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Abstract 

Accurate classification by minimizing the error on test samples is the main 
goal in pattern classification. Combinatorial optimization is a well-known 
method for solving minimization problems, however, only a few examples of 
classifiers axe described in the literature where combinatorial optimization is 
used in pattern classification. Recently, there has been a growing interest 
in combining classifiers and improving the consensus of results for a greater 
accuracy. In the light of the "No Ree Lunch Theorems", we analyse the combi- 
nation of simulated annealing, a powerful combinatorial optimization method 
that produces high quality results, with the classical perceptron algorithm. 
This combination is called LSA machine. Our analysis aims at finding para- 
digms for problem-dependent parameter settings that ensure high classifica, 
tion results. Our computational experiments on a large number of benchmark 

problems lead to results that either outperform or axe at least competitive to 
results published in the literature. Apart from paxameter settings, our analy- 
sis focuses on a difficult problem in computation theory, namely the network 
complexity problem. The depth vs size problem of neural networks is one of 
the hardest problems in theoretical computing, with very little progress over 
the past decades. In order to investigate this problem, we introduce a new 
recursive learning method for training hidden layers in constant depth circuits. 
Our findings make contributions to a) the field of Machine Learning, as the 

proposed method is applicable in training feedforward neural networks, and to 
b) the field of circuit complexity by proposing an upper bound for the number 
of hidden units sufficient to achieve a high classification rate. One of the ma- 
jor findings of our research is that the size of the network can be bounded by 

the input size of the problem and an approximate upper bound of 8- V12-n-/n 
threshold gates as being sufficient for a small error rate, where n := 1091SLI 

and SL is the training set. 
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Chapter I 

Introduction 

Pattern classification is the process of inferring meaning (or else, assigning 
to classes) from observations, which axe quantified by measurements called 
features or att7ibutes, and the problem related with this process is called the 

classification or the decision problenL Since the foundation of artificW intelli- 

gence, pattern classification became an important field because of the challenge 
to mimic human recognition behaviour. The interest in pattern classification 
has been enormously increased and greatly appreciated, as humans recognized 
their limitations on making decisions when feature and domain complexity are 
increased. Pattern classification is now an excited field in computer science 

with ongoing intensive research, which is expected to continue for many years, 

as our ability to collect and store data grows with the explosion of technology. 

1.1 Pattern Classification Essentials 

Designing a pattern classification system is establishing a mapping from the 

measurement space into the space of classes. In a classification system one 

needs a function that rules the pattern. However, this function is never known 

in practice, and therefore one tries to approximately create such a function 

from sets of training samples, i. e. the cases drawn from the pattern source, 

and with an optimization criterion that adjusts the mapping of the measure- 

ments into the space of meanings in order to come closer to the true meaning. 
This learning from examples approach, which is the most distinguished fea- 

ture of the Machine Learning field, enables the classification system to extract 
knowledge from the patterns. In pattern classification we design some kind 

of generic mapping containing a number of free paxameters, which maps the 

observed measurement vector into the most probable meaning. With an opti- 

mization criterion we adjust the mapping to come as close as possible to the 

true meaning. 

15 



16 CHAPTER 1. INTRODUCTION 

Neural networks from the early years have been widely used for pattern 
classification and consequently can be viewed as pattern classification devices. 
A wide variety of other approaches exists for undertaking the classification 
task. Two large classes of such other methods can be identified in the lit- 

erature: statistical approaches and Machine Learning approaches. Statistical 

approaches focus on probabilities assigned to cases with respect to each of the 

classes. In the statistical pattern classification approach, all one needs are the 

probability functions ruling the pattern source. However, these statistical laws 

axe never known but must be approximately reconstructed from sets of train- 
ing samples drawn from the pattern source. Bayes classifiers, support vector 
machines are well known statistical approaches. Machine learning approaches 
like decision trees, fuzzy and rule-based classifiers try to generate classification 
expressions by learning a classification task from a series of examples. 

Neural networks combine features of statistical techniques with Machine 
Learning methods. Neural networks provide a potential computing architec- 
ture with many useful applications, which have been designed, built and com- 
mercialised and much research continues in this field. The neural network 
approach has its origins in efforts to produce a computer model for the infor- 

mation processing that simulates the human nervous system. Neural networks 
can be viewed as a massively parallel computational device, composed of a 
large number of computational units, neurons, which are connected through 
interconnections with variable strengths, weights. Weights are trained and the 
learned information is stored in weights. Most neural networks perform a type 

of error minimization during the learning phase. The computing architecture 
and the learning philosophy behind it make neural networks very well suited 
for pattern classification. A number of complexity issues are in the focus of re- 
search on neural network classifiers for many years, like network architectures, 
connectivity topology, sample complexity and learning algorithm complexity. 
These are some of the parameters related to the performance of the neural 
classifier. 

The most time-concerned process in pattern classification and in neural 
networks is the learning process ruled by learning algorithms. Supervised 

and unsupervised learning are two learning methods that rely on the help 

of a supervisor that knows the desired class of the pattern and thus is used 
for correcting the classifier's output class (supervised learning case); or the 
classifier tries to infers from the existing patterns without any supervisor's 
help. In supervised learning, the minimization procedure is closely related to 
the learning procedure of the network, which uses an iterative procedure of 
modifying the network weights and is guided by the learning algorithm that 
tries to correctly classify a pattern or some set of patterns. 
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The perceptron algorithm is such an iterative procedure that can find a 
solution on linearly seperable problems. Limitations of the perceptron algo- 
rithm apply to non-linearly seperable classes like the XOR problem. Gradient 
descent is another iterative procedure for minimizing the error by calculating 
the difference between desired and actual outputs by using error vectors . The 
learning method for a number of presented patterns follows the gradient on the 

average patterns by changing the weights by an amount proportional to the 

estimated error multiplied by the input weight. A generalization of the gradi- 
ent descent procedure to multilayer feedforward networks is widely known as 
the backpropagation method. Multilayer networks and backpropagation have 

been used as methods to overcome the perceptron limitations for the XOR 

problem. The main consideration on the above leaxning methods is to take 

caxe of the degree of weight changes. If the weight changes axe very large, 

then overcorrection occurs where the optimum will be overpassed, producing 

oscillations around it. If the changes are very small, then the convergence is 

too slow. We have seen limitations of the perceptron learning algorithm, but 

the gradient descent methods including backpropagation axe not the ultimate 
learning methods for minimizing the error. The main two problems axe: i) 

the methods are applicable only when the error can be defined strictly as the 
length of an error vector, and ii) the leaxning method can be easily trapped 

to local minima. Anderson [24] refers also to other problems in gradient de- 

scent related to the fact that the method might be extremely slow in time with 
thousand and ten thousands of learning trials and it goes up rapidly in the size 

of the network. The error that we want to minimise in pattern classification 
is the classification error, i. e. the number of misclassified samples on training 
data as well as on unseen test samples. Minimizing the misclassification is 

equivalent to obtaining maximum generalization performance of the network. 
Therefore, a classification problem is also an optimization problerr4 where we 

seek for the maximum classification rate or the minimum misclassification. 

1.2 Combinatorial Optimization Essentials 

Optimization is the attempt to find the maximum or minimum of a certain 
function, called the objective hnction, which can be defined on some domain. 

The domain is often specified by a set of constraints, equalities or inequalities 

that the elements of the domain have to satisfy. In combinatorial optimization 

problems, the objective is to find the best or optimal solution among a finite 

or countable infinite number of alternative solutions [281]. Combinatorial op- 
timization has been a research field for decades with the traveller salesman 

problem (TSP) being the most classical and representative problem of the 
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field. The TSP deals with finding the best journey for the salesman between 

a number of cities that can be visited only once, achieving the minimum cost. 
The problem is a very hard problem to solve due to the lack of an enumer- 
ation of all possible solutions and belongs to a special class of problems that 
describe the hardness of the problem, called NP-complete class. NP-complete 

problems have always the quest for designing efficient algorithms to cope with 
the hardness of the problem. A number of algorithms exist in the literature 
through this direction. Well known combinatorial optimization algorithms like 

genetic algorithms, simulated annealing, tabu search and Boltzmann machines 
have been inspired by nature and have been proved to be efficient algorithms 
for solving combinatorial optimization problems. Such problems cannot be 

solved in reasonable amount of time and only approximations of optimum so- 
lutions can be found. Such approximation algorithms are described in Section 
3.4.1. Over the past decades, our ability to solve large combinatorial optimiza- 
tion problems has been dramatically improved due to the advent of powerful 
computer systems. 

Simulated annealing is among the approximation algorithms that can find 

good solutions in reasonable amount of time. Although simulated anneal- 
ing has been studied in combinatorial optimization since the early eighties 
[73,2131, the research on this method and its applications have been boosted 
by new findings and new application areas: Simulated annealing-based aIgo- 
rithms and associated techniques for landscape analysis, in particular variants 
based on inhomogeneous Markov chains, have been used to investigate prob- 
lems from Computational Biology; cf. [150,387] and the literature therein. 
Furthermore, recent advances in genetic algorithms research [3261 have un- 
derpinned the importance of inhomogeneous Markov chains in the broader 
context of general local search methods: L. M. Schmitt proved that in order 
to ensure the convergence of genetic algorithms to optimum solutions, simu- 
lated annealing-based selection has to be employed in one way or another (see 
Section 10 in [3261 for a summary of results). 

Classification problems can be considered as a special class of combinato- 
rial optimization problems [2). In pattern classification, the requirement that 
the space of measurements maps into the correct classes determines an opti- 
mization problem, where the optimum among all conceivable mappings is one 
that in terms of maximization guarantees the maximum classification rate, and 
in terms of minimization guarantees the minimum error rate in the number of 
misclassifled patterns, i. e. in the number of wrong mappings of the measure- 
ment space into the set of classes. Minimizing the error rate is closely related 
to approximating the function that rules the pattern and also to establishing 
an optimal weight configuration of the classification system that will maximize 
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the performance of the classification rate. Establishing an optimal weight or 
network configuration for the classifier and minimizing the error rate can be 

related to a combinatorial optimization problem that in most cases is hard 

and cannot be searched for optimal solution in efficient time. Thus, usually 
only approximations of solutions can be achieved. 

Since searching the solution space for an optimum weight or network config- 
uration is a minimization problem, combinatorial optimization algorithms can 
be applied to such tasks. The relation between neural networks and combina, 
toriaJ optimization can be viewed as a two-fold relation with mutual benefits. 

Neural networks have been used for solving combinatoriaJ optimization prob- 
lems by approximating the best configuration that can describe the instance 

of a combinatorial optimization problem, and, on the other hand, combinato- 
rial optimization algorithms can be used for obtaining an appropriate weight 

or network configuration of maximum classification performance. Looi's pa- 

per "Neural Network Methods in Combinatorial Optimization" [245] gives an 

overview of the former relation. Hopfield's and Tank's [184) work was one of 
the first approaches for using network energy niinimization for solving the fa- 

mous hard TSP combinatorial optimization problem (see Section 3.1.2). The 

network they proposed did not find the best solution but has approximated 

good solutions. Boltzmann machines (173] have been used for solving combi- 

natorial optimization problems as well as pattern classification problems (106]. 

1.3 Motivation of this Research 

In pattern classification, on non-seperable problems, finding the best function 
for minimizing the classification error is an NP-complete problem. Blum and 
Rivest [55] proved that even for a very small network to find weight and 
thresholds that learn any given set of training examples is an NP-complete 

problem. Unless P= NP, for any polynomial time training algorithm (see 
3.3) there will be some set of training data on which the training algorithm 
fails to correctly classify the data. H6ffgen and Simon [177] deal with the 

problem of learning a probably almost optimal weight vector for a neuron, 
finding that it is an NP-complete problem. Also finding an optimum network 

configuration for solving combinatorial optimization problems is not an easy 
task. Yannakakis [398] proved that the problem of finding a stable network 
configuration belongs to the categories PLS-complete, P-SPACE complete and 
P-complete problems, which in simple words axe hard to solve problems. Thus, 

establishing an optimal weight configuration of threshold units (in order to 

minimize the error rate) cannot be executed in efficient time and therefore 

only approximations of optimum solutions can be achieved. 
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Combinatorial optimization is an establised method for minimization prob- 
lems. Therefore, it is a promising method for pattern classification, where it 
is vital to minimize the number of misclassified examples. Despite the popu- 
larity of combinatorial optimization algorithms to solve hard problems, they 

rarely have been used in pattern classification (see Section 3.6). An example is 

simulated annealing combined with unsupervised neural networks producing 
the well known Boltzmann machine [173] introduced by Hinton and Sejnowski, 

which implements parallel simulated annealing. Albrecht and Wong [19] in- 
troduced a new learning machine called the LSA Machine, which is based on 
the combination of a specific type of simulated annealing with the perceptron 
algorithm for pattern classification. LSA machine was successfully applied to 
a number of problems and we like to further investigate the search strategies of 
this algorithm with respect to classification accuracy, to learning and conver- 
gence properties and to circuit complexity. The quest for learning algorithms 
that are efficient and capable to search the solution space for minimizing the 
classification error made the selection of good learning algorithms a compet- 
itive arena. However, in the light of the No Free Lunch Theorems (NFLT) 
[391], these learning algorithms cannot be solely viewed as universal classifiers 
and their performance is problem-dependent. Our motivation is to find rules 
for a priori setting the problem dependent parameters of the method based on 
properties of the classification problem for achieving high classification rates. 
Following these rules, a large number of experiments to identify good values 
for the parameters will be considerably limited. 

Research on circuit complexity was motivated by our interest to work on 
larger depths and to investigate whether a small increase in depth obtains 
higher classification rates or at least as good as swallow depths but with con- 
siderably smaller network size. The number of hidden units and hidden layers 
of a network classifier form the circuit complexity problem of the classifier, 
a very hard and unsolved problem in theoretical computer science with only 
slow progress made over the past decades. The relevance of Kolmogorov's 
theorem [219] with the expressive power of depth-two neural networks, and 
the difficulty to find methods and topologies to train units at larger depths 

resulted in slow progress in the past in research on networks of large depth. 
Most researchers rely on the fact that depth-two neural networks are consid- 
ered to be adequate as good classifiers. One of the very few existing works on 
larger depths is Lupanov's work (250], which gives an upper bound on the size 
of depth-four circuits as size <X- V2--n/n. However, factor X remains an 
unknown constant. We are very interested to investigate the circuit complex- 
ity issue, trying to contribute on a very hard problem in computer science. 
We would like to provide a learning method for training units at larger depths 

ID 
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and to find any estimation for the network size required for achieving high 

classification rates. 

1.4 Focus of this Research 

We particularly focus on complexity issues with much effort placed on the 

size and depth complexity of the underlying architecture of the LSA machine. 
The research on larger circuit depths requires that we investigate the perfor- 
mance of our classification method for circuits of depth-two. According to 
NFLT, learning algorithms performance is problem-dependent. This changed 
the view for designing efficient learning algorithms from finding universal clas- 
sifiers to the study of when a specific learning algorithm performs well. Prob- 
lem dependent parameters and fine tuning of them is unavoidable through the 
NFLT. Since the NFLT focuses on finding when our method works best, we 
need to investigate the problem dependent parameters and fine-tuning them. 
Consequently, we like to investigate the performance of our selected method 
on a number of well known, hard datasets, where our edm is to find any rules 
for the problem dependent parameters that can be used as a general guideline 

on applying this method to new datasets. 

Based on the above facts the main research questions of this work that will 
be investigated axe: 

What is the impact of problem dependent parameters on the classifica, 
tion accuracy in the LSA machine? 

Is it possible to formulate paradigms that axe helpful for a priori settings 

of these parameters and thus ensuring a high classification accuracy on 

new datasets? 

How can we train units located in circuit levels at depths larger than 
two? 

What is the impact of circuit complexity on the classification accuracy 

of the LSA machine? 

Does a small increase in circuit depth lead to better classification ac- 
curacy, or does it at least provide approximately the same classification 
accuracy, but with noticeably smaller circuit size compaxed to depth-two 

circuits? 

Is it possible to estimate a priori the size of classification circuits that 

provide a high classification accuracy on hard classification problems? 
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If the paradigms for parameter settings are applied to new datasets, how 
do our experimental results perform if compared to results published in 
the literature? 

In Section 4.9, we describe the methodology used to investigate the above 
research topics. 

1.5 Findings of this Research 

A major finding of this work is an upper bound of 8- %ý2-n/n threshold gates 
as sufficient for a small error rate, where n := logISLI is the number of input 
nodes which depends on the size of existing training samples SL. This is an 
important finding as it contributes to a hard problem in computer science and 
allow us to a priori set the network size. Moreover, this finding is a new view 
in neural network theory that relates the network learning capacity with the 
number of existing training samples. In circuit complexity lower and upper 
bounds have been related to the number of input nodes that represent features 
of the problem, whereas in this work our proposed upper bound is related with 
the size of existing training samples. This means that if more training data 
emerge in a problem then a larger network is required. Consequently, this also 
proves that the number of trained units cannot be constant for all classification 
problems but is problem dependent, which can be related with a No Fme 
Lunch for having constant size of network for all problems. Most researchers 
in the neural network field work with constant numbers of trained units for 
all problems, however, this work demonstrates that the learning capacity of 
a network depends on its available training examples, which should be taken 
into consideration for applications that require the best performance. 

Another important contribution of this work is a new learning algorithm 
for training next depth layers. The idea of the new learning algorithm is 
based on generating new patterns from unseen existing ones based on the 
outcomes of the previous layers. These new generated patterns are then used 
for training the next depth. The new learning approach introduces the concept 
of recursively training next depths to adjust the significance of the training 
quality of the computational units from previous layers. 

This work also demonstrates that this classification method is very com- 
petitive to existing classification methods. Almost all classification results on 
hard datasets are at least as good as the highest reported in the literature or 
even outperform them. 

The results of our research have been presented at conferences [14,15,17, 
229,230,2311 and have been published in part already in scientific journals 
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[16,18,232]. A first response to our work can be found in [215,216]. 

1.6 Thesis Overview 

In Chapter 2, the theory behind pattern classification (Section 2.1) is cov- 
ered, focusing on the neural approach model (Section 2.2.1), the perceptron 
(Section 2.2.6) and threshold circuits (Section 2.2.11), which are key issues in 

our work. Vaxious existing pattern classifiers are presented and discussed with 
learning methods for minimizing the classification error. Complexity issues for 

threshold circuits are then analysed in Section 2.3. Finally the No Free Lunch 

Theory is presented in Section 2.4 with its consequences in Machine Leaxning. 
The theorem is used in Chapter 5 for parameter settings in our classification 
model. 

In Chapter 3, we describe the basics of our combinatorial optimization 

approach. We describe combinatorial optimization, explaining its application 
in vaxious type of problems (Section 3.1), the need for efficient algorithms 
(Section 3.2) for hard problems (Section 3.3), and the existing search meth- 
ods (Section 3.4) focusing on local search. Details of simulated annealing, 

our selected combinatorial optimization method, are followed in Section 3.5. 

A combination of neural networks and simulated annealing called the Boltz- 

mann machine model is also presented in Section 3.5.7. Finally, in Section 

3.6 we review the existing relation of combinatorial optimization and pattern 

classification. 
In Chapter 4, we describe the details of the LSA machine. We present the 

characteristics of the model in Section 4.1. The lines of the learning method, 
which our approach goes along are presented in Section 4.2. Details of the net- 
work topology (Section 4.3), distinguished key features of the LSA machine 
(Section 4.4) and the pseudocode of the algorithm (Section 4.5) provide a close 
inside on the LSA machine. In this Chapter we define also the experimental 
parameters under investigation for their relation with the classification accu- 
racy (Section 4.6, Section 4.7 and Section 4.8). Finally our methodology for 

the rest of the thesis for investigating the research questions of Section 1.4 is 

presented in Section 4.9. 
In Chapter 5, experimental results on investigations of depth-two circuits 

axe presented for the setting of domain dependent parameters, as suggested 
by the NFLT. Our choosen datasets axe described in Section 5.1. Details of 

experimental results for the investigated problem dependent parameters are 

presented from Section 5.2 to Section 5.7. The conclusions from setting a 
priori some of the problem dependent parameters are presented in Section 

5.8. Finally our experimental results on the popular datasets are compared 
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to existing results from the literature in Section 5.9 showing that after fine- 

tunning of the parameters our approach on some of the datasets outperforms 
the best reported classification accuracy results in the literature, whereas in all 
our datasets it achieves classification accuracy at least as good as the reported 
accuracy in the literature. 

In Chapter 6, we investigate the circuit complexity problem for larger 
depth classifiers. The depth vs size problem is presented in Section 6.1. We 
introduce a new learning algorithm for the investigation of the depth vs size 
problem when training larger depths (Section 6.2). We also present the struc- 
ture of depth-4 circuits (Section 6.3), giving details on the methodology used 
for the computation of units in this structure (Section 6.4). We provide the 

experimental results on the circuit complexity problem followed by a detailed 

analysis for estimating the network size (Section 6.5). The general applica, 
bility of the new learning algorithm is tested in Section 6.6. After estimating 
an important parameter as the required network size for high classification 
accuracy and in accordance to results from Section 5.8, we provide rules for 

a priori parameter settings for tackling classification problems by the LSA 

machine (Section 6.7). New datasets described in Section 6.8 are used in Sec- 
tion 6.9 for the evaluation of the suggested a priori parameter setting rules, 
along with a comparison of our experimental results on the new datasets with 
existing results from the literature showing again that our approach achieves 
classification rates that are competitive or outperform reported rates. 

In Chapter 7, we present the conclusions of this work and we suggest 
further research from this point. 



Chapter 2 

Pattern Classification 
Methods 

Systematic research on solving problems in specialized areas such as speech 
recognition, optical character recognition, signal classification and pattern 
recognition in Neurobiology formed the foundation of early pattern classifica- 
tion theory in the seventies. Since then, the explosion of computer hardware, 
the increasing demand on "making decisions" along with the progress in algo- 
rithms that could leaxn, led to an explosion of activity on both the theory of 
pattern classification and the practical applications of it. Now, pattern classi- 
fication is an immensely broad subject with innumerable practical applications 
in every science where decisions axe to be made. 

Pattern classification is vital in robotics for building machines that need to 

solve interface decision problems (automated pilots) based on environmental 
paxameters, where the environmental inputs are collected from sensors and de- 

cisions axe made based on leaxned experience to correctly interpret the inputs. 
Interesting applications come from the field of writing such as recognizing 
handwriting, performing document seaxching and archiving. Pattern classi- 
fication is central to human-computer interface problems such as automated 
speech recognition, optical character recognition, camera images classifica- 
tion and pen-based computing. Face recognition, fingerprint identification, 

automated speech recognition and optical chaxacter recognition axe research 
fields of pattern classification with many applications that need identification 
based on biological data, like security systems, e-commerce and e-banking 
applications. Sciences such as Control Theory, Biology, and Communication 
Technology have provided a large number of classification problems and have 
benefited from pattern classification. In biology, for example, the Human 
Genome Project, a multi-year international effort to sequence entire human 
DNA and to determine the biological functions of the genes, provided an im- 

25 
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portant research field for pattern classification. Well known Biology problems 
for pattern classification are i) the protein folding problem, which seeks for the 

prediction of the structure of a protein given its amino acid sequence, ii) the 

gene recognition problem, which involves the identification of DNA functional 

elements with many databases that have been developed for DNA sequence 
analysis to assist such recognition, and iii) the protein family classification 
problem, which provides an effective method with several desirable impacts on 
the annotation of newly sequenced genes. 

The above are only some of the innumerable applications of pattern clas- 
sification. Such usefulness of pattern classification makes this field extremely 
exciting. 

2.1 Pattern Classification 

Recognizing patterns is a human ability that over the past million of years 
evolved as a sophisticated feature of the brain systems for categorizing pat- 
terns, which has been a crucial task for our survival. It is then natural that 
we want to build machines that are capable of correctly classifying patterns. 

In pattern classification, an object is classified into one of the available 
classes by using features that describe this object. For example, to classify 
an image like Figure 2.1 into one of the letters or numerals, we first need to 
transform the image into features. These features might describe the curvature 
at some points, the number of holes, or the level of greys in subregions of the 
image. These features are usually extracted in a preprocessing step or usually 
are provided in pattern classification as a dataset with known classes called 
the training samples used for training a classifier. The image is then classified 
into one of the classes according to the values assigned to the features. The 
task in pattern classification is to train the classifier on a number of training 
samples and then test the classifier on classifying new data, called the test 
samples, in order to evaluate the generalization ability, i. e. the performance of 
the classifier on new data. 

For the classification task a number of competing classification approaches 
exist in the literature, from statistical models, neural approaches, radial ba- 

sis functions, tree based classifiers and support vector machines. In statisti- 
cal pattern classification patterns either are expressed in probability densities 

or probability parameters that command the classification procedure. Pat- 
tern classification is a natural way to apply neural network, which is the case 
in neural pattern classification. Other pattern classification models focus on 
finding logical rules to describe the patterns or to apply Machine Learning 

approaches [266]. Our focus is on neural classification approaches and, more 
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2.1.1 Classification Process 
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Schiirmarm (332] defines a pattern as a pair Pattern = fv, W] comprising a 
collection of observations v, which in the physical world is any kind of mea, 
surement, and w is a concept or a meaning of v. The concepts w comes from 

a finite set of concepts 0, which includes all possible meanings. 
Pattern classification is the process of inferring meaning from observation 

or measurements. Designing a pattern classification system is equivalent to 

establishing a mapping from the measurement space into the space of poten- 
tial meanings (Figure 2.2). The main approach in pattern classification is 

concerned with hypothesizing the class of provided input data, then applying 
techniques that eliminate classification errors, and finally choosing the class 
that corresponds best according to the classification rules that govern the 

classifier. 
When true classes axe known, various names for the classification proce- 

dure exist in the literature like pattern recognition, discrimination, or super- 

vised learning, whereas, when the classes are inferred from the data, the names 

clustering or unsupervised learning are used [266]. Henery [169] distinguishes 

two meanings of pattern classification: a) the clustering or unsupervised mean- 
ing, where given a set of measurements, the aim is to establish the existence of 
classes or clusters in the data; and b) the supervised meaning, where the aim 
is to establish a rule, whereby one can assign a new measurement to one of 
the known existing classes. Pattern classification and pattern recognition [3581 

axe terms that axe used in the literature almost identical. Other related terms 
that should be distinguished from pattern classification axe image processing, 
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learning in neural network theory axe the perceptron, the multilayer percep- 
tron and radial basis function networks. In pattern classification, the aim 
of supervised learning is to find out to which pattern class of training data 
the classifier should most strongly. After training, unseen data provided to 
the classifier are processed according to the leaxned activations. Supervised 
leaxning will be in the centre of the present work. 

On the other hand, unsupervised learning refers to training data that are 
not accompanied by class labels. Using a probability density function or find- 
ing the centre and width of clusters that represent the data, the aim is to 

model the structure of the measurement space. Example of such neural net- 
works axe the Kohonen network [217] and the Hopfield network [183). In 

pattern classification, the aim of unsupervised learning is to calculate a set 
of class probabilities and determine subsets of the training data as points for 

centres of clusters. Hopfield suggested an important technique for analysing 
neural networks by viewing them as minimizing an energy function. He as- 
sociated the minimization of an energy function E with interconnections in 

a network that uses threshold logic units that changes in time. If wij is the 

connection strength between the threshold logic unit i, j, and if f (i) and f (j) 

axe the activity of the ij neurons, then the energy function E is given by: 

wijf (i)f (j). 

The network evolves in time by a process called asynchronous updating, 
where only one randomly selected neuron at a time is changing its state ac- 
cording to disagreement with the input state. Changes in the state aim at 
decreasing the energy of the network. Hopfield networks have the problem of 
trapping in local minima: if a local minimum is found, then no further changes 
in the energy axe possible. 

2.1.3 The Supervised Learning Model 

The basic supervised learning classification model can be paxtitioned into com- 
ponents. These components axe described in the next subsections. 

Preprocessing of data 

Preprocessing of data involves procedures that simplify the input data without 
losing relevant information, and wherever possible reduces the input noise. All 

real world decision problems involve noise in some way. Apart from the noise 
problem that might be difficult for a classifier to cope with, the problem of 
missing values has no trivial answer. Missing values may occur because for 
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some samples measurements of some feature values were not possible. Dealing 

with the missing values problem is not always easy: we may discard the sam- 
ples with missing values from our training set, but if the number of samples 
is important we may have to find a way to make the best classification using 
only available feature values. Substituting the missing values with zeros, or 
with the average of the values for the rest of the patterns, or with some other 
values may effect the performance quality. 

Data Representation 

This involves the selection of the data type used for the input patterns. A 
feature vector Y describes the properties of a pattern in the N-feature space. 
Classes form regions in the Meature space and our classification task is to 
find boundaries of the class regions called decision bounda7ies. In a two- 
dimensional space the decision boundaries might be a simple straight line, 
whereas for extremely complicated problems the decision boundaries are more 
complex than a straight line. A good data representation enables the classifier 
to naturally reveal the structural relationships among the patterns. Usually 
patterns are presented as binary vectors, or vectors of integers or even vectors 
of real numbers. Data might also be represented by a finite alphabet of at- 
tribute descriptions or characteristics of the features, like colour, shape, smell 
etc. These types of data are usually transformed into vector representations of 
binary, integer or real type. It is not always obvious how the transformation 
should be executed, as the way that we quantify "near" and "far apart" will 
determine the success of our classifier. Sometimes there are types of data that 
are not appropriate for a type of classifiers. For instance non-metric data are 
naturally described in decision trees but they are not appropriate in neural 
classifiers. The process of transforming an existing data representation into 
an equivalent form suitable for a classifier is called encoding. 

Feature Extraction 

Feature extraction is closely related to data reducibility where certain proper- 
ties or features are selected as being more important than others for the classi- 
fication task. Features are used for separating our patterns into classes. There- 
fore, the problem is to partition the feature N-space into subspaces of fewer 
features that perform equally or even better than the N-space features. The 
main questions in feature extraction are: Which features work best? Which 
features are redundant? 

Some features might be important for the class separation, other might 
provide little improvement, other might be too expensive to measure, and 



2.1. PATTERN CLASSIFICATION 31 

others might even degrade the performance. What actually is needed in prac- 
tical applications are quick classifiers with good classification rates. Smaller 

numbers of features hopefully might lead to simpler decision boundaries and 
faster classifiers, as they are considerably easier in training, and less sensitive 
to noise. 

Classifier Parameters 

The design phase involves the selection of an appropriate classification model 
that executes the classification task. The main problem in the design phase 
is the computational complexity issue. Usually, the computational complexity 
of a classifier is related to the algorithmic complexity that scales as a func- 
tion of the number of feature dimensions, the number of patterns, the number 
of classes, and a number of other parameters that all together increase the 
difficulty of the classification problem. Designing a classifier is an optimiza- 
tion procedure of finding the optimum parameters under constraints defined 
by the problem (for example, the number of classes) that implies a realistic 
computational complexity for solving the classification problem. 

Define Mraining and Testing Data 

Leaxning to correctly classifying a pattern might be interesting, however, we 

want from our classifier to accurately sepaxate the different classes from a 

number of samples which can be either the whole set of available samples, 

or a subset of selected samples used for training the classifier called training 

samples. Subsets of selected samples that have not been used during the 

leaxning phase and are kept as unseen patterns for testing the classifier are 

called testing samples. The number of samples used for training the classifier 
to learn the pattern classes and the number of samples that will be used as 
the unseen patterns that will test the classifier's performance is a decision that 

may affect the overall performance of the classifier. 

The Costs 

Usually, decisions taken by the classifier have a cost measurement, which is 

the consequence of the decisions taken by the classifier. Cost minimization of 

misclassified training and testing samples is of major importance in pattern 
classification. 
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Training and Learning 

The process of using existing samples from a specific domain to determine the 

classifier is called training. Training is an important task as it is closely related 
to the performance of the classifier. The most effective method for training 
involves a learning procedure from example patterns. Most of the time is 

spent on the learning task, which is an iterative procedure. Special algorithms 
are designed for learning the training patterns, i. e. reducing the errors on 
the training patterns, and estimating the parameters of the classifier. These 

algorithms are called learning algorithms. Many learning algorithms have 
been designed and developed for many classifiers since the perceptron was 
introduced. 

'Raining protocols in supervised learning determine how the patterns will 
be presented to the classifier and when learning occurs. If patterns are ran- 
domly chosen and used for learning, then stochastic training occurs. If all 
patterns are presented before learning takes place, then batch training occurs. 
Finally, when patterns are presented one each time without storing them then 

online training occurs. Because training is an iterative procedure, we make 
several passes through the training data. The single presentation of all pat- 
terns in the training set during the training phase is called epoch, and we create 
several epochs during training. In some applications, apart of the training and 
testing sets, a validation set of independent samples is kept sepaxate from the 
training data in order to use it as the stopping criterion of the iterative learn- 
ing procedure. Training is stopped when the error on the validation set stops 
decreasing, i. e. when the error on the validation set reaches the first local 

minimum. 
The learning task is to minimize the error on the training examples, which 

is called the training perfmmance of the classifier. As we will see, high training 
performance does not guarantee the maximum performance of a classifier due 
to overlearning, a memorization process where the classifier is over tuned with 
respect to the training examples. Overfitting is a similar term in literature 
describing this process. Unfortunately, there is no universal training method 
that is capable to learn all example patterns of any domain. 

Generalization 

When a classifier takes decisions on new unseen patterns, we say that the 

classifier generalizes, and the process is called generalization. Usually, good 
generalization is provided by simple decision boundaries, whereas complex 
decision boundaries provide poorer generalization. 
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The most common measure of classifier performance is the classification error 
rate, i. e. the percentage of new patterns that have been misclassified in the 
test set. If c is the error rate then the corresponding classification accuracy a 
is: 

a= 1 -C. (2.2) 

Minimization of the error-rate, and consequently maxin-dsation of the clas- 

sification accuracy, is the main goal in pattern classification. Both the error 

rate and the classification performance refer to the generalization performance 

ability, i. e. to use the prior knowledge acquired from the training set to the 

unseen test set. The generalization performance is not always proportional 
to the training performance. Suppose a classifier is learning all cases in the 

training set, which is equivalent with minimization of the error on the mis- 

classified patterns. If the training set consists of noisy data, then the training 

performance has also learned wrong patterns and therefore the generalization 

performance decreases. This problem called the overlearning problem is a 

common trap in classifiers. Our efforts in trying to end up with a model that 

accurately fits the fine details of the training set might or might not cause over- 
lea. rning, according to the type of data (noisy or not) and the specific type of 

classification problems (real world problem or artificial). Usually, we might be 

more satisfied with poorer performance on the training samples if this means 
that our classifier will have better performance on new patterns. However, 

the problems of choosing between complex and simpler decision boundaries 

and predicting how well our model generalizes are central problems in pattern 

classification. An optimal trade-off between good performance on the train- 

ing set and simplicity of the classifier is giving the highest accuracy on new 

patterns (106]. So we need to adjust the complexity of the classifier so that it 

will be not too simple and cannot explain the differences between the classes, 

and that it will be not too complex to give poor generalization performance. 

Unfortunately, in the light of the No Fme Lunch Theomm, there exists no 

general-purpose pattern classification device tackling a wide variety of prob- 
lems. Pattern classification depends very much on the specific type of the 

classification problem. Performance on real world pattern classification prob- 
lems generally requires exploiting domain-specific knowledge. 
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2.1.4 Models of Classifiers 

A number of different classifiers exist in the literature. Bayesian models are 
designed when the probability structure of the underlying classes is perfectly 
known. This is considered an ideal case but rarely occurs in real world prob- 
lems. When the full probability structure is not known, but some general 
form of distribution is known, various models called parametric models try to 

estimate parameters that represent the uncertainty about a probability distri- 

bution. Non-paramehic models are free of any kind of probability density and 

are based only on information provided by training samples alone. Types of 
non-parametric classifiers include nearest neighbour classifiers, where the in- 
formation of "neighbouring" samples is used for classifying a current sample; 
linear and non-linear discriminants like the perceptron and multilayer neural 
networks, where the classifier can be viewed as a machine that computes a 
number of discriminant functions resulting in class partitions; stochastic clas- 
sifiers like Boltzmann machines, tree-based classifiers, rule based classifiers, 
fuzzy classifiers, kernel classifiers, and support vector machines are some but 

not all of the variety of existing classifiers described in the literature. These 

classifiers are using a variety of methods mainly from two different fields a) 
Statistics with statistical and probability methods b) from Machine Learning, 
like fuzzy methods, tree-base methods, neural network methods, and kernel 

methods. These models will be briefly described in the next subsections, while 
neural networks, linear and non-lineax classifiers will be extensively described 
in Section 2.2, as they are in the focus of our work. 

2.1.5 Statistical Models 

Statistical approaches are rather concerned with the probability of a case being 
in each of the classes than simply obtaining its classification. An explicit 
underlying probability model is used for this purpose. The approach is widely 
spread in the statistical community and many probabilistic models have been 

proposed from the early derivatives of Fisher's model [1171 to more complex 
systems. Roughly, if a classifier is used under a probabilistic system then 
it is called a Bayes classifier, where it is assumed that the probability of a 
particular pattern to belong to a given classification is known, or else the 
distribution of the possible inputs is known. 

Bayesian decision theory is the main statistical approach in pattern clas- 
sification. Classification in the statistical approach is based on known prob- 
abilities of various classification decisions and the accompanied costs of such 
decisions. If P(xlwi) is the probability of a sample x being in class wi EQ 
141ji 

I .... WO then the Bayesian decision rule decides: 
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Class = w,,,, if V wi E 11, P(xlw,,, ) > P(xlwi). (2.3) 

and the Bayesian decision rule is used to minimise the probability of error 
P(clx) for a particular x: 

P(Elx) = min[P(xlwl),...., P(xlw,, )]. (2.4) 

As it is very difficult to have the above posterior probabilities, the Dayes 
formula allows to calculate them from the prior known probabilities P(Wj) 
of the wi class, where wi E 11 =fw,, } (also Ej1_1 P(wj) = 1) and the 
class conditional probability density function P(xlwi), which is the probability 
density function for x being in class wi. Then the Bayes formula calculates the 
posterior P(wi Ix) probability of selecting class wi for feature x by the equation: 

P(wilx) = 
P(xlwi)P(wi) (2.5) 

P(X) 

where 

n 
P(x) = EP(XIL, )j)P(U)J). (2.6) 

j=l 
The above equation can be used for features with continuous values, whereas 
for features with discrete values the probability density function can be substi- 
tuted by the corresponding probabilities. A Bayes classifier calculates for any 
input x the corresponding Bayes formula and assigns the class with the maxi- 
mum probability P(wilx). So the structure of a Bayes classifier is determined 
by the prior probabilities P(wj) and the conditional densities P(xlwj). If we 
know the full probability structure of a problem, then we can construct an op- 
timal Bayes decision rule. When the probability structure is known, then the 
Bayesian decision rule can also be used for solving the missing value problem 
(9,313]. Bayesian models have been in the focus of research over many years 
[46,47,106,124,236]. 

The main problem in many pattern classification problems is that the 
conditional densities are not known. When some form of probabilities may 
be assumed, then other models can be used, called parametric models, where 
characteristic probability parameters like means and covariance matrices are 
calculated from training data. Hidden Markov models, introduced by Baum 

and Petrie [42], axe using Bayesian parameter estimations along with transition 
probabilities of being in state st+l at time t+1 from state a at time t. These 

models axe usually used when sequences of decisions are needed as data arrive 
in time (for example recognizing phonemes in speech). It consists of nodes 
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representing hidden states, while interconnected links represent the conditional 
probabilities of a transition between the states. The transition probabilities 
can be learned iteratively from sample sequences and classification proceeds 
by finding the most likely model. 

Even when no information about the underlying densities is known, then 

statistical non-parameftic methods can be used with arbitrary distributions 
for estimating the density functions P(xlwj) from pattern samples. Prob- 

abilistic neural networks [347] are such non-parametric methods, where the 

activation function represent Parzen urindows [282], which are functions for 
density estimations from training samples and localized basis functions such 
as Gaussians. 

2.1.6 Nearest Neighbour Classifiers 

Pattern classification usually makes an assumption about the statistical struc- 
ture of the world. It is often assumed that nearby patterns are likely to have 
the same classification. An exception from this assumption is the XOR prob- 
lem described in Section 2.2.6 and the parity problery; where the allowable 
number of "ones" in a binary vector is even or odd. Figure 2.3 demonstrates 
the parity problem for a 3-bit binary vector 9. Such problems are called com- 
plex and are likely to be hard for a classification model to be learned. 

0 

L) 1 

Figure 2.3: The Parity Separability Problem. 

Cover and Hart [88] introduced in 1967 the "nearest neighbour pattern 
classification". In nearest neighbours classifiers, the assumption that nearby 
state points are likely to have the same classification is used. If a new pattern 
is to be classified, then the distance to existing patterns is calculated and the 
class is assigned to the new pattern to be the same with the class of the nearest 
neighbour, i. e. the closest pattern. A variation, where instead of assigning the 
class of the closest pattern the class of the majority of k-patterns is assigned, is 
called the k-nearest neighbour classifier and was explored by Patrick and Fisher 
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[283]. The weakness of the nearest neighbour classifiers lies in the boundaries 
of the region where uncertainty increases due to noisy patterns or strangely 
shaped classification regions. The algorithm is very slow as more patterns 
axe learned, i. e. more distances between new patterns and old ones have to 
be computed. The latter problem might become less serious if a region is 
approximated by patterns lying somewhere in the middle of the region, called 
the prototype patterns. Unfortunately, how well this method works depends on 
the shape of the region. Detailed reference on nearest neighbour classification 
techniques can be found in [94]. 

2.1.7 Support Vector Machines 

Support vector machines (SVMs) [58] are based on kernel methods and became 
popular as they are particularly competitive in problems where the input data 
axe not giving any suggestion of the importance degree of its feature values. 
The input is mapped by a nonlinear function to a high-dimensional space, 
and the optimal hyperplane is the one that has the largest margin. The 
term support vectors is related to pattern vectors that represent the margin. 
Usually, patterns close to the margins axe hard to classify and contain the 
most information needed for designing the classifier. Due to the close relation 
to finding separation margins, SVM axe also called margin classifiers. 

By using an appropriate mapping to a sufficiently high dimension, we can 
always have a hyperplane separating data from two classes. This method can 
solve the XOR problem as we will also see for multilayer networks in Sec- 
tion 2.2.6, where a similar idea of extending the inputs to a higher dimension 
holds. In SVMs, Gausian or polynomial or other basis functions are chosen to 
be the non-lineax functions that map the input to a higher dimensional space. 
Support vector machine training is based on a modification of the perceptron 
learning algorithm (see Section 2.2.6). In small classification problems, where 
the search through the entire training set is feasible, the worst classified pat- 
terns axe searched for. The modification to the perceptron learning algorithm 
is that these patterns axe used to determine the proportion for updating the 
weights, instead of a randomly selected misclassified pattern as used in per- 
ceptron learning algorithms. For larger problems, the learning method tries 
to find the optimum margin by maximising the smallest possible margin value 
under the constraints that all patterns are well classified and that the weight 
vector is normalized. 

SVMs employ also some multilayer networks ideas. Subsequently it is 

natural that SVMs and multilayer neural networks are competing in hard 

classification problems. The main idea is to construct the optimal separation 
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hyperplane, based on calculating a kernel function of the support vectors and 
applying a linear hyperplane with a maximum separation boundary. The 

architecture of SVMs consists of the support vectors, where the dot products 
of the support vectors and the input pattern is computed, and the result is 

combined with kernel weights to provide the output of the network. 
The idea of SVMs is rather new and first appeared in [58,327]. Extensive 

presentation of SVM methods can be found in [76,78,328,339,344,3711. SVM 

gain their popularity by the advantage that the number of support vectors 
characterizes the complexity of the resulting classifier. Thus, the expected 
upper bound of the error rate linearly depends on the number of support 
vectors only. The approach is also less sensitive to the overfitting problem. 

2.1.8 Fuzzy Classifiers 

Rizzy classification methods employ heuristics to find conjuction rules between 
features operating as discriminant functions. A set of fuzzy rules is defined for 

each class. For classification, the degree of membership of the input sample is 
calculated and the sample is classified into the class associated with the fuzzy 
rule according to the highest degree of membership. Shapes like hyperbox 
regions, ellipsoidal regions, or polyhedral regions are used for approximating 
class regions in fuzzy classifiers. A membership function is associated with 
the fuzzy regions. The problem in fuzzy classifiers is to determine the number 
of fuzzy rules that must be generated to realize sufficient recognition rates 
for both training and testing samples. A common method in fuzzy methods 
is generating iteratively fuzzy rules by using all or part of the training data 
forming regions that include a class until no training data remains to generate 
rules. If the generated regions are overlapping between them, then tuning of 
the fuzzy rules solves the overlapping problem. Tuning of the fuzzy rules is 
achieved by optimization of an objective function related to the improvement 
of the recognition rate. 

Fuzzy methods, originated from the mid-sixties [401], can be used when 
there are few training data or even in absence of training data. Then main 
advantage of fuzzy classification is that knowledge in a syntactic form is trans- 
formed into discriminant functions. Limitations on fuzzy systems are that they 

are slow and inefficient when complex problems or problems with high num- 0 
bers of features are used. Whenever the performance of a fuzzy system is 

unacceptable then traditionally practitioners employ neural methods leading 
to a combination of neuro-fuzzy systems. A reference for fuzzy techniques in 

pattern classification can be found in [2041, whereas Abe [5] gives an in-depth 

analysis of neuro-fuzzy methods in pattern classification. 
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2.1.9 Decision Trees 
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Decision trees axe classifiers where a pattern is classified through a graph of a 
directed tree. At each node, a decision is made arcording to different possible 
values of the features of a pattern, reaching at the final node, which is the 
corresponding class where no further choice is possible. Decision trees axe 
build from training data by progressively splitting the training samples into 
smaller and smaller subsets according to the properties of features that can 
be used to discriminate patterns. A simple recursive algorithm for creating a 
decision tree is known as the CART decision tree. CART grows recursively 
a decision tree by the following process: If the node cannot find a property 
to split the data presented into subsets, then declare a category for this set 
of data, otherwise split the data into subsets. CART uses binary trees, while 
other decision tree methods like Quinlan's ID3 (293] and the successor C4.5 
[294] have a branching factor Bi, Bi ý! 2, coming out from a node i. Most of 
the time in building a decision tree is spend on deciding which property should 
be analysed at each node. The property that leads to the simplest model that 
explains the data is favoured. The most popular measure for this simplicity 
is the entropy impu7ity factor that defines how impure the data from node N 

are reaching descent nodes for a property T. 

i(N) F(cj) 1092 F(cj), (2.7) 

where F(cj) is the fraction of patterns at node N that axe in category cj for 
a binary tree. The task is to find a property T that minimizes the impurity 
entropy, i. e. the goal is to maximise the drop of impurity entropy, which is 

Ai(N) = i(N) - FLi(NL) - (1 - FL)i(NR), (2.8) 

where NL and NR are the left and right descendent nodes, respectively, i(NL) 
and i(NR) their entropy impurity, and FL axe the patterns at node N that will 
go to NL for the specific chosen feature property T. For properties where the 
data are discrete instance descriptions, called nominal data, like colour=(red, 
blue, green, yellow}, it is easy to split the data according to each of the instance 
descriptions. We may need to exhaustively search over all possible subsets of 
the training sets to find the rule that maximizes (2.8). More complicated is 

splitting the data when the feature property has numeric values. Optimization 

methods like gradient descent or combinatorial optimization may apply in this 
case. 

Tree based classifiers have the benefit that the classification result consti- 
tutes a tree, which can interpret the patterns as logical expressions. Therefore, 
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without prior knowledge of the relations between the feature properties, the 
decision tree gives meaningful relations. Once the decision tree is built, classi- 
fication of new patterns is rapid. Another important benefit of decision trees is 
that they are particularly useful for nominal data, whereas for other classifica, 
tion methods nominal data need preprocessing steps to incorporate them into 
the problem. On the other hand, although decision trees yield comparable or 
better results with other classification methods for many problems, they seem 
to be poor in inferring simple concepts like solving the parity problem [106]. 
Readings on tree-based classification methods can be found in [63,270]. 

2.1.10 Rule-based Classifiers 

Rule-based methods use prepositional logic or first order logic to describe a 
category based on relationships among entities. Rules are of the if-then type 
like: 

IF MALE(x) AND FEMALE(y) AND FATHER(xy) THEN DA UGHTER(y) 

Rule-based systems have formed in axtificial intelligence the foundations of 
expert systems. Their use, however, in pattern classification has been modest 
and is mainly based on Michalski's work [2641. The design of learning rules 
must specify the predicates and the functions based on prior knowledge of the 
problem domain, like expeft knowledge, which is the main drawback of this 
method for real world pattern classification problems that lack such expert 
knowledge. Artificial Intelligence textbooks like [195,385] provide a classical 
overview of learning rule methods for classification, including also the first 

rule-based system DENDRAL [66] for inferring chemical structures from mass 
spectra and MYCIN for medical diagnosis [341]. 

2.2 Neural Networks and Threshold Circuits 

2.2.1 Neural Networks 

Neural networks are inspired by the human brain analogy. The brain is com- 
posed of a very large number of neurons. Signals between the interconnected 
neurons are propagated by neuron activation. Each neuron is activated (or 
fires) if the received signal exceeds a certain value called threshold. Artificial 

neural networks (ANNs), or connectionist models [114], or simply neural net- 
works are computational models that mimic the brain behaviour. ANNs are 
using the same representation of neurons, interconnection links, and computa- 
tional units for calculating the inner product between the input of the neuron 
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and the connection strengths (or weights) and compare it with a threshold 
value to determine whether the neuron is firing or not. Since these models 
axe emphasizing connections between the neurons (also called units), they are 
also called connectionist models. A neuron is considered to have memory as 
information is stored in connection strength and can be distributed over the 
network. 

The research that investigates computational methods aiming at achieving 
human-like performance in computer systems via dense interconnection of very 
simple processing elements is called neural computing. The ANN model is 
described as to collect all inputs multiplied by the weight factors, to use a 
function for altering the weights, and to apply an output function that can 
be a linear, sigmoid or threshold function in order to determine the activation 
neuron. ANNs consist of layers of interconnected neurons, called network 
nodes. 

The greatest potential of neural networks is that they work towards the 

general belief that massive parallelism is essential for high performance and 
fault tolerance. Moreover, the fascination of having a learning capability used 
for training data (that many neural network models incorporate) provides a 
robustness property for a powerful computational model that exploits massive 
parallelism in a natural way. Devijver and Kittler [98] express that for pattern 
classification neural networks seem to be a panacea, as other computational 
models have been a major limitation. 

There exist a large number of textbooks and papers on neural networks 
[24,160,163,171,196,3011, whereas mathematical aspects for neural networks 
are in [27,144]. As neural networks axe networks of perceptrons, the history 

of neural networks is closely related to the origins of Rosenblatt's perceptron 
[310] presented in Section 2.2.6. 

2.2.2 A Neuron Model 

A neuron can be seen as a directed graph with units situated in the vertices. 
These units can be either input units or computational units or output units 
(Figure 2.4). 

Input units: In some models, for each input feature xi there is an asso- 
ciated neuron that accepts the input value xi and produces the same input 

xi as output of the neuron input unit. In most models, the input units axe 
represented as directed arcs carrying the input value. The latter will be used 
in this work. 

Computational units: These units axe usually called neurons and are 
represented as a circle or a parallelogram where the input arcs axe terminated 
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Figure 2A Model of Neuron. 

and where the inner product is calculated and compared with an activation 
function. Activation units that are associated with computational units and 
determine the output of the network may also be found in literature. 

Output units: ANNs usually have one output unit that represents the 

output of the network. Output units can also be found after each layer, how- 

ever as they are input units to other computational units they will be consid- 
ered as input units. 

In our work, when we refer to neurons, we refer to computational units. 
For a number of n inputs the configuration state of the neuron a is described 
by the weight vector tV E Rn, V= wl,... wn, and the activation function f. - 

The type of activation function determines whether a neuron will have 
linear threshold units, sigmoid units, or polynomial units. 

For linear threshold units, which are in the focus of our work, the activation 
function is described by the equation 

n 
Ewi 

-xi > 0, (2.9) 

i=l 

where 0 is the threshold. The neuron outputs 1, if the inner product is at least 

equal to 0, otherwise it outputs 0. 

For sigmoid units, the activation function is calculated by The 
behaviour of the sigmoid units is based on the fact that if the inner product 
is much larger than the threshold 0 it outputs 1, and if it is much less than 0, 
it outputs 0. The values inbetween are smoothed by the activation function. 

For polynomial threshold units of degree r we have instead of the linear 

combination wi - xi of the inputs to the unit the computation of polynomial 
activation functions. For example, if r=3 we can imagine a unit which 
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computes the quadratic expression: 

222 fa " W12ýl+W2X2+W3X3+W4XJ+W5X2+W6X3+W7XIX2+W8XIX3+W9X2X3 ý: 0- 

(2.10) 

Of course, if r=1 we obtain again a linear threshold unit. 

2.2.3 Problem Solving and Neural Networks 

Although ANNs can be attached to almost any kind of computational prob- 
lems, we shortly describe here three main categories where ANNs are success- 
fully applied: pattern classification, combinatorial optimization, and time- 
series prediction. 

The classification problem can be formalized as a pair (0, C) where 0 de- 

notes a finite set of objects 0= Jol, ... ' o,, 1, the input patterns, and C denotes 

a collection of disjoint subsets cl,... 'c, of C, the classes. The problem is to 
classify automatically a given object oi E0 as a member of one of the subsets 
cj CC [2]. Simple classification problems such as pattern classification can 
be easily solved (recognized) by human brain but axe very hard for computers 
to solve [400]. Neural networks, in general belief, axe the most suitable com- 
putational models that can be used for classification problems [172]. Humans 

can recognize objects by perception. The neurons of the brain receive external 
stimuli from the visual system and adjust their connection state according to 
the external stimuli and according to the current information stored in the 
strengths of the neuron connections [164]. 

Neural networks can classify objects in a similar way as the human brain. 
Given a connection network and the connection strengths, external stimuli 
can be considered to clamp the states of a subset of units and, therefore, the 
objective is either to adjust the remaining free units in such a way that the 
most probable configuration that recognizes most of the examples of the data 

set is achieved. Usually, in classification problems there exists a pre-processing 
step that concerns with noise and data reduction. 

Pattern classification is a major field for ANNs. Pattern classification 
problems have the objective to recognize an object as a member of a given 
subset. Therefore classification problems can be viewed as trying to find a 
configuration of a neural network with an appropriate structure and appro- 
priate connection strength such that it can correctly classify all objects of a 
given subset. Pattern classification is described in details in Section 2.1. 

For a given set of input patterns, ANN learning tries to minimize a suitable 
error function. Combinatorial optimization algorithms can be used for this 
purpose. The training patterns axe presented iteratively to the computational 
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unit with successive adjustment of the weights and backpropagation of the 

error [3151. When the error rate approaches an acceptable level, the weights 
are fixed and ready to be used for classifying unseen patterns. The ability 
of the network to correctly classify the test patterns is called generalization 
performance or classification accuracy of the network (cf. Section 2.1.3). 

ANNs can be used to attack combinatorial optimization problems for find- 
ing good solutions [1841. This brought a new perspective to search methods. 
Unlike other combinatorial optimization methods, the ANN approach does 

not explore the different possible configurations and acts more as a statistical 
interpretation of the results [2871. The aim of ANN from a search perspective 
is to optimise a given global quantity or function by stabilising the connection 
strengths of the units. Combinatorial optimization problems can be viewed as 
assigning a neural network to each instance of a given combinatorial problem. 
Then each configuration corresponds to a solution of the optimization prob- 
lem. Solving the combinatorial optimization problem is equivalent to choos- 
ing an appropriate structure with appropriate connection strengths where the 
data set can be applied producing a maximum consensus to the cost function. 
Applying neural networks to the most common combinatorial optimization 
problem namely, the travelling salesman problem (TSP, see Section 3.1.2), 
Peterson and S6derberg [2871 found that the performance is comparable with 
the performance of simulated annealing for TSP. Anderson [241 states that 

an adaptive feedforward neural network can be viewed as an approximation 
device, because it approximates an output function as the weighted sum of 
individual functions of the input patterns. Combinatorial Optimisation is ad- 
dressed in more details in Chapter 3. 

Time-series prediction is another type of problems for ANNs, where the 
aim is to predict future values of a series given previous values [378]. This 

can be done by replacing the output unit that has threshold behaviour by an 
output unit representing a real value obtained by a computational unit that 
calculates a linear transfer function: 

x(t) = F(xt-I, Xt-2, )1 (2.11) 

where x(t) is the real value of the output unit and Xt-l, Xt-2, ... are the, %-alues 
of the series at previous times. 

As described above, ANNs are not limited to the three types of problems 
only, as they can be applied to almost any kind of computational problems. 
Even for problems like natural language processing, where representing the C5 
structure of a parse tree seems to be hard to be carried out by neural networks, 
there has been research on special types of neural networks [154,226,227] that 
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successfully represent and solve the parsing task. 
ANNs have been very popular among researchers due to successful appli- 

cations to a large number of problem domains from different scientific areas. 
The power of ANNs comes from: 

" the potential of modelling a large variety of problems, as models may 
vary from a simple neuron to very complex structures representing so- 
phisticated functions; 

" the easy training methods that allow a neuron to learn a set of data; 

" the successful uncovering of hidden knowledge of the data; 

" the applicability to a variety of problems such as prediction, optimiza- 
tion, classification or control; 

" the highly parallel process as neurons continuously evaluate their output 
according to their input for activating inputs of other interconnected 
neurons. 

Three design issues axe considered when developing neural networks for 

solving any type of problems [2]. The issues are related to: 

* the number of units needed; 

e the way that the units should be interconnected; 

* the way that the connection strengths should be chosen. 

These issues, along with other aspects, determine the type of the neural net- 
work used for solving a problem. Such taxonomy and models are presented in 
the next section. 

2.2.4 Taxonomy of ANN 

With respect to a number of vaxious aspects we consider the following taxon- 

omy of neural networks models (the referred models axe presented in Section 
2.2.5): 

Aspects of dynamics classify ANNs into synchronous and asynchronous 
ANN models: This classification is based on the different dynamics of the 

models. Synchronous models, which our work focuses on, axe based on simple 
neurons with weighted connections, the synapses, while asynchronous models 
include mimics of biological models with complex dynamics and activation of 
neurons by more than one event at each time step. 
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Aspects of topology classify ANNs into models of changing and unchanging 

connectivity. According to whether the network connectivity topology changes 
during execution we have two classes. Our work focuses on ANNs with un- 

changing connectivity. 
Aspects of loops in info77nation propagation classify ANNs into feedforward 

and mcurrent ANNs- According to whether there exist loops in the propaga- 
tion of information or not, we classify the ANNs into feed-forward or recurrent 
nets. In feed-forward networks the signal is propagated from the input units 
(neurons) to the output of the network without any loop. In recurrent (or 

also feedback) networks information go both ways down and up. Feedforward 

networks are mainly used in pattern classification. The major representative 
of this class is the perceptron (see Section 3.5.7). Recurrent networks, where 
the activation of the neuron continues until a steady state is reached, are used 
in solving combinatorial optimization problems. Boltzmann machines (see 

3.5.7), which incorporate simulated annealing methods (see Section 3.5), is an 
example for recurrent ANN. 

Aspects of the learning procedure used, classify ANN models into supervised 
and unsupervised learning models. Supervised learning, as we have seen in 
Section 2.1.2 and Section 2.1.3, uses examples to learn and a teacher to return 
the feedback of the learning performance. This method is based on an error 
function, which is determined at the output of the network by comparing 
the output result with the desired activation. This difference forms the error 
vector, which is back-propagated to the predecessors to locally adjust their 

error. This learning procedure is also known as the back-propagation learning 

rule [3151. Examples of supervised learning are the perceptron model and the 
backpropagation model. 

Unsupervised learning is usually used in problems where there is no prior 
knowledge of the desired output. ANNs using this learning method are also 
known as self-organizing nets due to absence of the desired output, i. e. they 

self-adjust their weights in a competitive constraint environment. Example of 
unsupervised learning are Kohonen networks and Boltzmann machines. 

The above is a taxonomy commonly referred to in the literature. Further- 

more, other aspects found in the literature may be used for taxonomy: 

9 aspects of data type classify ANN models into binary, rational and con- 
tinuous value models. Well known models, where the states of the units 
may be restricted to binary values, are the perceptron model [311], the 
Boltzmann machine [173] and the Hopfield model [183]. 

e aspects of probability in search strategy classify ANN models into deter- 

ministic (like the perceptron and the Hopfield model) and probabilistic 
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models (like the Boltzmann machine). 

aspect of direction of connectivity classify ANN models into unidirec- 
tional models, where information flows in one direction (perceptron) 
and bidirectional models, where units influence each other in both ways 
(Boltzmann machine, Hopfield networks). 

aspects of network depth classify ANN models into models with hidden 
layers (perceptron, Boltzmann machines) or without hidden layers. 

aspects of the activation function classify ANNs into linear threshold 
networks (perceptron) and sigmoid networks. 

According to the above taxonomy, when referring to an ANN, we also 
have to define a number of related aspects that can make more specific how 
the paxticular ANN is used in an application. 

2.2.5 Neural Network Models 

There exists a large number of ANN models in the literature, in accordance 
with differentiations and combinations of the aspects referred to in the previous 
section. The models most related to our work (threshold circuits, perceptron 
and multiplayer perceptron) will be analysed later in more details. 

A number of famous models are listed in the current section. Some of the 
previous mentioned classification aspects are outlined, so that a general view 
on the axsenal of neural network models is stated. 

The Perceptron Model 

Rosenblatt's perceptron [3111 is historically the first classifier that uses a net- 
work of binary threshold units connected by unidirectional links. In Section 
2.2.6 we have a closer look at the perceptron. 

Multilayer Perceptrons (MLP) 

Multilayer perceptrons are supervised feed-forward networks, closely related 
to threshold circuits. MLP have most of the common ANN characteristics. 
In classification problems, MLP networks are defined by their weights and 
thresholds, which together give the equation of the separating hyperplanes. 

Threshold Circuits 

Threshold circuits axe feed-forward linear networks trained with supervised 
learning. In Section 2.2.11 this model will be studied in more details. 
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Back Propagated Delta Rule Networks (BPDR) 

Back propagated ANNs are synchronous feed forward networks that use a 
backpropagation learning rule. The back propagation algorithm performs gra- 
dient descent on the error surface by moving towards a minimum with a step 
proportional to the learning rate. Rumelhart et al. [3151 made this model popý- 
ular and called their algorithm generalized delta rule. The idea is based on the 

well-known supervised learning approach having added extra hidden layers. 
This network type is used in classification problems, time-series forecasting, 

and modelling problems. 

Radial Basis Function Network (RBF) 

RBF are also feedforward supervised learning networks, which are configured 
usually with hidden layers to model non-linear functions. The activation func- 

tion is selected among a number of functions called basis functions. RBF 

networks are much faster than BPDRs and are similar to probabilistic net- 
works. A hidden layer performs weight adjustments, which are set before the 

actual adjustment of first layer weights occurs. Compared to AILP networks, 
the main difference is in the way which hidden units adjust their weights. 
In MLPs the inner product of combining the values is used, while in RBFs, 
Euclidean distance is used to combine the input vector with the weight vector. 
Therefore, in RBF networks, the function that is to be approximated presents 
a radial symmetry being only a function of distance between learned and input 

patters. The Euclidean distance can be interpolated either by Gaussian, or 
linear, or polynomial functions. The data separation space is divided by using 
circles, instead of hyperplanes used in MLPs. 

Kohonen Networks 

Kohonen networks [217] use unsupervised learning and belong to feedfor- 

ward networks. By using self-organising processes, it modifies the connection 
strengths according to the input patters. The most active unit is detected 

when a new Pattern is presented and its connection weights along with that C, 
of close neighbours are adjusted to be closer to the input pattern. 

Hopfield Networks (HN) 

Hopfield networks [183] are networks that have neurons fully connected to each 
other with allowable output states being binary values of [-l, +11. HNs perform 
error correction and energy minimization and therefore can be considered as 
networks for combinatorial optimization. The HN is evolving, in time by a Z> 
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process called asynchronous updating. In this iterative process, a neuron is 

randomly chosen and its weight is adjusted to agree with its inputs. This 

process is usually leading to local minima, however there is no guarantee for 

finding the global minima. 

Boltzmann Machines 

Boltzmann machines [173] axe extensions of Hopfield networks that combine 
the idea of simulated annealing with neural networks. Boltzmann machines 
are also considered probabilistic networks as they make steps towards local 

minima and they have the ability to move away from local minima. Boltzmann 

machines are presented in Section 3.5.7. 

Probabilistic Neural Networks (PNN) 

PNNs [347] axe feedforward supervised learning ANNs with backpropagation 

of the error. Used mainly in classification problems, PNNs employ a number 

of statistical methods to decide to which class the input pattern belongs. Im- 

portant factors in PNN are the distribution of neighbouring patterns and the 

distance of the test patterns from them. The decision is carried out by prob- 

ability density functions (PDF), which are calculated for each class by using 

a weight function, which is called kernel and is centred to the input pattern. 
Kernel functions axe usually Gaussian functions forming a bell shape. The 

architecture of PNNs consists of three layers at least: the input, the radial 
(which models a kernel function centred at each candidate pattern) and the 

output layer. Buntine [67] provides a guide to probabilistic networks. 

2.2.6 The Perceptron 

The efforts to solve systems of lineax equalities and inequalities by using fast 

and reliable algorithms dates back to the thirties. Fisher [117] introduced in 

1936 the linear discriminant as a statistical procedure for classification. For 

the discrimination, Fisher uses sets of hyperplanes, where each hyperplane 

is defined by a lineax combination of the attribute values. Rashevsky [299] 

proposed in 1938 binary logic operations, such as addition and subtraction 

operations, that can be used for implementing binary logic XOR operation. 
A model similax to Fisher's model and Rashevsky's circuits, was suggested 
by McCullogh and Pitts in 1943 [261]. McCullogh and Pitts introduced a 
binary device which consists of a weighted sum of the inputs, and a non-linear 

activation function, which is the original threshold function: 
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OUtPUtk 
1 if Fi Wik-Ti ý! Ok7 

(2.12) 
0 otherwise. 

McCullogh and Pitts combined the neuron's threshold with binary logic 

action producing the so called threshold logic. The work by McCullogh and 
Pitts had a great impact on neural network theory, as the exciting result was 
that a McCullogh-Pitts neuron network could implement any finite logical 

expression. For example, a simple McCullogh-Pitts neuron with tWv binary 
inputs x1 and X2 and a threshold 0=2 is equivalent to the logical operation 
AND, i. e. in order to reach the threshold, both x, and X2 input should have 

value of "one". If we change the threshold 0=1, then the neuron performs the 
logical operation OR, i. e. unless both x, and X2 values are zero, they always 
reach the threshold value of 1. Rom the neurophysiology point of view. the 
importance of the McCullogh-Pitts neuron was that it demonstrated that the 
brain consists of powerful logic and "computational devices". 

Hebb [1641 introduced in 1949 a neuron model with the ability to learn 
by adjusting its weights, therefore, establishing that the connection strength 
between neurons defines their actual functionality. The simple Hebb's rule on 
weight adjustment was based on the neuron's response in such a way that the 
network adjusts the weights to increase the probability of desirable response to 
similar inputs and decreases the probability of a similar undesirable response 
to inputs. 

The relaxation method for finding solutions of linear equations was in- 
troduced in 1939 by Temple [357]. Agmon [81 introduced in 1954 a simi- 
lar relaxation method for solving systems of linear inequalities of the type 
li (z-) = di -i+ bi > 0, j=m. Associating the inequalities with half- 

spaces, Agmon's method proposes an iteration procedure that, starting with 
an arbitrary initial vector F0, finds feasible solutions by constructing a tra- 
jectory of straight line segments. When ii does not represent a solution of 
the system, then 4+1 is taken as the orthogonal projection of the farthest 
hyperplane which corresponds to a violated linear inequality: 

, Fi+l := Yj +t- &io, (2.13) 

0 where t=- n' and djO maximizes- 1J., 2 
Agmon's method later became known as the classical pe7reptron algorithnL 

Rosenblatt [3101 introduced in 1958 the perceptron as a model for pattern 
detection. The original perceptron from 1958 was an unsupervised learning 

pattern classifier. In 1962, Rosenblatt introduced the classica perceptroT4 
which turned to be a supervised learning classifier where the weights change 
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Figure 2.5: XOR Separability. 

only in response to a misclassification. Unlike the original perceptron, which is 

pulled towaxds some defined goal, the classical perceptron is back-propagating 

the error so that it adjusts the weights to learn a known classificat imi Utsk. 
Rosenblatt's classical perceptron model was used to solve a number of 

simple classificition problems by networks of binary threshold units. The 

classical perceptron has an input layer, a processing layer, and ali output, 
layer. The basic processing unit of the perceptron is the threshold 1(ý(Jic unit. 

The perceptron model uses a learning algorithm called the perccptron al- 

yoHthm, similar to Agmon's relaxation method to adjust the streugths of the. 

connections in case the network provides a wrong classification answer. Rosen- 

blatt proved the perceptron conveigence theorem: 

Theorem 2.1 The perceptivn learning algorithTn. will jind in, fivitc tinic a set 

of connection weights that correctly classifies a finite set of patterns if they are 
linearly separable and, if such set of connection weights exists for a classificatioii 

problem. 

A proof for the perceptron convergence theorem can be found in 124]. 

The main characteristic of perceptron algorithms is that they reilct to ill- 

correct classifications only. If the perceptron outputs a correct response, thell 

the feedback rule is do nothing with the connection weights. If the clas. sifica- 

tion is supposed to be +1 and the perceptron unit responds 1vith 0 (or -1), 
then the feedback is to add a positive value z to weights in stich a Nv; iy that 

strength of the connections is increased, and it will he more likely for tile per- 

ceptron to exceed the threshold and provide an output of +L Likewise. if the 

classification is supposed to be 0 (or -1), and the perceptron responds with 1 1, 

then the feedback is to add a negative value -z to weights so that it overall 

weakens the connection strengths, and it will be more likely riot to exceed the 

threshold and provide an output of 0 (or -1). This can be matheimiticidly 

ý-ýMD 
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formulated in the following equations for a weight change after trial L. If the 

classification of pattern y was correct then we have for the weight vector at 

step L+1 

WL+l : -- WL; (2.14) 

if the classification of pattern y was incorrect, then we have for the weight 

vector 

WL+I 
WL + Z'Y if pattern y is assigned +1; (2.15) 
WL -Z*Y if pattern y is assigned 0 or -1. 

By using this learning procedure, it is more likely to correctly classify the 

pattern y when provided as input again. 
Proof: Suppose that the correct class of pattern y is +1. The inner product 

of new weights WL+1 is larger than previously as 

n 
Z Wj, L+l * Yj (2.16) 
j=l 

n 
E(Wi, L +Z* Yj)'Yj (2.17) 
j=l 
n 

= 
Z(Wj, 

L * Yj) + (Z * (yj)2) (2.18) 

j=l 
n 

EWj, 
L*Yj- (2.19) 

j=l 

Thus weights are changed by increasing the previous value of the inner prod- 

uct so that the perceptron is guided to overcome the threshold value for the 

pattern y. The same applies to weakening the weights if patterns have been 

misclassified. 
The learning method of the perceptron has limitations when dealing with 

noisy data, as the perceptron will never stabilize its weights, making changes in 

weights forever to classify cases that are wrongly labelled. A further problem 

of the perceptron method is that the more accurate it becomes, the more 
the learning slows down and the learning time increases as corrections are 

made only when misclassifications occur. Another problem deals with the 

generalization quality of the separating hyperplanes, i. e. the quality of correctly 

classifying unseen patterns after training and stabilization of the weights. 
Limitations of the perceptron algorithm, which caused decrease of interest 

in this model for many years, were stated by Minsky and Papert [268]. Since 

the perceptron was widely used for recognizing images, Minsky and Papert 
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Figure 2.6: Multilayer Perceptrons. 

showed that the perceptron has serious limitations to recognize correctly var- 
ious objects. They also used the XOR problem to show that the problem is 

not linearly separable in two dimensional space, and only if the representation 
is extended to three dimensional space, we can solve the ((A XOR D) XOR 
C) problem (Figures 2.5 (a) and (b)). This involves extra perceptron layers 
compared to the classical perceptron, which introduces in fact the Multilayer 
perceptron, with the extra layer called hidden layer. In Figure 2.6, the inputs 
X1, X2,..., X,, are passed to the k processing units P1, P2,... ' Pk, where for each 
unit Pj calculates the inner product of inputs with the corresponding connec- 
tion strengths wij, i=1,.., n, i=1,.., k. The result of unit Pj is compared to 
the corresponding threshold Oj, j=1, .. ' k, and the output layer R1, R2 Rm 
provides the response to the specific input pattern. 

The impact of Minsky's and Papert's work was so strong that the field 

of neural networks experienced a setback, which lastet until the eighties, 
when new important models and theories were presented by many researchers 
[114,173,183,184,217]. Moreover, research on pattern classification has 

shown [98,114] that conventional computational methods turn out to be un- 
suitable for solving classification problems because massive parallelism is es- 
sential. Hardware implementations of neural networks with hundreds of thou- 
sands of neurons axe possible nowdays, thus enabling faster convergence of the 
perceptron algorithm and therefore overcoming limitations of the past. 
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2.2.7 Pattern Classification with Linear Discriminants 

Perceptrons and threshold units are linear discriminants, i. e. linear functions 

of a set of parameters as weights, that draw a hyperplane in a two class problem 
(or n-1 hyperplanes in n-class problem) for separating the classes in the feature 

space. Such linear machines define hyperplanes as decision boundaries. Linear 

classifiers are trained by minimizing a criterion function, which is usually the 

misclassification error, by using linear discriminant learning methods (see next 
Section). The discriminant function is of the following type: 

fj(2) = ziý-9+ wo= Z wi -xi +Woei = 19 .... C, (2.20) 
i=l 

where c is the number of classes, S is a feature vector, 0 the weight vector 
and wo the threshold weight. 

Linear separability is shown in Figure 2.7, where in case (a) a hyperplane 

can be drawn such that the two classes are separated, whereas in case (b) 

no such hyperplane can be drawn and thus the two classes are not linearly 

separable. 

Two-Class Problems 

If c=2, then we have a hyperplane separating the two classes. Equation 2.20 
decides for pattern 9 class C1 if f (g) ý: 0, and decides class C2 if f (1) < 0. 
Usually, the decision is that a pattern Y is a positive sample of class C1, or it 
is a negative sample of class C, and therefore C2 is the set of patterns that do 

not belong to C1. 
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Fi, gure 2.7: Linearly and Non-linearly Seperable Classes. 
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Figure 2.9: Linear Machine Decision Boundaries for a Three Class Docisiom 
Problem. 

Multiclassification Problems 

When c>2, then the classification problem is called pn)b 
lern and it can be tackled by linear discrill lil lal it's by reducilig, it to c two cLt,. ', -, 

problenis [343]. A linear discrimant function separates point,,, assigned 1() class 

cj front those not assigned to ci. Another approach to reduce thc multicimssi 
fication problem is to consider one linear discriminant for cach 1mir ofchu"cs, 
so that we Avill need c(c - 1)/2 linear discriminants. Figille 2.8 slimv, the 

two approaches. The shaded area is im ambiguous arca where no cla. ss call 
be assigned to patterns of this area. 'Fit(! task is to find I'M, caub pair it lim, m- 
discriminant that implies a smaller ambiguous region, however, the most com 

nion approach is the former one, as the latter needs more lincar discrinihimits, 

for c>3. 

Linewý machines are linear discriminants tImt, overcome thc mlibiguolls 

regions and divide the feature space into c decision regions, ws shown in Figure 

2.9, by following decision rule: 

Class = C, if Vi -/ j, f, (Y) > fj(F). 
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2.2.8 Linear Discriminant Learning Algorithms 

A Iiiie; ir chissilier is trained throll"ll the minimization of il criterion function 

X, ml ýIppl. ()ach t hat involves findim, a set of uvidits that solve a set of linear 

illcqllýditics it-, - xj > 0. A number of inethods exist for iiiiiiiinizing. the 

criterioij I'miction, like , radient descent, Newton descent alp-orithin, percep- 
t roll classicýd all"orit hIn, alld relaxation Illet hod"'. Coil lbil latorial optimization 

; is ; Ili Off'Octivc millinlisation inethod is in the focus of our work, where the 

powel-1,111 optimization Illethod simulated mmealin-p is combined with a classi- 

c; d lcm-ninlp method like the perceptrol) aln-orithill. This illetlicid alolln.. with 
the results oblailled mv presented in the next Chapters. Here. alternative 
learililin'. pi-m-edures for lilleal. discrillfillailts are presented. 

Such involve gradic'n't, dc'scclit. where starting froin an arbitrary 

wvil"Ilt vector li-" the u"(A. + 1) are obtailled by illovilic, apart froill 61(k) bY the 

'ndc of lca'ntiny i, that sets the learning step size, and the gradient vector 
Z(? (, (A-)). 'I'll(' fOllowill". equation illustrates this: 

'tý) (k + 1) = n' , (k) -i (k) 17 Z (2.22) 

where VZ(ul(k)) is the derivative or gradient of Z(uý(k)), i. e. VZ(ii; (k)) 

yrad Z(11; (A. )) - 
A prmlient descent alpol-ithill mi-Ilt 1mve Ille foltowill. pseudocode: 

procedure I-radictit 
descent 

begin 

illit ialize '(ý, 0, fý A- 

(10 
kk+ 

While VZ(tr, (A. + 1)) <0 

return tý(A- f- 

eild 

It' we substit titc ý bY Iho illver'so 11c'S'Sian lmdrl-r 11 -I of secolid dcrivat ives 
0 2Z1i)11,, i)11, 

*j 
estill, Me( I at it, (A- ). I lien Nve obI ain IIw Acivtoti di, sc( tit a ýqorifh m. 

The Newton idporithin pives it -reater improvemout por step than gradielit 
de'scent, however. the tillic tocstimMe matrix HI illoY Overbalance Newton" 

low 
The chussical percept roll all'ol it 11111 emploYs I he p( o-cpfron critcrioll flinc- 

lion where I It(, wei-Ilt vectol. 11ý(A' JI) is obh1illed bv addill" s'ouw Wei"I't 

c()1. lv(-I ioll hm-ards or ilxvýlv froill it ckls-ý. This wei'dit correct ioll is pn)porti()11ý11 
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to a pattern vector 1 that belongs to the set of the mischtssified pattenis SAf. 

This is illustrated by the following classical perceptron iij)(fate i-ulv. 

IL 
W 

zT)(k + 1) = zV(k) 
ýr ý Fj ,Y C- S A. f (2.23) 

ý 
-,. 

Xr "I-, 

This rule is similar to the Agnion's [8] relaxation methods fOr solviiig lhicar ill 

equalities (see Section 2.2.6). Variants of the perceptroii algorithm oil saiiiples 
that are consistent with lineax separation are presented 1) 

'v 
Duda et, al. I l()(; I. 

Two examples of methods for finding a separating vect. or when thc samples ai-c 
linearly separable are the batch. pcmeptron aý(IoHflmt and the ftrcd im-rciticid 

perceptron algo? i. thm. In the batch perceptroti algorithin, the weight sohitioii 

vector is based on a large group of patterns if computhig weight, 111)(filles, ill 

stead of a single sample. In the, fixed incly-fru"Id pt-n-cph-oll algo'l-ithil), weight, 

update occurs every time a pattern is inisclassified. 
Variants of the perceptron algorithm oil saillple sets that ai-v illcollsis- 

tent with linear separation are presented by Bylander ill [6s, 691. livl; lxatioll 

methods related to nonseparability are also presclited bY DII&I ct, al. ý H)6] aild 
involve methods like the 7ninimum squamd-cl-ror proccdarc, where the sulli of 

)2 i,, IllillillliZ(, d, WitIl 1), 1)(. ilig squared error criterion function (vl - x, - b, 

some arbitrarily specified positive constants. 
Linear discrinlinants are usually not slifficielit, for large paltei'll chissificil- 

tion problems. Multilayer networks or threshold circuits are used to ovel-c"Ille 
this problem by employing multiple copies of single 110111illeal. flillut iolls of' Illv 

input features and trying to find ail appropriate noiiIiiienr fiiiich(ýii. 

2.2.9 Pattern Classification with MnItilayer Nviii-al 
Networks 

Real world problems contain noisy dat. i, which usually provide us wit'll Iwil 

separable data. This is the main probleill f'01- lillear discrililili'llit fillictions. 

The smaller the training set, the easier it, is to find a weight vector dult, : sep- 

arates the data. This is the motivation for using nuiltil:, yer lieur; iI networks, 

where we increase the complexitY by einploying a ninjiber ol'nodes working ; is 

linear discriminants, which have a subset, of* the overall training set, to sepii 

rate. The nodes are then conibined to provide us with the clwisificr dccision 

oil test patterns. Therefore, instead of olle Weight Vector, we have 11 11111111wi. of 

weight vectors, which form tile, solution functions of tile chissifical ion probleill. 
What is achieved by this approach is to have a chissifier thilt lenrlis nonlinear 
functions that can cover arbitrary decision regions. III Figure 2.10, we sce 

that a deptll-l threshold function (having two laycrs, one f'Or the inputs . 1-1-r-2 
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A A", 

Figure 2.10: Single-Layer and Multilayer Discriminants. 

Alld olle for the com plitational unit PI) (!, Iii be, a linear discriminailt separ. -It- 
the space into two regions, one for each class. However. if the 

I'Calures produce complex regiolls filat Illiplit he not connected, a three I 
la. ver depth-2 threshold circuit could theoretically implement such arbitrary 
decision boundaries. 

The ke. V power of multilayer neural net-, vorks in pattern classification is 

that ille Iloillinearity call be learned from training data. In this Nva. v. pow- 

erfill classificýitioll Illachilles call be built and applied to difficult real world 

ciýissificatioij problems. Kolmogorov [219] proved that 

Thcorein 2.2 (KoIniogorov) For properly chosen fanctiow; 4)j (lilt/ Allij. 

miy coldilramis fittiction d(ftned oil the irrvit, hypercubc P (d > 2) can be rcp- 

rescided iii a farm: 

4) 1( (2.24) 

J-1 

Equation 2.24 looks similar to the otitput of it thre(-layer network, wherc 
III(' n iI)p11ts Xi iff(, IMssed With some weil-lits Il, jj to d hidden 1111ils. The 

output of' the d units is calculated bV 11sill", the d liew "veights and provides 
flj(ý oIll I)III of' Ilp, jj(ýtýN-01. k f(: ý). jTIjloI. tjIIIijt(, I N-. tll(, fill, (-tioll" (1). 

1 ijII(I kl/, 
ý jtjý(' 

not 11jesimple wei-lited sums passed throu-11 activillion functions as ill neural 

nel works. The functions, (1)) and k1j, can be complex. There has 

beell it debille ilmon", lescarchei-, ý93.13S. 185,222.223,22S. 'l its to whether 

or not Kohllogorov's theorem is rclevinit ill neurid networks theorY. Moreover. 
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Hecht-Nielsen [165] used Fourier's theorem that any continuous function can 
be approximated by an infinite sum of harmonic functions to theoretically 

prove that a three-layer network can implement such continuous functions. 
Kolmogorov's theorem and Hecht-Nielsen ideas are of great theoretical 

importance; however, in practice they do not provide us with a universal 
architecture as both ideas give us no information about a) the number of 
hidden units needed, b) the proper weight values, and c) the types of activation 
functions. The most important point is that both methods give us no answer 
to the question: how to find the nonlinear functions based on training samples. 
Consequently, a constructive proof of the universal expressive power of three- 
layer networks still remains a hard problem and very little work has been 
done into this direction. The practical impact of Kolmogorov and Hecht- 
Nielsen framework is that three-layer classifiers are confidently good classifiers, 
resulting in a general belief that given sufficient number of hidden units, proper 
activation functions and proper weights, any continuous function from input 
to output can be implemented by a three-layer neural network. However, the 
limitations axe that we have no theoretical guidelines for the number of hidden 

units, the type of activation functions, and the construction of proper weights. 
These limitations axe equivalent to major questions in pattern classification of 
how to design the topology, or how to define the architecture (both related to 
the network complexity issue), and how to select the training method. 

2.2.10 Neural Networks and Supervised Learning 
Algorithms 

The aim of supervised network learning is to set the weights based on the 
training samples and the desired output. Generally, network learning uses 
a feedforward operation to present a pattern to the input units, passing the 

signal to the output units to define an output value. Learning takes place 
by changing the network parameters to get closer to the desired output. Any 
difference of the current output to the desired output corresponds to an error. 
This error is expressed in terms of a function of the weights, called criterion 
function or objective function, and the aim is to reduce it by adjusting the 

weights. Learning procedures may depend on a per pattern basis correction 
or may depend on a batch training correction, where adjustment takes place 
iteratively after presenting all training samples. 

When dealing with threshold units, the perceptron learning algorithm is 

used for adjusting the weights. We have already seen that one of the limitations 

of the classical perceptron is to solve the XOR problem. These limitations can 
be overcome by expanding the classical perceptron to multilayer perceptrons. 
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A combination of a powerful stochastic combinatorial optimization method 
like simulated annealing with the perceptron algorithm was introduced by 
Albrecht and Wong (19], forming the LSA machine. Our work will focus on 
this new combinatorial optimization supervised learning method, and therefore 
the LSA machine will be presented in details in Chapter 4. 

For differentiable activation functions like the sigmoid function or a poly- 
nomial function, backpropagation [315] is the most widely used method for 

training multilayer neural networks. Generally, the term backpropagation is 

used in literature to mean a number of different things like to describe multi- 
layer perceptron architectures, or to describe the training of multilayer percep- 
trons. In the original definition, the backpropagation term is used to evaluate 
the derivatives of the error function with respect to their weights and to uti- 
lize these derivatives to adjust the weights. Basically the backpropagation 

algorithm is based on gradient descent, where the weights are changed into a 
direction that will reduce the error: 

DZ(tV) 
(2.25) 

019 1 

where the training error Z(tg) is 

n 

2 
M, )2, (2.26) 

and 0 is the weight vector representing all weights in the network; di and 
mi are the desired and the network output, respectively. The t in (2.25) 
is the learning rate, and since the equation is always positive, the equation 
2.26 moves into the reduced error direction. The backpropagation algorithm 
iteratively updates weights from step k as: 

tV(k + 1) = ig(k) + AtV. (2.27) 

Thus, one has to calculate AO for each input-output layer. Duda et al. [106] 

proved that, given layers ij, their weights wji, and the input pattern xi from 

units i to j, then Awji = tJjxi implements the backpropagation algorithm at 
each layer as 

wji(k + 1) = wji(k) + 18jxi. (2.28) 

Therefore, a simple backpropagation algorithm for a three-layer network by 

randomly selecting a pattern X for updating weights is given by: 
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procedure backpropagation 
begin 

initialize 0,0,1, k, 
i= layer - one, j= layer - two, m= layer - three 
do 

k: = k+ 1; 
randomly select input pattern x-; 
wji(k + 1) = wji(k) + IJjxj ; 
calculate outputs xj at layer j 

w,,, j (k + 1) = w,,, j (k) + tJ,, xj; 
while VZ(tg(k + 1)) <0 

return tg(k + 1) 

end 

The function Z(tg) induces the error surfaces (187] on the weight space, con- 
sisting of minima, maxima and plateaus. From studying error surfaces we 
can gain information about if the error surface has large plateaus (this means 
that the error varies only slightly as a function of weights leading to slow 
convergence) or if many local minima exist in the landscape (i. e. the neural 
network is unlikely to find global minima). As the starting point, the question 
of weight initialisation has to be considered. The initialisation of weights may 
determine the uniformity or non-uniformity of learning, where uniform learn- 
ing occurs when all weights are reaching their final equilibrium values in about 
the same time. In most cases, however, non-uniform learning occurs, either 
because weight initialisation may be poor or because some characteristics of 
the problem have weights that converge slower. In this case, the learning rate 
is important to be balanced and not to be very fast nor to be very slow, or 
it can be even different with respect to each weight as proposed in [106] for 

multilayer networks training with backpropagation. 

Apart from using the square root error of (2.26) as the criterion for train- 
ing in backpropagation, one can choose other training criterion functions. If 
d, nk, bmk axe the known probabilities of the desired output and the actual 
output of k units for pattern m, then the Minkowski error gives us such a 
criterion: 

nc 
z(, u u) =ZZ Ibmk(X-) - dmk(x-)IR, (2.29) 

m=l k=I 

where R>1. 

Another criterion is the cross entropy that measures a type of distance 

RSITY OF HERTFORDSHIRE LRC 
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between probability distributions: 

nc 

Z(tV) =EE dk In (dmk lb,,, k). (2.30) 
M=l k=l 

Other criterion functions employ complexity measures and relate the com- 

plexity to the criteria that have to be minimized. In such methods, the new 

criterion function tries to balance between network complexity and error on 
the training set by penalizing highly complex models. 

Other approaches to reduce the training error involve methods of eliminat- 
ing weights. Weight decay [3791 is a weight elimination method where after 

each weight update, weights are decayed according to : 

tg(k + 1) = tV(k)(1 - c), where 0<c<1. 

Therefore, only weights that axe needed to solve the classification problem are 
kept. The importance of each weight is utilized in [92,3491. Following NVald's 
[3741 idea for estimating the importance of a parameter in a model, one tries 
to predict how the training error depends upon a weight, eliminating weights 
that have small contribution to the problem's solution. 

As seen for multilayer networks, much appreciation is given to units with 
activation functions that have derivatives. Backpropagation methods can be 

used for estimating weight updates, cf. NVerbos [382] for an overview of back- 

propagation methods. Most of the neural network textbooks deal with pat- 
tern classification by multilayer neural networks [5,50,2G6,307]. Relations 

of neural networks and statistical pattern classification are also discussed in 
[274,305,314,335,377]. 

2.2.11 Threshold Circuits 

Perceptrons are depth-2 threshold circuits consisting of a single threshold gate 
at the root with AND gates at the next level. The basic computing unit is 

the threshold logic unit which was introduced byAlcCullo( gh and Pitts in 1943 
[261]. The threshold unit forms the sum of the inner product between the 
input pattern, which represents XI, X2,..., X,, features, and the connection 
strengths wl,.., w,,. The sum is compared to a threshold 0, and the threshold 

unit outputs only one of two values, which is either 0,1 or -1, +1. The threshold 

unit together with the perceptron learning algorithm can learn two classes, if 

they are linearly separable. Non-linearly separable classes, which are the most 
frequent in real world problems, require more complex decision surfaces and 
can be solved by threshold circuits of a more complex nature, see Section 2.3.3. 



2.3. COMPLEXITY ISSUES OF THRESHOLD CIRCUITS 63 

2.3 Complexity Issues of Threshold Circuits 

The complexity of pattern classification problems can be characterized by the 
following questions: 

" Sample Complexity: How large should the training set be so that one 
can expect good performance in the training and testing phase? 

" Computational Complexity: How much computational effort is required 
to achieve good performance in the training and testing phase? Is there 

a leaxning algorithm that guarantees to find good weights and thresholds 
in polynomial time related to the sample size? 

" Circuit Complexity: What topology or network axchitecture is required 
for expecting good performance on training and test data? 

" Size Complexity: How many nodes axe best describing a function that 
has to be leaxned? 

" Depth Complexity: How many layers are best describing a function that 
has to be learned? 

We briefly discuss these complexity issues. The sample complexity is 

closely related to the VC-dimension [3701, defined by Vapnik and Cherkovski, 

while the combined size and depth complexity defines the depth vs. size pmb- 
lem. 

2.3.1 PAC-Learning and VC-Dimension 

One of the greatest perceived advantages of neural networks, which has been 

one of the primary reasons for the high degree of interest in the field, is the 
ability to generalize. Despite the interest to the field there is little research 
addressing the theoretical analysis of generalisation ability. Experimental re- 
sults in networks tell us only about the generalisation performance of specific 
networks applied to specific problems. Theory on generahsation comes mainly 
from the work of Baum and Haussler [41], who introduced methods for the 
analysis of generalisation based on Valiant's work [367] on learnability the- 
ory of probably approximately correct (PAC) learning, and the work of Vapnik 

and Chervonenkis [370] on the theory of the uniform convergence of relative 
frequencies to propabilities, better known as VC-dimension. 

PAC learning and VC-dimensionality axe closely related to the size of train- 
ing examples used for training a neuron unit, where each example is drawn 
independently according to a fixed distribution on the total available training 
data. A learning function for a class wE 11 is a function f, which, given a 
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sufficiently large sample set, returns a hypothesis h that is a good approxima- 
tion to w with high probability [1781. Defining the sufficiently large sample 
set induces the sample complexity of the learning function, which is the small- 
est sample size guaranteed to achieve good approximation, and the class for 

which there is such a learning function is called uniformly learnable. While 
PAC learning is related to the learnability of a function, the VC-dimension 
influences the speed of convergence and hence is also related with the actual 
number of training examples required. The link between PAC learnability 

and VC-dimension is that a class w is uniformly learnable, i. e. there exist a 
PAC learning algorithm, if and only if the VC-dimension of the class is finite 
[56,178]. 

Theoretical analysis on lower and upper bounds on VC-dimension has been 

performed for some type of networks. Baum and Haussler [39,411 show that in 

a feedforward network with W weights and P computational threshold units 
with n inputs and j units the VC-dimension is bounded 

VC! 5 2-W- log2(e - P). (2.32) 

Moreover, they showed that for 0<c< 1/8: 

Ný: w 1092 
p 

(2.33) 
fM 

meaning that if N patterns can be learned by the network such that a fraction 

of 1- c/2 is correctly classified, then there is a high probability that the 
network on further patterns will correctly classify a fraction of 1-c 

Maas [251] has obtained a lower bound W1092TV for certain types of mul- 
tilayer feedforward network of threshold units. Other tight bounds for specific 
type of functions have been obtained in [35,37,143,209,218,345,3811; see 
Anthony and Bartlett [28] for a review of the field. 

Bounding VC-dimensions is a challenging task in mathematical investiga- 
tions of neural networks which provides a number of sophisticated mathemat- 
ical tools. The bounds, however, tend to be too large, since they provide such 
guarantees of generalisation for any probability distribution of training exam- 
ples and for any training algorithm that minimizes the training error on the 
training examples. Therefore, the VC-dimension is a very general theoretical 
measure of pattern classification ability. The proposed bounds are usually 
unrealistic and with limited practical value for real world problems. Other al- 
ternative methods for calculating more realistic bounds should be considered, 
as in Haussler et al. [161], where a probability distribution was introduced 
for considering the performance of a classifier that implements a Bayes opti- 
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mal classification algorithm [106]. Empirical studies investigating the relation 
of classification ability to paxameters of the problem axe important for more 
realistic VC-dimension bounds. 

2.3.2 Computational Complexity 

Algorithmic complexity presented in Section 3.2 refers to the hardness that 

an algorithm can find an optimal solution to an optimization problem. The 

class NP, and specifically the class of NP-complete problems, denote classes of 
problems that are very hard to solve. In neural network theory, Yannakakis 
[398] proves that finding a stable configuration is NP-haxd. Judd (202] shows 
that for a given neural network and a set of training examples it is NP-complete 
to find a set of weights that can correctly classify all of the training examples. 
Blum and Rivest [551 prove that even for a very small network to find weights 
and thresholds that learn any. given set of training examples is a very hard 

problem. Specifically, given a two-layer network with three-threshold units of n 
inputs, it is NP-complete to decide whether there exist weights and thresholds 
that produce outputs consistent with a given set of training examples. Unless 
P= NP (see Section 3.3.2), for any polynomial time training algorithm (see 

Section 3.3) there will be some sets of training data on which the training 

algorithm fails to correctly classify the data. H6ffgen and Simon [177] deal 

with the problem of learning a probably almost optimal weight vector for a 
neuron, finding that the minimum error cannot even be approximated within a 
constant factor in polynomial time, thus it is an NP-complete problem. They 

conclude that their learning model might be too restrictive and that "learning 

should use more powerful tools than random examples only. It is however 

not quite clear which additional tools are available for the purposes of neural 
learning". Thus, there is a need for new ideas about finding a probably almost 
optimal weight vector. 

2.3.3 
. 

Circuit Complexity 

Similaxly to the importance of the learning methods is the importance of the 

network architecture or topology, where the optimal topology depends on the 

classification problem, as knowledge of the problem is tried to be incorporated 
into the network through the choices of input units, the number of hidden 
layers, selection of feedback connections etc. Selecting the optimal network 
configuration is a hard decision, which can be viewed as a heuristic network 
model selection method. The problem of selecting or adjusting the complexity 
of the network is called mgularization and is a very haxd problem, where little 
or no process exists in the literature. 
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How many computational units, how many layers, how many computa- 
tional units in each layer, what type of connections between the units, what 
type of weights and threshold should be used in each connection? These are 
some questions related to the network complexity problem. Once a network 
topology is set, parameter estimation takes place for designing the classifica- 
tion network. If too many free parameters are used, then one may have a poor 
generalization and, conversely, if few free parameters are used, one may face 

a poor training quality. The problem of finding the smallest network that can 
realize an arbitrary function given a set of m vectors in n dimensions [44] de- 
fines the circuit complexity problem. The circuit complexity problem is of great 
importance for hardware implementations and tries to find tight bounds for 
the number of units used to realize an arbitrary function. Reseaxch on tight 
bounds already began in the fifties in relation to threshold logic. Beiu [44] 

gives a large number of bounds for a number of different network approaches. 
We present here a short list of circuit complexity results: 

Neciporuk (1964) [272]: size >2- (2'/n)(1/2) is the asymptotic lower 
bound on the size of a threshold circuit for "almost" all n-ary Boolean 
functions; 

Lupanov (1973) [250]: size <2- (2n/n)(1/2) - (1 + g[(2n/n)(1/2)j) is the 

upper bound on the size of a threshold circuit for "almost" all n-ary 
Boolean functions realized in a depth-four circuit; 

Allender (1989) [21]: size = nO("g'), stating that any Boolean function 

computable by a polynomial size constant-depth logic circuit with un- 
bounded fan-in is also computable by a depth-3 threshold gate circuit of 
superpolynomial size; 

Razborov and Wigderson (1993) [300]: size > nn("g"), on the size of 
depth-3 threshold circuits which compute polynomial size functions on 
a depth-3 model with AND gates at the bottom level. 

Of particular interest in computer science theory is how the increase in 
depth affects the performance. This is the depth vs size problem, which is 
described in the next section. 

2.3.4 Size and Depth Complexity 

The number of hidden units and hidden layers governs the expressive power 
of the network classifier and the complexity of the decision boundary. If pat- 
terns are linearly separable, few hidden units (even a single threshold unit) are 
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adequate, while the more complicated the problem is, the more hidden units 
or hidden layers are needed. Overfitting may occur in the presence of too 

many hidden units or hidden layers, whereas if too few hidden units are used, 
the classifier does not have enough information and free parameters to fit the 
training data well. The main question is whether to use more hidden units or 
more hidden layers. This forms the depth vs size problem, a difficult and unan- 
swered problem in theoretical computer science. Most reseaxchers relying on 
Kolmogorov's theory [219] decide using more hidden units in a three-layer net- 
work. Since we have seen that no constructive proof of the universal expressive 
power of a three-layer network exists, the question of improving classification 
perfoimance by extending in depth is an open problem. Increasing a network 
in depth also increases the network complexity, and yields complicated network 
architectures. The main problem is how the hidden units at laxger depths will 
be expressed in terms of previous depths. The difficulty of finding leaxning al- 
gorithms for training all layers along with the expressive power of three-layer 

networks gave favor to the decision of not using more hidden layers. Judd 
[201) and Abu-Mostafa [7) favor shallow circuits. Although there exist studies 
relating the minimum size to minimum constant depth [342], there is little 
known about the trade-off relation and, moreover, there is even less known 

about how design paxameters like topology, weights and thresholds influence 

time and generalization performance (44]. 

2.4 No-R-ee-Lunch Theorems (NFLT) 

The No-Fme-Lunch Theomms (NFLT) [391] for pattern classification [392,393] 

suggest that no classification method should be preferred over another classi- 
fication method, not even with respect to random guessing. Which classifier 
performs better is problem-dependent and is determined by the type of the 
problem and by the prior knowledge or information acquired about the prob- 
lem. Thus, if any problem is viewed as a "black-box", no algorithm seems 
to perform best for all types of problems. If it outperforms other methods 
for a class of problems, NFLT implies that it has worse performance on other 
classes of problems, so that the average performance is equal for all classifiers 
(even for random guessing). 

2.4.1 The Original NFLT 

The idea of the NFLT began with the search for a "conservation law in gen- 
eralization" [323,388] like the ones that hold in Physics, such as the con- 
servation of energy, the conservation of momentum, or as the second law of 
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thermodynamics that states that in an isolated system the entropy can never 
decrease (or, equivalently, is always in its maximum state). NFLT gives an 
analogous interpretation in search, optimization and classification, where, if 

any search, optimization or classification problem is viewed as "black-box7 
(the isolated analogous), then no search algorithm, classification or learning 

method is favoured for all types of problems. There exist a class of problems 
where an algorithm performs better than another algorithm, however there 

exist other classes of problems where the same algorithm performs worse. The 

result is that 'for any algorithm, any elevated performance over one class of 
problems is offset by performance over another class" [3911 and therefore an 
algorithm should be tailored to a specific problem. The term No-Free-Lunch 

was introduced by Wolpert in [389,390], but became more widely known by 
the No-Free-Lunch Theorems in optimization [391]. In his work, NVolpert pre- 
sented the original framework for the no-free-lunch, in particular, 

Theorem 2.3 The No-Free-Lunch Theorem If the performance of some 
algorithm al's is superior to that of another algorithm 012 for some set of 
optimization problems, then the reverse must be true for the set of all other 
optimization problems, so that for any pair of algorithms Ck 17 a2 it holds: 

1: P(dmyif, m, ol) 1: P(d. y1f, ml a2). (2.34) 
ff 

where f is the cost function of an optimization problem, and P(dVM If, m, a) 
the performance of an algorithm a iterated m times on a cost function f of 
an optimization problem with cost vectors dIM for samples of size m. 

A proof for the theorem can be found in Wolpert and Macready NFLT for 
optimization [391]. The interpretation of (2.34) is that the performance of 
P(dý, If, m, a) is independent of any chosen algorithm a. 

Wolbert and Macready [3911 also extended NFLT to time-dependent opti- 
mization problems. Schumacher et al. [3311 improved NFLT by proving it in 
a more general setting. 

2.4.2 Supervised Learning and NFLT 

Consequences of the NFLT were dramatic in Machine Learning and in opti- 
mization as it turned out that research of the past decades on general purpose 
"black-box" Machine Learning and optimization algorithms was meaningless. 
For supervised learning, Wolpert showed that if the prior distribution over 
the target functions is uniform and the off-training-set error, i. e. the error on 
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points not in the training set, is taken to be the performance criterion, then 
there is no difference between the learning algorihms [106,393]: 

Definition 2.4 (The expected off-training-set classification error. ) 
Given a fixed training set D, a hypothesis h(x) to be leamed, PA(h(x)ID) as 
the probability that the algorithm A will yield hypothesis h(x) when trained on 
D, F(x) the target function to be learned, P(x) the input x probability, then 
the expected off-training-set classification error of an algorithm A is given by: 

CA(EIF, n) =I: P(x)[i -S(F(x), h(x))]PA(h(x)ID), (2.35) 
x%D 

where the Kronecker 8 function has value I if its two arguments match, and 0 
otherwise; f is the cost function of an optimization problem and P(dyM If, m, a) 
the performance of an algorithm a iterated m times on a cost function f of 
an optimization problem with cost d'7'n. 

The no-free-lunch theorem in supervised learning states: 

Theorem 2.5 (The no-free-lunch theorem in supervised learning. ) 
Let be given two learning algo7ithrns Aj(hjD) and A2(hlD). Then it holds: 

1. For n training points, unifomly averaged over all F, 
CAI (EIF, n) - CA, (EIF, n) = 0; 

2. For any fixed training set D, unifomly averaged over all F, 

CAI (EIF, D) - CA2 (EIF, D) = 0; 

3. For n training points, unifomly averaged over all priors P(F), 

EA1 (Ein) - -A2(Eln) = 0; 

4. For any fixed training set D, unifomly averaged over all priors P(F), 

CAI (EID) - CA2 (EID) = 0. 

Part 1 and 2 state that no learning algorithm is superior for all target functions 
for fixed D and n, whereas Part 3 and 4 axe related to nonuniform target 
function distributions instead of F. 

2.4.3 Implications of the NFLT 

Attempts to explain the NFLT in simpler ways can be found in [182]. The 
NFLT is found to be also difficult to be proven empirically as it is hard to enu- 
merate Ef P(d, ' , If, m, a). Due to its generality, NFLT initiated controversial 
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discussions, from Dembski's [971 interpretation that NFLT violates Darwin- 

ism and natural selection, to more Machine Learning focused approaches and 

optimization problem focused approaches. 
Problems where NFLT is applicable can be found in [85,190,191,254,3311, 

whereas problems where NFLT do not hold can be found in [861 for multiob- 
jective problems, [103,1041 for optimization, [353] for problem description 
length, and [1011 for Machine Learning. Woodward and Neil [394] suggest 
that NFLT does not hold for search algorithms applied to program induc- 

tion due to the universal nature of the mapping between program space and 
functionality space, whereas they suggest a stronger version of NFLT for the 

class of problems where the goal is to minimise a quantity. NFLT have been 

extended to noise prediction [254], to multiobjective optimization problems 
[851, to supervised learning [392,393], to cross-validation in supervised learn- 

ing [147,402], and to early stopping in supervised learning [711. Michalski 

and Tecuci [265] multistrategy approach of combining the best features of two 

or more classifiers into a single classifier is disputed with respect to NFLT 
in [101]. According to [91,384], there is no proof that NFLT hold for the 
NP class, as this would imply NP =P (see Section 3.3.2). Based on this 
fact, many researchers escape NFLT by looking at specific types of problems, 
like NP-complete problems (see Section 3.3.3), which are closer to real world 
applications. 

The debate may continue and the future will decide on how right or wrong 
NFLT are, however, the major contribution of NFLT is that it changed the 

way that researchers should work with their algorithms. NFLT motivated re- 
searchers to focus on finding when their algorithms work better rather than 
trying to beat the rest of algorithms. NFLT motivated also researchers to 
improve their algorithms by searching for and adjusting problem-dependent 
parameters. Under the light of the NFLT, optimization for improved classifi- 
cation should be studied under reasonable restrictions related with the specific 
domain of the classification problem. 



Chapter 3 

Combinatorial Optimization 
Algorithms 

As seen in Section 2.2.8, training involves the minimization of a criterion func- 
tion, which represents the error. Minimization problems and combinatorial 
optimization are closely related and therefore classification problems can also 
be viewed as part of combinatorial optimization problems. As mentioned in 
Section 2.2.10, our approach will combine the classical perceptron algorithm 
with simulated annealing, which is an effective combinatorial optimization al- 
gorithm. The combination is presented in details in Chapter 4, whereas in 
this Chapter our focus is on understanding the characteristics of combinato- 
rial optimization algorithms, the type of problems that they are capable to 
solve, to describe local seaxch and approximation as well as stochastic algo- 
rithms, which axe the main ideas behind simulated annealing. Furthermore, 
we present the axsenal of alternative algorithms for solving combinatorial op- 
timization problems. 

3.1 Optimization Problems 

Optimization problems can be divided according to the type of variables into 

problems with continuous variables and problem with discrete variables, where 
the latter is also called combinatorial optimization [2811. In general terms, the 
word combinatorics, from which the word combinatorial is originated, concerns 
with the study of arrangement and selection of discrete objects. CombinatoHal 
optimization then, is concerned with the determination of an optimal arrange- 
ment or order [233]. Combinatorial optimization can also be viewed as the 
discipline of decision making in the case of discrete alternatives [3]. The al- 
gorithms try to answer a question of type "What is the shortest path? " or 
"What is the minimum (maximum) cost (benefit) from a selection of discrete 

71 
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options? ". The problem usually is a question whose answer is a function of 
several parameters. A solution (optimal or not) to a combinatorial optimiza- 
tion problem requires that a suitable algorithm, when applied to an instance of 
the problem, produces the desired solution [320]. According to [2811, the task 

of solving a combinatorial optimization problem amounts to finding the best 

or optimal solution among a finite or countable infinite number of alternative 
solutions. 

Combinatorial optimization has been a reseaxch field for decades, even for 

centuries according to [3301, where a history of the field from the 18th century 
till the 1960 is presented. In the last decade, our ability to solve large combi- 
natorial optimization problems has been dramatically improved due to the ad- 
vent of powerful computer systems. At the same time, the availability of such 
powerful computers along with reliable software, inexpensive hardware and ad- 
equate languages for modelling complex problems, much faster led to a much 
greater demand for optimization tools [180]. Consequently, the research inter- 

est with respect to reliable optimization methods for larger problems becomes 
increasingly demanding. Although combinatorial optimization problems dom- 
inate the field of optimization, there are also examples of problems where the 

unknown optimal solution might be a continuous quantity like a function or 
a shape of a body [248]. Annotated bibliography of the field can be found in 
Dell'Amico et al. [96]. The next sections are based on Papadimitriou/Steiglitz 
[2811 and Aarts/Lenstra [3]. Early books on combinatorial optimization are 
by Lawler [233], Schrijver [329), and Nemhauser/Wolsey [273]. 

3.1.1 Definitions 

Based on Aarts/Lenstra, [3] we define: 

Definition 3.1 A combinatorial optimization problem is either a minimiza- 
tion problem or maximisation problem and is specified by a set of problem 
instances, also called the problem domain. 

Thus, for the optimization setting we have: 

Definition 3.2 An instance of a combinatorial optimization problem can be 
formalised as a pair (Sp, f), where the solution space SP denotes the finite set 
of all possible solutions, and the cost (or objective) function f is a mapping 
defined as 

Sp --+ 
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The instance (Sp, j) for most combinatorial optimization problems is not given 

explicitly, e. g. by listing all solutions and their costs. Usually, we have a 
data representation of an instance, and as we will see in Section 3.3 we need a 

polynomial time algorithm to verify whether a solution belongs to Sp and to 

compute the cost f for any solution in SP [130]. 

Concerning minimization, which, unless stated otherwise, will be the case 
in our work, the problem is to find a solution sýpt E Sp such that 

f (spt) :5f (s), for all sE Sp. (3.2) 

The s,, t are called globally optimal solutions. Inputs and outputs axe repre- 
sented as strings over a finite alphabet. The number of bits taken to store a 
representation in a computer, as we will discuss in Setion 3.2.2, is taken as the 

size of the problem instance. The solution set is represented usually by a set 
of decision variables whose values have certain ranges or exact values. Thus, 

assigning values to the decision variables creates a solution. The decision vaxi- 
ables axe closely related to the representation model of the problem. If the 

problem belongs to integer programming, as we will discuss in Section 3.1.4, 

the decision variables axe integers [329]. The space of potential solutions to 

a given combinatorial optimization problem instance is usually at least expo- 

nential in the size of that instance [181]. Solution representations are used to 

model neighbourhoods. 

Definition 3.3 A neighbourhood function is a mappingtV :SP -4 2SP, which 
defines for each solution sE Sp a set Ar(s) C- Sp of solutions that are close 
to s in some sense. The set., V(s) C- Sp is the neighbourhood of solution a and 
each iE JV(s) is a neighbour of s. 

A neighbourhood structure that can be searched explicitly is called exact. 
The search for a solution is guided by the neighbourhood function as any 
combinatorial optimization algorithm iteratively tries to find better solutions 
by seaxching the neighbours. This is called iterative improvement, where the 
improvement leads to a solution of lower cost [3]. When such solution is 
found, then it replaces the current solution and seaxch continues, otherwise 
the algorithm returns the current solution, which is called the local minimum 
solution. 

Definition 3.4 A solution st is locally minimal with nspect to Ar, if 

(si) :5f (s), for all iE JV(sj). (3-3) 
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Neighbourhoods much depend on the nature of the problem, and local op- 
timality depends on the neighbourhood function that is used. Finding efficient 

neighbourhood functions that lead to high-quality local minima is one of the 

challenges in optimization algorithms. There is no general rule for constructing 

efficient neighbourhoods, as there are many examples in the literature where 
even for the same problem there exist many different neighbourhood possi- 
bilities. The quality of the neighbourhood function is of major concern in 

combinatorial optimization algorithms, as the algorithms may find a poor lo- 

cal minimum and get stuck in low quality solutions. Therefore, much research 
is concerned with efficiently building neighbourhood structures. 

The solutions in combinatorial optimization problems are evaluated by a 
cost function, which is also called the objective function of the problem. The 

goal is to find solutions with the minimum value of the objective function. 

3.1.2 Classical Optimization Problems 

According to [151], the root of combinatorial optimization lies in economics: 
the planning and management of operations and the efficient use of resources. 
The field of operations research has studied this type of problems in details. 
Combinatorial. optimization problems nowadays can be encountered almost 
everywhere, from the field of economics, engineering, biology, operations re- 
search, and sciences, to specific tasks in stockmarkets, design of marketing 
and political campaigns, classification, positioning of satellites, VLSI circuit- 
ing, layout of mass transportation systems, scheduling, assignments of workers 
to jobs, coding and decoding design, efficient communication networks and so 
forth. The advent of powerful computers is credited for the explosion of the 

research interest in combinatorial optimization and the number of algorithmic 
solutions appeared in the last decades. 

A large number of problems from a wide variety of application fields have 
been treated as combinatorial problems. Among all them the Travelling Sales- 

man Problem (TSP) is the most famous [235]. The TSP owns its success to 
the combination of two features: simplicity of the problem definition and dif- 
ficulty of solution [132]. In this problem, a salesman has to visit all- the cities 
of the configuration space, starting from a home city and retaining the mini- 
mum length of his travel. The TSP problem belongs to a category of hard to 

solve problems where the computational effort grows non-polynomially with 
the size of the problem. Such problems belong to a category of NP-hard 

problems, where optimal solutions cannot be obtained in reasonable amounts 
of computational time [130,1311. A problem A belongs to NP, if it can be 

solved in non-deterministic polynomial time, i. e. AE NP; A problem BE 
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NP is NP-complete, if VA E NP: A can be represented as a B-problem and 
the representation A --+ B takes polynomial time deterministic. We now will 
briefly present selected examples from combinatorial optimization, trying to 

cover most properties of the related theory. The following paragraphs contain 
brief summaries of the selected classical optimization problems. 

Travelling Salesman Problem (TSP) 

The most famous combinatorial problem, as mentioned previously, is the Týav- 

elling Salesman Problem (TSP). An instance of the TSP is formed by a given 
integer n>0 and the distance between every pair of the n cities, in the form 
of an nxn matrix [dij), where dij E Z+. A tour is a closed path that visits 
every city exactly once. The problem is to find a tour with minimal total 
length. If v(j) is a cyclic permutation v representing the city visited after city 
j, j=1 .... n, then instance (SpO is defined as 

Sp = fall cyclic permutations v on n nodesb (3.4) 

and the cost function is a mapping of v to 

dj, (j). (3.5) 
J=l 

A neighbourhood may be defined as 

Nk U) = Ip :pE Sp and p can be obtained from f as follows: remove k 

edges from the tour; then replace them with k edges}. 

To find a k-optimum tour [240], which is a locally optimal solution with re- 

spect to the k-change neighbourhood, in an instance of the TSP, we define the 
function I(t) for improvements, where t r= Sp and 

any sE Nk (t) such that f (a) <f (t), if such an a exists; (3.6) 
"No", otherwise. 

Meaning, that I(t) searches Nk(t) for a better tour s. If one solution is found, 

then it returns the improved tour; otherwise it returns that "no" such tour was 
found. Figure 3.1 shows an example of a tour f and another tour gE N2 (f ) for 

an instance of nine cities, following a 2-change strategy and a distance matrix 
determined by Euclidean distance between points in the plane. 

A general iterative algorithm for finding a k-optimum tour is 
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Figure 3.1: 'Ravelling Salesman Tours. 

procedure k-optimum 
begin 

t: =initial tour 

while I(t)54 "no" 
do t: =I(t); 

return t 

end 

Graph Optimization Problems 

A number of combinatorial optimization problems come from graph theory 

and mainly from directed graphs, trees and networks. A graph G is a pair 
G= (V, E), where V is a finite set of nodes (called vertices) and E has sub- 

sets of V of cardinality two (called edges). When the graph has directions 

assigned to its edges, then it is called directed graph and the edges are also 

called arcs. A tree is a special graph, which has a path between any two 

nodes, but without cycles. A network N= (s, t, V, E, w) is a directed graph 

with a source sEV as starting point and a terminal tEE and weights 

W(u, V) E Z+, (u, V) E E. Usually, the weights denote capacities or distances 

between the nodes. Classical combinatorial problems in graph optimization 

are: the minimal spanning tree problem (MSTP) [2811, the shortest-path prob- 
lem (SPP) [100,118,3761, the Max-Flow Problem (MFP) t1231, the Min-Cost 

Flow Problem (MCFP) t123,2331 and the Graph Matching Problem (GMP) 

12471. 

String Matelfing Problems 

The human DNX can be viewed as a very long string over a four letter alphabet 
t A, C, G, T 1. String algorithms are algorithms used for matching a certain 
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string sequence on the DNA sequence or used to find the shortest string that is 

a good approximation to the original DNA string after deciphering the original 
string by removing overlaps of short string sequences. The latter problem is a 
NP-haxd problem (see Section 3.3) formalized by Li [238] and referred to by 
Va, ziravi [372] as the shortest superstring problem 

Definition 3.5 Let a finite alphabet E and a set of n strings S= {s sn} 
g E+, the shortest superstring problem is to find ashortest string that contains 

each si as a substring. 

Linear programming is used by Blum et al. [54] for approximating the solution 
of the above problem. 

Scheduling Problems 

Scheduling is a class of combinatorial problems that is concerned with opti- 
mally executing a given set of tasks by using several processors, resources and 
constraints such us priorities, deadlines etc. (82]. The objective function is 
usually the total processing time between the start of the execution of the 
first task and the end of execution of the last task. As in other combinatorial 
problems, the problem is a minimization problem. Generally, this problem 
belongs to the category of hard problems. Many reseaxchers have attacked 
the problem with feasible algorithms. Examples are Lenstra et al. [237], Hall 
[159), Vaessens et al. [366], and Steinh6fel et al. (3511. 

The Satisfiability Problem 

Satisfiability is a problem in mathematical logic which decides whether a 
Boolean formula can output a true value, i. e. it is satisfiable. A Boolean for- 

mula is a Boolean expression, which is formed by the combination of Boolean 
variables x with the logical operations AND (denoted as multiplication -), OR 
(denoted as addition +), and NOT (denoted as a Boolean variable x overlined 
7). An example of Boolean formula is: 

(XI +Y2 +X3 +74) ' (XI +X4)'(X2 +73)'(X3 +X4)- (3.7) 

A Boolean formula consisting of many subformulas (called clause$) connected 
by AND's is called a conjunctive normal form. An instance of the conjunctive 
normal form satisfiability problem is: 

Given j clauses Cl,... Cj, is the conjunctive normal form CI - C2... - Cj sat- 
isfiable? 
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One solution to the problem is to try all possible assignments. However, this 

is not an efficient algorithm as it leads to 2' assignments which, as we will see 
in Section 3.3 requires exponential time. Satisfiability is a hard combinatorial 

problem, and it played a crucial role in the formulation of complexity theory. 

It was the first problem to be shown to be NP-complete [831. To determine the 

satisfiability, each of the clauses in a Boolean formula should return true (de- 

noted as value 1). So the first clause in (3.7) should be (xi +T2 +-T3 +74) --1' 1- 

Replacing value 1 with a value y and trying to maximise y turns the satisfiabil- 
ity problem into a maximisation problem. The formula is satisfiable, if y ý! 1 

exists. In such a way, each clause produces a constraint for the satisfiability 

problem. 
Some algorithms for the satisfiability problem can be found in Johnson 

[199], Yarmakakis [397], Goemmans and NVilliarnson [1411, and Spencer [348]. 

3.1.3 Optimality vs Computation Time 

As previously described, combinatorial optimization is concerned with prob- 
lems where the set of feasible solutions is discrete. Many combinatorial op- 
timization problems are hard to solve problems, forming a special class of 
problems called NP-hard problems (see Section 3.3.3) 

Searching a solution for an NP-hard problem is guided by three approaches 
[3]: 

1. Using enumerative methods that guarantee an optimal solution regard- 
less of the computation time. 

2. Using approximation methods that provide a near optimal solution in 

reasonable polynomial time. 

I Using some type of heuristic technique, usually tailored to the problem, 
without any a priori guarantee of optimal solution or computation time. 

Therefore, according to the approach of solving NP-hard problems, two 

classes of algorithms can be defined [2,320]: i) exact algorithms (also known 

as enumerative or just optimization algorithms, where the optimality is more 
important than the computation time needed to solve the problem. i! ) approx- 
imation algorithms (also called heuristic algorithms), where a quick obtainable 
and sub-optimal solution is more important than finding the optimal solution. 
Examples of this class axe local search and stochastic or randomised algorithms. 

The preference of optimality at the risk of very large (probable impractical) 

computation time leads to working with optimization algorithms, while the 
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preference of algorithms that quickly reach to a good solution at the risk 
of sub-optimality leads to working with approximation algorithms. If the 

problem size is large, then enumerative methods, which axe based on counting 
the solutions, axe impractical and approximation methods seem to be the only 
way to find good solutions. The most significant optimization problems are in 

practice hard to solve by using enumerative techniques. For these problems we 
must resort to approximation algorithms, which usually search in a subspace 
of the total space and find a "good" solution in that space, rather than the best 

solution to the total space. The advantage is that the time requirement is small 
compared to enumerative methods. For example, the point-to-point shortest 
path problem admits O(n2) algorithms, where n is the number of nodes in 
the graph. In contrast, the travelling salesman problem, which asks for a 
shortest closed path that visits every node exactly once, is widely considered as 
unsolvable by polynomial algorithms and belongs to the class of NP-complete 

problems. These problems have naturally attracted the attention for many 
years by researchers. 

We shortly present representatives of popular enumerative methods, and 
we describe approximation algorithms in Section 3.4, and stochastic algorithms 
in Section 3.4.4 which axe in the focus of our work. 

3.1.4 Selected Optimization Algorithms 

Representatives of optimization algorithms can be found in linear program- 
ming, dynamic programming and branch-and-bound [186]. Whenever it is 

possible to exhaustively build up all solutions, we make the optimum choice 
from all of them. In this case, the algorithm that makes the best choice is 

called greedy algorithm, and the solution obtained a greedy solution. When 

the problem increases in size and the global optimum is feasible, other methods 
described below are more practical than greedy algorithms. 

Linear Programming Algorithms 

Linear programming(LP) studies problems where f in (Sp, ý is linear and 
the set Sp is specified by using linear equalities and inequalities. If (Sp, h 

is non-linear, then we have the more general type of non-linear programming 
problems. Geometrically equalities and inequalities along with the objective 
function form linear constraints and define a convex polyhedron, where the 

optimum is always attained at a vertex of the polyhedron. The most well 
known algorithm for solving linear problems is the simplex algorithm [281]. 

Simplex algorithms work by starting from an initial solution at a vertex of 
the polyhedron and walking along edges to vertices of the polyhedron with 
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successively better values of the objective function. Although the algorithm 

can be guaranteed to find the global optimum, it is possible that it takes a 

number of steps that grows exponentially in the problem size, having a poor 
worst-case behaviour. Khachian [2121 first proved the existance of polynomial 
time algorithms for LP, i. e. LP E P, whereas Karmarkar's algorithm [207] 

propose a projective method with proven polynomial time complexity, which 
is reasonably efficient compared to the simplex algorithm. However, Shrijver 
[329] points out that the quest for a simple polynomial algorithm for linear 

programming is still very much the major open problem in this field . 
Linear programming, where the objective function has quadratic terms, 

is called quadratic programming, while linear programming with integer vari- 
ables forms a special type of problems called integer programming. In contrast 
to linear programming, which can be solved efficiently in the worst case, in- 

teger programming with bounded variables are NP-hard problems. Integer 

programming and combinatorial optimization can be found in Nernhauser and 
Wolsey [273] and Shrijver [329]. Linear programming can also be tackled by 

approximation algorithms [372]. 

There are many books on linear programming [80,206,329]. Extensive 
discussion of linear programming and combinatorial optimization can be found 
in [11,84,246,281]. 

Dynamic Programming Algorithms 

In dynamic programming, the method is to iteratively break up the prob- 
lem into subproblems until some simple case is reached that can be solved 
efficiently. In this case, optimal solutions for subproblems form the optimal 
substructure, based on which the optimal solution of the overall problem can 
be found. An introduction to dynamic programming can be found in [102]. Ex- 

amples of using dynamic programming for classical combinatorial optimization 
problems can be found in [82,167,168]. 

Branch-and-bound Programming Algorithms 

The idea of branch-and-bound is to compute upper and lower bounds on the 
optimum value so that the number of enumerative steps can be reduced sig- 
nificantly. The terms branch and bounding describe the splitting of the main 
problem into subproblems (branching) and the relaxation (bound) method for 
the calculated bounds used to construct a proof of optimality [82]. An early 
review of branch and bound programming can be found in [234]. Applications 
to the TSP and to scheduling problems can be found in [1921 and [242]. 
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The complexity of an algorithm is a function of the size of the input and is 
defined as the worst case behaviour of the algorithm on any of these inputs. 

3.2.1 Time Bounds 

Most of the classical optimization problems as presented in Section 3.1.2 admit 
some algorithms that solve the problem. However, the time requirements is 

problematic as the size of the problem increases for these algorithms [281]. 
Time bounds may render useless an algorithm that in principle could correctly 
solve any instance of the problem. For example, in the TSP problem the 
number T of tours for n cities is 

(3-8) 

This means that for finding the best tour in the 25 capitals of the members 
of the European Union, a computer has to exhaustively search the number 
of 3x 1023 tours, performing at least the same number of steps. This may 
require years to complete, and so travellers for many years in the future have 

still to employ approximation methods to find a good tour around all European 

capitals. 
For solving exhaustively the MSTP, there exist nn-2 spanning trees with 

n nodes [113], creating also an unsolvable seaxch problem. 
Improvement in running time can be achieved for most combinatorial op- 

timization problems by using heuristics, randomisation algorithms, new data 

structures and methods for dealing with noisy data [11]. 
To deal with time bounds, the following definition is helpful: 

Definition 3.6 Let f (n) E Z+ and g(n) C R+. The rate of growth of com- 
plexity of an algorithm may be upper bounded by O(g(n)) if there exists a 

constant q such that for large enough n, f (n) :5q- 9(n). Then we write 
f (n) = O(g(n)). 

Using this notation, we may say that the rate of growth of the complexity 
of the Dijkstra algorithm [100] to solve SPP from Section 3.1.2 takes O(n 2) 

time, while the Floyd-Warshall [118,376] algorithm takes O(n3) time. 

3.2.2 Size and Complexity 

In combinatorial optimization, the input can be a graph, a family of finite 

sets, matrices or vectors. This input, after representing or encoding it in an 
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appropriate format, defines the input size of the problem. By encoding the 
input we mean to represent it as a sequence or string of symbols over some 
fixed alphabet, like bits, integers or ASCII characters. Then the size of the 
input is the length of the sequence or string. 

The size of an integer for example, is the numbers of symbols required 
in order to represent it. The size to represent an integer n is defined as the 

smallest integer h such that h> 109B n with respect to basis B. We then say 
that the size required to represent an integer n is E) (log B n), where B>2 and 
E) is defined as: 

Definition 3.7 Let f (n) E Z+ and g(n) E R+. The rate of growth of com- 

plexity of an algorithm may be bounded by E)(g(n)) if there exists constant qj 

and q2 such that for larye enough n, qj - g(n) :5f (n) :5 q2 - g(n). Then we 

write f (n) =e (g(n)). 

As 
109B n= 

log n (3.9) 
1 og B 

and log B is a constant, we can finally say that the size required to represent 
an integer n is E) (log n). 

The size of neighbourhoods for the TSP problem with k-change strategy 
has a perturbation of order k and therefore the size of neighbourhoods are of 
size O(nk). Thus, a polynomial search for exact neighbourhoods cannot exist. 

3.3 Complexity Classes 

In the framework of complexity theory, the aim is to find the optimum in 
(reasonable) polynomial time. Since in combinatorial optimization it is not 
possible to list all solutions and to choose the optimum, one has to exploit 
the special structure of the domain. It is universally accepted that polynomial 
time algorithms axe practical algorithms. In many cases, when the objective 
function is too complicated, the constraints are too complex, or the problem 
size is too large, it might be impossible to find an optimum solution not even in 

exponential time [151]. The notion of efficient algorithms denotes algorithms 
that require a number of steps that grows as polynomial in the size of the 
input. Failures to develop such efficient algorithms are apparent for a number 
of combinatorial optimization problems, naming the TSP as the most famous 

one. These problems form the special class of NP-complete problems, which 
are hard computational problems. There exist a number of complexity classes 
according to the hardness of solving a combinatorial optimization problem. 
These classes are described briefly in the next sections. 
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Definition 3.8 The class of combinatorial optimization problems that can be 

solved by a deterministic polynomial-time algorithm is denoted by P. 

Problems from P axe candidates for having efficient algorithms, although 
many depends on the power k in O(nk), k =constant. Edmonts and Karp 
[108] showed that for the MCFP and MFP (see Section 3.1.2), one needs no 
more steps than a polynomial function of the number of bits of the problem 
description, i. e. they proved that there exist a polynomial algo7ithm for solving 
the problems. Papadimitriou and Steiglitz [281] show that linear problems 
like flow and matching problems can be solved in polynomial time. Spencer 
[348] investigated polynomial time algorithms for the satisfiability problem of 
restricted inputs. 

Definition 3.9 A problem R belongs to NP, if there exists a non-deterministic 
Turing machine (algorithm) that solves R on instances of size n in polynomial 
time O(nk). 

Krentel [220] uses the term NP-optimization problems to describe combi- 
natorial optimization problems that consist of 

*a set of valid instances; 

a set of feasible solutions for each instance, which is of length bounded 
by a polynomial in the size of input and there exist a polynomial time 

algorithm that decides whether a solution is in the set of feasible solu- 
tions; 

9a polynornially time computable objective function; 

the property that the problem is a minimization or maximisation prob- 
lem. 

A decision problem can be associated with every NP-optimization problem 
by giving a bound on the optimal solution [372]. The answer to the decision 

problem is yes, if there is a feasible solution of cost :5u, where uER. 

3.3.2 NP-complete Problems 

Polynomial-time reductions have been used by reseaxchers to compare algo- 
rithms. By the term polynomial-time reduction from problem R, to problem 
R2 we define a polynomial-time algorithm that solves R, by making a polyno- 
mial number of calls of a subroutine that solves R2- Polynomial time reduc- 
tions are important because if problem Ri polynomiaJly reduces to R2, and 
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there is a polynomial time algorithm for R2. then there is a polynomial algo- 
rithm for R, [281). Polynomial transformations leading to the NP-complete 

class as follows: 

Definition 3.10 An optimization problem R1 is polynomially transformed to 

problem R2) if given any string x, we can construct a string y within polynomial 
in the size of x time such that x is an instance of R1, if and only if y is an 
instance of R2- 

Definition 3.11 An optimization problem RE NP is NP-complete, if all 
other problems in NP polynomially transform to R. 

We conclude immediately PC NP . The notion of efficient algorithms 
requires a number of steps that grows as a polynomial in the size of the input. 
NP-complete problems are characterized by the following properties [2811: 

1. An NP-complete problem cannot be solved by any known polynomial 
algorithm. 

2. If there is a polynomial algorithm for any NP-complete problem, then 
there axe polynomial algorithms for all NP problems. 

Although many researchers yield that there can be no polynomial algo- 
rithm for any NP-complete problem, nobody has been able to prove it. As 

stated before PC NP . However, if P=NP, then all the combinatorial op- 
timization problems will become polynomial problems. If we also consider 
the large and very diverse collection of NP-complete problems, for which for 

many years of research no polynomial time algorithm could be found, it is not 
surprising that it is widely believed that P: A NP. 

The practical importance of the NP-complete class is that it is gener- 
ally believed that these problems are computationally intractable, and if an 
algorithm correctly solves an NP-complete problem, then it will require an 
exponential amount of time. Practically, this will be inefficient even for small 
instances. 

Proofs for the NP-completeness of various combinatorial optimization prob- 
lems can be found in [83] for the satisfiability problem, in [3651 for the schedul- 
ing problem, in [208] for the TSP and the three-dimensional matching prob- 
lem. Knowing that a problem is NP-complete is useful as a starting point 
for to prove the NP-completeness of other problems. Karp [2081 showed the 
importance of NP-completeness by presenting a diverse collection of computa- 
tional problems; [130] contains hundreds of NP-complete problems. An impres- 

sive overview of combinatorial optimization problems along with a complexity 01 
analysis is presented in [311. 
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In order to prove that a problem is NP-complete, we can use Cook's Theorem 
[83] and show that: 

1. The problem R is in NP. 

2. All other problems in NP polynomially transform to R. 

For the second, we only need to show that a known NP-complete problem 
is polynomially transformed to R, and as polynomially transformability is 
transitive, this will be sufficient. The concept of strong NP-hard problems is 
defined by Vaziravi [372] as: 

Definition 3.12 A problem R is strongly NP-hard if every problem in NP 

can be polynomially reduced to R in such a way that numbers in the reduced 
instance are always written in unary. 

Most known NP-hard problems are in fact strongly NP-haxd problems. Once 
a problem is known to be NP-complete, then the goal moves from finding 
an exact solution to the goal to solve it in polynomial time with approxi- 
mate or good solutions. The NP-complete class with its intractability has led 

researchers to change the strategy and to find alternative methods such as 
approximation algorithms, stochastic algorithms, local search and many other 
heuristics methods, as discussed already in Section 3.1.3. 

3.4 Approximation Algorithms 

Since the eaxly development of operations reseaxch, heuristics were used for 

solving optimization problems in an approximate way. The quality of an ap- 
proximation method is measured by comparing the value of the objective func- 
tion at the approximation solution with its value at the optimum solution. 
We define as performance ratio the supreme SapplSpt of the approximation 
over the optimum solution. Approximation with guaranteed performance ratio 
characterize situations in which the approximate solution is provably close to 

an optimal solution, for example within a factor bounded by a constant or by 

a slowly growing function of the input size [31). 
Approximation algorithms produce solutions that are guaranteed to be 

a fixed percentage away from the optimum. The notion of approximation 
algorithms was first introduced by Gaxey et al. [128] and Johnson [199]. Ap- 

proximation algorithms axe a very active reseaxch area. Theoretical aspects, 
applications and recently published books related to approximation algorithms 
can be found in [31,175,372]. 
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Approximation algorithms form a large class of algorithms that include 

a number of other type of algorithms. Representatives of apprcodmation al- 
gorithms are: local seaxch, stochastic (or randomised) algorithms, simulated 
annealing, genetic algorithms, tabu search. Some of these methods are based 

on metaphors from physics or biology. During the past decades, the number 
of heuristic methods for attacking combinatorial optimization problems has 

enormously increased. In [302], one can find a review of such methods. In 
the literature, approximation algorithms are also known as heuristic methods 
[320], but usually heuTistics are methods without a formal guarantee of per- 
formance [281]. A collection of heuristic methods for the TSP can be found in 
[3121. 

The division between optimization and approximation algorithms is some- 
times not very strict. Some algorithms can be used in both ways. Simulated 

annealing, for example, can be asymptotically viewed as an optimization algo- 
rithm, however, in practical implementation it behaves as an approximation 
algorithm [2]. 

Another approach in combinatorial optimization distinguishes [21 between 

general and tailored algorithms, where general algorithms are applicable to a 
wide variety of problems and may be also called problem independent, while 
tailored algorithms are problem-specific algorithms. High quality general ap- 
proximation algorithms are desirable as they are fast, with high quality of 
results and applicable to a variety of problems. However, NFLT [391] show 
that there is no such algorithm that is problem independent and can approx- 
imate any combinatorial problem without having to adjust to a number of 
problem parameters. 

3.4.1 Heuristic Search Methods 

Problems that are considered too complex to be solved to optimality have to 

employ heuristic techniques to search for good solutions that approximate the 

optimal solution. Heuristics are now an established method to prove optimality 
within a specified tolerance as good bounds are obtained early in the algorithm, 
and they provide good solutions to problems for which current algorithms are 
incapable of proving optimality within reasonable time [1801. 

Constructing a feasible solution in a subset of the problem and then iter- 

atively improving it by local moves and swaps was the first heuristic concept 
and is called local search. Local moves depend on the neighbourhood structure 
of the current solution, and improving moves are toward those neighbours that 
provide a better value of the objective function. The quality of the solution in 
local search is determined by the quality of the local optima found so far by 
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the algorithm. There axe cases, where the local search algorithm is trapped 
into local minima that provide a bad quality solution to the overall problem. 
Nature inspired reseaxchers to design heuristic methods that are based on 
analogies of the natural world, like properties of materials, natural selection, 
neural processing or leaxning properties that can be found in animals. 

Based on these analogies from the natural world, the simulated anneal- 
ing analogy is based on the property of annealing materials that describes the 

process when the disordered paxticles after some time are reaching a low energy 
ordered state. In combinatorial optimization terms, the concept is to slowly 
converge to a feasible solution by inserting some randomised moves that de- 

grade the solution. The probability that such moves will be taken decreases as 
the algorithm progresses, simulating the cooling part of the annealing method. 
Similarly, genetic or evolutionary algorithms base its analogy to properties of 
natural mutation. In combinatorial optimization terms, every feasible solu- 
tion is equivalent to a DNA string, and each such a string is assigned a value. 
Future generations of the population with good values are evolving and the 
mating of two individuals depends on their objective function values. Mating 

creates a new solution, which depends on the attributes of each paxent. The 

process iteratively converges to good solutions. Artificial neural networks axe 

an analogy based on models of the brain, as discussed already in Section 2.2.1. 
Their essential goal is to recognize patterns and to learn good responses to a 
given pattern. 

Other methods to obtain good solutions to combinatorial problems de- 

scribed in the literature axe tabu search and Boltzmann machines. The follow- 
ing paragraphs contain brief summaries of these search methods. 

3.4.2 Local Search 

If the problem size or lack of detailed problem information do prohibit the use 
of exact algorithms, local search is one of the alternative methods. The method 
provides a robust approach to obtain high-quality solutions to problems of 

realistic size in reasonable time. A local search algorithm starts with an initial 

solution and then searches its neighbours iteratively for improvements, i. e. for 

a better solution with improved cost. This is done by a generation mechanism 
that generates from the current solution the neighbours to be searched in the 

next step. We have already used in Section 3.1.2 a local search algorithm for 

finding a k-optimum tour in the TSP. 

Local search is an active research area with theoretical and empirical 
knowledge, however, the area has not a complete theory unification (3]. Two 
issues related to local search axe important [3981: a) the quality of solutions, 
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i. e. how good are the local optima for a chosen neighbourhood structure, and 
b) the complexity of the heuristic, i. e. how fast can the algorithm find a local 

or global optimum. Between the two issues there is a clear trade-off. The 

larger the neighbourhood structure, the better the quality of the local optima, 
but the worse is the complexity of the algorithm. Local search algorithms 

should balance between the two issues. The design of a good local search al- 

gorithm remains an experimental art, as only a few techniques and theoretical 

principles have been identified [3]. 

Local search has a number of limitations [324], e. g. local search may get 
stuck in poor quality local optima. Selecting a starting point and a neighbour- 
hood structure is crucial for local search. Several researchers have investigated 

a multistart approach, however, with no major successes [4]. The dilemma of 
large neighbourhoods promising to provide better local optima against the 

smaller neighbourhoods that find faster the local optima leads to resolving 
this problem becoming very much an art to design efficient local search algo- 
rithms. Moreover, large neighbourhood structures are mostly independent of 
the starting solutions and their quality, while smaller neighbourhood struc- 
tures very much depend on their starting solution and its quality [281). Thus, 
biased or randomised starting points pose another problem. Another ques- 
tion in local search is how the neighbourhood is searched for local optima. 
One method is the first improvement method, where a change is accepted 
whenever it is found, and the method best improvement searches the entire 
neighbourhood structure for the solution with the lowest cost. Local search 
can generally be found to be faster for first improvement. Even the search 
order in the neighbourhood structure affects the efficiency. One can order 
the neighbourhood randomly, producing randomised local optima when first 

improvement is used, or the ordering can be indexed. Another question in 
first improvement local search is how a new neighbourhood search will restart. 
One method is to restart from the beginning of the ordering, and the other is 

to keep track of the point where the last search left off after gone around a 
circle of the solution; of why it is called circular searching. 

A formalization on local search can be found in [321]. Early applications of 
local search for the TSP can be found in [90,240,304,3801 and Nicholson [275], 

which also covers scheduling problems. Other sophisticated attacks to the TSP 

with local search methods can be found in Fredman et al. [1201, in Reinelt 
[303], and in Bentley [451. Scheduling problems and local search algorithms 
based on simulated annealing, genetic algorithms and other approaches can be 
found in Vaessens et al. [366]. Johnson, Papadimitriou and Yannakakis (200] 
introduced a complexity theory for local search. Aarts and Lenstra [3] have a 
detailed review on local search methods in combinatorial optimization. 
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Local search owns its success to the fact that from local search many 
variations have been developed and new algorithms and methods have been 

generated and modelled over the past decades. Examples axe the current pop- 
ulax simulated annealing, genetic algorithms, tabu search and some variations 
of neural networks. Maintaining the main feature of the classical local search 
algorithm, which is the iteration among neighbourhood solutions, the quality 
of the results can be improved if we introduce a more complex neighbourhood 
structure in order to have a larger solution space for exploration. Examples 

are the large-step Markov chains [257]. Also solvable classical problems can 
be viewed as local search problems with exact neighbourhood structure that 
can be searched efficiently [398]. Another improvement of the local search 
algorithm yields if we accept transitions that not only decrease the cost func- 
tion, but also for a limited number of transitions increase the cost function. 
This feature of deterioration is embedded into a number of search algorithms 
as simulated annealing, tabu search, genetic algorithms and neural networks. 
The main advantage is initial solution independence and larger search in the 
configuration space leading to a better quality of results. 

The increase of computer resources together with the use of sophisticated 
data structure of local search methods have led to the successful handling of 
many complex real world problems, establishing local search and its methods 
as a strong competitor of the field. 

Simulated Annealing 

The analogy of the physical process of annealing, in which a pure lattice struc- 
ture of a solid is made by heating up the solid until it melts and then slowly 
cooling it down until its structure solidifies in a low-energy state, has inspired 
Kirkpatrick, Gelatt and Vecchi [213] and 6erný [73] to introduce simulated 
annealing. Simulated annealing is a randomised neighbourhood search algo- 
rithm. Better cost neighbours, once identified, are always accepted. Also 

neighbours with worse costs axe accepted under acceptance probability as- 
sumptions, which gradually decrease in the course of the algorithm's execu- 
tion. The acceptance probability is controlled by a set of parameters that 

play the role of the cooling scheme, and the way of controlling the parameter 
is called the cooling schedule. 

Simulated annealing has been widely used for attacking optimization prob- 
lems with considerable success [2]. Simulated annealing overcomes the disad- 

vantages of local search algorithms as it finds high quality solutions, which do 

not strongly depend on the initial solution. 
Since the core of our work is related to simulated annealing, we will go 
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into more details about the method in Section 3.5. 

Tabu search 

Tabu search [139,140] is based on keeping track of recent moves and making 
them forbidden for a given period of time. The algorithm is choosing among 
feasible moves that improve the objective function. If no improving moves 
are possible, the algorithm selects moves that degrades the solution. The 

next solution visited is always chosen to be a legal neighbour of the current 
solution with the best cost, even if that cost is worse than that of the current 
solution. The set of legal neighbours is restricted by a tabu list, which is 
dynamically updated during execution. It is designed in such a way that it 

prevents going back to recently visited solutions and defines solutions that are 
not accepted within the next few iterations. Tabu search is usually tailored 
to a given problem. This is a weakness of the algorithm, as there is little 
theoretical knowledge that guides the tailoring process, and one has to resort 
to the available practical experience [3]. Tabu search has been successfully 
applied to a number of problems [170]. 

Genetic Algorithms 

Holland [179] introduced an approach called genetic algorithm, which uses con- 
cepts from population genetics and evolution theory to construct algorithms 
that try to optimise the fitness of a population through recombination and mu- 
tation of their elements [3]. The approach has been the basis for a number of 
variations like the genetic local search by Miihlenbein et al. [271]. 

Neural Networks 

Over the years, many researchers have investigated the use of neural networks 
for solving combinatorial optimization problems. An overview of neural net- 
works applied to combinatorial optimization is given in [245]. Many neural 
models have been proposed which differ in the network architecture and the 
computational model used. An overview of such models can be found in 
[2,163,166,171]. Among the most famous neural networks are Boltzmann 

machines [173,174] and Hopfield networks [183], which both can be defined in 
terms of local search; cf. Section 2.2.5. 

Boltzmann Machines 

Boltzmann machines are neural networks of simple computing elements, called 
units, that can have binary valued states representing either an on or an off 
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state. The units have real valued strength connections and a consensus func- 
tion gives a quantitative measurement for the fitncss of a global configuration 
determined by the states of all units. Boltzmann machines can be considered 
as a model for a massively parallel implementation of the simulated annealing 
algorithm [2). 

3.4.3 Approximation Performance 

The complexity for many optimization problems may require a computational 
time that grows non-polynomially with the size of the problem (2]. As a 

consequence optimal solutions cannot be obtained in reasonable amounts of 
computational time for many combinatorial problems. As mentioned at the 
beginning of Section 3.4, approximation algorithms axe one way to tackle this 

problem. 
The analysis of worst-case or average case error bounds is used for evalu- 

ating the performance of an approximation algorithm. The analysis may be 

theoretical or empirical. Empirical worst-case analysis can be the study of the 

robustness of an approach in practice. The performance of an approximation 

algorithm can be quantified by the running time and the solution quality, The 

running time is usually counted by the number of time units the algorithm 

needs to find a solution on a specific computer, or it can be determined by the 

number of iterations for finding a solution. The solution quality is measured 
by the ratio of its cost value to that of an optimal solution, or if that cannot 
be easily computed, then to some bound of the optimal value [3]. 

The theoretical concept of worst-case error bounds can be defined as follows 

[281,372]: 

Definition 3.13 Let 3 ý: 0. An algorithm A is a 6-approximation algorithm, 
if on each instance I of the problem R, A produces a feasible solution S(I) 
such that, if we denote by N(I) the optimal solution of instance I, it holds: 

If (, q M) -f WIM 
< (3-10) 

f ('§(I)) 

for all instances 1. 

Sometimes 8 is a function of the input in order to describe the worst case behav- 
iour of an approximation algorithm, leading, for example, to n-approximate 
algorithms, or In n-approximate algorithms for O(n) and O(Inn) worst case 
behaviour, respectively. Equation 3.10 reflects the algorithmic behaviour on 
the most pathological instances. This may force us to further explore the 

combinatorial structure of the problem and to discover better algorithms for 
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exploiting this structure. The process of designing an approximation algo- 
rithm is a process of unravelling the combinatorial structure of the problem 

and then finding algorithmic techniques that exploit this structure. This is 

also the main idea of the No-Free-Lunch Theory [391). 

Algorithms with high error bounds may be good algorithms for typical 
instances of the problem. It might be the case that we have algorithms with 
error bounds on typical instances of a small magnitude, e. g. 27oý5%, even 
though their worst case error bounds is much higher. An example of such a 
situation is the classical local search algorithm. For many years, the classical 
local search algorithm has been observed to perform well in practice, but badly 

in the worst case for many combinatorial optimization problems [3611. In any 
case, an approximation algorithm "should be viewed as a core algorithmic 
idea that needs to be fine tuned to the types of instances arising in specific 
applications" [372]. 

Approximation algorithms for NP-complete problems is a very active re- 
search area. A first review of related research can be found in [129]. Appli- 

cations to combinatorial optimization problems can be found in [82,1591 (for 

scheduling problems), Goemans and Williamson [141] and Yarmakakis [397] 
(for the satisfiability problem ), and in [189,199,317,318]. Recent books 

on approximation algorithms axe [31,175,372]. These developments raise 
hopes that in the future we will have a comprehensive understanding of the 

approximability of NP-hard optimization problems. 
There exists very little work on analysing the average performance of ap- 

proximation algorithms, both in complexity and quality of approximations. 
Very few results exist for providing bounds on the complexity, and these are 
usually based on ad hoc methods [3981. The worst-case complexity of local 

search is also not known for many problems. For example, a very old local 

search algorithm like Lin's [240] for the TSP is still an open problem from the 

complexity point of view [2]. Yannakakis [398] proved that the local search 
algorithm for the stable configuration problem of neural networks takes ex- 
ponential time in the worst-case. The algorithm by Goles et al. [145], where 
nodes flip simultaneously their state in iterations, leads to exponential time 

convergence. The same applies to the local search algorithm by Haken and 
Luby [1581. Thus, the problem of stable configurations in neural networks for 

solving combinatorial optimization tasks is a very difficult problem. 

3.4.4 Stochastic Algorithms 

In many real-world problems of combinatorial optimization, a smaller or larger 

extent of uncertainty about the outcome must be taken into consideration. 
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Uncertainty can be represented by using stochastic models, where the objective 
function gets dependent not only on the constraints but also on a random 
influence, and the aim is to optimise the objective function over the random 
influence. An early work exploring the use of randomisation in the design 
of algorithms was presented by Rabin [295]. We use the term deterministic 
algorithms to distinguish the rest of combinatorial optimization algorithms 
from the stochastic algorithms. Stochastic algorithms provide almost the same 
solutions as deterministic algorithms, if we have simple objective functions that 
can be explicitly defined or can be easily computed numerically to a desired 
degree of accuracy. This is not the case when dealing with NP-haxd problems, 
where the objective function is complicated or cannot be defined explicitly. In 
this case, a random sampling or a simulated approach is more effective like 
in stochastic vehicle routing problems (48], the single machine total tardiness 
problem [1051, and manpower planning under uncertainty [126]. 

The general form of stochastic combinatorial optimization problems is 
[152]: 

Minimise F(x) = ECf (x, w)), where xE Sp, 

Therein, f is the objective function, w denotes the influence of randomness 
(that is wE fl, where (fl, E, P) is the probability space for the stochastic 
model), and E denotes the mathematical expectation, which has not to be 

numerically computable as it can be estimated by random sampling. This 

means to draw N random scenaTios wN independently from each other, 
where an estimator of F(x) is given by 

E(f(x, w»; d (3.12) 
v=I 

For the approximate solution of hard combinatorial problems several heuristics 
have been developed as described in Section 3.4.1. The combination of these 
heuristics with stochastic combinatorial optimization is used in a number of 
cases. For example, in [30] evolutionary strategies axe studied for stochastic 
problems, whereas ant colony optimization is studied in [152], and simulated 
annealing in [153). 

Local search with multiple random starts is another approach, which, how- 

ever, is computationally expensive as after every iteration the starting point 
might be far away from the optimum and no information obtained from pre- 
vious iteration, regarding the paths to optima, is used. Consequently, the 

process might return to the same point many times. In [95], a type of ran- 
dom local search, called random bit climbing, evaluates and accepts the first 
improved move from randomly selected neighbours. 
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Random search procedures have been used for optimization problems as 
early as in 1958 [65]. Although the simplicity of these techniques attracted 
researchers, the convergence of these procedures is usually extremely slow. 
In [258], the adaptive random search algoTithm is introduced, where the step 
size of the random search procedure is optimised periodically throughout the 
search process. In [611, [2911, a search method called control random search and 
in [298], a search algorithm called probabilistic global search lausanne sample 
points in the neighbourhood of a current solution by using probability density 
functions. 

Stochastic algorithms can cover a large portion of the search space. Real 

world problems are more appropriate to stochastic processes than to deter- 

ministic processes. In [276] Ohno-Machado, and Kuo stated that the hard 

problem of gene expression generation is a stochastic process and determinis- 
tic algorithms may not be appropriate for this domain. In [51,210], stochastic 
algorithms are used for gene expression modelling. 

3.5 Simulated Annealing (SA) 

Simulated annealing is a local search method in combinatorial optimization 
that simulates the physical process of annealing. Simulated annealing is a high 
quality general algorithm with stochastic components, and asymptotically it 
can be viewed as an optimization algorithm, although in practice it behaves 
as an approximation algorithm. The essentials of the simulated annealing idea 
were proposed by Metropolis et al. in 1953 [263] and became a popular method 
by Kirkpatrick et al. [213] in 1983. Nowadays, simulated annealing is an active 
research area [319) and is competitive to any other combinatorial optimization 
method in obtaining good solutions in feasible time. 

3.5.1 The Annealing Process 

Annealing is the process of heating a solid until it melts followed by cooling 
it down until it crystallizes into a state with a perfect lattice. In physics, this 
process takes place in a heat bath. 

The annealing process consists of two steps: 

1. Increase the temperature of the heat bath to the maximum temperature 
until the solid melts. 

2. Carefully decrease the temperature of the heat bath until the particles 
of the solid reach a ground state with a minimum energy. 
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When melted, the particles axe arranged randomly. The issue of carefully 
decreasing the temperature is important, as otherwise the solid can be frozen 
into a metastable state rather than the ground state. Metastable states can 
also be reached in a process called quenching, in which the temperature of the 
heat bath is instantaneously lowered. If the cooling procedure is done carefully, 
then we avoid getting trapped into locally optimal lattice structures, and then 
the free energy of the solid is minimized. 

The corresponding problem in simulated annealing is to find among a large 

number of potential solutions the solution with the minimum cost function. 

3.5.2 Simulating the Annealing 

The simulated annealing algorithm is based on the concept of Metropolis al- 
gorithm [263] that generates a sequence of states that are accepted if the next 
state has lower energy. Metropolis algorithm also generates states with higher 
energy that axe probabilistically accepted. The acceptance criterion is called 
the Metropolis criterion and can be defined as follows: 

Definition 3.14 If i is the current state with energy Ej, then a subsequent 
state i with energy Ej is generated by applying a transformation based on a 
small distortion of the current state i. If Ej :5 Ei then the state j is accepted as 
the current state of the Metropolis algorithm, otherwise, the state j is accepted 
with a certain probability given by 

exp 
Ei - EI 

(3.13) 
kBT ' 

where kju is a physical constant known as the Boltzmann constant, and T is 
the temperature of the heat bath. 

The convergence to equilibrium state can be reached if the temperature of 
the heat bath is lowered sufficiently slowly. The slow process of lowering the 
heat is essential for reaching thermal equilibrium. If the temperature is fixed, 

the state of solids is characterized by the Boltzmann dishibution, which gives 
the probability of the solid to be in state i with energy Ej at temperature c: 

exp(f(')-f(J)) Pfx=i) =- (3.14) 
Ej exp(L c 

where X is a random variable denoting the current state of the solid at tem- 
perature c and Ej exp(f (')-f W) extends over all possible states. The analogy 
in simulated annealing is expressed by generating a large number of transitions 

0 

at each temperature value. 
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Combining the annealing procedure and the Metropolis algorithm gener- 

ates a sequence of solutions for a given combinatorial optimization problem. 
The next step is to define the equivalent to the energy of the state, the ac- 
ceptance criterion, the neighbourhood structure together with a generation 
mechanism, and an equivalent to the temperature parameter. 

The equivalent to the energy of the state is the cost function, which denotes 

the cost of a solution. The objective, as in local search, is to minimize the 

cost function. The acceptance criterion denotes whether a solution j with 
cost function f (j) is accepted from a solution i with cost function f (i). The 

acceptance criterion is based on the following acceptance probability: 

Pt(acceptj) :=1 
if f U) :5f (i), 

(3.15) 
exp(f(')Jf(i)) iff(j)>f(i)- 

Ic 

The above acceptance criterion corresponds to the equivalent Metropolis cri- 
terion. The acceptance criterion can be implemented by comparing the value 
of exp(L (')-f Q)) with a random number generated from a uniform distribution 

C 
of the interval (0,1]. 

The generation mechanism corresponds to the perturbation mechanism 
of the Metropolis algorithm. A transition is a combined action executed in 

the neighbourhood structure that results in the transformation of the current 
solution into a subsequent one. This action consists of two steps: i) application 
of the generation mechanism ii) application of the acceptance criterion. The 

parameter cE R+ plays the role of the temperature and is called the control 
parameter. 

3.5.3 Markov Chains 

The theory of Markov chains [115,3341 can be used for modelling mathemati- 
cally the simulated annealing algorithm. Markov chains represent a sequence 
of trials, where the probability of the outcome of the trial depends only on 
the outcome of the previous trial. If X(k) is a stochastic variable denoting 
the outcome of the kth trial, then the transition probability for each pair ij 
of outcome is defined as [3] 

Pij(k) = P{X(k) = jlX(k - 1) = i}. 

In simulated annealing, a trial is equivalent to a transition and the set of 
outcomes is equivalent to the finite set of solutions. The transition probability 
for simulated annealing is defined as [3] 

Definition 3.15 Given an instance (Splf) of a combinatoHal optimization 
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problem and a neighbourhood function N, the transition probability for aimu- 
lated annealing algorithms is defined by: 

Vij E Sp: Pij(k) - 
Gij(Ck)Aij(ck), if i0 il 

(3.17) 
11- 

EIES, 1,6i Gij(ck)Aij(ck), if i=j, 

where Gij is the generation probability, and Aij the acceptance probability. 

The generation probability and the acceptance probability are defined as 
follows: 

Definition 3.16 The probability of generating a solution j from solution i is 

define 

.d 

by 

Vi, jE Sp : Gij (ck) = Gij =1 (3.18) 
,\ 

XN(i) (A 

where A= IN(i) I for all iE Sp, and XN(i)(j) is defined as 

XN(i) U) 1, if iE N(i); 
0, if i 95 N(i). 

Definition 3.17 The probability of accepting a solution j from solution i ii 

defined by 

exp(-(f(j)-f('))), iff(j)>f(i), 
Vij E Sp: Aij(Ck) =11, 

Ck 
iff(i) 5 f(i). 

(3.20) 

Most combinatorial problems follow the above definitions when simulated 
annealing is applied. The generation probability from Definition 3.16 is in- 
dependent of the control parameter ck and uniformly distributed over the 

neighbourhoods N(i). It follows the analogy to the Metropolis acceptance 
criterion in Definition 3.14. 

The Markov chain is called finite, if it is defined by a finite set of out- 
comes. Simulated annealing is closely related to finite Markov chains. This is 
because in simulated annealing a trial corresponds to a transition and clearly 
the outcome depends only on the outcome of the previous trial. Moreover, the 

set of outcomes is given by the finite set of solutions. According to whether 
a transition probability in a Maxkov chain depends on the trial number k or 
not, we call this Markov chain homogeneous or inhomogeneous Afarkov chain, 
respectively. HAggstr6m (155] gives a detailed theory on finite Maxkov chains. 

3.5.4 Asymptotic Convergence 

We will distinguish the conditions for asymptotic convergence according to 

the choice of homogeneous and inhomogeneous Markov chains. A number of 
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authors [2,136,156,3691 proved that simulated annealing finds with prob- 

ability one an optimal solution, under certain conditions on the generation 

and acceptance mechanisms. The condition on simulated annealing formu- 

lated for homogeneous Markov chains are concentrated on the fact that it 

must be possible to construct a finite sequence of transitions with non-zero 
generation probabilities, leading from an arbitrary solution i to some optimal 
solution i,, pt. This can be achieved by an infinite number of transitions to 

approximate Boltzmann distributions at a fixed temperature. In other words, 
we need to generate a sequence of infinitely long homogeneous Markov chains 
at descending values of the control parameter. The algorithm converges to a 

global minimum with probability 1, if for each value of the control parameter 
Ck the Markov chain is infinitely long: 

lim lim P, {X(k) E gp} 
= 1, (3.21) 

cjO kýoo 

where Sp is the set of optimal solutions. This implies the following process: 
First make an infinite number of trials, then decrease the temperature. How- 

ever, this is impracticable and finite-time implementations can no longer guar- 

antee to find optimal solution. Thus, implementations of the algorithm resort 
to an approximation of the asymptotic convergence. Several authors investi- 

gated possibilities to speed up the process for optimal annealing [79,296,346, 

350]. 
The inhomogeneous model lowers the temperature at each trial. The con- 

vergence to optimum solutions is provided under some conditions [2,31 of the 

convergence space, as the temperature is lowered at any step. Therefore, as- 
ymptotic convergence is guaranteed under these conditions for inhomogeneous 
Markov chain models. The sufficient conditions for the convergence are the 
following: 

Theorem 3.18 Given an instance (Sp, f) of a combinatorial optimization 
problem, and let P(k) denote the transition matrix associated with equations 
3.17,3.18,3.20, and let the following conditions be satisfied. 

1. Vi, jE Sp, 3p ý: 1,31o, lp E Sp, 

with 10 = i, lp = j, and 
Glklk+l > 0, k=0,1,... p - 1. (3.22) 

2. The control parameter Ck satisfies 

r 
Ck -k=0, l,... (3.23) 

log(k + ko)' 

for a sufficiently large r>0 and ko > 2. 
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Then the Markov chain convergences in distribution to a vector q* with com- 
ponents 

qj* =1 x(gp)(i), Vi E SP, (3.24) 
19PI 

or, in other words, 
lim PcjX(k) E gp} (3.25) 

/C 00 

The proof of Theorem 3.18 can be found in [2,3]. 
Those conditions are sufficient but not necessary. Necessary and sufficient 

conditions, were posted by Hajek [156]: 

Theorem 3.19 Let ck be a sequence of values of the control parameter defined 

as r, 
k=0,1,... (3.26) Ck = log(k + 2) 

for some constant r. Then the asymptotic convergence of the simulated an- 
nealing algorithm, using the transition probabilities of (3.17), (3,18), (3.20), 
is guaranteed if and only if, 

1. Condition 1 of Theorem 3.18 holds true 

i is reachable from j at height h, for arbitrary ij E Sp and h 

3. the constant r satisfies r ý: D, where D is the depth of the deepest local, 
nonglobal minimum. 

Proposed values for r and estimations of its value is the subject of numer- 
ous research efforts [25,133,134,136], see [308] for an overview. Calculating 
the value of D can be a problem that may not be solvable in polynomial time 
for a number of combinatorial optimization problems [211]. Anily and Fed- 
erguen [26] proved the asymptotic convergence of the inhomogeneous Maxkov 
chains for general conditions on the generation and acceptance probabilities, 
with respect to simulated annealing algorithms. 

Implementations of simulated annealing algorithms based on inhomoge- 
neous Maxkov chains are closer to real word problems. The reason is that, 
instead of an infinite number of transitions at fixed temperatures, we have a 
sequence of finite length Maxkov chains generated at descending values of the 
control parameter. This gives the advantage that, if the cooling is performed 
sufficiently slow, it approximates an infinite homogeneous Markov chain with 
guaranteed asymptotic convergence to optimal solutions, as condition 2 of 
Theorem 3.18 implies. This implementation is also referred to by Ingber [194] 

as simulated quenching. Therefore, the use of inhomogeneous Markov chains 
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comes at a cost for the guarantee of asymptotic convergence, however, its ap- 
proximation guarantees optimal or near-optimal solutions for most problem 
instances [2]. 

3.5.5 SA Parameters 

Using inhomogeneous Markov chains, a set of paxameters called cooling sched- 
ules must be specified. The cooling schedule controls the convergence of the 

algorithm. 
The focus of our work will be simulated annealing with inhomogeneous 

Markov chains. Therefore, for implementing simulated annealing algorithms, 0 

a set of three items need to be declared. These items are: 

1. The domain of the problem, also known the instance or configuration 
space of the problem. 

2. The transition mechanism, which generates and evaluates a new trial 
from an existing one. 

3. Parameters that govern the convergence of the algorithm or else, the 
cooling schedule parameters. 

Each of the above items needs to be analysed in more details as they consist 
of subsequent parameters that also need to be taken into account. 

The Configuration Space 

Implementing the representation of a problem, two elements have to be clearly 
stated by using concise and simple expressions: 
a) the representation of the solution space, and 
b) the expression of the cost function. 
Usually, these expressions are functions that need to be minimised or max- 
imised. Also, in this part of the simulated annealing process, we have to choose 
an arbitrary initial point to start the algorithm, i. e. we have to deal with the 
'increase of the temperature' of the annealing process. 

The Transition Mechanism 

This part of simulated annealing is the most time consuming part of the algo- 
rithm. In this part, the mechanism has to be stated that generates and accepts 
new solutions from a current one. A well-defined structure of neighbours plays 
an important role for the quality of the transition mechanism and to the speed 
of the algorithm. The following three steps have to be executed: 



3.5. SIMMATED ANNEALING (SA) 101 

1. A generation mechanism is applied to a current solution. The generation 
mechanism usually obtains new solutions from current ones by simple 
rearrangements that can be easily computed as permutations, inversions 

or swapping. 

2. The difference in costs between the two solutions is calculated. 

3. An acceptance criterion decides about the new solution. The acceptance 
criterion that is most frequently applied is the Metropolis criterion. 

The Cooling Schedule Parameters 

For a finite time implementation of simulated annealing, we have to specify pa- 

rameters that perform a finite time approximation. This can be implemented 

by using inhomogeneous Maxkov chains that can be viewed as generated ho- 

mogeneous Maxkov chains of finite length for a finite sequence of descending 

values of the control parameter. For the determination of the cooling schedule, 
we need to specify the following items for the control parameter. 

1. An initial value of the control paxameter. Usually, a laxge value is as- 
signed to allow all transitions to be accepted. This corresponds to heat- 
ing up the solid until all particles axe randomly axranged. 

2. A decrement function for decreasing the value of the control parameter. 

3. A stopping crite7ion which specifies the final value of the control para- 

meter. 

Besides the specification of the control paxameter finite sequence, we also need 
a finite number of transitions at each value of the control parameter in case 
of homogeneous Maxkov chains. The length of the Markov chain at fixed 
"temperatures" should be chosen in such a way that probabilities close to 
Boltzmann distribution axe achieved at the end of each Markov chain. 

If Lk is the length of the kth Maxkov chain and ck is the corresponding 
value of the control parameter, then the equilibrium quality achieved at the 

end of the entire computation depends on the changes and decreases of Lk 

and ck. Large decrements of the control parameter cl, will require longer 
Maxkov chains in order to reach equilibrium. Short decrements of the control 
parameter Ck will allow shorter Maxkov chains, but require more ck steps until 
it readies the final value of the control parameter. 

A cooling schedule proposed by Kirkpatrick, Gellat and Vecchi [213), which 
has been used in many applications of simulated annealing, is the following: 
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o Initial value: 
This should be a large value so that all possible transition can be ac- 

cepted. CO =1 

Decrement of the control parameter. 
Small changes in the control parameter can be obtained if the current 

control parameter is multiplied by a factor that is close to 1: 

Ck+l ý a* Ck, k=1,2 
. ..... 

(3.27) 

Typical values of a lie between 0.8 and 0.99. 

Stop criterion: 
The algorithm is terminated if the value of the cost function of the 

solution obtained in the last trial of a Markov chain remains unchanged 
for a number of consecutive transitions. 

Length of Markov chains: 
Lk is bounded by some constant L to avoid extremely long Markov chains 
for small values of ck. 

The quality of the simulated annealing algorithm depends on the speed 

of the convergence of the algorithm, which also depends on the choice of the 

parameters Lk and ck, k=0,1,.. There is a trade-off between small Markov 

chain lengths and large decrements of the control parameter Ck. Adequate 

cooling schedules have been proposed by [308]. 

3.5.6 SA Performance 

Simulated annealing and local search algorithms are identical if the value of 
the control parameter is taken equal to zero. Therefore, simulated annealing 
can be viewed as a generalization of local search algorithms with proven bet- 
ter performance than local search algorithms. The main benefit of simulated 
annealing algorithms, if compared to local search algorithms, is that, besides 

accepting improvements in the cost function, it also accepts a limited number 
of deteriorations of the cost function. Initially more and larger deteriorations 

are accepted when the value of c is large. As the value of c decreases, only 
smaller deteriorations will be accepted. As the value of c approaches zero, no 
deteriorations at all will be accepted. Furthermore, there is no limitation on 
the size of an accepted deterioration, and large deteriorations are accepted but 

with small probability. Simulated annealing compared to local search is con- 
siderably less dependent on the topology of the cost function landscape. The 

potential of simulated annealing is that one has the benefits of the local search 
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algorithms, i. e. simplicity and general applicability, and at the same time it 

avoids traps in local minima due to limited acceptances of deteriorations of 
the cost function. 

Simulated annealing can be viewed either as an 

optimization algorithm, if homogeneous Markov chains axe used with 
infinite number of transitions performed, or as an 

approximation algorithm, if inhomogeneous Markov chains axe used with 
finite number of transitions performed at each temperature. 

The performance analysis of simulated annealing can be either a theoretical 
or an empirical analysis. In theoretical performance analysis, one wants to 
derive analytical expressions for the error and the running time for worst or 
average case behaviour, while in the empirical performance analysis one derives 

statistical averages on the error and time by running the algorithm a number 
of times. In empirical analysis we axe usually interested in average cases. 

There is a lack of theoretical average-case performance results in the litera- 
ture. Such results, of course, are very important as a practitioner can estimate 
the expected performance of the algorithm. This is an open problem in sim- 
ulated annealing [2]. On the contrary, there exist many studies of empirical 
performance behaviour, however, they lack the depth required to draw reli- 
able conclusions. As Aaxts and Korst [2] state "results are often limited to 
one single run of the algorithm, instead of taking the average over a number 
of runs; the applied cooling schedules are often too simple and do not get the 
best out of the algorithm; results are often not compared to the results obtained 
with other (tailored) algorithms". We will try to eliminate these drawbacks in 

our approach. 
In the case of simulated annealing, its applicability and flexibility are 

demonstrated by a large number of studies that used this algorithm in many 
different problem areas. An extended list of examples carried out at the eight- 
ies can be found in Aarts and Korst [2], showing that simulated annealing 
can handle a wide variety of problems. Simulated annealing outperforms al- 
most all other algorithms with respect to efficiency, if large running times are 
allowed. For problems, where the running time is not an issue (for example 
industrial problems), simulated annealing can be the best choice. Its general 
applicability allows it to handle almost all known combinatorial optimization 
problems. The performance of the simulated annealing algorithm depends not 
so much on the nature of the algorithm, but on the implementation structures 
used for the representation of the neighbourhood structure. Sophisticated data 

structures that allow fast manipulations and massive parallel architectures will 
allow fast exploration and execution of the algorithm. 
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Usually, optimal simulated annealing requires an infinite number of tran- 

sitions, which is equivalent with at least exponential time complexities for a 
close approximation of an optimal solution. This initiated investigations to 

speed up the convergence of optimal annealing. Sorkin [3461 proved a polyno- 
mial time complexity of optimal annealing, if the neighbourhoods of a problem 
exhibit certain fractal properties, and the cost function is properly scaled be- 
tween 0 and 1. Then the solution of cost no greater than e from the optimal 
solution can be found in a time bounded by a polynomial in I/c. Aarts and 
Van Laarhoven [4] proposed a polynomial-time cooling schedule that leads to 
a polynomial-time execution of simulated annealing, but without any guaran- 
tee about the quality of the solution compared to the optimal cost. Albrecht 

et al. [20] proved for DNF approximations that the run-time sufficient to ap- 
proach with probability 1-e the minimum value of the objective function 
is (n/f)o(r) steps, where r depends on the maximum escape depth of local 

minima of the underlying energy landscape. Other approaches for improving 
the time complexity can be found in [79,2961. 

As simulated annealing produces a high quality of results for sufficient 
running time, several approaches to speed up the algorithm have been pro- 
posed. For an overview of such methods, see Aarts and Lenstra [3]. Among 
them is parallel simulated annealing, where the execution of the algorithm is 
distributed to a number of parallel processors, which seems to be a promising 
approach [1,3,70]. Steinh6fel et al. [352] introduced the first, according to 
Aydin/Fogarty [32], application of parallel simulated annealing to job shop 
scheduling. For overviews on parallel simulated annealing, see [2]. Boltzmann 

machines [173], described in Section 3.5.7 and the LSA machine [19], described 
in details in Chapter 4 are such parallel simulated annealing methods that 
combine benefits from both neural networks and simulated annealing. 

Other examples of combinations of simulated annealing with different local 

search algorithms for speeding up the search are the combination of simulated 
annealing with genetics algorithm [109,2411 and with neural networks [3551. 

3.5.7 Boltzmann Machines 

The Boltzmann machine introduced by Hinton and Seinowski [173] combines 
aspects from the field of neural computing and simulated annealing, resulting 
in a powerful computational model exploiting massive parallelism in a nat- 
ural way. Boltzmann machines are unsupervised networks that change their 
network topology towards a minimum energy state by using simulated an- 
nealing. The model combines the power of neural nets and the advantages 
of simulated annealing for optimising the state configuration. Boltzmann ma- 
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chine units have bidirectional connections and binaxy values of states. Due to 
the incorporated simulated annealing algorithm, Boltzmann machines use a 
probabilistic transition mechanism. 

Features of Boltzmann machines are: 
Boltzmann machines can be considered as a massively parallel imple- 

mentation of the simulated annealing algorithm. 

* Boltzmann machines can be used to solve combinatorial optimization 
problems and classification problems. 

The combination of neural computing, simulated annealing, and learn- 
ing algorithms leads to the implementation of powerful machines, which 
employ the benefits of simplicity, generality and flexibility of simulated 
annealing, the power of massive parallelism of neural computing, and 
the maximisation of the confidence of reaching a globally optimum con- 
figuration. 

Boltzmann machines axe described in details 'in Aarts and Korst [2]. Boltz- 
mann machines for solving combinatorial optimization axe utilized by choosing 
appropriate connection patterns and strength values to map the Boltzmann 

machine structure onto the structure of the combinatorial optimization prob- 
lem [2]. For each instance of the optimization problem, one can dcfinc a 
Boltzmann machine, where each configuration corresponds to a solution of 
the optimization problem. Maximizing a consensus function is then equiva- 
lent to trying to solve the combinatorial optimization problem. Boltzmann 

machine implementations are usually more efficient when tailored to a specific 
problem. Aaxts and Korst [2] show that for the TSP problem it is hard to 
choose appropriate connection strengths, leading to poor performance, while 
for other problems Boltzmann machines performs well. 

3.6 Combinatorial Optimization& 

Pattern Classification 

Combinatorial optimization is applicable to the learning phase of the classi- 
fication circle, where the goal is to minimize the classification error on the 
training set. The general classification model is related to estimating values of 
parameters from training data during the learning phase. One of the earliest 
applications of stochastic methods for pattern classification using a feedfor- 

ward neural model can be found in [333]. 
Simple classification models of low dimensionality can use explicitly enu- 

merative methods for finding optimal model parameters. For models that are 
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more complicated the methods from Section 2.2.8, like gradient descent, New- 

ton descent, perceptron algorithm, backpropagation, and relaxation methods, 

can be used for minimizing the criterion function. For hard real world prob- 
lems, where the underlying models are high dimensional and complicated, 
there are multiple minima, and therefore the previous methods become im- 

practical. For instance, in [3561 a combination of backpropagation with a 
heuristic method is proposed to escape from local minima that are caused by 

the backpropagation learning phase. Approximation methods and stochastic 
approaches can be reliable methods for sophisticated search of crucial para- 
meters in learning, like weight vectors in a threshold circuit. 

Genetic algorithms and Boltzmann machines are the two most preferable 
stochastic methods used for complex problems [106] so far. Boltzmann ma- 
chines are used in pattern classification by clamping n nodes to the input 

vector x1, and clamping c nodes to give the output decision of the network. 
Therefore, the n and c nodes are the visible nodes of the network. The rest 
of the nodes are hidden nodes, and the connectivity of the nodes between 

them is determined by the simulated annealing algorithm, which tries to find 

the lowest-energy configuration, called the state of the Boltzmann machine. 
Applications of Boltzmann machines in speech recognition are investigated in 
[64,290], handwritten recognition in [259], in fast learning in [148], and in 

computer-integrated manufacturing environments in [188]. 
Genetic algorithms in pattern classification are used as follows: Several 

classifiers (a population) are created, each varying somewhat from the other. 
An objective function for each classifier, such as the accuracy on a set of 
labelled examples, is calculated, called the score or, in biological terms, the 
fitness. According to the best scores, we retain the best classifiers in some 
portion of the total population, and therefore executing what is called in bio- 
logical terms the survival of the fittest. The classifiers alter stochastically their 

state to produce next generations and iteratively we again retain the highest 

scores of the population until a desired criterion value has been reached. Sev- 

eral examples of genetic algorithms in pattern classification can be found in 
[33,74,142,214,256,269,279]. Genetic algorithms combined with support 
vector machines are used in [107] for a specific time series classification prob- 
lem with lightning data, and recently in [1931, for fine tuning the support vec- 
tor parameters. Genetic algorithms and neural networks have been recently 
combined in [43]. 

Tabu search has very limited usage in pattern classification. A few appli- 
cations where tabu search is used for training feedforward neural networks are 
presented in [38,205,338], and recently in [364]. 

In pattern classification the application of combinatorial optimization meth- 
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ods is also widely used during the feature selection phase for dimensionality 

reduction as in [122]. Combinatorial optimization methods can be also used 
when searching for optimal architectures of a classifier. In [395], the design of 
the optimal architecture for a neural network is formulated as a search problem 
in the architecture space, where two different approaches, one by simulated 
annealing and the other by tabu search, axe investigated. The same problem is 
investigated in [399] by using genetic algorithms. A recent example for evolv- 
ing &cision trees with the combination of simulated annealing and genetic 
algorithms is presented in [119]. 

Combinatorial optimization as an effective minimisation method is the 
focus of our work, where a powerful optimization method like simulated an- 
nealing is combined with a classical learning method, namely the classical per- 
ceptron algorithm. This method and the corresponding results are presented 
in the next chapters. 

Simulated annealing is an active research field that also attracts researchers 
from pattern classification. Recently, combinations of simulated annealing 
with support vector machines have been used for stereovision matching [2781. 
Albrecht and Wong [19] combined the perceptron algorithm with simulated 
annealing for a specific logarithmic cooling schedule, introducing the logarith- 

mic simulated annealing (LSA) machine. The LSA machine is a new method 
to compute the threshold circuits by performing an epicurean-style supervised 
learning procedure, where several independent hypotheses are calculated from 

randomly chosen subsets of the total training samples. Our approach will be 
based on this classifier, which is described in details in Chapter 4. 

There is a growing interest in combining classifiers and improving the con- 
sensus of results for a greater accuracy. According to Kuncheva [221], this 
interest in combining classifiers has grown astronomically in recent years. Our 

aim also is to investigate the performance of a new classifier, the LSA machine, 
that also combines classification methods. In the light of the NFLT, we will 
investigate the performance of the LSA machine with problem dependent para- 
meters, trying to find guidelines for parameter tuning. The issue of guidelines 
unavoidable rises almost for all types of classifiers. While it is difficult to have 

mathematical proofs for these guidelines, they are based on plausible heuris- 
tics and have been found useful for many practical classification problems. We 
therefore contribute to the field of combinatorial optimization as well as to the 
field of pattern classification by providing guidelines and empirical results for 

successful applications of the combined methods. Moreover, we will investi- 

gate the performance of our classifier according to the network complexity. 
For this purpose, we will introduce a new recursive learning method for train- 
ing hidden layers in constant depth circuits, Our findings make contributions 
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to a) the field of Machine Learning, as the proposed method is applicable in 

training feedforward neural networks, and to b) the field of circuit complex- 
ity by proposing an upper bound of hidden units sufficient to achieve a high 

classification rate. More details about the contributions of our work will be 
discussed in Section 7.5, after presenting the basic classifier of our approach 
in Chapter 4. 



Chapter 4 

The Basic Classifier of our 
Approach 

The main idea of the LSA machine is to use a logaxithmic cooling schedule to 
control the classification error on training samples caused by the perceptron 
algorithm. The seaxch is guided by logaxithMiC simulated annealing (LSA), 

while the neighbourhood is defined by the perceptron algorithm. 

The logaxithmic cooling schedule applies an inhomogeneous Markov chain, 
whereas in most applications of simulated annealing homogeneous Markov 

chains axe used as the underlying model. Homogeneous Markov chains are 
based on an infinite number of transitions at fixed temperatures, leading on 
one hand in theory to optimal solutions, however, on the other hand to unreal- 
istic processes because of the infinite time involved in the algorithm. Therefore, 
the LSA machine, based on inhomogeneous Markov chains, has the ability to 

approximate optimal solutions. According to Hajeks theorem, approximations 
to optimal solution are guaxanteed under certain conditions. However, to ver- 
ify if Hajeks conditions axe valid for a given configuration space, is often very 
difficult. Nevertheless, there axe convincing results that this approach approxi- 
mates optimal solutions even if it is not known if the configuration space meets 
Hajek's convergence conditions. Albrecht et al. [13] proved that the run-time 
sufficient to approach the minimum value of the objective function with prob- 
ability 1-e is (n/c) O(r), where r depends on the maximum value of the escape 
depth of local minima of the underlying energy landscape. Placement prob- 
lems were first analysed by this approach, however, the result is independent 

of the problem domain and can be applied to vaxious optimization problems. 

LSA machine as reported in [19] outperform the classical perceptron algo- 
rithm by up to 15% when the sample set is sufficiently large. 

109 
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4.1 Characteristics of the LSA Machine 

If the set of points di, j= lt ... m, and di = (a-71,... 
'a4), can be separated 

by a linear function, the following convergence property can be proved for 

the perceptron algorithm [268]: Let S= IV} denote the "sainple set" of 
input vectors classified as positive and negative samples. If 0* is a unit vector 

solution to the separation problem, i. e., 0-d>0 for all [d, +1 ES and 
0 -d <0 for all [it, -] E S, then the perceptron algorithm converges in at most 
1/0,2 iterations, where a := min[6,77JES 10 -d1,77 E J+, -}. The parameter a 
has the interpretation of cos(tV*, d) for the angle between 0* and d. The value 

of a can be exponentially small in terms of the dimension n. 

In general, the simple perceptron algorithm performs well even if the sam- 
ple set is not consistent with any weight vector t5 of linear threshold functions; 

see [127,340]. If the sample set is linearly separable, Baum [40] has shown 
that under modest assumptions it is likely that the perceptron algorithm win 
find a highly accurate approximation of a solution vector tv* in polynomial 
time. 

On the other hand, H8ffgen and Simon [177] proved that finding a linear 

threshold function that minimises the number of misclassified vectors di is NP- 
hard for arbitrary sample sets (see also [176] for sigmoid functions). Variants 

of the perceptron algorithm on sample sets that are inconsistent with linear 

separation are presented in [53,69]. For example, if the (average) inconsis- 

tency with linear separation is small relative to or, then with high probability 
the perceptron algorithm will achieve a good classification of samples in poly- 
nomial time [69]. 

An extension of the perceptron algorithm by a simulated annealin, -, based 

search strategy is considered in our approach. The simulated annealing pro- 
cedure employs a logarithmic cooling schedule c(k) = r/ In (k + 2), where the 
"temperature" decreases at each step. 

The simulated annealing-based extension of the perceptron algorithm is 

activated when the number of misclassified examples increases for the new 
hypothesis compared to the previous one. In this case, a random decision is 

made according to the rules of simulated annealing. If the new hypothesis is 

rejected, a random choice is made among the misclassified examples for the 

calculation of the next hypothesis. To describe our extension of the perceptron 
algorithm in more details, we have to define the configuration space together 

with a neighbourhood relation. 
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4.1.1 Configuration Space and Neighbourhood Relation 

The configuration space consists of all lineax threshold functions with rational 
weights wi represented by pairs of binaxy tuples each of length r: wj E (±1) - 
10,1}1* x {O, 1}1, i=n. We assume that the elements of the configuration 
space do have a fixed n th coordinate, i. e. Wn represents the threshold. We 
denote the configuration space by 

n 
'17 = {f (xr-) :f (x-) = 

r, wi - xi, wi E (±1) - {O, 11" X {O, 11'»1. 
i=l 

The neighbourhood relation depends on the given sample set S, where 

S={ [a, 17] :d= (a I,.., an), an ý 1, ai = (pi, qi)}. (4.2) 

where pi, qj E 10,1}' and qEf+, -1. 

We define the objective function through the set of examples misclassified 
by the current configuration f (x-): 

SAf (a) : -«-. -- { [3,171 :aES and f (a-) <0& 11 =+ or f (it) 2: 0& 17 =-1. 
(4-3) 

The objective function is given by 

ZU (xr-» :=1 SAf (A 1- (4.4) 

The set JVJ of potential neighbours of f (x-) is derived from SAf (XV-) in accor- 
dance with the perceptron, algorithm: 

n 
wi - ai 

Alf: =ff' I wj' : =wj -aj, ar=SAf} Ulf}. (4-5) 

The probability of performing the transition between f and f' is defined by 

G[f, f 'I -A [f, f), if f, 0 f, 
PrIf - f1l 1-E G[f, g] - A[f, 9], otherwise, 

(4.6) 

gof 

where GV, f '] denotes the generation probability and A[f, f 11 is the probability 
of accepting f once it has been generated by f. 
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4.1.2 Generation and Acceptance Probabilities 

We use a non-uniform generation probability which is based upon SAf from 
(4.3): For f1E Arf associated with dE SAf in (4.5) we set 

UP 
If (d) 1, if f (6) <0 and i7(d) = (4.7) 
f (d), if f (d-) '2: 0 and 77(d) = 

The generation probability is then defined by 

G[f, fl]: = 
U(d) 

(4.8) 
1: U(d) 

dESAf 

Thus, preference is given to the neighbours that maximise the deviation. The 

acceptance probabilities A[f, f'], f' E jVf, are derived from the underlying 
analogy to thermodynamic systems: 

if ZUI) - Z(f) .5 Ol (4.9) 
e-(2(f')-Z(f))1C, otherwise, 

where c is a control parameter having the interpretation of a temperature 
in annealing procedures. The actual decision, whether or not f' should be 

accepted for Z(f') > Z(f), is performed in the following way- f' is accepted, 
if 

> p, (4.10) 

where pE (0,1] is a uniformly distributed random number. The value p is 

generated in each trial in case of Z(f) > Z(f). 

4.1.3 Inhornogeneous Markov Chains 

Let af (k) denote the probability of being in configuration fEF after k steps 
have been performed according to (4.6),..., (4.10). The probability af (k) is 

given by 

af (k) ah (k - 1) - Pr(h f (4.11) 
h 

where Pr1h f} is from (4.6). The recursive application of (4.11) defines 

a Markov chain of probabilities af (k), where fEY and k=1,2, .... If the 

parameter c= c(k) in (4.9) is a constant c, the chain is said to be a homoge- 

neous Markov chain; otherwise, if c(k) is lowered at any step, the sequence of 
probability vectors 6(k) is an inhomogeneous Markov chain, cf. Section 3.5. 

We consider a special type of inhomogeneous Markov chains only. The 

motivation for this choice is based upon the convergence properties of the two 
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types of Markov chains: Convergence propositions about homogeneous Markov 

chains rely on an infinite number of transitions at fixed "temperatures" c. The 

probability distribution approached in the limit is the Boltzmann distribution 

e`(McIF, where F is a normalisation value. If c -+ 0, the Boltzmann dis- 

tribution tends to the distribution over optimum configurations, cf. Section 
3.5.4. In practice, however, it is infeasible to perform an infinite number of 
transitions at fixed temperatures. The convergence analysis of inhomogeneous 

Markov chains avoids the intermediate step, and in our approach the "tem- 

perature" c(k) changes in accordance with 

r c(k) = In(k + 2) ,k=0,1, ... . (4.12) 

The choice of c(k) is motivated by Hajek's theorem [1561 on logarithmic cooling 
schedules presented in Section 3.5.4. We denote by. F. I. the set of optimum so- 
lutions (minimizing the classification error). Basically, llajek's theorem states 

Theorem 4.1 Under some natural assumptions about the configuration space 

.F and the neighbourhood relation JVf, the asymptotic convergence 

1: af (k) 
k-000 

1 (4.13) 
f E. Fmin 

of the stochastic algorithm defined by (4.6),..., (4.10) is guaranteed if and only 
if r from (4.12) is lower bounded by the maximum value of the minimum 
escape height from local minima. 

Thus, the speed of convergence associated with the logarithmic cooling sched- 
ule (4.12) is mainly defined by the value of r. Since we deal with sample data 

and a relatively complicated neighbourhood relation (4.5), we cannot verify 
the applicability of Theorem 4.1. Nevertheless, previous reseaxch (14,19] en- 
courages us to employ (4.12) in stochastic local search procedures. 

4.2 The Epicurean Learning Method 

This approach goes along the lines of a learning method which has been called 
Epicurean learning by Cleary et al. in [81] (with reference to [325)), motivated 
by Epicurus' paradigm that all hypotheses fitting the known data should be 

retained [135,239]. The learning method in the LSA machine is equivalent 
to training each threshold unit, which in our work is also called perceptron, 
with a set of examples. Given a dataset D of a classification problem, let 
T be our training set, drawn from the available data D. We assume that T 

consists of positive and negative examples, i. e. T= T+ U T-. Then for a class 
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Fignire 4.1: Deptli-one LSA Machine Architecture. 

i (i -- 1'.., in), let Cl+ = (j, cDI c(x) = il be the set of positive oxýmiplt- in 
I), mid Cl =D-C, 4 be the set of negative examples of class i in D. 

threshold 1111it j(j = 1, ... t) is trained bY it randomly selected training 

which is defined as: 

T+ u T- where 1'. ) ij I 
T+ Ct, JV I- oIC'j. aG (0.1). and ij I ?JI 
T- C C-IjTj--j=ý3jC, -j, 3E(O. 1)- ij -1 13 

The size of, the traillill- Set and the proportion of positive alld Ilegative ex- 

ýIljlples ill I his' 'set are Significant parameters of the learnin- procedure. Since 

Nve usuidly consider circuits with t>I threshold unit.,. and .1 
determine 

the "111111tiplicit. v" of it silmyle, example, i. e. how often all example appears oil 

mvralpe in ffie randomly selected training sets. 

4.3 Topology 

The core of' the LSA inachilie is based oil deptil-olle 0114-11''Id ( il-( Ilil-. 1> 

,, diown iii Fi-ure -4.1. Followim, notations f'rolli the circuit complexity theory 

wc will not collill III(, illplit IaYer as a depill-olle bt. ver. Therefore. deptil-two 

( in-Ilil" ale colist I'llcted ; ts shown in Figure 4.2. We recall that om depth-olie 

thre"'11(dd circuit is considered ýis a depth-two neurid netw(irk kiýed ()n the 

I wi I r; iIIi todel oI* i0i 1 2.2.2. 

III le first Ll. vol. I If olil. cil-cuil is I railled over fI aw lontlY " ]l (II., 1 -. 0111 )1, -" ýj - 

xi 1111 -. -. - --- - -- 
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Figure 4.2: Depth-two LSA Machine Architecl urc. 

of the training set T. Independent hypotheses J'l (Y), ..., fl(Y) of t III- I. vjw 

71 
U)i - Xi > 

are calculated for each threshold unit. 
The output gate at the second level calculates j. j : fl(. ý) - 111t wll('I. (- t 

is the number of threshold units at, layer one and IIJ : fl(,, ') 11 dcmdv. 'ý 1110. 

total number of threshold units oflayer One fliat, for a posit ive example. 
Therefore, outputs at first layer are collected and the cla. "'s decision is filwily 

denoted by a voting function on the output, of the second layer. 

4.4 Key Features 

LSA machines can be characterized by the 1,011mving, t 111-oc kvy I'vat'llres: 

Key Feature 1: 

The first layer of the circuit is computed by I combiwit'i(m ()f' III(, 

perceptron algorithm and logarithmic simulated aimenling, "'Oll a 
heuristic of choosing the elements that are awaY fl-mll Iwing 

correctly classified. 

To these elements higher probabilities are ou"igned I'M hvilig, ()III 

next hypothesis. A new hypothesis is acccptcd it' mit, of I I, (. f, ()11()W- 
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ing is valid: 
A) it produces lower classification error with respect to the objec- 
tive function, or 
B) it produces higher classification error with respect to the objec- 
tive function, bLnd for the given annealing temperature a uniformly 
randomly selected number pE [0,11 is smaller or equal to 

e-(O(-k)-O(wk-1))/c(k), (4.15) 

where O(Wk)iO(Wk-1) are the values of the objective function of 
hypotheses k and k-1, and c(k) the annealing temperature. 

Key Feature 2: 

The second key feature of the LSA machine is the logarithmic 
cooling scheme that is based on Haiek's theorem. Applying this 
feature to the LSA machine, we manage to use inhomogeneous 
Markov chains of finite length to restrict the classification error. 
The annealing temperature is defined by Haiek's theorem [1561 as 
given in Theorem 3.19 and Theorem 4.1 . 

Key Feature 3: 

The third key feature of the LSA machine is the training procedure 
that uses an Epicurean-style learning. Each threshold function is 

calculated from a random selection of positive S+ and negative S- 

samples out of the entire training set: 

IS+ I=a- IT+ 1; IS- 1 =, 6. IT- 1; (4.16) 

Each substructure of the classification circuit of the LSA machine 
is trained by a set of randomly choosen training samples out of the 
entire training set and thus performing an Epicurean-style learning. 
Issues arising from these settings are dealing, e. g., with the number 
of examples used for training and testing, the choice of a and fl, 

and the choice of r. 

4.5 The LSA Algorithm 

For a given sample set associated with a single threshold unit, the LSA algo- 
rithm, as described in [19], has the following pseudocode: 



4.5. THE LSA ALGORTTHM 117 

Procedure LSA 
begin 

initial fk-1 and best fb hypothesis axe equal to zero for k 
initially wi = 0, i=1,... n, 0=0; 
for the current hypothesis calculate deviation U(5); see Eq. 4.7; 
Repeat 

Next hypothesis fk is determined by random choice among the 

elements of Nf, 
-, 

that maximizes U(6); 
If Z(fk) : 5- Z(fk-1) 

Then 

a) Next hypothesis=fk 
b) If Z(fk) :5 Z(fb), then update best hypothesis fb = fk; 

If Z(fk) > Z(fk-1) 

Then 
a) Draw pE [0,1], a uniformly distributed random number; 
b) If e-(Z(A) - Z(f, '-'))I'(") >p 

Then Next hypothesis=fk ; 
Else Next hypothesis=fk-1; 

k :=k+1; 
Until Z(fk) = 0, or k=predefined K of maximum steps; 
return hypothesis fk, tV(k) 

end 

The algorithm implements an inhomogeneous Markov chain as the tem- 

perature is lowered at each step. LSA algorithm performs actually, a modified 
type of backpropagation for training threshold circuits. Modified types of 
backpropaxgation have been also tried in a number of studies. For exam- 
ple, Tom [360] uses a hybrid type of elementary gates that are linear com- 
bination of analog (sigmoid) and discrete (threshold) functions depending on 
the values of a heuristic parameter, i. e. for a specific range of values a gate 
can be purely analog (sigmoid function), while for other values it becomes 

purely binary. Bartlett and Downs [36] describe and mathematically justify 

a method of representing weights of threshold functions in depth two circuits 
as random variables with smooth distribution functions, which allows to train 

such circuits by methods similar to backpropagation. The approach was ex- 
tended by Corwin et al. [87] and Goodman and Zeng [146), where in their 

study, the learning scheme is based on the standard back-propagation, but 

with "pseudo-gradient" descent, which uses the gradient of a sigmoid func- 
tion during training in order to determine output values of gates, instead of 
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binary truth values produced by threshold functions, i. e. the outputs of gates 

are real positive numbers, either a or b, with a, bE (0,1). In [871, a learn- 

ing scheme is proposed that uses parameterised sigmoid functions in order to 

alter the shape of the sigmoid during training. Further methods and improve- 

ments of learning schemes are presented in [23,255,288,2891. For example, 
Plagianakos et al. [288,289] introduced an evolutionary learning scheme that 

utilizes differential evolution strategies, including a parallelised version of the 

approach. Anastasiadis et al. 123] devised a new globally convergent modifi- 
cation of the Resilient Propagation-Rprop algorithm, where the convergence 
analysis ensures that the adaptive local learning rates of the Rprop's schedule 
generate a descent search direction at each iteration. 

4.6 Parameters 

When implementing the LSA machine, a number of parameters must be speci- 
fied. Trying to categorize these parameters, we might divide them into parame- 
ters of the network structure, parameters of the simulated annealing method, 
and parameters of the learning method. 

4.6.1 Network Structure 

The number of computational threshold units used in a depth-two LSA im- 

plementation determines the size of the network. At this stage, the depth 

is not considered as a free parameter. Once the depth-two LSA machine is 
fine-tuned, we will move towards increasing depth to depth-four, and we will 
investigate the depth vs size problem. As the complexity increases, several new 
issues evolve related to the network topology complexity and to the learning 

algorithm complexity for levels at larger depths. What topology should be 

used in depth-four? How will units at higher levels be trained? To answer 
these questions at least partly, a new learning method will be introduced in 
Chapter 6 for training units at higher levels. 

4.6.2 Simulated Annealing 

Parameters that must be specified in every simulated annealing application 
are the crucial parameter r of the cooling schedule and the length K of the 
inhomogeneous Markov chain, i. e. after K steps the process stops with the 
best so far weight configurations, or it stops earlier if the threshold unit reaches 
a zero classification error in the training set. 
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4.6.3 Learning Procedure 

Here, the focus is on the selection of the a and 0 parameters of the third key 
feature. This choice is identical to choosing the size of positive and negative 
examples in the randomly selected subsets. The values of ce and jO determine 
how often a single example is used in randomly selected training subsets. An- 

other important parameter is the division of the original dataset into training 

and testing examples. When implementing a larger depth LSA machine, the 

complexity of parameter settings of the learning procedure increases. 

4.6.4 Research Issues 

We will try to answer a number of open questions related to the LSA machine. 
Questions that we will investigate are: 

e What is the impact of the number of threshold units, i. e. the impact of 
the size of the neural network on the classification error? 

9 What is the impact of the depth of the neural network on the classifica, 
tion error? 

* Is there any general rule for an appropriate choice of the value of the r 

parameter in relation to the size of the training samples? 

e How many times ("multiplicity") should a single training sample be used 
for training the network in order to avoid overfitting? 

4.7 Defining Experimental Parameters 

The paxameters of the method described in Section 4.6 are parameters of the 
i) learning process, ii) simulated annealing process, and iii) network structure. 
We define here our free parameters, which axe f IS' 1, K, r, P}, where: i) ISJ I LL 
is related to the learning process of a single (the j-th) threshold unit, 1i) K 

and r are related to the simulated annealing process, and iii) P is related to 

the network structure and to the total number of gates determining the final 
discrimination function. 

1. The Learning Process Parameter JSJ 1: For the learning process, we di- L 
vide the total number of available data ISI, as in many Machine Learning 

methods [297] into 2/3 of the data to be in the training set SL, and the 

rest 1/3 of the data to be in the test set ST for estimating the classifica, 
tion accuracy. The same partition of data is used for the SJGS datasets 
by Rampone in [297]. In order to train the unit j, I. e. to calculate a 
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function of the type fj =E wi - xi ý! t9, where i=1,.., n is the num- 
ber of input gates in threshold unit j, and j=1,.., P, we use a sample 
set SL3, which is randomly sampled from SL, associated with threshold 

unit j. The number of examples in IS3LI determines the sample complex- 
ity problem, which is related to PAC learnability and VC-dimension, 

as described in Section 2.3.1. We want JSjLj to be as large as possible 
in relation to the generalisation error, which should be at the lowest 

possible level. For the size complexity problem related to jSj 1, we use L 
integer steps xO ý: 2 for calculating the number of random examples 
IS3LI = ISLllxo. Therefore investigation of parameter ISL71 is identical to 
find a value xO that obtains best classification result. 

2. The Simulated Annealing Parameter K: Parameter K determines the 

number of steps when searching for better solutions in the simulated an- 
nealing process. While this number of steps determines also the learning 

effort, parameter K, although a parameter of the simulated annealing 
process, is also a parameter of the learning process of our classifier. Pa, 

rameter K should be sufficiently large for searching the solution space in 

order to achieve a small learning error. Experimental results from [121 

suggest K : ý- (m/j)r for the number of transitions in the local search 
procedure defined in Section 4, where 1-5 is a confidence parameter, 
i. e. after K steps the probability to be in an optimum solution is at least 
1-8, and m is the size of neighbourhoods. However, this might result 
to extremely high values for K, even for small values of r. 

3. The Simulated Annealing Parameter r: The parameter r is difficult 
to estimate a priori. Rough estimations can be derived from the size 
IS3LI of the sample set, e. g. IP = IS-' 1/3, which, however, may result L 
in extremely large values for K as described previously. On the other 
hand, one can try to estimate r by preliminary experiments on ISi 1, L 
i. e. we estimate the depth D of the deepest local minimum as described 
in Hajek's Theorem 3.19: If the current best value Zb of the objective 
function is recorded, one can monitor the maximum increase D of the 
objective function before the next improvement of Zb occurs. The maxi- 
mum value of D, which we will call the marimum escape depth, observed 
over a sufficently long time period can be used as an upper bound for r. 

4. The Network Parameter P: Parameter P determines the size of the 
depth-two circuit and defines the circuit complexity problem. It is also 
related to the final discrimination function F= Ejý_j f j. Since para- 
meter P is the number of computational units used in the network, one 
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can relate P to hardware resources in a parallel implementation of the 
circuit. Therefore, bounding the number of perceptrons is desirable and 
important in terms of time and available computational resources. 

4.8 Learning and Convergence Parameters 

During our experiments, we monitor a number of other parameters for the 

purpose of studying the behaviour of parameters in relation to the average 
classification error eT. This value is calculated from m experiments with a 
fixed set of parameters JjSjLj, K, r, P}. Our auxiliary parameters are related 
to leaming and converyence properties of the learning process. 

Related to learning properties, we monitor for each threshold unit the 
learning error, and we axe interested in the average learning error eLt which 
comes as the average taken for all threshold units and all m experiments. 
Minimizing the learning error eL is the decisive task in the sample complexity 
problem, according to PAC learnability. Other parameters related to learning 

properties that we monitor axe the number Uo of threshold units that axe 
learned with zero error and the number U1 of threshold units that are trained 

with error < c, where in our case c= 1%. 
Related to convergence properties, we monitor for each threshold unit the 

last step k where an accepted new hypothesis has lowered the training error. 
The value K,. 

_ý 
is the maximum of these k with respect to all threshold units 

and for m= 10 experiments. Then, K,,,,,, can be compared to K giving 
an estimation of a training confidence 6 for adequately searching the neigh- 
bourhood structure of the simulated annealing method for minimum values. 
Let AKmax = (K - K,,,.,., )IK be the difference of K"= from K. AKmax 

approaches zero if K .. a. s: ý K. The higher AK,,, a., the higher the training 
confidence 6 for adequately searching the neighbourhood structure. Therefore, 
Kma., can also be considered as an estimation of the quality of the predefined 
length K of inhomogeneous Markov chain, where, if Kma, 0 K, we may, 
in generally, consider that adequate search is achieved. In the same way, 
Ka... is the average of all k steps and all m experiments, giving an estima, 
tion of the actual transition steps for most of the threshold units, denoted by 
AKa, e, = (K - Ka, ý, )IK . 

Finally, an important parameter of the convergence is the overall training 
time. We have seen in Section 3.5 that simulated annealing converges to 

optimality if time is allowed to approach infinity. However, polynomial time 

algorithms with good approximations of optimality are desirable and therefore 

we monitor the speed of our classifier for the evaluation process. The time 
(T(sec)) is measured on a 3.2 GHz CPU unit with 384 MB RAM. 



122 CHAPTER 4. THE BASIC CLASSIFIER OF OUR APPROACH 

4.9 Methodology 

Investigating problem dependent parameters requires a large number of ex- 

periments. Finding the optimum parameters by enumerating the parameter 
set for various values of the four parameters {Isj 1, K, r, P} is practically in- L 
tractable due to the large number of experiments. For example, the number 
of experiments E needed for just one free parameter, if the rest of the parame- 
ters are fixed, assuming a partition of the parameter space into just 10 values 
and m independent random trials (so that the generalisation error will be the 

average of the trials) with x datasets results in E= 10 -m-x, where for our 
experiments we have m= 10, x=5 and therefore E= 500 experiments for 

just one free parameter. 
We try to reduce the number of free parameters in order to focus on specific 

parameters that may effect the generalisation performance of our method. 
Thus, in our experiments the number of examples ISLI, ISTI used for training 

and testing our classifier have size SL = 2/3. S and ST = 1/3 - S, respectively, 
where S= SL U ST. The division of the available data into two disjoint 

sets of the above size is common practice in Machine Learning [269,2971. 

Other methods for defining the learning and testing sets, like the 10-fold cross 
validation methodology, have not been considered as this would significantly 
increase the number of required experiments. 

Furthermore, in order to reduce the free parameters, we maintain within 
the sample sets used for training each unit the original distribution of positive 
and negative examples of the dataset. Therefore, in our case we have a=0 
for the parameters a, 0 defined in Section 4.4. In this way we can view the as- 
sociated set of random samples for training each unit as a smaller classification 
problem, which has the same proportion of positive and negative examples as 
the larger classification problem. 

Since the optimum parameter setting cannot be reached, we will try to 
demonstrate the impact of each one of the four free parameters by focusing 

on experiments for each parameter for fixed values for the rest of parameters. 
Prior knowledge of the learning algorithm's behaviour on the parameters has 
been acquired by a number of experiments carried out before. Examples of 
such experiments can be found in [14,229,230,231]. Thus, to fix the rest of 
parameters not arbitrary values are assigned, but values reasonably close to 

accepted values for a good approximation of the best classification accuracy. 
Therefore, the setting of the parameters demonstrated here win be a fine- 
tuning method for each parameter and each dataset. 

The x=5 datasets for setting up the problem dependent parameters are 
described in Section 5.1. The selection of the specific datasets was based on the 
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following criteria. All datasets axe well known datasets from the UCI Reposi- 
tory, used by many researchers as benchmark datasets to test their methods. 
Therefore there exist a large nýmber of experiments for these datasets allowing 
us to have a compaxison of our method with the best results from the liter- 
ature. Also we tried to have datasets that consist of different types of data 
like nominal data as in IE, EI, and "Neither"" datasets, integer data as in 
V%rBCD and data with real values as in Pima Indians dataset. Moreover, while 
WBCD and Pima Indians are binary classification problems having two classes, 
IE, EI, and "Neither"" datasets axe part of a multiclassification dataset, the 
Splice-junction Gene Sequence Dataset, treated as three binary classification 
problems as described in Section 2.2.7. Thus, the selected datasets are related 
to both binary and multiclasification problems. 

Nominal data in a preprocessing step are encoded to binary values as de- 

scribed when presenting each dataset. For each of the m= 10 experiments 
for each step of each parameter, different sets Of SL and S7, axe used, where 
again the proportion of positive and negative examples in both SL and ST 
sets follows the proportion of the whole dataset. For each experiment, ST 
is constructed prior to SL by randomly sampling examples from the original 
dataset. Each unit is trained by examples randomly selected from SL. The 

output values of each of the m= 10 experiments are averaged and this av- 
erage determines the reported classification accuracy et of each step of the 
parameter. While investigating each parameter we try to inter-relate best 

classification accuracy with monitored properties of the problem. Tables and 
plots pan be helpful and axe provided where appropriate. 

Initially we optimise JSLiJ by fine-tuning xo parameter, for setting up 
the size of samples for training each unit. We use P= 100 perceptrons, 
K= 25,000 and r= Dp, where cp corresponds to each of the classification 
problems. Then x0 is fixed in values that obtain for each dataset the best 

classification rate. Afterwards, length of inhomogeneous Markov chain K is 
fine-tuned. We also run experiments to compare the importance of paxameters 
x0 and K (see Section 5.4). Paxameter r is investigated afterwards for the 
fixed values of x0 and K for each dataset. Finally we run experiments varying 
the number of perceptrons P to investigate the impact of the size of the net- 
work to the classification accuracy. The results for paxameter P for depth-two 

axe used in next chapter to investigate the circuit complexity problem. 
Investigating the circuit complexity problem we need to work on larger 

depths and we introduce a new learning method that is based on further 

partitioning the training set SL to two disjoint sets of approximately the same 
size, one for training depth-two as previously, where after all depth-two units 
have been trained all their weights have the fixed calculated values from the 
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learning procedure, and the other for generating new samples for training next 
depth after applying it to the trained depth-two units. In this way training 

on next depth is based on generated data from the outputs of previous depth 

and the aim in of our method is to learn the units that perform well and 
increase their significancy while at the same time decrease the significancy of 
those units that provide less accurate results. A detailed analysis of the new 
learning approach is presented in Chapter 6. 

For investigating the circuit complexity problem we will compare the re- 

sults for depth-two circuits with results of depth-four circuits of the same size. 
If the problem is NP-hard then we want to see whether a small increase in 
depth achieves better classification accuracy than depth-two, Le to decide on 
the depth vs size problem. If the problem is non-NP-hard then it is expected 
that a small increase in depth reduces significantly the size of the network, 
Le the size changes from an exponential size in depth-two to a polynomial 
size in depth-four. If this occurs in any of our dataset then this dataset is 

non-NP-hard. We will also compare our results with classical theory from 

threshold circuit theory to estimate the size of the network for achieving high 

classification accuracy. 
The experiments on depth-four rely on the results of the previous fine 

tuned parameters and we use the values obtained for best classification rates 
in each dataset and for the three parameters jx0, K, r}, which we call this set 
of values as set- 1. We also use another set of values for parameters Ix", K, ri, 

namely set-2, of non-optimized values, where x0 is estimated from experiments 
with P= 50 perceptrons in depth-two circuits, where inhomogeneous Markov 

chain was set to K= 20,000 and r was set to one third of the size of the 

sample set IS'Ll. 
After investigating the circuit complexity problem we will provide rules 

for setting up values related to the problem of the network size, the size of 
samples used for training each unit, the length of inhomogeneous Alarkov 

chains and the constant r of the cooling schedule. These values are based on 
experimental results on five datasets. To evaluate our findings derived from 
the initial five dataset we will use ten additional datasets, which are described 
in Section 6.8, and we will apply our paxadigms for parameter settings. Again 

the additional datasets come from the UCI Repository and there exist in the 
literature many reported results. Thus, we can compare our experimental 
results to those reported in the literature. We focus on the applicability of 
the estimated network size and the applicability of the sample size complexity 
rule. Our sample size complexity rule requires a number of experiments where 
we monitor three properties (monotonicity, U0 and K,,.. Therefore we run 
three set of experiments on new datasets one for each criterion of the sample 
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size rule to evaluate the importance of each of the three monitored properties 
(see Table 6.8). Finally, to evaluate the applicability of the estimated network 
size result, we will run further experiments on the ten datasets to compare 
the results of the estimated network size N with results from two different 
networks, one with smaller size (half of the estimated network size, N12) and 
one with larger size (double of the estimated network size, 2N); cf. Table 6.9. 
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Chapter 5 

Parameter Settings 

In this chapter, we will investigate the detailed performance of our classifier by 

setting the general parameters and trying to relate them to problem dependent 

paxameters. 
The No Free Lunch Theorems established a new way of studying algo- 

rithms; cf. Section 2.4.3. Before NFLT, when a new algorithm was designed 
it was tested against as many problems as possible and compared to as many 
existing algorithms to evaluate it. As we have seen in Section 2.4, there exists 
no universal algorithm that solves all type of problems most efficiently. More- 

over, no algorithm under no assumptions related to the problem performs 
better than any other, even against "random guess" as the chosen heuristic 
method. In this chapter, the parameters of the adopted learning algorithm 
will be explored. The setting of the parameters, has to be adjusted to proper- 
ties of the dataset. We have introduced two types of such properties, one type 
related to learning properties of the sample set, and the other type related to 
convergence properties of the sample set, as described in Section 4.7. 

The main parameters that will be considered in this chapter for their im- 
pact on the classification accuracy are: 

a) the number of examples JSJ I (randomly chosen from SL) used in the L 
sample set for training a threshold unit j, where j=1,.., P; 

b) the training effort in terms of the length K of inhomogeneous Markov 

chains; 

c) the parameter r of the cooling schedule of simulated annealing; 

d) the number of threshold units P in the network. 

In this chapter we will focus only on depth-two networks. Networks of 
larger depth for the impact of depth in the LSA machine axe investigated in 
Chapter 6. 

127 
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5.1 The Datasets 

Our datasets are from the well known UCI Machine Learning Repository [262], 

used by many researchers as a benchmark collection of datasets for testing 

their classification algorithms. All datasets that we use have missing values 
in some of the positions. The problem of handling missing data has been of 

particular interest to many researchers [243,322]. Suggested methods to deal 

with missing data range from naive methods of just discaxdin-, or just ignoring 

the samples that have missing values, to methods of replacing the data with 

plausible values or by using more sophisticated methods to calculate values 
from other data in the set. 

5.1.1 Splice-junction Gene Sequences Datasets (SJGSD) 

Splice junctions are points on a DNA sequence at which "superfluous" DNA is 

removed during the process of protein creation in higher organisms. The prob- 
lem posed in this dataset is to recognize, given a sequence of DNA, the bound- 

aries between exons (the parts of the DNA sequence retained after splicing) 
and introns (the parts of the DNA sequence that are spliced out). This prob- 
lem consists of two subtasks: recognizing exon/intron boundaries (referred to 
as EI sites), and recognizing intron/exon boundaries (IE sites). Additionally, 

a third class is introduced which is referred to as "Neither". Given a position 
in the middle of a sequence window, 60 DNA sequence elements are used to 
decide if this is an IE, EI, or "Neither" class. The database consists of 3190 

vectors representing 60 attributes with nominal representation. The class dL-, 
tribution is: 25% for IE (767 instances); 25% for EI (768 instances); and 50% 
for "Neither" (1655 instances). In order to discriminate between the three 
classes, we introduce three databases, each related to a single class as positive 
examples: 

1. The IIIE dataset": consists of 767 positive examples (IE class) and 
2,423 negative examples (union of EI class and "Neither" class); 

2. The "EI dataset": consists of 768 positive examples and 2,422 negative 
examples; 

3. The "Neither dataset": consists of 1,655 positive examples and 1,535 

negative examples. 

In our approach the partition of sample data into training samples and 
test samples follows [297] with about 33% as test data. Our encoding of data 
is done as described in the StatLog project (http: //wvv-w. ncc. up. pt/liacc/NIL/ 
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statlog), where the symbolic variables representing the nucleotides (A, G, T, C) 

were replaced by 3 binary indicator vaxiables: 

A --* 100; C --+ 010; G --. o 001; T --+ 000; (5.1) 

Therefore, the 60 attributes produce 180 binary attributes. We replaced miss- 
ing values with the plausible value of 111. The dataset documentation indi- 

cates that much better performance is generally observed if attributes closest 
to the junction axe used. Rambone [297] suggests a restricted window to 20 

nucleotides, which in our case this means using binary attributes from the 61 

position to the 120 position of the 180 length binary string. 
Another encoding of data is described in [297], where the symbolic variables 

representing the nucleotides (A, G, T, C) were replaced by 4 binary indicator 

variables. 

5.1.2 Pima Indians Diabetes Dataset (Pima) 

The Pima Indians dataset contains data collected by the National Institute 

of Diabetes and Digestive and Kidney Diseases, USA. The set consists of 768 

cases, where 268 have the diagnosis diabetes (35% of the data) and therefore 

axe positive examples, and 500 (65% of the data) have the diagnosis non- 
diabetes and are negative examples. The data have eight attributes: number of 
times pregnant, plasma glucose concentration, diastolic blood pressure, triceps 

skin fold thickness, serum insulin, body mass index, diabetes pedigree function, 

and age. Although in the text file accompanying the data set in the UCI 
Repository, it is claimed that there are no missing data in the set, a closer 
look reveals that in six out of eight columns there are zeros clearly denoting 

unknown values, and therefore they are missing values. Many researchers have 

used this dataset probably without knowing that it contains missing data, 

and therefore we consider studies about Pima Indians referring to 768 cases, 
without referring to methods of handling missing data, as studies treating the 

missing values by ignoring them. The same method will also be used here, so 
in our experiments we will use the database as it is given in the UCI repository. 
The accuracy of vaxious classifiers for the data set vaxies from 72% to 82%, 

where the highest values were obtained when all missing data positions were 
removed from the dataset [383]. 

5.1.3 Wisconsin Breast Cancer Dataset (WBCD) 

The WBCD database is the result of efforts made at the University of Wis- 

consin Hospital for accurately diagnosing breast masses based solely on a Fine 
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Dataset = Splice-Junction IE 

P=100 K=25,000 ISI=3,186 ISLI=2,124 ISTI=1,062 r=0.75-ISLl 

XO is"I eL% UO% Ul% eT% 

2 1,062 0.6% 4.7% 83.1% 4.05% 0.15% 
3 708 0% 75.1% 100% 4.05% 0.14% 
4 531 0% 98.5% 100% 4.07% 0.18% 
5 424 0% 100% 100% 3.87/o 0.21% 
6 354 0% 100% 100% 3.95% 0.22% 
7 303 0% 100% 100% 4.04% 0.31% 
8 265 0% 100% 100% 4.05% 0.19% 

10 212 0% 100% 100% 4.15% 0.16% 

Table 5.1: Sample Size and Learning Properties for IE. 

Dataset = Splice-Junction IE 

P=100 K=25,000 ISI=3,186 ISLI=2,124 ISTI=1,062 r=0.75: IS' I 
, L_ 

XO K., A(K ... )% eT% T(sm) 

2 24,879 0.5% 16,533 33.9% 4.05% 5416 
3 24,002 4.0% 6,400 74.4% 4.05% 1344 
4 23,568 5.7% 2,647 89.4% 4.07'/o 551 
5 11,300 54.8% 590 97.6% 3.87/o 65 
6 2,577 89.7% 353 98.6% 3.95% 39 
7 1,413 94.3% 254 99.0% 4.04% 31 
8 1,084 95.7% 201 99.2% 4.05% 15 

10 583 97.7% 144 99.4% 4.15% 9 

Table 5.2: Sample Size and Convergence Properties for IE. 

Needle Aspiration (FNA) test. NVBCD is a binary classification problem where 
each vector represents 9 features. The output indicates either a benign case 
(positive example) or a malignant case (negative example). The data set con- 
sists of 699 samples with integer values, where 16 samples have missing values 
which in our experiments have been discarded in a pre-processing step. The 

remaining 683 data are divided into 444 benign and 239 malignant cases. 

5.2 Sample Size Complexity and 'h-aining Quality 

For the size complexity problem related to IS3LI, we use integer steps xO 
for calculating the number of random examples JSJ I= ISLllxo. L 

SJGS Datasets 

One might expect, as the three datasets IE, EI, "Neither" are different 
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Sample Size Complexity and Training Error for IE. 
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Dataset = Splice-Junction EI 

P=100 K=25,000 ISI=3,186 ISLI=2,124 ISTI=1,062 r=o. 75-IsiLl 

x0 ISILI eL% UO% Ul% eT% ' : k% 

2 1,062 0.1% 44.0% 100% 2.75% 0.14% 
3 708 0% 98.1% 100% 2.66% 0.15% 
4 531 0% 100% 100% 3.02% 0.09% 
5 424 0% 100% 100% 3.25% 0.18% 
6 354 0% 100% 100% 3.30% 0.18% 
7 303 0% 100% 100% 3.45% 0.34% 
8 265 0% 100% 100% 3.70% 0.33% 

10 212 0% 100% 100% 4.07% 0.32% 

Table 5.3: Sample Size and Learning Properties for EI. 

Dataset = Splice-Junction EI 

. 
P=100 K=25,000 ISI=3,186 ISLI=2,124 ISTI=1,062 r=0.75 - IS, I 

- 
XO K,,,., A(K,, ý.. )% K.,, e, A(K.,,,.,. )% eT% T(sec) 

2 24,988 0.0% 6,542 73.8% 2.75% 3,529 
3 20,135 19.5% 1,204 95.2% 2.66% 389 
4 10,279 58.9% 655 97.4% 3.02% 139 
5 2,525 89.9% 369 98.5% 3.25% 36 
6 1,928 92.3% 264 98.9% 3.30% 32 
7 1,006 96.0% 208 99.2% 3.45% 24 
8 677 97.3% 175 99.3% 3.70% 14 

10 482 98.1% 133 99.5% 4.07% 9 

Table 5.4: Sample Size and Convergence Properties for EI. 

views onto the same splice-junction dataset, that they might have the same 
training properties and therefore might have the same parameter setting for 
the best classification rate. However, results show that this is not the case. 
Each dataset is considered as a separate dataset and best classification rates 
are obtained for different values of the parameter set. Therefore, different 

xo values are suggested for each dataset. Moreover, preliminary experiments 
calculating the value of the maximum escape depth for P=100 suggest values 
of r, -,, = 0.75 - IsLil, rE, = 0.75 - IsLil, rN. ith., = 0-50 - ISLjI- 

IE 

Table 5.1 and Table 5.2 display experimental results for the IE dataset 

and values of xo = 12,3,4,5,6,7,8,101. The dataset is trained with relatively 
good learning error, even for large sample sets and most of the threshold units 
are capable of learning the examples with zero or 1% error. 
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Dataset = Splice-Junction "Neither" 

P=100 K=25,000 ISI=3,186 ISLI=2,124 ISTI=1,062 r=0.50. lsj., l 

XO ISILI eL% UO% Ui% eT% : L% 

- 

2 1,062 IM 0% 0% 8.08% 0.32% 
3 708 1.5% 1.7% 38.2% 6.61% 0.18% 
4 531 0.5% 40.0% 87.1% 6.27'Yo 0.21% 
5 424 0.2% 86.2% 98.4% 6.14% 0.26% 
6 354 0% 98.8% 99.8% 6.06% 0.19% 
7 303 0% 100% 100% 6.32% 0.25% 
8 265 0% 100% 100% 6.59% 0.16% 

10 212 0% 100% 100% 7.04% 0.34% 

Table 5.5: Sample Size and Learning Properties for "Neither". 

Dataset = Splice-Junction "Neither" 

P=100 K=25,000 ISI=3,186 I SL 1 =2,124 ISTI=1,062 r=o. 5o - Is'Ll 

XO K,.., A(Km,,, )% K.. ý, - A(K.,,.,. )% eT% T(sec) 

2 24,992 0.0% 19,296 22.8% 8.08% 5,744 
3 24,965 0.1% 16,528 33.9% 6.61% 3,553 
4 24,899 0.4% 11,224 55.1% 6.27% 1,126 
5 24,894 0.4% 4,486 82.1% 6.14% 424 
6 22,098 11.6% 1,644 93.4% 6.06% 169 
7 16,113 35.5% 846 96.6% 6.32% 117 
8 5,796 76.8% 572 97.7% 6.59% 35 

10 1,823 92.7% 369 98.5% 7.04% 22 

Table 5.6: Sample Size and Convergence Properties for "Neither". 

The best classification accuracy eT is obtained for xO = 5, where at this 

value U05 stabilizes to 100% from the previous step U04 = 98.5%, K,,,,, x consid- 
erably lowers its value in relation to the previous step xO = 4, and this value 
(Km5ax = 11300) is considerably lower in relation to K. U, approaches values 
close to 100% . Remarkable is that training time for best classification "cu- 
racy is rapidly (T = 65 seconds) and is considerably lower than at previous 
steps of xO. 

Results from Table 5.1 and Table 5.2 are plotted in Figure 5.1. The di- 

agrams show eL and eT errors in relation to xO. Moreover, for the second 
diagram we draw various secondary x axes for demonstrating the behaviour 

of the classification error over AK,,,, x, UO, and U1. These axes also 
depend on xO values. They are used for visualising results and identifying best 

classification accuracy patterns by observing points of local minima. 
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Dataset = Pima Indians 

P=100 K=25,000 ISI=768 ISLI=512 ISTI=256 r=0.66-IS'LI 

- 
XO IS 1 eL% UO% Ul% eT% : L% 

2 256 25.8% 0% 0% 27.30% 0.65% 
4 128 21.1% 0% 0% 28.00% 0.64% 
6 85 17.5% 0% 0% 28.16% 0.83% 
8 64 14.6% 0% 0% 27.73% 1.03% 

10 51 10.9% 2.0% 2.0% 26.74% 0.677o 
15 34 6.53% 17.1% 17.1% 25.39% 1.22% 
20 26 4.5% 46.0% 46.0% 25.66% 0.61% 
25 20 IM 63.2% 63.2% 25.12% 1.03% 
30 17 2.8% 70.1% 70.1% 26.45% 1.33% 

Table 5.7: Sample Size and Learning Properties for Pima Indians. 

EI 

Recognizing exon/intron boundaries in the EI dataset (Table 5.3, Table 

5.4, and Figure 5.2) seems to be easier than recognizing intron/extron bound- 

aries in the IE dataset, as our classification method has the best classification 
EI accuracy for much larger in size sample sets: xO =3 corresponding to 708 

examples, whereas XOIE =5 corresponding to 424 examples. This, however, 
leads to more training time (T = 389 seconds) for the best classification accu- 
racy. The best classification rate is obtained when UO approaches values close 
to 100%, Ifm, x is significantly lower than K, and AK.,,, approaches 100%. 
The former two are common observations with those in IE dataset. 

"Neither"" 

We observe that for "Neither" (Table 5.5, Table 5.6, and Figure 5.3) the 

classification error is higher compared to the two previous datasets. "Neither" 

contains as positive examples the classes that are not EI and not IE classes. 
One might say that the classification error is expected to be close to the 

worst case classification error of the two datasets, however, the classification 
IE EI error is closer to eT + eT . We observe a similar pattern for "Neither" in 

Rampone's results [297]. 

Probably, class "Neither" contains the effort of learning two classes at the 

same time: class "not(IE)" and class "not(EI)" requiring a considerable effort 
compared to learning only one class. The distribution of positive and negative 
examples in class "Neither" is balanced by 50% positive and 50% negative 
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Dataset = Pima Indians 

P=100 K=25,000 ISI=768 I SL 1 =512 IST1=256 r=0.66. ISILI 

XO K,,,.. A(K,,,.. )% Kaver A(K .. r)% er% T(sec) 

2 24,990 0.0% 9,812 60.8% 27.30% 829 
4 24,728 1.1% 10,868 56.5% 28.00% 436 
6 24,392 2.4% 10,015 59.9% 28.16% 301 
8 24,944 0.2% 9,178 63.3% 27.73% 278 

10 24,765 0.9% 6,925 72.3% 26.74% 251 
15 24,869 0.5% 2,689 89.2% 25.39% 127 
20 24,586 1.7% 934 96.3% 25.66% 76 
25 19,065 23.7% 210 99.2% 25.12% 58 
30 11,623 53.5% 150 99.4% 26.45% 31 

Table 5.8: Sample Size and Convergence Properties on Pima Indians. 

examples, whereas datasets IE and EI have a distribution of 25% positive and 
75% negative examples. Class "Neither", as described above, differs also in 
the variable of the estimated maximum escape depth yielding to a lower value 
of r than in the other two datasets. 

The best classification rate is obtained for xO = 6, where eL = 0%, and 
UO, U, approach 100%. In comparison to the previous datasets, K,,. is sig- 
nificantly smaller than K, and therefore &ver is also significantly smaller 
compared to K, so that AK,, ve, > 90%- 

Pima Indians Dataset 

The Pima Indians dataset has low reported classification accuracies, as 
mentioned already in Section 5.1.2. Results in Table 5.7, Table 5.8 and Figure 
5.4 reveal that the learning hardness is reflected in the sample size, where 
much larger values like xO = 25 are needed for best classification accuracy. 

High rates of learning accuracy related to small values of eL cannot be 

achieved even for very small sample sizes. We tried lowering the examples in 
the sample set reaching discrimination between examples only if 4 examples 
are used. For the Pima Indians dataset preliminary experiments calculating, 
the maximum escape depth for P= 100 suggest value of rpi,,,,, = 0.66. JSjLj. 

The importance of the results is that we identify the same pattern behav- 
iour related to K,,,,.,, where again the best classification accuracy is achieved 
on x'O when 1, (ý'. x is significantly smaller than Ktlx, which is usually very 
close to K. 
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Dataset = WBCD 

P=100 K=25,000 ISI=683 ISLI=455 ISTI=228 r=0.75 - JSIIl 
- 

x0 ISILI eL% UO% Ui% eT% : k% 

2 228 3.2% 1.9% 7.5% 1.05% 0.42% 
3 152 2.1% 20.9% 34.5% 0.71% 0.33% 
4 114 1.2% 48.8% 66.0% 0.58% 0.22% 
5 91 0.8% 56.0% 66.0% 0.55% 0.20% 
6 76 0.5% 80.1% so. M 0.83% 0.34% 
7 65 0.4% 85.0% 85.0% 1.02% 0.22% 
8 57 0.2% 91.6% 91.6% 0.99% 0.20% 

10 46 0.1% 96.5% 96.5% 1.15% 0.58% 
15 30 0% 100% 100% 2.68% 0.64% 

Table 5.9: Sample Size and Learning Properties for WBCD. 

Dataset = WBCD 

P=100 K=25,000 ISI=683 jSz 1=455 IST1=228 r=0.75 - ISLl 

X0 Ký.. A(Km,,, )% K,,,.,. A(ICav.,. )% eT% T(sec) 

2 24,708 1.2% 5,402 78,4% 1.05% 502 
3 24,929 0.3% 6,664 73,3% 0.71% 306 
4 24,875 0.5% 5,738 77,0% 0.58% 133 
5 24,911 0.4% 4,609 81,6% 0.55% 118 
6 24,478 2.1% 3,212 87,1% 0.83% 82 
7 24,919 0.3% 2,753 89,0% 1.02% 36 
8 24,674 1.3% 1,986 92,1% 0.99% 20 

10 23,989 4.0% 1,359 94,6% 1.15% 9 
15 23,782 4.9% 557 97,8% 2.68% 5 

Table 5.10: Sample Size and Convergence Properties for WBCD. 

WBCD 

For the WBCD preliminary experiments calculating the maximum escape 
depth for P= 100 suggest value of r, = 0.75 - JSJ 1. For WBCD we see L 
from Table 5.9, Table 5.10 and Figure 5.5 that we cannot achieve a very small 
K,..,, i. e. K,,, a.,, is always close to K, even for small sets. Therefore, we are 

not able to relate K,,,,,, to classification accuracy for this dataset. Best classi- 
fication rate is achieved for xO = 5. Minimizing eL9 Uo, and U1 does not affect 

classification rate. The results presented here outperform all other methods 
in the literature, to the best of our knowledge. 
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Sample Size Complexity and Training Error for WBCD. 
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Dataset = Splice-Junction IE 

P=100 xo=5 ISI=3,186 ISLI=2,124 ISTI=1,062 r-0.75.1sIL1 

K eL% UO% Ul% eT% *% 

500 0.4% 63.7% 87.5% 3.90% 0.18% 
1,500 0% 94.6% 99.8% 4.07% 0.15% 
5,000 0% UM 100% 3.95% 0.2 4Yo 

15,000 0% 100% 100% 3.87% 0.21% 
25,000 0% 100% 100% 3.87% 0.21% 
50,000 0% 100% 100% 3.87% 0.2 l'Yo 

150,000 0% 100% 100% 3.87% 0.21% 

Table 5.11: IMC Length and Learning Properties for IE. 

Dataset = Splice-Junction IE 

P=100 X0 =5 ISI=3,186 ISLI=2,124 ISrl=1,062 r=0.75. JSJ, 

K K- A(Ký.. )% K... A(K...,. )% eT% T(scc) 

500 500 0% 375 25% 3.90% 38 
1,500 1,495 0% 532 65% 4.07% 51 
5,000 4,932 l% 564 89% 3.95% 54 

15,000 11,189 25% 551 967o 3.87% 65 
25,000 11,300 55% 590 98% 3.87% 65 
50,000 11,353 M 592 99% 3.87% 67 

150,000 11,296 92% 549 99% 3.87% 119 

Table 5.12: IMC Length and Convergence Properties for IE. 

5.3 Length of Inhornogeneous Markov Chains 

Experimenting with the sample complexity problem, we observed that by re- 
lating value xo to a problem dependent parameter of the convergence space 
such as K,,,. does provide good classification rates, where AK, 4,,,,, 2: Go 

such that K"' 0K and K"'-l ; z:; K. We experimentally obtained values 
for best classification rates at: xo(IE) = 5, xo(EI) = 3, xO(neither) = 6, 

xo(pima) = 25, and xo(wbcd) = 5. 

In this section we investigate the leaxning effort in terms of the length of 
inhomogeneous Markov chains (IMCs). Do large chains allow better classi- 
fication rates, or do they lead to overfitting? Does early stopping improve 

classification rate? These are questions related to the length of IMCS that we 

will experimentally investigate. 

Table 5.11 till Table 5.20 and Figure 5.6 till Figure 5.10 present the results 
for specific values of K= 1500,1500,5000,15000,25000,50000,150000) tran- 

sitions. We also run experiments for much larger K=1,500,000 transitions for 
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Dataset = Splice-Junction EI 

P=100 xo =3 ISI=3,186 ISLI=2,124 ISTI=1,062 r=0.75-ISIl 

eL% UO% U, % eT% 

500 0.5% 12.0% 86.0% 2.91% 0.14% 
1,500 0.1% 64.8% 100% 2.81% 0.20% 
5,000 0% 88.6% 100% 2.74% 0.15% 

15,000 0% 94.3% 100% 2.69% 0.10% 
25,000 0% 98.0% 100% 2.66% 0.15% 
50,000 0% 98.3% 100% 2.68% 0.14% 

150,000 0% 98.8% 100% 2.67% 0.12% 
1,50o, 000 0% 98.8% 100% 2.72% 0.12% 

Table 5.13: IMC Length and Learning Properties for EI. 

Dataset = Splice-Junction EI 

P=100 xo =3 ISI=3,186 ISLI=2,124 ISTI=1,062 P=0.75 - IS'LI 

K K .... . A(Ký. ý)% K. �, ý, - eT% T(sec) 

500 500 0% 434 M 2.91% 69 
1,500 1,489 l% 849 43% 2.81% 143 
5,000 4,824 4% 1,332 M 2.74% 248 

15,000 14,332 4% 1,934 M 2.69% 289 
25,000 23,135 7% 2,239 91% 2.66% 389 
50,000 47,526 5% 2,542 95% 2.68% 421 

150,000 126,899 15% 3,126 98% 2.67% 474 
1,500,000 707,703 53% 5,405 99% 2.72% 5,984 

Table 5.14: IMC Length and Convergence Properties for El. 

EI, trying to minimise Uo, and for WBCD, trying to obtain a larger value for 
AK,,,,,. The latter is more related to the question of what length of INICs 
is large enough for WBCD so that transitions are finally bounded by values 

<<K. 

IE 

Dataset IE (Table 5.11, Table 5.12 and Figure 5.6) stabilizes its classifi- 
cation rate after K=15,000 transitions. The main reason for this stability is 
that ICm,,, has a stable value of its maximum value of an acceptance transition, 

which is around K=11,300. Thus, any further increase in the IMC length has 

no effect on the classification rate. 
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Dataset = Splice-Junction "Neither" 

P=100 xo =6 ISI=3,186 ISLI=2,124 ISTI=1,062 r=o. so. IsjL1 

K eL% uo % Ul% eT% ±% 

500 4.6% 15.6% 28.4% 6.73% 0.17% 
1,500 0.3% 70.2% 88.8% 6.31% 0.27% 
5,000 0% 94.5% 98.8% 6.21% 0.27% 

15,000 0% 98.5% 99.8% 6.23% 0.16% 
25,000 0% 98.8% 99.8% 6.06% 0.19% 
50,000 0% 98.9% 99.8% 6.17% 0.18% 

150,000 0% 98.8% 99.8% 6.29% 0.29% 

Table 5.15: IMC Length and Learning Properties for "Neither". 

Dataset = Splice-Junction "Neither" 

P=100 xo =6 ISI=3,186 JSLI=2,124 ISTI=1,062 r=o. so - Isti 

K Ký.. A(Ký.. )% K...,. A (K ... % er% T(sec) 

500 500 0% 412 18% 6.73% 39 
1,500 1,496 0% 958 36% 6.31% 82 
5,000 4,984 0% 1388 72% 6.21% 109 

15,000 14,325 5% 1754 88% 6.23% 118 
25,000 22,098 12% 1644 93% 6.06% 169 
50,000 49,525 l% 2249 95% 6.17% 217 

150,000 143,633 4% 2669 98% 6.29% 254 

Table 5.16: IMC Length and Convergence Properties for "Neither". 

EI 

Dataset EI (Table 5.13, Table 5.14, and Figure 5.7) gives no stable value 
for K,..,, however, the longer the chain the larger the distance between K. ax 
and K. One can say that classification rate stabilizes close to the value of 
best classification rate after K=25,000 transitions, where also Uo stabilizes. 
We tried to obtain classification rate results for Uo = 100% by extending the 

chain to 1,500,000 transitions, which turned out to be Inefficient, as we ob- 
tained exactly the same value of U0 as for 150,000 transitions. Moreover, a 
slight increase in the classification rate seems to make it not reasonable to 
further extend the length of IMC. 

"Neither" 

Dataset "Neither" (Table 5.15, Table 5.16, and Figure 5.8) shows the best 
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Dataset = Pima Indians 

P=100 xo = 25 ISI = 768 ISLI = 512 ISTI = 256 r=0.66 - IS3LI 

_ 
eL% UO% U, % eT% 

500 3.7% 60.3% 60.3% 26.09% 1.22% 
1,500 3.2% 62.6% 62.6% 25.55% 1.25% 
5,000 3.2% 59.2% 59.2% 25.55% 1.18% 

15,000 3.2% 61.3% 61.3% 25.66% 1.14% 
25,000 3.1% 63.0% 63.0% 25.12% 1.03% 
50,000 3.2% 60.0% 60.0% 24.96% 1.02% 

150,000 3.6% 56.8% 56.8% 26.26% 1.29% 

Table 5.17: IMC Length and Learning Properties for Pima Indians. 

Dataset = Pima Indians 

. 
P=100 xo = 25 ISI = 768 ISLI = 512 ISTI = 256 r=0.66 - ISLl 

er% T(sec) 

500 500 0% 118 76% 26.09% 5 
1,500 1,472 2% 167 89% 25.55% 6 
5,000 4,338 13% 220 96% 25.55% 12 

15,000 10,525 30% 229 98% 25.66% 31 
25,000 19,065 24% 210 99% 25.12% 58 
50,000 44,532 ll% 406 99% 24.96% 88 

150,000 55,314 63% 335 100% 26.26/o 342 

Table 5.18: IMC Length and Convergence Properties for Pima Indians. 

Dataset = WBCD 

P=Joo xo =5 JSJ = 683_ ISLI ý. 455 ISTI = 228 r=0.75 - ISLl 

eL% UO% U, % eT% 

Soo 11.0% 5.5% 5.5% 1.62% 0.36% 
1,500 3.2% 25.0% 25.0% 1.05% 0.31% 
5,000 1.2% 56.8% 56.8% 0.5 35/o 0.18% 

15,000 1.0% 61.8% 61.8% 0.44% 0.15% 
25,000 0.8% 66.0% 66.0% 0.55% 0.20% 
50,000 0.7% 67.3% 67.3% 0.66% 0.31% 

150,000 0.7% 67.8% 67.8% 0.57% 0.21% 
1,500,000 0.6% 72.2% 72.2% 0.57% 0.21% 

Table 5.19: IIAC Length and Learning Properties for NVBCD. 
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Dataset = WBCD 

P=100 X0 =5 ISI = 683 ISLI = 455 ISTI = 228 r=0.75. ISIl 

K Ký.. A(Ký.. )% K. wer A(K.., )% eT% T(sec) 

500 500 0% 365 2 MG 1.62% 
1,500 1,497 0% 1096 277o 1.05% 16 
5,000 4,993 0% 2313 U% 0.53% 31 

15,000 14,945 0% 3720 75% 0.4 417o 71 
25,000 24,911 0% 4609 82% 0.55% 118 
50,000 49,167 2% 6294 M 0.66% 202 

150,000 139,814 7% 7653 95% 0.57% 431 
1,500,000 1,394,062 7% 30352 98% 0.57% 9,477 

Table 5.20: IMC Length and Convergence Properties for WBCD. 

145 

classification rate at value K=25,000, and a certain type of overfitting occurs 
for larger values of K. At this value K,,,,, has difference = 0.12 from 
K, however, for laxger chains AK,,. becomes smaller again and classification 
error simultaneously slightly increases. 

Pima Indians 

Dataset Pima Indians (Table 5.17, Table 5.18, and Figure 5.9) shows low 
classification errors for values K= 125000,50000}. Overfitting occurs for 
laxger chains. 

NVBCD 

WBCD dataset (Table 5.19, Table 5.20, and Figure 5.10) shows low classifi- 
cation errors from early Maxkov chain lengths, such as K=5,000 transitions, 
without overfitting for larger chains. 

While AK. can be used for the sample size complexity in finding the 
appropriate value of xO, it cannot be used for the length of IMCs. Neither 
does the rest of monitored parameters allow us to make a connection to the 
length with respect to properties of these values. The length depends very 
much on the nature of the problem, however, a value of 25,000 transitions for 

our datasets seems to be an acceptable value that is quite close to good and 
best classification accuracies. 
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Dataset (xo, K) eL% UO% ul 70 eT% ±% T(sec) 

IE (3,25,000) 0.1% 75% 100% 4.05% 0.14% 1,344 
IE (3,150,000) 0% 83% 100% 4.00% 0.22% 4,098 
IE (5,25,000) 0% 100% 100% 3.87% 0.21% 65 

"Neither" (3,25,000) 1.50% 2% 38% 6.61% 0.18% 3,553 
"Neither" (3,150,000) 1.17% 5% 51% 6.43% 0.24% 21,362 
"Neither" (6,25,000) 0% 99% 100% 6.06% 0.19% 169 

Pima (3,25,000) 21.1% 0% 0% 28.00% 0.64% 436 
Pima (3,150,000) 20.2% 0% 0% 27.82% 0.58% 2,555 
Pima (25,25,000) 3.2% 60% 60% 24.96% 1.02% 88 

WBCD (3,25,000) 2.1% 21% 35% 0.71% 0.33% 306 
WBCD (3,150,000) 2.0% 22% 40% 0.88% 0.14% 1,491 
WBCD (5,25,000) 0.8% 68% 68% 0.55% 0.20% 118 

Table 5.21: Sample Size Matters More than IMC Length. 

5.4 Sample Size vs IMC Length 

In the previous section, we have seen the effect of IMCs on the best values of 
xO obtained in Section 5.2. The question rises whether we obtain an improved 
classification rate, if we apply large Markov chains to large sample sets as those 
obtained for xO = 3. Table 5.21 demonstrates this scenario for four datasets, 

as for EI we already obtained xO =3 from the size complexity problem. For 

each dataset, the first row shows the initial hypothesis, i. e. results for large 

sets and K=25,000 transitions are displayed. In the second row, we consid- 
erably increased the chain length to allow sufficient steps for decreasing the 
learning error eL- In the third row, we display the results from optimal values 
of xo. We have slight improvements for the learning error eL, which is the 
effect of simulated annealing convergence. However, the improvement of clas- 
sification errors for IE, "Neither", and Pima dataset is considerably smaller 
than the improvement obtained by changing xO. Thus, we have a considerably 
better classification rate from improving the size of examples rather than from 

allowing more time for searching in the configuration space. 

5.5 The Cooling Schedule 

The parameter r defines the cooling schedule of the simulated annealing 
process. r depends on the size of the sample sets IS31 and a rule of thumb L 
used in previous experiments is to estimate r by preliminary experiments on 
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Dataset = IE r= is, ' 1- a% D= ISLII - M% 

P=100 K=25,000 xo =5 
ISLI=2,124 ISL' 1= 424 JSTJ=1,062 

0% M% eL% Uo% K. ý.,. eT% T(sec) 

0 71 0% 100% 2,620 4.04% 238 
10 72 0% 100% 1,754 3.82% 153 
25 73 0% 100% 1,102 4.03% 95 
33 74 0% 100% 927 3.72% 71 
50 73 0% 100% 692 3.82% 77 
66 74 0% 100% 653 3.84% 68 
75 74 0% 100% 590 3.87% 65 

100 73 0% 100% 999 3.87% 85 

Table 5.22: Cooling Schedule r for IE. 

Dataset = EI r= is, i - G% D= JS, 11 - Af 

P=100 K=25,000 xo =3 
ISLI=2,124 IS'L I= 708 ISTI=1,062 

G% M% eL, % Uo% K..., eT% T(soc) 

0 67 0% 91% 6,282 2.82% 1,146 
10 70 0% 95% 3,942 2.77% 721 
25 73 0% 2,507 2.76% 484 
33 74 0% 2,115 2.92% 359 
50 72 0% 97% 2,002 2.77% 317 
66 74 0% M 2,054 2.77% 341 
75 73 0% 98% 2,239 2.66% 376 

100 70 0% 98% 1,930 2.69% 311 

Table 5.23: Cooling Schedule r for EI. 

147 

JSLjj by estimating the depth D of the deepest local minimum, as described in 
Section 4.7, item 3. 

We want to analyze the behaviour of this paxameter for our classifier. We 

use K=25,000, P= 100, and the corresponding value of xO determined for 

each dataset in Section 5.2. 
As r depends on the size of I SLj I, we run experiments for r SJ G% for L 

values of G= {O, 10,25,33,50,66,75,100}. We investigate r by monitoring 
the same settings for other parameters. We are interested in the relation 
of r to the classification rate, if there is a relation to any of the monitored 
paxameters, and also to check the applicability of Hajek's theory with respect 
to the maximum depth D of local minima. For this reason we also monitor 
D, which is represented as a percentage M% of the size of sample set: D 
JSjLj - M%. Results axe presented in Table 5.22 till Table 5.26. 
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Dataset = "Neither" r= ls-�l - 0% D= ISLII - AM 

P=100 K=25,000 xo =6 
ISLI=2,124 ISjL1 = 354 ISTI=1,062 

0% M% eL% UG% Kaver eT% T(sec) 

0 46 l% 94% 5,482 6.68% 360 
10 47 l% 95% 4,630 6.45% 356 
25 50 0% 98% 2,514 6.279o 192 
33 49 0% 98% 2,145 6.21% 196 
50 50 0% 99% 1,644 6.067o 169 
66 50 0% 98% 1,574 6.10% 156 
75 50 0'YO 99% 1,517 6.21% 152 

100 49 0% 99% 1,523 6.13% 156 

Table 5.24: Cooling Schedule r for "Neither". 

Dataset = Pima Indians r= is'Ll - G% D= ISILI - M% 

P=100 K=25,000 xo = 25 
ISLI = 512 ISILI = 20 ISTI = 256 

G% M% eL% Uo% K. ý., - eT% T(sec) 

0 65 3% 63% 315 25.20% 84 
10 65 3% 61% 367 25.10% 83 
25 65 4% 60% 373 25.76% 89 
33 65 4% 58% 371 25.10% 88 
50 65 3% 60% 290 25.31% 83 
66 65 3% 63% 233 25.10% 88 
75 65 3% 58% 238 25.90% 86 

100 65 3% 59% 309 26.20% 84 

Table 5.25: Cooling Schedule I' for Pima Indians. 

Dataset = WBCD r= ISILI - G% D= ISLl - M% 

P=100 K=25,000 XO =5 
ISLI = 455 ISILI = 91 ISTI 

= 228 

G% M% 
_ 

eL% UO% Kaver eT% T(sec) 

0 64 1% 62% 6,489 0.55% 127 
10 65 1% 63% 5,952 0.57% 125 
25 64 1% 64% 5,312 0.79% 128 
33 65 1% 65% 5,194 0.53% 122 
50 63 1% 66% 5,065 0.48% 122 
66 64 1% 64% 4,574 0.53% 117 
75 70 1% 66% 4,609 0.55% 118 

100 63 1% 64% 4,622 0.48% 117 

Table 5.26: Cooling Schedule r for WBCD. 
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Our experimental results from Table 5.22 through Table 5.26 show that 
K.,,, is related to the value of r, Le if r ; -- D, then fewer transitions K. ", r 
are needed. We observe the best classification rate if r=D for EI, "Neither", 

and Pima indians, and good approximations for IE and WBCD. This confirms 
our procedure of estimating D, as described in Section 4.7, item 3. 

Sindlax non-monotonic behaviour of parameter r has been reported in the 
literature. Strenski and Kirkpatric [354], when analyzing a small instance of 
a graph partitioning problem, observed that optimal schedules may be non- 
monotonic, which is a surprising result, since the convergence proofs suggest 
a monotone decrease of the control parameter value. Moreover, Ilajek and 
Sasaki [157] found for a small artificial intelligence problem that the control 
parameter values of finite-time optimal annealing schedules axe all either 0 or 
oo. Nonmonotonicity of optimal sequences for the control parameter is also 
reported by Boese and Kahng [57]. Aarts and Lenstra [3] state that the find- 
ings about nonmonotonicity of optimal sequences for the control parameter of 
finite-time optimal schedules are only proved for small instances, and is not 
clear if there is any impact on larger instances. 

5.6 The Size of Threshold Circuits 

What size of threshold circuit gives us the best classification rates? The para- 
meter P denotes the size of depth-two circuits. The importance of this problem 
has been described in Section 2.3.3, and Section 4.7. We run experiments for 
P threshold units, and the results are presented in Table 5.27. The parameter 
settings are K=25,000 for all datasets, xo =5 and r=0.75 - IS! I for IE and L 
WBCD; xO = 3andr = 0.75-ISLjl forEI; xo = Gandr = oz-lsli for L 
"Neither"; and xo = 25 and r -- 0.66 - ISý I for Pima Indians. We performed L 
experiments for P= {10,30,48,66,80,84,100,130,154,180,252,500}. The 

values of P have been chosen in such a way that we can compare depth-two 

circuits to depth-four circuits in the next chapter. 
Table 5.27 displays the classification errors for all five datasets and all 

numbers P. The classification errors for all datasets axe also shown in Fig- 

ure 5.11. We observe an improvement and then stabilisation of error rates 
with increased circuit size. This is especially significant for the splice-junction 
datasets, where the size of sample sets is much larger, whereas in Pima Indians 

and WBCD datasets the stabilisation occurs for smaller values of P already. 
As P varies for each dataset, our observations on the other monitored 

parameters can be summarized as follows: 

1. for IE dataset: As P changes we observed for next parameters the stable 
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P IE El Neither Pima Wbcd 
10 4.6% 3.1% 7.3% 28.2% 1.77o 
30 4.1% 2.8% 6.4% 25.8% 1.1% 
48 4.0% 2.8% 6.3% 25.6% 0.7% 
66 4.0% 2.8% 6.2% 25.2% 0.6% 
80 4.0% 2.8% 6.1% 25.1% 0.5% 
84 4.0% 2.8% 6.1% 25.1% 0.5% 

100 3.9% 2.7% 6.1% 25.1% 0.6% 
130 3.9% 2.7% 6.0% 25.1% 0.6% 
154 3.9% 2.7% 6.0% 25.4% 0.5% 
180 3.8% 2.6% 5.9% 25.3% 0.5% 
252 3.8% 2.6% 5.9% 25.3% 0.4% 
500 3.8% 2.7% 5.9% 25.2% 0.4% 

Table 5.27: Classification Error Rates on Test Sets. 

values eL = 0%, UO = 100%, U, = 100%; K. ver ranges from 570 to 
640 transitions, and K,.., = 13,602. This confirms that K=25,000 

transitions are adequate for training. 

2. for EI dataset: As P changes we observed eL = 0%, and U, = 100%, but 
UO reaches at most 98.2%; K,,,,, ranges from 1200 to 2400 transitions, 
and K,,,,, 

_. = 21,469. 

3. for "Neither" dataset: As P changes we observed eL = 0%, but UO ranges 
between 98.0% and 98.7%; Ktve, ranges from 1200 to 2400 transitions, 
and K,,.,, = 24,609. 

4. for Pima Indians dataset: As a hard to learn dataset, even for a small 
size of sample sets, we obtained a learning error eL in the range of 2.6'Yo- 
3.1%, with a corresponding UO in the range of 627o-68%; due to the 

small sample sets, K,,,,,, ranges from 200 to 300 transitions, however, 
there exist hard sample sets with K,.,,, = 22,219. 

5. for WBCD: As P changes we observed UO in the range of 5570-66%, with 
a few misclassified examples in each sample set, i. e. eL in the range of 
0.6%-0.8%; it takes a number of transitions to achieve this, as K., 

ranges between 4500 and 6500 transitions; K,,..,, = 24994 remains close 
to K, a similax behaviour as we already observed in Section 5.3. 

The diagrams of Figure 5.11 and values from Table 5.27 can be used for 

cut-off values of P for best classification rates. A detailed analysis of the 

circuit size for best classification rates will be presented in the next chapter. 

5.7 ROC Analysis 

Receiver operating characteristics (ROC) of a classifier is another measure of 
the performance of a classifier, also used for inspecting the performance of C5 
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the classifier for a specific paxameter. ROC analysis was utilized in signal 
detection theory earlier [149]. A number of researchers [62,106,292] argue 
that using classification accuracy in order to compare classifiers is not an 
adequate method. This applies mainly when the number of negative cases is 

much greater than the number of positive cases. If we assume that for some 
data obtaining positive samples is very difficult, and we have a distribution 

of 95% negative cases and just 5% of positive cases. If the classifier correctly 
classifies all negative examples, then it achieves 95% classification accuracy, 

although it has no ability to classify the desired positive examples. Usually, a 

curve of false positive rate FP versus true positive rate TP is plotted, while a 
parameter is varied. The curve always goes through two points (0,0) and (1,1), 

where in the first point the classifier always gets all negative cases right, but 
it gets all positive cases wrong, while in the second point it gets all positive 
cases right but all negative cases wrong. The ideal point is (0,1) where the 

classifier always gets both the negative and positive cases right. Uniform 

random guessing can be displayed as a diagonal line from (0,0) to (l, l). Any 

classifier that wants to perform better than random guessing should be above 
that line, and for the compaxison of classifiers we compare points on the ROC 

curve, where the part of ROC curve that is above all other curves denotes a 
better classifier. ROC points can also be used for parameter setting where the 

closer to (0,1) the better the paxameter setting. 

True positive TP and false positive FP rates axe calculated by 

TP = 
pos+ 

- (5.2) 
Pos- + Pos+' 

and 
FP 

Neg+ (5.3) 
Neg- + Neg+' 

where Neg+ is the number of misclassified negative examples, Pos- the num- 
ber of misclassified positive examples, Pos+ and Neg- the numbers of cor- 
rectly classified positive and negative examples, respectively. 

There has recently been a growing interest in using receiver operating char- 
acteristics (ROC) curves in Machine Learning (59]. The analysis of rule learn- 
ing methods by using ROC curves is presented in [125]. The area under the 
ROC curve is used as an evaluation criterion, instead of the commonly used 
classification accuracy. The interpretation of this area is discussed by Bradley 
[62], who noticed that the area under the curve can be seen as the probabil- 
ity of ranking a true positive example higher than a false positive. The area 
usually cannot be calculated easily. A method that can be used for calculat- 
ing the area is the trapezoid method [621, which, however, underestimates the 
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area if only a few points are available. Other methods for approximating and 
interpreting the area are described in [260]. 

We use ROC analysis applied to x0 as one of the crucial parameters in 

our work and we want to cross-check our selection of the size of sample sets. 
While ROC curves provide a method of finding the best classification point, 
the method has very limited use in our case, as it only defines the value of the 

parameter that maximizes the performance, without providing us with infor- 

mation about the relation of the parameter to other parameters. Therefore, 

monitoring parameters is unavoidable for extracting guidelines and relating a 
parameter to other parameters. 

ROC curves are presented in Figure 5.12. Since most points are concen- 
trated in a very small area of the graph, we also present along with each ROC 

graph a focus with respect to area under discussion. High performance is cred- 
ited to WBCD, as it reaches a point very close to (0,1); the same applies to 
IE, EI and the "Neither" dataset. The Pima Indians ROC points reflect the 
low performance that we have seen in previous Sections. 

X0 2345678 10 

1E FP 0.018 0.024 0.024 0.024 0.025 0.027 0.025 0.029 
1E TP 0.888 0.906 0.908 0.914 0.915 0.916 0.918 0.918 
IE eT 4,05% 4.05% 4.07% 3.87% 3.95% 4.04% 4.05% 4.15% 

El FP 0.019 0.020 0.025 0.028 0.029 0.030 0.030 0.033 
El TP 0.944 0.954 0.954 0.955 0.954 0.951 0.941 0.936 
EI eT 2.75% 2.66% 3.02% 3.25% 3.30% 3.45% 3.70% 4.07% 

"Neither" FP 0.124 01090 0.058 0.059 0.065 0.059 0.060 0.061 
"Neither" TP 0.960 0.956 0.937 0.937 0.943 0.933 0.929 0.921 
"Neither" eT 8.08% 6.61% 6.27% 6.14% 6.061/o 6.32% 6.59% 7.04% 

WBCD FP 0.018 0.019 0.017 0.014 0.013 0.013 0.014 0.013 
WBCD TP 0.993 0.999 0.999 0.999 0.994 0.991 0.993 0.989 
WBCD CT 1.05% 0.71% 0.58% 0.55% 0.83% 1.02% 0.99% 1.15% 

X0 2468 10 15 20 25 

Pima FP 0.078 0.090 0.098 0.102 0.095 0.093 0.096 0.084 
Pima TP 0.364 0.369 0.379 0.400 0.423 0.449 0.448 0.440 
Pima eT 24.30% 28.00% 28.16% 27.73% 26.74% 25.39% 25.66% 25.12% 

Table 5.28: ROC Points and Classification Errors for Sample Size Variations 

Table 5.28 presents the (FPTP) points for the concentrated points of the 
ROC graph, and we compare them to the corresponding value xo of best 

classification that we found in Section 5.2. The comparison shows that indeed 
the best classification rates correspond to the closest to (0,1) points. The 
(FP, TP) data also reveal the high accuracy TP = 0.999 (almost 100% correct) 
of our WBCD method in predicting positive examples, which in breast cancer 
diagnosis is more important than predicting negative examples. At the same 
time, it reveals that the low classification accuracy in Pima Indians depends 
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AK,,,.,, % 

-xo 
IE El Neither Pima_ 

best-1 
xo 5.7% 0% 0.4% 1.7% 
Xbest 54.8% 19.5% 11.6% 23.7% 0 

Table 5.29: Training Confidence for Best Classification Rates. 

very much on predicting positive examples, as it performs much better in 

predicting negative examples. This performance analysis of a classifier on 
positive and negative example is the main benefit of ROC analysis against the 
traditional method of just comparing classification rates. 

5.8 Parameter Setting Paradigms 

Optimization of parameter settings is a hard task where, actually, only ap- 
proximated values that provide good classification rates can be found. Finding 

optimised parameters induces a combinatorial optimization problem by itself, 

which usually needs a large number of experiments for good approximation. 
For the tables presented in this chapter we performed approximately 2,000 

experiments for finding guidelines for the four free parameters {xo, Kr, P). 
Based on these experiments, we tried to find paradigms for a priori setting 
values of these problem dependent parameters, according to the NFLT. We 

summarize in this section our findings: 

1. Parameter xo: We found that the value of this parameter is very im- 

portant for the quality of classification accuracy. We recall from Section 
4.7 that this paxameter determines the size JSJ I of training examples L 
used for training threshold unit j, i. e. determines the sample complexity 
problem. Based on our experiments we identify three patterns for x0. 

(a) Parameter xo is almost monotonic against classification error eT. 
Except for Pima Indians, eT decreases its value in almost every step 

of xO, till a minimum is reached. Afterwards, any increase for xO, 
is followed by increased values for eT- 

(b) Parameter xo and best classification error eT are related to the max- 
imum transition step where an accepted hypothesis of the 

simulated annealing method has lowered the misclassification er- 

ror in the training data, in the following way: for IE, EI, "Neither" 

and Pima Indians we observe that the best classification error is 

achieved at step Xbeat 0, where Kt, -t 0 K, whereas for the previous 
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step x best-1 we obtained Kb"t-1 -zzi K. We estimate a value 6., 0, 0 max 
where we may consider that Kwx : z:: K. Table 5.29 shows the per- 
centage of difference (AKnax) of K,,..., from K for the four datasets, 

for values of Xbest of the best classification error and for values 0 
x0b"t-1 from the previous step. We estimate from Table 5.29 that 
AI, C,,, ax can be lower bounded by 11.6% of the "Neither" dataset 
for considering K,,,,,,, : ý6 K, and AK,,, a., can be upper bounded by 
5.7% of the "IE" dataset for considering that If,. ; zzl K There- 
fore, we achieve for the four datasets best classification rates, if 
Ký'ax <K- 6xo - K, where 6xo ý: 0.1, and for x'-' < x' we obtain 00 
K, 'ý-alx ;:: ý K. 

(c) Parameter xo and best classification error eT are related to the 

number of units that achieve zero classification error in the train- 
ing data (UO) in the following way: for IE, UO = 100%, i. e. all units 
are able to learn the training data with zero error; for EI and "Nei- 

ther" UO -tf 98%, whereas UO achieves 100% in the next step of xO; 
for Pima Indians we cannot achieve the same high values, however, 
UO for best classification error has considerable higher value than 
in previous steps of xO; WBCD is the only dataset that increas- 
ing values of UO leads to worse classification error eT, having the 
best value for eT for UO = 56%. This pattern is related to fitting 

and overfitting properties, where we try to maximise the number 
of units that achieve zero classification error without decreasing 
the generalization quality. The trade between learning accuracy 
and generalisation accuracy is common in Machine Learning as de- 

scribed in Section 2.1.2. The process seems to suggest the maximum 
value of UO for IE, the closer to maximum values for EI, "Neither", 

a considerable high value (compared to previous steps of xo) for 
Pima Indians, whereas overfitting is unavoidable for VY'BCD after 
some certain value for UO. 

2. Parameter K: The predefined length K of the inhomogeneous Markov 
chain determines the number of transitions in the neighbourhood struc- 
ture when searching for adopting better hypothesis in the simulated 
annealing process. One may relate this parameter to learning effort by 
relating long inhomogeneous Markov chain to better fitting the training 
data. For IE, we obtained K,,,,,. ý=11,300 transitions therefore accord- 
ing to the above estimations for parameter x0 values of K >12,500 are 
acceptable values for adequately searching the neighbourhood structure, 
which is demonstrated in our experiments by obtaining stable best classi- 
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fication rate for K >15,000. Dataset EI, obtains high classification rates 
eT < 2.70% for K >15,000, with slight variations close to this value for 
larger inhomogeneous Markov chains. Dataset "Neither" obtains best 

classification rate for K =25,000. Pima Indians obtains best classificaý 
tion rate for K =50,000, whereas very close to the best classification 
error is obtained for K =25,000. WBCD obtains the best classification 
error for K =15,000. The error eT = 0.44% is the best reported in the 
literature for WBCD. The initial value K =25,000 that we used in our ex- 
periments seems to be adequate inhomogeneous Maxkov chain length for 

searching the neighbourhood structure. Larger inhomogeneous Markov 

chains lead to overfitting for "Neither" and Pima Indians. We run ex- 
periments with extremely long Maxkov chains (K=1,500,00) for El and 
WBCD while trying to minimize UO for EI, and while trying to achieve 
K,,. 

_- << K for WBCD. No improvement in the classification error has 
been obtained for both datasets for such long inhomogeneous Markov 

chains. Investigating early stopping for K no improvement in eT was 
obtained with respect to lower values in any of the parameters UO, U1, 
AK,,,.,,, AK,,,,,,. Comparing in Table 5.21 the results on classification 
error from variations of xo and K we found that variations in xO have 
larger impact to eT than variations of K. We may conclude that an 
initial value of K=25,000 is adequate for searching the whole neighbour- 
hood structure and leads to high classification rates in the five datasets 

and therefore we may suggest for new datasets that we may staxt ex- 
periments for K =25,000, unless first experiments for xO =2 result to 
Kmax << 25,000, where if we want to speed up the process, we may 
adopt a new K, such that K; ý-- K .. a,,,. 

3. Parameter r: For our experiments we used as an upper bound for r the 

maximum escape depth pattern by running preliminary experiments for 

each dataset. Maximum escape depth lead to values of r(IE) = 0.75 
lSjL(IE)I, r(EI) = 0.7 -ISJ (EI)I, r("Neither") = 0.5-ISI ("Neither")I, 5LL, 

r(Pima) = 0.66 - JSLj(Pima)j, and r(WBCD) = 0.75. IS3L(WBCD)I. 

We studied for each dataset the variations of eT with respect to r and we 
found that the relation is nonmonotonic, a pattern that is also reported 
in the literature as described in Section 5.5. Maximum escape depth 

results to high classification rates and since it is difficult to identify 

other patterns for a priori setting parameter r, we may use maximum 

escape depth for estimating r. 

4. Parameter P: The next chapter analyzes the effect of parameter P (the 

number of perceptrons) with respect to the size and the depth of the cir- 
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cuit. Experiments in this chapter show that no pattern can be identified 
from the monitored parameters as listed in Section 5.6. 

Based on the above findings we suggest the following parameter setting 
paradigms: 

1. For depth-two circuits of size P 

2. Run m experiments for maximum sample size with xO = 2, for P, 
for maximum IP = JSjLj, and an adequate number of transitions K 
(K=25,000) for determining r and K values of the simulated anneal- 
ing process, for our next experiments; monitoring the maximum escape 
depth D,,,, allows us to set r=D... for the rest of experiments; if 
K.,,,, <<25,000, we set for the rest of our experiments K= tnax[K' max 

where i m; 

3. To estimate the size of sample sets, we proceed as follows: For settings 
P, K, r=D,,,, we start with values of xO = 2,3,... and perform trial 

experiments, monitoring K,,. x and UO; since in our previous experiments 
(except for Pima Indians) we observed that the classification error de- 

creases almost monotonically, before an increase occurs, we suggest to 

monitor the monotonicity of the classification rate until an increase oc- 
curs for a number of subsequent steps; 

4. If one of the following conditions state true for a number of n experi- 
ments on xO, then the current value of xO is selected: 
a) An increase in classification error occurred for x> xO or 
b) Ký'. x <K- Jxo - K, where Sxo > 0.1, and for x'-1 < xi we observed 00 
K, ', -,,, lx ;: tý K or 
C) UO = 100% 

These paradigms will be extended in the next chapter, after analysing 
parameter P. 

5.9 Comparison of Results 

The quality of results obtained in our work can be compared to the highest 

results reported in the literature. More specific: 
Regarding the IE, El and "Neither" dataset, we obtained best error rates 

3.7%, 2.6% and 5.9%, respectively; or else, correct classification rates 96.3%, 
97.4% and 94.1%, respectively. Previous results on 25% of samples used as 
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test examples [3621, therefore considerable smaller test sets than in our experi- 
ments, report an error rate on IE, EI and "Neither" classes of 7.55%, 5.74% and 
3.99% (best results obtained by different methods), respectively. From these 

methods we mention the back propagation method achieving 10.75%, 5.74% 

and 5.29%, respectively, nearest neighbour method achieving 9.09%, 11.65% 

and 31.11%, respectively, and ID3 algorithm achieving 13.99%, 10.58% and 
8.84%, respectively. Anastasiadis et al. [23] achieved 100% combined correct 

classification on test data representing 25% of the sample set. In [336], a 

combined correct classification rate of 92.3% is reported. Rampone reports 

classification errors 4.3%, 3.1% and 4.9% for IE, EI and "Neither" for the 

same number of test samples as in our work, where our results outperform on 
IE and EI, but not on "Neither". In [60), approximately the same number of 
test samples is also used for the evaluation of artificial nonmonotonic neural 

networks (ANNNs) on the SJGSD set. Our classification results outperform 
the results obtained on EI and IE by all eight methods presented in Fig. 16 

of [60], (for "Neither", it is difficult to judge from Fig. 16, and for ANNNs it 

suggests zero errors, which is not mentioned explicitly in the text). In [244] 

combined classification errors of 2.9% and 8.1% axe reported by using SVM 

and C4.5 respectively, however, these errors are obtained for very small test 

sets by using the 10-fold cross validation methodology (270], i. e. dividing the 

dataset into 10 disjoint sets where nine sets are used for training and one set 
for testing, therefore, providing testsets with just 10% of the data. 

Regarding the Pima Indians dataset the accuracy of various classifiers 

varies from 72% to 82%, where the highest values were obtained when all 

missing data positions were removed from the dataset [383]. Since we used 
the dataset without treating the missing data positions it is difficult to draw 

conclusions on the accuracy of our classifier compared to the best in the liter- 

ature. 
Regarding the WBCD dataset the 0.44% classification error, or else the 

99.56% correct classification rate obtained in our work is the highest reported 
in the literature. Many researchers [6,23,77,216,285,337,386] (to name just 

a few) have tackled this database with reported results ranging from 90% to 

about 99%. Anastasiadis et al. [23] using the same classifier as for the SJGSD, 

achieved on WBCD 97.5% correct classification for 25% of the dataset as test 
data. The closest to our classification error is the 99.48% reported in [1211 is 

obtained by combining a special type of perceptron (the Adatron) and SVM, 

where, however, the test set consists of just 10% of the data following the 10- 

fold cross validation methodology. Following the same methodology, Opper 

and Winther in [277] report 3.07% classification error by using SVM, 2.93% 

by using naive mean field theory, 3.4% by using multilayer neural networks, 
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4.0% by using linear discriminant, 4.1% by using RBF neural networks, and 
5.8% by using CART decision trees. Cristianini and Campbell in [891 by using 
SVM and a distribution of 550 data for training and 133 for testing, report 
95.56% classification accuracy. Therefore, our classification results on WBCD 

are (to the best of our knowledge) the highest reported in literature, obtained 
on test set consisting of 33% of the dataset, thus, on much larger test sets 
than in [23,89,121,277]. 

Summarizing about the quality of our results, we note that the classifica- 
tion error results obtained by the LSA machine outperform all other meth- 
ods in the literature for WBCD and are in the highest rank of reported 
results in the literature for the IE and EI dataset. Although simulated an- 
nealing convergence properties require infinite time, our experiments with the 
LSA machine show that the best classification rates can be very fast, once 
the size of sample sets is estimated. Therefore the LSA machine is fast and 
can obtain results that outperform or are at least competitive to best 

classification results in the literature. 
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Figure 5.6: IMC Length for IE. 
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Figure 5.8: IMC Length for "Neither". 
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Figure 5.10: IMC Length for WBCD. 
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Chapter 6 

Circuit Complexity of 
Classifications 

In this chapter, we investigate the circuit complexity of classification problems 
in a Machine Learning setting, i. e. we attempt to find some rule that allows us 
to calculate a priori the number of threshold units that is sufficient to achieve 

a small error rate after training a circuit on sample data SL. We recall that 

the particular threshold units are computed by a combination of the classical 

perceptron algorithm with a specific type of stochastic local Bearch; cf. Section 

4.1. The circuit complexity is analysed for depth-two and depth-four threshold 

circuits, where we introduce a novel approach to compute depth-four circuits. 
We use again the same classification problems cp from the UCI Machine Learn- 

ing repository [262], as studied in the previous Chapter. We perform two types 

of experiments, one by using the same set of values (xop, if, rc. ) as studied in 

the previous Chapter, and one by using a set of values obtained by preliminary 

ýp = 20000}. It is important to note that we aim experiments on (Pcp = 50, Kc. 

at problems that are not linearly separable, even for relatively small subsets 

of the sample set, which axe used to train single threshold gates of the circuit 
(otherwise, the "pure" perceptron algorithm would be more appropriate). 

6.1 Circuit Depth vs Circuit Size 

The effect of circuit depth on circuit size is one of the hardest problems in theo- 

retical computer science. The problem emerged already in the discussion about 
perceptrons [268] in the context of the circuit complexity of XOR(xl,..., Xn)- 
To identify sequences of Boolean functions (f(xj,..., Xn)}OnIno with "super- 

polynomial" (or exponential) gate number in constant depth circuits of un- 
bounded fan-in gates is a very difficult problem and only slow progress has 
been made over the past decades. For example, Razborov and Widgerson 
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6.2 The Generation of Classification Circuits 

There exist many possible Cd circuits of unbounded fan-in linear threshold 

gates of depth d with different network connectivities. We performed ex- 

periments with network connectivities as in Figure 6.1, where the q units of 
the third layer (depth-two) combine the results of the t units at layer two 
(depth-one). The q output gates are then combined by a voting function at 
depth-three, producing a depth-three network. Our experimental results turn 

to statistically averaging at depth-three the overall output of depth-one, and 
therefore such network architectures would collapse to depth-two networks of 

q-t units. Thus, extensions in depth cannot be done without actually training 

units at larger depths d ý: 2. Therefore, we will call such a network a pseudo 
depth-three network. 

We will introduce a novel method for expanding circuits to larger depths. 

The method for extending the depth in can also be used in any feedforward 

neural network. The approach is applicable to circuits of any even depth 

d=2-j; however, the circuit size increases exponentially in d. For circuits 

of depth d ý! 2 we proceed as follows: A given sample set S is split into two 

disjoint subsets SL and ST, where SL is used to calculate the approximating 

threshold circuit, and the rest of the samples ST is left for testing purposes. 

The set SL is then further partitioned into d/2 subsets S1,1 j :5 d/2, and we L 
apply the following recursive procedure: SL1 is used to calculate NJ threshold 

circuits C1 of depth 2. The outputs of a single subcircuit C1 are combined by 

a voting function with a pre-determined threshold. Then, if the Nj_1 circuits 
C1_1 of depth 2- 1) have been calculated already, we generate from SL I 

randomly Nj primary training sets 'rPr 1<i :5 Nj and each TP' applied I UA II DA 
to circuits of type Cj_1 generates a secondary training set Tond The sets Tsnd Ulil I U'q 
axe then used together with the classification information from SJ to calculate L 
the perceptron gates at depth 2-j-1, which are then again combined by a 
voting function at depth 2-j. 

Note that in Chapter 5 we used the notation Sj when splitting the training L 
set into P subsets (randomly sampled from SL) for training P threshold units, 
where 1<j :5P. Since here we split the training set into equal subsets for 
training different depths, the notation Si is now related to training sets used L 
for training depth 2- (j - 1). 

After training the preceding levels of a circuit all preceding input gates 
have fixed their weights. Subsequently, when applying to the fixed subcircuits 
the next primary training sets SLj, i>1, we generate new secondary training 
sets "nd based on the outputs of the preceding level, for training the next Ulil I 
level. In this way, we have a real increase in depth, as information is passed 



170 1) /T"I? ()'. CIRCI TIT C()A IN, VXITY OF CLASSIFICA-1 ION. 'ý 

froill (olle level 1() the Ilext ()It(,. lit other words, . -encrathil- samples hascd oil 

restlltý-, oflhe previous depth is like training perceptrons to increase the output 

si--milicallce of those sIdwircuils ill ill(, previous depth that perforin Nvell. and 
to redlice Ihe si"Ifilicalice of' those subcil-cuits that perform worse. 

Tllcide; i bellind tl,; Iiliillg llext, deptliswith pmerated samplesfroni pivvious 
depills is similar to tit(' iden of the cro, dit, assignment prob1(, m. where likexise 

we tl-Y 1() filid ill c; 1se of' ml error which of the possible contributors caused 
it, ýIlld it-, si"llilicalice is decreased, while we increase the significance of those 

tllýlt c(mitrihilte 1() tit(, correct, allswer. Since tit(' sample sets used for traillill.. 

arewilpill gýll('sofdeptII-((/-- 1)ý thc mijustillent of deptli-dweiOlts to 
fit Ille smilplesets is to lem-niii-, and piving credits to the significailt 

c(mit ribillors f, l. ()Ill depill-(d I 

X, x.......... X, 
ý 

X, x2 * xý 
, 

X, )ý -II--)ý , 

ÄM PY ---------------------- ------- Ä, P, P, 0 P, F. pl, 

6.2: Depth 2 C2 with f -j I 

6.3 The Structure of Classification Circuits 

wý(, ;I Im mm-ollcoll" st ruct Ill-(' of circuits cojlý, i,, i ing ()I' ýo most three types 

()f' , -ýilcs: porcept r()l 1'., calculitted froill S (See Chapter 5). fixed type voting 
I Illict ioll's, ; 111( 1 fi\('(] type coullfill", fillictiolls'. The ,I I-lictilre of chsýilicmi()Il 
circllilý, C, / is I)Y illdlictioll: 

1. d 2: C, c(msistsoft perceptrolls. ciich oftheill colillected f(ý the 11 illpllt 

vill-iithlos. 'I'llo hillarv outpilts ()f the I threshold "ittes (perceptroll., ) it]-(, 
I lic illpllfs 1() it simple v(o ill-,, fillictioll t 0: sev F i- ii re 2. TI ic 
fhr(ý, sh(dd d -- f/2 is it pitrametet ofmir iipproitch. 

C, / is Imilt from q-I modilied (. 4)pic" ()f circllit> (ýt 1\. I)(' 



6.4. THE' COA IP UTAJ ION OF CTASSI VICATI ON` ('/I? ( '1 171 

Cd-2. The modification relates to the mitimt, gate of ciwilij. " IIY pf 
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partitioned into d/2 subsets St, 1 <- :5 d/2, of approximately equal size 
2- 1 SL I Id. 

From each SLJj we calculate N(d, 2-- 1) primary training sets T pr 1< 

i< N(d, 2- 1), by randomly selecting p elements from S3. The parameter L 
p has to be chosen either by preliminary experiments as suggested in Chapter 

5, or in such a way that 

p. N(d, 2-j-1) ý: a- I SLj 1, (6.2) 

where a ý! 1 is the multiplicity of samples in primary training sets: On average, 
each sample it appears in a different primary training sets. This ensures that 

a particular it is used in different combinations of samples. 
We now describe how the actual training sets rsnd called secondary train- filil I 

ing sets, are determined from the Tpr The 17; nd are used by the learning u1i] I [M) 
procedure of our classifier (see Chapter 4) as sets S from equation (4.2). 

Pr 1<i<t. 1. j=1: In this case we have rpsnd - T11, j], 2-1 ji, i] - (t - q) 
4. The 

training samples are elements d of length n from SLj together with the 

corresponding classification information i7(d), and for each perceptron 
Pil the procedure from Section 4 is applied with respect to TPr 

2. j>1: Each perceptron Pij, 1<i<t- (t - q) 2 -j, has an associated 
primary training set T pr and P defines in Cd q subcircuits of type 

C2'. (, -, ) with a counting gate as "output". The primary training set T 1jPr I 
is applied to the input nodes of the q subcircuits of type C2., 

-l) 
and 

therefore produces p tuples of the type (MIM2 
... Mq) with an associated 

classification 77(MIM2 ... m. ), which is known from T ýr. The perceptron 
Pj is trained on 7,, d 

U41, 
IRMIM2 

... Mq)i 77]} by the learning procedure 

of our classifier (see Chapter 4). 

Since the q subeircuits of type C2. axe calculated from different training 2 (j-1) C5 
sets at each preceding level, we can expect m,,, :Am,, in ffi = (MlM2 

... Mqb 

although the components of MA are calculated from the same sample set. 

6.4.1 Depth Related Parameters 

Increasing the depth increases the number of investigated parameters. Apart 
from the set of parameters investigated in Chapter 5 (xO, K, r), which now 
applies to two different depths, i. e. rdý' and rd=3, additional parameters are 
now: p, q, t, t/2 <- V <- t, and d >- 2, where d is an even number. 

1. The values of q and V are either depending on other parameters or can 
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be chosen relatively independently of the particulax sample set, e. g. q 
3,..., 7,0 = rt/21 + 1. 

2. The circuit depth is important for the classification rate, see Section 6.5, 
but due to the exponentional increase of gates, d :56, seems to be a 
natural limit. 

3. The parameter p defines the sample size complexity and should be as 
large as possible. The parameters q and t impose a condition on p 

with respect to the maximum number of secondary training samples 
[(MIM2 

... 7n. ) , 77]: For mi we have -t < mi :5t, 1 :5i :5q and therefore 

we need to ensure p :5 (2 .t+ 1)q, which seems to be valid a priori for 

the usual range of q and t. In our approach, p is determined by experi- 
ments in Chapter 5 for one set of experiments, and by some preliminary 
experiments for the second set of experiments as follows: on a depth-two 

circuit with t= 50 we evaluate the average training error on randomly 
chosen ji :=I SL I Ix samples for x ý! 2. We take a small xo such that the 
training error stabilizes for x> xo. 

4. The parameter t determines the size of the circuit for fixed d and q. The 

number of counting gates (voting gate as output gate) at depth d" =2-j 
in circuits Cd is given by N(d, 2-j- 1)lt = (q . t)d/2-j; see (6.1). Thus, 
the total number of gates in Cd, i. e. the size S(Cd)s is given by 

d/2-1 
S(Cd) =E (t + 1) (q . t)h = (t+ 1) 

(q - (6.3) 

h=O q-t-1 

The problem we are specifically interested in is whether circuits C' with a d 
larger d>j but smaller t<i achieve approximately the same classification 
rate as Cdý for S(Cdt) << S(Cdý). Details of experimental results are discussed 
in Section 6.5-2. 

6.5 Computational Experiments 

The comparison of C21[e = R] and C4P[e = R] provides some empirical evidence 
that the best classification rate is obtained on approximately the same circuit 
size, i. e. the same number of linear threshold functions. Moreover, counting 
the gates for the asymptotically optimal design of lineax threshold circuits for 
the most complex n-ary Boolean functions [250,2521 results in the same range 
of circuit size as in CýrP[e sz-- Rmin] and C4P[e s: s Rmin] for all our problems cp 
considered in our study (the actual input size ncP is taken from the number L 
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of bits necessary to enumerate all training samples of cp). Based on this 

observation, we propose a formula to estimate the number of perceptrons that 
have to be trained in order to achieve a high classification accuracy. Of course, 
for problems that are linearly separable, like the mushroom dataset from the 
UCI Machine Learning repository, the proposed formula overestimates the 

number of threshold gates significantly. 

6.5.1 Estimations of Circuit Size 

Classification problems cp can be encoded as Boolean functions fp on n input 

variables where the sample sets usually provide only a tiny fraction of input- 

output pairs of fp. For the splice-junction data we have "DNA windows" of 
length 60 with the usual DNA information from (A, C, G, T}. Therefore, in 

strictly binary notation we have n= 120. We use the term "strictly binary", 

as we have used and described a binary representation in Chapter 5 for the 

splice-junction data that is based on 3 bits for each attribute. For the NVBCD 

we have 9 attributes, each taking a value from 1 to 10, i. e. the binary encoding 
leads us to n= 36. The Pima Indians dataset has 8 attributes with integer as 
well as real values. We can binary encode a range of an attribute by dividing 
it into equal subranges, which qualitatively define "high", "medium", "low" 

and any "intermediate" values. Thus, even if we partition a range into four 

subranges we need n= 16 bits for binary encoding. 
In all cases, the sample data provide only a tiny fraction of the theoretically 

possible number of function values. A priori, we can argue that not all combi- 
nations of binary inputs are feasible (or even a small fraction only has indeed a 
valid interpretation). We take this into account by simply encoding (enumerat- 
ing) the sample data instead of using the variable number n as the input to the 
core of the classification circuit: We apply a methodology which is well-known 
from the synthesis of partially defined Boolean functions [249] in order to ob- 
tain some rough estimations of the size of circuits representing the sample data. 
As before, we denote by s'P SL I the size of the training data set, i. e. we have L 
gplice b Pima 
L 2127 , s' cd = 455 and s*= 512. By n we denote the number of bi- LL CP 

nary variables calculated from the number of input attributes and the range of 
values each attribute can take, i. e. nspike = 120 , nwbcd = 36 and npima = 16- 

The scP training data can be enumerated by using n' := rlog sl binary LLL 
variables, i. e. we have n'P"c' = 12 , nwbcd =9 and nP"a = 9. LLL 

For a given problem ep, we introduce the classification circuit CCP: The 

circuit is built from threshold functions of unbounded fan-in (as basic gates; 
cf. [250,251]) and has minimum size with respect to the gate number S(Ccp). 
The number of input nodes is ncp* We now try to approximate Ccp by a 
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composition of two circuits 

C, 
p =C [np --., n'P] +C [nLP], (6.4) 

L 

where C[nýp --+ nCLP1 is a multi-output circuit that calculates the encoding of 

elements from SL. The encoding then becomes the binary input to C[n'LP]. 

Based on the results about local encoding (249] we assume 

S(C[n, p --+ nP < S(C[nLP]) and therefore S(ý) <2- S(C[n'P]). (6.5) 
L 

CCP L 

Actually, S(C[np--+nLP]) depends strongly on the distribution of sample data 

within the whole domain of feasible samples of cp and equation (6.5) is valid 
for sufficiently large ncP and complex cp only. Nevertheless, we will focus on 
S(C[n'P alone which seems to be justified by our experimental observation L 
that indeed the chosen problems are associated with complex functions fcp. 

To estimate S(C[ncP]), we use the asymptotically optimal design of Boolean L 
functions by linear threshold functions as presented in [250]: 

S(f. ) <2. 
Ln 

- 
(1 +! Q(V2--"In)), (6.6) 

Fn 

where f,, =f (x I, ... ' x,, ) is an arbitrary Boolean function. Moreover, almost all 
Boolean functions f,, asymptotically require 2- V2-7n linear threshold gates 
for their representation [250] (i. e. almost all functions are as complex as the 

most complex functions). 

6.5.2 Classification Rate vs. Depth 

We computed classification results for C2 and C4 circuits for a number of differ- 

ent pairs (t, q). According to equation (6.1), the number of perceptrons that 

have to be trained in C4 is given by Nper =t- ((t - q) + 1). The value Nper was 

taken as the number of perceptrons in C2. We also have I ST 1, ý: IS 1/3,1 SLI I 

SL2 1=1 SL 1 /2 (for d= 4). 

We perform two set of experiments. The first set called set-1 is obtained 

from parameters from the previous Chapter for each dataset. We recall for 

set-1: XIE = 5, XEI = 3, XNeither -6 xwbed = 5, x"' = 25, K= 25,000, for 
000-900 

all datasets and r1E = 3p/4, rEl = 3p/4, rN. ith., = p/2, rwbed = 3p/4, and 

rpi,,. = 2p/3. 

Set-2 is based on preliminary experiments on depth-two circuits for Np"r 

50. The experiments lead us to the following settings: psplice : -2 1 SL 1/4 for all 

three classes, pbcd :=I SL 1/6, and ppima :=I SL 1/18. The rest of parameters 

on set-2 has been selected to be the same for all datasets: K= 20,000 and 
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Circuits of depth two. Circuits of depth four. 
Np., Splice-Junction WBCD (t, q) Splice-Junction WBCD 

IE El Neither IE El Neither 
30 4.1% 2.8% 6.4% 1.1% (3,3) 4.1% 3.3% 7.2% 1.2% 
48 4.0% 2.8% 6.3% 0.75/o (3,5) 4.2% 3.3% 7.4% 1.4% 
66 4.0% 2.8% 6.2% 0.6% (3,7) 4.2% 3.5% 7.0% 1.2% 
80 4.0% 2.8% 6.1% 0.5% (5,3) 4.1% 3.0% 7.0% 1.1% 
84 4.0% 2.8% 6.1% 0.5% (3,9) 4.4% 3.1% 7.1% 1.9% 

130 3.9% 2.7% 6.0% 0.6% (5,5) 4.1% 2.9% 7.0% 1.1% 
154 3.9% 2.7% 6.0% 0.5% (7,3) 3.9% 3.1% 6.8% 1.1% 
180 3.8% 2.6% 5.9% 0.5% (5,7) 4.1% 3.2% 6.8% 1.3% 
252 3.8% 2.6% 5.9% 0.4% (7,5) 4.0% 2.9% 6.9% 0.9% 
252 3.8% 2.6% 5.9% 0.4% (9,3) 4.0% 2.9% 6.6% 0.8% 

Table GA: Error Rates on Test Sets ST, i=1,... 
,4 

for Set-1 Experiments. 

Circuits of depth two. Circuits of depth four. 
Nper depth-two WBCD (t, q) Splice-Junction WBCD 

IE III Neither IE EI Neither 
30 4.1% 3.4% 6.3% 1.1% (3,3) 4.3% 3.6% 7.0% 1.7% 
48 4.0% 3.3% 6.0% 0.9% (3,5) 4.2% 3.5% 6.7% 2.0% 
66 4.0% 3.3% 6.0% 0.9% (3,7) 4.1% 3.8% 7.2% 1.3% 
80 4.0% 3.3% 6.0% 1.2% (5,3) 4.1% 3.4% 7.0% 1.0% 
84 4.0% 3.3% 6.0% 1.2% (3,9) 4.5% 3.8% 7.3% 1.4% 

130 3.9% 3.3% 6.0% 1.1% (5,5) 4.0% 3.3% 6.6% 0.9% 
154 3.9% 3.3% 6.0% 1.1% (7,3) 3.9% 3.4% 6.3% 0.75/o 
180 3.8% 3.2% 5.9% 1.1% (5,7) 4.0% 3.3% 6.5% 1.1% 
252 3.8% 3.1% 5.9% 1.0% (7,5) 3.7% 3.1% 6.5% 0.4% 
252 3.8% 3.1% 5.9% 1.0% (9,3) 3.7% 3.3% 6.2% 0.8% 

Table 6.2: Error Rates on Test Sets Sý, i=1, ..., 4 for Set-2 Experiments. 

r= p/3. 
In both sets of experiments and for all datasets we used a training sample 

size at depth-three of JS21/2, to secure that the multiplicity for training at L 
depth-three is a>1. The parameter r for training at depth-three has the 

same value as at depth one for each dataset and for each set of experiments, 
i. e. for training depth-three gates in cp = WBCD we used r= 3p/4 in set-1 
and r= p/3 in set-2. 

As stated in Chapter 5, the optimization of parameter setting involves an 
extensive number of experiments. Thus, we tried for experiments on circuit 
complexity to have, in general, two different sets of experimental parameters, 
both being different but at the same time close to good parameter settings 
obtained in the previous chapter. Table 6.1 till Table 6.3 present the exper- 
imental results. We did not observe significant CPU time differences for the 

average CPU time for both depth-two and depth-four circuits. 
Since for both types of circuits and the best values of error rates on test 

samples the maximum error rate on training data is equal or close to zero 
for all classes defined by SJGSD and below 1% for NVBCD, the total error 
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Circuits of depth two. Circuits of depth four. 
Np. r Set- I Set-2 (t, q) Set-1 Set-2 

30 2 5.87o 26.37o (3,3) 27.4% 28.77o- 
48 25.6% 25.8% (3,5) 27.6% 28.1% 
66 25.2% 25.8% (3,7) 27.8% 26.6% 
80 25.1% 25.4% (5,3) 25.6% 26.7% 
84 25.1% 25.3% (3,9) 28.6% 26.7% 

130 25.1% 25.1% (5,5) 25.9% 26.5% 
154 25.4% 25.1% (7,3) 24.8% 25.6% 
180 25.4% 25.4% (5,7) 26.2% 27.8% 
252 25.3% 25.1% (7,5) 25.2% 25.9% 
252 25.3% 25.1% (9,3) 25.2% 25.1% 

Table 6.3: Error Rates on Pima Indians Test Sets STI' 

rate does not change significantly if test samples as well as training data are 
taken into account on circuits calculated from training data only. Moreover, 
in the context of the present Chapter, we focus on the circuit complexity for 
best classifications within some small deviation of the error rate, as explained 
below. 

For each experimental set, let RP denote the maximum of the three best d 

(not necessarily different) classification rates for problem cp and circuits Cd- 
We set for d=2,4: 

scp 
min(d): = min S(CdP[e 

R-Rodp 

where e=R means an error rate of R by the given circuit. We now allow a 
margin of deviation from RP by A. As an estimation of tile circuit size that d 
ensures a high classification rate we take 

S CP : =maxIS(Cd'P[e = R]): (R, 'jP<R: 5RP+A)&(S(Cd'P(e R]): 5SZI., (d))}. dd 

(6.8) 
If the max-operation is over an empty set, we take ScP S. P,,, (d). Taking d 

the max-operation in equation (6.8) gives some confidence that the error rates 
have already stabilized. The calculation of the corresponding values for the 
two types of circuits and the five classification problems is summarised in Table 
6.4. 

From Table 6.1 and Table 6.2 we observe that the classification rate for 
depth-two circuits provides the same best values for IE, "Neither" and Pima 
Indians for settings from the two different paxameterBets, while EI and WBCD 
seem to benefit from Chapter 5 paxameter settings. 

Comparing depth-two and depth-four results presented in Table 6.1 and 
Table 6.2, we conclude that experiments with paxameter set-1, which, in gen- 
eral, are better fine-tuned than parameter set-2, leads to better classification 
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Circuit size Splice-Junction WBCD Pima 
estimates IE EI Neither 

Set-1 Experiments 

2 154 154 154 66 66 cp 

64P 130 84 130 66 130 
Set-2 Experiments 

154 154 154 180 84 2 S2 

4 130 84 130 130 130 S "P 

Table 6.4: Circuit Size Estimates for A: =0.2%. 

Circuit size Splice-Junction WBCD Pima 
estimates IE EI Neither 

SIT 154 154 154 180 130 

SrZed 147 147 147 60 60 

Table 6.5: Circuit Size Estimates Compared to ScP 
pred 

rates in depth-two circuits. For set-2 parameters we see that for cp = NVBCD 

the differences in the classification rate are very small, with slightly better 

results for d=4; for cp = "Neither" we have slightly better results for d=2, 

whereas for the rest of datasets and set-2 parameters the classification rate in 
both depth-two and depth-four circuits is approximately the same. From the 

above it is obvious that the reason for set-1 having better classification rates 
for d=2 much depends on the fact of fine-tuning the parameters for depth- 

one (see Chapter 5), without at the same time having fine-tuned parameters 
at depth-three. 

We obtain approximately the same circuit size estimations according to M 
equation (6.8) for both d=2 and d=4 (except for the EI-class), and for both 

sets of experiments (see Table 6.4). 

We set Sp := maxIS2P, S4cPJ (see Table 6.5) and compare the values to 
S'P :=x-2- (22P /nP) 1/2; Cf. pred L (6.6), where x=4 is chosen on the following 

grounds: The RHS of equation (6.5) doubles the complexity S(Ccp), and we 
assume that the third factor on the REIS of equation (6.6), which summarizes 
the complexity of auxiliary sub-circuits, at most doubles the product of the 
first two factors for relatively small values of (2nop cp)1/2. L /nL We recaU that 

splice 12 nwbcd =9 and nwbcd 9 see Section 6.5.1. Thus we conjecture nL ILL 

'P SPT ýý 8. 
V2nWL 

/ncLp (6.9) 
red 
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We note that the simple rules from equations (6.7) and (6.8) together 

with (6.9) generate the same Sp for Cp E {IE, EI, Neither). Furthermore, 
if cp = WBCD for set-1 experiments, we obtain for both depths S'P - 66, 

whereas for set-2 experiments and Np, r = 48 or Nper = 66, the error rate 
in Table 6.2 is only 0.9%, i. e. S, bd 

pred = 60 from Table 6.4 seems to be a good 
estimation from both sets of experiments. We have a different picture for Pima 

7na 
Indians and S4pi , however, S2P"' approximates Sp,, a 

pred 
In the context of Machine Learning, the RHS of equation (6.6) provides an 

estimation of the size of elements of the hypotheses space (circuits of threshold 
functions) that represent particular objects (concepts). The method to prove 
a lower bound for equation (6-6) was utilised in [251,252) (cf. also [29]) to 

obtain a lower bound for a sufficient number of samples such that the error 
rate on test samples is below c with probability at least (1 - 6). The lower 
bound (sufficient number) is expressed in terms of the VC-dimensions of neural 
nets, which basically equals the number of neurons (threshold gates); see also 
[253]. The lower bound is of the type 

max{4 -n- (n + k)2/e - log (13/c) ; 4/c - log (2/8)), (6.10) 

where k is the number of gates in neural nets (which represent the hypotheses). 
Wenotethatk=S'P (or even k= 2-(2110', P/n1)1/2) 

pred L and e In the range of 

values from Table 6.1, and Table 6.2 would result In a number of examples 
much larger than the number of samples available from our datasets, which Is 

relatively independent of J. Thus, the bound (6.10) for a sufficient number of 

samples seems to be too large, at least for the cp from Chapter 5. 

Our computational study on the datasets from the UCI Machine Learning 
Repository provides empirical evidence that 8- (2n0jP/ncP)1/2) is an appropri- L 
ate upper bound for the size of threshold circuits in order to achieve a high 

generalisation capability of circuits. The value of nP is taken as the number L 
of bits necessary to encode all training data by binary strings, and is indepen- 
dent from the number of features of a problem. The upper bound has been 

analysed for relatively small ncP only. For increasing ncP one can expect that LL 
the constant becomes significantly smaller (but still larger than 2). For the 

problems we investigated we observed that the number of gates in circuits with 
low error rates is approximately the same for both depth-two and depth-four 

circuits, in the absence of fine-tuning of parameters (set-2 of experimenents). 
The comparison of the circuit size to the asymptotic bound for the most com- 
plicated Boolean functions suggests that the chosen problems are indeed of a 
complex nature. 
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Circuits of depth two. Circuits of depth four. 
Npar Splice-Junction WBCD (t, q) Splice-Junction WBCD 

IE El Neither IE El Neither 
30 4.5% 3.4% 7.8% 2.2% (3,3) 4.1% 3.3% 7.2% 1.2% 
48 4.4% 3.3% 7.5% 1.8% (3,5) 4.2% 3.3% 7.4% 1.4% 
66 4.2% 3.3% 7.2% 1.6% (3,7) 4.2% 3.5% 7.0% 1.2% 
80 4.3% 3.3% 7.6% 1.8% (5,3) 4.1% 3.0% 7.0% 1.1% 
84 4.2% 3.3% 7.1% 1.5% (3,9) 4.4% 3.1% 7.1% 1.9% 

130 4.1% 3.2% 7.2% 1.6% (5,5) 4.1% 2.9% 7.0% 1.1% 
154 4.3% 3.2% 7.4% 1.6% (7,3) 3.9% 3.1% 6.8% 1.1% 
180 4.2% 3.1% 7.0% 1.5% (5,7) 4.1% 3.2% 6.8% 1.3% 
252 4.2% 3.2% 7.1% 1.3% (7,5) 4.0% 2.9% 6.9% 0.9% 
252 4.2% 3.2% 7.2% 1.5% (9,3) 4.0% 2.9% 6.6% 0.8% 

Table 6.6: Error Rates if Monitoring Depth-two in Depth-four Circuits on Test Z5 

Sets Sý', i=1,..., 4, for Set-1 Experiments. 

6.6 Monitoring Depth-two Classification Error in 
Depth-four Circuits 

The experiments from Section 6.5.2 refer to a comparison of two different 

classification circuits, the C2 and C4 circuits. It is interesting to compare one 
classification circuit of C4 with respect to the classification error at depth- 
four against the possible classification errors at the preceding level of the 

same circuit. For monitoring the possible classification error at depth-two we 
use a voting function at depth-two. Thus, output gates from depth-one are 
connected to two types of gates: i) connected to counting functions at depth- 

two so that the computation of depth-four threshold function is performed as 
described in this Chapter, and ii) to a voting function at depth-two in order 
to monitor the possible classification error at depth-two during the test phase. 
Table 6.6 presents this comparison for the four datasets and set-1 experiments. 

We observe that the error rate improves from depth-two to depth-four in 

all datasets, except for some values related to pairs (3,7) and (3,9), showing 
that the idea of generating new samples for training next depth generated 
circuits is justified. Therefore, adjusting the depth-three weights in order 
to fit the sample sets produced by outputs from the previous level improves 
the classificaton rate of the previous level by learning and giving credits to 
significant contributors, without any overfitting problems. The comparison 
of depth-two circuits trained by 2SL13 of available data S against depth-four 

circuits, where each even depth is trained by equally splitted samples Sj leads L 
to almost the same classification rates as in Table 6.2. The finding that there 
exist internal improvements of classification rates from one level to the next one 
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encourages us to further investigate depth-four circuits. It seems that the size 

of JSjLj is very important for i=1. Moreover, no parameter optimization has 

yet been applied to depth-three. These observations encourage us to Include 

into our future work more research on depth-four circuits. 

6.7 Tackling Classification Problems by the LSA 
Machine 

Based on our findings from Chapter 4, Chapter 5, and Chapter 6 we suggest 
the following a p7iwi parameter settings for tackling classification problems 
cp by depth-two threshold circuits. 

1. For the training sainple size SL = 21S113 calculate nP; L 

2. Calculate the size of circuits N by applying N=8- (2nOjP/ncP)1/2; L 
cf. Equation (6.9); 

3. Run m experiments for maximum sample size with xO = 2, for N, 
for maximum r= ISLJI, and an adequate number of transitions K 
(K=25,000 seems to be adequate) for determining r and K values of 
the simulated annealing process, for our next experiments; monitoring 
the maximum escape depth D,, c allows us to Bet r=D... for the rest of 
experiments; if K,,,.. << 25000, we set for the rest of our experiments 
K= maxjK"'}, where i= tn; 

4. To estimate the size of sample sets, we proceed as follows: For settings 
N, K, r=D,,,,, we start with values of xO = 2,3,... and perform trial 
experiments, monitoring K,,. and UO; since in our previous experiments 
(except for Pima Indians) we observed that the classification error de- 

creases almost monotonically, before an increase occurs, we suggest to 
monitor the monotonicity of the classification rate until an increase oc- 
curs for a number of subsequent steps; 

5. If one of the following conditions state true for a number of n experi- 
ments on xO, then the current value of xO is selected: 
a) An increase in classification error occurred for x> xO or 
b) K" <K- 40 - K, where J, ýO ý: 0.1, and for x'- 1< xf we observed 00 
K"I-1 ; z: i K or 
C) UO = 100% 

If the dataset is linearly seperable, then these steps will probably find 

xO = 2, eT = 0, however, the method unavoidably overestimates the circuit 
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size. If we reach a large value of xO, then probably one cannot find sizes 
of random sample sets that are linearly seperable. The above steps axe in 

compliance with the NFLT, as they take into account a number of problem- 
specific parameters. 

The benefits of the above-mentioned steps are the fast convergence to 

good solutions of classification problems. Either condition b) or condition 
c) in step 5, secure good approximations to near optimum solutions with fast 

convergence, as in both cases the simulated annealing process stops for most of 
the threshold units the training process before reaching the termination value 
K. 

Recently, Lane and Gobet [225] emphasized the need for developing rules 
for reproducibility and comprehensibility of computational models. They pro- 
pose that a computational model should be released as three components: a) 
A well-documented implementation; b) A set of tests illustrating each of the 
key processes within the model; and c) A set of canonical results, for repro- 
ducing the model's predictions in important experiments. Covering aspects of 
reproducibility in our work, we illustrated key processes within our classifier 
by using sets of tests for each parameter (as it has been presented in Chapter 
5), while our reported results have the detailed parameter settings that allow 
to reproduce all the experiments. Moreover, with respect to reproducibility, 
we try to evaluate the above steps by using additional datasets. Thus, taking 
into account the scope of the present work, the description of our methodology 
in Chapter 4 till Chapter 6 meets the criteria b) and c), and the algorithmic 
aspects of a) are also described in detail. 

6.8 Additional Datasets 

All our datasets are from the UCI Repository and will be used for evaluating 
our rules for tackling new datasets described in previous section. 

6.8.1 Hayes-Roth Datasets (Hayes) 

Barbara and Frederick Hayes-Roth [162] created this dataset for recognition 
and classification of exemplars. The datasets has three classes (named hayes- 
1, hayes-2 and hayes-3 in the rest of the text), which consist of five numerical 
attributes: name (deleted for our experiments), hobby (a number between 1 
and 3), age (a number between 1 and 4), education level (a number between 
1 and 4), marital status (a number between 1 and 4). We binary encoded the 
four attributes as: 
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3 bit for hobby 1=001,2=010,3=100 
4 bit for age 1=0001,2=0010,3=0100,4=1000 
4 bit for education level 1=0001,2=0010,3=0100,4=1000 
4 bit for marital status 1=0001,2=0010,3=0100,4=1000 
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The dataset in UCI Repository consists of a training file of 132 samples 
and a test file of 28 samples. We merged the two file and used 2/3 of data 
for training and 1/3 for testing, therefore we reduced the number of training 

samples and increased the number of test samples, preserving however in our 
testset the 28 original test samples. 

6.8.2 Iris Plant Datasets (Iris) 

Fisher's [117] iris plant dataset is the oldest and perhaps the most frequently 
used dataset in Machine Learning with innumerable publication of results In 

pattern classification literature. The set consists of 3 classes of 50 Instances 

each, where each class refers to a type of iris plant. One class is linearly sepaý 
rable from the other two; the latter axe not linearly separable from each other. 
There axe four attributes containing measurements in cm of sepal length, sepal 
width, petal length, and petal width, and the task is to identify the three 
classes: Iris Setosa (linearly seperable), Iris Versicolour, and Iris Virginica. 
We denote the three classification problems, as iris-1, iris-2 and iris-3. We 
binary represent the numerical values in the following way: 

We divide the space from the minimum to the maximum value for each 
attribute in 10 ranges, creating for each of the four attributes a binary string of 
10 bits length, where only one bit has value 1 (for the corresponding matching 
of the real value) and the rests values of 0. The string 1000000000, for instance, 
is close to the minimum value of the measurement space for attribute x,, and is 
in the range (min, min+(max-min)/10}, whereas 0000000001 is In the range 
(min + 9(max - min)/10, max}. Therefore instead of four Input variables we 
create a binary dataset of 40 attributes. 

6.8.3 Mushrooms Dataset (Mushrooms) 

The mushroom dataset includes descriptions of hypothetical samples corre- 
sponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Fam- 
ily. Each species is identified as definitely edible, and definitely poisonous, 
therefore is a binary class dataset. The dataset has 22 nominal values, and 
despite the large number of samples 8,124, and despite that as stated in UCI 
Repository there is no simple rule for determining the edibility of a mushroom, 
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the data are linearly separable. We also by using this dataset found that our 

classifier achieves zero classification error on IS113 test samples. 

6.8.4 The Monk's Problems (Monk) 

The Monk's problems were the basis of a first international comparison of 
learning algorithms in [359]. The Monk-1 and Monk-2 datasets, used in this 

research, have a target concept to be identified. Monk-1 consists of 556 sam- 

ples, monk-2 consists of 601 samples, and both datasets, if we omit the "id" 

attribute, which is unique for each sample, have 6 attributes. Two attributes 
(called a3, a6) receive one of the two values from 11,2}, three attributes (called 

al, a2, a4) receive values from f 1,2,31, and one attribute (a5) receives val- 

ues from 11,2,3,4}. We transform the values into binary strings by using 
the same transformation as in Hayes-Roth dataset, thus our datasets consists 
of 17 binary attributes. Problem Monk-1 targets at learning concept: (al 

a2) or (a5 1), and Monk-2 at learning concept: EXACTLY TWO of 
al = 1, a2 1, a3 = 1, a4 = 1, a5 = 1, a6 =1}. While many learning 

algorithms reach zero classification error, these problems show the limitations 

of our method. 

6.8.5 US Congressional Voting Records Database (Votes) 

The US Congressional Voting Records (Votes) data set includes votes for each 
of the U. S. House of Representatives Congressmen on 16 key issues (attributes) 

identified by the Congressional Quarterly Almanaco (CGA) in 1984. The 
dataset consists of 435 samples of two classes ( 267 democrats, 168 republi- 
cans). The 16 key isues congressman's votes for which Boolean data (as yes, 
no votes) exist in voting records are: I handicapped infants, water project cost 
sharing, adoption of the budget resolution, physician fee freeze, El Salvador 

aid, religious groups in schools, anti-satellite test ban, aid to nicaraguan con- 
tras, mx-missile, immigration, synfuels corporation cutback, education spend- 
ing, superfund right to sue, crime, duty-free exports, and export administra- 
tion act to South Africa }. 

6.8.6 Waveform Datasets (Wave) 

Waveform is a three class dataset (waveform 1, waveform 2, waveform 3) 

where each class is a "wave" generated from a combination of 2 of 3 "base 

waves. The dataset contains 5,000 samples, with 21 attributes with continuous 
values from 0 to 6. We used in our research these datasets with their original 

numerical values. 
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Domain IS1 ISLI nLP N G K 
Hayes-Roth 1 160 106 7 35 60% 8,000 
Hayes-Roth 2 160 106 7 35 60% 11,000 
Hayes-Roth 3 160 106 7 35 LS LS 
Iris 1 450 300 9 60 LS LS 
Iris 2 450 300 9 60 66% 25,000 
Iris 3 450 300 9 60 66% 25,000 
Monks 1 556 370 9 60 50% 25,000 
Monks 2 601 401 9 60 50% 25,000 
Mushrooms 8,124 5,416 13 200 LS LS 
Votes 435 290 9 60 66% 25,000 
Waveform 1 5,000 3,333 12 147 66% 25,000 
Waveform 2 5,000 3,333 12 147 66% 25,000 
Waveform 3 5,000 3,333 12 147 GG% 25,000 

Table 6.7: Datasets and Preliminary Results for Settings N, r, and K as In 
1,.., 3. 

6.9 Evaluating Parameter Settings on New Datasets 

We will apply the rules of Section 6.7 to the above described collection of 
additional datasets. 

Table 6.7 shows the estimated circuit size and the results from preliminary 
experiments for xo = 2, r= IS! 1, and K=25,000 with respect to depth-two L 
circuits and several additional datasets. Here, we proceeded as suggested by 

our paradigms 1,.., 3. The aim is to estimate G for D,,, -r=G-I SJ I and to L 
estimate the predefined K determined by the comparison of ICm,,. <<25,000. 
For the latter we found that only on the "Hayes-Roth" datasets, K,,,. x was 
considerably shorter than K=25,000, and therefore, in Table 6.7, KHayes 96 
25,000. 'LS' indicates a zero error classification for the dataset, and we consider 
the set as lineaxy seperable. We found zero classification error also for depth- 
four circuits of equal size of the corresponding depth-two circuits. Therefore 

such datasets will be excluded from further investigation. 

Having set the three parameters, the last but important parameter that 

needs to be set is the sample size used for training a single threshold unit, 

which is determined by x0 for the case of depth-two circuits. Table 6.8 presents 
results for x0, and the classification rate eT obtained. The values were obtained 
if applying each of the three criteria of step 5. We display in boldface the xo 
with respect to the criterion with the best classification rate for each dataset. 

Table 6.8 reveals that monitoring the change in monotonicity of the classi- 
fication rate eT against x0 (criterion 5a) allows us to have a high classification 
performance. Only the dataset "votes" gives a better classification rate by 

using criterion 5b, however, for this dataset a better value has been obtained 
for another value of x0, whereas for no other dataset any other better value 
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Criterion 5a Criterion 5b Criterion 5c 
Domain XO eT XO eT XO eT 

Ilayes-Roth 1 2 11.1% ±1.0% 4 13.3% ±1.5% - 
Ilayes-Roth 2 3 11.5% ±2.0% 3 11.5% ±2.0% - 
Iris 2 2 0.7% ±0.1% 4 2.0 % ±0.3% - 
Iris 3 2 0.7% ±0.1% 3 1.0 % ±0.4% - 
Monks 1 4 22.7% ±1.3% 15 56.8 % ±4.8% - 
Monks 2 4 34.2% ±2.6% 15 52.5 % ±6.7% - 
Votes 2 3.9% ±0.4% 4 3.2 % ±0.4% - 
Waveform 1 4 14.7% ±0.1% 60 14.9% ±0.3% - 
Waveform 2 4 11.7% ±0.2% 70 13.9% ±0.3% 70 13.9% ±0.3% 
Waveform 3 5 11.4% ±0.2% 60 12.6% ±0.3% 70 13.2% ±0.27c 

Table 6.8: Classification Errors and xO for each Criterion of Step 5 of Para- 
digms. 

Ilayes-Roth 1 11.1% ±1.0% 11.9% ±2.1% 11.1 ±1.0% (3, S) 15.67o ±1.77o 
Ilayes-R, oth 2 11.5% ±2.0% 11.9% ±2.6% 10.4 ±1.7% (3,5) 13.0% ±2.1% 
Iris 2 0.7% ±0.1% 0.7% ±0.1% 0.7 ±0.1% (3,7) 0.7% ±0.1% 
Iris 3 0.7% ±0.1% 0.7% ±0.1% 0.7 ±0.1% (3,7) 0.9% ±0.4% 
Monks 1 22.7% ±1.3% 23.1% ±2.4% 23.1 ±1.1% (3,7) 36.3% ±8.7% 
Monks 2 34.2% ±2.6% 34.7% ±3.8% 37.3 ±4.7% (3,7) 38.3% ±7.1% 
Votes 3.2% ±0.4% 3.4% ±0.1% 3.3 ±0.1% (3,7) 4.4% ±1.4% 
Waveform 1 14.7% ±0.1% 14.7% ±0.1% 14.8 ±0.1% (7,3) 14.4% ±0.3% 
Waveform 2 11.7% ±0.2% 11.7% ±0.2% 11.8 ±0.1% (7,3) 11.2% ±0.2% 
Waveform 3 11.4% ±0.2% 11.6% ±0.2% 11.4 ±0.1% (7,3) 11.5% ±0.1% 

Table 6.9: Classification Errors for N, N12,2 - N, (Depth-two Circuits) and 
for N and Depth-four Circuits. 

has been obtained other than those in Table 6.8. Trying to achieve zero clas- 

sification error (criterion 5c), is indeed hard as only for the two "waveform" 
datasets this has been indeed acieved. V indicates datasets, where we could 
not achieve Uo = 100% for training sample sizes JSj I ý: 10, whereas training L 
sample sizes JSjLj < 10, lead to bad generalization performance. We conclude 
that observing the monotonicity (criterion 5a) seems to be an appropriate 
criterion for determining training sample sizes. 

We compare N according to Equation (6.9) to half of circuit sizes and 
double circuit sizes with respect to parameters from Table 6.7 and Table 6.8. 
Moreover, in Table 6.9 we compare our best classification rate obtained by 
depth-two circuits with depth-four circuits of equal size, where x4=2, F`ýP 01 
r'P and If, ' = K3`P for all datasets. 3 

The comparison shows that our upper bound 8-(2n_L/nP)1P) for estimat- L 
ing the circuit size does indeed imply the highest classification rates. Except 

for the 'Hayes-Roth 2' dataset, where a 10.4 classification rate is obtained for 

double circuit size, the highest classification rate is obtained for N according 
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to (6.9). Comparing depth-two and depth-four circuits, we see that for the 
largests of our datasets depth-four circuits obtain better classification rates. 

We should observe that most of our classification rates are competitive 
or outperform reported classification results from the literature. More spe- 
cific: 

Regarding "Hayes-Roth" datasets, most classification error rates in the 
literature vary in the range of 20%-25%, as recently in [52,110,111,112,116, 

137,197,203,396], few studies achieve classification error rates results in the 

range of 10%-20% as recently in [10,49,306]. Berzal et al. (49], for example, 
achieved 15.6% by introducing ART, a hybrid classification model, that builds 
decision lists based on ideas from the association rule mining context, Ahmad 

and Dey [101 used feature selection and C4.5 for achieving 14.4% error rate, 
and finally Ricks and Ventura [306] by training a quantum neural network 
achieved error rate 11.03%. It seems to be rare to find in literature results of 
classification errors < 10%. Chen et al. [75] achieved 7.1% error rate, which 
is the lowest to our best of knowledge. They introduced an inductive learning 

algorithm for using it in Chinese text-to-speech systems. We obtained in our 

research a 7.4 % average classification error on the three datasets, which is 

very close to Chen's et al. results, where we note that our testset is larger 

than the proposed in UCI Repository. 
Regarding Iris Plant Datasets, we identified from classification error results 

found in the literature that most results are in the range 7%-3% as In [10, 

34,52,99,110,111,112,116,137,198,203,224,309,363,3961 to name a 
few recent published results. Recently high classification results have been 

reported in [267,284,286,306,316,368,375]. Van Gestel et al. [3681 using 
linear function kernel in least squares support vector machine classifiers obtain 
1.4% classification error, Paul and Kumar [284] with a fuzzy neural system 
called SuPFuNIS achieved zero classification error, whereas the rest reported 
here studies have worse classification errors. In our research we obtained an 

average 0.5% classification error for the three classes (0.7%, 0.7% and 0% for 

ea, ch of the three classes), which is close to the highest reported value in [2841. 

Monks is the only dataset where we have worse results than those reported 
in the literature, where for many classifiers zero classification error is reported. 
However, this dataset is a conceptual dataset, where the data represent rules 
that have to be learned. 

Regarding the U. S. Congressional Voting Records Database, many stud- 
ies report a classification error of 4%-5% as recently in [111,112,309,396]. 

Some better results close to 3% are recently reported by Ahmad and Dey 

[10] using feature selection and C4.5, whereas Tsoumakas et al. [363] achieve 
2.54% error rate by combining heterogeneous classifiers. Eklund [110] used 
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multi-class decision trees with multivariate tests at internal decision nodes to 

get classification error 2.8%. Our experiments have resulted close to the best 

classification errors by obtaining 3.2% error rate. 
Finally, for the Waveform datasets results in UCI Repository report 14% 

classification error by the optimal Bayes classifier, 22% by the nearest neigh- 
bour algorithm by using 300 samples only for training, and 28% by the CART 
decision tree. Recent results on the dataset report 14.41% in Banfield et 
al. work [34]with a decision tree classifier with a random forest approach in 

the selection of attributes to be used for building the tree, and 16.3% in Jing's 

et al. work [198] by using parameter optimization in a special type of Bayesian 

classifier. Our approach obtains best classification error of 14.4%, 11.2%, and 
11.4% for each of the three datasets, a performance which is close to optimal 
Bayes performance. 



Chapter 7 

Conclusions 

Minimising the error of missclassified samples for a network is an NP-hard 

problem for non-linearly separable problems and only approximations of the 
optimal weight vector can be found. We investigated a combination of a 
combinatorial optimization algorithm with the classical perceptron algorithm, 
called the LSA machine introduced by Albrecht and Wong [19], for exploring 
the applicability of search strategies on hard pattern classification prolems 
with respect to classification accuracy, to learning and convergence proper- 
ties, and to circuit complexity. In compliance with the NFLT, we presented 
a detailed analysis of parameters settings, where we monitored and tried to 
inter-relate the best results with learning and convergence properties. Inves- 
tigating the circuit complexity of our approach we introduced a new learning 

method for training larger depths and we suggest an upper bound for the size 
of the network for approximating best classification accuracy. Results on cir- 
cuit complexity and parameter settings allow us to suggest guidelines and a 
selection of steps in order to tackle new classification problems by threshold 
circuits that axe trained by the LSA machine method. Our experimental re- 
sults from parameter settings and circuit complexity axe very competitive to 
those existing in the literature for almost all datasets that we used. 

7.1 Results on Problem-dependent Parameters 

According to the No-Ree-Lunch-Theorems, the performance of learning al- 
gorithms is problem-dependent, which has been demonstrated by our exper- 
iments. Therefore, since we identified that the classification accuracy of the 
LSA machine is affected by problem dependent parameters, fine tuning of them 

was unavoidable. We have defined four problem-dependent parameters, the 

network size, the sample size for training a unit, the length of inhomogencous 
Maxkov chain and the constant r of the simulated annealing cooling schedule. 

189 
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Also we defined parameters related to learning and convergence properties 
of our method that are monitored during execution time. The more inter- 

esting from them used after our experiments for setting parameters in new 
datasets are: a) the number of units U0 that have learned with zero error their 

associated sample set, b) the maximum step K,,,,,, x from all units of the m 
experiments for a value of the investigated parameter, where the classification 
error has been minimised. Unfortunately, optimization of the parameter set 
induces itself a combinatorial optimization problem due to the large number 
of experiments that are required to exhaustively search for the best values of 
the parameter set. Thus, we investigated the impact of each parameter on the 

classification accuracy for fixed values of the other parameters. Relating classi- 
fier parameters to problem-dependent attributes allows us to a p7iori estimate 
values for these parameters and employ methods that reduces significantly the 

number of required experiments to achieve high classification rates. 
Our experiments showed that the the network size and the size of samples 

for training each unit in the network are very important problem dependent 

parameters for approximating high classification accuracy. Initially we focused 

on the problem of the sample complexity, i. e. defining the learning capacity 
of each unit in the network, where we investigated for the required number of 
samples for training each unit that approximates high classification accuracy 
in unseen data, which is related with the VC-dimension theory for neural 
networks. We investigated sizes of sample sets for training each unit that are 
randomly sampled from the available training set. We performed experiments 
for sizes of sample sets for training each unit that derive from the integer 
devision of x0 = 2,3,4,... with the size of the available training set. We have 

seen that the classification accuracy of our method depends on the proper 
selection of x0, which we find is more important than parameters K and r of 
the simulated annealing algorithm. Unfortunately we cannot estimate a p7iwi 
the value of x0 from parameters of the problem. Nevertheless, we suggest a 
limited number of experiments to determine x0 in new problems by monitoring 
the monotonicity of the classification accuracy with x0, and/or learning and 
convergence properties like U0 and like the variance of Kma., with the selected 
length of inhomogeneous Markov chain. We also suggest methods to find 

proper values for the length of inhomogeneous Markov chain K and for the 

parameter r of the logarithmic cooling scedule of the simulated annealing 
algorithm. 

We should note that VC-dimension theory provides lower bounds (see 

equation (6.10)) for the sufficient number of samples such that the error rate 
on test samples is below e with probability at least (1 - 6). Our experimental 
results for parameter setting shows that the bound from equation (6.10) for a 
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sufficient number of samples seems to be too large, at least for the classification 
problems from Chapter 5, or in other words we obtained, following parameter 
settings, error rates c having datasets with considerably much smaller num- 
ber of available training samples than the sufficient number of samples that 
equation (6-10) suggests. 

7.2 Results on Circuit Complexity 

We particularly were interested and focused on the circuit complexity issue, 

after analyzing the main parameter settings. To identify sequences of Boolean 

functi ons If (xl,..., Xn)}; ý=n,, with a "superpolynomial" (or exponential) gate n= 
number in constant depth circuits of unbounded fan-in gates is a very diffi- 

cult problem, and only slow progress has been made over the past decades. 
Researchers relying on the possible relevance of Kolmogorov's theorem with 
respect to the expressive power of depth-two circuits prefer working with swal- 
low depth circuits. The question of improving classification performance on 
NP-haxd problems by extending the depth is an open problem. For non- 
NP-hard problems if high classification accuracy requires exponential size in 

depth-2, it is expected that the size changes to polynomial size for larger 

depths, i. e. we can achieve high classification rate by using smaller network 
size of larger depth. There exists very limited research on larger depths. The 

main problem is how the hidden units at larger depth can be expressed in 

terms of previous levels in such a way that we really have a depth increase. 
The difficulty of finding learning algorithms for training all layers along with 
the expressive power of depth-two (which, generally, are considered to be good 
classifiers) gave favour to shallow layers. Due to the above reasons, there Is 

no theoretical or constructive proof that decides the size vs depth problem. 
We introduced a novel and feasible approach for training units at larger 

depths, which is a step forward in neural network design as the topology and 
the recursive training method can be applied regardless of the learning method 

used for threshold gates. 
Our research on circuits of depth-2 and depth-4 on datasets from the UCI 

repository was combined with classical results from threshold circuit theory, 
'P/n cP)1/2 as an appropriate upper bound for the size and we suggest 8- (2'CL L 

of threshold circuits in order to achieve a high generalisation capability of 
CP circuits on complex problems that are not linearly separable. The value of nL 

is taken as the number of bits necessary to encode a training data IS'l by L 
binary strings for the domain cp, i. e. ncP = logISLPI. The upper bound has L 
been analysed for relatively small ncP only. For increasing ncP one can expect LL 
that the constant becomes significantly smaller. It is important to note that 
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the suggested upper bound is related to the expressive capacity of Boolean 
functions to represent a domain cp with ISPI training data. Therefore, in L 
our approach no training method is associated with the expressive capacity of 
Boolean functions, and hence it can be applied to any circuit, irrespective of 
the training methods used. 

We compared and tried to provide an answer to the hard depth vs size 
problem. Since we split the training samples for depth-four circuits, we have, 

of course, better results for depth-two for datasets with small number of sam- 
ples, because depth-two uses all available training samples at once. For larger 
datasets and for larger circuit sizes N we obtain almost the same results for 
depth-four and depth-two circuits. Finally, our experimental results on depth- 

2 and depth-4 showed also that our classification problems are indeed NP-hard, 

since the size of the network that produces high classification accuracy does 

not decrease with increased depth. 

7.3 Tackling New Datasets 

The guidelines that eventually limit the number of experiments when tackling a 

new classification problem can be described as follows: Initially, we determine 

the circuit size from the number of available training samples by using the 
P cP) 1/2 upper bound 8-(21'r', /nL as described above. Then, auxiliary experiments 

for depth-two circuits with this circuit size estimation for the largest available 
training samples (xO = 2), for the largest value ro =I SLj I, and for an adequate 
number of transitions (Ifo=25,000), allow us to find appropriate estimations 
for the simulated annealing parameters r and K. We select r as an estimation 
of the largest escape depth from local minima. We monitor from all our 
preliminary examples the largest step where the misclassification error 
was lowered from all threshold units of all experiments m. If Km,, x << K, 

we select K= If,,,,, x for our next experiments, otherwise we proceed with 
K=25,000. Now, the only parameter left for estimation is the number of 
training examples in each sample set that trains a particular threshold unit. 
We showed that one can considerably reduce the number of experiments by 

observing for xO ýt i, i=2,3,.. the monotonicity of the classification rate, 
and by monitoring the value of K,,,, x and the number of threshold units Uo 

with zero learning error on training sets. Following a condition where we 
select xO for sample size when one of the following first occurs: either when 
the monotonicity turns from decreased values to an increased value, or when 
1, Cm, x <K- JxO -K for, Jxo ý! 0.1 and in previous step of xO we observed 
Ifm,,., ; ý: s K, or when all threshold units learn the training examples with zero 
error (UO = 100%), we approximate best classification rates. 
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We applied the above rules to additional datasets finding that the esti- 
mated circuit size gives indeed the best classification results. Also our exper- 
imental results following the above rules on the additional datasets are again 
very competitive or even outperform those in the literature. 

7.4 Classification Accuracy and Convergence 

Comparing our experimental results after adjusting the problem-dependent 
parameters we found that our classification accuracy on hard pattern classifi- 
cation problems is very competitive, where almost on all datasets our results 
axe at least as good as the highest reported in the literature or even outper- 
form them. We note that our approach is an appropriate method for complex, 
real-world problems, whereas for simple problems or for conceptual problems, 
where the task is to learn rules, our approach shows its limitations. 

Simulated annealing is considered an optimization method producing high 

quality results. The randomised nature of simulated annealing ensures as- 
ymptotic convergence to optimal solutions, however, it typically requires an 
exponential time and it is usually an efficient method to approximate optimal 
solutions in reasonable time. Combined with the perceptron algorithm, we 
have seen that the result is a successful search strategy to approximate op- 
timal weight configurations, in order to solve pattern classification problems. 
Adjusting problem dependent parameters, i. e. those related to the sample 
size complexity and the network complexity, we found that approximation of 
optimal solutions is achieved for values that require considerably less compu- 
tational time, than for a search time determined by Increasing the length of 
inhomogeneous Markov chains. Therefore, we found that the LSA machine 
has fast convergence to high quality classification rates that axe competitive 
to the best reported in the literature. Moreover, even when the adjustment 
of parameters implies increased time requirements, our results show still good 
competitive results by selecting paxameters that lead to fast classification. 
Thus, for applications where accuracy is vital, like medical decisions, our clas- 
sifier can be used for high quality decisions, whereas for applications where 
time is vital, like online applications, fast financial decisions, or stockmarket 
applications, high quality results or at least good competitive results are ob- 
tained in limited time. Thus, we found that our classifier combines accuracy 
and speed, making it an appropriate choice for complex real-world problems. 
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7.5 Contributions of this Work 

Theory of computational complexity and performance analysis of approxima- 
tion algorithms are currently emerging areas. While the heuristic methods 
described in Section 3.4.1 seem to do remarkably well on certain problems, 
very little has been established about the performance of these algorithms. As 

stated in [281] "explaining and predicting the performance of these heuristic 

algorithms is one of the most important challenges facing the fields of optimiza- 
tion and algo7ithms. " According to [31, it is too early to achieve a complete 
unification and demystification of the area, whereas according to the NFLT, 

any approximation algorithm should be investigated by employing the specific 
nature of the problem. This work is towards the complexity and performance 
analysis of a specific stochastic local search algorithm, which is combined with 
the perceptron algorithm for pattern classification, namely the LSA machine. 
One of the tasks is to analyse the performance of the LSA machine and to give 
guidelines in the light of the NFLT for fine-tuning parameters in accordance 
to the nature of the problem. The issue of guidelines rises for almost all clas- 
sifiers. While it is difficult to have mathematical proofs for these guidelines, 
they are based on plausible heuristics and have been found useful for many 
practical classification problems. Thus, a contribution (Contribution 1) will 
be to define rules for setting parameters that best fit the LSA machine with 
respect to a specific problem. 

The depth vs size problem, as described in Section 2.3, is one of the hard- 

est problems in theoretical computing, with very little process over the past 
decades. The debate about the relevance of Kolmogorov's theorem [219] to 
neural networks has been used to justify the focus on universal depth-two 

classifiers. Judd's work [2011 gives also some preference to shallow depths, 

mainly due to simplicity in topology. Moving to larger depths, a number of 
questions arise of how to construct higher layers, what data should be used, 
what learning algorithm should be used, and what will be the size of layers, 

which all increases the overall complexity of the depth vs size problem. This 

work contributes in this problem (Contribution 2) by extending in depth the 
LSA machine and investigating the performance achieved by two types of LSA 

machines, a depth-two LSA machine and a depth-four LSA machine. To do 

so, a new learning approach is introduced for recursively creating and learning 
the training sets for further depths (Contribution 3). This novel approach 
gives future directions for how to treat higher levels in neural networks. 

One of the major findings of our research is that the size of the network can 
be bounded by the input size of the problem and an approximate upper bound 
of 8- N5-n/n threshold gates as being sufficient for a small error rate, where 
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n := logISL I and SL is the training set (Contribution 4). To propose an upper 
bound for the size of threshold circuits is important for the following reasons: 
Firstly, it allows us to a piori set one of the difficult problem dependent para- 
meters, and hence we can focus on the rest of problem dependent parameters 
in a complex classification problem. Secondly, it contributes to a hard, un- 
solved problem in computer science, namely the size vs. depth problem for 

circuits. Thirdly, it is important for parallel processing theory in terms of 
resources required to approximate best classification rates. Fourthly, it shows 
that the number of nodes in neural networks depends on the available number 
of training examples, and hence it suggests that a constant size neural network 
is not appropriate for most of the classification problems. Consequently, in 
terms of the NFLT, we could say that there is No-Free-Lunch for circuit size, 
unless strict assumptions axe made about the classification problem. 

Results related to our work have been published already. Investigations 

about parameter settings and applications of the LSA machine axe presented 
in [14,229]. First trials to investigate the depth increase of the LSA machine 
are presented in [15,16,17,18]. The new leaxning algorithm and the depth vs 
size problem are presented in [232]. Experimental results of our new learning 

algorithm are presented in [230,231]. A first response to our approach can 
be found in [215,2161, where the authors are using our reported classification 
error from [14] for the WBCD dataset as one of the best results presented 
in the literature in order to compare their results to our work. The authors 
obtain the same classification error of 1.2 % as in our work In [14], but this 

result was obtained by our first experiments with the LSA machine and was 
improved since then to 0.4 % by using parameter optimization; cf. Chapter 5. 

7.6 Future Work 

We have demonstrated the successful application of a popular algorithm, the 

simulated annealing algorithm, in combination with a traditional classification 
algorithm, the classical perceptron method. Our approach is guided by the 
NFLT, which implies to relate our parameters to problem dependent Icarning 

and convergence properties. This methodology can be further used for inves- 

tigating combinations of alternative combinatorial optimization algorithms, 
either with the perceptron algorithm, or with other pattern classification meth- 
ods. Such combinatorial optimization methods for classification problems have 
been described in Section 3.6. One further way could be, for example, to use 
evolutionary algorithms in combination with the classical perceptron algo- 
rithm. The need for combined classifiers is a primary topic in [221]. 

We are concerned with two open research directions related to this area: 
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1. Further research on the hard and unsolved circuit depth vs circuit size 

problem; 

2. Investigations on dimensionality reductions. 

Research on Depth vs Size 

The importance and difficulty of the depth vs size problem along with our 
findings have been described in previous sections. New complexity issues arise 
from the generation of new samples for training larger depths. Do large or 

small numbers of bit-positions created by the circuit topology and considered 
to be depth-three features have any impact on the classification rate? Fur- 

ther directions are to be investigate on uneven size of sample sets for training 
different layers, with more examples used for training depth-one and further 
issues of parameter settings for depth-four. 

Research on Dimensionality Reduction 

Rirther potential lies in the analysis of pre-processing steps. One popular 
way to pre-process data is feature selection in order to reduce the dimen- 

sionality of training data. A disadvantage of neural networks is the lack of 
information in the solution function about the dependence on variables of the 

problem, so that one knows the importance of each feature. Feature selec- 
tion is a common method of preprocessing for identifying the least important 
features in a classification problem. Dimensionality is part of the complexity 
of a problem, and therefore reducing the dimensionality is one way to reduce 
the problem complexity. We have seen that, usually, the available training 

examples represent only a tiny fraction of the theoretically possible number 
of the domain of a function. A priori, we can argue that not all combinations 
of binary inputs are feasible (or even a small fraction only has indeed a valid 
interpretation). Taking this into account, we simply encoded (enumerated) 

the number of available training data instead of using the variable number of 
n features in the estimation of an upper bound of the circuit size. Therefore, 

our proposed bound is rather independent of the dimensionality of the prob- 
lem. Since feature selection in a given (training) sample set might reduce the 

sample size itself, one might obtain a smaller ncP and consequently a sharper L 
bound in Equation (6.9). 
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