reduce the power consumption of dynamic branch predictors, IEEE
Digital System Design (July 2005)

[3] Seng, J.S., Tullsen, D.M.: Exploring the potential of architecture-level
power optimizations, PACS (2003)

[4] Fisher, J.A., Freudenberger, S.: Predicting conditional branch directions
from previous runs of a program. In: Proceedings of the 5th International
Conference on Architectural Support for Programming Languages and
Operating Systems, Boston. (October 1992)

[5] Hicks, M., Egan, C., Christianson, B., Quick, P.: Htracer: A dynamic
instruction stream research tool, IEEE Digital System Design (July 2005)

[6] Parikh, D., Skadron, K., Zhang, Y., Stan, M.: Power aware branch pre-
diction: Characterization and design. IEEE Transactions On Computers
53(2) (February 2004)

[7] Martin, A.J., Nystrom, M., Penzes, P.L.: Et2: A metric for time and
energy efficiency of computation. (2003)

[8] Vintan, L., Gellert, A., Florea, A., Oancea, M., Egan, C.: Understanding
prediction limits through unbiased branches. In: Advances In Computer
Systems Architecture. Volume 4186-0480 of Lecture Notes In Computer
Science., Springer-Verlag (September 2006) 480487

[9] Jacobsen, E., Rotenberg, E., Smith, J.: Assigning confidence to con-
ditional branch predictions, IEEE 29th International Symposium on
Microarchitecture (1996)

[10] Hicks, M., Egan, C., Christianson, B., Quick, P.: Reducing the branch
power cost in embedded processors through static scheduling, profiling
and superblock formation. In: Advances In Computer Systems Archi-
tecture. (September 2006)

[11] IBM: PowerPC Instruction Set Manual. (2005)
[12] Levy, M.: The embedded microprocessor benchmark consortium. Online

(2005)
[13] Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a framework for

architectural-level power analysis and optimizations, 27th annual inter-
national symposium on Computer architecture (2000)

[14] Egan, C.: Dynamic Branch Prediction In High Performance Super Scalar
Processors. PhD thesis, University of Hertfordshire (August 2000)

Reducing the Branch Power Cost In Embedded
Processors Through Static Scheduling, Profiling

and SuperBlock Formation

Michael Hicks, Colin Egan, Bruce Christianson, Patrick Quick

Compiler Technology and Computer Architecture Group (CTCA)
University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK

m.hicks@herts.ac.uk

Abstract. Dynamic branch predictor logic alone accounts for approx-
imately 10% of total processor power dissipation. Recent research indi-
cates that the power cost of a large dynamic branch predictor is offset
by the power savings created by its increased accuracy. We describe a
method of reducing dynamic predictor power dissipation without de-
grading prediction accuracy by using a combination of local delay region
scheduling and run time profiling of branches. Feedback into the static
code is achieved with hint bits and avoids the need for dynamic predic-
tion for some individual branches. This method requires only minimal
hardware modifications and coexists with a dynamic predictor.

1 Introduction

Accurate branch prediction is extremely important in modern pipelined and MII
microprocessors [10] [2]. Branch prediction reduces the amount of time spent
executing a program by forecasting the likely direction of branch assembly in-
structions. Mispredicting a branch direction wastes both time and power, by ex-
ecuting instructions in the pipeline which will not be committed. Research [8] [3]
has shown that, even with their increased power cost, modern larger predictors
actually save global power by the effects of their increased accuracy. This means
that any attempt to reduce the power consumption of a dynamic predictor must
not come at the cost of decreased accuracy; a holistic attitude to processor power
consumption must be employed [7][9].

In this paper we explore the use of delay region scheduling, branch profiling
and hint bits (in conjunction with a dynamic predictor) in order to reduce the
branch power cost for mobile devices, without reducing accuracy.

2 Branch Delay Region Scheduling

The branch delay region is the period of processor cycles proceeding a branch
instruction in the processor pipeline before branch resolution occurs. Instructions
can fill this gap either speculatively, using branch prediction, or by the use of
scheduling. The examples in this section use a 5 stage MIPS pipeline with 2
delay slots.

2.1 Local Delayed Branch

In contrast to scheduling into the delay region from a target/fallthrough path of
a branch, a locally scheduled delay region consists of branch independent instruc-
tions that precede the branch (see Figure 1). A branch independent instruction
is any instruction whose result is not directly or indirectly depended upon by
the branch to calculate its own behaviour.

Fig. 1. An example of local delayed branch scheduling.

Deciding which instructions can be moved into the delay region locally is
straightforward. Starting with the instruction from the bottom of the given basic
block in the static stream, above the branch, examine the target register operand.
If this target register is NOT used as an operand in the computation of the
branch instruction then it can be safely moved into the delay region. This process
continues with the next instruction up from the branch in the static stream, with
the difference that this time the scheduler must decide whether the target of the
instruction is used by any of the other instructions below it (which are in turn
used to compute the branch).

Local Delay Region Scheduling is an excellent method for utilising the delay
region where possible; it is always a win and completely avoids the use of a
branch predictor for the given branch. The clear disadvantage with local delay
region scheduling is that it cannot always be used. There are two situations
that result in this: well optimised code and deeply pipelined processors (where
the delay region is very large). It is our position that, as part of the combined
approach described in this paper, the local delay region is profitable.

3 Profiling

Suppose that we wish to associate a reliable static prediction with as many
branches as possible, so as to reduce accesses to the dynamic branch predictor
of a processor at runtime (in order to save power). This can be achieved to a
reasonable degree through static analysis of the assembly code of a program; it
is often clear that branches in loops will commonly be taken and internal break
points not-taken.

Fig. 2. The profiler is supplied with parameters for the program and the
traces/statistics to be logged

A more reliable method is to observe the behaviour of a given program while
undergoing execution with a sample dataset [4]. Each branch instruction can
be monitored in the form of a program trace and any relevant information ex-
tracted and used to form static predictions where possible. A profiler is any ap-
plication/system which can produce such data by observing a running program
(see Figure 2). The proceeding two sections examine the possibility of remov-
ing certain classes of branch from dynamic prediction by the use of run-time
profiling.

3.1 Biased Branches

One class of branches that can be removed from dynamic prediction, without
impacting on accuracy, are highly biased branches. A biased branch is a branch
which is commonly taken or not taken, many times in succession before possibly
changing direction briefly. The branch has a bias to one behaviour. These kinds
of branches can, in many cases, be seen to waste energy in the predictor since
their predicted behaviour will be almost constantly the same [5] [8].

The principles of spatial and temporal locality intuitively tell us that bi-
ased branches account for a large proportion of the dynamic instruction stream.
Identifying these branches in the static code and flagging them with an accu-
rate static prediction would enable them to be executed without accessing the
dynamic predictor. The profiler needs to read the static assembly code and log,
for each each branch instruction during profiling, whether it was taken or not
taken at each occurrence.

3.2 Difficult to Predict Branches (Anti Prediction)

Another class of branch instructions that would be useful to remove from dy-
namic branch predictor accesses are difficult to predict branches. In any static
program there are branches which are difficult to predict and which are inher-
ently data driven. When a prediction for a given branch is nearly always likely
to be wrong, there is little point in consuming power to produce a prediction for
it since a number of stalls will likely be incurred anyway [5] [8] [6].

Using profiling, it is possible to locate these branches at runtime using dif-
ferent data sets and by monitoring every branch. The accuracy of each dynamic
prediction is required rather than just a given branch’s behaviour. For every

branch, the profiler needs to compare the predicted behaviour of the branch
with the actual behaviour. In the case of those branch instructions where ac-
curacy of the dynamic predictor is consistently poor, it is beneficial to flag the
static branch as difficult to predict and avoid accessing the branch predictor at
all, letting the processor assume the fallthrough path. Accordingly, filling the
delay region with NOP instructions wastes significantly less power executing
instructions that are unlikely to be committed.

4 Combined Approach Using Hint Bits

The main goal of the profiling techniques discussed previously can only be re-
alised if there is a way of storing the results in the static code of a program,
which can then be used dynamically by the processor to avoid accessing the
branch prediction hardware [3].

Fig. 3. Block diagram of the proposed scheduling and hinting algorithm. The dot-
ted box indicates the new stages introduced by the algorithm into the creation of an
executable program

The combined approach works as follows:

1. Compile the program, using GCC for instance, into assembly code.
2. The Scheduler parses the assembly code and decides for which branch in-

structions the local delay region can be used (see section 2.1).
3. The Profiler assembles a temporary version of the program and executes it

using the specified data set(s). The behaviour of each branch instruction is
logged (see section 3).

4. The output from the profiling stage is used to annotate the delay scheduled
assembly code.

5. Finally, the resulting annotated assembly code is compiled and linked to
form the new executable.

The exact number of branches that can be eliminated from runtime predictor
access in the target program depends upon the tuning of the profiler and the
number of branches where the local delay region can be used.

4.1 Hint Bits

So far we have described a process of annotating branch instructions in the static
assembly code to reflect the use of the local delay region and of the profiling
results. The way this is represented in the assembly/machine code is by using
an existing method known as hint bits (though now with the new function of
power saving).

The four mutually exclusive behaviour hints in our algorithm which need to
be stored are:

1. Access the branch predictor for this instruction.
2. or Assume this branch is taken (don’t access dynamic predictor logic).
3. or Assume this branch is not taken (don’t access dynamic predictor logic).
4. or Use this branch’s local delay region (don’t access dynamic predictor logic).

The implementation of this method requires two additional bits in an in-
struction. Whether these bits are located in all of the instruction set or just
branches is discussed in the proceeding section. Another salient point is that the
information in a statically predicted taken branch replaces only the dynamic di-
rection predictor in full; the target of the assumed taken branch is still required.
Accessing the Branch Target Buffer is costly, in terms of power, and must be
avoided.

Most embedded architectures are Reduced Instruction Set Computers [8].
Part of the benefit of this is the simplicity of the instruction format. Since most
embedded system are executing relatively small programs, many of the frequently
iterating loops (the highly biased branches, covered by the case 2 hint) will be
PC relative branches. This means that the target address for a majority of
these branches will be contained within a fixed position inside the format. This
does not require that the instruction undergo any complex predecoding, only
that it is offset from the current PC value to provide the target address. Branch
instructions that have been marked by the profiler as having a heavy bias towards
a taken path, but which do not fall into the PC relative fixed target position
category have to be ignored and left for dynamic prediction.

The general ‘hinting’ algorithm:

1. Initially, set the hint bits of all instructions to: assume not taken (and do
not access predictor).

2. Set hint bits to reflect use of the local delay region where the scheduler has
used this method.

3. From profiling results, set hint bits to reflect taken biased branches where
possible.

4. All remaining branch instructions have their hint bits set to use the dynamic
predictor.

4.2 Hardware Requirements/Modifications

The two possible implementation strategies are:

Hardware Simplicity: Annotate every instruction with two hint bits. This is
easy to implement in hardware and introduces little additional control logic.
All non branch instructions will also be eliminated from branch predictor
accesses. The disadvantages of this method are that it requires that the
processor’s clock frequency is low enough to permit an I-Cache access and
branch predictor access in series in one cycle and that there are enough
redundant bits in all instructions.

Hardware Complexity: Annotate only branch instructions with hint bits and
use a hardware mechanism similar to a Prediction Probe Detector [8] to
interpret hint bits. This has minimal effect on the instruction set. It also
means there is no restriction to series access of the I-Cache then branch
predictor. The main disadvantage is the newly introduced PPD and the
need for instructions to pass through the pipeline once before the PPD will
restrict predictor access.

Fig. 4. Diagram of required hardware modifications. The block below the I-Cache
represents a fetched example instruction (in this case a hinted taken branch).

The hardware simplicity model offers the greatest power savings and is par-
ticularly applicable for the embedded market where the clock frequency is gen-
erally relatively low, thus a series access is possible. It is for these reason we
the use the hardware simplicity model. In order to save additional power, some
minor modifications must be made to the Execution stage to stop the statically
predicted instruction from expending power writing back their results to the
predictor (since their results will never be used!).

It can be seen that after a given program has had its hint bits set, all of the
branches assigned static predictions (of taken or not taken) have now essentially
formed superblocks, with branch resolution acting as a possible exit point from
the newly formed super block. When a hint bit prediction proves to be incorrect,

it simply acts as a new source of a branch misprediction; it is left for the existing
dynamic predictor logic to resolve.

5 Conclusion and Future Work

Branch predictors in modern processors are vital for performance. Their accu-
racy is also a great source of powersaving, through the reduction of energy spent
on misspeculation [8]. However, branch predictors themselves are often compa-
rable to the size of a small cache and dissipate a non trivial amount of power.
The work outlined in this paper will help reduce the amount of power dissipated
by the predictor hardware itself, whilst not significantly affecting the prediction
accuracy. We have begun implementing these modifications in the Wattch [1]
power analysis framework (based on the SimpleScalar processor simulator). To
test the effectiveness of the modifications and algorithm, we can have chosen to
use the EEMBC benchmark suite, which provides a range of task characterisa-
tions for embedded processors.

Future investigation includes the possibility of dynamically modifying the
hinted predictions contained within instructions to reflect newly dynamically
discovered biased branches.

References

1. David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. 27th annual international
symposium on Computer architecture, 2000.

2. Colin Egan. Dynamic Branch Prediction In High Performance Super Scalar Pro-
cessors. PhD thesis, University of Hertfordshire, August 2000.

3. Colin Egan, Michael Hicks, Bruce Christianson, and Patrick Quick. Enhancing the
I-Cache to Reduce the Power Consumption of Dynamic Branch Predictors. IEEE
Digital System Design, jul 2005.

4. Michael Hicks, Colin Egan, Bruce Christianson, and Patrick Quick. HTracer: A
Dynamic Instruction Stream Research Tool. IEEE Digital System Design, jul 2005.

5. Erik Jacobsen, Erik Rotenberg, and J.E. Smith. Assigning Confidence to Condi-
tional Branch Predictions. IEEE 29th International Symposium on Microarchitec-
ture, 1996.

6. J. Karlin, D. Stefanovic, and S. Forrest. The Triton Branch Predictor, oct 2004.
7. Alain J. Martin, Mika Nystrom, and Paul L. Penzes. ET2: A Metric for Time and

Energy Efficiency of Computation. 2003.
8. D. Parikh, K. Skadron, Y. Zhang, and M. Stan. Power Aware Branch Prediction:

Characterization and Design. IEEE Transactions On Computers, 53(2), feb 2004.
9. Dharmesh Parikh, Kevin Skadron, Yan Zhang, Marco Barcella, and Mircea R.

Stan. Power Issues Related to Branch Prediction. IEEE HPCA, 2002.
10. David A. Patterson and John L. Hennessy. Computer Organization and Design:

The Hardware Software Interface. Morgan Kaufmann, second edition, 1998.

HTracer: A Dynamic Instruction Stream Research Tool

Michael Hicks, Colin Egan, Bruce Christianson, Patrick Quick

Compiler Technology and Computer Architecture Group (CTCA)
University of Hertfordshire

Hatfield, Herts, U.K. AL10 9AB
m.hicks@herts.ac.uk

Modern processor design research hinges as
much upon understanding the nature of the dy-
namic instruction stream as it does on the function
and performance of the underlying hardware. With
this in mind, along with the absence of a suitable
existing utility, that we have created the Hatfield
Tracer (HTracer) – a cross-platform tool to aid fu-
ture research by extracting information about the
dynamic instruction stream of real world applica-
tions/benchmarks on real world machines.

A tracer, or trace tool, allows the user to view
information and ‘trace’ the execution of a program
or of particular instructions within that program.

HTracer will monitor the execution of a speci-
fied program and dump the state of the processor
either after every instruction or after those that have
been specified for tracing. This enables the user
to produce either a full trace of the entire dynamic
instruction stream for a given program or for spe-
cific instructions of interest. The way this infor-
mation is specified is such that one may request
that all branch instructions, for instance, are traced
and reported as a single item or separately as spe-
cific branch types. Along with this information,
HTracer can also save information about the regis-
ter file/instruction operands at each instruction oc-
currence. One way in which this is useful is that
when a full trace has been conducted the results can
be used as input to simulators (to investigate for in-
stance branch prediction or caching)and avoid fur-
ther (often lengthy) runtime evaluation of the traced
program.

All of this is achieved by single step execution of

the process being traced which thus allows HTracer
to interrupt the instruction stream and examine the
state of the processor after each instruction step.
After each step HTracer will examine the instruc-
tion being executed and compare it to the speci-
fied list of flexible masks; if a match occurs then
the mnemonic specified with the mask is recorded
along with the Instruction Pointer. At the very least
the results from a trace will include the Instruction
Pointer and the Instruction Mnemonic match at the
corresponding occurrence in the dynamic stream,
but if requested it can include almost any state in-
formation about the processor. This functionality
allows for the gathering of detailed information on
multiple program executions with varied input data
– with which we can monitor the effect of many re-
search areas such as compiler technologies, sched-
ulers etc on the dynamic stream and the appearance
of certain instructions.

Something which is key to the usefulness of
HTracer is its ability to function on many different
architectures – in fact any architecture for which a
modern version of the GNU/Linux Kernel is avail-
able, thus allowing for the monitoring of the per-
formance variation of a given modification across
different architectures. These architectures include,
but are not limited to: x86, AMD64, PPC32/64,
ARM Chips, Sparc32/64. For instance we could
trace the dynamic instruction stream of some com-
piled embedded benchmarks (usage characterisa-
tions) from different compilers and on different
platforms and then use the outputs (discussed be-
low) to test the effects of the compilers and/or mod-

ifications on the dynamic stream.

CPU

HTracer

Program X
’Wrapper’

Program X
Execution Result

Requested Traces
and Statistics

Parameters
Inputs and Trace

Figure 1: Logical block diagram of the HTracer
tool.

Figure 1 shows in simple form how HTracer can
be used: we supply it with a program to trace, the
parameters to that program, an input file expressing
which instructions to trace (if not all) and finally
details of what state information (such as the target
of branches, register file and so on) we wish to be
saved at the appearance of each of these instructions
in the stream.

At the completion of a trace run we are furnished
with a file containing all of the results for the re-
quested trace. These can either be hand analysed
(since we can turn on tagged output – improving
the readability of the file) or we can use the simply
formatted results as the input to another tool. These
can include such things as branch prediction sim-
ulators (as a list of verified branch addresses and
computed targets), trace driven architecture simula-
tors or perhaps instruction based power usage esti-
mation tools. Again a key advantage here is that we
can then easily input traced data from various differ-
ent architectures into a single simulator – this can be
achieved since, as a by-product of the instruction-
to-mnemonic trace mapping, all instructions can be
recorded in the same general form across differ-
ent architectures. Another output which can be ob-
tained from HTracer is statistical information about
instruction occurrence in the dynamic stream.

Given the modular library design of HTracer, is it
possible to either generate the results in the form of
a file (as previously discussed) or as a stream which
can be used dynamically as the input to other tools
allowing live trace input and opcode translation.

At the University of Hertfordshire HTracer is ac-
tively being used to generate source data for all of
the above simulators (most notably in my own re-
search project, investigating the effects of instruc-
tion scheduling and branch prediction on embedded

processor power consumption) and as such is under
constant development. The source code for HTracer
can be made available to other parties upon request
to the author.

Enhancing the I-cache to Reduce the Power Consumption of Dynamic Branch
Predictors

Colin Egan, Michael Hicks, Bruce Christianson and Patrick Quick

Compiler Technology and Computer Architecture Group (CTCA), University of Hertfordshire,
Hatfield, Hertfordshire, U.K. AL10 9AB

c.egan@herts.ac.uk

Branch prediction is an important area of research
for High Performance Processors [1]. With ever
increasing depth of pipeline and an increase in the
number of instructions issued in each clock cycle the
penalty associated with a mispredicted branch impacts
increasingly severely on processor performance [2].
Over recent years branch prediction research has
focussed on increasing prediction accuracy with scant
regard for cost and power [2, 3]. For example, Patt
argues that between 256K and 1024K bytes of the
silicon budget should be devoted to branch prediction
[4, 5], but battery life expectancy in embedded
processor systems (such as mobile phones) and laptops
is an increasingly important usage factor. In current
processors a branch predictor can consume more than
10% of the power [6]. In high performance
architectures this may be an acceptable cost, but in
embedded processors and laptops such large power
consumption is a major factor limiting the quality and
quantity of branch prediction that can be attempted [7,
8].

There are various means to overcome the problems
associated with branch instructions; these include
branch prediction (dynamic and static), hardware
multithreading, delayed branches and branch removal
by static instruction scheduling. Currently state of the
art processors tend to use dynamic predictors, but such
predictors can consume large amounts of the silicon
and the power budget. With the development of two-
level predictors in the 1990s by Yale Patt’s group [9]
and by Pan, So and Rahmeh [10] researchers have
reported very high prediction accuracy, but this success
is only achieved by providing very large arrays of
prediction counters or PHTs (Pattern History Tables).

We argue that such profligate use of silicon area is
unlikely to be cost effective in low-power applications
and will be an unnecessary drain on power. The
effective use of silicon space and low power
consumption is crucial for the embedded processor
market. With the increasing pipeline depth of
embedded processors, the accuracy of branch
prediction is now becoming an important factor for
embedded processor performance and a mispredicted
branch will severely impact on performance. At the
same time, power consumption must be kept to a
minimum to ensure device longevity.

Following the principle of locality, our proposal is to
enhance each I-cache block with two additional bits.
The first bit would indicate whether the instruction is a
branch or not and the second bit would indicate if the
branch was to be predicted taken or not taken. Since an
I-cache is used to store previously executed instructions
that are likely to be executed again in the near future
then this branch identification information would be
available after the first execution. Furthermore, in
dynamic predictors (two-level and a traditional BTC)
the most significant bit of the appropriate two-bit
up/down saturating counter is used to furnish a
prediction during the IF stage of the pipeline, and that
counter is updated when the branch outcome is known
at resolution. Consequently, a prediction is known well
in advance of the next time that particular branch
instruction is executed and its prediction bit could also
be stored in the I-cache. Both bits would have to be set
for the branch target address cache (BTC) to be
accessed, in which case the BTC would be used to
simply furnish a pre-computed target address. In the
case of a branch predicted as not-taken or the first time

a branch has been encountered or any other instruction
then the branch predictor and the BTC would not be
accessed, thereby reducing the power consumption.
This means that power would only be consumed
accessing a target address in the case of a predicted
taken branch. We do not consider it appropriate to
store the pre-computed branch target address in the I-
cache as this would considerably add to the cost of the
I-cache and increase its hardware complexity. As
usual, power would be required at branch resolution to
update the appropriate saturating counter. A small
additional amount of power would also be required to
update our enhanced fields in the I-cache.

It is our intention to use the well known
SimpleScalar Tool set [11] in conjunction with the
Wattch Power analysis tool [12] to quantify, evaluate
and validate our ideas. We intend to undertake a
comparative study using the branch predictors provided
by the SimpleScalar tool set. We will quantify the
prediction accuracies of these predictors and the
amount of power they consume. We will then enhance
the I-cache as described and re-evaluate the power
consumption of the same predictors. We expect to see
a realistic power saving with our enhanced I-cache and
expect to be able to discuss our results at conference.

We also consider that a further power saving
enhancement would be the addition of a third, taken-
saturated, field in the I-cache. The justification behind
this is that many branches are in fact in tight loops and
are therefore repeatedly taken before loop exit. This
means that the associated two-bit up/down field will be
saturated and the field value and the prediction remain
the same. So long as the branch continues to be taken,
the addition of the saturating bit in the I-cache would
mean there would be no need to update the prediction
field at branch resolution thereby saving more power
by removing unnecessary accesses to the branch
predictor. Now the BTC is only accessed in the case of
a taken prediction and the predictor will not be
accessed in the case of a taken saturated counter field.

In all cases the BTC and the predictor must remain
powered, because removing power would mean the
BTC predictor would require reinitialising each time it
is accessed.

References
[1] L. Hennessy and D. A. Patterson “Computer
Architecture: A Quantitative Approach”. Third Edition,
Elsevier/Morgan Kaufmann, San Mateo, California, 2002.

[2] C. Egan, and . “Cached Two-
Level Adaptive Branch Predictors with Multiple Stages”.

G. B. Steven L. N. Vintan
In

Trends in Network and Pervasive Computing - ARCS 2002
(LNCS 2299), Springer-Verlag, 2002, pp. 179-191.
[3] C.Egan. “Dynamic Branch Prediction in High
Performance Superscalar Processors”. PhD thesis, University
of Hertfordshire, U.K. 2000.

[4] D. C. Burger and J. R. Goodman. “Billion-Transistor
Architectures”. IEEE Computer, September 1997, pp. 46–49.

[5] Y. N. Patt, S. J. Patel, M. Evers, D. H. Friendly and J.
Stark. “One Billion Transistors, One Uniprocessor, One
Chip”. 1997, Computer, pp. 51-57.

[6] D. Parikh, K. Skadron, Y. Zhang, M. Barcella and M. R.
Stan. “Power issues related to branch prediction”. Proc. Int.
Conf. on High-Performance Computer Architecture, IEEE,
2002, pp. 233-242.

[7] S. W. Chung and S. B. Park. “A Low Power Branch
Predictor to Selectively Access the BTB”. In the Ninth Asia-
Pacific Computer Systems Architecture Conference
(ACSAC04), Beijing, China, September 2004.

[8] W. Shi, T. Zhang and S. Pande. “Static Techniques to
Improve Power Efficiency of Branch Predictors”. In the
Ninth Asia-Pacific Computer Systems Architecture
Conference (ACSAC04), Beijing, China, September 2004.

[9] T.-Y. Yeh and Y. N. Patt. “Two-level adaptive training
branch prediction”. In Proceedings of the 24th Annual
International Symposium on Microarchitecture, November
1991, pp 51–61.

[10] S.-T. Pan, K. So, and J. T. Rahmeh. “Improving the
accuracy of dynamic branch prediction using branch
correlation”. In Proceedings of the Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, October 1992, pp 76–84.

[11] D. C. Burger and T. M. Austin. “The SimpleScalar tool
set, version 2.0”. Computer Architecture News, June 1997,
25(3):13–25.

[12] D. Brooks , V. Tiwari , M. Martonosi. “Wattch: a
framework for architectural-level power analysis and
optimizations”. ACM SIGARCH Computer Architecture
News, May 2000, v.28 n.2, pp.83-94.

Appendix B: Technical Reports

An Introduction to Power Consumption Issues in
Processor Design

M.A. Hicks, C. Egan

February 2005

Abstract
The field of power aware computer engineering is becoming increasingly

prominent in recent years, following both the rapid take up of mobile devices
and the increasingly large and complex design of processors. This introduc-
tory paper begins by examining the impetus behind present research and then
proceeds with simple background theory of power dissipation in current elec-
tronic circuit technology. Following the definition of simple antiquated ways
of reducing power dissipation are more contemporary higher level metrics
used to quantify power efficiency (Et2) and a brief summary of simulation
tools used to retrieve power usage information. To finish, a summary of cur-
rent approaches and questions is presented.

1 Introduction

We’re projecting by 2010 there will be more than 2.5 billion wireless
handheld devices capable of providing the communications functions
combined with the processing power of today’s high-performance PCs.

– Paul Otellini, Intel

The first question one might ask is “Why be power efficient?”. Power con-
sumption/efficiency is an increasingly important issue in the field of computer en-
gineering. We can say this because power consumption/dissipation affects so many
factors in real world implementations:

Battery Life - The most obvious restriction on mobile devices is the length of
time we can use that device for and the performance we can expect. Power
efficient designs can extend this but, as shown later, careful consideration
must be taken in assessing the relative advantages of a design.

Thermal Issues - Power dissipation results in heat. Excessive heat dissipation
will affect the design of relevant cooling systems (and thus device packag-
ing/size), reliability and precise timing. One of the most important issues
on the desktop machine is packaging size and cost. On large scale servers
packaging size will represent a volumetric limit on rack capacity.

1

Large Scale Power Consumption - This aspect often seems irrelevant when ex-
amining the desktop and small scale market but when one looks at massive
arrays of machines the resulting power consumption can be quite significant.

Given the prediction quoted from Intel one can see the extreme importance of
power efficient designs in the coming decades. In fact, power efficiency is a likely
linchpin for new high speed processor designs.

The basic method behind reducing power consumption is to:

1. Find out where power is being dissipated most in the system.

2. Apply a suitable metric to this.

3. Try out lots of different (relevant) approaches to reduce this!

Given this approach, the following sections will attempt to offer a brief intro-
duction to some of the principles of the area.

2 Background Theory

This section offers some low level background theory explaining how power is dis-
sipated in silicon transistors. If you aren’t interested in understanding the details of
how power is dissipated you can probably skip this section. However, the contents
of this section may help you understand proceeding sections more clearly [8].

2.1 Some Definitions

Before we further examine power dissipation it is important that some definitions
are known the reader, particularly since many readers from a computing back-
ground may not be familiar with electronics. A basic understanding of science is
assumed.

Every electronic circuit has the following properties:
(assume t = observation time)

Charge (Q) - The charge at a particular point in a circuit is defined as the number
of electrons passing that point in the given time period. Charge is measured
in Coulombs. The charge, Q, at a given point is said to be one Coulomb if
6.3 million electrons pass that point during the observation period. Q = IT

Current (I) - The current at a given point in a circuit is defined as the charge per
second. I.E. The number of electrons passing that point every second. This
is in contrast to charge which is a measure of electrons, not their flow rate.
We measure current in Amperes. I = Q

T

Electrical Energy (W) - This is the “energy” stored in an electrical form. As with
all energy we measure electrical energy in Joules.

2

Voltage (V) - Voltage can be used to express one of two things. EMF specifies
the Electro Motive Force of a supply source. PD (Potential Difference) spec-
ifies the ‘difference’ between two points in a circuit. EMF is the Potential
Difference between the two terminals of the supply source.

Voltage is defined as the number of Joules per Coulomb. Or rather, the
amount of energy contained by a unit of a charge. We measure Voltage
in Volts. V = W

Q and (more commonly) V = IR

Resistance (R) - The resistance of a component, or group of components, is de-
fined as its opposition to the flow of current and thus a measure of its conduc-
tivity. We can determine the value of resistance for a component (measured
in Ohms) by examining the PD (voltage) across the component and the flow
of current. R = V

I

Power (P) - Power is defined as the rate of change of energy from one form
to another. We therefore obtain this value from multiplying the Joules per
Coulomb (V) by the Coloumbs per Second (I). This value is the most im-
portant for matters of power consumption. Power is measured in Watts.
P = V I

Capacitance (C) - Also very important in creating power dissipation is Capac-
itance. Measured in Farads, and most often used in conjunction with the
Capacitor, every conductive material has capacitance.

C = Q
V

Energy Stored in a capacitor, W = 1
2CV

2

Time taken to charge capacitor, T = Qtotal
I

2.2 CMOS, Transistors and Logic Gates

Underneath the collection of logic gates (the level of which most computer sci-
entists understand circuits) we can see vast interconnections of transistors – the
components from which logic gates (amongst other devices) are made. It is also
the easiest place to observe how power is lost in a processor.

Modern microprocessors are implemented with Complementary Metal-Oxide-
Semiconductor technology (CMOS). It is both a style of logic design and the set of
industrial processes which are used in the implementation of these logic designs.
The word complementary is used with reference to the use of pairs of transistors
that ‘complement’ one another. Essentially, since both transistors are never con-
ducting at the same time, when one transistor is active the output is connected to the
supply voltage and when the other is active the output is connected to the ground
(see Figure 2). CMOS currently allows the most dense transistor networks on a
single chip.

3

CMOS chips use a combination of P-type (Positive) and N-type (Negative)
MOSFETs 1.

In Figure 1 we can see the comparison between the function of the p-type and
n-type MOSFETs. The binary digits represents input and output voltages of low or
high. Vdd represents a supply voltage and Vss represents a common ground. The
switch diagram next to each transistor type shows the relation between its input and
output. From this we can see that an n-type is in saturation (conducts between Vdd
and Vss) when its input voltage, Vin, is above the transistors switching threshold. A
p-type, conversely, is in saturation when its Vin is below the switching threshold.
The concept of the switching threshold is important for device timings since in
high performance processors the time a transistor takes to reach this threshold is
significant.

NMOS PMOS

1

1

0

0

Vdd Vdd

VddVdd

Vss

Vss Vss

Vss

Vin

Vin Vin

Vin

Figure 1: The two principle MOSFETs used in CMOS chips.

Figure 2 shows how we can arrange n-type and p-type transistors to create a
logic gate – in this case a NOT Gate (inverter).

Now for some more indepth information:

Capacitance at Vin (input) will be the gates of the n-type and p-type transistors
and the metal interconnect.

Capacitance at Vout (output) is created by the fanout (number of connections) to
other gates and metal interconnects.

Propagation Delay is the time that the gate takes to charge the output to the cor-
rect switching threshold. This is key in configuring device timings.

1Metal Oxide Semiconductor Field Effect Transistor

4

Vss

Vdd

In = A

Vin Vout

Out = A

NOT Gate

Figure 2: A NOT Gate constructed from p-type and n-type MOSFETs.

Switching Energy is defined as W = QV .

Load Capacitance Increases Propagation Delay – A higher fanout and intercon-
nection will increase the amount of time taken to charge the output to the
correct threshold.

For reference Figures 3 and 4 show two other configurations of CMOS logic,
used here to create memory latches.

Latch

Figure 3: A latch constructed with two inverters. Holds value as long as power
is supplied and actively drives output. However is fairly big since it requires 5
transistors. Commonly used for SRAM cells.

5

Charge Based Latch

Figure 4: A charge based latch here constructed using one transistor and capacitor.
Very small but charge ‘leaks’ off capacitor and reads can hence be destructive.
Commonly used for DRAM cells.

3 Power Basics

Now that the low level details have been covered we can start to draw more general
abstract information about power consumption in a processor. In a broad sense
there are two types of power dissipation sources in a processor:

1. Dynamic Power –also called switching power.

2. Static Power – also called leakage power. Caused by transistor inefficiencies,
this will result in a steady per cycle energy cost.

Dynamic power dissipation is the leading cause of power loss in a processor,
however static power loss is becoming increasingly important given the increasing
amount of transistors on an integrated circuit.

3.1 Dynamic Power Dissipation

Within dynamic power dissipation there are two causes for energy loss:

Capacitive Power Loss – Caused by charging/discharging of transistor output at
transition from 0→ 1 and 1→ 0.

Short Circuit Power Loss – Caused by brief short-circuit current during transi-
tions. This problem is due to the finite slope of input signals to transistors,
the scope of which is beyond this document.

We can formalise dynamic power loss with equation 1 (the meaning of each
term is show below) [2].

Power ∼ 1

2
CV 2fA (1)

6

C → Capacitance. Function of wire length and transistor size. Measured in
Farads.

V → Supply voltage. Measured in Volts.

f → Clock Frequency. Measured in Hertz.

A→ Activity factor. How often, on average, do wires switch?

3.2 Static Power Dissipation

Static power dissipation due to leakage currents has two main dependency factors:

1. Gate oxide thickness.

2. Stacking and Input Pattern.

Since lowering leakage currents is a job for electrical engineers it will not be
discussed further in this report, however one thing that static power dissipation does
make clear is that making a smaller design does not only use less silicon space but
it will also result in lower power dissipation.

4 Simple Power Reduction Methods

This section discusses some simple methods used by manufacturers and designers
to lower the two main types of power dissipation.

4.1 Lowering Dynamic Power Dissipation

Given equation 1 for dynamic power dissipation the many general techniques used
to reduce it include [9]:

Lower Vdd (V) – Given the V 2 element of the dynamic power consumption equa-
tion we can see that just lowering the supply voltage will have a quadratic
effect. This has been a tactic in the design of integrated circuits by many chip
manufacturers. However lowering the supply voltage also has a roughly lin-
ear degrading effect on performance.

Lower Capacitance at Gate Output (C) – Given the energy loss due to the out-
put capacitance (a function of the fanout of other gates) it can be said that
lowering this value will help decrease capacitance power dissipation, C .

Lower Clock Frequency (f) – This will have a linear effect on power dissipa-
tion however it will also affect the performance of the processor since the
frequency dictates the number of cycles per second.

7

Reduce Activity Factor (A) – This is the key area in which processor designers
can reduce the power consumption of their architecture designs. This is a
function of the signal transitions against the clock rate. Clock Gating idle
units and reducing how much units are used will help reduce this.

4.2 Lowering Static Power Dissipation

Many of the resulting solutions here are only useful for electrical engineers since
they are extremely low level – from a design perspective limiting the size of archi-
tectures is the best we can do to avoid this form of dissipation, along with com-
pletely powering down functional units.

Use Fewer, Smaller Transistors – Stack transistors where possible to minimise
contacts with Vdd.

Reverse Body Bias (dynamically adjust switching threshold) – Provides a low
leakage sleep mode but maintains state (XScale).

Vdd Gating – Cut the supply or ground to a circuit. This will provide a zero dis-
sipation sleep mode but all of the stored data will be lost. There are also
overheads to consider when switching a unit on or off.

5 Effective Metrics

Something fundamental to analysing power dissipation in a system and assessing
how effective a given modification is are metrics. This section briefly discusses
the metrics used and the various pitfalls which one must be weary of, starting with
some more simple metric definitions and finishing with a contemporary voltage
independent metric. In each case the power is the power used to perform a given
process and the time is the period of time this process takes to complete.

5.1 Power Consumption

• Determines battery life.

• Sets packaging size.

• P = V I

• Measured in Watts.

5.2 Energy Efficiency

• The rate of energy consumption.

• Energy = Power ×Delay (E = PT).

8

• Measured in Joules.

• A low energy value can be used to compare energy per operation at the same
clock frequency (lower E is better).

5.3 Voltage Independent Metric

Power Delay Product – Specifies the average amount of energy consumed per
switching event. PDP = Paverage × t

Energy Delay Product – This will take into account that increased delay can be
conpensated for by lower energy transfer per operation. EDP = PDP × t

However, given the quadratic effect of voltage on power efficiency and its met-
rics, we really need a way of measuring pure efficiency irrespective of voltage. This
enables one to design a modification that should be as effective when implemented
in any design, no matter what voltage the processor is running at.

The proposed metric [6], from a research group at the California Institute of
Technology, and explanation is as follows:

Bu→ z ↑ (2)

Bd→ z ↓ (3)

The above production rules define the transition of a logic gate or operation z
from one to zero. Given the above transitions let Ez↑ and Ez↓ represent the en-
ergy spent during each transition, respectively. This energy is dissipated during the
charging and discharging of the capacitor associated with z (remember the associ-
ated capacitance of z can just be the fanout and interconnect to other gates). The
associated energy used to charge a capacitor to voltage V is CzV 2. As discussed
earlier the energy stored in a capacitor is 1

2CV
2. This means that the other half is

dissipated as heat in the interconnect. Therefor energy loss during charging is:

Ez↑ =
CzV

2

2
(4)

Given V as the supply voltage. When the capacitor is discharged this energy is
lost in the interconnect such that Ez↓ = Ez↑.

The time tz↑ taken to charge the capacitor is the ratio of the final charge on the
capacitor and the rate of charge transfer (current):

tz↑ =
Qz
iz

(5)

Where Qz = CzV . It is slightly harder to define the value of i since transistor
current is difficult to analyse. However it can be made easier if it is assumed
that the transistor in question is operating above threshold (not during velocity

9

saturation) then the current will either be linear or the saturation current. These are
well defined and shown below:

Il = k(2(Vgs − Vt)Vds − V 2
ds) (6)

Is = k(Vgs − Vt)2 (7)

Now, if we assume that the voltages above vary proportionally with the supply
voltage V then both the saturation and linear current depend quadratically on V.
Thus current for both iz↓ and iz↑ is of the form Kz↓↑V 2.

Delay can now be formalised as

tz↑ =
Cz

Kz↑V
(8)

If the above equation for delay is combined with the equation for energy loss it
can be seen that the term Et2 is independent of any voltage term [6].

Since this is just a further extension of the Energy Delay Product, it is often
referred to as the ED2P metric, EDDP.

ED2P = Et2 (9)

With this the processor designer can balance both energy and time to perform a
process, with increased time being compensated for by decreased energy readings
and so on. When comparing two designs a lower value for EDDP is the most
desirable when considering power efficiency.

It is also worth noting that MIPS3

P is inversely proportional to the Et2 metric.
For an explanation of this see Appendix 1, where it is also explained how we can
thus use P × CPI3

Average as a voltage independent metric for comparing energy
efficiency.

6 Analysis and Tools

When designing processors/circuits for power efficiency there are various tools that
can be used [10], each one implemented to monitor power at a different level of
abstraction. Discussed briefly below are some of the more popular (and effective)
of these tools [1].

6.1 Circuit Level Models (HSpice)

Modelling at this level involves creating simulations that are as similar as possible
to the actual implementation of a circuit in silicon.

One of the most popular (and famous) tools used for this purpose is HSpice.
HSpice models diffusion, gate and wiring capacitance. These analogue simulations
are performed by:

10

• Large detailed device models created from empirical measurement.

• Solving large systems of analogue electrical equations.

The result of this complexity is an often accurate (power dissipation can be esti-
mated to within a few percent) but extremely slow simulation. This makes HSpice
ideal for testing implementations of 10-100 thousand transistors, but impractical
for anything larger than this.

The tool Powermill is similar but slightly less accurate. However the reduced
accuracy comes with the benefit of around a 10x increase in speed.

6.2 Logic Level Models

Logic level models obtain switching information for each signal and logic tran-
sition in a circuit. Modelling behaviour at this level is generally achieved using
hardware description languages such as VHDL and Verilog with their associated
tools.

From these behaviour models a simulator can generate capacitance estimates
by:

• Estimating the gate size of the specified behaviour model, similar to actual
synthesis.

• Creating wire load estimates based on this.

The resulting switching and capacitance information provides dynamic power
estimates only. These results will generally be less accurate than circuit level mod-
els but much more scalable to very large designs.

6.3 Architecture Level Models

The most commonly used level for computer architecture design has two approaches
in its simulation:

1. Event Based Modelling – Interface some high level power models with cycle
based simulations.

2. Instruction Based – Power estimates created based on instruction usage.

Both of these types of simulation can be implemented using empirical circuit
design measurements as estimates or general capacitance models.

Since Power ∼ 1
2CV

2fA these two approaches estimate CV 2f in different
ways:

Capacitance Models – Estimate CV 2f using analytical models. This requires
estimating ‘wire’ length and the size of transistors.

The popular tools used to do this include: Wattch [3] [4], PowerAnalyzer
and Tempest.

11

Empirical Models – Estimate CV 2f using measurements taken from actual im-
plementations and adapt them to model the current circuit.

Often internal corporate tools are used to do this, however the two main
publicly available tools here are PowerTimer and AccuPower.

For large scale designs the general accuracy of architecture level simulation is
sufficient and indeed is the only realistic option for general high level comparison
of designs.

7 Summary And Current Issues

The current approach to increasing the energy efficiency of processor designs, in
a general sense, is an amalgam of the previous sections. Initially the engineer
needs to understand the causes of power dissipation and then make some intuitive
early stage decisions and create different designs. With these different designs the
engineer then needs to run simulations to decide where power is being dissipated
most in his approach(es) and apply a suitable metric to them – the most common
and useful of which is generally an Et2 metric. Once this dissipation has been
quantified it is possible to try out different implementations that may reduce this
power dissipation.

The most potent method of reducing power consumption at the architecture
level is to focus on reducing the activity factor of different units in the processor,
by means of intelligent alogorithms. This is largely due to the extensive research
carried out into reducing gate level power dissipation.

Another area worth considering outside of processor design, which can have
great effect, is power aware operating system algorithms. Optimisations at the
application level will often result in the greatest power efficiency. They are however
highly dependent on user input and application specific. As a result intelligent
algorithms at the operating system level have the possibility to greatly decrease
power dissipation by reducing the activity factor to a minimum. Research in this is
still youthful.

8

References

[1] D. Brooks. Power Aware Computing Notes. Technical report, Harvard Uni-
versity, USA, sep 2004.

[2] D. Brooks, P. Bose, S. Schuster, H. Jacobson, and P. Kudya. Power-Aware
Microarchitecture: Design and Modeling Challenges for Next-Generation
Microprocessors. IEEE Micro, November 2000.

12

[3] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework
for architectural-level power analysis and optimizations. 27th annual interna-
tional symposium on Computer architecture, 2000.

[4] Doug Burger and Todd M. Austin. The SimpleScalar Tool Set, Version 2.0.
Technical report, University of Wisconsin-Madison, 1997.

[5] Canturk Isci and Margaret Martonosi. Run-time Power Monitoring and Es-
timation in High-Performance Processors: Methodology and Experiences.
Micro-36, dec 2003.

[6] Alain J. Martin, Mika Nystrom, and Paul L. Penzes. ET2: A Metric for Time
and Energy Efficiency of Computation. 2003.

[7] Dharmesh Parikh, Kevin Skadron, Yan Zhang, Marco Barcella, and Mircea R.
Stan. Power Issues Related to Branch Prediction. IEEE HPCA, 2002.

[8] Myke Predko. Digital Electronics Demystified. McGraw-Hill, New York,
2005.

[9] John S. Seng and Dean M. Tullsen. Exploring the Potential of Architecture-
Level Power Optimizations. PACS, 2003.

[10] Viji Srinivasan Michael Gschwind Pradip Bose Philip N Strenski Vic-
tor Zyuban, David Brooks and Philip G Emma. Integrated Analysis of Power
and Performance of Pipelined Microprocessors. IEEE Transactions on Com-
puters, 53(8), aug 2004.

[11] V. Zyuban and P. Kogge. Optimization of High-Performance Superscalar
Architectures for Energy Efficiency. ACM, 2000.

[12] Victor V. Zyuban. Inherently Lower-Power High-Performance SuperScalar
Architectures. PhD thesis, University of Nore Dame, Indiana, mar 2000.

13

9 Appendix 1

Relation of MIPS3

P to Et2.

MIPS3

P
∝ Et2 (10)

Et2 = (P × t)× t2 = Pt3 (11)

Where P = Power in Watts, MIPS = Millions of Instructions Per Second, t =
time in seconds for the process to complete and E = energy used for the process.

t = InstructionCount ×CPIAverage × tpercycle (12)

MIPS =
InstructionCount

t
=

InstructionCount
InstructionCount × CPIAverage × tc

=
1

CPIAverage× tc
(13)

Since tc is fixed by the frequency of the processor it does not need to be con-
sidered at the architecture level of designing energy efficient processes and will be
a constant in these equations.

The instruction count is inversely proportional to the CPI so also can be re-
moved from the equation for Et2.

This leaves us with the following more obvious relationship:

(1/CPIAverage)
3

P
∝ P ×CPI3

Average (14)

This shows that what we are really measuring is the average power usage of a
process in relation to its CPI cubed. The following statement should appear more
intuitive (perhaps) to the reader:

EnergyEfficiency ∼ P × CPI3 (15)

14

HTracer V0.5: A User Guide

M.A. Hicks, C. Egan

July 2005

1 Introduction

This document details the usage of the Hatfield Tracer (HTracer), from a user’s per-
spective. HTracer is a cross platform dynamic instruction stream research tool that
allows one to produce detailed traces of the dynamic instruction stream of almost
any compiled binary program and requires no special compilation procedure, with
respect to the programs that are to be traced. After a trace is complete, relevent
execution statistics are also supplied.

In essence, one simply supplies HTracer with the binary program that they
which to be traced. Using a number of switches and flexible masks, almost any
required information can be retrieved pertaining to the behaviour of that program
at runtime.

This document is structured as both an explanation of what HTracer can do, and
then an explanation of how this can be achieved. Before this, however, some basic
concepts and requirements are detailed so that anyone unfamiliar with a tracer can
understand this document’s content. Some example output is also supplied to show
what can be expected from a trace when run with certain parameters.

It is recommended that this document be read from start to finish; although
the document is divided into sections, they are not completely discrete and each
contains information useful to using HTracer.

2 What Is A Tracer?

Generally, most computer scientists write their software in a high level language,
such as C/C++ or Pascal. At this level it is easy to understand and imagine the
thread and behaviour of the program were it to be executed by some theoretical
machine. However, in reality, this high level language will be compiled to a much
lower level format. This format is known as machine code, since it is the binary
format of ‘simple’ atomic instructions executed by the CPU of a computer.

At this low level the behaviour becomes much more complex than one had
imagined at the higher level, with seemingly new patterns and behaviour appearing
in the dynamic execution of code. It is with this in mind that HTracer was created;

1

to allow the monitoring of the dynamic instruction stream in a useful and flexible
manner.

Hence it can be said that a tracer, and in particular HTracer, will intercept
the real time execution of machine code and produce data records detailing the
sequence of program execution.

3 Requirements

Due to its low level nature, HTracer is implemented at the kernel level of the op-
erating system. As such HTracer will function on almost any Unix-like operating
system, but in particular has been designed with Linux in mind. Given the avail-
ability of Linux on a number of different architectures, HTracer can be used to
produce execution traces on many processor architectures including, but not lim-
ited to: x86, AMD64, PowerPC and Sparc. This cross platform ability is one of
the key advantages and interest points of HTracer, since it allows the comparison
of static to dynamic code behaviour across different architectures.

In the current version of HTracer (0.5), the recommended system requirements
are as follows:

• A machine with a working installation of Linux.

• Kernel version >= 2.6.

• Since tracing is by its very nature a slow process, a fast CPU is always handy!

• A working understand of Linux and the command line is assumed.

• A copy of the tarball archive “htracer.tar.bz” .

Assuming one has met these requirements, the next section details how HTracer
can be installed on a machine.

4 Installation

Firstly the tarball archive needs to be decompressed. At a command prompt,
change to the directory of the tarball and run the following command:

$ tar xfj htracer.tar.bz

This will decompress all of the source code into a directory called HTracer.
Change into that directory before proceeding. There will be a file present here
called “README”, which contains release notes and technical details for the cur-
rent release.

The next step is to compile HTracer to run on the current machine. This can be
achieved with the following commands:

2

$ make

This starts the build process. If this fails, it is likely that some configuration
options need to be changed from their default values. Execute the following com-
mand to open the configuation file:

$ make configure

Read through the comments next to each option and make the appropriate
change for the current architecture. This process is detailed in the “README”
file. When this has been completed, execute the first compilation step to compile.

To install HTracer globally (recommended) execute the following make com-
mand:

$ make install

The command “htracer” should now work at the command prompt on the cur-
rent machine. HTracer has been successfully installed.

5 Usage

CPU

HTracer

Program X
’Wrapper’

Program X
Execution Result

Requested Traces
and Statistics

Parameters
Inputs and Trace

Figure 1: Logical block diagram of the HTracer tool.

HTracer permits the masking of almost any information that is required during
program execution. That is to say, HTracer can log various state information for,
perhaps, only branch instructions or arithmatic instructions. This is particularly
useful since full traces of programs are often not required (and take considerably
more time and disk space).

To achieve this functionality, HTracer employs a system of masks and execu-
tion parameters. These are all invoked in one command, at the point of starting the
trace, and are explained in the proceeding two subsections.

The overall structure of the command to execute a trace is:

$ htracer [-fvsirome] <program> <program-parameters>\
<output.file> <instruction.mask>

3

5.1 Parameters

Here is an explanation of what each parameter in a trace execution means:

-fvsirome – These are the switch parameters to the tracer which specify how
is should behave and what sort of information should be logged. These
switches are explained shortly. Any number of the switches can be used.

program – The relative or absolute location of the executable to be traced. e.g.
/bin/ls

program-parameters – This should be a space seperated list of parameters that
one wishes to run the traced program with. These MUST be encapsulated by
speech marks. e.g. “-lh /home/mike”

output.file – The file where all of the tracers output should be dumped to. This
option is not used when the “-o” option is specfied. Output is sent here if
the instruction at the current PC matches a mask OR if one specified the full
trace option.

instruction.mask – The name of the file containing the instruction masks and
groups (if the option “-m” was given to the tracer). See the Masks subsection
for further information on masking.

The following list describes the meaning and function of each of the switch
parameters mentioned in the previous list:

-f Run a full trace. Information for every instruction will be dumped into the
output file. If the use of a mask is specified, it will still be used, however the
tracer will not ignore instruction that are not specified in the mask.

-v Verbose. Provides some extra information about the progress of the tracing.
On some architectures this includes information about the number of clock
cycles that the tracer ran for.

-s Outputs some statistics at the end of the trace. The statistics include information
about the occurence of each instruction group specified in the mask.

-i Log the actual instruction fetched during each step of the trace. This is useful if
one needs to examine any matched instructions and perform any post trace
analysis.

-r Log ALL of the user registers at each matched instruction. This option is cur-
rently (V0.5) platform dependent and will not function correctly on all ar-
chitectures. Using this option also significantly slows down the execution of
a program trace.

4

-o Instead of using an output file, send all of the dumped information to stdout.
Useful if it is needed to redirect the output to somewhere else, perhaps di-
rectly into another program.

-m Specifies the use of a mask file. See the next subsection.

-e A line is written at the top of the tracer output which explains the format of the
tracer log.

In the example output section, the relevent command used to produce the ex-
ample output is shown to illustrate how trace options affect trace output.

5.2 Masks

In order to monitor a program, and in order to trace it accurately, HTracer single
steps each instruction through the entire processor pipeline. This means that every
instruction is moved through the whole pipeline, one at a time, and then the state
of the processor is checked. This must be done since it would be difficult to trace
a program when multiple instructions were being executed at any given time. As a
direct result of this, program traces produced by HTracer take significantly longer
to run than simple executing the program natively.

The penalty of single stepping instructions cannot be reduced. However an-
other key contributor to trace production time is the amount of information being
written to disk in each step. For most full trace producing applications, this means
a full trace and data being dumped every cycle. This is slow. To try and ameliorate
this problem and to produce more meaninful labelled output, selective instruction
masks have been implemented. These masks match certain instruction appearance
formats which are completely specified by the user.

All instruction masks are grouped into user specified groups; these groups are
really just a way of collecting together similar instructions, to be reported under
the same name (if this is desired). For instance it may be useful to have all load
instructions reported under one term (given the variety of these present on the x86
architecture). As well as appearing under these groups in the trace output, it is also
how program statistics at trace completion will be shown.

Figure 1 shows how HTracer spawns a ‘wrapper’ child process and executes
this on the CPU, whilst monitoring it at each step. It is at each step that the instruc-
tion masks are compared with the instruction currently being executed. If a match
occurs, the requested trace data (see parameters subsection) is stored in the spec-
ified file. If no match occurs, then the instruction and processor state is ignored.
This will become more apparent after reading the rest of this document.

The format of a masking file is as follows:

Any line beginning with the hash symbol is ignored.
% <group name> <1|0: dump next pc>
> <hex bit appearance> <hex bit mask>

5

>
>

%<another group name> <1|0: dump next pc>
> <hex bit appearance> <hex bit mask>
>
>

A group consists of one of more instruction mask pairs. The name of the group
is completely arbitrary but a good choice is a name that reflects the common theme
of all of the instructions contained in the group. For instance “branch” for a group
containing branch instructions. There can be any number of instruction groups. A
1 or 0 after the group name specifies whether the tracer should log the next value
of the Program Counter after a match with one of the masks occurs. This is useful
for logging branch targets.

The function of the mask pairs are:

Hex Bit Appearance – This specifies how certain parts of the instruction should
appear. In essence, the actual instruction appearance is written here, for the
bits that are to be monitored (see next item).

Hex Bit Mask – This hex sequence specifies which parts of the previous hex ap-
pearance should actually be compared with the currently executing instruc-
tion (similar to a subnet mask, for instance).

An example mask, to catch x86 branch instructions, would look something like
this:

x86 Instruction format tracer mask.
Currently matches only branch instructions.
Remember little endian byte ordering.

% Branch 1
> 00000070 000000f0
> 000000e3 000000ff
> 000000eb 000000ff
> 000000ea 000000ff
> 000000e9 000000ff
> 000000ff 000000ff
> 0000000f 000000ff

Taking the first mask pair here as an example, only instructions where bits 4-
8 equal 7 would cause a match and a consequential state dump to the output file.
This is because 00000070 says that bits 4-8 should equal 7. The rest of the bits here
show as zero; this is because they are ignored by the actual mask applied which

6

means the tracer only examines bits 4-8 for this mask. Given this explanation
it is clear that the other mask pairs will match. All of these masks will report
instructions under the term “Branch”. If they needed to be seperated in the tracer
output then they could simplt be specified under seperate groups in the mask file
(one mask pair per group). The “1” after the group name “Branches” means that
the effective target of each of the logged branch instructions will also be stored.
This is demonstrated in the next section.

6 Tracer Output

During the execution of a program trace, HTracer will store the state of the proces-
sor, as requested, to either the specified output file or the standard output. Regard-
less of which option is chosen, the output will always appear in the same format,
as described here.

It is worth remembering, from the parameters section, that a line can be written
to the start of the tracer output which specifies the layout of the columns in the
output file (so that one doesn’t need to remember).

The tracer output file is arranged into columns and rows. Each row specifies
one state of the CPU and thus one instruction execution. Each column specifies
a value of something within that state. Here is a description of the format of the
columns in the tracer output:

<PC> <GROUP> { (<INSTRUCTION>)? (<REGISTERS>)? (<NEXTPC>)? }

PC The program counter value of the instruction being executed in hexadecimal.
By default it is the relative program address i.e. 0 is the base address in
memory of the program being traced.

GROUP The name of the instruction group for which this instruction matched.
N.B. if a full trace is to be run, then all instructions will appear here, regard-
less of whether or not they match a group mask. In this case, instructions
which did not match a mask will appear in the “Generic Instruction” group.

INSTRUCTION If requested at trace execution, this is the actual instruction be-
ing executed in hexadecimal. This is extremely useful for performing post
trace analysis and further decoding any traced instructions.

REGISTERS If requested at trace execution, the whole general purpose register
file. This is output as a comma delimited hexadecimal list of the value con-
tained in each of the general purpose registers. These values are useful for
more complex post trace analysis.

NEXTPC If specified in the mask file for a particular instruction group (see mask-
ing section), then the next PC value will be stored here.

7

Given the previous specification, here is a snippet of tracer output, created
using the example mask in the previous section and the parameters “-sime”. The
full command executed to produce this output:

htracer -sime ./jumper "100000" traceroutput.txt x86branchmask.txt

....
<PC> <MNEMONIC> <INSTRUCTION> <NEXTPC>
0006eabd Branch fe35840f 0006eac3
00064200 Branch 0038a3ff 000b65c0
000b65dc Branch 009e860f 000b65e2
000b65f0 Branch 4616b60f 000b65f3
000b65f7 Branch 4101b60f 000b65fa
000b6600 Branch 0fc0940f 000b6603
000b6603 Branch f655b60f 000b6607
000b660a Branch 09c2950f 000b660d
000b6611 Branch 009b850f 000b66b2
000b66b2 Branch f645b60f 000b66b6
000b66b6 Branch f755b60f 000b66ba
0006eadb Branch 958b1075 0006eaed
....

The first column shows the PC, the second is the instruction group, the third is
the actual instruction and the final column is the value of the next PC.

After the trace has completed, if requested at execution, some statistics about
the trace will be displayed. In the case of this example, the statistics were as fol-
lows:

Program Statistics

./jumper

Ins Class ----> Number of Instructions | %

Generic Class 789495 | 78.20%

Branch 220057 | 21.80%

Ins Total: 1009552

8

The format of the statistics is largely dependent on the mask file used. One
entry is shown per instruction group specified in the mask file, showing how many
times any group was matched, both as a value and as a percentage of the total
instructions.

It is, at this point, worth noting that the likely output file generated by HTracer
for any realistic program or benchmark is very large. For instance in an intensive
benchmark trace, an output file can be gigabytes in size. There must be enough
free space on the target storage disk to accomodate the entire trace.

7 Known Issues

There are a number of known issues/problems with HTracer which have yet to be
addressed.

1. Library initialisation code is traced. At the start of a program’s execution, all
of the libraries used by the program are initialised and mapped in memory.
Currently (V0.5) HTracer will trace this code. This may not be desirable.
A work around for this in the meantime is to create a simple blank program
that uses all of these libraries, trace it using HTracer, and thus work out how
many instructions at the beginning of the trace can be ignored. Alternatively
(and easier), build the program to be traced so that it is statically linked, thus
removing any need for library initialisation.

2. The logging of the entire register file is currently (V0.5) not fully imple-
mented on all architectures.

3. Tracer output to a file cannot be split across several different files/disks. A
work around for this is to send the trace output to the standard output and
pipe it to one of many standard *nix programs which can reroute the output
to several different files.

8 References

The following sources were used, to varying degrees, during the construction of
HTracer.

References

[1] Intel. Intel Architecture Software Developer’s Manual, September 2004.

[2] S.Sandeep. Process Tracing Using Ptrace. Linux Gazette, 81, 2002.

[3] Various. Linux Operating System Manual Pages, 2005.

[4] Various. The Linux Kernel Archives. Online, 2005.

9

[5] Various. Tux.org Discussion Lists. Online, 2005.

10

Appendix C: Additional Background

Appendix C: Additional Background

1 Electronics and Modern Transistors

Computer scientists are used to recognising abstract models of processor behaviour,
but these are typically centralised around performance [1] [2]. In order to better un-
derstand power dissipation [3] it is important that the underlying principles are set
out. The following subsections explain transistor, and hence gate level, power dis-
sipation of modern nanometre circuits in sufficient detail to understand this work.
However, a more indepth discussion is supplied in Appendix A “An Introduction
to Power Consumption Issues in Processor Design” [4].

1.1 Basic Electricity Nomenclature

All electronic circuits function by manipulating the flow of electricity. As a result,
various terms will be used regularly in this chapter and throughout this disserta-
tion. Although these terms are elementary, it is important that they are included
for clarity [5] [6]. Figure 1 shows a very simple circuit diagram illustrating the
schematic voltage drop across a lamp in a circuit. V represents the voltage drop,
and A represents the current flow. This aids in the explanation of the terms shown
below.

Figure 1: A very simple circuit

Electron – A negatively charged subatomic particle that is capable of carrying
electrical energy.

1

Electricity – In the most general sense, a flow of electrical charge in a material.
Specifically, in electronic circuits, it is the flow of electrons through a con-
ductor from a negative to positive terminal. Different materials have varying
degrees of free electrons which affect the rate of flow.

Electrical Energy (W) – An abstract measure of the potential energy stored or
provided by a circuit. As with all energy, electrical energy is measured in
Joules.

Charge (Q) – In an electronic circuit, charge is a measure of a number of charge
carriers in a given area, or passing a particular point over a given time period.
Measured in Coulombs. A charge of 1 Coulomb corresponds to6.3 × 106

electrons.

Current (I) – The current at a given position in a circuit is a measure of the charge
passing through that point per second. Measured in Amperes. 1 Ampere is
equal to 1 Coulomb of Charge per Second.

Voltage (V) – The amount of Electrical Energy stored per unit charge. Measured
in Volts. 1 Volt is equivalent to 1 Joule per Coulomb. Voltage is also used
to quantify how much Electrical Energy is lost or gained across a particular
component or section of circuit.

Resistance (R) – A measure of the opposition to the flow of current in a particular
material or section of circuit. Measured in Ohms. The more conductive a
material is, the lower the resistance.

Capacitance (C) – Conductive materials have the capacity to store electrical charge
(and thus energy). Capacitance is a measure of this capacity for a compo-
nent, and is measured in Farads.

Power (P) – A measure of the Electrical Energy transferred by a given current.
Measured in Watts. Equal to Voltage multiplied by the Current flowing.

Power Source –A power source is capable of supplying a finite amount of elec-
trical energy to a circuit. Typically, when examining processor energy ef-
ficiency, this power source will be a battery. The rate at which the power
source is drained will set its lifetime.

Power Dissipation – This refers to the power consumed by a circuit in an ineffi-
cient manner, or rather, power consumed which is not supporting the logical
behaviour of the circuit. A completely efficient circuit would dissipate no
power at all.

2

1.2 Transistors, Logic Gates & CMOS

Central Processing Units (CPUs) are usually modelled at the architecture level by
using structural diagrams and, if more detail is required, with the use of logic gates.
Modelling circuits at these levels of abstraction makes their behaviour easier to
understand but also detracts from the physical transistors which are supporting this
behaviour. While an individual transistor may appear very efficient, collectively
they result in significant power dissipation; a modern processor, such an AMD
Dual Core Athlon 64 [7], will contain as many as 233.2 million transistors. The
following subsections explain how this supporting structure of transistors result in
power dissipation and other negative effects [5].

1.2.1 MOSFETs

Metal Oxide Semiconductor Field Effect Transistors (MOSEFETs) are the most
commonly used type of transistors in modern VLSI circuits. MOSFETs are con-
structed in silicon using a combination of n-type and p-type material (discussed
under doping). The effect of an electric field on these types of semiconductor ma-
terial is capable of manipulating the flow of current, and their combination can thus
behave like a switch.

Semiconductor A solid material with variable electrical conductivity properties
that can be varied either permanently or dynamically. Silicon is the most
prominent and widely used example of such a material.

Doping A process where impurities are intentionally introduced into a semicon-
ductor material in order to change its electrical properties. Highly doped
material is often shown using ‘N+’ or ‘P+’ – the + denoting that the mate-
rial is highly doped. A ‘normally’ doped semiconductor, as described below,
will have a majority charge carrier, but will still contain a minority of the
opposite charge carriers. This is important to the behaviour of transistors.

n-type Semiconductor material that has been doped using a substance that in-
creases the number of free negative-charge carriers. This substance is com-
monly referred to as ‘donor material’ as it ‘donates’ electrons to material
into which it is introduced.

p-type Semiconductor material that has been doped using a substance that in-
creases the number of free positive-charge carriers.

Figure 2 shows a cross section schematic of how n-type and p-type semicon-
ductor material can be combined into an NPN transistor. The three letter initialism
represents the doping structure of the transistor. The source and drain terminals are
connected to two areas of highly doped n-type material (N+). The main body of the
transistor consists of p-type material (P). The gate terminal is separated from the
transistor by an oxide such that only the gate’s electric field may affect the body.

3

Figure 2: An NPN transistor where P shows p-type material, N+ shows highly
doped n-type material

When a positive voltage is applied to the gate terminal, a process referred to a
tunnelling takes place. The field effect of the positive voltage at the gate terminal
causes the majority positive-charge carriers in the p-type base to be repelled while
the negative-charge carriers are attracted to form a ‘tunnel’ between the two highly
doped n-type junctions (L). The result is that there is now a negative-charge car-
rying area between the source and drain junctions; a current can flow between the
drain and source. The voltage required to allow current to flow in the transistor
is known as the ‘Threshold’, and is set by the designed chemical properties of the
doped semiconductor.

A PNP transistor can be constructed by reversing the doping types shown in
Figure 2. This type of transistor will function, when the gate terminal is connected
to a negative terminal voltage, by creating a tunnel of positive charge carriers which
allow a current to flow between the drain and source.

1.2.2 CMOS

Complimentary Metal-Oxide-Semiconductor (CMOS) is a technology process used
to create most modern processors from MOSEFETs. In CMOS, logic gates are con-
structed using a ‘complementary’ arrangement of NPN and PNP MOSFETs (see
Figure 3. In a typical CMOS gate, the NPN MOSFET part will control the connec-
tion of the output to the ground (Vdd) of the circuit; conversely, the PNP MOSFET
part will control the connection of the output to the high voltage (Vss).

Figure 4 shows how a CMOS Not-Gate is constructed from NPN and PNP tran-
sistors. Its complementary structure using two transistors ensures that the output
is always swiftly drained or charged to the correct level by the effect of both tran-
sistors always driving their output to opposite levels (when connected to the same
input); when the NPN is ‘on’ the PNP is ‘off’. This means that, for a given CMOS
circuit, there is no set of inputs that will cause a continuous current from source to
drain and also results in faster switching times.

4

Figure 3: The CMOS logical representation of NPN and PNP transistors with the
associated switch behaviour

Figure 4: An example CMOS Not-Gate

5

References

[1] Egan, C.: Dynamic Branch Prediction In High Performance Super Scalar
Processors. PhD thesis, University of Hertfordshire (August 2000)

[2] Parikh, D., Skadron, K., Zhang, Y., Barcella, M., Stan, M.R.: Power issues re-
lated to branch prediction. In: IEE High Performance Computer Architecture.
(Februrary 2002) 233–244

[3] Gonzalez, R., Horowitz, M.: Energy dissipation in general purpose micropro-
cessors. IEE Journal on Solid State Circuits31(9) (September 1996)

[4] Hicks, M., Egan, C., Quick, P., Christianson, B.: An introduction to power
consumption issues in processor design. Technical report, University of Hert-
fordshire (July 2005)

[5] Amos, S., James, M.: Principles of Transistor Circuits. Butterworth-
Heinemann (1999)

[6] Horowitz, P., Paul, Hill: The Art of Electronics. Cambridge University Press
(1989)

[7] AMD: Athlon 64 X2 Processor Manual. (2006)

6

Appendix D: Raw Data

Raw Results Data

The results on the following pages are the raw data for the major experiments
conducted and presented in this dissertation. They are presented here in order to
reinforce the veracity of the average results shown at the end of each experimental
section or chapter. There are five main result sets:

Raw Scalar Data – The raw data collected for the experiments conducted against
the scalar processor baseline

Raw 2Way Issue Data – The raw data collected for the experiments conducted
against the two-way issue processor baseline

Raw 16Way Issue Data – The raw data collected for the experiments conducted
against the sixteen-way issue processor baseline

Raw Fixed Bias Data – The raw data collected for the experiment conducted to
examine the use of a fixed bias hinting level

Raw BTB Resize Data – The raw data collected for the experiment conducted to
examine the potential savings achievable by resizing the BTB

Each of the columns in the five results sections presents one of the following
values (by column title):

Benchmark – The name of the EEMBC benchmark

SBTOTAL – The total number of static branch instructions in the benchmark

SBHINTED – The number of static branches for which a hint was applied by the
combined algorithm

DINSTOT – The total number of dynamic instructions executed

DINSNEW – The total number of dynamic instructions executed after the appli-
cation of the combined algorithm

DBPOLD – The number of accesses made to the dynamic branch predictor during
the benchmark’s execution

DBPNEW – The number of accesses made to the dynamic branch predictor during
the benchmark’s execution after the application of the combined algorithm

PWROLD – The total average power used by the entire processor per executed
instruction

PWRIDEAL – The total average power used by the entire processor per executed
instruction if the branch predictor consumes no power

PWRNEW – The total average power used by the entire processor per executed
instruction after the application of the combined algorithm

INSCOMMIT – The total number of instructions committed during the execution
of the benchmark

INSCOMMITN – The total number of instructions committed during the execu-
tion of the benchmark after the application of the combined algorithm

B PWR OLD – The average power per executed instruction consumed by the
dynamic branch predictor

B PWR IDE – The average power per executed instruction consumed by the dy-
namic predictor under ideal circumstances (i.e. zero)

B PWR NEW – The average power per executed instruction consumed by the
dynamic branch predictor after the application of the combined algorithm

CYCLES – The number of cycles for which the benchmark executed

CYCLESN – The number of cycles for the benchmark executed after the applica-
tion of the combined algorithm

Raw Scalar Data

Page 1

Benchmark SBTOTAL SBHINTED DINSTOT DINSNEW DBPOLD DBPNEW

a2time01 222 60 41549 42139 8081 7319
aifftr01 203 57 4914484 4889046 618784 239710
aifirf01 196 52 69899 68434 11038 8483
aiifft01 193 51 4716593 4942761 594585 251154
basefp01 170 39 57676 57653 10412 7844
bitmnp01 353 70 346365 346744 55428 35771
cacheb01 187 34 224145 222942 31876 13942
canrdr01 237 46 997677 985405 227395 69888
idctrn01 277 45 402930 401975 48438 30168
iirflt01 240 89 61575 61553 10141 8581
matrix01 303 54 2560154 2341943 464366 211186
pntrch01 201 54 231860 229998 52427 19257
puwmod01 255 36 1590409 1570416 365212 108887
rspeed01 168 37 357576 343202 81178 26273
tblook01 186 56 102900 103557 22054 17637
ttsprk01 305 36 677040 669566 153507 49653

1605 495 64372423 64373440 6693144 951694
1871 605 88392767 88390600 12757158 6450502
157 39 107249021 107722658 23831899 7226389
135 27 24060459 23928550 3074971 775380
154 36 56309529 56308682 8762870 5997811

1032 64 11540506 11581303 2601518 773116
1159 143 14067731 14105818 2838471 969862
2197 282 13893181 13935740 3232061 1033761

ospfv2 1018 64 2889122 2895624 823721 137424
1957 248 24732446 24720064 5173931 3347996
1011 61 5075891 5022486 1204430 366426
1402 171 135502 134465 19368 17325

bezier01 145 26 4395358 4375263 481488 204679
dither01 151 28 10802113 10802102 1741737 1237889
rotate01 219 97 4101269 4089950 1053705 354865
text01 340 113 6176652 6152184 1501590 801101
autcor00 143 29 802917 802114 73933 25367
conven00 144 27 484479 484467 78542 58550
fbital00 155 32 964054 964242 145226 72338
fft00 170 39 310996 311422 37637 20116
viterb00 159 29 954995 954934 90636 45818

cjpeg
djpeg
rgbcmy
rgbhpg
rgbyiq
ip_pktcheck
ip_reassembly
nat

qos
routelookup
tcp

Raw Scalar Data

Page 2

PWROLD PWRIDEAL PWRNEW INSCOMMIT INSCOMMITN B_PRW_OLD

15.44 14.3 15.25 41111 41743 0.22
10.72 10.04 10.41 4814678 4814680 0.26
14.06 13.13 13.78 69310 67900 0.21
10.68 10.02 10.31 4618154 4834126 0.26
14.72 13.59 14.29 57200 57200 0.23
11.31 10.39 11.01 340230 340276 0.3
12.14 11.44 11.79 219942 219942 0.23
10.15 8.61 9.26 958477 958477 0.53
11.17 10.36 10.78 401673 400825 0.27
14.57 13.58 14.32 60947 61014 0.2
10.15 8.85 9.48 2554423 2337796 0.48
11.66 10.25 10.79 226803 226363 0.43
10.05 8.61 9.15 1526642 1526642 0.54
10.6 9.16 9.48 344117 333981 0.49
12.3 10.93 11.99 99968 100598 0.36

10.23 8.83 9.42 649657 650289 0.51
10.92 10.21 10.27 64220166 64218532 0.22
10.19 9.42 9.71 87016324 87015471 0.33

9.9 8.56 8.99 103180826 103178575 0.54
9.59 9 9.19 23619293 23620126 0.31
9.33 8.59 9.06 54873160 54872316 0.39

10.21 8.8 9.22 11149713 11150956 0.53
10.72 9.63 10.09 13696229 13697048 0.43
10.43 9.04 9.59 13465421 13464651 0.5
10.95 9.22 9.47 2821506 2821541 0.59
11.9 10.57 11.44 24689707 24689762 0.41

10.18 8.69 9.25 4865802 4865526 0.56
13.84 12.95 13.75 134703 133746 0.21
10.64 10.11 10.42 4330053 4329246 0.2
10.02 8.99 9.69 10629212 10629166 0.4
11.45 10.06 10.37 4005387 4006235 0.42
11.28 9.79 10.68 6056185 6055422 0.48
10.32 9.7 9.83 800604 799751 0.22
10.17 9.32 9.96 478189 478180 0.34
9.99 8.93 9.44 961588 962151 0.41

10.72 10.03 10.43 307089 307144 0.24
10.07 9.47 9.71 950867 950867 0.21

Raw Scalar Data

Page 3

B_PWR_IDE B_PWR_NEW CYCLES CYCLESN

0 0.19 141831 144075
0 0.11 9617038 9600434
0 0.16 201838 198265
0 0.11 9274505 9673491
0 0.16 178560 178600
0 0.2 711215 710705
0 0.1 558050 557053
0 0.18 1709088 1700424
0 0.16 789792 787493
0 0.16 194085 193993
0 0.23 4320228 3919284
0 0.16 478823 476291
0 0.18 2681154 2668109
0 0.18 656327 612656
0 0.28 240665 243343
0 0.18 1188788 1186913
0 0.03 127887158 127737436
0 0.16 158710195 158650852
0 0.18 176082615 176305902
0 0.09 39686269 39601305
0 0.26 90013199 90011228
0 0.17 19779465 19768542
0 0.16 26272257 26262977
0 0.18 25345957 25353866
0 0.11 5222716 5222589
0 0.26 50863537 50856328
0 0.18 8594914 8565831
0 0.19 371947 368460
0 0.09 9797398 9780669
0 0.27 18119440 18115709
0 0.15 9199002 9081073
0 0.28 12119141 12034603
0 0.07 1514188 1512356
0 0.25 848972 848934
0 0.2 1599963 1600948
0 0.13 613064 613154
0 0.09 1672164 1671940

Raw 2Way Issue Data

Page 1

Benchmark SBTOTAL SBHINTED DINSTOT DINSNEW DBPOLD DBPNEW

a2time01 222 60 44504 44962 8849 8042
aifftr01 203 57 5205583 5260432 709833 261611
aifirf01 196 52 72944 72854 11833 9447
aiifft01 193 51 5009191 5019180 686495 245058
basefp01 170 39 60652 60720 11208 8643
bitmnp01 353 70 370420 369364 60674 37541
cacheb01 187 34 239070 238298 36590 17397
canrdr01 237 46 1122125 1104622 268432 96581
idctrn01 277 45 409551 408112 50249 31729
iirflt01 240 89 65331 64285 10938 9274
matrix01 303 54 2371357 2371196 452385 222633
pntrch01 201 54 248200 248526 57897 23381
puwmod01 255 36 1790167 1771864 431212 153336
rspeed01 168 37 401152 399597 95399 38381
tblook01 186 56 114006 113313 25555 19378
ttsprk01 305 36 761984 759302 181275 69273

1605 499 66469032 66321206 7343149 1005976
1871 607 93190794 92873152 14192112 6897377
157 39 119966124 120706098 27856479 7556304
135 27 25493493 25461427 3515694 1081716
154 36 60507041 60212497 10097001 6415242

1032 64 12797880 12953787 2994032 925694
1159 142 15355667 15499895 3239834 991001
2197 283 15297396 15363066 3651347 1041810

ospfv2 1018 64 3194773 3117231 907792 148083
1957 249 26490998 26486538 6187306 2732128
1011 60 5738990 5721649 1422391 578652
1402 170 140520 139592 20764 18472

bezier01 145 26 4698619 4689751 571529 250672
dither01 151 28 11556774 11538718 1911041 1343649
rotate01 219 97 4694874 4637594 1271293 377792
text01 340 113 6778734 6697199 1683939 906053
autcor00 143 29 1112918 1111536 104138 55014
conven00 144 27 506602 504220 85285 61002
fbital00 155 32 975966 974604 148204 74160
fft00 170 39 409454 409385 52102 31325
viterb00 159 29 991754 990498 94455 46651

cjpeg
djpeg
rgbcmy
rgbhpg
rgbyiq
ip_pktcheck
ip_reassembly
nat

qos
routelookup
tcp

Raw 2Way Issue Data

Page 2

PWROLD PWRIDEAL PWRNEW INSCOMMIT INSCOMMITN B_PRW_OLD

15.54 14.59 15.37 41111 41743 0.45
11.02 10.39 10.59 4814733 4855993 0.67
14.39 13.58 14.14 68519 68473 0.46
10.98 10.36 10.55 4618141 4616553 0.67
14.92 14 14.59 57251 57249 0.47
11.63 10.87 11.33 340175 339391 0.68
11.94 11.26 11.51 219942 219942 0.65
9.68 8.36 8.67 958477 948313 1.21

11.69 10.98 11.22 401710 400715 0.63
14.76 13.97 14.61 61001 60389 0.42
9.62 8.55 9.03 2337752 2337697 1.33

11.59 10.41 10.78 225082 226308 1
9.58 8.36 8.61 1526642 1516506 1.23
10.1 8.9 9.26 344117 344117 1.11
11.9 10.77 11.58 99968 99966 0.79
9.78 8.59 8.94 649657 650289 1.16

10.84 10.22 10.25 64219226 64220119 0.6
10.41 9.7 9.95 87016368 87017396 0.82
9.54 8.39 8.62 103180019 103180817 1.24
9.57 9.01 9.11 23620414 23620160 0.78
9.35 8.65 9.04 54873058 54872393 0.9
9.96 8.75 9.07 11150829 11236010 1.24

11.01 10.05 10.28 13696200 13782323 0.99
10.23 9.05 9.34 13465586 13463832 1.14
10.93 9.4 9.52 2907406 2821385 1.43
13.33 12.06 12.54 24689703 24689714 0.91
9.84 8.57 9.02 4866420 4865521 1.27

14.37 13.65 14.27 133700 133168 0.49
10.01 9.5 9.71 4329290 4327551 0.56
9.81 8.93 9.51 10630031 10629150 0.99
9.76 8.54 8.79 4006281 4006281 1.27

11.04 9.81 10.43 6056241 6055465 1.13
10.82 10.29 10.49 1098257 1097120 0.48
10.2 9.45 9.97 478143 477235 0.8

10.33 9.39 9.84 962087 961353 0.9
10.92 10.31 10.65 388473 388507 0.57
10.1 9.61 9.79 950920 950922 0.53

Raw 2Way Issue Data

Page 3

B_PWR_IDE B_PWR_NEW CYCLES CYCLESN

0 0.39 71376 71915
0 0.27 4041740 4043002
0 0.35 95840 95784
0 0.27 3880251 3843471
0 0.34 89186 89331
0 0.44 329698 326860
0 0.3 211971 209992
0 0.46 823887 783612
0 0.38 342448 340381
0 0.34 96451 95062
0 0.62 1500413 1489456
0 0.39 218762 217285
0 0.46 1292703 1244917
0 0.45 318157 312766
0 0.6 119171 118281
0 0.45 577815 567870
0 0.07 49730502 49349504
0 0.39 67477369 66895964
0 0.4 83840665 82584280
0 0.24 17237911 17087620
0 0.58 41926883 41442500
0 0.45 9224348 9148293
0 0.36 12388318 12260740
0 0.39 11899119 11700035
0 0.28 2304865 2207585
0 0.42 26467601 26446974
0 0.53 4137572 4067355
0 0.44 165978 164500
0 0.26 3943089 3911980
0 0.67 7577970 7550564
0 0.46 3259254 3136415
0 0.67 5424935 5234339
0 0.24 965463 963419
0 0.58 376917 373948
0 0.44 732553 731000
0 0.36 352025 350015
0 0.22 686459 681172

Raw 16Way Issue Data

Page 1

Benchmark SBTOTAL SBHINTED DINSTOT DINSNEW DBPOLD DBPNEW

a2time01 222 63 51950 51398 11502 10254
aifftr01 203 56 6078136 6013854 1227218 741816
aifirf01 196 52 82162 81690 15302 12661
aiifft01 193 50 5874591 5775718 1203039 671495
basefp01 170 39 68481 68601 14110 11196
bitmnp01 353 69 429717 422865 89937 61351
cacheb01 187 33 279277 277123 59855 38598
canrdr01 237 45 1467631 1434412 488506 288365
idctrn01 277 47 426948 424409 57104 36668
iirflt01 240 90 74280 73263 14007 12280
matrix01 303 54 2466673 2466651 505432 248314
pntrch01 201 53 296619 292201 86611 48075
puwmod01 255 35 2345199 2292475 788757 461872
rspeed01 168 35 521206 525444 170707 133059
tblook01 186 56 143196 144060 41959 34516
ttsprk01 305 35 1004257 982956 333788 200061
cjpeg 1605 497 69674771 68877679 9423886 1548797
djpeg 1871 606 107151269 107413955 22766481 13830107
rgbcmy 157 38 155392686 150210104 50451231 26696394
rgbhpg 135 26 29866460 29556962 6263206 3417625
rgbyiq 154 37 73870147 72580408 18457045 10298440
ip_pktcheck 1032 62 16184279 16294369 5167679 3776602
ip_reassembly 1159 143 19150870 18532531 5652637 2878826
nat 2197 282 19807927 18884723 6384975 3260560
ospfv2 1018 63 3712293 3633207 1294763 462790
qos 1957 249 33067877 32715306 10012875 3606394
routelookup 1011 59 7592685 7642162 2629466 1858342
tcp 1402 170 153034 151569 25471 22918
bezier01 145 25 5310723 5244846 964004 588293
dither01 151 28 13021238 13027801 2615539 1842582
rotate01 219 97 5467524 5227597 2020320 589700
text01 340 113 8147847 7931551 2498038 1548998
autcor00 143 28 673230 670708 63472 13612
conven00 144 29 623569 624730 135826 84649
fbital00 155 31 996704 995188 159707 83901
fft00 170 38 543715 539226 85544 62174
viterb00 159 29 1049414 1048032 108734 55190

Raw 16Way Issue Data

Page 2

PWROLD PWRIDEAL PWRNEW INSCOMMIT INSCOMMITN B_PRW_OLD

27.29 26.48 27.18 41093 41093 0.65
13.72 13.07 13.36 4814542 4812697 1.5
23.23 22.54 23.24 68519 68473 0.71
13.6 12.95 13.51 4616073 4618082 1.51

25.89 25.09 25.51 57251 57251 0.69
15.82 15.09 15.76 340285 339345 1.22
15.81 15.11 15.48 219942 219942 1.28
12.79 11.67 12.17 958477 958477 2.33
15.68 15.03 15.42 401655 400825 1.12
25.3 24.62 25.28 60947 61014 0.61

11.95 10.93 11.42 2337645 2337807 2.75
15.73 14.59 15.03 226258 225450 1.85
12.61 11.36 11.96 1526010 1526010 2.39
13.7 12.58 13.28 344117 344117 2.08

17.68 16.64 17.35 99968 99966 1.36
13.08 11.99 12.48 649657 649657 2.23
13.58 12.98 13.02 64219272 64220175 1.32
13.08 12.36 12.57 87015476 87016370 1.75
12.35 11.26 12.2 103180254 103179978 2.45
12.7 12.09 12.25 23621032 23620261 1.56

12.37 11.64 11.92 54872316 54870855 1.78
12.85 11.71 12.29 11149935 11167586 2.41
14.33 13.36 14.12 13696275 13695441 2.11
13.46 12.36 13.35 13483125 13464733 2.21
13.4 12.07 12.64 2822279 2821558 2.69

18.19 17.02 16.65 24689714 24689705 1.63
12.71 11.54 12.11 4865641 4866420 2.47
19.91 19.22 19.88 133174 133220 0.93
14.02 13.47 13.67 4329235 4328560 1.11

13 12.18 12.67 10630029 10630031 1.79
12.64 11.46 11.69 4006281 4006281 2.5
14.03 12.93 13.29 6055623 6055388 2.11
15.51 15.05 15.09 655777 654562 0.74
13.86 13.18 13.46 478134 477295 1.4
14.82 14.02 14.38 962149 961353 1.32
14.88 14.3 14.84 477936 477963 1.07
13.25 12.8 12.95 950920 950858 1.01

Raw 16Way Issue Data

Page 3

B_PWR_IDE B_PWR_NEW CYCLES CYCLESN

0 0.57 55261 54596
0 0.87 2417727 2355222
0 0.55 68733 69054
0 0.88 2326835 2300476
0 0.5 66869 66972
0 0.87 225774 223328
0 0.78 138162 135655
0 1.33 589700 559954
0 0.68 202737 201952
0 0.51 72203 71651
0 1.27 765675 761706
0 0.96 143834 139660
0 1.35 923119 873365
0 1.56 230276 225447
0 1.07 88633 87825
0 1.29 417399 397498
0 0.19 25576017 25088122
0 0.94 39925075 39134499
0 1.36 58508341 57250211
0 0.78 11584552 11226897
0 0.92 29324101 28297600
0 1.7 6315263 6135972
0 1.17 7742677 7494768
0 1.21 8283728 8021543
0 0.95 1450531 1421548
0 0.54 19604771 18596665
0 1.65 2981327 2911761
0 0.87 94207 92995
0 0.67 2594533 2519751
0 1.21 4976926 4941027
0 0.82 2077134 1928066
0 1.41 3501841 3255286
0 0.11 361618 360437
0 0.86 270047 267394
0 0.66 512098 510503
0 0.81 265065 263993
0 0.41 382439 380818

Raw Fixed Bias Data

Page 1

Benchmark SBTOTAL SBHINTED DINSTOT DINSNEW DBPOLD DBPNEW

a2time01 222 58 51987 51624 11502 10395
aifftr01 203 59 6073211 6245699 1225405 684607
aifirf01 196 51 82162 81906 15302 12592
aiifft01 193 52 5875297 6049734 1203191 675325
basefp01 170 37 68481 68403 14110 11327
bitmnp01 353 75 429717 435002 89937 60639
cacheb01 187 32 279277 284874 59855 36837
canrdr01 237 41 1467631 1514003 488506 269682
idctrn01 277 71 426874 439042 57093 19883
iirflt01 240 75 72572 71456 13420 11834
matrix01 303 55 2466752 2548626 505438 128599
pntrch01 201 54 296688 303483 86647 44328
puwmod01 255 34 2345977 2438691 788898 434596
rspeed01 168 34 521206 527393 170707 94866
tblook01 186 53 143196 146852 41959 27618
ttsprk01 305 34 1004257 1042464 333788 189430

1605 452 69676078 69530480 9424234 1964536
1871 563 107152476 108802371 22766756 9783290
157 33 155393345 161372796 50451354 27629126
135 25 29865255 30415643 6262914 3138967
154 32 73871313 75318239 18457381 9418021

1032 60 16185208 16784198 5167891 2742547
1159 132 19151811 19532505 5652789 2984282
2197 278 19785458 20122156 6381108 3316697

ospfv2 1018 68 3712302 3835241 1294770 465370
1957 235 33067860 30214607 10012858 6169910
1011 59 7592663 7846541 2629433 1381707
1402 145 153213 152608 25531 23149

bezier01 145 24 5310737 5390270 964001 563258
dither01 151 30 13020067 13312745 2615212 988126
rotate01 219 96 5466390 5385007 2020010 550375
text01 340 92 8146411 8173931 2497653 1627628
autcor00 143 27 742308 740316 72412 22673
conven00 144 27 623582 633740 135826 76292
fbital00 155 33 995511 1062465 159395 20890
fft00 170 39 619933 632805 93407 65893
viterb00 159 30 1049406 1048519 108743 53815

cjpeg
djpeg
rgbcmy
rgbhpg
rgbyiq
ip_pktcheck
ip_reassembly
nat

qos
routelookup
tcp

Raw Fixed Bias Data

Page 2

PWROLD PWRIDEAL PWRNEW INSCOMMIT INSCOMMITN B_PRW_OLD

27.27 26.46 27.13 41111 41111 0.64
13.68 13.03 13.3 4815140 4814568 1.5
23.22 22.49 23.16 68519 68473 0.71
13.6 12.95 13.22 4616717 4618061 1.51

25.89 25.09 25.56 57251 57249 0.69
15.82 15.09 15.52 340285 339345 1.22
15.81 15.11 15.44 219942 219942 1.28
12.79 11.67 12.04 958477 948313 2.33
15.67 15.02 15.23 401545 400715 1.12
25.41 24.74 25.4 59546 59605 0.61
11.95 10.93 11.44 2337755 2337755 2.75
15.74 14.59 14.95 226320 225404 1.85
12.62 11.49 12.06 1526642 1526642 2.39
13.7 12.01 12.57 344117 333981 2.08

17.68 16.64 17.17 99968 99966 1.36
13.08 11.98 12.56 649657 650289 2.23
13.58 12.98 13 64220175 64219454 1.32
13.08 12.36 12.51 87016370 87015583 1.75
12.35 11.26 11.82 103180817 103180817 2.45
12.7 12.09 12.26 23619888 23620361 1.56

12.37 11.64 11.94 54873167 54872549 1.78
12.85 11.71 12.17 11150784 11150743 2.41
14.33 13.36 13.69 13697107 13695700 2.11
13.45 12.36 12.88 13463657 13464637 2.21
13.4 12.07 12.33 2822277 2821506 2.69

18.19 17.02 17.1 24689661 24689760 1.63
12.71 11.54 12.06 4865555 4866420 2.47
19.89 19.22 19.85 133174 133168 0.93
14.02 13.47 13.67 4329290 4328565 1.11

13 12.18 12.43 10629212 10629349 1.79
12.64 11.46 11.75 4005502 4006226 2.5
14.03 12.93 13.43 6054506 6056131 2.11
15.31 14.84 14.89 719886 718022 0.77
13.87 13.18 13.43 478189 478079 1.4
14.83 14.02 13.77 961298 961312 1.32
14.67 14.09 14.41 551613 551702 1.07
13.25 12.8 12.93 950865 950867 1.01

Raw Fixed Bias Data

Page 3

B_PWR_IDE B_PWR_NEW CYCLES CYCLESN

0 0.57 55221 54680
0 0.7 2414915 2463884
0 0.54 68733 68970
0 0.71 2327194 2377281
0 0.51 66869 66921
0 0.77 225774 227014
0 0.68 138162 139435
0 1.08 589700 585212
0 0.3 202509 212410
0 0.51 70859 70226
0 0.56 765865 829970
0 0.78 143961 145386
0 1.07 924014 943364
0 1.04 230276 215954
0 0.79 88633 89539
0 1.04 417399 426484
0 0.21 25576614 25293250
0 0.58 39925577 39948190
0 1.09 58508620 59990200
0 0.63 11583505 11609890
0 0.74 29324550 29418012
0 1.05 6316034 6441633
0 0.98 7743195 7693337
0 0.99 8270567 8277239
0 0.74 1450556 1474343
0 1.09 19604744 16693717
0 1.06 2981862 3036705
0 0.85 94244 93633
0 0.59 2594646 2590469
0 0.53 4976620 5118839
0 0.68 2076138 2008814
0 1.39 3501202 3412484
0 0.19 392452 390952
0 0.73 270105 271033
0 0.11 511736 539756
0 0.72 297403 303331
0 0.4 382376 380374

Raw BTB Resize Data

Page 1

Benchmark SBTOTAL SBHINTED DINSTOT DINSNEW DBPOLD DBPNEW

a2time01 222 63 44962 44952 8042 8044
aifftr01 203 57 5260432 5192266 261611 304767
aifirf01 196 52 72854 72860 9447 9436
aiifft01 193 51 5019180 5019940 245058 245211
basefp01 170 39 60720 60736 8643 8638
bitmnp01 353 70 369364 369332 37541 37537
cacheb01 187 34 238298 238260 17397 17364
canrdr01 237 46 1104622 1115618 96581 98645
idctrn01 277 46 408112 427313 31729 41136
iirflt01 240 92 64285 63302 9274 9038
matrix01 303 54 2371196 2371292 222633 222642
pntrch01 201 54 248526 247538 23381 23186
puwmod01 255 36 1771864 1771852 153336 153333
rspeed01 168 37 399597 399598 38381 38372
tblook01 186 56 113313 114011 19378 19494
ttsprk01 305 36 759302 759298 69273 69260

1605 500 66321206 66321566 1005976 1005963
1871 607 92873152 92872321 6897377 6897209
157 39 120706098 120705181 7556304 7556111
135 27 25461427 25462324 1081716 1081926
154 36 60212497 60213307 6415242 6415423

1032 64 12953787 12980122 925694 928461
1159 142 15499895 15526260 991001 993764
2197 283 15363066 15364002 1041810 1041975

ospfv2 1018 64 3117231 3117379 148083 148109
1957 249 26486538 26487781 2732128 2732123
1011 60 5721649 5721546 578652 578636
1402 170 139592 139582 18472 18455

bezier01 145 26 4689751 4689763 250672 250667
dither01 151 28 11538718 11538879 1343649 1343639
rotate01 219 97 4637594 4637534 377792 377772
text01 340 113 6697199 6696832 906053 906026
autcor00 143 28 1111536 1245699 55014 69312
conven00 144 27 504220 504278 61002 61001
fbital00 155 32 974604 974558 74160 74147
fft00 170 39 409385 602340 31325 51892
viterb00 159 29 990498 990450 46651 46639

cjpeg
djpeg
rgbcmy
rgbhpg
rgbyiq
ip_pktcheck
ip_reassembly
nat

qos
routelookup
tcp

Raw BTB Resize Data

Page 2

PWROLD PWRIDEAL PWRNEW INSCOMMIT INSCOMMITN B_PRW_OLD

15.37 14.56 15.28 41743 41725 0.39
10.59 10.41 10.62 4855993 4812097 0.27
14.14 13.57 14.08 68473 68473 0.35
10.55 10.35 10.51 4616553 4617358 0.27
14.59 13.98 14.51 57249 57249 0.34
11.33 10.86 11.27 339391 339331 0.44
11.51 11.26 11.49 219942 219942 0.3
8.67 8.35 8.74 948313 958477 0.46

11.22 10.96 11.24 400715 408178 0.38
14.61 14.04 14.6 60389 59605 0.34
9.03 8.55 8.99 2337697 2337807 0.62

10.78 10.4 10.74 226308 225358 0.39
8.61 8.35 8.57 1516506 1516506 0.46
9.26 8.61 9.22 344117 344117 0.45

11.58 10.75 11.52 99966 100598 0.6
8.94 8.58 8.89 650289 650289 0.45

10.25 10.22 10.25 64220119 64220217 0.07
9.95 9.7 9.92 87017396 87016315 0.39
8.62 8.38 8.58 103180817 103179973 0.4
9.11 9.01 9.09 23620160 23620940 0.24
9.04 8.65 9 54872393 54873114 0.58
9.07 8.75 9.03 11236010 11261933 0.45

10.28 10.04 10.24 13782323 13808246 0.36
9.34 9.04 9.29 13463832 13464767 0.39
9.52 9.4 9.49 2821385 2821546 0.28

12.54 12.05 12.48 24689714 24689760 0.42
9.02 8.56 8.96 4865521 4865457 0.53

14.27 13.64 14.21 133168 133168 0.44
9.71 9.48 9.67 4327551 4327551 0.26
9.51 8.93 9.46 10629150 10629304 0.67
8.79 8.53 8.76 4006281 4006217 0.46

10.43 9.8 10.36 6055465 6055040 0.67
10.49 10.25 10.46 1097120 1227511 0.24
9.97 9.45 9.93 477235 477290 0.58
9.84 9.39 9.79 961353 961298 0.44

10.65 10.12 10.51 388507 576932 0.36
9.79 9.61 9.78 950922 950858 0.22

Raw BTB Resize Data

Page 3

B_PWR_IDE B_PWR_NEW CYCLES CYCLESN

0 0.36 71915 72033
0 0.27 4043002 3999929
0 0.32 95784 95834
0 0.24 3843471 3844466
0 0.31 89331 89405
0 0.4 326860 326718
0 0.27 209992 210035
0 0.41 783612 805464
0 0.41 340381 363007
0 0.31 95062 94153
0 0.56 1489456 1489842
0 0.36 217285 216537
0 0.42 1244917 1244916
0 0.41 312766 312843
0 0.54 118281 119422
0 0.41 567870 567927
0 0.07 49349504 49350358
0 0.35 66895964 66895749
0 0.36 82584280 82583827
0 0.22 17087620 17088202
0 0.53 41442500 41443168
0 0.41 9148293 9169065
0 0.32 12260740 12281235
0 0.35 11700035 11701031
0 0.26 2207585 2207309
0 0.38 26446974 26449816
0 0.48 4067355 4067375
0 0.4 164500 164637
0 0.24 3911980 3912047
0 0.61 7550564 7550833
0 0.42 3136415 3136278
0 0.61 5234339 5233534
0 0.25 963419 1076183
0 0.53 373948 374065
0 0.4 731000 730982
0 0.4 350015 495221
0 0.2 681172 681155

