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Abstract 

A new 3D model of light scattering applicable to dielectric faceted objects is 

presented. The model combines Geometric Optics with diffraction on individ- 

ual facets yet maintains the low computational expense of standard Geometric 

Optics. The current implementation of the model is explained and then applied 
to the problem of light scattering by ice crystals in cirrus clouds. Accurate 

modelling of the scattering properties of such crystals is crucial to better un- 
derstanding of cirrus radiative properties and hence to climate modelling and 

weather forecasting. 

Calculations using the new model are compared to a separation of variables 

method and the Improved Geometric Optics method with encouraging results. 
The model shows significant improvements over standard Geometric Optics. 

The size applicability of the new model is discussed. 

The model is applied to a range of crystal geometries that have been observed 
in cirrus including the hexagonal column, the hollow column, the droxtal and 
the bullet rosette. For each geometry the phase function and degree of linear 

polarization are presented and discussed. 

Ice analogue crystals grown at the University of Hertfordshire have optical prop- 
erties very close to ice but are stable at room temperature. The geometries of 
three ice analogue crystals are reconstructed and the single scattering properties 
of the reconstructions are presented. 

2D scattering patterns calculated using the model are compared to laboratory 

photographs of scattering patterns on a screen created by an ice analogue hexag- 

onal column. The agreement is shown to be very good. By applying the model 
to a range of geometries, it is shown that the results in the form of 2D scattering 

13 



14 Abstract 

patterns can potentially be used to aid particle characterization. 

By combining the model with a Monte Carlo radiative transfer code, compar- 
isons are made with aircraft radiance measurements of cirrus provided by the 
Met Office. The improvements over standard Geometric Optics are found to 

persist following a radiative transfer treatment. 
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Chapter 1 

Introduction 

Up to 30% of the Earth's surface is regularly covered by cirrus cloud [1]. As a 

result cirrus plays a major role in the balance of radiation between the Earth, 

the atmosphere and space. The study of cirrus is crucial to the future success 
of climate models and weather forecasting. Although studied for many years, 
there is still a large uncertainty over the radiative properties of cirrus clouds. 
This lack of understanding means that the current treatment of cirrus in climate 

models has room for improvement. Cirrus are high altitude clouds composed of 
ice crystals. Determining the shape and size of the ice crystals in cirrus and how 

they are formed are areas of ongoing research as this project will discuss. These 

areas are very important in enabling accurate modelling of the crystal and cloud 

properties. Equally important is the need for an accurate yet flexible computer 

model of light scattering which can be readily applied to many shapes and sizes 
of crystals to investigate their radiative properties. The advances in computing 
power in recent years have helped the field of light scattering to advance yet 
there is still a lack of such a model for intermediate to large sizes of ice crystals. 

For spherical and near spherical particles one can gain an exact solution from 
Lorenz-Mie theory, a separation of variables technique. However, ice has a pre- 
dominantly hexagonal structure and so numerical, near exact and approximate 
computational techniques must be relied upon. 

T-matrix is a largely analytic exact technique that can be used for hexagonal 

columns with size parameters up to around twenty [2]. It is computationally de- 

manding and so cannot be applied to scatterers of larger size parameter at this 

21 
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time. If such implementation becomes possible, it will be the method of choice. 
Some success has been gained at intermediate size parameters using a gener- 
alization of the separation of variables method to nonspherical particles [3,4]. 
Results from this method are considered in chapter 4. Other techniques exist 
but all involve more significant approximations and none allow flexible compu- 
tation for larger sizes where most cirrus ice particles are classified. Traditionally 

the Geometric Optics method which is sometimes referred to as ray tracing has 
been used for such crystals. It provides rapid computation yet is very flexible in 
terms of the crystal geometries that can be considered. However, the accuracy 
provided by Geometric Optics is limited for all but the largest crystals. There 
have been many attempts to improve the Geometric Optics method. For exam- 
ple, the Modified Kirchhoff Approximation (MKA) [5] calculates far fields from 
Geometric Optics results and lead to the development of the Improved Geomet- 

ric Optics (IGO) method [6], though the latter is computationally expensive. 

A new model has been proposed which modifies Geometric Optics rays as they 
interact with crystal facets. A deflection is introduced to take into account 
diffraction caused by the facet acting as an aperture. This method maintains the 
flexible and computationally inexpensive advantages of Geometric Optics while 
producing much improved results. Following the work of Hesse and Ulanowski 
[7,8] where Ray Tracing combined with Diffraction on Facets (RTDF) was intro- 
duced in a two-dimensional case, a three-dimensional version is now presented. 

The 3D version allows rapid computation of scattering results at intermediate 
to large size parameters for any dielectric faceted objects, although this project 
concentrates on ice found in cirrus. The model has much promise as it shows a 
marked improvement over Geometric Optics in irradiance and linear polariza- 
tion results. Further improvements beyond the remit of this thesis may yet be 
implemented. In the forthcoming chapters the RTDF model will be explained, 
tested against existing approximations and experiment, applied to a range of ge- 
ometries and compared to aircraft radiance measurements taken from examples 
of cirrus clouds. 

Verification of such a model is very difficult because of the lack of exact theory 
calculations to make comparisons with. One alternative is to make comparisons 
to laboratory experiments. Using ice crystals in the laboratory poses many dif- 
ficulties, particularly if the geometry of the crystal is to be modelled for use in 

scattering calculations. Ice analogue crystals grown at the University of Hert- 
fordshire [9] work around many of the problems because while they have optical 
properties very close to real water ice they are stable at room temperature. This 
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makes them ideal for applications such as laboratory scattering experiments and 
the calibration of in-situ cloud probes [10]. Photographs of scattering patterns 
created by an ice analogue hexagonal column provide the experimental verifica- 
tion in this discussion. More complex ice analogue crystals will be considered 
and their geometries reconstructed to allow more detailed study. 

To create scattering results that can be compared to laboratory photographs, it 
is necessary to create 2D light scattering patterns that represent scattering on 
a screen. Given the rapid and flexible computation offered by ray tracing based 

models, such patterns can be created for even very complex nonspherical crys- 
tals. 2D scattering patterns provide much more information than azimuthally 
averaged scattering data such as a phase function. In contrast to standard Ge- 

ometric Optics, the new model can produce 2D scattering patterns for fixed 

orientations as well as averaged random orientations. It has been shown that 
such spatial scattering patterns of single orientations can be used to distinguish 
between particle geometries and so aid in particle characterization in a range 
of scientific fields [11]. In the case of cirrus ice, the concept has been imple- 

mented in particle instruments such as the Small Ice Detector (SID) [12]. Such 
instruments measure the light scattering from particles and can distinguish be- 
tween spherical and nonspherical particles as well as classifying nonspherical 
particle geometries. The RTDF model could potentially be used as a very use- 
ful tool in the further development of light scattering based in-situ particle 
instruments. This is not confined to the field of atmospheric science as there 
are many possible industrial applications. Particle characterization and other 
potential applications for the new model will be discussed in the forthcoming 

chapters. 

The discussion will proceed as follows. The background to the project and fun- 
damental elements of diffraction and light scattering theory that are relevant 
will be discussed in chapter 2, "Background and Fundamentals". The model 
will be introduced and the current implementation explained in chapter 3, "The 
Diffraction on Facets Model". There will also be a discussion of the size applica- 
bility of the model and some initial demonstrations of the effect of the model in 
chapter 3. The model will then be applied to the case of the hexagonal column 
in chapter 4, "Testing the Model using Hexagonal Columns". This will include 
dissections of the phase function and degree of linear polarization as well as 
comparisons to a separation of variables method and IGO. Chapter 5, "Appli- 
cation of the Model to a Range of Crystal Geometries", will consider types of 
crystal geometries that are found in cirrus. The single scattering properties of 
examples of each geometry calculated using the RTDF model will be presented 
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and discussed along with an explanation of the place of the geometry within 
the study of cirrus. The reconstruction of the geometries of examples of ice 

analogue crystals will be discussed in chapter 6, "Ice Analogue Geometry Re- 

construction". This will include the single scattering properties calculated using 
the RTDF model as well as comparisons of maximum dimension, projected area 
and volume to Cloud Particle Imager (CPI) measurements. Chapter 7, "2D 
Scattering Patterns", will introduce the 2D scattering pattern form for present- 
ing the results of calculations. This form will be used to make comparisons to 
laboratory photographs of ice analogue light scattering patterns. It will also 
provide the basis for a study to show how the new model could be used as a po- 
tential aid in particle characterization. In chapter 8, "Comparisons to Aircraft 
Radiance Measurements", the model will be used in conjunction with a radiative 
transfer code to make comparisons to aircraft radiance measurements provided 
by the Met Office. Conclusions will be provided in chapter 9. Three appendices 
are included. The first, Appendix A, provides conventions and definitions used 
in the forthcoming chapters to avoid confusion with other texts. The second, 
Appendix B, provides a list of publications arising from this project. The third, 
Appendix C, provides a reproduction of a journal paper written as a result of 
this work. For reference, lists of acronyms and symbols used throughout the 
thesis are included between the Acknowledgements and this chapter. 



Chapter 2 

Background and 
Fundamentals 

In this chapter the background to the project will be discussed and aspects 
of theory and mathematics that are relevant will be presented. Section 2.1 will 
provide an overview of computational methods used to solve the problem of light 

scattering by a particle. One of these methods, Geometric Optics, is crucial to 
the project. Section 2.2 will discuss some of the theory used within Geometric 
Optics, all of which is used directly within the new RTDF model. The RTDF 

model differs from Geometric Optics because it considers the phenomenon of 
diffraction at each crystal facet. Section 2.3 provides some definitions and de- 

scriptions of diffraction. This is followed by elements of diffraction theory that 
are relevant to the discussion in section 2.4. With this knowledge, methods 
based upon Geometric Optics that use diffraction to offer enhanced accuracy 
and wider size applicability will be discussed in section 2.5, including the RTDF 

model. Some aspects of general light scattering theory will be presented in sec- 
tion 2.6. Finally, an overview of the study of cirrus will be given in section 2.7 
to help establish the merits of the project in the wider scientific world. 
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2.1 Solving the Light Scattering Problem 

Light scattering is the process of absorption and reradiation of electromagnetic 
energy from obstacles, or scatterers, that light may encounter. 

When a particle such as an ice crystal is illuminated by a light source, the 
incident electric field induces both an internal field within the crystal and a 
scattered field outside it. The scattered field is the fraction of the incident field 
that has been reradiated by the scattering particle. 

All matter is made up of discrete electrically charged particles in the form of 
protons and electrons. The incident electric field sets the electric charges within 
the particle into oscillatory motion. This induces dipole moments throughout 
the particle. The motion of charged particles generates electromagnetic radia- 
tion in all directions that can be referred to as the scattered radiation. During 
the process, some energy can be converted into other forms such as thermal 
energy and it is said that this energy has been absorbed. 

One of the challenges in the study of light scattering is to generate solutions 
to the electromagnetic wave equations for a given system so that the scattered 
electric field is known at some desired points in space. To perform such calcu- 
lations for anything other than the most simple particle cases can be extremely 
time consuming, if possible at all. The amount of energy that is absorbed by the 
particle, the amount of radiation scattered in different directions and the effect 
that the scattering process may have on the radiation are all factors directly 
affected by the size, shape and composition of the particle. 

Many methods have been developed for solving the light scattering problem for 
particles and crystals of different size, shape and composition. The field of light 
scattering has many applications, most noticeably in Astronomy, Atmospheric 
Science and Materials Science. 

A solution to the problem for spherical particles was found independently by 
Gustav Mie (1869-1957) and Ludvig Lorenz (1829-1891). It was published by 
Mie in 1908. Now referred to as Lorenz-Mie theory, the solution is a separation 
of variables method that solves the spherical wave equation using boundary 

conditions that are applied at the surface of the scatterer. A detailed discussion 

of the solution is available in most general light scattering textbooks, for example 
Bohren and Huffman [13] or Stratton [14]. A discussion of different formulations 
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of the theory is available along with FORTRAN codes in Barber and Hill [15]. 

In the case of cirrus ice, all of the scatterers that are likely to be encountered 

will be nonspherical in nature. In the past, Lorenz-Mie theory has been used to 

obtain a first order description of the scattering by nonspherical particles but 

its application as a solution to such scatterers is inadequate. The differences 

in scattering properties between spherical and nonspherical particles can be 

significant, as shall be discussed in section 5.5. 

Separation of variables methods can in theory be applied to any geometry where 
it is possible to formulate a coordinate system that coincides with the particle 

surface. For example, Asano and Yamamoto [16] obtained a solution to the 

problem of an arbitrary spheroid. In the case of cirrus ice, a separation of vari- 

ables method cannot be used in general because it is not possible to formulate a 

coordinate system around the hexagonal structure of the crystals. Some success 
has been gained at intermediate size parameters using a generalisation of the 
Separation of Variables Method to nonspherical particles (SVM) [3,171. It is 
however only applicable to long columns with aspect ratios of at least L/2r = 3. 

Results from this method [4] will be used in sections 3.4 and 4.3. 

The closest to an exact method that exists for nonspherical particles is the T- 

matrix method. Originally developed by Waterman [18], the method is a largely 

analytic technique. The incident and scattered fields are expanded into vector 

spherical wave functions, the coefficients of which are related by a transforma- 
tion matrix or T-matrix. When applied to a sphere, the T-matrix equations 
reduce to those of Lorenz-Mie theory. The great advantage of the T-matrix is 

that once known it allows any scattering properties of the scatterer to be deter- 

mined because the elements of the matrix depend only on the properties of the 

scatterer. The computation of the T-matrix is much simpler for geometries with 
axial symmetry and for smaller sizes. However, in theory it can be applied to 

any geometry even up to larger sizes. It has been applied to hexagonal columns 
up to size parameters of around twenty [2] but the computational demands mean 
that it cannot be applied to hexagonal crystals of larger size parameter at this 
time. If implementation becomes possible for increasingly more complex and 
larger crystals, it will become the method of choice. The definition of the size 
parameter, a quantity that will be frequently used in the coming chapters, can 
be found in appendix A. I. 

The Finite Difference Time Domain (FDTD) method is a numerical technique 
that was pioneered by Yee [191. In this method, the space in which a scatterer 
resides is divided into a grid of points. The scatterer is represented by assigning 
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appropriate values of permittivity, permeability and conductivity to the grid 

points that coincide with the volume of the particle. The finite difference ap- 

proximation allows Maxwell's time-dependent curl equations to be evaluated at 
a finite number of points in time and space, the points in space being the grid 

of points. The computation of the solution involves a series of time iterations 

where the electromagnetic variations in time and space are calculated in re- 

sponse to an incident plane wave. Once a stable field has been found at all the 

grid points, the iterations stop and the solution has been found. 

The advantage of FDTD is that it can be applied to any geometry due to 
the grid system, as opposed to the application of boundary conditions at the 

particle surface. There are, however, a number of disadvantages. Because one 
cannot create a spatial grid that extends to infinity, it is necessary to apply 
a special absorbing boundary condition at the extremities of the grid. This 
introduces an approximation that is not present in methods such as T-matrix 

where the radiation condition is fully satisfied. The second disadvantage is the 

staircasing effect that can be a problem for some geometries. By dividing space 
into finite volume elements, at the boundaries of a particle one will find that the 
element is partly inside and partly outside the particle. This can be minimized 
by choosing coordinate systems that are as close as possible to the geometry 
of the particle. Finally, the main disadvantage of FDTD is that it is very 
computationally demanding. In the case of cirrus ice, FDTD can realistically 
be applied to hexagonal columns of size parameters up to around twenty [20]. 

Another numerical method, the Discrete Dipole Approximation (DDA), was for- 

mulated in 1973 by Purcell and Pennypacker [21] who used it to study interstellar 
dust grains. In the DDA, a scattering particle is divided up into a number of 
dipoles or polarizable points. In this way, any particle geometry can be mod- 
elled. Each dipole is excited by a combination of the incident electric field and 
the scattered fields from all the other dipoles. A system of linear equations can 
be formulated which results in the field due to each dipole, and hence the whole 
scattered field, being calculable. The main disadvantage of the method is that a 
large amount of computer time is required to gain convergence as the number of 
dipoles (and hence crystal size) increases. As a result, the method is generally 
applied to scattering particles significantly smaller than those to be discussed 
in this thesis. A popular DDA code is publicly available called DDSCAT [22]. 

Other techniques exist but all involve approximations and none allow flexible 

computation for larger sizes where most cirrus ice particles are classified. The 

method commonly used for large and intermediate size crystals is the Geometric 
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Optics method. In this method, the assumption is made that a plane wave can 
be represented by a collection of independent parallel rays. The path of each 

ray is traced through the scatterer as it interacts with the particle surfaces 

obeying Snell's law and the Fresnel equations (to be discussed in section 2.2.2). 
A Monte Carlo approach is usually adopted, selecting random initial points 

of incidence for the rays. The scattering properties, including in some cases 

polarization properties, are obtained by collecting outgoing rays in angular bins. 

The method does not consider internal diffraction or internal edge effects. For 

very large crystals this does not restrict the accuracy significantly because the 

effects are not significant. The method also has no size dependency. In this 
form, Geometric Optics is sometimes referred to as pure ray tracing. 

The term Classical Geometric Optics (GO) refers to pure ray tracing results 
that are combined with an external diffraction pattern. The external pattern is 

usually calculated using Fraunhofer diffraction at an aperture of equal area to 
the projected area of the particle. This introduces some size dependency and 
accounts for effects external to the crystal. Diffraction is still not considered in 

the ray tracing part of the calculation. There have been many GO implementa- 
tions, most notably in terms of this investigation the implementation by Macke 

et al. [23], which shall be discussed in more detail later in this section. 

Use of the GO method is limited by crystal size. The approximation is only valid 
for large size parameters where the distance between ray-facet interactions and 
the dimensions of the facets are very much greater than the wavelength of the 
incoming light. GO provides its most accurate results at large size parameters. 
Comparisons between GO for spheres and Mie theory found that the GO results 
were reasonably accurate, although only for size parameters greater than several 
hundreds [24]. A comparison to T-matrix for ice spheroids at a wavelength 
of 3.7, um found even better agreement, with phase functions down to a size 
parameter of 60 differing little [25]. The authors noted that similar comparisons 
to spheres did not succeed however, indicating that the nonsphericity of the 

spheroids was an assisting factor. The method has also been applied to large 

stochastically deformed spheres [26). 

The great advantage of the GO method is that it can be applied to almost any 
geometry. Numerous authors have applied it to the problem of hexagonal ice 

columns (for example, [271), some of whom extend their discussion to oriented 
hexagonal crystals [28,29,30]. The motivation for many such studies is to try 
to explain the origins of certain atmospheric halo effects. Using GO it has been 
shown that regular particle shapes such as circular cylinders and spheroids that 
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are much larger than a wavelength are not good approximations for hexagonal 

columns, particularly at visible wavelengths [31]. This emphasizes the need to 
develop models able to handle such geometries. Note that at strongly absorb- 
ing infrared wavelengths cylinders can be used in place of hexagonal columns 
because particle geometry becomes much less important [32]. This will be dis- 
cussed in section 4.4.2. The possibility that impurities such as soot particles 
could affect the scattering properties of hexagonal columns has also been inves- 
tigated [33]. More complex geometries that are likely to be present in cirrus 
such as bullets, rosettes and hollow columns have been studied by various au- 
thors, for example [23,34,35]. More examples from the literature where the 
scattering properties of complex geometries that are likely to be found in cirrus 
have been calculated will be discussed in chapter 5. 

In the development of the RTDF model the GO code written by Andreas Macke 
was used [23]. This implementation of the GO method for crystal geometries is 
based on the work of Rockwitz [30] where the scattering results for hexagonal 
columns are generated from ray tracing combined with a far field diffraction 
pattern. In this case, an equal area rectangular aperture is used. The method 
was limited to convex crystal shapes (i. e. multiple external reflections were not 
supported). Macke extended the method to concave particles and introduced 
diffraction at a circular rather than a rectangular aperture for simplicity reasons 
[34]. To account for polarization in the Macke code [23], the scheme for Stokes 
vector calculation outlined in Muinonen et al. [36] was adopted. 

Section 2.5 will discuss methods that are based upon GO that offer improved 
accuracy and lower size applicability by considering internal diffraction, internal 
edge effects or by introducing exact theory components. 

2.2 Geometric Optics Theory 

2.2.1 The Geometry of the Problem 

By using spherical polar coordinates, any position in space can be defined by 
a polar angle, B, an azimuthal angle, 0 and a distance from the origin, r. This 
is shown in figure 2.1a. Some texts use the convention given here while others 
exchange B and 0. In this thesis the convention that B is the polar angle will be 
adopted because it will be shown later that when considering a phase function, 
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Figure 2.1: (a) The standard definition of spherical polar coordinates. (b) The 

geometry of the light scattering problem used throughout this thesis. 

the scattering angle that is plotted on the x-axis is the same as the polar angle 

and the phase function scattering angle is normally referred to as 0. 

Using only the angles 0 and 0 in figure 2.1a, it is possible to define any direction 

emanating from the origin. This is illustrated in figure 2.1b. It shows a light 

scattering event following the conventions that are adopted by the GO and 
RTDF model codes and also for the remainder of this thesis. A scatterer is 

located at the origin. Light is incident upon the scattering particle, light initially 

travelling in the negative z direction. Scattered light is collected in the far field. 

In the case of ray tracing models it leaves the scatterer in the form of a ray. The 

direction of the ray can be defined by the polar angle B which is measured from 

the -z direction and the azimuthal angle 0, measured from the positive x-axis 
in an anticlockwise direction when looking in the -z direction. 

In a scattering event, one can define the scattering plane as the plane that 

contains the incident ray, the scattering particle and the scattered ray. This 

term will be used repeatedly in the coming paragraphs. 

It is standard practise to study scattering properties against 8 only (for example, 

a phase function) and so normally scattering results for each value of 9 are 
averaged over the azimuthal angle 4. In standard GO implementations, this 
is indeed the case. As a result not all of the information is retained when the 
direction of an outgoing ray is determined. For the majority of the results 

(a) z 
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presented here, the same standard format of results will be adopted. However, 

an extension to 2D scattering patterns where both scattering angles are retained 

will be discussed in chapter 7. Particularly important in that chapter is the 

absolute direction of the x and y axes, also relevant for fixed orientation studies. 
The convention adopted in this thesis is as follows. If one were to travel alongside 
an incident ray in the RTDF codes, one would find the positive x-axis pointing 
to the left with the positive y-axis pointing downwards. 

2.2.2 Refractive Index, Snell's Law and the Fresnel Equa- 
tions 

The effect of a plane boundary such as a crystal facet interrupting the prop- 
agation of a light ray will now be described. Following the interaction with a 
plane boundary, incident light will spawn two components, one reflected and one 
refracted (also referred to as transmitted). The incident light and the bound- 

ary normal form a plane known as the plane of incidence. The reflected and 
transmitted light components will both fall in this plane. Consider the situation 
in figure 2.2 where there are different media on either side of a plane bound- 
ary. The plane of incidence lies on the page while the dotted line represents 
the boundary normal. A beam of light approaches the boundary in medium 
1 which has a refractive index of n1. Upon interaction the light beam will be 

partly transmitted into medium 2 (refractive index n2) with some change in 
direction and partly reflected back into medium 1. The law of reflection simply 
states that the angle of reflection equals the angle of incidence, B; = Br. The 
direction of the transmitted component is described by the angle of refraction, 
Bt. It is governed by the refractive indices of the two media, nl and n2. The 
angle of refraction can be found using the law of refraction, also known as Snell's 
law, which is given in equation 2.1. 

nl sin Bi = n2 sin Bt (2.1) 

There is some debate over who first discovered the law of refraction. It was dis- 

cussed as early as the first century A. D. by Ptolemy, though without accuracy. 
It is certain that Willebrord Snell (1580-1626) formulated the law in 1621, but 
he did not publish it. It was described independently by Descartes in his pub- 
lication on Dioptrics ("the part of optics that deals with refraction") in 1637. 
When it was later discussed by Christiaan Huygens in 1703, it was referred to as 
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Transmitted/Refracted 

Figure 2.2: A diagram of a light ray incident upon a plane boundary. 

Snell's result and has been credited to Snell ever since. Interestingly, in French 
it is still referred to as "la loi de Descartes". 

Referring back to figure 2.2, there is another case that can occur. When light 
is passing between media and there is a decrease in the refractive index, if the 
incident angle 8i is greater than a critical angle given by 9crit = arcsin tt then 
total internal reflection occurs. This is where there is no transmitted component, 
and all of the light is reflected back into medium 1. 

Critical to Snell's law is the concept of the refractive index of a material. The 

absolute refractive index of a medium is a complex quantity of the form n= 
nr + ing. The imaginary part, na, describes the absorption of light by the 

material. When considering ice at visible wavelengths, ni is very small and is 

often neglected totally. This leads to the real part n, being used independently. 
This is the case in the discussion up to this point where the values nj and n2 
have been used. When the imaginary part ni is not zero, Bt becomes complex 
and is therefore no longer simply an angle of refraction. A detailed description 

of the mathematics of this can be found in Born and Wolf [37, chapter 14]. The 
GO code by Macke and hence the RTDF model takes this and the attenuation 
of light as it passes through the material into account in its calculations. 

Incident Reflected 
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The refractive index can be defined as in equation 2.2 where c is the velocity 
of light in a vacuum v is the velocity of light in the medium. When the 
imaginary part of the refractive index is non zero, v represents the complex 
phase velocity. 

n=v (2.2) 

The absolute refractive index therefore gives a measure of the velocity of light 
in the medium. It is influenced by the chemical composition of the particle. 
The fundamental electromagnetic properties of the material are consolidated in 
n. One can write n in terms of the permittivity (e) and permeability (p) of the 
material, as shown in equation 2.3. When considering non-magnetic substances 
such as ice, u is effectively unity. The refractive index is wavelength dependent 
which leads to, for example, the dispersion of white light into a rainbow of 
colours when incident on a glass prism. 

vr---p (2.3) 

The change in direction upon refraction is caused by different portions of the in- 
cident wavefront meeting the boundary at different times, leading to the change 
of velocity turning the wavefront direction towards (away) from the boundary 
normal for transition from a lower (higher) to a higher (lower) refractive index. 

The laws of reflection and refraction describe the directions of the reflected and 
transmitted components following an interaction with a boundary between two 
media, but it is also necessary to consider their amplitudes. These are defined 
by the Fresnel formulae. If A is the amplitude of the electric vector of the 
incident light and r and t are the amplitudes of the reflected and transmitted 
components, one can write the Fresnel formulae as shown in equations 2.4- 
2.7. All of the vectors have been resolved into components parallel (11) and 
perpendicular (1) to the plane of incidence. 

_ 
2n1 cos O, 

tII 
n2cosBt+n1cosOtAll 

(2.4) 

tl _ 
2n1 cos 9, 

A1 (2.5) 
nl cos B; + n2 cos 9t 
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_ 

2.7 
nl COS Bi + n2 COS 6t 

In the case of total internal reflection, the magnitudes of the reflected and 
incident amplitudes are equal. These formulae again assume a real refractive 
index. When considering a complex refractive index, the value of Ot becomes 

complex and this can simply be substituted into the stated Fresnel equations 
to yield the form used in the Macke code. A more mathematical description is 

again available from Born and Wolf [37, chapter 14]. 

The consideration of complex refractive indices in the GO and RTDF codes 

will have very little effect for ice at visible wavelengths because, as already 

stated, the imaginary component is very small. However, it does mean that the 

models can be applied to ice at infrared wavelengths where absorption is more 
significant. The RTDF model will be used to make near infrared comparisons 
to IGO (to be discussed in section 2.5) in section 4.4.2 and to aircraft radiance 
measurements in chapter 8. 

2.2.3 Scattering Cross Sections 

The concept of a cross section value is widely used in nuclear physics as an 
indication of the probability that an event will occur. In light scattering, the 
descriptions of cross sections that follow are not restricted to use within GO but 

are discussed here rather than in section 2.6 due to their specific use within the 
GO model. 

Cross section values have units of area. In the field of light scattering, there are 
three cross section values that are regularly discussed. The first is the extinction 
cross section, denoted by Cert. It defines the total attenuation of incident light 
due to scattering and absorption. The units of area can be understood if it is 

explained that the total energy that is attenuated is equal to the amount of 
energy from the incident beam falling on an area the size of the cross section 
value. Mishchenko et al. [381 define the extinction cross section as follows: 

The product of the extinction cross section and the incident monochro- 
matic energy flux is equal to the total monochromatic power removed 
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by the particle from the incident beam. 

The other two cross sections commonly used are the scattering cross section 
(Caca) and the absorption cross section (Cabs). They have almost identical defi- 

nitions to the extinction cross section except that they deal with the attenuation 
of the incident light due to scattering or absorption only, as appropriate. Since 

extinction is equal to the sum of scattering and absorption and this extends to 
the cross section values, one can write equation 2.8. 

Cext = Caca + Cabs (2.8) 

Generally, Cext, Cac. and Cab, are functions of the orientation of the particle, 
its size, morphology and refractive index as well as the polarization state and 
wavelength of the incident light. The cross section values are useful in that they 
provide an overview of a scattering process and describe the effect the scattering 
particle has on the incident light. Cross section values are calculated in both the 
Macke GO code [23] and the RTDF model. In these models the concept of cross 
sections is also used to obtain the phase function from the separately calculated 
contributions of ray tracing and external diffraction in the following way. One 
can define a cross section value for each of the two components. The diffraction 
scattering cross section, C; iä 

, represents the amount of scattering of the incident 
beam that is due to the external diffraction. The ray tracing scattering cross 
section, CC, represents the amount of scattering of the incident beam that is 
due to ray tracing. The sum of these cross sections will be equal to the total 
scattering cross section. The combination of the two phase functions is a simple 
addition but weighted by their individual scattering cross sections. The final 

phase function is given by equation 2.9 where Pd; / and P0 are the diffraction 
and ray tracing phase functions respectively. 

p(0) _ 
Cse`ä F'd'I +C ea Pray 

(2.9) 
Csea + Ceca 

By definition, the ray tracing extinction cross section is equal to the geometric 
cross section of the particle. In other words, the amount of energy removed by 
ray tracing is equal to the amount of energy incident directly on the scatterer. 
Therefore in the non-absorbing case the ray tracing scattering cross section 
C;, ä is equal to the mean projected area of the scatterer, denoted by Cgeo. 
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From Babinet's principle it is known that a diffraction pattern is the same for 

an obstacle and an aperture of equal size and shape (this will be discussed in 

section 2.3). Therefore, the energy removed from the incident beam of light 
due to diffraction will also be equal to the mean projected area of the scatterer, 
so Cdif is also equal to C9eo. Given this non-absorbing situation, equation 2.9 

simplifies because the cross sections and hence the weightings are equal. The 
fact that the total value of Cext in the GO regime is twice rather than one times 
the mean projected area of the scatterer is often referred to as the extinction 
paradox. However, the paradoxical nature is removed by, as discussed above, 
taking into account Babinet's principle and the fact that light passing by the 

scatterer outside its physical boundaries is also removed from the incident beam 

through diffraction. 

For an absorbing material there will also be extinction due to absorption, Cabs. 

This will be at the expense of scattering due to ray tracing. This means that 

the final phase function will be weighted towards the diffraction phase function. 

The amount of absorption can be measured by recording the amount of energy 
that enters (Ei,, ) and leaves (Eout) the scatterer through ray tracing. The ray 
tracing scattering cross section is then given by equation 2.10. Note that the 

extinction cross section of the ray tracing component does not change and so 
Cext = 2C9eo still holds. 

Csca - ý! 
gec 

Eout 
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The scattering and extinction cross sections can be used to define the single 
scattering albedo. It is represented by the symbol w and is given in equation 
2.11. 

sca w= 
CF- 

<1 (2.11) cext 

The single scattering albedo provides a measure of the probability that an inter- 
action will result in scattering rather than absorption. This quantity is widely 
used in radiative transfer applications and will be used in chapter 8. 
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2.3 What is Diffraction? 

Background and Fundamentals 

Many authors have offered definitions for the phenomenon of diffraction. Palmer 

and Rogalski [39] stated that: 

The deviation of a wave from rectilinear propagation, which can 
occur whenever a region of the wavefront is obstructed, is called 
diffraction. 

This is similar to the definition offered by Hecht [40], who emphasizes the fact 
that it is a wave phenomenon first, an optical phenomenon second: 

The phenomenon of diffraction is the deviation from rectilinear prop- 
agation that occurs when light advances beyond an obstruction... 
The effect is a general characteristic of wave phenomena occurring 
whenever a portion of a wavefront, be it sound, a matter wave, or 
light, is obstructed in some way. 

It has become common to use the term diffraction for the most general possi- 
ble case of the definition by Hecht, that any scattering problem is actually a 
diffraction problem. It will be shown in section 2.4.2 that diffraction theory can 
be formulated to help solve scattering problems for arbitrary geometries. 

Fowles [41] defines the diffraction of light by describing an example: 

If an opaque object is placed between a point source of light and 
a white screen, it is found that the shadow that is cast by the ob- 
ject departs from the perfect sharpness predicted by geometrical 
optics. Close examination of the shadow edge reveals that some 
light goes over into the dark zone of the geometrical shadow and 
that dark fringes appear in the illuminated zone. This smearing of 
the shadow edge is closely related to... the spreading of light after 
passing through a very small aperture such as a pinhole or narrow 
slit... The collective name given to these departures from geometri- 
cal optics is diffraction. 
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The first known reference to the phenomenon of diffraction appears in the work 

of Leonardo da Vinci (1452-1519). The first accurate description of diffraction 

came in 1665 in a book by Francesco Maria Grimaldi (1618-1663), which was 

not published until after his death. He is responsible for the name diffraction, 

referring to the phenomenon by the Latin word diffractio which loosely means 
"breaking up". However, he was unable to explain the phenomenon. Interest- 

ingly, he was the first to consider the possible wave nature of light. He even 
investigated the interaction between two beams of light in an experiment rem- 
iniscent of the famous two slit experiment by Young (see below), although he 

failed to observe interference fringes. 

Christiaan Huygens (1629-1695) was the first true proponent of the wave theory 

of light and was able to derive the laws of reflection and refraction from his wave 
formulation. In describing how light propagates, Huygens stated what has since 
become known as Huygens's principle: 

Every point on a wavefront may be considered as a centre of a sec- 
ondary disturbance which gives rise to spherical wavelets, and the 

wavefront at any later instant may be regarded as the envelope of 
these wavelets [37]. 

However, the approach ignores most of the secondary wavelet, retaining only 
that portion common to the envelope. Although Huygens's principle explains 
deviation from rectilinear propagation, it does not explain the light and dark 

fringes that Fowles described. Hence, using this theory for the propagation of 
light alone cannot fully explain diffraction. 

In the discussion of light propagation, Thomas Young (1773-1829) added the 

principle of interference around the turn of the century. He stated that: 

When two undulations, from different origins, coincide either per- 
fectly or very nearly in direction, their joint effect is a combination 
of the motions belonging to each [40]. 

Young demonstrated his interference principle using the famous two slit experi- 
ment, although in its original form he did not use slits at all. He passed sunlight 
through a pinhole to create a spatially coherent source that illuminated two fur- 

ther pinholes. The pattern on a screen that resulted from the light passing 
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through the two pinholes was found to show bright and dark fringes. The light 
from the two pinholes was exhibiting interference. 

Augustin Jean Fresnel (1788-1827) used Young's interference principle to help 

explain diffraction. In 1818, he modified Huygens's principle by adding that the 
secondary wavelets mutually interfere. This combination of ideas has become 
known as the Huygens-Fresnel Principle: 

Every unobstructed point of a wavefront, at a given instant, serves as 
a source of spherical secondary wavelets (with the same frequency of 
that of the primary wave). The amplitude of the optical field at any 
point beyond is the superposition of all these wavelets (considering 
their amplitudes and relative phases) [40]. 

The Huygens-Fresnel principle therefore offers an explanation for the phenomenon 
of diffraction, including the observed interference fringes. 

In 1882, Gustav Kirchhoff (1824-1887) derived the observed diffraction theories 
of Fresnel from first principles resulting in the Kirchhoff Diffraction Theory 
[42]. Rigorous solutions to some diffraction problems have since been found 
but in most cases due to mathematical complexity it is necessary to use time 
consuming numerical computations or approximate methods. The theory of 
Huygens and Fresnel is adequate for the treatment of the majority of problems. 
The mathematics of the Kirchhoff Diffraction Theory will be discussed in section 
2.4. 

An interesting quirk of diffraction is that diffraction due to an aperture will 
provide the same pattern as diffraction due to a complimentary obstacle, that is 
an obstacle of the same size and shape as the aperture. This is known as Babi- 

net's principle, after it was discovered by the French physicist Jacques Babinet 
(1794-1872). This is an extremely useful result. It explains why diffraction at 
an equal area circular aperture can be used as the external diffraction pattern in 
the Macke GO code. The obstacle of the scattering particle is replaced with the 
equal cross sectional area aperture. The use of the actual cross section shape as 
the aperture is only restricted by the computational expense in performing the 
calculation. 
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2.4 Diffraction Theory 

2.4.1 The Kirchhoff Diffraction Integral 

The Kirchhoff diffraction theory was the first mathematical explanation for 

the observed diffraction phenomena derived from first principles. The theory 
has two main components, the Kirchhoff diffraction integral and the Kirchhoff 

approximation. In this section the derivation of the scalar Kirchhoff diffraction 

integral will be discussed, following Born and Wolf [37]. The vector case can be 

found in the literature, for example Jackson [42]. In section 2.4.2, the Kirchhoff 

approximation will be considered. 

The aim is to express the solution of the homogeneous wave equation at an 
arbitrary point in a field, a point denoted here by P. One could also say that the 

optical disturbance at P is to be evaluated. The method Kirchhoff developed 

uses Green's theorem to relate a field (electric or magnetic) inside a closed 
volume v to the values of the field and its normal derivative on an enclosing 
surface, S. Green's theorem, a vector form of Gauss's theorem, is given in 

equation 2.12. It requires that U and V have continuous first and second order 
partial derivatives within and on the surface S. A derivation is available in the 
literature, for example Kreyszig [431. 

- 
fj (u 

- v) dS = 
fff (UV2V - VV2U) dv (2.12) 

On an 

The inward surface normal is given by n. Consider that the function U is a 
monochromatic scalar wave. It therefore satisfies the time independent wave 
equation. If V is also a solution to the time independent wave equation, the 
volume integral vanishes at all points and so equation 2.13 is obtained. 

ff (1 
`U än -V 8n) dS =0 (2.13) 

Suppose that one defines V= eikq/q where q is the distance from P. This 

presents a problem because at P, q=0 and so there is a singularity. This 
can be averted by removing the point P from the integration in equation 2.13. 
This is achieved by creating an integral over a small sphere of radius p that 
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surrounds P and by making it a component of the enclosing surface. One can 
then let p -* 0. By expressing this sphere integral in spherical coordinates and 
integrating over a full solid angle, one finds that the contribution simplifies to 
just 41rUp, where Up is the disturbance at the point P. 

The integral theorem of Kirchhoff is then given by equation 2.14. 

UP 
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The Kirchhoff diffraction integral allows the calculation of the optical distur- 
bance at any point in a volume if the field and its first derivative at all places 
on an enclosing surface are known. 

2.4.2 The Kirchhoff Approximation 

Unfortunately, the values of U and OU/8n at all points on an enclosing sur- 
face are not normally known, unless the problem has been solved by another 
method. Kirchhoff worked around this problem by introducing the Kirchhoff 

approximation. 

Figure 2.3 shows two possible applications of the Kirchhoff approximation. In 

case (a), light is incident on an aperture in surface 1. The light will create a 
diffraction pattern somewhere between surfaces 1 and 2, a region where the point 
P from the last section may exist. Case (b) gives an equivalent situation that 
is familiar because it resembles a light scattering event. This is the application 
of the suggestion in section 2.3 that the term diffraction can be applied to 
a scattering problem because of the mathematical solution. Within surface 1 
there is a scattering particle that will produce a scattering pattern between the 
surfaces 1 and 2. The two cases are analogous. 

Kirchhoff made two assumptions in developing the approximation. 

Assumption 1 The field and the first derivative of the field are zero everywhere 
on Surface 1, except in any openings. 

Assumption 2 In any openings on Surface 1, the field and the first derivative 
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Figure 2.3: The Kirchhoff approximation can be used to solve cases such as 
these: (a) Light incident on an aperture in surface 1 that will create a diffraction 
pattern in the region between surfaces 1 and 2. (b) Light scattering from a 
particle that is located within surface 1 that creates a scattering pattern in the 
region between surfaces 1 and 2. 

of the field are equal to the values that would exist due to the incident wave in 
the absence of a screen or scatterer. 

These two assumptions greatly simplify the problem. Considering surface 1, 

one now needs only to know the incident field over the diffracting surface. In 

case (a) this is the diffraction aperture, in case (b) the particle surface. Surface 

2 still poses a problem. A further assumption can be made that the surface 
is at a very great distance. The integral over surface 2 will then vanish if the 

evaluation of the optical disturbance at some point P is performed at some time 

when the emanating waves due to the diffraction event have not yet arrived at 
the surface. 

Given these assumptions it is possible to calculate the optical disturbance at any 
point beyond an aperture if the incident field at the aperture is known. Like- 

wise, the scattering by a particle can also be calculated at any point in space if 
the field on the surface of the scatterer is known. This provides the motivation 
for methods such as the Modified Kirchhoff Approximation (MKA) [51 and the 
IGO method [61, both of which will be discussed in section 2.5. Briefly, using 
ray tracing it is possible to obtain values for the scattered field at the particle 
surface. Using the Kirchhoff approximation, these results can be transformed to 
the far field. The MKA [5} provides a less computationally demanding method 
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than implementing the full Kirchhoff approximation, although there is nothing 
other than computational constraints preventing the implementation of the full 

approximation. The IGO uses a different exact theory technique, the electro- 
magnetic equivalence principle [44] to transform the ray tracing results on the 
particle surface to the far field. 

2.4.3 Diffraction by a Half-Plane 

Using rigorous electromagnetic theory, it is possible to solve the problem of 
diffraction at a half-plane. A full mathematical derivation is available in Born 
and Wolf [37, chapter 11]. The solution provides a platform on which the 
RTDF model is built, something that will be explained in chapter 3. In this 
section there is a brief description of how one can determine the paths of en- 
ergy flow lines passing a half-plane. The description follows that given in Hesse 
and Ulanowski [7]. For more details, referring to the quoted literature is recom- 
mended. Only the case of H-polarization will be considered. The E-polarization 
case follows an equivalent method and can be found in Hesse and Ulanowski [7]. 

Consider a perfectly conducting half-plane at y=0, x>0. Incident light travels 
in the negative y direction before interacting with the half-plane. The incident 
field is given by equation 2.15. 

H(i) . r2; e-ikrcoe(B-ao) _ 

Here, µo is the permeability of free space, k is the wave number and ao is the 
angle between the direction of propagation and the positive x-axis. Equation 
2.15 is expressed in terms of polar coordinates, hence the use of r and 0. 

The complete field after interaction with the half-plane can be written in terms 
of Fresnel integrals. This is shown in equation 2.16 where F [a] = °° e'{2 dý is f 

the complex Fresnel integral. More information on Fresnel integrals is available 
in any optics text, for example Hecht [40, chapter 10]). 
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The direction of the time averaged Poynting vector indicates the direction of 

energy flow. It is defined in equation 2.17. 

C57> 
= 

2Re (E x H') = 2l 
2 Re (EH*, -ExHz, O) (2.17) 

By combining the complete field expression (equation 2.16) with Maxwell's first 

equation in free space with the time factor suppressed one can obtain expressions 
for Ex and E., . They are given in equations 2.18 and 2.19. 
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Having calculated values for H, Ex and Ey, the Poynting vector is now known. 
One can calculate the energy flow lines as they pass the half-plane using the 
differential equation given in equation 2.20. 

dx 
_ 

(S)y 
(2.20) dy (S)v 

Such calculated energy flow lines will be discussed in section 3.2.1 which covers 
the first stage of the development of the RTDF model. 
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2.5 Light Scattering Models based upon Geo- 

metric Optics 

An exact analytical solution for the scattering of hexagonal crystals is unlikely 
to ever be derived due to the inability to formulate a coordinate system at the 
particle surface that would allow boundary conditions to be implemented. As 
discussed in section 2.1, GO is the method of choice for intermediate to large 

sizes where most cirrus ice crystals are classified, and also for more complex 
geometries. 

For lower size parameters one can use any of the exact or numerical techniques 
such as T-matrix or FDTD described in the previous section. Above the size 
applicability of these methods there exists a gap before the GO method offers 
acceptable results. Bridging this gap is important to ensuring accurate treat- 
ment of the scattering properties of scatterers in many fields. To extend the 
size applicability of the exact and numerical methods upwards is most desir- 
able, but is governed overwhelmingly by the progress of computational capacity 
and even with the rapid advances in computation in recent years is likely to take 
decades. The alternative is to extend the size applicability of GO downwards. 
Many attempts have been made to improve the GO method both in its stan- 
dard size applicability range and at reduced size parameters. The focus of these 
improvements is either to introduce diffraction to the ray tracing component or 
to introduce exact theory components. A brief overview of the models that use 
GO as a base shall be given in the paragraphs that follow. 

Some years ago Keller put forward a model called the Geometrical Theory of 
Diffraction [45]. In addition to the standard GO rays, it introduces diffracted 

rays that are created when incident rays strike edges and corners of bound- 
ary surfaces and in certain other cases. The method was shown to reproduce 
diffraction from various apertures well. In terms of GO modelling, it could 
have provided an alternative to combining ray tracing results with an external 
diffraction pattern because the complete scattering pattern was considered by 
ray tracing. 

The Heisenberg uncertainty principle has been used several times in ray tracing 
methods for the treatment of diffraction at apertures. Coffey et al. [46] outlined 
a system where the distance from an aperture edge that a ray strikes is taken to 
be the uncertainty in the ray's position. An uncertainty in the momentum can 
then be determined and from this a maximum deflection angle can be calculated. 
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They note that Likeness [47] proposed a probability density function to represent 

the deflection angle as a normal distribution with rays most likely to travel 

straight ahead on passing an aperture but with a standard deviation equal to 

the maximum deflection angle determined from the uncertainty principle. An 

almost identical method was described in Freniere et al. [48]. This modelling 

of diffraction at an aperture using a ray tracing technique could in principle 

replace the external Fraunhofer diffraction calculation that is used in standard 
GO. There would however be an increase in computational expense to obtain 
likely similar results. 

The need for the addition of an external diffraction pattern in the GO model 

stems from the explanation of the extinction paradox, that light passing by the 

crystal outside of its physical boundaries is also scattered (see section 2.2.3). 

In any case, pure ray tracing alone is size independent and strongly underesti- 

mates forward scattering. While the treatment of pure ray tracing can provide 
information regarding effects such as halos, it is flawed due to the size inde- 

pendence. Introducing a physical optics component is a crucial part in making 
the GO method a useful tool. Summing external diffraction with the ray trac- 
ing component introduces some size dependency but better improvements can 
be achieved. The following three examples (Borovoi and Grishin, Ravey and 
Mazeron, Muinonen) are all different approaches that use Kirchhoff's diffrac- 

tion theory in their treatment of diffraction. 

A novel approach was considered by Borovoi and Grishin [49]. Their method 

modifies the standard ray tracing procedures so that it considers bundles of rays 
that are taking the same parallel paths through the crystal. These bundles are 

referred to as beams and each carries with it a Jones matrix which ensures that 

interference can later be considered. The physical optics correction is introduced 

by transforming these beams as they reach the surface of the scatterer to the 
far field. The mechanism of far field transformation simply considers that the 

outgoing beam will spread and undergo interference. The authors assume that 
this can be modelled using Fraunhofer diffraction at the aperture of the beam 

shape incident on the final crystal surface, a calculation derived from Kirchhoff's 

diffraction theory. This method offers rapid computation, but it was found in 
discussions [501 that it failed to reproduce certain scattering features that are 

predicted by the RTDF model and that have been observed in the laboratory 
(see chapter 7). One possible explanation for this is that Borovoi and Grishin 
do not consider diffraction effects inside the crystal. 

A rigorous theoretical treatment of diffraction could use the Kirchhoff approx- 
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imation (see section 2.4.2) to transform scattering properties on the surface of 
the scatterer to the far field through the Kirchhoff diffraction integral [14]. An 

implementation of this as an improvement to GO ray tracing would require 
the inclusion of phase tracing to evaluate the fields correctly on the scatterers 

surface. This would then allow the Kirchhoff integral to be applied. 

Ravey and Mazeron [51] introduced a physical optics correction to GO by using a 

method related to the Kirchhoff approximation to transform fields on a particle 
surface found through standard ray tracing techniques to the far field. The 

method used was specifically for large spheroids. 

Muinonen took the idea further by introducing a Modified Kirchhoff Approxi- 

mation (MKA) [5]. The method is applicable to more general shapes. Rays are 
traced in the normal manner until they reach the point of exiting the crystal. 
They are then transformed to the far field through a simplified version of the 
Kirchhoff approximation. The simplifications are that the amplitudes on the 

particle surface are summed without regard to phase, that the Kirchhoff diffrac- 

tion integral is applied to circular apertures equal in area to the facets rather 
than the more complicated shapes of the facets themselves and finally that the 

external diffraction is calculated from Fraunhofer's theory assuming a size dis- 

tribution of circular projected areas equal to the distribution of real projected 
areas for random averaged orientations. The complete Kirchhoff approximation 
could have been applied but it would have been prohibitively computationally 
expensive. 

One of the limitations of the MKA is that it was developed specifically for 

applicability to random orientations. This eliminates its direct use for particles 
which adopt a preferred orientation or for studying fixed orientations. It is, 
however, applicable to size parameters as low as 10 for satisfactory results. 
This is a size parameter region that is significantly lower than those to which 
GO methods could previously be applied. 

A significant improvement was found when the Improved Geometric Optics 
(IGO) method was first put forward by Yang and Liou [52]. The model was 
later extended to three dimensions [6]. The model again uses a standard ray 
tracing technique to find the electric field on the surface of the scatterer. This 

surface field is calculated by using the Fresnel formulae and by taking into ac- 
count the phase and the area illuminated by the individual wavelets (this is an 
important difference when comparing to, for example, the MKA). The field can 
be expressed in the form of the tangential electric and magnetic currents and is 
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then mapped to the far-field using rigorous electromagnetic theory in the form 

of the equivalence principle [441. This improves on the approximate physical 
optics correction of the MKA. This method by definition will be significantly 
more computationally expensive than GO, but can be used at low size param- 
eters (down to 20 for reliable phase functions and scattering efficiencies when 
compared to FDTD) and will provide improved results. In the author's own 
words, the method can be classed as a hybrid method due to the approximate 
ray tracing component coupled with the exact EM theory component. At size 
parameters above around 100, IGO provides asymmetry parameters equal to 

standard GO results. Results calculated with IGO will be used in section 4.4. 

The subject of this thesis, the RTDF model, offers an improvement to GO using 
a different approach. It attempts to improve the ray tracing both inside and as 
rays exit the crystal using a physical optics correction that has been derived us- 
ing exact theory calculations for diffraction by a half-plane. This method allows 
rapid computation (computation times not significantly longer than standard 
GO) but with much improved results. The model was first introduced by Hesse 

and Ulanowski (7] and then compared to SVM for the two dimensional case 
[8]. Following the work included in this thesis, it has been extended to three 
dimensions [53]. A description of the development of the model will be given in 

chapter 3. 

2.6 Selected Aspects of Light Scattering Theory 

2.6.1 The Amplitude Scattering Matrix 

The consideration of light incident on a boundary between two media as dis- 

cussed in section 2.2.2 is crucial for the ray tracing codes. However, it is also 

necessary to be able to describe a more general scattering event using electro- 
magnetic theory. This can be achieved using the amplitude scattering matrix. 
One can relate the electric vectors of the incident (subscript i) and scattered 
(subscript s) waves to each other by resolving them into their components par- 
allel (11) and perpendicular (1) to the scattering plane and using the two by two 

amplitude scattering matrix, as shown in equation 2.21. 
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The amplitude scattering matrix depends upon the directions of incident and 
scattered light as well as the composition and orientation of the scattering parti- 
cle. The scattered fields and the matrix components are functions of B and 0 and 

so scattering in all directions can be described by the matrix. The matrix can 
then fully describe the scattering event, including providing information about 
polarization and, pertinent to the discussion later, phase. Simplified problems 
(such as the case of a sphere) can lead to simplifications of the matrix, by setting 
elements to zero or reducing the number of independent elements. The subject 
of the amplitude scattering matrix is covered in more detail in any good text 
on light scattering theory, for example [13,54]. 

2.6.2 The Stokes Parameters and Mueller Matrices 

The form of the amplitude scattering matrix is useful only from a theoretical 

point of view because it is not possible to measure the electric field associated 
with a beam of light in the laboratory. However, one can measure the irradiance 

of a beam of light (the energy flux per unit area) and, using a series of linear and 
circular polarizers, the complete state of polarization. This information can be 

expressed in the form of the Stokes parameters. They can be determined easily 
using simple experimental techniques. 

To introduce the four parameters, consider an experiment where a beam of 
light is incident upon a detector. Various polarizers are placed between the 

source and the detector to investigate the polarization of the beam. Linear 

polarization is measured parallel (horizontal) and perpendicular (vertical) to a 
horizontal scattering plane. The first parameter, I, is the irradiance measured 
by the detector with no polarizer present. The second parameter, Q, is found by 

measuring the irradiance when there is first a horizontal polarizer in the beam 

and then a vertical polarizer. Q is given by the difference in the irradiances 

and reflects the tendency of the beam to be horizontally (Q > 0) or vertically 
(Q < 0) polarized. The third parameter, U, indicates the tendency of the beam 

to be polarized at 45° (U > 0) or -45° (U < 0). It is determined in a similar 
way to Q but using linear polarizers at 45° and -45°. Finally, the parameter V 

indicates the tendency of a beam to be right (V > 0) and left (V < 0) circularly 
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polarized and is found using both right and left handed circular polarizers. 

The mathematical definitions of the Stokes parameters are shown in equations 

2.22-2.25 in terms of the components of the electric fields parallel and perpendic- 

ular to the scattering plane where a `*' indicates a complex conjugate. Further 

discussion of the derivation can be found in many optics and light scattering 

texts, for example [13,37,38,40,54]. 

I= EI I EI*, + E±EI (2.22) 

Q= EI I EII - E±EI (2.23) 

U= EIIE* + ELEý (2.24) 

V=i (EIIEI 
- EiEI*l) (2.25) 

The Stokes parameters are usually given in the form of a column vector of four 

terms called the Stokes Vector, shown in equation 2.26. 

I 

I=Q (2.26) 

V 

A Stokes vector is always defined with respect to a reference plane. In the 

case of light incident on a boundary between two media (as in section 2.2.2), 

the obvious choice for the reference plane would be the plane of incidence. A 

series of such interactions, such as would occur if Stokes vectors assigned to 

rays were traced through a crystal, would lead to a different reference plane for 

each interaction. To ensure that the polarization state of the light maintains 
the correct physical meaning, one needs to make a transformation from one 

reference plane to another. This process is commonly referred to as rotating the 
Stokes vector. It is achieved by applying a rotation matrix L(C), as given in 

equation 2.27, where the rotation is anti-clockwise by an angle C when looking 

in the direction of propagation. 
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One can describe how the polarization and intensity of a beam of light is changed 
by a given system by using a Mueller matrix. A Mueller matrix allows the 

calculation of a transmitted Stokes vector from an incident Stokes vector. The 

ray tracing code by Macke (231 uses Stokes vectors to describe the polarization 

state and intensity of each ray. To illustrate the mechanics of this consider a 

ray striking a facet in the Macke code. A ray leaving such an interaction can 
be described by the final Stokes vector, If. This can be related to the incident 
Stokes vector, I;, using the Mueller matrix, M (equation 2.28). 

If = MI; (2.28) 

The Mueller matrices that describe the change from the incident ray to the 

reflected and transmitted rays are given in equations 2.29 and 2.30 respectively. 

Mr. = RLMM (2.29) 

Mt = TLM; (2.30) 

The Mueller matrix for reflection is denoted by M, and for refraction (transmis- 

sion) by Mt. L is a rotation to the new plane of incidence and is equivalent to 
that given in equation 2.27. Mi is a Mueller matrix that transforms the initial 
Stokes vector to the point immediately before the interaction. For example, 
light undergoing refraction for the second time in a crystal has already under- 
gone one refraction event. In the Macke code [231 and the RTDF model, M; 
for the incident light is set to a unity matrix so that the initial Stokes vector 
remains unchanged before the first interaction. The initial Stokes parameters 
for a ray are given by I=1, Q=0, U=0, V=0. These parameters represent 
unpolarized light which is often referred to as natural light because light incident 

on the Earth from the Sun has this form. R and T are the Fresnel reflection and 
refraction matrices which derive from the Fresnel coefficients which are given 
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using the same notation as in section 2.2.2 where they were defined. They are 

shown in equations 2.31 and 2.32 respectively. 

rllrll +T 1rl rllrll - r1T 1 
rllr{I - rirl rllrll + rjrl RZ00 

00 

0 
0 

2Re(rllri) 

-2Im(rllrl) 

0 

0 (2.31) 
21m(rllrl) 
2Re(rllri) 
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2.6.3 The Scattering Matrix 

0 
0 (2.32) 

2Im(tlltl) 
2Re(tjIt 

_) 

It follows from the discussion of the amplitude scattering matrix and the Stokes 

parameters that one should be able to describe a complete scattering event 
by the use of a Mueller matrix that relates the incident Stokes vector to the 

scattered Stokes vector. This Mueller matrix is called the scattering matrix, 
sometimes referred to as the phase matrix. It is shown in equation 2.33. 

Pil P12 P13 P14 

Ie _ 
P21 P22 P23 P24 It (2.33) 
P31 P32 P33 P34 

P41 P42 P43 P44 

It is important to note that the scattering matrix does not include any infor- 

mation regarding the phase of a wave. This means that such a system cannot 
be used to investigate interference effects. If one were writing a ray tracing 

program to investigate such effects, the amplitude scattering matrix would need 
to be used rather than the sixteen element scattering matrix. 

If the sixteen elements of the scattering matrix are functions of the polar (B) 

and azimuthal (0) angles then the matrix provides a complete description of 
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a scattering event in terms of irradiance and polarization. Although there are 

sixteen quantities listed, there are only seven independent variables. Given a 

collection of randomly oriented particles in a volume, the scattering matrix of 
the total system is just the sum of the individual scattering matrices attributed 
to the individual particles. This is because the scattering matrix deals with 
relating Stokes parameters which can be simply summed. This of course is 

under the proviso that no multiple scattering takes place within the system. 

The scattering matrix can be simplified in certain cases. For example, consider 
a collection of randomly oriented identical particles. If the particle geometry has 

a plane of symmetry, then the scattering medium can be described as macro- 
scopically isotropic and symmetric. In this situation, the total scattering matrix 
is invariant with respect to the choice of scattering plane and depends only on 
the polar angle, B. The structure of the scattering matrix is then given by 

equation 2.34 [38,54]. As well as eight of the matrix elements becoming zero, 
P21 = P12 and P43 = -P34. The same matrix applies if the particles do not 
have a plane of symmetry but there are equal numbers of the particles and their 

mirror particles. 

P11 P12 
P12 P22 

Is = 00 
00 

oo 
00 

P33 P34 
It 

-P34 P44 

(2.34) 

Individual elements of the scattering matrix can be used to calculate specific 
scattering properties. There are two elements of the scattering matrix that are 
of particular importance to this investigation, with a third that is of interest. 
The first and most important quantity is the matrix element Pl 1, often referred 
to as the phase function. The phase function gives the angular distribution of 
the scattered irradiance. In the most general case, P11 will be a function of 0 

and 0. It is normal practise to normalise the function over all space using the 
normalisation condition given in equation 2.35. 

r 1,, 

J Pi 1(9,0) dSt 
zn 

P11(ß, 0) sin 9d8do =1 (2.35) 
47r a,, 4ý o 

The function normally referred to as the phase function is a function of only 
8. It is obtained by averaging over the azimuthal angle 0. One can obtain the 
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normalization condition that is used as standard for P11 (0) by evaluating the 

integral over 0 in equation 2.35 between the stated limits of 0 and 27r. The 

result of this is shown in equation 2.36. 

2f 
(Pll (B)) sin BdB =1 (2.36) 

0 

For convenience, the brackets indicating the averaging over ¢ will be omitted 
for the remainder of the thesis. The factor sin 8 takes into account that as the 

polar angle 9 changes, a 1° polar angle bin represents a different surface area 

on an enclosing sphere of unit radius in which emanating rays can be collected. 
This solid angle interval is smallest for the bins at 0° and 180° and largest for 

the 90° bin. 

One can define from the phase function an important quantity known as the 

asymmetry parameter. It is usually denoted by the lower case letter g. It is 
defined in equation 2.37. In this case, P11 is again averaged over all azimuthal 
angles. 

g=2 
fPu(9)sinOcosOdO (2.37) 

The important addition is the cos 0 factor. The asymmetry parameter gives 

a measure of the degree to which a phase function scatters in the forward or 
backward directions. The asymmetry parameter can take a value between -1 
and 1. If more light is scattered in the forward direction, g>0. If more light 

is scattered in the backward directions, g<0. If the scattering event leads to 

a phase function that is symmetric about 90° or that is totally isotropic then 

g=0. 

The second matrix element which is of importance to the discussion is P12. To 
introduce how this matrix element will be used, consider a scattered light ray 
whose intensity and polarization state are defined by the Stokes parameters, I, 
Q, UandV. 

One can define a quantity called the degree of elliptical polarization, denoted 
here by pe . It represents the proportion of the scattered light that is polarized 
and is given in equation 2.38. It is equal to unity for fully polarized light. 
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Pe 
Q2 + U2 + V2 

<1 (2.38) =I 

The quantity can be split up into the degree of circular polarization and the 
degree of linear polarization, equations 2.39 and 2.40 respectively. 

PC 
V=7 (2.39) 

Pi =Q I+ 
U2 (2.40) 

When U=0, the degree of linear polarization is often represented by the ratio 
given in equation 2.41. 

pi = -Q (2.41) 

For the case of incident natural light (Stokes vector Ii = [Ii, 0,0,0]), the scat- 
tered Stokes parameters I� Q� U, and V, are given by equations 2.42-2.45, 

obtained by solving equation 2.33 for each. 

I. = Piili (2.42) 
Qs = P2111 (2.43) 

Us = P311i (2.44) 

Vs = P41Ii (2.45) 

In the case of a macroscopically isotropic and symmetric medium as described 
above, the scattering matrix simplifies to equation 2.34. Consequently, P31 =0 
and so U, = 0. The definition of pi given in equation 2.41 can then be used. 
The scattering matrix simplification also leads to P12 = P21. By using this 
fact and substituting equations 2.42 and 2.43 into equation 2.41, one obtains 
a definition for the Degree of Linear Polarization (DLP) in terms of scattering 
matrix elements that will be used throughout this thesis. It is given in equation 
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2.46. 

PI2 (2.46) pt =- P11 

It is a very important quantity that gives the proportion of the scattered light 

that is horizontally (pl < 0) or vertically (pi > 0) polarized with respect to a 
horizontal scattering plane. The use of the negative sign is a widely adopted 

convention. DLP results will be used many times in the coming chapters. The 

assumptions used in the derivation of equation 2.46 are reasonable for all of the 

cases to be considered in this thesis. 

The final matrix element that is of interest is P22. The quantity P22/P11 is 

unity at all scattering angles for spheres and as a result can be used as a test for 

sphericity. Using the matrix element P22 it is possible to define a quantity called 
the linear depolarization ratio. The term depolarization refers to a change in 
linear polarization. When conducting depolarization experiments, the incident 
light is completely linearly polarized, pt = f1. For nonspherical particles, the 

absolute value of pj for the scattered light will decrease because the polarization 

state changes. This reduction in the absolute value of p, could explain the origin 
of the term. The definition of the linear back scattering depolarization ratio, S, 
is given in equation 2.47. It is a measure of the change in linear polarization at 
back scattering. 

lý = 
P" 

- 
P22 

(2.47) 
P11 + P22 

The linear back scattering depolarization ratio is practically applied in the LI- 
DAR back scatter depolarization technique. It is a remote sensing technique 

allowing particle identification in the field. Initially it was thought that such a 
technique would enable differentiation between ice particles which would show 
a strong depolarization ratio and water droplets that would show zero depolar- 
ization ratio. This was found to be true and the technique was later extended 
when it was found that it could also provide information on the shapes and 
sizes of crystals in cirrus, especially when combined with other techniques such 
as RADAR. Although depolarization ratios will not be presented in this thesis, 

such results from the RTDF model have been compared to AIDA cloud chamber 
experiments in a concurrent collaboration [55]. The definition of depolarization 

used in the reference differs from that given above because it is measured at 
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176° in the experiment rather than at direct back scattering. Further discus- 

sion of depolarization ratios is available in the literature, for example [56] and 
[38, chapter 14]. 

2.7 The Study of Cirrus 

Cirrus clouds are high altitude ice clouds that regularly cover up to 30% of the 

surface of the Earth [1]. Cirrus can be found all over the globe, though their 
frequency in different locations can be seasonal due to their existence being de- 

pendent on current weather conditions. Cirrus clouds are most frequently found 
in the Intertropical Convergence Zone, followed by midlatitude areas from 30° 
to 50° latitude. The definition of cirrus is the remit of the World Meteorological 
Organisation (WMO) which classifies clouds according to their morphological 
and visual daytime appearance. The system of classification varies little from 
that introduced by Luke Howard (1772-1864) in 1803, who was the first person 
to use the term cirrus. The three main types of meteorological cirrus are named 
cirrus, cirrostratus and cirrocumulus. They are defined by the WMO [57] as 
follows [58, chapter 1]. 

Cirrus: Detached clouds in the form of white, delicate filaments or 
white or mostly white patches or narrow bands. These clouds have 
a fibrous (hair-like) appearance, or a silky sheen, or both. 

Cirrostratus: Transparent, whitish cloud veil of fibrous (hair-like) or 
smooth appearance, totally or partly covering the sky, and generally 
producing halo phenomena. 

Cirrocumulus: Thin, white patch, sheet or layer of cloud without 
shading, composed of very small elements in the form of grains, 
ripples, etc., merged or separate, and more or less regularly arranged; 
most of the elements have an apparent width of less than one degree. 

These three types are further subdivided, details of which can be found in the 
above references. Cirrocumulus are responsible for some of the most photogenic 
examples of cirrus, although they are not very common [591. 
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There are two other forms of cirrus that are not currently included in the clas- 

sification scheme. The first form, subvisual cirrus, is not fundamentally any 
different from normal cirrus apart from that examples are colder, thinner and 

made up of smaller (< 50µm) particles [58, Chapter 121. The definition of sub- 

visual cirrus is cirrus with an optical depth of less than 0.03 (see chapter 8 for 

more on the concept of optical depth). The second additional form, contrail 

cirrus, is formed by high altitude aircraft exhausts which shall be discussed in 

a moment. It would be possible to form several classification schemes for cir- 

rus. Many important variables are not included in the standard classification 

scheme such as the cloud ice content, temperature, optical depth and altitude. 
Some of these factors became more important with the advent of satellite and 

multi-wavelength observation. 

As mentioned in the introduction, cirrus are of vital importance to the Earth's 

radiation balance. Being usually found at high altitude in the upper troposphere 

and lower stratosphere (above about 8km), where temperatures are in general 
below -30°C, cirrus both trap outgoing radiation to create a greenhouse effect 

while also reflecting incoming radiation to create an albedo effect. The balance 

of these two effects, something that is wavelength dependent, determines how 

the cloud contributes to the climate. What makes cirrus such a vital research 

topic is the fact that the balance between the two effects is very sensitive to 

the properties of an individual cloud [60]. Cirrus becomes a complex issue due 

to the wide variety of crystal shapes and sizes that can be found in different 

clouds. 

Cirrus clouds form due to the elevation of warm air to higher altitudes where 
it cools. As the warm air is elevated, the temperature falls well below 0°C 

and the moisture held within the warm air supercools. Ice does not form as 

easily as one might expect, only becoming common once cloud temperatures 

are around -20°C [611. Ice nucleation, the commencement of ice formation, 

can be caused by a variety of processes. A more complete discussion can be 

found in the literature [61], with particular reference to cirrus available in the 

chapter by Demott [58, chapter 51. A simple view of the nucleation process 
divides it into two main types, homogeneous and heterogeneous nucleation. 
Homogeneous nucleation is the spontaneous freezing of supercooled water or 
solution droplets below around -40°C. Heterogeneous nucleation can occur at 
warmer temperatures when solid aerosol particles such as soot and mineral dust 
in the atmosphere act as Cloud Condensation Nuclei and induce freezing. 
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Once ice nucleation has occurred, crystal growth proceeds readily because when 

supercooled water droplets and ice are both present, solidification of the water 
droplets occurs due to their metastable state. The mechanism by which this 

occurs, known as deposition, sees the water droplets diffusing to the ice crystals. 
The shape of cirrus ice crystals is based upon the hexagonal crystal system of 
ice. This leads to geometries such as hexagonal columns, plates and related 
geometries such as bullets and rosettes. There is some evidence that ice formed 
from its cubic crystal system can also form in the Earth's atmosphere [621, but 
it is very rarely observed. A cubic ice embryo could explain the tendency of ice 
rosette arms to grow with certain separation angles [631. This will be discussed 
further in section 5.6. 

The elevation of warm air in the atmosphere that causes the formation of cirrus 
can occur for several reasons. It can occur due to advancing weather fronts 
forcing warm air above cold air or due to air movements encountering hill and 
mountain ranges. Cirrus are the highest altitude clouds, so in the case of an 
advancing warm weather front they will be the first clouds observed caused by 
the front, normally around twelve hours in advance of any precipitation resulting 
from the front. The elevation can also take place due to convection, and this 
is the cause of much of the tropical cirrus that occurs. Cumulonimbus storm 
clouds move warm moist air to high altitudes through convection, resulting in a 
cirrus `anvil' above the storm cloud. Tropical cirrus are particularly important 
to the Earth-atmosphere radiation balance because they can cover large areas 
of the Earth's surface and extend vertically for large distances [641. This is in 

contrast to the thin patchy cirrus common to mid-latitudes. 

An area of growing importance in the study of cirrus is that of condensation 
trails or contrails. Contrails are seen as visible clouds formed from the back of 
high altitude aircraft (although in some locations such as Alaska and Siberia 
they can be observed at ground level at airports when the temperature is very 
low). The exhaust trails from aircraft contain warm water vapour that freezes 

very quickly at high altitude. Contrails can persist for many hours and grow 
into a spreading cirrus cloud if the humidity in the surrounding atmosphere is 
high enough. More information on the formation of contrails can be found in 
the chapter by Schumann [58, chapter 111. An example of a contrail was studied 
using aircraft based instruments as a part of the SUCCESS field campaign [65]. 
Contrails cover a very small fraction of the Earth at any one time compared to 
their natural cirrus cousins but there is evidence that the presence of contrails 
can have an immediate effect on the surface temperature of the Earth [66]. 
Aircraft exhausts can also have an indirect impact because they contain solid 
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particles such as soot that can act as cloud condensation nuclei, encouraging 

additional cirrus formation [67]. The impact of contrails on regional climate [68] 

and the effect of contrails in the context of general cirrus trends [69] have been 

investigated. The study of contrails is very much an area of ongoing research. 

The first weather satellites were launched in the sixties and since then cirrus 

observations from above have been possible. Such observations introduced many 

challenges, one being that cirrus are defined by their visual appearance from 

the ground. The benefits however are great because cirrus can now be studied 

over large geographical areas at increasingly high resolutions. Remote sensing 

using satellites detects radiation scattered upwards from clouds. Observation 

of scattering at different wavelengths is advantageous. The widespread use of 
infrared channels to obtain for example cloud temperature is very useful in 

identifying cirrus, but also cloud altitude. Minnis [58, chapter 7] explains how 
it soon became clear that simultaneous observations over several spectral bands 

enabled greater discernment between cloud types and better retrieval of cloud 
properties. 

The majority of ground based observations take the form of short wavelength 
RADAR, LIDAR and radiometers. Radiometers are used to identify the total 

amount of radiation received, most specifically in the infrared. In many ways 
this allows measurements similar to those taken from satellites but from the 

ground looking up. Short wavelength RADAR is used to identify and position 
clouds. LIDAR is similar to RADAR in its basic concept but it uses light rather 
than radio waves (LIght Detection And Ranging). It is useful in meteorological 
applications because of the large variations in scattering properties between 
hydrometeors. It is particularly suited to the study of cirrus due to the high 
dependence of the back scattering depolarization properties on the size, shape 
and orientation of ice crystals. 

Numerous field campaigns have been launched to better understand the prop- 
erties of cirrus. The first studies of cirrus were motivated by the advent of 
contrails from aircraft during the second world war and Weickmann used hand 
held slides coated in varnish to obtain impressions of ice crystals for later opti- 
cal microscopy [70]. More recently, campaigns have been mounted that combine 
various types of simultaneous study including aircraft sampling and observation, 
balloon-borne sampling and observation, RADAR, LIDAR and satellite obser- 
vation. These campaigns have given rise to many papers, for example FIRE I 

and 11 [71,72,73], SUCCESS [65], EUCREX [74] and CRYSTAL-FACE [75]. 
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Aircraft based in-situ measurements have been obtained in many ways since 
Weickmann's initial particle sampling. Particle imaging is the major focus as 

particle collection for later study creates many practical problems. The Cloud 

Particle Imager (CPI) [76] uses a 1-million pixel CCD camera to obtain shadow 
images of cirrus particles and will be discussed further in chapter 6. Neph- 

elometers have been used to measure scattering properties of crystals at the 

same time as imaging them. A probe developed at the University of Hertford- 

shire, the Small Ice Detector (SID), classifies ice crystals according to scattering 
properties [12]. The second generation of the probe is already in use in the field 

with the third currently in development (see section 7.4). One of the greatest 
challenges remains that small ice particles found in cirrus cannot in most cases 
be adequately detected with many of these systems. Impactor probes help to 

gain an idea of the size distributions of crystals by collecting them in oils or on 
coated slides and then imaging them. These techniques are the direct descen- 
dants of Weickmann's hand held slides. Balloon-borne sampling and observation 
provides the distinct advantage of vertical ascension through a cloud instead of 
along flight paths as in the case of aircraft. 

Using all of the techniques described above, the scientific community has an 
emerging picture of the ice crystals that are found in cirrus. The variation of 
geometries observed in different clouds can be very large. Examples of crystal 
shapes sampled during the ICE field campaign can be seen in figure 1 of [341. 
These are similar to those found from balloon-borne replicators during the FIRE 
II field campaign [771. Both references show the spectrum of hexagonal columns, 
plates, bullets, rosettes and aggregates observed through a vertical slice of a 
cloud. They also highlight the small crystals near cloud top that resemble 
spheres due to the lack of resolution available and the hollow features on some 
crystals, which will be discussed later in section 5.3. 

As shown in the references above 134,77), the crystal geometries found at differ- 

ent altitudes within the same cloud are seen to vary greatly. One simple model 
of a cirrus cloud can be built up if an individual cloud is broken into layers. 
At the top of the cloud is a nucleation layer. This is where the ice crystals 
begin to form. This layer will include small particles that cannot accurately 
be classified at this time. They are likely to be small faceted objects such as 
droxtals (see section 5.5). Below this is a growth layer where the crystals grow 
to their maximum size in the cloud. Here and below crystals such as hexagonal 

columns, hexagonal plates, bullets and rosettes are found. Finally there is a 
sublimation layer at the bottom of the cloud where the crystals have fallen into 
drier air so begin to sublimate with some exhibiting rounded facet edges. By 
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this stage, likely crystals to be found are complex rosettes and aggregates. Us- 

ing this model, a cloud in its early stages is unlikely to have a sublimation layer 

while a cloud having reached the end of its generating process will not have a 

nucleation layer. It is important to appreciate that this is only one simplified 

model of a cirrus cloud and that other scenarios such as deep convection in the 

tropics will have completely different vertical profiles of crystal size and shape. 
The scattering properties of some of the types of crystal geometries that are 
found in cirrus with references directing the reader to information regarding 
their formation will be discussed in chapter 5. 

Just as the crystal geometry shows large variation, so does the crystal size. Ac- 

curate knowledge of crystal size is very important for understanding the proper- 
ties of cirrus. Crystal sizes can range from below 50 pm where they are difficult 

to observe up to the millimetre scale. One of the first comprehensive studies 
of crystal dimensions in clouds was performed by Auer and Veal [78]. Since 
then, in-situ instruments have enabled more automated studies to take place. 
Heymsfield and Platt [79] found that the size spectra of cirrus crystals depend 

strongly on temperature. There have been many studies since looking at meth- 
ods for inferring size distributions, for example [73]. In general however, smaller 
crystals are found near the cloud top leading to a gradual increase in size as 
one moves down through the cloud until reaching the complex aggregates and 
rosettes found in the lower layers of the cloud. The role of size and shape has 
been compared by Macke et al. [80], who found that average scattering proper- 
ties (such as the asymmetry parameter) are more sensitive to crystal shape than 
to particle size distribution, particularly at visible wavelengths. They also found 

that the cloud optical depth depends on the crystal concentration rather than 
the crystal size. They did however note that their study used size distributions 

consisting of only one geometry and that there is likely to be some correlation 
between size and geometry, as one might expect from the simple cirrus layer 

model discussed above. This could lead to very different scattering properties. 

Numerous authors have performed crystal growth experiments in the labora- 
tory to provide further insight into the complex ice growth mechanisms and to 
attempt to create representative cirrus ice collections. Bailey and Hallett [81] 
investigated how ice crystal habits change with temperature between -20°C and 

-70°C. They found that as well as the temperature, the initial nucleation pro- 
cess had an impact on the resulting crystal habits. Ice nucleation experiments 
have been performed in the AIDA aerosol chamber [82] at Forschungszentrum, 
Karlsruhe. During some of the experiments, crystals were monitored using in- 
situ particle instruments that are usually aircraft-mounted [83]. Barkey et al. 
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[84} have measured size and shape distributions of plates and columns grown in 

a cloud chamber developed at the Desert Research Institute in Nevada. They 
have also obtained angular scattering properties of the crystals within the cloud 
chamber. 

Laboratory experiments investigating the single scattering properties of ice crys- 
tals are very challenging because temperature and humidity need to be con- 
trolled, although results have been successfully reported [85]. An alternative in 

the form of ice analogues has been developed at the University of Hertfordshire. 
Single scattering properties have been obtained from such crystals which can 
be studied in much greater detail as they are stable at room temperature [9]. 

The use of an electrodynamic balance in this process allows non-contact single 
particle studies in certain fixed and random particle orientations. The use of the 

analogues allows the connection between individual crystals and their scatter- 
ing properties to be studied in more depth. The ice analogues will be discussed 
further in chapter 6. 

The role of aircraft in-situ probes in the identification and classification of cirrus 
particles has already been mentioned. Equally important are aircraft based ra- 
diance measurements, for example [86,87,881. Such measurements allow further 
investigation of the composition of cirrus and provide an opportunity to validate 
cloud composition and light scattering models. Comparisons have been made 
between aircraft radiance measurements and a range of ideal crystal geometry 

phase functions using the GO approach [89]. However, such geometries were 
found not to be immediately representative. One can describe the scattering 
properties of cirrus reasonably well through an Analytic Phase Function (APF) 

that has been tested against aircraft and satellite data [90]. The analytic phase 
function is formed so that it is generally smooth and featureless, characteristics 
representative of cirrus in general. However, it would be advantageous to gain 
a better comparison to aircraft measurements using a light scattering model 
coupled with crystal geometries. The RTDF model has been used in conjunc- 
tion with a radiative transfer code to compare with aircraft measurements to 
investigate the possibility of finding representative geometries for several cirrus 
cases, with particular interest paid to the University of Hertfordshire ice ana- 
logue crystals [91]. The contents of this reference, expanded on somewhat, can 
be found in chapter 8. 

To conclude this brief overview of the study of cirrus, the phenomena for which 
the clouds are most famous will be considered. Cirrus are responsible through 
their ice crystal content for optical atmospheric phenomena known as halos. 
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These phenomena have been observed for centuries with Descartes (1596-1650) 

first suggesting an explanation in 1637 when he correctly identified that the 

22 ° halo was caused by refraction through ice. Interestingly, he also described 

what would later be referred to as Snell's law (see section 2.2.2) and performed 

numerical ray tracing to investigate the formation of a rainbow. 

The term halo is applied to any arcs or bright regions formed in the sky by light 

after it has interacted with ice crystals. The most common halo effects are the 

22° halo, a large circle around the sun caused by randomly oriented hexagonal 

ice columns and the Parhelia (also known as Sundogs) which are bright spots 

either side of the sun near the 22° halo, formed from hexagonal ice plates with 

their cylinder axis aligned perpendicular to the horizon. The 46° halo, another 

circle seen around but much further from the sun is observed less often. It is also 

caused by randomly oriented hexagonal columns but differs from the 22° halo 

because it is caused by light refracting through one rectangular (prism) facet 

and one hexagonal (basal) facet, unlike the 22° case where two prism facets are 
involved. 

When studying the azimuthally averaged scattering properties of perfect geome- 
tries calculated using GO, sharp peaks are frequently observed that represent 
halo features. In this thesis, several halo features will be encountered and shall 
be explained individually as they are encountered. For example, the 22° and 
46° halos will be discussed more fully in chapter 4. 

It is an interesting fact that halo effects are more common in Europe than 

rainbows [92], yet few people are able to bear witness to such an event. Possibly 

this is due to the fact that they can be more subtle than the dramatic rainbow, 
but it is likely that the main reason is that people are not aware of what they 

should be looking for. 

Many authors have written about halo phenomena, for example Greenler [93]. 

Other examples include the numerous applications of GO to the subject that 

were referenced earlier in this chapter. Some have considered rare arcs such as 
the Parry are [94] and those with unusual radii and positions [95,96,97]. In 

the polar regions, ice crystals form at lower altitudes and in high numbers and 

so it is there that the most dramatic and complex displays have been observed 
[92]. Under such conditions, it is possible to take radiance and polarization 
measurements of the phenomena while simultaneously sampling the crystals 
that are involved [98,99). Such polar studies have fuelled much of the present 

understanding of halos. It is however important to note that such low altitude 
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clouds of ice crystals are not classified as members of the cirrus family. Cirrus 

halos have been quantitatively studied, the observation of four 22° halos during 

the 1986 FIRE field campaign provided simultaneous ground based LIDAR and 

aircraft measurements [100]. Wonderful photographs of halos amongst many 

other atmospheric phenomena are available from various authors, for example 
[101. An excellent website describing many atmospheric effects exists that offers 
descriptions of halos in some detail [102]. It offers a publicly available Monte 
Carlo ray tracing code that can predict halo displays, based upon the earlier 
work by Trankle and colleagues, for example [103]. Laboratory halos have been 

recreated using ice analogue crystals [1041. 

Given the extremely common nature of cirrus, it is perhaps surprising that more 
halo effects are not observed. Most of the halo effects that can be formed by 

cirrus are rarely, if ever, seen. Many rare halos such as the 46° halo are not 
often seen simply because the intensity generated by even a large number of 
crystals is too low. The halo is so large that the intensity is dispersed over too 
large an area. In other cases, the circumstances that lead to the halos, such as 
crystal geometry or orientation, are themselves rare. 

Crystal size is very important to the successful creation of all halos. This was 
discussed by Mishchenko and Macke [105]. The authors used the T-matrix 

method to investigate how the halo peak of a circular cylinder developed as 
the crystal size increased to large size parameters, something that cannot be 

achieved with the more complex geometry of a hexagonal column. They esti- 
mated that well defined halos should be visible for ice crystal size parameters of 
the order of 100 and above. Rare halos that rely upon specific orientations are 
only likely to occur when larger crystals are present in low turbulence conditions 
because, as well as the Mishchenko and Macke [105] finding, such conditions are 
required for the specific orientations to occur (this will be discussed further in 

section 5.1). However, there is a problem if crystals are too big because larger 

crystals are most prone to exhibiting hollow features and facet deformation, 
both of which are regularly observed, for example [106,107]. Both these factors 

can weaken and ultimately prevent halo effects forming. To replicate the halos 

predicted by ray tracing studies, crystals would need to be pristine. Konnen et 
al. [98] noted that Antarctic halos were not as sharp as predicted by pristine 
crystals. They suggested that the crystals responsible might have had basal 
facets that were not perpendicular to the long axis of the column and prism 
facets that did not have precise 60° separations. This was confirmed by obser- 
vation. However, following further investigations they proposed an alternative 
theory citing Fraunhofer diffraction as the dominant cause of the halo smooth- 
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ing [99]. They maintain however that facet separation angles can cause a lesser 

amount of additional smoothing. 

To summarise, for a halo to form, there need to be large numbers of crystals of 
the correct geometry and size present and, if applicable, in the correct orienta- 
tions. It is essential that a significant number of the crystals are in a sufficiently 

pristine condition to avoid the effect being smoothed out by hollow features, 

rough surfaces and facet deformation. The halos that are more rare are natu- 
rally weaker in intensity either because they are spread out over large areas or 
because the conditions that lead to their formation are themselves rare. This 

means that conditions have to be perfect for rare halos to be observed. 
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Chapter 3 

The Diffraction on Facets 
Model 

3.1 What is Diffraction on Facets? 

Diffraction on Facets (RTDF) is a computational light scattering model for 

dielectric faceted objects based upon the standard GO model. In addition to 

the usual Fresnelian interactions treated in GO, as rays meet crystal facets 

they are deflected to take into account diffraction caused by the facet acting 

as an aperture. The main aims of the model are to extend the applicability of 
GO towards lower size parameters while providing improved results for all size 

parameters usually associated with the GO model. Due to the nature of the 
RTDF model it can be stated that it tends to GO at very large size parameters. 
The crystal sizes to which the model can be applied will be discussed in more 
detail in section 3.5. 

The current implementation of the model uses the Geometric Optics code by 

Macke [23] as a starting point. The code by Macke has a full treatment of po- 
larization built in by associating a complete Stokes vector to each ray travelling 
through the crystal. This functionality has been preserved in implementing the 

new model making it possible to review several elements of the scattering ma- 
trix. In this study, our attention is restricted to the phase function (Pll) and 
the degree of linear polarization (-P12/Pl1). 
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In the following, the development and implementation of the model will be 
discussed. In developing the model in section 3.2, the question to be answered 
is "By what amount and in what direction should GO rays be deflected to best 

model diffraction? " The development is separated into three stages. Stages 1 

and 2 essentially cover the work carried out by Hesse and Ulanowski [7] which 
resulted in a 2D model which was later tested against SVM for long hexagonal 

columns [8]. Stage 3 describes how the model was extended to three dimensions. 
In section 3.3 some key points concerning the implementation of the 3D model 
will be raised. 

3.2 Developing the Model 

3.2.1 Stage 1: Half-Plane Diffraction 

The problem of half-plane diffraction can be solved using rigorous diffraction 
theory (see section 2.4.3). The upper panel of figure 3.1 shows the paths of 
average energy flow lines as they pass a semi-infinite half-plane. In the far field, 
the lines are deflected towards the half-plane. The deflection increases as the 
energy flow lines pass closer to the half-plane. Interestingly, the path of the lines 
as they pass the half-plane is quite complex with a small oscillation visible, most 
noticeable with lines passing at a greater distance from the half-plane. This can 
be seen in the lower panel of the same figure which gives a magnified view. 
Also shown in the lower panel is an initial movement away from the half-plane. 
After the flow lines have travelled some distance past the half-plane, they move 
back towards the half-plane and most importantly at large distances they gain 
a close to linear trajectory. This far field linear behaviour allows us to estimate 
the direction of the far field Poynting vector and hence a far field deflection 
angle for the energy flow lines can be calculated. 

Figure 3.2 shows the far field deflection angles calculated using rigorous diffrac- 
tion theory against the distance from the half-plane at which the energy flow 
line passes. If the GO rays can be used to represent the average energy flow 
lines, these deflection angles can be seen as the GO ray deflection angles that are 
required. It was found that equation 3.1 gives a reasonable fit to the rigorous 
theory deflection angles, where A is the wavelength of the incident light, 0 is 
the far field deflection angle and x is the distance of the energy flow line from 
the edge of the half-plane as it passes. Equation 3.1 is also plotted in figure 3.2 
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for comparison. 

A 
46(x) = arctan 47r, 2 x 

(3.1) 

Further discussion of equation 3.1 is given in [7] where it is shown that an 
angular energy density in the far field calculated from equation 3.1 is identical 

to that derived by using asymptotic variants of the rigorous diffraction theory. 

3.2.2 Stage 2: Slit Diffraction 

To develop the treatment of a half-plane into a useful model it is necessary 
to consider a more complex situation, such as a slit. This problem cannot be 

solved in a closed form using exact theory but only in a series expansion with 
the solutions for each term rapidly becoming complicated [37, Section 11.8.3]. 
The computation for such a solution would be prohibitively expensive and in 

any case the closed form solution for the half-plane is more desirable. To extend 
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Figure 3.3: The angular intensity distribution of rays incident upon a slit de- 
flected using equation 3.2 compared to the Fraunhofer diffraction pattern. 

the half-plane result to a slit, the added complexity of the problem is due to 
the fact that there are essentially two interacting half-planes between which the 

rays pass. The rays incident on the centre of the slit need to pass undeflected. 

Conveniently, it is possible to adapt equation 3.1 to give an acceptable result 
for diffraction at a slit. Equation 3.2 considers a slit of width 2a. It gives a 
deflection angle of zero for the centre of the slit (when x= a) and reduces to 
equation 3.1 near the edges of the slit (when x -* 0 and x -* 2a). The expression 
is very versatile because it can be applied to slits of any size. 

O(x) = arctan 1 47r2 
(x 

2a 
1 

x» 
(3.2) 

In reference [7], it is shown that the far field angular intensity distribution cal- 
culated directly from equation 3.2 compares well with the Fraunhofer diffraction 

pattern. A similar result is shown in figure 3.3. A Monte Carlo ray tracing pro- 
cedure was modified using equation 3.2 to deflect rays incident upon a slit. The 
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resulting intensity distribution, which is equivalent to the analytic calculation 
in [7], is shown in the figure compared to the Fraunhofer diffraction pattern. 

It is important to note in the figure that the model does not predict the maxima 
and minima created by interference effects that are the signature of the Fraun- 
hofer pattern. The model currently has no treatment of interference although 
some work towards a 2D test model has been completed [108]. Despite the lack 

of interference effects, the model shows broad agreement with the Fraunhofer 

pattern. Near a deflection angle of zero, the Fraunhofer pattern takes the shape 
of a smooth curving maximum. In contrast, the model rises to a sharp peak. 
This discrepancy is thought to be mainly due to the lack of interference effects 
in the model. 

The application of the concept to a slit was implemented in a 2D code by Hesse 

and Ulanowski [7]. The GO code by Macke [23] was modified so that each ray 
reflected from or refracted through a facet was deflected towards the closest facet 

edge by the appropriate deflection angle. Because the 2D version only allowed 
scattering calculations for long columns with the column axis perpendicular 
to the incident light, all rays are confined to a plane by GO and so the only 
diffraction treatment required was a slit. 

The equation for the deflection angles on a slit also includes a factor of cos 9i 
to account for rays incident at oblique angles, where Bi is the angle between the 
incoming ray and the facet (slit) normal. The diffraction affecting oblique rays is 

actually the diffraction at the projection of the slit into the plane perpendicular 
to the direction of the incident ray. This modification is shown in equation 
3.3. In the same equation the concept of the effective wavelength has been 
introduced. The wavelength that must be considered is actually the wavelength 
of the medium through which the outgoing ray travels. For example, a ray 
entering a crystal will need to use a wavelength value equal to the wavelength 
of the ray in the crystal medium, namely )eff =n where n,. is the real part 
of the refractive index of the crystal. Equation 3.3 is the final equation used in 
the 2D model. The 2D version was later tested against SVM [8]. 

ý 
O(x) = arctan 

elf 

41r2 cosOi 

(1 

x 2a 
1- 

x)) 
(3.3) 

As mentioned above, at large size parameters the model tends to the standard 
GO result. Diffraction on Facets only has a large effect on rays that strike close 
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Figure 3.4: Deflection angles for rays incident on a slit of width 10 pm when 
enforcing RTDF rules at a wavelength of A=0.55 pin. Rays refract from air 
(n,. = 1.0) into ice (n,. = 1.311) and approach the slit at normal incidence. 

to the edge of the facet (slit). As a result, at larger size parameters the propor- 
tion of rays being affected significantly by the model reduces and so the results 

move to the Geometric Optics result. Figure 3.4 shows the deflection angles for 

rays incident on a slit enforcing RTDF rules where the slit acts as a boundary 

between air and ice and the rays approach the slit at normal incidence. It shows 
the proximity of a ray to the slit edge required to deflect a ray significantly. The 

effect of the model for increasing sizes will be considered in section 3.5. 

3.2.3 Stage 3: Facet Diffraction 

The final stage to be considered is diffraction at a facet, of arbitrary shape 
and orientation with respect to the incident ray. A rigorous theory solution 
to this problem of the form used in stage 1 is not possible. As a result, an 
approximation must be formulated that applies the rules that have already been 
discussed to this more complex case. The result for a slit from stage 2 can be 

used if it is assumed that any facet shape can be represented by two effective 

-L 1VILJYJO 

Incident ray slit position, x (µm) 
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Figure 3.5: The use of effective slits to allow arbitrarily shaped facets to be 
considered. The point of intersection between the ray and facet is labelled X. 
The line segments JK and LM define the corresponding effective slits. 

slits. These two slits can then be used as diffracting slits. Some examples are 
shown in figure 3.5 where the point X is the intersection point between ray 
and facet, the line segment JK is the first effective slit and LM is the second. 
The points J, K, L and M can all be found on facet edges. Consider a ray 
incident upon and then being reflected from one of the facets shown in the 
figure. The standard GO reflection procedure is performed before the outgoing 
(reflected) ray is deflected to take into account the diffraction caused by the 
facet. Two separate slit deflections are performed using the formula presented 
in the previous section, stage 2. The first slit deflection is towards the closest 
point, J, on the closest facet edge by forming an effective slit JK. The second 
slit deflection is perpendicular to the first, in the direction of the closest facet 

edge along the line segment LM. The mechanism used to locate the points J, 
K, L and M will be discussed in section 3.3.1. Note that by calculating the 
deflection angle for the ray in this way, an approximate solution is found for the 
three dimensional diffraction problem. 

Reflected and refracted rays are first deflected towards J and then towards L. 
It is necessary for the deflection angle formulae to change here slightly from the 
two dimensional case for oblique incidence. The angle of incidence with respect 
to the facet normal is not sufficient to account for oblique incidence. The cos(h) 
factor needs to be treated separately for the two slits so that the slit is correctly 
projected into the plane perpendicular to the incoming light. Equation 3.4 is 
the final deflection angle with this correction in place where k; and n. are unity 
vectors pointing in the direction of the incident propagation vector and along 
the effective slit being considered respectively. An arbitrarily shaped facet can 
be treated by the model using this technique, allowing crystals of complex shape 
to be considered. 
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3.3 Implementation of the Model 

3.3.1 Defining the Effective Slits 

The point J is always the point on any of the facet edges that is closest to X. 
The line segment from J to X is perpendicular to the facet edge upon which J 
lies. The point K is on the opposite facet edge to J falling on the extension of 
the line segment JX. The points L and M lie on the line perpendicular to the 
line segment JX that passes though X. In the following, the convention that 
L is closer to X than M is adhered to. Consequently, the deflection using this 

effective slit will be towards L. J, K, L and M must all fall on facet edges. 

The algorithm that is used to locate the points that define the effective slits will 
now be outlined. The points are located one at a time in the order J, K, L and 
then M. The algorithm uses the same mathematical procedure for each of the 
four points. The mathematics is based upon the the equation of a line and the 
intersection of two lines. 

Consider a line segment in space denoted by ÄB that is defined by two points, 
A and B. The positions of the two points are defined by their position vectors 
with respect to the origin, OA and OB respectively. One can define a vector 
that joins the two points as it =OB - OA. A third point, P, lies somewhere on 
the line of infinite length AB also defined by the points A and B. The location 
of P can be written in terms of ü. This is shown in equation 3.5 where OP is 
the position vector of P with respect to the origin and s is a scalar value. If 
0<s<1 then P lies on the line segment between A and B. 

OP=OA +sü (3.5) 

Now consider that the point P is not an arbitrary point on the line defined by A 
and B but the unknown intersection point with a second line. The second line 
is defined by a point C and the point P. The point C is defined by a position 
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Figure 3.6: A diagram of the line intersection problem discussed in the text. 

vector OC with respect to the origin. One can define a vector that joins C 

and P as v =0P - OC. A vector can also be defined that joins C and A as 
w =0A - OC. This situation is illustrated in figure 3.6. 

If the vectors ü, v and w" are known then the scalar value .9 and hence the exact 
location of P on AB can be determined as follows. The scalar product of two 

vectors that are perpendicular to each other is equal to zero. For example, the 

scalar product of the vector v and some vector v'1 that is perpendicular to it is 

equal to zero, equation 3.6. 

vl "6=0 (3.6) 

By inspecting figure 3.6 one can write the vector v in terms of ii and til as 
v= w' + si . 

Substituting this into equation 3.6 gives equation 3.7. 

61 " (w + sü) =0 (3.7) 

Solving equation 3.7 for the scalar quantity s gives equation 3.8. 

Vj w 

8=- (3.8) 
Vj U 
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Equation 3.8 means that if the location of an intersection point P is sought then 

a solution can be found given the vectors ü, v1 and w. The vector vl can be 

any vector that is perpendicular to v so that the perpendicular condition given 
in equation 3.6 is fulfilled. 

The current implementation of the RTDF model uses equation 3.8 to identify 

the four points J, K, L and M on a facet by defining ü, v1 and w" according to 

the specific case at hand within the constraints of the derivation above. Given 

the support for facets of arbitrary shape, it is necessary to not only calculate 
the exact location of the four points but first the facet edges on which they lie. 

This does not interfere with the solution currently being discussed because the 

test for whether a point lies on a facet edge is given by the condition 0<s<1, 

provided that the vector it defines the facet edge that is being tested. This fixes 

the first vector. Note that an intersection point with the line AB of which the 
facet edge is a segment will always be found because all of the points considered 
are coplanar. The case of parallel lines provides an exception, but this case is 
detected and dealt with in the implementation. 

Figure 3.7 illustrates the definitions of the three vectors for identifying the four 

points on a hexagonal facet, although the rules hold for a facet of arbitrary 
shape. The black circles represent points whose locations are known. These 
include the ray-facet intersection point, X, the points that define the facet 

edges and points that have already been calculated. The red circle highlights 

the point that is sought. There follows a brief description of each case. 

Point J Figure 3.7a. The two intersecting lines are the edge being tested (de- 
fined by i) and the line segment XJ which is defined by the vector v. By 
definition, J is the point on a facet edge closest to X. This means that 
XJ is perpendicular to the facet edge on which J lies. Hence ü= V- L. 
The final vector u7 is shown in the figure. In this case, multiple facets 

are expected to offer candidate points for J although the point is fixed 
by finding the candidate point offering the smallest distance from X to J. 
This is the only step in locating the four points that can have any such 
ambiguity (except when considering adjacent coplanar facets, see section 
3.3.2). 

40 
Point K Figure 3.7b. The point K is the intersection of the line JX with a 

facet edge. The edge being tested is defined by ü. Extending the line 

segment JX gives the segment JK which is defined by the vector V. Due 
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Figure 3.7: A diagram showing the use of the solution to a line intersection 

problem in defining the effective slits in the RTDF model. A hexagon is shown 
but an arbitrary facet shape can be used. 

to the fact that JK is perpendicular to the facet edge on which J lies, one 
can use the facet edge as 61. The final vector 0 is shown in the figure. 

Point L Figure 3.7c. The two intersecting lines are the edge being tested (ü) 

and the line segment XL defined by the vector v". This case is similar to 

that for point J except that XL is not necessarily perpendicular to the 
facet edge. As a result, the perpendicular condition is fulfilled by the first 

effective slit JK which is represented by the vector v'1 and by definition 

is perpendicular to XL. The final vector iY is shown in the figure. 

Point M Figure 3.7d. The two intersecting lines are the edge being tested (ü) 
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and the line segment LM defined by the vector V. This case is similar to 

that for point K except that, as in figure 3.7, the perpendicular condition 
is fulfilled by the effective slit that has already been defined by the line 

segment JK, represented by vl. The final vector w is shown in the figure. 

Two methods are currently employed to implement the mathematics to locate 

the four points J, K, L and M. The first searches through all of the facet edges 
for each point in turn, testing to see if the desired point is to be found on the 

edge using the condition 0<s<1. This method allows any regular or irregular 

polygon to be considered. However, because each point only exists on one facet 

edge it is not a very efficient process. If regular shapes such as rectangular 

and hexagonal facets are being considered, a rapid technique uses symmetry 

relations to determine the facet edges on which K, L and M are found once the 

point J has been determined. 

3.3.2 Adjacent Coplanar Facets and Concave Facets 

If the RTDF model is to be applied to arbitrary crystal geometries, there are 
several situations that may arise that need to be considered. 

Using the Geometric Optics code by Macke [23] it is not possible to consider a 
concave facet such as the irregular facet shown in figure 3.8a. This is due to the 

manner in which the code determines whether a ray strikes inside or outside the 
boundary edge of a facet. To consider such complex facets it is necessary to split 
them into convex facets that are adjacent and coplanar, illustrated in figure 3.8a 

using the dotted lines. A practical example can be found in Macke (23] where 
a hexagonal tube is considered. A ray striking the end of the tube cannot be 

adequately handled unless the hexagonal ring is separated into six quadrilaterals. 
This is shown in figure 3.8b. Breaking the ring up like this is perfectly acceptable 
for the case of GO but when considering RTDF an alternative must be sought. 
Using edges between the coplanar quadrilaterals will create deflections of the 
sort not originally intended by the RTDF concept. Another example of such 
unintended deflections is found when considering the 4-1 bullet rosette that will 
be discussed in section 5.6. One side of the geometry exhibits four coplanar 
adjacent pentagons formed because four individual bullets are used to construct 
the crystal. This is illustrated in figure 3.8c. 

An alternative system was created to handle such cases. At the beginning of an 
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Figure 3.8: Examples of adjacent coplanar facets. 

execution run, facets are tested against each other to detect adjacent coplanar 
facets. These facets are recorded in such a way that the edges between them 
can be neglected when determining the effective slits used by the RTDF model. 
This enhancement was implemented using replacement subroutines so it must be 
turned on using an option variable. This method of implementation was chosen 
because the algorithm used is likely to increase execution times somewhat and 
so should only be used when necessary. The system has been used in section 
5.6 for the case of the 4-1 bullet rosette. It is also applied in section 5.4 where 
hexagonal tubes of the form used by Macke are investigated. Using the system, 
the end facets formed using a hexagonal ring split into six quadrilaterals is 
treated as a standard hexagonal ring in terms of the RTDF model yet the GO 

constraint on concave facets is not an issue. 

As a result of concave facet support it is necessary to consider that candidate 
points for K, L and M (see sections 3.2.3 and 3.3.1) may be found on several 
facet edges whereas for convex facets there is no such ambiguity. For example, 
figure 3.8d shows the end of a hexagonal tube that has been struck by an 
incident ray at the point X. The dashed lines indicate the effective slit directions 

associated with RTDF. The closest point on a facet edge, J, is clearly defined. 
The location of the point K according to the algorithms that locate the point 
(outlined in section 3.3.1) is ambiguous. There are three candidates, K1, K2 
and K3. This is rectified by adding the condition that the hitting point X is 
always between J and K (and also between L and M). The correct candidate 
point is the closest to J within this constraint. 

3.3.3 Polarization in the 3D Model 

In section 2.6.2, the concept of the Stokes vector was introduced and the pro- 
cess of rotating the Stokes vector in GO briefly explained (page 52). The Stokes 
vector of a plane wave is always defined with respect to a reference plane in- 
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cluding the propagation vector. In a GO interaction, it is defined with respect 
to the plane of incidence which contains the incident ray and the normal of the 

plane struck by the ray. For the Stokes vector to maintain its physical mean- 
ing during several consecutive interactions it must be expressed with respect to 

each plane of incidence in turn. Consequently, the reference frame is rotated at 
each ray-facet interaction and the transformation from the old Stokes vector to 

the new Stokes vector is given by equation 2.27 from section 2.6.2. In the GO 

code, the components of the electric field vector parallel and perpendicular to 

the plane of incidence are used to define the Stokes vector. As a result it can 
be assumed that the perpendicular component of the electric field vector (El) 

of both incoming and outgoing rays lie within the plane of the facet during a 
reflection or refraction event. This leads to a standard rotation of the Stokes 

vector. However, this is not necessarily the case for an RTDF event because 

although El lies in the plane of the facet during the reflection or refraction pro- 
cess, the deflection that RTDF introduces to the propagation vector can pull 
E. I. out of the facet plane if the orthogonality of the propagation vector and the 

components of the electric field vector are to be maintained. 

A correction was applied within the RTDF model to rectify this. The correction 
applied was based upon a scheme outlined by Hovenier and van der Mee [109]. 
Initially, the GO process is allowed to occur as usual including the calculation 
of the GO perpendicular component of the electric field vector, E1°, and the 

rotation of the Stokes vector. The RTDF deflection of the outgoing propagation 
vector is then performed including the calculation of the RTDF perpendicular 
component of the electric field vector, ERTDF. It is now necessary to rotate the 
GO Stokes vector to become the RTDF Stokes vector. To help with this, one 
can define a reference vector, h, as the vector product of the outgoing GO and 
the outgoing RTDF propagation vectors. Two rotations of the Stokes vector are 
then performed. The first rotates from El° to h about the propagation vector 
of the outgoing GO ray. The second rotation is from h to ERTDF about the 
outgoing RTDF propagation vector. 

3.4 Demonstrations of the Effect of Diffraction 

on Facets 

In the following discussions, a wavelength of A=0.55 µm will be used for 
the incident light. Throughout this thesis when this wavelength is used, the 
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Figure 3.9: A demonstration of the RTDF model for a hexagonal column of size 
parameter 50 at a wavelength of A=0.55 pm at perpendicular incidence. SVM 

and GO results are plotted for comparison. 

refractive index of the crystal will be taken to be n,. = 1.311 and ni = 3.11x10-9 

[1101. 

An excellent demonstration of the effect that the RTDF model has is for hexago- 

nal columns in a fixed orientation at perpendicular incidence. Figure 3.9 shows 
RTDF, GO and SVM results for an infinitely long hexagonal column of size 

parameter 50 at a wavelength of A=0.55 µm. All results presented in this 
document under the name GO were generated using the classical Geometric 

Optics code by Macke [23]. The orientation of the crystal is such that incoming 

rays travel perpendicular to the plane of one of the long facets, as shown in 

the figure. The RTDF and GO results were calculated using 500,000 incident 

rays. The SVM result is an average of results from a range of carefully selected 
size parameters to smooth out interference effects. The current version of the 
RTDF model does not include interference effects and so such action ensures a 
fair comparison. 

The idea behind the method to smooth out interference is as follows. When 

considering light scattering by small particles, it is the effects caused by inter- 
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ference between light passing by the crystal without interaction and light passing 
through the crystal that dominates. In terms of GO, it is possible to calculate 
the phase difference between a ray that passes directly through a crystal and one 
that misses the crystal completely. Equation 3.9 gives the phase difference 6p 

between rays passing by and through a crystal where the characteristic diameter 

of the crystal d is also the path length inside the crystal. 

aP = 
2ird 

- 
27rd (3.9) 

Reff A 

Using the definition of the effective wavelength (section 3.2.2), this can be writ- 
ten in terms of a size parameter q and the real part of the refractive index, n,., 
as shown in equation 3.10. 

bp = 271 (nr - 1) (3.10) 

If the size parameter is varied around the desired value carefully, it is possible to 

create a spread of phase differences to cover a range of 21r (or one wavelength). 
By setting 8p to 21r in equation 3.10, q gives the magnitude of size parameter 

variation required. This method will suppress the interference effects in the 
forward direction and act as an approximation that will lead to a similar effect 

at larger scattering angles where interference effects arise mostly due to rays 
taking different paths as they pass through the crystal. Given a hexagonal 

column at perpendicular incidence there are clear problems with this method. 
For example, the distance that a ray travels through the crystal depends upon 
where it enters the crystal. However, as an approximate method for smoothing 
interference effects it is most adequate. 

The figure shows that the characteristic sharp spikes from Geometric Optics are 
widened in the RTDF results and compare very well with SVM. These results 
were generated using the 3D model codes but are very similar to those calculated 
using the original 2D version found in [81 where more details regarding such 
orientations can be found. 

A second demonstration is provided in figure 3.10. In this case, a hexagonal 

column of finite length is considered. The aspect ratio of the column is defined 

using the quantity L/2r which is further explained in appendix A. 1. The figure 
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Figure 3.10: A demonstration of the RTDF model for a hexagonal column of 
size parameter 50 at a wavelength of A=0.55 um tilted from perpendicular 
incidence by an angle of 45°. The crosses represent the locations of incident 

rays entering the crystal and the colours indicate the final scattering angle, 
given in the legend. Only the ray path discussed in the text is considered. Left 
Panel: GO. Right Panel: RTDF. 

shows a hexagonal column tilted from incidence perpendicular to the column 
axis by an angle of 45°. The size parameter of the crystal is 50 with L/2r = 2. 
The figure shows the scattering angles resulting from rays entering the left prism 
facet that is exposed to the incident light and exiting the central prism facet on 
the underside of the column. This is achieved by placing a cross at the point 
that the incident ray enters the crystal whose colour corresponds to the eventual 
scattering angle. In the panel on the left hand side, the GO result is given. All 

of the rays following the ray path are scattered at an angle of 31°, as illustrated 
by the solid magenta area on the facet. Note that areas of the facet without 
any colour are where the rays leave the crystal through other facets. The panel 
on the right hand side provides the equivalent RTDF result. The large range of 
colours and hence scattering angles illustrates how the model spreads the rays 
incident upon a facet when compared to GO. Note that the scattering angle 
is a combination of the Snellian refractions and the RTDF deflections on both 
facets that are involved in the ray path. 
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3.5 Size Applicability Study 

3.5.1 Upper Limit 

As the new model is applied to increasing size parameters, the result tends 

asymptotically to the GO result. To explain this, consider a 2D Monte Carlo 

ray tracing system with rays incident on a slit. For a slit obeying GO rules, all 
the rays will pass through undeflected. For a slit obeying the rules of the new 

model, rays passing through the slit will be deflected as described in section 
3.2.2. One can quantify the deviation of the model from GO by calculating a 

value K. is is the percentage of the slit that, when struck by a ray, will result in 

a deflection angle greater than some small angle Vi. In the following, we shall 
set 0=P. 

For very narrow slits, n will be close to 100%. As the width of the slit increases, 

rc will drop rapidly because as shown in figure 3.4, only rays striking close to 
the slit edge are deflected significantly. As the slit increases in size to very large 

widths, the behaviour of the model will move towards that of two independent 
half-planes. This means that s will approach 0% asymptotically for finite widths 
because there will always be an ever decreasing area of the slit that will deflect 

rays by more than P. This is shown in figure 3.11 where r., is plotted against the 

width of the slit. For comparison, the equivalent result for Fraunhofer diffraction 

at a slit is given where K represents the percentage of the energy found at an 
angle greater than P. Both logarithmic and linear scales are included in the 
figure. Fraunhofer diffraction is included because as the width of the slit tends to 
infinity, Fraunhofer diffraction tends to a single point maximum at a deflection 

of 0° where r. = 0. This is an identical result to GO. One can state therefore 
that Fraunhofer diffraction tends to GO at large slit widths. Comparing the 

model to the Fraunhofer result illustrates how the model moves towards the 
GO result. In the figure, rc for both the model and the Fraunhofer case drops 

rapidly as the slit width increases to 500 µm. Above a slit width of around 750 

µm, the RTDF case begins to approach the Fraunhofer case. This figure clearly 
shows how the RTDF model will have a small effect on a ray tracing calculation 
up to very large size parameters. Assuming that the slit width is the same 
as the characteristic radius of a particle, the figure shows calculations for size 
parameters up to near 43,000 at a wavelength of A=0.55 µm. The value of is 
falls below 1% at a slit width of approximately 158 pm which corresponds to a 
size parameter of approximately 1,800 at A=0.55 pm. Crystal size in cirrus is 



88 

100- 

10- 

0.1 

? =0.55 0.01-1 1 
1.0- 

0.8- 

__ O. ( 
1° 0 

0.4 

o. 

o.; 

ThP Diffraction on Fac"vts 

RTDF Slit Model 
Fraunhofer Diffraction 

0 500 1000 1500 2000 2500 3000 3500 
Slit width (µm) 

Figure 3.11: K against increasing slit width for the RTDF slit model and Fraun- 
hofer diffraction. 



3.5 Size Applicability Study 89 

-1 

-2 

20 

15 

10 

5 

90 

1( 

-,! 
. 21 

E 

_i 
T 

Figure 3.12: Illustration of the proportion of a facet that leads to RTDF be- 
haviour (deflections of more than 1°, black shading) and approximate GO be- 
haviour (deflections of less than 1°, grey shading). (a) Size parameter 20, RTDF 
65.56% (b) Size parameter 50, RTDF 35.68% (c) Size parameter 200, RTDF 
10.21% (d) Size parameter 1000, RTDF 2.14%. 

often quoted in terms of a maximum dimension. The characteristic radius which 
determines the size parameter is usually less than the maximum dimension. For 

example, a rosette with a large maximum dimension is made up of constituent 
arms that have radii that are significantly smaller than the whole crystal. This 

means that the model will have an impact that can be considered significant for 

the majority of crystals found in cirrus [79]. 

Figure 3.12 shows how this result translates to rays reflecting from a hexagonal 
facet. Note that in this case two RTDF deflections will occur as described in 

section 3.2.3. In the following, the deflection angle considered will be the total 
deviation from the incident direction. The figure shows four hexagonal facets 

with radii of (a) 1.751 µm, (b) 4.377 µm, (c) 17.507 um and (d) 87.535 pm 

x (um) 

x (Nm) 
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which would correspond to size parameters of 20,50,200 and 1000 respectively 
at a wavelength of A=0.55 µm. If a ray strikes the areas coloured black, it 

will be deflected by an angle greater than 1°. Those areas shaded grey will 
lead to behaviour more similar to GO. The percentage of each facet that leads 

to deflections greater than 1° varies in a similar fashion to the case of the slit, 
values for the figure were found to be (a) 65.56% (b) 35.68% (c) 10.21% (d) 
2.14%. As the size of the facet increases, the area where rays are deviated 

significantly falls. The value for case (d) is in agreement with the slit discussion 

above. 

The use of a Monte Carlo ray tracing method means that the result that is 

achieved using the model can depend upon the number of rays used due to 
statistical effects. In the case of averaging over random orientations, the number 
of orientations is important. In using the model, the general rule followed is that 
in the case of a fixed orientation, the number of rays is sufficient if the scattering 
property being studied has stabilised. In other words, adding more rays will not 
change the result. In the case of averaged orientations, the same rule is applied 
but to the number of orientations. As we move to higher slit widths (and 

also higher crystal sizes for the 3D model) achieving this stability in the result 
becomes harder. To give a complete model result for a very wide slit, it will 
require the same number of rays per unit of width as for a narrow slit. One 
reaches a point where this is computationally unreasonable, so placing an upper 
size limit on the use of the model that depends upon the computational resources 
of each individual user. In the theoretical case of a computer of unlimited power, 
the RTDF model will only ever asymptotically approach GO because if there 
are sufficient rays incident on a very large facet, some will always strike close to 
the facet edge where the half-plane behaviour persists. 

When the result is averaged over many random orientations the effect of the 
model is not always as obvious. Figure 3.13 shows the RTDF phase functions for 
four hexagonal columns with no external diffraction compared to the equivalent 
GO result. The RTDF columns all have L/2r =1 with size parameters of 
50,100,150 and 200 at a wavelength of A=0.55 µm. The GO result is size 
independent due to the lack of external diffraction but was calculated using the 
size parameter 200 crystal. The movement of RTDF towards the GO result can 
be seen as the crystal size increases, particularly in the halo regions and near 
forward scattering. Although the signature sharp halo peaks of GO are already 
established in the size parameter 200 RTDF result, the phase function still 
exhibits noticeable differences, particularly near forward scattering and above 
140°. This confirms the preceding discussion. However, due to the similarity 
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Figure 3.13: The RTDF phase functions for four hexagonal columns with size 
parameters of 50,100,150 and 200 at a wavelength of A=0.55 µm averaged 
over 50,000 orientations with 100 rays per orientation. Shown for comparison 
is the equivalent GO result. The results are pure ray tracing results so do not 
include any external diffraction. 

with the GO result at the largest size parameter it is clear that the RTDF model 
has the most impact below size parameters of around 100. The results to be 

presented in the coming chapters will be confined to size parameters below this 

value, except in the case of the aggregate result in section 5.7 where the crystal 

size is defined in the literature. 

To summarise, in theory there is no upper applicability limit for the RTDF 

model. At very large size parameters, the behaviour of the model will approach 
that of GO. Up to a size parameter of approximately 1,800 (below which one 
can classify the majority of cirrus ice particles) the RTDF model makes a clear 
impact because it deflects at least 1% of rays by at least 1° at each facet in- 
teraction. The percentage value grows strongly as the size decreases. Up to 

size parameters of 43,000 and above, the effect of the model modifying a stan- 
dard ray tracing result can still be detected, albeit by a very small amount. 
The GO result will only ever be approached asymptotically because of the half- 

plane behaviour near the facet edges. In practise, an upper applicability limit 



92 The Diffraction on Facets Model 

for the RTDF model is enforced at large size parameters by the computational 

constraints of individual users and the number of orientations and rays per ori- 

entation that are required to obtain a stable result for a given crystal geometry. 
The model has the most impact at size parameters below 100. 

3.5.2 Lower Limit 

It is much harder to determine a lower limit for the size applicability of the 
RTDF model. There are two lower limits to consider. The first is the limit 
below which there is no physical justification for using such a model. The 

second is the limit below which the quality of results is known to be poor. It 
has been found that the RTDF code runs without errors for inappropriately 

small crystals. Consequently, code stability is not an issue. 

The ray tracing approximation holds when the distance between ray-facet in- 
teractions and the dimensions of the facets are very much greater than the 
wavelength of the incoming light. Let us consider light of wavelength A incident 

upon a hexagonal column with L/2r = 1, taking many random orientations. If 
the phrase "very much greater than" can be translated as a crystal radius of 
10A then GO can be applied above size parameters of approximately 60, but 

even this is pushing the applicability boundaries. As discussed in section 2.1, 
GO was found to provide the most accurate results at size parameters of sev- 
eral hundreds when considering spheres [241. At such sizes, "very much greater 
than" has significantly more validity. However, due to the lack of alternative 
methods GO is frequently used at size parameters as low as 50 for cirrus ice 

particles. In addressing the first lower limit discussed above, one expects that 
the introduction of a physical optics correction within the crystal by using the 
RTDF model removes some of the restrictions associated with standard GO. It 
allows the model to be used at size parameters much smaller than the standard 
GO regime. In this way, the use of RTDF at size parameters down to at least 50 
can be justified, and in part down to sizes closer to the boundary with numerical 
and exact methods. It is certain that somewhere between that boundary and 
the GO regime the lack of interference effects and the ray tracing nature of the 
model will create a lower limit below which use of the RTDF model cannot be 
justified. Unfortunately, this limit is near impossible to quantify reliably. As a 
result, the applicability of the model can only really be assessed by finding the 
second limit described above. 
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The limit below which the RTDF results are known to be poor is unfortunately 

also very difficult to quantify. Exact and numerical methods are not available to 

cover the size parameter range from 50 downwards to assess the degradation of 
the reliability of the RTDF results. The only method that covers such a range 
is IGO [6], discussed in section 2.5. To recap, IGO is a hybrid method that uses 
Geometric Optics to evaluate the scattering on the surface of the particle before 

making a transformation to the far field using exact theory. The exact theory 

component makes IGO computationally demanding compared to models such 
as GO and RTDF. IGO has been applied to crystals much smaller than those 
in the usual applicability range of GO. IGO phase functions have been found to 

compare reasonably well to FDTD down to size parameters of around twenty 
[6]. 

Figure 3.14 provides the IGO [111] and RTDF phase functions for hexagonal 

columns of size parameters 30 and 12 at a wavelength of \=0.55 pm. The 

reader may like to refer to figure 4.6 on page 107 which provides an equivalent 
comparison for a size parameter of 60. In figure 4.6, the comparison to IGO 
is good with the shape of the RTDF profile matching in all areas except the 
forward scattering, back scattering and halo regions. The apparent intensity 

shift is a normalisation effect and will be discussed in the text that accompanies 
the figure, section 4.4.1. As will be discussed later, the lack of agreement at 
forward and back scattering is likely partly explained by the lack of interference 

effects in the model. A part of the halo discrepancy may have a similar origin. 
At a size parameter of 30, the shape agreement at larger scattering angles is 

equally as good as at a size parameter of 60 although the treatment in the halo 

regions has deteriorated further. The IGO result agrees with common knowledge 

and observation that as the crystal size reduces, the halo gradually disappears. 
RTDF exhibits a similar trend but through a reduction in the halo peak rather 
than a change of the halo shape, as seen in IGO. A size parameter of 12 offers 
less agreement, especially between 40° and 175°, although the comparison of the 
width and shape of the 22° halo appears to have improved. The quality of the 
result across the full angular range suggests that application of the RTDF model 
at such small size parameters is inappropriate. These results would suggest that 
the RTDF model can be applied at size parameters as low as 30 because the 
comparison is of equal quality to that found at larger size parameters but that 
crystals smaller in size would be pushing the size applicability limit. A more 
complete range of IGO data over the size parameters between 12 and 30 is not 
publicly available at this time. 
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Figure 3.14: The phase functions for two hexagonal columns calculated using 
IGO and RTDF at a wavelength of A=0.55 µm. Top: Size parameter = 30, 
L/2r = 1.43. Bottom: Size parameter = 12, L/2r = 1.43. 



Chapter 4 

Testing the Model using 
Hexagonal Columns 

Ice crystals in cirrus have a structure that is predominantly hexagonal in nature. 
The well known 22° halo is created due to this hexagonal structure by refraction 
of light through two prism facets. The case of a hexagonal column has been 

well studied. In this chapter, results for a hexagonal column calculated using 
RTDF averaged over random orientations will be presented and compared to 
GO, SVM and IGO. In section 4.1, the phase function due to GO and RTDF 

will be dissected and the ray origins of features explained. Section 4.2 will 
provide a similar discussion for the degree of linear polarization. Comparisons 

to SVM will be made in section 4.3 before comparisons to IGO at both visible 
and infrared wavelengths in section 4.4. The closely related geometry of the 
hexagonal plate will be discussed in the next chapter. 

The calculations in sections 4.1 and 4.2 were performed on a standard desktop 
PC. In this case the RTDF calculation increased the computation time by only 
27% when compared to GO. This illustrates the negligible increase in compu- 
tational expense introduced by the model, maintaining the accessibility of the 
code to researchers with everyday computational resources. 

All of the GO and RTDF phase functions and degrees of linear polarization that 
follow are calculated over 50,000 averaged random orientations with 100 incident 

rays per orientation unless explicitly stated. This rule extends throughout the 

95 
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Figure 4.1: The phase function (PI1) for a hexagonal column of size parameter 
50 with an aspect ratio L/2r =2 calculated using RTDF and GO. 

rest of the thesis for all crystal geometries. 

4.1 Phase Function 

Figure 4.1 shows the phase function generated by a hexagonal cc, luºnn c"alcIIlated 

using the RTDF model. The equivalent GO result is plotted for comparison. 
The column has a size parameter of 50 at a wavelength of A=0.55 nn with 

an aspect ratio L/2r = 2. One can see that the RTDF model smooths out the 
P11 profile across the angular range. It reduces the 22 ° and 46 ° halo peaks, 

smoothing the shape of the halos. The forward and back scattering peaks are 

also reduced in intensity. GO features between 120 ° and 170 ° are significantly 
less prominent. The effect of the RTDF model depends upon the size and 

shape of the crystal in question but these smoothing and dampening effects are 

common when comparing to GO. 

The codes that implement the RTDF model allow all of the ray paths to be 
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Figure 4.2: The phase function (without normalisation) for a hexagonal column 
of size parameter 50 with an aspect ratio L/2r =2 calculated using RTDF and 
broken into contributing ray path types. The most important ray path types 
are shown and discussed in the text. 

recorded and analysed individually. This allows the identification of scattering 
features in terms of their ray origins. Figure 4.2 shows eight of the main ray 

path types from an equivalent case to figure 4.1 plotted individually. The results 

are calculated using the RTDF model using the same hexagonal column as in 
figure 4.1 but using four times as many random orientations. This helps to make 
the profiles of the weaker ray path types smoother. The radiances of individual 

rays have been collected in each of the angular bins with no normalisation. As 

a result, figure 4.2 shows accurately how the ray paths compare to one another. 
It must be remembered that there is a large contribution from the external 
Fraunhofer diffraction pattern that is not included here, particularly within a 
few degrees of forward scattering. Also, there are many more possible ray paths 
that are not included in figure 4.2. Including them all would be impractical. 
Those chosen highlight the main points. There follows a brief explanation of 
the features that can be seen in figure 4.1 using figure 4.2 where appropriate. 

Across the whole angular range is a strong background caused by external re- 
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flections from facets. This feature is a strong contributor to the scattering of the 
hexagonal column. It offers a very low contribution at direct forward scattering 
due to a grazing incidence case being required, which is unlikely to occur. It 

then rises quickly to a maximum at around 20° before decreasing at a reason- 
ably constant slow rate until back scattering where it gives a low contribution 
due to a requirement for perpendicular or basal incidence. 

The forward scattering point in GO is due to refraction through parallel facets, 
direct transmission. In the RTDF result, this peak is spread to as large a 
scattering angle as 100° but it is only the dominant ray contribution out to 
around 14°. 

The 22° halo is caused by refraction through two prism facets separated by 
an angle of 60°. It is formed because such a refraction event has a minimum 
deflection angle of approximately 22° when considering GO. For GO, the peak 
begins at 22° and extends as far as 45°. The effect of RTDF is to spread the 
peak in both directions but primarily forwards. The RTDF 22° halo peak is 
present at forward scattering and becomes the dominant feature at 14°, taking 
over from the direct transmission peak. The RTDF 22° halo provides a trace 
contribution out to 100°. Between 14° and 22°, GO is dominated by the external 
reflections. 

The 46° halo is a result of refraction through one prism and one basal facet. The 
facet separation angle in this case is 90°. Like the 22° halo case, a minimum 
angle of deflection exists of approximately 46°. The GO profile of the halo starts 
at the halo angle of 46° and reduces to zero at around 68°. The RTDF effect is 
similar to the 22° halo, spreading the halo forwards to a weak forward scattering 
contribution and taking over from the 22° halo as the dominant contribution 
a few degrees forward of where it occurs for GO at about 42°. A signal from 
the RTDF 46° halo is seen at as large a scattering angle as back scattering, 
although it falls very quickly to low levels above 60°. 

Between 60° and 110° the GO and RTDF results appear to differ little. There 
is a curving decrease, beginning at around 80°. This is due in part to the steady 
reduction of the external reflection contribution. However, it is mainly as a result 
of a decrease in rays refracting into the crystal, totally internally reflecting once 
and then exiting the crystal, with all of the interactions occurring at prism facets 
(path "1 Prism TIR" in figure 4.2 and below). Such interactions cannot produce 
scattering above 110° or below 25° for GO. This can be verified using Snell's 
law and the condition for total internal reflection (see section 2.2.2). The effect 
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of RTDF is to spread the contributions forwards as far as forward scattering 
but backwards by only a few degrees. Evidence of this in the phase function is 

hard to discern, but can clearly be seen in figure 4.2. 

Ray paths including combinations of only refractions and total internal reflec- 

tions are important because a total internal reflection does not reduce the in- 

tensity of a ray. This makes them as strong as halos when comparing individual 

rays leaving the crystal. Another important case is when the total internal 

reflection is from one of the basal facets (path "1 Basal TIR" ). This creates a 
feature in the degree of linear polarization that will be discussed in the next sec- 

tion. This ray path provides the largest scattering contribution between around 

90° and 116° above which it cannot scatter, verifiable using the same method 

as the previous case. A weak signal can be found at larger scattering angles due 

to RTDF spreading. The drop in scattering at 116° can be seen in both the 

phase function and figure 4.2. 

The combination of the two single total internal reflection paths being removed 

results in the minimum in the phase function from 116° onwards. The RTDF 

result is higher than the GO result between 116° and 140° because of rays 

undergoing total internal reflection twice within the crystal. Such rays provide 

a bimodal scattering pattern. In terms of GO, they rise to a broad peak at 

approximately 80°. There is then a sharp drop to a minimum at approximately 
116° before rising to form a wide peak of lower intensity that extends to back 

scattering, centred at approximately 150°. The first peak is due to ray paths 
involving two total internal reflections from prism facets (path "2 Prism TIR"). 

The second is caused when one of these is from a basal facet (path "1 Basal TIR 

+1 Prism TIR"). In the case of RTDF, the minimum at 116° is considerably 
smeared out resulting in increased scattering. This provides the positive shift 
in the RTDF phase function between 116° and 140°. 

The rest of the scattering range is a mix of complicated internal reflecting and 
total internal reflecting ray paths. The GO maximum at 155° is formed by rays 
entering and leaving the same facet, undergoing several total internal reflections 
while inside the crystal. Above a scattering angle of 166°, such ray paths are 
rare and their disappearance results in the minimum in this scattering range. 
Due to RTDF smearing, the minimum is only visible in the GO result. The GO 

maximum at 171° arises because ray paths involving up to ten total internal 

reflections scatter in a very narrow angular window centred here. Again, RTDF 

smooths the feature. From 173° onwards, the phase function increases to the 
back scattering peak, formed by many different ray paths that involve internal 
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and total internal reflections. Some of the ray paths are very complicated. The 

RTDF model spreads the peak, moving intensity forwards and resulting in a 

reduced signal at back scattering. 

The asymmetry parameters for the results shown in figure 4.1 are gGo = 0.807 

and 9RTDF = 0.816. On first glance, this result is puzzling. The strongest 

contribution to the asymmetry parameter is found at forward scattering. If this 

peak is spread out by applying the RTDF model, then one intuitively would 

expect that the asymmetry parameter would reduce. However, this is not the 

case. In fact it is a common result that the RTDF model increases the asym- 

metry parameter by a value of the order of 0.01. By studying the change in the 

asymmetry parameters for a range of specific features as one moves from GO 

to RTDF, it can be shown that the strong features at forward scattering and in 

the halo regions do result in a reduction of the asymmetry parameter but only 
by a small amount. It is balanced by an increase from more complex ray paths 
that are scattered at angles greater than 90°. It is the case that, when spread 
out, scattering features at angles less than 90° generally move intensity to larger 

scattering angles while features at greater than 90° move it to smaller scatter- 
ing angles. The important factor in determining the change in the asymmetry 
parameter from GO to RTDF is not how much intensity is moved but by what 
angular distance the intensity is shifted. More complex ray paths involve more 
facet interactions and so have a greater smoothing effect because the RTDF ray 
deflections are cumulatively larger. These ray paths are the dominant type at 
scattering angles larger than 90° and so there is greater angular movement per 

unit irradiance in this angular range than at, for example, the forward scatter- 
ing point. Due to the tendency of intensity to shift forwards from this angular 

region, the asymmetry parameter increases. 

This is a very important point when considering the potential applications of 
the RTDF model. Solar reflectivity studies have found asymmetry parameters 
of as low as 0.7 being required for particles in models to fit the data from mea- 
surements [60,71,112]. Calculations for hexagonal columns using GO tend to 

give asymmetry parameters of 0.8 or above, as the example above has confirmed. 
As will be demonstrated in the IGO comparisons in section 4.4, the tendency 

of RTDF to reduce the forward and back scattering peaks when compared to 
GO is a move in the right direction. However, due to the effect explained above 
the RTDF model does not offer an improvement over GO asymmetry parame- 
ters when considering the solar reflectivity predictions. It is apparent that the 

slightly higher accuracy found using GO in this case is artificial and due to 

the unrealistic large forward and back scattering peaks predicted by GO. The 
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Figure 4.3: The degree of linear polarization (-P12/PI I) for a hexagonal column 
of size parameter 50 with an aspect ratio L/2r =2 calculated using RTDF and 
GO. 

asymmetry parameter is determined mainly by the contributions at direct for- 

ward and back scattering where interference effects are important, something 

the RTDF model does not currently have. This will be discussed further when 

the IGO asymmetry parameter is considered in section 4.4.1. 

4.2 Degree of Linear Polarization 

The Degree of Linear Polarization (DLP) is dominated by two competing groups 
of ray paths. First, the external reflections from crystal facets make a positive 
contribution to the DLP (corresponding to a tendency to polarization perpen- 
dicular to the scattering plane). Second, the halos and rays paths including 

only odd numbers of total internal reflections and/or internal reflections make a 
negative contribution to the DLP (corresponding to a tendency to polarization 
parallel to the scattering plane). 
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Figure 4.3 shows the DLP (defined here as -P12/Pll) for the case described 

in the previous phase function section. The RTDF model reduces the absolute 

values of the DLP across the profile. Figure 4.4 provides the -P12 equivalent 
to figure 4.2 where the ray path types are individually plotted using 200,000 

orientations. Normally the DLP is normalised by dividing by the normalised 
phase function. This is not appropriate here, so the raw -P12 values are plotted 
to indicate the strength and direction of linear polarization for each ray path 
with respect to one another. The lower pane of the figure provides a zoom view 
to magnify the contributions of ray paths that while important are much smaller 
than the halos and external reflections. There follows an equivalent discussion 
to that for the phase function given in the previous section. 

GO shows very weak linear polarization at forward scattering due in part to 
the very strong value of the phase function. In addition, rays scattered directly 
forwards exhibit low polarization because the scattering plane which acts as the 
reference plane for the Stokes vector is not defined. The incident and scattered 
rays travel in close to the same direction. By choosing a random reference plane 
at this point the result of zero polarization is obtained, as has been predicted 
theoretically [54]. Although not shown in figure 4.4, it should be noted that the 
external diffraction component is also not polarized. Up to a scattering angle of 
20° the external reflections dominate, helping the DLP to rise to a maximum at 
21°. In this region the RTDF model shows a significant reduction. Within the 
first six degrees of forward scattering, a negative signal is visible. It is created 
by the spreading of the negatively polarizing direct transmission ray path into 

regions where the phase function is not so overwhelming and the scattering 
plane can be defined. The positively polarizing external reflections then take 
over but tempered by the forward spreading of the negatively polarizing 22° 
halo peak. This results in the reduction in the absolute DLP values for RTDF 
between 10° and 20° when compared to GO. 

Halo ray paths (two refractions through the crystal) result in negative polar- 
ization, as shown in figure 4.4. As a result, the contribution from the 22° halo 
feature in both GO and RTDF is strongly negative. This counteracts the posi- 
tive external reflection background to give a small negative peak. It is reduced 
in magnitude slightly by the RTDF model. As the scattering angle increases, 
the effect of the halo trails off in the GO result and the profile rises to a second 
strong peak dominated by external reflections. The RTDF result reduces this 
peak by a mixture of the backward spreading of the 22° halo and the forward 

spreading of the 46° halo. The transition between each one dominating occurs 
at the same angle as for the phase function, at around 42°. The 46° halo is 
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Figure 4.4: The scattering matrix element -P12 (without normalisation) for a 
hexagonal column of size parameter 50 with an aspect ratio L/2r =2 calculated 
using RTDF and broken into contributing ray path types. The most important 
ray path types are shown and discussed in the text. 
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noticeably reduced by RTDF, although both GO and RTDF peaks are larger in 

magnitude than the 22° case due partly to the reduced phase function value. 

Between 60° and 110° the discussion is very similar to that of the phase func- 

tion. The ray paths that control the DLP in this angular range are those that 
involve rays entering the crystal, undergoing one total internal reflection and 
then exiting the crystal, where all of the interactions are with prism facets. In 

the case of GO, these contributions are strongest between approximately 65° 

and 95° where their negative contribution reduces the DLP signal, though this 
is not clear in the DLP because the external reflections still dominate. Be- 

tween 80° and 110° the negative contributions reduce gradually. This results in 

an increase in the DLP. The smoothing caused by RTDF helps to temper the 
increase. 

GO and RTDF show the strongest change in linear polarization at 116°. As 
discussed for the phase function at this angle, rays entering the crystal that 

undergo a single total internal reflection from a basal facet before exiting cannot 
be scattered above 116°. The strong negative contribution by this ray path stops 
abruptly at this scattering angle because it is a maximum deflection angle, as 
shown in figure 4.4. This results in the sudden increase in the DLP that can be 

seen in figure 4.3. 

As is the case for the phase function, above 140° the complex ray paths involv- 
ing internal reflections begin to dominate the DLP. Above 160°, the external 
reflections begin to decrease in strength quite sharply. The neutral point (Np), 
the point at which the DLP crosses the x-axis near back scattering, does not 
move for RTDF compared to GO at a value of approximately 160°. In the- 
ory, one can distinguish between columns (157° < Np < 165°) and plates 
(140° < Np < 160°) using the position of the neutral point [113]. The lack of 
movement of the neutral point suggests this concept still holds using RTDF. 

The strong negative DLP near back scattering for GO shows the continued 
dominance of the negatively polarizing complex ray paths involving odd numbers 
of internal reflections. The RTDF result is significantly reduced due to the 
forward shift of scattering from this angular range, also a contributing factor to 
the reduction compared to the GO feature between 120° and 160°. The DLP 
returns to close to a theoretical zero for both models at back scattering because 
the scattering plane is not defined, as was the case at forward scattering. 
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4.3 Comparison to SVM 

As discussed in section 2.1, exact methods such as T-matrix and numerical 
methods such as FDTD cannot be applied at sizes where GO and RTDF are 

normally considered acceptable. The closest method to exact theory that can 
be used for comparison is a variation of SVM. The SVM method used here [4] is 

an approximation for finite cylinders based on an exact numerical SVM code for 
hexagonal cylinders of infinite length [3]. The code does not provide satisfac- 
tory results for orientations close to basal incidence due to the approximation 
involved. This means that in making comparisons to the GO and RTDF codes, 
the crystal orientations must be restricted to include only reliable orientations. 

Figure 4.5 shows the phase function and degree of linear polarization for a long 
hexagonal column calculated using SVM, GO and RTDF. The GO and RTDF 

results are calculated using 50,000 averaged random restricted orientations with 
100 incident rays per orientation. The column has a size parameter of 50 with 
L/2r = 10. The orientation restrictions are such that the long axis of the col- 
umn is at least 12.96° from the direction of the incident light. A consequence 
of this restriction is the lack of the 46° halo and the back scattering peak in 
the SVM profile. The same features appear suppressed in the GO and RTDF 

results. Although the SVM data is not as smooth as one would like, the RTDF 

phase function provides a better comparison than standard GO as it widens 
the 22° halo peak, reduces both forward and back scattering and smooths the 

profile across the angular range. The degree of linear polarization shows sim- 
ilar improvements, particularly in the halo region and above 160 °, although 
discrepancies still remain. 

The SVM comparison is not ideal but until the size applicability range of meth- 
ods such as T-matrix are increased, it is the only comparison with a computa- 
tional method that can in any way be described as exact. 

4.4 Comparison to IGO 

In this section, the IGO method discussed in section 2.5 and used to investigate 
the lower size applicability limit of the RTDF model in section 3.5.2 will be 
revisited. Using publicly available IGO data [111], comparisons will be made 
to GO and RTDF for hexagonal columns at both visible and near infrared 
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Figure 4.5: Phase function and degree of linear polarization for a long hexag- 
onal column of size parameter 50 and aspect ratio L/2r = 10. Calculations 
were made using SVM, GO and RTDF at a wavelength of 0.55 µm. Random 
orientations are restricted so that the long axis of the column is at least 12.96° 
from the incident light to comply with the approximation involved in the SVM 
method. 
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Figure 4.6: A phase function comparison between RTDF, GO and IGO for a 
hexagonal column at a visible wavelength of 0.55 µm. The column has a size 
parameter of 60 and an aspect ratio L/2r = 1.4286. 

wavelengths. This model allows comparisons for averaged random orientations 

without restrictions. The far field transformation used by IGO introduces an 
exact theory component and phase dependency which separates the model from 

standard ray tracing codes. IGO uses standard ray tracing up to the surface 
of the scatterer, in contrast to the RTDF model which introduces a diffraction 

treatment for all of the facets. 

4.4.1 Visible Wavelengths 

Figure 4.6 compares results from GO, RTDF and IGO for a hexagonal column 
at a visible wavelength of 0.55 µm. The column has a size parameter of 60 

and aspect ratio L/2r = 1.4286. The IGO profile appears to be of higher 
intensity across much of the angular range when compared to the other two 

models, though this is a consequence of the normalisation. The forward and back 

scattering peaks predicted by IGO are much reduced, leading to the discrepancy 

over the side scattering regions. Renormalising over a less complete angular 
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range would resolve this, although such action has not been taken here because 

the forward and back scattering comparisons are important. The forward and 
back scattering peaks predicted by RTDF are significantly reduced compared 
to standard GO, providing a better comparison to IGO. 

Interestingly, the asymmetry parameter predicted by IGO is consistent with 
the solar reflectivity predictions mentioned in section 4.1, having a value of 

g=0.71. This is significantly lower than for the other two models due to the 
drop at forward scattering. This raises questions over the asymmetry parame- 
ters generated by the SVM code as they are found to be generally higher than 
both GO and RTDF, albeit over a restricted orientation range. If the IGO re- 
sults can be relied upon then the solar reflectivity consistency would suggest 
that the crucial treatment of forward and back scattering in RTDF, though a 
significant improvement over GO, is an area that restricts the accuracy of the 

model. Furthermore, it suggests that caveats should be placed upon the use of 
asymmetry parameters from RTDF in applications such as climate modelling 
at this time. It has been shown that by introducing phase tracing and a ray 
based far field approximation which includes physical optics effects into a two 
dimensional version of the RTDF model, the treatment at forward and back 

scattering for fixed orientations can produce results that compare much bet- 

ter with exact SVM calculations for cylinders of infinite length than GO and 
the current version of RTDF [108]. It may be possible in the future to apply 
this to the model for averaged orientations, although it represents a significant 
undertaking. 

Setting aside the apparent intensity shift in the side scattering regions, the 
shape of the IGO profile is reproduced well by RTDF between 60° and 160°. 
A particular improvement over GO is found at 155°. IGO provides halo peaks 
that are smooth and rounded to a much greater extent than RTDF, the IGO 

shape resembling the 22° halo in the SVM result discussed above. At larger size 
parameters, IGO results become more similar to GO with sharper halos. As the 

crystal size decreases, the halo becomes more smooth. As shown in section 3.5.2, 

a similar effect is seen in RTDF but does not occur as quickly. This suggests 
that the shape of the IGO and SVM halos exhibit greater smoothing as a result 
of the exact theory components, perhaps due to interference effects. 
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Figure 4.7: A phase function comparison between RTDF, GO and IGO for a 
hexagonal column at an infrared wavelength of 3.65 µm. The column has a size 
parameter of 48.2 and an aspect ratio L/2r = 1.4286. 

4.4.2 Infrared Wavelengths 

As the wavelength considered increases, the effect of absorption becomes more 
important. In section 2.2.2, it was explained how the amount of absorption is 

determined by the imaginary part of the complex refractive index, a wavelength 
dependent quantity. Compared to visible wavelengths, the imaginary part of the 

refractive index is much increased at infrared wavelengths. Section 2.2.2 also 

made reference to the changes that a complex refractive index makes to Snell's 

law and the Fresnel equations. These adjustments do not have a large impact 

on the scattering properties of a particle when compared to the effects caused 
by the attenuation of light within the material. The effect of this attenuation 

will be demonstrated in the forthcoming paragraphs. 

Figure 4.7 shows GO, RTDF and IGO results for a hexagonal column at an 
absorbing wavelength of A=3.65 µm. The components of the refractive index 

are taken to be nr = 1.41082 and n; = 0.00787, following the values used to 

produce the IGO results [1111. The GO and RTDF results are calculated using 
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50,000 averaged random orientations. The column has a size parameter of 48.2 

and aspect ratio L/2r = 1.4286. The first thing to note about the three model 
phase functions is that they exhibit less features. The 46° halo has disappeared. 
The 22° halo is much flatter in the IGO result. It is smaller in intensity in the 
GO and RTDF results compared to the results at 0.55 µm. As a consequence 
the halo appears flatter, particularly for RTDF. The forward scattering point 
is reduced for both GO and RTDF due to the attenuation of rays refracting 
through parallel facets. The RTDF result is now close to IGO. A similar effect 
can be seen at back scattering. 

As the crystal size increases, one would expect these effects to be emphasised 
because energy is increasingly absorbed rather than scattered due to the in- 

creased distances that rays have to travel through the crystal. This can be 
seen in figure 4.8 which shows results for two larger hexagonal columns at the 
same wavelength. The first has a size parameter of 99.5 and an aspect ratio 
L/2r = 2.3789. The 22° halo is further smoothed. The forward and back scat- 
tering points for RTDF have been reduced to below the IGO levels, although 
the forward scattering point is close in value. The comparison to IGO across 
much of the angular range is excellent. The second column has a size parameter 
of 150.7 and an aspect ratio L/2r = 4.2827. The reduction in the forward scat- 
tering point has continued. The 22° halo can hardly be seen in the IGO result. 
The halo size for GO and RTDF is much reduced, the difference between the 
ray tracing based models being much less. At back scattering, the IGO result 
drops away while GO and RTDF are in the closest agreement so far observed 
at this scattering angle. As for the first column, a very good comparison to 
IGO is exhibited at most scattering angles. In both cases in figure 4.8, the 
normalisation shift compared to IGO has disappeared because the results from 
the models across the angular range are in better agreement. 

Figures 4.7 and 4.8 have shown that as the absorption increases due to an 
increase in crystal size, the phase functions become flatter and increasingly 
featureless. This can also be seen as the wavelength is increased for a crystal 
of constant size. A consequence of this is that at infrared wavelengths where 
there is increasing absorption, the geometry of a crystal becomes less important 
because characteristic scattering features of any given geometry are smoothed 
out. It has been shown that circular cylinders can be used in the place of 
hexagonal columns at strongly absorbing wavelengths [32]. 

It remains the case that the treatment of scattering at forward and back scatter- 
ing in the RTDF model is likely to be much improved if interference effects can 
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be introduced. Improved comparisons to IGO at forward and back scattering 

as the wavelength or crystal size is varied do not indicate optimum crystal size 

or wavelength applicability regions for RTDF. 

The RTDF results at A=3.65 pm have shown that the model can be applied at 
near infrared wavelengths, offering comparisons to IGO of comparable quality 
to those at visible wavelengths. This justification of the use of the model will 
be important in chapter 8 where the model will be used to compare to aircraft 
radiance measurements, some of which are in the near infrared at a wavelength 
ofA=1.61µm. 



Chapter 5 

Application of the Model to 

a Range of Crystal 
Geometries 

The case of the hexagonal column has been well studied and is the most funda- 

mental geometry that can be studied for ice crystals that are representative of 
those in cirrus. There is a wide variety of increasingly complex geometries that 
have also been observed in cirrus. The RTDF model maintains the flexibility of 
GO in terms of the geometries that it can be applied to. This will be exploited 
in this chapter where RTDF results for a range of geometries will be presented. 
There will be a short discussion of each geometry to illustrate its relevance to 
the field. 

5.1 Hexagonal Plates 

A hexagonal plate is essentially a hexagonal column whose length is less than 
its diameter. Hexagonal plates are regularly observed in cirrus and are respon- 
sible for the parhelia, enhanced brightness of the 22° halo horizontally to both 

sides of the sun that are commonly known as sun dogs. They are more com- 
monly observed independently of the complete halo because they are caused by 
falling hexagonal plates adopting a preferential orientation where their largest 

113 
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projected area is perpendicular to the direction of fall. This results in ray paths 
concentrating at 22° on either side of the sun. Such preferential orientations 
can occur for any crystal geometry whose projected area varies with orientation. 
The phenomenon is restricted to low air turbulence and a certain crystal size 
range. If the crystal is too small then the orientation can still be considered 
random, the smallest being subject to Brownian motion. If the crystal size is 
too large, turbulence due to the air flow around the crystal results in pitching 
and tumbling. In between the two one finds a region where the orientation 
stabilises. This size range depends upon the particle shape, particle size, fall 
velocity and the viscosity of the air. One can define the size range in terms of 
the Reynolds number, a dimensionless quantity that describes fluid flow with 
respect to a solid. It is denoted by Re and defined in equation 5.1 where VP is 
the particle fall velocity, d the particle diameter and v the kinematic viscosity 
of the fluid. 

- Re - 
vPd (5.1) 
v 

Stable atmospheric particle orientations occur for plate like particles in the range 
1< Re < 100, which corresponds to plates with a diameter of between 0.15 mm 
and 1.5 mm [114]. This converts to crystals with size parameters above around 
800 at 0.55 µm, which falls in the GO domain where halo effects are strong. The 
particle size range required for stable orientations is therefore large compared 
to the crystals of various geometries that will be discussed in this chapter. 

In section 5.6, it will be demonstrated using RTDF that bullet rosettes adopt- 
ing preferred orientations can scatter light very differently to those in random 
orientations. The same is true for a hexagonal plate. The preferred orientation 
scattering of a hexagonal plate which is in such a position with respect to the 
sun and the observer that it can contribute to a sun dog will be similar to that 
of a hexagonal column at perpendicular incidence, identical in the case of GO 
results. To study the scattering characteristics of a hexagonal plate more gen- 
erally, a comparison to a hexagonal column in the averaged random orientation 
case is more appropriate. 

Figure 5.1 shows the phase function and degree of linear polarization for hexag- 
onal crystals of size parameter 50 with aspect ratios of L/2r =2,1,0.5 and 
0.1. The crystal with an aspect ratio of 2 is a hexagonal column identical to 
that considered in sections 4.1 and 4.2. An aspect ratio of 1 corresponds to the 
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Figure 5.1: Phase function and degree of linear polarization for hexagonal crys- 
tals of size parameter 50 at A=0.55 µm. Aspect ratios A= L/2r of 2 (Column), 
1 (Borderline column/plate), 0.5 (Medium thickness plate) and 0.1 (thin plate). 
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borderline case between a column and a plate. A plate of medium thickness is 

represented by an aspect ratio of 0.5 and a thin plate by 0.1. 

As the aspect ratio falls, the areas of the prism facets reduce and so the 22° 
halo reduces in intensity and exhibits less negative polarization. The 46° halo 
increases in prominence as the aspect ratio reduces from the column to the 
borderline case. This is due to the increasing importance of the basal facets. It 
then reduces slightly for the thick plate before being drastically reduced for the 
thin plate. This is because the areas of the prism facets are very small for the 
thin plate, reducing the probability of the 46° halo ray path. 

In the phase function, from 80° to 120° there is an increase in intensity for 
the borderline and medium thickness plate when compared to the column. A 

reduction in the same angular range in the DLP also extends forwards to the 
46° halo. The reason for these changes is that the negatively polarizing ray 
paths that involve internal reflections from the basal facets become much more 
prominent. This also makes the jump in the DLP at 116° more severe, the angle 
above which the ray path cannot scatter. 

Above 120° the borderline case is seen to behave in a similar fashion to the 
column. The medium thickness plate shows a reduction in the phase function 
in this region. This is a normalisation effect because of changes to the phase 
function elsewhere. This is supported by the fact that the shape of the phase 
function in this angular range does not change when compared to the column 
or the borderline crystal. The enhanced DLP signal at 173° is due to the po- 
larization component remaining reasonably unchanged while the phase function 
falls. 

The neutral point Np for the medium thickness plate moves forwards by a few 
degrees compared to the column and the borderline crystal, again suggesting 
that the plate or columnar nature of a crystal can be determined from the 
location of Np. A more complete study over size parameters would be necessary 
to fully verify that the findings of Macke apply to RTDF [113]. 

The thin plate is quite distinct from the other crystals. The phase function 

exhibits less features and scatters more light forwards of 20°. This is because 

ray paths such as the 46° halo and those involving multiple internal reflections 
are rarely observed. Rays are much more likely to refract through the two 
parallel basal facets. The increase in scattering forwards of 20° is caused by 
this increase in direct transmittance. The forward scattering point becomes 
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Figure 5.2: The capped column considered in section 5.2 shown in three orien- 
tations. 

stronger and is then spread due to RTDF. This is confirmed in the DLP where 
there is a strong negative signal from the two refractions. The lack of internal 

reflection ray paths changes the DLP across the profile for the thin plate. The 

positively polarizing external reflections dominate which leads to a significant 
increase in the DLP at side scattering compared to the column, with a much 

weaker negative signal near back scattering. 

5.2 Capped Columns 

A capped column is a combination of a column and one or two plates where 
the plates literally cap the column at the ends. This geometry was included in 
the Magono and Lee classification scheme of ice crystals as CP1a "Column with 
plates" [115]. A photograph of an excellent example of such an ice crystal can 
be found in figure if of Libbrecht [116]. Although this particular example was 
found in a natural snowfall, it illustrates the existence of such crystals in nature. 
The GO properties of such crystals have been studied by Macke [34] and Takano 

and Liou [35]. Bruintjes et al. [117] investigated double plate crystals in the 

atmosphere, a related geometry where the plates are separated by only a small 
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Figure 5.3: Phase function and degree of linear polarization for a capped column 
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A model of an example of the capped column geometry is shown in figure 5.2 

in three orientations. Figure 5.3 gives the phase function and degree of linear 

polarization for the same crystal compared to a column and a plate. All calcu- 
lations are made using RTDF. The column has a size parameter of 50 and an 

aspect ratio L/2r = 2.5. The plate has a size parameter of 100 and an aspect 

ratio of L/2r = 0.1. The capped column is made up of the column that has just 

been described, capped at one end by the plate being used for comparison and 

at the other end by a plate with a radius one and a half times the first. 

In both the phase function and the DLP the capped column profile can be 

found between the column and the plate. The large radii of the plates that are 

present in the capped column makes them very important. Rays incident on the 

particle in a random orientation are likely to interact with the plates in some way. 
The scattering of the capped column between 20° and 110° demonstrates this 
because it more closely resembles that of the plate. The capped column shows 
how scattering from a composite crystal can resemble that of its constituent 
parts. At the same time it illustrates that by adding more constituent parts, 
even if they are of a similar form to those already present, the scattering pattern 
can and in most cases will be changed. 

5.3 Hollow Columns 

In this section, deformed hexagonal columns that have depressions at both ends 
will be considered. These hollow columns are sometimes referred to as `hopper' 

crystals. When the deformation is strong, they are sometimes called `hollow 

sheaths'. The existence of such crystals is dependent on both temperature 

and ice supersaturation levels. Heymsfield and Platt [79] found that hollow 

columnar crystals were common in cirrus, particularly near cloud top where 
they dominated. When there was no convection within the cloud or at low 
temperatures, the crystals were more widespread in the cloud. These crystal 
habit findings are commensurate with other authors, for example Weickmann 
[70]. Photographs of hollow columns from Weickmann's work can be found in 
Parungo [107]. An image of a replica of a hollow column collected from a cirrus 
cloud is provided in figure 1A of Heymsfield [106]. Such hollow crystals have 
been used as a possible explanation for some rare small angle halo phenomena 
[118]. 
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Figure 5.4: A variety of hollow columns showing the following indentations from 
each end, measured as a percentage of crystal length. Skeletal views: (a) 0 %, 
(b) 10 %, (c) 20 %, (d) 30 %, (e) 40 %, (f) 50 %. Full view: (g) 20 %. Ice 
analogue `hopper' crystal: (h) Courtesy of Z. Ulanowksi. 

The formation of hollow features occurs when supersaturation levels are suf- 
ficiently high [58, chapter 3]. As the supersaturation level increases, crystal 
growth accelerates and the comparatively slow ordered growth that results in 
pristine solid prisms becomes less common. The growth of the crystal proceeds 
by deposition on the existing facets and being at the extremities there is more 
rapid growth at the edges of each facet than at the centre. Once a small in- 
dentation has been formed the process exhibits positive feedback. The local 

supersaturation near the facet edge falls due to deposition and is replenished 
by vapour from both the surrounding air and from near the facet centre. This 
impedes the growth at the facet centre in favour of the facet edges. Over time, 
this results in the hollow features currently being discussed. The relationship 
between high supersaturation levels and deformation was demonstrated by Bai- 
ley and Hallett [81] who grew ice crystals in the laboratory and observed that 
between -42° and -50° hollow ends began to develop at ice supersaturation lev- 
els of 40%. As the ice supersaturation increased, the crystals became sheaths. 
Images of laboratory grown ice columns with hollow ends can be found in figure 
3 of Libbrecht [116]. 

Some examples of models of hexagonal columns with hollow ends are shown in 
figure 5.4(a-g). The perfect triangular facets that form the depressions at the 
crystal ends may look idealized. However, the ice analogue crystals that will 
be discussed in chapter 6 have been seen to form such indented ends, as shown 
in the Scanning Electron Microscopy (SEM) image in figure 5.4h. Although 
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this does not guarantee that these facets form in cirrus ice, it indicates that 

crystal growth processes in general can create such facets. The GO scattering 

properties of this geometry have been discussed by Takano and Liou [351. 

The scattering properties calculated using RTDF for the crystals shown in figure 

5.4(a-f) are presented in figure 5.5, illustrating the effect of increasing severity 
of indentation. The results for a standard hexagonal column of the same size 
are plotted for comparison. The size parameter of the column was taken to be 

50 at a wavelength of A=0.55 pm with aspect ratio L/2r = 2. The letters 

shown in the legend correspond to the labels in figure 5.4. 

As the indentation becomes more profound there is a decrease in the phase 
function at back scattering and above 140° due to internal ray paths at these 

scattering angles being removed. There is also an increase at forward scattering 
and a smoothing of the inner edge of the 22 ° halo feature. These results indicate 

that modelling crystals perfectly rather than considering hollow areas could lead 

to significant errors in scattering properties, particularly for methods reliant on 
back scattering such as LIDAR. The 46° halo is seen to disappear for the hollow 

columns as the ray path responsible is impossible once the basal facet is removed. 
This could provide a contributing factor to the scarcity of observed 46° halos 
because even a small deformation breaks the halo signal into contributions from 

the triangular facets. The scarcity of the 46° halo is most clearly evident in 
the DLP where the negative polarization peak is only present for the perfect 
column. 

The 22 ° halo becomes less prominent for both the phase function and the DLP 

as the indentation is increased due to the necessary ray path being obstructed 
by the triangular facets that form the hollow areas of the crystal. The slow 
degradation of the inner edge of the halo feature in the DLP around 15° suggests 
that polarimetry could be used to identify varying degrees of imperfections 

where hexagonal columns are present. In section 2.7 it was suggested that one 
of the reasons for the lack of observed halos, particularly the 22° halo, was the 

prevalence of hollow features in crystals which may dilute the effects. The phase 
functions in figure 5.5 show that it is not until the 50% hollow column that the 
halo is fully obscured. This indicates that some degree of imperfections at the 

ends of columns would still allow 22° halos to exist as long as a high enough 
proportion of the crystals present have sufficiently large solid portions. It has 
been observed in the field that crystals exhibiting some hollow structure can be 
the norm rather than the exception in halo producing clouds [1001. The same 
authors suggest that it is the complexity and diversity of cirrus particle shape 
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Figure 5.5: Phase function and degree of linear polarization for a hollow hexag- 
onal column of size parameter 50 and L/2r =2 at A=0.55 pm with increasing 
indentation. Labels (a-f) correspond to figure 5.4. The indentations from each 
end are measured as a percentage of crystal length. 
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that limits halo formation, rather than the hollow features alone. 

Li Label I Indentation I Prism Angle I Halo An 
b 10% 65.21 24.68 

c 20% 47.27 16.15 
d 30% 35.82 11.73 

e 40% 28.43 9.13 
f 50% 23.41 7.44 

Table 5.1: The five hollow columns studied in section 5.3 will produce small angle 
halos due to rays interacting with a prism facet and a neighbouring triangular 
facet. The prism and halo angles for the five crystals are given for the case of 
n,. = 1.311, along with crystal labels and indentation values that correspond to 
those in figures 5.4 and 5.5. 

The triangular facets in the hollow crystals allow new halo ray paths to exist, 

most notably rays refracting through a prism facet and its neighbouring tri- 

angular facet (and vice versa). Considering GO, light refracting through such 
facets are subject to a minimum deviation angle. This leads to a scattering 
maximum near the angle of minimum deviation, also known as the halo angle. 
One can predict the halo angle for a given ray path if the angle between the 
facets (the prism angle) and the refractive index of the medium is known. Equa- 

tion 5.2 gives the relationship between the prism angle a, the halo angle 6 and 
the refractive indices inside and outside the crystal, nprism and no respectively. 
The equation can be derived by applying Snell's law twice and calculating the 

extreme case for the angle between the incident and exiting ray. Test cases for 

the equation are the 22° and 46° halos for an ice crystal. The former has a 

prism angle of 60° which gives a halo angle of 21.92°. The latter has a prism 

angle of 90° which gives a halo angle of 45.95°. 

8=2 aresin I 
npn g"` sin 2) -a (5.2) 

\o 

The halo angles due to prism-triangular facet interactions for the various in- 
dentations considered in the case above are given in table 5.1 using a refractive 
index of n,. = 1.311 for ice. Referring back to figure 5.5, these halos can all be 
found in the phase function profiles at the predicted halo angles, although the 
24.68° halo is difficult to identify due to its proximity to the 22" halo. They 

can also be seen in the DLP results by their negative nature but it is their 

effect of the overall shape rather than specific peaks that can be identified. As 
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Figure 5.6: Cross section views of four hexagonal tubes. (a) rin = 0, hexagonal 
column (b) rin = 0.25rout (c) rti,,, = 0.50rout (d) rin, = 0.75rout. 

mentioned above, it is possible that ray paths such as these can explain some 
halos at unusual angles that are observed in the atmosphere [118. 

5.4 Hexagonal Tubes 

Sometimes referred to as hollow columns [23], hexagonal tubes are the more 
extreme case of the hollow ended columns discussed above. They are also con- 
tained in the ice crystal classification scheme by Magono and Lee [115]. Hexag- 

onal tubes are important because they share similarities with hollow columns 

where not all of the basal facet is indented. These more complex hollow columns 
will not be considered in this thesis. The presentation of results for hollow 

(O)// 
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Figure 5.7: Phase function and degree of linear polarization for hexagonal tubes 
of outer radius size parameter 50 and L/2r =2 at A=0.55 pin with various 
values of inner radius. Labels (a-d) correspond to crystal diagrams in figure 5.6. 
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columns in the last section and for hexagonal tubes in this section illustrates 

the ability of the RTDF model to handle them. Study of geometries such as 
hexagonal tubes and the more complex hollow columns using RTDF required 
the addition of support for coplanar adjacent facets, as discussed in section 
3.3.2. 

The hexagonal tube is defined by an outer and inner radius. The cross sections 
of four hexagonal tubes are shown in figure 5.6. The outer radius is the same as 
that for a solid column and is constant for all four cases in the figure. The inner 
radius, r;, a, defines a hexagonal column of air within the solid column. Case (a) 
in figure 5.6 has ri,, = 0. This is a standard hexagonal column. The other three 
cases have r;,, defined in terms of the outer radii, r,,, t. The r; " values are (b) 
0.25rout, (c) 0.50ro,, t and (d) 0.75ro�t. 

Figure 5.7 shows the phase function and DLP for the four cases in figure 5.6. 
The RTDF results for hexagonal tubes vary little in terms of ray features from 
the hexagonal column. As the radius of the hollow centre increases, the halos 
and internal reflection ray paths are greatly reduced resulting in a reasonably 
featureless phase function for the most extreme case and a strongly positive 
DLP as the external reflections dominate. In the GO phase function and DLP 
for hexagonal tubes presented by Macke [23], a sharp peak at exactly 120° is 
highlighted and is caused by a `light-guide' effect with rays internally reflect- 
ing several times from the inner and outer prism facets. This effect is totally 
smoothed out using RTDF. 

5.5 Droxtals 

Small crystals are very important to the radiative properties of cirrus [119]. It is 
often the case that small crystals below 50 pm are classified as ice spheres when 
detailed information regarding their geometry is not available. In-situ imaging 
instruments such as the CPI [76] are unable to classify these crystals definitively 
because they do not have the necessary resolution at these very small sizes 
[10]. It has been suggested that at cloud top crystals form from supersaturated 
water droplets at cold temperatures so quickly that the crystals do not have 
time to reach an equilibrium state for the development of normal hexagonal or 
rectangular facets [120]. As a result it could be that small crystals are more 
accurately represented by faceted objects such as droxtals [121] which have 
been observed in arctic ice fog [120]. A droxtal can be defined as a 20 faceted 
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Figure 5.8: An example of a droxtal shown in four orientations. (Left to Right) 
Overview with facet labels, side view 1, top view, side view 2. 

crystal formed from 2 hexagons, 6 rectangles and 12 trapeziums (according to 

the British definition of a trapezium, known elsewhere as a trapezoid). Figure 

5.8 shows an example of a droxtal in four orientations. The facets are numbered 
in one of the orientations to assist the discussion as it proceeds. Facets 1 and 2 

are the hexagonal facets. Facets 3 to 8 are the upper trapezium facets. Facets 

9 to 14 are the rectangular facets. Facets 15 to 20 are the lower trapezium 
facets. According to the geometrical definition of a droxtal given by Yang et al. 
[121], all of the crystal points lie on a circumscribing sphere. IGO calculations 
have been published for very small droxtals [121] and very large droxtals [122], 

although in the latter case the crystal size is in the regime where IGO gives 

results very close to GO. 

Classifying small crystals as spheres could have implications for the radiative 

properties of a model cloud. Figure 5.9 compares the phase function and DLP 

for a sphere of size parameter 50 at A=0.55 µm calculated using a Mie theory 

code [13] to that of an equivalent droxtal calculated using RTDF. The droxtal 

is formed so that the circumscribing sphere is identical to the calculation sphere 
and so that the sphericity is maximised by volume (the volume of the droxtal is 

as close as possible to its circumscribing sphere). It was found that maximising 
the sphericity by surface area gives very similar results. Both spheres and 
spheroids were considered but spheroids with realistic levels of deformation do 

not significantly change the results. A second form of Mie result is included, 

a size averaged result that is calculated in the same way as the size averaged 
SVM result in section 3.4 that minimises interference effects. Given the lack of 
interference effects in the RTDF model, it provides a more valid comparison. 

The agreement between Mie theory and RTDF for the droxtal is good in the 

phase function in certain areas. However, note the difference in the 70'-140' 
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Figure 5.9: Phase function and degree of linear polarization for a Mie theory 
sphere of size parameter 50 at A=0.55 pm compared to an equivalent RTDF 
droxtal. The sphericity of the droxtal is maximised by volume. Also present is 
an interference averaged sphere result to allow the best possible comparison. 



5.5 Droxtals 129 

range. The DLP profile for the droxtal bears little resemblance to the sphere 
result, even exhibiting the wrong sign in regions where the phase function gives 

reasonable agreement. The figure illustrates how the scattering properties of a 
sphere can be very different from that of a droxtal-like crystal, particularly in the 

side scattering region. This could have implications for future particle instru- 

mentation design because such differences could enable spheres and droxtal-like 

particles to be distinguished. The difference in scattering properties means that 

correct particle characterisation for small crystals could be very important for 

radiative transfer modelling [10]. 

The droxtal geometry by Yang [121] uses the radius of the circumscribing sphere 
and two angles to define the positions of the crystal points. By varying the 
two angles, the angle between the trapezium facets and the hexagonal and 
rectangular facets respectively will alter. One should not disregard the possible 
existence of noteworthy amounts of more elongated or flattened droxtals where 
the crystal points do not all lie on a circumscribing sphere. For example, by 

constructing the facet angles from crystal directions and adopting preferred 
orientations, the droxtal can be used to explain halos of unusual radii [123]. 
The authors referred to the crystals as `pyramidal' crystals, a term also used 
by Goldie et al. [96] who used flattened droxtals to help explain a concentric 
ring halo display. Clearly the angle of the trapezium facets defines the angular 
position of any halos that are created. 

One can predict the possible halo angles for the droxtal considered above using 
the halo angle formula discussed in section 5.3, equation 5.2. There are seven 
theoretical halo ray paths that involve two refractions through the crystal. They 

are summarised in table 5.2 which provides the prism angle, halo angle, and a list 

of the combinations of interacting facets that create each halo. The facets are 
labelled using the numbering system introduced in figure 5.8. Note that these 
halo angles are only valid for a droxtal with sphericity maximised by volume 
and hence for the given prism angles only. The seven halos will exist to some 
degree for any droxtal-like crystal following the ray paths listed in the table but 
the prism angles and consequently the halo angles will change. 

Figure 5.10 shows the phase function for an equivalent case to figure 5.9 except 
that the circumscribing sphere has a size parameter of 100 rather than 50. 
The larger resulting droxtal creates halo peaks that are more prominent. The 
angles corresponding to the halo angles are marked and labelled to correspond 
to table 5.2. Halo A is clearly visible. Halo B is a smaller peak but can still 
be identified. Halos C and D appear to have combined given their angular 
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Halo Label I Prism 

HALO B 

HALO C 

HALO D 
(22° halo) 

HALO E 

HALO F 
(46° halo) 
HALO G 

48.97 

55.99 

60.00 

65.51 

90.00 

91.77 

Halo Ang 
11.08 

16.85 

19.97 

21.92 

24.85 

45.95 

48.75 

Facet A1 
9 
10 
11 
12 
13 
14 
3 
4 
5 
6 
7 
8 
1 
2 
9 
10 
11 
12 
13 
14 
9 
10 
11 
12 
13 
14 
1 
2 
3 
4 
5 
6 
7 
8 
15 
16 
17 
18 
19 
20 

Facet B 
6 or 18 
7 or 19 
8 or 20 
3 or 15 
4 or 16 
5 or 17 
17 or 19 
18 or 20 
15 or 19 
16 or 20 
15 or 17 
16 or 18 

15,16,17,18,19 or 20 
3,4,5,6,7 or 8 

11 or 13 
12 or 14 
9 or 13 
10 or 14 
9 or 11 
10 or 12 

5,7,17 or 19 
6,8,18 or 20 
3,7,15 or 19 
4,8,16 or 20 
3,5,15 or 17 
4,6,16 or 18 

9,10,11,12,13 or 14 
9,10,11,12,13 or 14 

5 or 7 
6 or 8 
3 or 7 
4 or 8 
3 or 5 
4 or 6 

17 or 19 
18 or 20 
15 or 19 
16 or 20 
15 or 17 
16 or 18 

Table 5.2: The prism angle, halo angle and involved facets for the seven droxtal 
halos for a droxtal with sphericity maximised by volume at a wavelength of 
A=0.55 pm (n,. =1.311). 
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Figure 5.10: The phase function for a Mie theory sphere of size parameter 100 
at A=0.55 pm compared to an equivalent RTDF droxtal. The sphericity of 
the droxtal is maximised by volume. Also present is an interference averaged 
sphere result to allow the best possible comparison. 

proximity with Halo D being the most dominant. Halo E can be seen at a 

slightly larger scattering angle than expected. It should be noted that the halo 

angle is the angle of minimum deviation so the fact that halos can appear with 
small backward shifts in location should not be a surprise. The strong halo F 
is clearly visible with the weaker halo G helping to widen its peak. 

As mentioned above, if the geometry of the droxtal is modified then some of the 
halo angles will change. The seven halos will however all still exist. Halos D and 
F will not change position because the angles between the facets involved (the 

rectangular and hexagonal facets) will remain constant. The angular positions 
of the other five halos depend upon the sphericity of the droxtal. It is therefore 

possible to explain almost any unusual angle halo phenomena using droxtal like 

crystals by choosing the correct trapezium facet angles. Consequently, further 

studies into the reasons for the formation of such crystals and subsequently the 
likely or most common trapezium facet angles would be of assistance in halo 

studies. Better understanding of droxtal formation would have implications for 



132 Application of the Model to a Range of Crystal Geometries 

the important smaller droxtal like crystals mentioned at the beginning of this 

section. 

5.6 Bullets and Rosettes 

Alongside hexagonal columns, rosettes have been described as a primary cir- 
rus crystal habit [124]. They are most common in the mid to lower regions 

of cirrus clouds, away from the crystal formation levels at cloud top [79] and 
at temperatures above -40° [77]. Rosettes are collections of hexagonal arms 
growing outwards from a common growth centre. Rosettes form from frozen 

water droplets that grow through vapour deposition. If the temperature is low 

enough then the geometry may develop into a collection of columnar crystals 
growing outwards. The columns may appear conical or pyramidal in shape at 
the end pointing towards the growth centre because of competition for water 
vapour. Images of rosettes formed from hexagonal columns with pyramidal or 
conical extensions can be found in the literature, for example [61, chapter 2] 

and (107,124]. When one of these arms detaches it is known as a bullet. This 

can happen when a rosette enters a region where ice saturation has not been 

reached. The GO studies by Macke used bullets formed from a combination of 

a hexagonal column and a hexagonal pyramid of the same cross section [23,34]. 

They looked similar to figures 5.11a and 5.11b. Bullets of this form are also 

common in other studies, for example [35,97]. 

One can create rosettes from model bullets by connecting them together at 
their pointed ends, a geometry type whose GO scattering properties have been 

considered by various authors [23,35]. This formation process is actually in 

reverse because as already stated, bullets in nature form following detachment 
from a rosette. laquinta et al. [125] suggested a bullet formed from ten facets 

with pentagons forming the head. A model of such a bullet can be seen in figures 
5.11c and 5.11d. By using such bullets as rosette building blocks, rosettes can be 
formed that exhibit a tendency for arms to have their long axes approximately 
70° apart. Kobayashi et al. [63] found from measurement of crystals that 

rosettes in nature have a tendency towards arm separation angles of 70°. The 

authors explained that this angle corresponds to a rosette forming from a cubic 
ice embryo. Figures 5.11(e-h) show examples of rosettes constructed using the 
laquinta bullets. It has been found that rosettes most frequently consist of three 
or four bullets [61] but can contain large numbers of arms. 
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Figure 5.11: A selection of models of bullets and rosettes. (a, b) Bullet as used 
by Macke. (c, d) Bullet as used by laquinta. (e) laquinta 4 arm rosette (4-1). 
(f) laquinta 5 arm rosette (5-1). (g) laquinta 6 arm rosette (6-1). (h) laquinta 
8 arm rosette (8-1). 

To investigate the scattering properties of bullets and rosettes, figure 5.12 gives 

the phase function and DLP for an laquinta bullet of size parameter 50 with 
L/2r =2 (L excluding the bullet head) at A=0.55 jan. It is compared to 

an equivalent hexagonal column (size parameter 50 and L/2r = 2) and an 8-1 

rosette constructed using the bullet. The rosette geometry is shown in figure 

5.11h, as defined in the literature [77,125]. 

The results confirm the findings of Macke [341 that a rosette with several arms 

exhibits scattering properties very close to the individual bullet of which it is 

composed. The bullet and the rosette noticeably smooth the feature created by 

the column between 116° and 140° as different internal ray paths are possible. 
The 46° halo is noticeably smoothed first by the bullet due to one basal facet 
being removed and then further by the added complexity of the rosette. The 
fact that the scattering of a rosette so closely resembles that of its constituent 
bullets would indicate that the scattering properties of a rosette are dominated 
by the single scattering from individual bullets and that multiple scattering 
between the arms offers a less significant contribution. The result is emphasised 
by the complexity of the 8-1 rosette. In the case of rosettes with many short 

arms, this may not be the case because multiple scattering between arms is 

more likely. A rosette with arms that do not extend far from the crystal centre 
will be considered in chapter 6. 

The calculations in figure 5.12 assumed that the crystals were oriented randomly 
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Figure 5.12: The phase function and degree of linear polarization for an lagilinta 
bullet of size parameter 50 with L/2r =2 (L excluding the bullet head) com- 
pared to an equivalent hexagonal column and an 8-1 rosette (see figure 5.1 Ili). 
The wavelength is A=0.55 µm. 
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Figure 5.13: The phase function and degree of linear polarization for a 4-1 
rosette (see figure 5.11e) constructed from laquinta bullets of size parameter 50 
and L/2r =2 (L excluding the bullet head) at a wavelength of A=0.55 µm to 
investigate the effect of crystal orientation. Three cases are considered: Random 
orientations, preferred orientations and preferred orientations with tilt. For the 
second and third cases, the solar position is taken to be overhead. 
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with respect to the incoming light. However, as. discussed in section 5.1, par- 
ticles of a certain size tend to align themselves as they fall except in the most 
turbulent conditions. The desired alignment is so that the crystal has its great- 
est possible projected area perpendicular to the direction of fall. For droxtals 
(section 5.5) or columns with aspect ratios close to unity an averaged orientation 
calculation is appropriate as the projected area does not exhibit large variation 
across orientations. For crystals such as longer columns and bullet rosettes a 
preferred orientation may be more appropriate. 

Figure 5.13 provides both preferred and averaged orientation scattering results 
for the 41 rosette that is shown in figure 5.11e. The preferred orientation was 
found by calculating the cross sectional area for many orientations and selecting 
the largest via an automatic process. The crystal was then allowed to move freely 
about the axis in the direction of fall. This is illustrated in the figure. In the 
results it is assumed that the sun is directly overhead, but any solar position 
could be used. A third case is considered in the figure where the crystal adopts 
the preferred orientation but then oscillates through some tilt angle to model 
natural behaviour due to slight turbulence or instability. 

The scattering results change quite significantly for random orientations com- 
pared to preferred orientations. Correct use of crystal orientation is there- 
fore very important in modelling work. The use of tilts markedly smooths out 
peaks in the preferred orientation phase functions although the features are still 
present at large tilts. A marked difference from the random case persists indi- 
cating that modelling of such oscillations is also important. It should be noted 
that changing the solar position will result in changes to the scattering prop- 
erties for the preferred orientation cases but the principle of these findings will 
still hold. 

The rosettes considered above were all simplified so that all of the arms were the 
same length. In considering the scattering of rosettes, it must be remembered 
that in nature there is almost infinite variability in terms of arm length and the 
combinations of separation angles. 

5.7 Aggregates 

As crystals fall through a cirrus cloud, they are susceptible to aggregation. In 
the lower regions of clouds once crystals have grown to their fullest extent one 
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Figure 5.14: The phase function and degree of linear polarization for an ice 
aggregate model (shown in figure 5.15) compared to a hexagonal column of size 
parameter 444 and L/2r = 1.4855 at a wavelength of A=0.55 µm. 
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finds larger crystals formed from individual crystals joining together. There are 
two types of aggregate. The first is an amalgamation of smaller crystals that has 

no clearly defined growth centres (see below). The second type is an aggregate 

of rosettes where the constituent rosettes can be discerned, so providing clearly 
defined growth centres [124]. 

A discussion of crystal aggregation in cirrus can be found in Kajikawa and 
Heymsfield [126]. They found that the number of larger aggregates increased as 
the temperature increased (as the cloud base became closer) for all the cirrus 
cases that they considered. The process of aggregation depends on many factors. 
There appears to be a relationship between the crystal size and the probability of 
two crystals aggregating. Also important is the terminal velocity of the crystals, 
itself a function of crystal size. After a collision between two particles, it takes 

a finite time for the crystals to form a physical join and so conditions have to 

allow contact to exist for a period if aggregation is to be successful. The process 
of aggregation is complex, and the reader is referred to the literature for a more 
involved discussion. 

Yang and Liou [127] formed a model of an aggregate by using a collection of 
hexagonal columns and thick plates in close proximity. They include an image 

of an ice aggregate of the first type discussed above. The aggregate scattering 
results they provide are calculated using a version of the IGO where a surface 

roughness factor is introduced to the ray tracing part. The surface roughness 
component randomly tilts the facet normal during each ray-facet interaction. In 

some cirrus modelling cases such treatment may be appropriate. The reference 
provides SEM images of rough ice crystals grown in the laboratory to illustrate 
the potential existence of rough crystals in cirrus. The phase function due to a 
rough ice analogue crystal has been measured experimentally [104]. The Macke 
GO code and hence the RTDF model has a surface roughness capability built in 
but it has not been used to calculate the scattering properties of the aggregate 
that is considered in this section. The process washes out halo effects and GO 
features due to its random nature and does not allow a proper evaluation of 
the RTDF result. Furthermore, it does not represent the size dependence of 
diffraction in a systematic way. 

Figure 5.14 provides the phase function and degree of linear polarization for 

an aggregate crystal very similar to the aggregate used in the literature [127] 

compared to a hexagonal column of size parameter 444 and L/2r = 1.4855 at 
J1 = 0.55 pm whose length and radius are average values for the constituent 
crystals of the aggregate. The aggregate is composed of eight large hexagonal 
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Figure 5.15: The aggregate model discussed in section 5.7. 

columns and thick plates, as shown in figure 5.15. The smallest size parameter 
included is above 200, well into the GO regime. Because the aggregate is made 
up of a collection of hexagonal crystals, the scattering properties are very close 
to that of its constituent particles. Note the strong GO nature of the result for 
both the column and the aggregate due to the large size of the crystals involved. 
Even large aggregates are not normally associated with atmospheric halos and 
so this result is not satisfactory. If it can be shown that the majority of ag- 
gregates in cirrus exhibit rough surfaces, the surface distortion could solve this 

problem. However, by definition the constituent crystals in an aggregate are 
fixed together. Consequently, there is room for a more adequate model of at- 
mospheric aggregate geometries exhibiting actual connections between crystals. 
Such models could then take into account surface roughness to better represent 
cirrus ice if necessary. 
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Chapter 6 

Ice Analogue Geometry 
Reconstruction 

The study of theoretical light scattering results in cirrus such as those from the 
RTDF model goes hand in hand with the study of crystal growth and devel- 

opment. Ulanowski et al. [9] have developed ice analogue crystals that have 

very similar optical properties to ice but that are stable at room temperature. 
The crystals are sodium fluorosilicate grown from solution. Sodium fluorosili- 

cate has a refractive index that is negligibly different from that of ice at visible 
wavelengths. Examples of these analogue crystals have enabled realistic labora- 

tory halos which resemble real ice halos to be seen for the first time [104]. The 
ice analogues were grown in order to determine the single scattering properties 
of ice crystals experimentally because exact models do not exist, as discussed 

earlier. This presents an opportunity to make comparisons to the RTDF model, 
although to do so it is necessary to have knowledge of the crystal geometry. 
Since the crystals are stable at room temperature, their shape can be studied in 

great detail using both optical microscopy and SEM. Consequently it has been 

possible to reconstruct the geometries of a selection of the crystals and create 
3D models. In this chapter the method adopted for geometry reconstruction 
will be discussed (section 6.1) and three crystals that have been reconstructed 
will be introduced (section 6.2). 

A significant advantage of the ice analogues is that the crystals can be used 
as calibration tools for in-situ particle instruments such as the CPI. A short 
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discussion of the role of the geometry reconstruction in this area including a 
brief explanation of the instrument will be given in section 6.3. 

An explanation of some modifications required by the RTDF model to consider 
ice analogue reconstructions will be discussed in section 6.4 and the scattering 
properties of the crystals introduced in section 6.2 will be presented in section 
6.5. At this time, geometry reconstructions of the type discussed here have not 
been used to make comparisons between the laboratory scattering properties 
of ice analogue crystals and the RTDF model. However, this is likely to occur 
in due course. Comparisons have been made using an ice analogue hexagonal 

column and this will be discussed in detail in chapter 7. 

6.1 Mechanics of Reconstruction 

Initially it was hoped that partial three dimensional geometries could be quite 
accurately reconstructed using two or more SEM images with the crystal in 
slightly different orientations, using standard stereo imaging techniques. How- 

ever, it was found that the positions of the camera with respect to the crystal 
could not be determined accurately enough. The optical microscopy images did 

not present an alternative because they were not of a high enough magnification. 
Determining the locations of the individual crystal points was therefore ruled 
out, a task that in any case would have been prohibitively complicated for the 
more complex crystals. 

Many of the ice analogue crystals that resemble cirrus ice have very complex 
geometries. The common factor between the crystals is an inherent hexagonal 

structure. This was exploited in the reconstruction process. Crystals were re- 
constructed using multiple examples of perfect hexagonal columns. SEM images 
clearly show some of the arms of rosettes are not perfect hexagonal columns, 
but using such columns was considered an acceptable approximation. A code 
was written to enable many columns to be placed in the same crystal with much 
greater control over the rotation and translation of individual arms than for ex- 
ample in the bullet rosette codes which only allow the construction of a collection 
of predetermined crystal geometries. The resulting code also generates a 3D vi- 
sualisation of the crystal using Apple's now legacy format Quickdraw3D. This 

enables fast verification of changes made to the crystal in the input file. The 
Quickdraw3D technology has also been used to generate the images of crystal 
models throughout this thesis. 
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Several ice analogue crystals were reconstructed using this code. The rosette 

arms were oriented correctly using SEM and optical microscopy images at differ- 

ent orientations as a guide. Relative column sizes were estimated using measure- 

ments taken from optical microscopy images. The final reconstructed geometry 
was scaled to the correct size using an average scale value taken from as many 
dimension measurements as possible from the optical microscopy images. 

Uncertainties were unfortunately introduced due to the human element of re- 
constructing the geometries using such a process but the results are encouraging 
as the reconstructions appear to faithfully reproduce the crystals. Examples can 
be seen in figures 6.1 and 6.2. An interesting point found during this work was 
that in many cases columns seen on opposite sides of crystals were in fact the 

same column growing straight through the centre, even in the most complex of 
crystals such as Gros48. Gros48 is shown in figure 6.1. 

6.2 The Reconstructed Crystals 

In this study three reconstructed crystals were used. In the following the labo- 
ratory names will be used to avoid confusion in future work. 

The first crystal is a germ rosette called Gros48. Gros48 is a very compact and 
complicated germ or budding rosette. The reconstruction of Gros48 contains 
fifteen hexagonal columns. Figure 6.1 contains a variety of images of Gros48. 
Figure 6.1a is an SEM image of the crystal which compares well with the recon- 
struction shown in figure 6.1b. The column that is exposing its basal facet most 
in the SEM image has a cross section that is not a perfect hexagon. Although 

opposite rectangular facets appear parallel, the edge lengths of the hexagonal 
facet are not all the same. Hexagons exhibiting this asymmetry have been re- 
ferred to as scalene hexagons in previous literature [81], a term usually applied 
to a triangle with three sides of unequal length. The same reference illustrates 
that such scalene effects exist in ice. An image of Gros48 obtained using optical 
microscopy is shown in figure 6.1c. Figure 6.1d will be discussed in the next 
section. 

The second crystal considered is a relatively simple three arm rosette called 
Ros172. An SEM image is shown in figure 6.2a with the reconstruction in figure 
6.2b. An alternative view of the crystal using optical microscopy is shown in 
figure 6.2c. This was in fact the first crystal that was reconstructed and so the 
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(b) 

(d) 

Figure 6.1: The ice analogue crystal Gros48. (a) SEM. (b) The reconstructed 
geometry. (c) Optical microscopy. (d) CPI image. 

test case for the codes involved. The orientations and lengths of the crystal arms 

are well defined. It is clear from the SEM image that the ends of the rosette arms 

are not pristine, the end facing out of the page boasting an irregular deformity 

pattern. The ends that are side on appear to show depressions, noticeable from 

the apparently curved nature of the ends of the rectangular facets. 

The third crystal is a more open rosette called Ros52. This crystal was recon- 
structed after interest following an experiment using an electrodynamic balance 
[128] and a laser diffractometer [129] at the University of Hertfordshire. Unfor- 

tunately, it was not possible to retrieve the crystal after the experiment and so 
it was not possible to obtain SEM images of the crystal. The reconstruction 
proceeded using optical images such as the one shown in figure 6.2d which com- 
pares well with the reconstruction in figure 6.2e. Video footage of the crystal 
captured while it was in the electrodynamic balance was also used to aid the 
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Figure 6.2: The ice analogue crystals Ros172 and Ros52. (a) Ros172 SEM. 
(b) Ros172 reconstruction. (c) Ros172 optical microscopy. (d) Ros52 optical 
microscopy, (e) Ros52 reconstruction. (f) Ros52 reconstruction, illustrating the 
flatness of the crystal. 

reconstruction. The video clearly showed that the arms of the rosette almost fall 

in one plane, so giving a reasonably flat crystal. The reconstruction allows us 
to study this from any angle, and the flat nature of the crystal is demonstrated 
in figure 6.2f. The reconstructed geometry includes seven columns. 

Values for the maximum dimension, average projected area and volume of the 
three crystal reconstructions are given in table 6.1. The values given for the 

projected area and volume were calculated using the methods that will be briefly 
described in the next section. The maximum dimension is defined here as the 
largest distance that can be measured in a straight line within the crystal. 
This quantity, though not the same as the maximum dimension for a specific 
orientation as used by in-situ particle instruments, offers a demonstration of the 

size of the crystal. 

There are no error values quoted in the table because it would be misleading to 

quote errors relating to the method of calculation for the maximum dimension, 
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projected area and volume. They would not reflect the error in the reconstruc- 
tion process, which is very difficult to quantify. Once the reconstructed geometry 
is defined, the maximum dimension is a fixed value. The average projected area 
is obtained by using sufficient orientations to produce a stable value and so by 
definition the calculation carries no error to two decimal places. The volume 
calculation of the reconstructed crystal carries a possible staircasing error in 
the method that it uses, to be explained briefly in section 6.3. The error was 
found to be of the order of 0.1% or less for the three cases considered. These 

errors are of little consequence when compared to the errors inherent in the 

geometry modelling process. The perfect hexagonal column approximation will 
likely create errors on the volume of the reconstructed geometry compared to 
the volume of the actual crystal Gros48 of the order of between 5% and 10%. 
This is an estimate because without more detailed information about the extent 
of the scalene column features it is very difficult to quantify an error. The hu- 

man error involved in aligning the columns necessitates large error tolerances. 
It is estimated that the orientations of the columns are correct to within 5° 

on average. The sizing of the columns is another large source of error. An 

error value on the radii or lengths of the individual columns means little given 
the perfect hexagonal column approximation. The overall size of the crystal is 
scaled using an average scale value found from dimensions measured using op- 
tical microscopy. These measurements were taken from crystal edges that were 
as close to perpendicular to the direction of observation as possible. They were 
made by electronically examining the images. The error on each of these values 
is estimated to be ±2.25 µm. 

Max. Dim. (um) IA 
Gros48 35.06 
R, os172 189.00 
Ros52 47.00 

"oj. Area (µm2) Volume (µm3 
2323.28 22025.00 
1184.11 540797.00 
1364.24 6097.00 

Table 6.1: Values for the maximum dimension, average projected area and 
volume of the three reconstructed ice analogue geometries. See section 6.3 for 
a brief description of the methods used to obtain the values. 



6.3 Reconstruction Comparisons to CPI measurements 147 

6.3 Reconstruction Comparisons to CPI mea- 

surements 

The CPI is an instrument that captures in-situ digital images of cloud particles 

and can be used to measure particle size, shape and concentration [76,130]. 

The instrument casts shadows of particles on to a one million pixel CCD using 

a 25 ns pulsed laser diode to prevent blurring due to particle motion. A signal 
from particle detection lasers that are directed across the particle flow triggers 

the imaging laser. 

The ice analogue crystals offer an opportunity to test the performance of the CPI 

and the post processing techniques used to detect particle geometry, projected 

area and volume. Some examples of ice analogue crystals were imaged using the 

CPI, including Gros48 and Ros172. To make comparisons to the CPI results, 
it was necessary to be able to find the volumes of the models as well as the 

projected areas for several orientations that coincided with already held CPI 

images. The projected areas could easily be determined using the original GO 

code. The volume posed more of a difficulty as the overlap of individual columns 
in the centres of rosettes was in some cases great and very complicated (for 

example, Gros48). The volume of each individual column was calculated in its 

position in the crystal by dividing it up into volume elements and recording the 

positions of the centres of the elements. These were then all recorded without 
duplication and summed to find the volume of the crystal as a whole. 

The results of these comparisons have been included in a conference publication. 
The poster is available online [10]. It was found that when crystals were in 

good focus in the CPI images, the typical average size errors were only a few 

percent. Under poor focus, the sizes were significantly overestimated by the CPI. 

Interestingly, Gros48 produced a quasi-spherical CPI image despite its strong 
nonspherical nature. This is shown in figure 6.1d. Without prior knowledge, it 
is not clear that the CPI image shows a rosette. This adds to the discussion 
in section 5.5, where it was suggested that crystals below 50 pm in size should 
not automatically be classified as spheres because there is evidence that they 

are in fact faceted geometries such as droxtals, or in this case germ rosettes. 
Gros48 with its maximum dimension of around 35 µm is not far below the 
50 pm threshold. It is feasible that smaller crystals are droxtal-like with germ 

rosettes developing as the size increases. In section 6.5 the scattering properties 
of the reconstructed crystals will be considered and a comparison can then be 

made between Gros48 and the droxtal properties discussed in section 5.5. 
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6.4 RTDF Modifications for Reconstructed Crys- 

tals 

The crystals that have been reconstructed are effectively collections of hexagonal 

columns that overlap in space. This is in contrast to the geometries discussed 
in chapter 5 where the geometries are defined as individual closed crystals. For 

such overlapping collections of crystals there are a number of points that need 
to be addressed in the RTDF model. 

The first is that overlapping crystals will lead to facets inside the crystal that 
have the same medium on either side. The GO code by Macke [23] does not 
include support for such facets. Because the RTDF model is built upon the GO 

code, it too lacks this feature. There are two ways to remedy this situation. 
First, one could modify the reconstructed geometries so that these internal 
areas of facets are removed, creating a standard crystal geometry. This is an 
unattractive proposition as the process to complete this for a crystal like Gros48 

would be incredibly difficult. The second option is to modify the RTDF code 
so that whether a ray is inside or outside the crystal is always known, and more 
importantly how far into the crystal the ray is. This is achieved by counting 
rays into and out of each overlapping crystal. This means that when an internal 
facet is encountered it will be recognised as such. For all of the internal facet 
interactions, no RTDF deflections are performed and the rays pass straight 
through with no refraction deflection or reflection. These modifications were 
implemented by Hesse [131]. 

The second point to address is the definition of the effective slits in the RTDF 
model (see section 3.3.1). Let us consider the treatment of Gros48. Being 
a collection of hexagonal columns, the majority of the rectangular facets will 
extend from one side of the crystal, through the crystal centre and out of the 
other side. Using the model code in its standard state, this will lead to the 
effective slits being defined incorrectly with some being found to be longer than 
they should be. For example, consider a ray striking a rectangular facet on one 
of the columns protruding from Gros48. As standard, the code will find one slit 
across the column and a second along the length of the column. The slit along 
the length of the column will cover the full length of the column. However, this 
is incorrect. The slit should be considerably shorter, only covering the length 
of the column until it enters the central core of the crystal. This was corrected 
using a simple method where each effective slit is tested to see if it intersects 
another crystal facet or facet edge. If such an intersection is found, the effective 
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slit is shortened appropriately. 

6.5 Scattering Properties of Reconstructed Crys- 

tals 

Figure 6.3 shows the single scattering properties of Gros48. Shown for com- 

parison are the scattering properties of an equivalent droxtal (with a diameter 

equal to the Gros48 maximum dimension given in section 6.2) and a hexagonal 

column with a length equal to the Gros48 maximum dimension and a radius 

of 7 µm. This radius value is chosen because all of the columns within Gros48 

have radii equal or close to it. The droxtal is formed so that its sphericity is 

maximised by volume [1211. 

The phase function of Gros48 for averaged random orientations still exhibits 
the 22° halo, as one might expect given the nature of the crystals construc- 
tion. However, it is slightly reduced and less pronounced due to an increase in 

scattering either side of the halo, when compared to a standard column. The 
46° halo has been smoothed out totally. The forward scattering point has been 

reduced while there is a significant increase in the 2°-20° region. Side scattering 
has been increased over a wide angular range and the back scattering peak has 
disappeared. 

The phase function of the droxtal shows increased scattering compared to a 
hexagonal column above around 100°. This is similar to the response of Gros48 

in this angular range. In section 5.5, it was found that one could distinguish 
between spheres and droxtals at scattering angles between 80° and 130° because 

of the strong signal from the droxtal and the low scattering by the sphere. The 

same idea extends to Gros48, with an even larger signal between 90° and 110°. 

The droxtal phase function exhibits five halos as opposed to the standard two 
for a hexagonal column. The origins of these were explained in section 5.5. As 

discussed in that section, the location of these halos depends upon the sphericity 
definition of the droxtal and so the halos will move or may not be formed at 
all for less regular small quasi-spherical crystals. However, given that some low 

angle halos will be formed, the increase in scattering for Gros48 in the 20-20° 

region compared to a hexagonal column suggests a similarity between Gros48 

and all droxtals that have close to spherical characteristics. 
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Figure 6.3: The phase function and degree of linear polarization for the recon- 
structed geometry Gros48 compared to an equivalent droxtal of radius 35.06 Jun 
(sphericity maximised by volume) and a hexagonal column of length 35.06 pm 
and radius 7 pm. 
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The DLP for Gros48 shows more similarity to the hexagonal column than to the 
droxtal. Again, given the nature of the crystal construction, this is not surpris- 
ing. Across the profile the DLP for Gros48 is less polarizing than the droxtal or 
the hexagonal column with all features being smoothed out to some extent. The 

22° halo is similar to the hexagonal column, though considerably wider in na- 
ture. This causes the very low polarization forward of the 22° halo, a significant 
difference when compared to the hexagonal column. The smoothing out of the 
46° halo is confirmed by only a very small negative polarization contribution. 
The strong feature at 116° is present for both the droxtal and the hexagonal 

column. It is caused by ray paths involving transmission through the crystal 
via one total internal reflection not being possible above 116°, so suddenly re- 

moving their negatively polarizing effect above 116° (see section 4.2). It is not 
present for Gros48, therefore the strong positive polarization due to external 

reflections that provides the positive jump observed for hexagonal columns and 
droxtals is smoothed out significantly. The neutral point has not moved, indi- 

cating that the crystal is a column-like rather than plate-like crystal, according 
to the discussion in section 5.1. Finally, the strong negative polarization peak 
at back scattering observed for hexagonal columns is lessened significantly. The 

strongly negatively polarizing internally reflecting ray paths involving perpen- 
dicular prism and basal facets that are responsible occur less often due to shorter 
prism facet lengths and the increased complexity of the crystal. 

The lack of similarity between the DLP for Gros48 and a droxtal illustrates 
the importance of improved knowledge of the crystal geometries at smaller sizes 
in cirrus. Modelling smaller crystals as droxtals may be equally as incorrect 

as using spheres, depending on the scattering properties being studied and the 

particular cirrus case at hand. 

Figure 6.4 compares the scattering properties of Ros52, Ros172 and a hexagonal 

column of Ros52 maximum dimension length and radius 4.2 pm. This value is 
the average radius of columns within Ros52. It should be noted that all of 
the reconstructed crystals in this chapter are larger in size than the crystals 
studied in chapter 5. As larger crystals are considered, diffraction becomes 
less important and so increasingly GO-like scattering features are observed. 
Gros48 did not resemble GO patterns for a hexagonal column due mainly to the 
complexity of the crystal but also because it is the smallest of the three crystals. 

One can see that the phase functions of Ros172 and Ros52 are both very similar 
to that of a hexagonal column, boasting 22° halos that are sharp, resembling 
the GO result for a hexagonal column in chapter 4. In the case of Ros52, there 
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is some spread of the halo towards forward scattering. The 46° halos exhibit 

the familiar rounding due to the RTDF model. Both crystals show a small 

angle halo peak at around 10°. This is created by rays refracting through two 

rectangular facets that are separated by around 30°, each contributing facet 

being a part of a different arm. Just as prism facets separated by 60° give a 

minimum refraction deviation of 22°, facets separated by 30° give a minimum 
deviation of 9.66° (see section 5.3). It is interesting that the feature is present 
for crystals of different geometries, which may indicate a tendency of the ice 

analogue crystals to grow arms at certain separations. A halo peak at 9° has 

been observed experimentally using collections of ice analogue crystals [1041. 

Equally possible is that the reconstruction halos are just coincidence and a 

consequence of the geometry reconstruction method. There would need to be a 

significantly wider survey of ice analogue crystals to investigate this. 

There is slightly increased side and back scattering for both crystals compared 
to the hexagonal column. The hexagonal column chosen has quite a large aspect 

ratio and as a result the 46° halo is significantly smoothed. 

The degree of linear polarization results for Ros172 and Ros52 also closely resem- 
ble the hexagonal column. The 10° halo is again visible, with a small negatively 
polarizing contribution. The spread of the 22° halo for Ros52 towards forward 

scattering results in neutral polarization up to near 20°, similar although not 

as severe as the equivalent effect seen for Gros48. The weaker 46° halo for the 
hexagonal column is confirmed and the overall smoothing of the polarization for 

the reconstructed crystals is clearly visible. 

The similarity between the scattering properties of Ros52, Ros172 and a hexag- 

onal column is as a result of the use of hexagonal columns in the reconstruction 
of the geometries. The reasonably simple and open nature of these rosette ex- 
amples allows single scattering from the crystal arms to dominate, particularly 
in the case of Ros172. This is in contrast to Gros48, although as shown in figure 
6.3, the hexagonal column nature still persists in many features in the degree 

of linear polarization. 

The three reconstructed crystals introduced here will be used in chapter 8 where 
the RTDF model will be used alongside a radiative transfer code to make com- 
parisons to aircraft observation data. An attempt will be made to assess the de- 

gree to which such geometries are representative of cirrus ice geometries. These 

single scattering properties will be referred back to from that chapter. 
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Chapter 7 

2D Scattering Patterns 

All of the angular intensity distributions that have been considered so far have 

been in the form of a phase function. Phase functions are functions of one 

variable, the polar angle 0. In producing this standard form of scattering result, 
there is an averaging over the azimuthal angle ¢ that leads to some information 

regarding scattering direction being lost. One of the benefits of using a ray 
tracing based method is that it is computationally reasonable to preserve both 

the b and 0 angles. Having such information not only provides a full description 

of the scattering but also allows the scattering patterns to be projected in two 
dimensions on to a virtual screen or an array of sensors at some distance. This 

is something that can be recreated in the laboratory or in principle incorporated 
into an instrument. In this chapter, results generated by the RTDF model that 

are in this 2D scattering pattern form will be presented. 

In the first part the model results will be compared to an experiment involving 

an ice analogue hexagonal column in fixed orientations. As shown in earlier 
chapters, the fundamental task of testing the model is not simple. There are 
no light scattering models that one could call exact that can be applied in the 
size applicability range of the RTDF model. Verifying the model by comparing 
to laboratory results is an alternative. Performing light scattering experiments 
in the laboratory using individual real ice crystals is very difficult because tem- 

perature and humidity need to be controlled, although it is possible [85]. As 
discussed in chapter 6, the ice analogue crystals developed at the University 

of Hertfordshire provide a unique opportunity to study and reconstruct crystal 
geometries. Equally important from the current perspective is the ability to 
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perform a light scattering experiment for a fixed crystal orientation that can be 
both studied over some period of time and repeated. 

Section 7.1 will include details of the laboratory apparatus used to obtain pho- 
tographs of ice analogue light scattering patterns. The method used to create 
the 2D scattering patterns using the model which can be compared to the pho- 
tographs will be described in section 7.2. Results will be presented in section 
7.3. These will include comparisons for a hexagonal column in six orientations 
illustrating how the scattering patterns change from near perpendicular inci- 
dence to near basal incidence (section 7.3.1). There will also be two studies of 
orientation comparisons that are more in depth in sections 7.3.2 and 7.3.3. 

In the second part of the chapter, it will be shown that the 2D scattering 
patterns can be more than just a model verification tool. They are potentially 
very useful in the development of in-situ particle characterisation instruments. 
This will be explained and demonstrated in section 7.4. 

7.1 Laboratory Methods 

The laboratory equipment was assembled as shown in figure 7.1. An ice analogue 
hexagonal column of length 61 pm and diameter 15 pm was mounted on a long 
6 pm carbon fibre using high temperature epoxy. The carbon fibre was attached 
to a supporting arm which in turn was connected to a rotation stage. Using 
this support structure, the crystal was suspended in the beam of a 15 mW 
He-Ne laser of wavelength 612 nm. The inclusion of a rotation stage made it 
possible to vary the orientation of the crystal. The forward scattering pattern 
was projected onto a flat screen normal to the beam at a distance of 15 mm. The 

screen was transparent so allowed the scattering pattern to be viewed from 
both sides. A Sony DSC-S75 digital camera was mounted behind the screen to 
photograph the resulting scattering patterns. A beam stop was placed on the 
screen to shield both the camera and the central region of the scattering pattern 
from the incident laser beam. Small circular apertures were placed between the 
lens and the screen to help remove light that is due to internal reflections from 
the two surfaces of the focussing lens that is positioned immediately in front of 
the laser. To minimise diffraction effects, more than one aperture is used with 
the second being larger than the first. 

Figure 7.2 shows four images of the crystal that was investigated in the exper- 
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Figure 7.2: One optical inicrusc. upy and three SEM images of the crystal inves- 
tigated in the experiment. (a) SEM side view showing the carbon fibre. (b) 
SEM end view. (c) SEM opposite end. (d) Optical microscopy end view. 

Figure 7.1: A photograph and a diagram of the laboratory apparatus used in 
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iment. Figures 7.2(a-c) are SEM images. A nonconducting material such as 
the ice analogue column would normally be coated in a conductive metal to 

improve the image. However, in this case the images were taken without any 

coating. Such a coating would have allowed a detailed view of the crystal facets 

but it would also have meant that the crystal could not be used in scattering 

experiments again. The bright and dark areas in the SEM images are caused 
by inhomogeneous charge distributions building up on the surface of the crystal 

and so are an artefact of the SEM process. Figure 7.2a is a side view showing 
clearly the supporting carbon fibre. One can see that the crystal facets are well 
defined with no obvious rounding of the facet edges. The hexagonal facets at 

either end appear to be close to if not exactly perpendicular to the long axis 
of the column. One should note that this is not the case for the carbon fibre, 

which is attached at an angle of several degrees. Figures 7.2b and 7.2c show the 

ends of the crystal. The change in brightness across the facet suggests that the 

column ends may have slight indentations, similar to those discussed in section 
5.3. This is further supported by the very slight curvature near the ends of the 
facet edges (noticeable in figure 7.2c on the left end of the upper facet edge of 
the hexagonal facet). Significant defects are not present, however. Figure 7.2b 

suggests that the cross section of the column may not be a perfect hexagon. 
This is confirmed by the optical microscopy image, figure 7.2d, which shows 
that the cross section is a scalene hexagon (see section 6.2). 

To create RTDF results, it is necessary to model the geometry of the crystal. 
In the case of this experiment, the crystal is modelled as a perfect hexagonal 

column of length 61 pm and radius 7.5 um. The images in figure 7.2 show that 
the column is not perfect, particularly the unequal lengths of the hexagonal 

cross section. This scalene nature should be noted but should not cause undue 
concern. The effect of this is likely to be small given that it is not a severe 
asymmetry. Any improvements that are possible from more exact geometry 
modelling are not likely to be great. From the SEM images it is known that 
the facets are well defined and that the deformities at the column ends are not 
severe so a perfect column is an acceptable approximation. 

Having modelled the geometry of the crystal, it is now necessary to model the 
orientations of the crystal in the experiment so that the RTDF results can be 
generated. An analytical prediction of the orientation was sought, but found 
to not be possible due to the complexity of the problem. From figure 7.2a it 
is possible to see that the carbon fibre was attached to a prism facet near the 
end of the column at an angle of around 5° from perpendicular to the column 
axis. The carbon fibre lies parallel to the plane of the facet that it is attached 
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to. This is confirmed by the carbon fibre scattering arc, which is slightly curved 
in all of the photographs that follow. Using the rotation stage as the base, 

the supporting arm and carbon fibre were angled upwards by about 5° from 

the horizontal and this helped to counteract the irregularity of the orientation. 
The system was aligned carefully by hand and because of the 5° elevation it was 

possible to set the long axis of the column parallel with the laser beam when the 

crystal was at basal incidence. Because the carbon fibre was not perpendicular 
to the long axis of the column, making adjustments to the orientation using 
the rotation stage did not result in simply a tilt of the crystal. The scattering 

patterns show that the crystal also rotated around its long axis at least. The 

rotation was further complicated because the scattering pattern created by the 

carbon fibre is seen to move as the orientation changes, suggesting that it is not 

perfectly parallel to the supporting arm, resulting in a precession effect. This 

leads to the quality of the scattering patterns deteriorating because the crystal 

moves partially out of the laser beam after rotations too far outside of a 0° - 90° 
`safe' angular range. As a result of this complex situation, the orientations of 
the crystal were modelled by finding the best fit Euler angles a, /3 and ry when 
considering the resulting light scattering patterns. For an explanation of Euler 

angles and Euler's rotation theorem, see appendix A. 2. 

Photographs were taken of light scattering patterns created by many crystal 
orientations. For example, a series of orientations was examined covering 90° 
from near perpendicular incidence to near basal incidence in 2° steps to allow 
an animation to be created for use in various presentations regarding this work. 
These photographs form the basis of the results that will be presented in a 

moment. Early attempts showed that long exposure times were required to 

capture some of the faint scattering features that were both visible to the eye 
and predicted by the model. As a result, photographs with such long exposure 
times were selected in which some brighter features are saturated. Given the 

red colour of the laser, the photographs appeared red on a black background. 
To ensure that the animation would display well on a presentation screen and 
that black and white reproductions of the images would be of an acceptable 
quality, the images were processed using a graphics package. First, the image 

was resampled in greyscale. Second, the image was inverted so that intensity 
increases from white to black. Third, a small `gamma correction' was introduced 

which essentially creates a logarithmic intensity scale. A similar effect could 
have been achieved using an even longer exposure time as the aim was to ensure 
that the faint features were readily visible but longer exposure times were not 
possible with the camera used. The use of this effect was slight and so considered 
acceptable. Finally, to simplify the orientation modelling, the photograph was 
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rotated so that the main scattering arc was approximately symmetric about the 
vertical axis on the photograph. This then allows the approximation a=0. 
This simplification of the orientation removes much of the complication of the 

crystal orientation, leaving the trajectory of the main scattering arc to control 
ß and the asymmetry of scattering features both on and away from the arc to 
control ry. 

All of the resulting photographs had a resolution of 2048x1536 pixels and given 
that the camera was fixed in position it was possible to obtain a pixel to mil- 
limetre conversion value. Features visible on the long exposure photographs 
such as the edges of the screen were measured in the laboratory and compared 
to the number of pixels they cover on the photographs. An average was taken 
over all of the comparisons that were possible and it was found that 1 pixel 
on the photograph represented 0.111±0.001 mm on the screen. This made it 
possible to ensure that the distance scale on the photographs and the model 
results matched within experimental errors. 

7.2 2D Scattering Patterns using RTDF 

Modifications need to be made to the ray tracing codes and some data processing 
introduced to allow a comparison to the photographs. The first stage is to ensure 
that all of the information regarding the direction of a ray leaving the crystal 
is preserved. The direction in which a ray is travelling can be defined using 
a polar angle, 8 and an azimuthal angle, 0 (as explained in section 2.2.1). In 
generating a phase function, there is an averaging over the azimuthal angle and 
so ray tracing codes only record the polar angle, 9. The ray tracing codes are 
modified so that both angles are retained. The polar angle 9 is sampled in 
the usual way using the scalar product of the forward direction (-z) with the 
direction of the ray, as given in equation 7.1 where k' = (kx, ky, kz) is a unit 
vector in the direction of propagation of the ray. The azimuthal angle 0 is 
sampled using the scalar product of the x-axis (left if riding on a ray) and the 
projection into the x-y plane of the direction of the ray (equation 7.2). The 
angle 0 is measured in an anti-clockwise direction from the positive x-axis when 
looking in the negative z direction. This convention matches standard practice 
(for example [38]) although unlike standard practice B is measured from the 
negative z direction because that is the forward direction used in the ray tracing 
codes. 
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9= arccos(- kz) (7.1) 

= arccos 
kx 

(7.2) 
Vky + k2 

Sampling rays using both 0 and 0 results in a significantly larger number of 
bins than before. As standard, 9 is sampled using an array of 181 bins, covering 
0° - 180°. Sampling both 0 and 0 at the same resolution requires 65341 bins. 

This does not pose memory problems for the average machine but it could if 

the resolution were to be increased. 

The bins are normalised using the standard expression for normalising scattering 

over all space, equation 7.3. This equation is identical to equation 2.35. Note 

that from this expression it is simple to average over 0 to obtain the standard 
phase function normalisation expression using integration limits of 4=0 and 
0= 2a, as discussed in section 2.6.3. 

IN A r 1f 
p" (9,0)dSZ =1JJ Pi i (9,0) sin 9d8do =1 (7.3) 4ý 4A 4' 00 

At this point, the scattering information is still held in angular bins. To compare 
to the photographs discussed above, this information needs to be projected 
onto a screen at some distance, r. Consider the point on the screen where a 

ray strikes. In spherical polar coordinates the position of this point is defined 

uniquely in space by the distance from the origin r0, the polar angle 8 and 
the azimuthal angle 0. The location can be expressed in Cartesian coordinates 
using the standard transformation formulae for moving from spherical polar 
coordinates to Cartesian coordinates given in equations 7.4,7.5 and 7.6. 

x= ro cos 0 sin 9 (7.4) 

y= ro sin 0 sin 0 (7.5) 

z= ro cos O (7.6) 

If the distance to the screen in the forward direction is r8 then re, ro and 0 can 



162 

800 

600 

.1 400 
E 
E 

C 200 
a) I- U 

a 
a) 
.r 
c 
0 

-20C C 
O 

ä -40( 

-60( 

-80, 

2D Scattering Patterns 

Figure 7.3: The positions of the centres of angular bins projected onto a screen 
at a distance of 15 mm. Illustrated are the directions of increasing B and 0. The 
ring of points that is due to 0= 88° is marked. 

be related to each other using cos B=. This all leads to the transformation 

equations 7.7,7.8 and 7.9 which give the positions on the screen directly from the 

sampled angles B and 0 and the distance to the screen in the forward direction 

r,. Conveniently, the z coordinate falls out as simply re as one would expect. 

x=r, cos 0 tan 0 (7.7) 

y r, sinOtan0 (7.8) 

z=rs (7.9) 
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Figure 7.4: The positions of the centres of angular bins projected onto a screen 
at a distance of 15 mm. This plot has almost exactly the same dimensions as 
the range of a photograph taken using the laboratory apparatus shown in figure 
7.1. 

The transformation equations given above allow values from the angular bins 

to be projected onto a screen at some distance. However, this will lead to an 
irregular set of point values on the screen. Figure 7.3 shows the positions of 
the centre of the bins projected on to the screen out to 0= 88° in the forward 
direction looking from the direction of the incident light. The screen in this 

case is 1.8 m across which is unrealistic practically but at this size of B one can 
see how the rings of points separate due to the factor tan B. Also shown are 
the directions of increasing 0 and 0. Using the laboratory apparatus shown in 
figure 7.1, the scattering photographs cover an area very close to that shown in 
figure 7.4. Here the points are much closer together even though up to 0= 81° 

are still being considered. Note how closely packed the points are in the forward 

scattering region. 

This array of points on the screen does not allow the scattering pattern to be 

viewed in the same way as a photograph. It is necessary to have a regular grid 
of data points so that commercial software can be used to produce colour maps 
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of the changing intensity values. This was achieved by laying out a regular grid 

of data points over the area to be studied and calculating the intensity on the 

screen at those points using a linear interpolation method. The values of the 

interpolated points will be much more reliable near forward scattering where 
the data points created directly by the model are closely packed. The values are 
likely to be less reliable at larger angles, but for comparisons to photographs 
this should not be of too much concern. 

In the case of comparisons to the experiment being considered, there is one final 

consideration. The camera was mounted behind the transparent screen and so 
in the results that follow the required model results are mirrored at the y-axis 

with respect to the transformations discussed above. If this reflection is not 

performed, the result will be from the point of view of the laser beam and not 
the camera. 

It should be noted that all model 2D scattering patterns discussed in this doc- 

ument do not include external diffraction. The external diffraction component 

will mainly contribute to the forward scattering peak. Fraunhofer diffraction at 
a 15 µm slit (the diameter of the crystal in the current study) will produce a 
first minimum at an angle of less than 2.5°, which is covered by the beam stop. 
In any case, the low intensity interference features at larger scattering angles 
seen in the laboratory will be different from Fraunhofer diffraction patterns at 
a circular aperture. External diffraction will be omitted in section 7.4 for the 

same reasons. 

7.3 Results 

7.3.1 Six Example Orientations 

Figures 7.5 and 7.6 show results for six crystal orientations from the experiment 
described above. The six orientations are labelled (a) to (f) and show the 

crystal orientation changing from near perpendicular incidence to near basal 
incidence. The best fit Euler angles that were used in the modelling to describe 
the orientation are given in the caption and follow the convention in section 
A. 2. On the left hand side of each comparison is the laboratory photograph 
which has been processed as described in section 7.1. The blue arrows highlight 

a bright scattering arc that cuts the images from top to bottom. This is a 
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feature that appears on all of the photographs from this experiment. The arc 

is created by scattering from the carbon fibre and so can be disregarded when 

comparing to the model. At the forward scattering point there is an area of lower 

intensity which is caused by the beam stop. To the right of the photographs 

are the corresponding results from the RTDF model. Also shown in the RTDF 

frame are the results obtained from a pure ray tracing approach, marked in red. 

From a pure ray tracing approach one expects points of intensity, analogous 

to the GO sharp peaks observed in figure 3.9 where a fixed orientation phase 
function was being discussed. These points or spots of intensity are seen but 

they appear to change shape depending upon their location in the image. This 

is caused by the transformation on to the screen and interpolation once on the 

screen as described above. Some of the red pure ray tracing points near forward 

scattering (image centre) are literally points and as a result are not always easy 

to see on the background of the model result. On the right hand side of each 

comparison is a graphic showing the crystal orientation from the point of view 

of the incident light. 

One can see that overall the agreement between the model and experiment is 

good for the six orientations. These are typical of the results from this exper- 
iment. The most important thing to note is the significant improvement over 

pure ray tracing. The introduction of diffraction on individual facets spreads 
out ray tracing points to form the scattering arcs and features that are visible 

on the photographs as well as allowing new ray paths that cannot exist in the 
framework of standard GO. The six orientations will now be discussed in turn. 
They are shown in figures 7.5 and 7.6. Over the coming paragraphs, bear in 

mind the lack of computational expense and the amount of flexibility that is 

associated with the model. Using the codes written to generate these model 

results it is possible to identify the origins of all scattering features. In the case 
of these six orientations it is not necessary to include such information to study 
the comparison between the model and experiment and so in the interests of 
brevity it will be omitted. Two orientation case studies will follow where all of 
the features will be identified in detail to illustrate the capabilities of the codes 

and to highlight the effect of the model. It is interesting to note as the discussion 

proceeds that the main scattering arcs visible are in fact conic sections which 
appear as ellipses (/3 < 45°), a parabola (Q = 45°) or hyperbolas (ß > 45°) 
depending upon the value of P. This is linked to the discussion of scattering by 

circular fibres available in Bohren and Huffman [13). 

Orientation (a): a= 0°, ß= 91° and ry = 43°. In orientation (a) the crystal is 

close to perpendicular incidence, the slight bend in the horizontal scattering arc 
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on the photograph illustrating that it is not exactly perpendicular incidence. 
The curved scattering arc on the model result that appears to be close to the 
location of the carbon fibre scattering arc is not related to the carbon fibre at 
all. RTDF stretches the forward scattering point along the length of the column 
which provides the near vertical feature by deflecting rays towards the column 
ends. It is curved in a similar way to the carbon fibre scattering are because 
the carbon fibre is nearly perpendicular to the long axis of the column and lies 

parallel to the plane of one of the prism facets. If the carbon fibre were exactly 
perpendicular to the long axis of the column, the arc would lie in exactly the 
same position as the carbon fibre scattering arc. 

Orientation (b): a= 0°, /3 = 73.5° and ry = 40°. In this orientation, the 
main scattering arc through forward scattering has become clearly bowed. The 

same six pure ray tracing features are visible and although their positions have 

changed, they have the same origins. A further two arcs have appeared, due 
to the influence of the basal facets. Note that the upper are is faint on the 
photograph but can be seen as it passes through the carbon fibre scattering 
axc. The lower are is more interesting. It is bright at points corresponding 
to three of the pure ray tracing features. The lower arc is not at all complete 
on the photograph and it is quite clearly broken up by interference structure. 
This is an effect that cannot be reproduced by the RTDF model currently. The 
interference structure in the photograph is something that can be observed in 

almost all photographs of scattering patterns included in this chapter. Despite 
this, the pattern predicted by the model looks much more realistic than the 
pure ray tracing result. 

Orientation (c): a= 0°, ß= 55.5° and y= 40°. The main arc through 
forward scattering has curved even further, with the number of pure ray tracing 
points on it increasing. The upper arc has disappeared. If you were to watch 
an animation moving from orientation (b) to orientation (c) you would see the 
upper arc curve in on itself to form an ellipse before shrinking to nothing. An 
intermediate step between orientations (b) and (c) will be studied in more detail 
in section 7.3.2 as it presents an interesting first case study. The lower arc has 

moved further from forward scattering and the interference structure on the 
photograph has become more complicated. It is easier in this orientation to 
see that the bright points on the lower arc correspond to the pure ray tracing 
features, although the features are significantly larger in size on the photograph 
than is predicted by the model. This could be due to the interpolation method 
used in the model and it could also be connected to the lack of interference 
effects, which has already been mentioned. 
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Orientation (d): a= 0°, ß= 37.2° and -y = 35°. The main arc through forward 

scattering has now curved over to form an ellipse. The interference effects on the 

photograph along the ellipse are clearly visible. The model reproduces the ellipse 

well. The apparent interference structure in the model above the ellipse is an 

artefact due to the transformation on to the screen at fairly large angles because 

the distance between actual angular bin data points on the screen increases. 

Below the ellipse in both the model and the experiment there are three faint 

arms, those in the photograph again heavily affected by interference. 

Orientation (e): a= 0°, ,Q= 18° and ry = 30°. The ellipse seen in orientation 
(d) now closes in towards being a tight circle. The comparison between model 

and experiment for this is good, although it is not easy to resolve the circle in the 

experiment. Another larger ellipse has formed in the model result although this 

is not reproduced in the experiment because the feature is not bright enough. 
In the experiment, the lower part of the ellipse is visible as an arc but it is 

exhibiting by far the most complicated interference structure yet seen in this 
discussion. Three bright spots on the arc correspond to three pure ray tracing 

points, with possibly a further two at the left and right extremities of the visible 
structure. 

Orientation (f): a= 0°, ß= 0° and -y = 30°. In this orientation, light is 

near to normally incident on a hexagonal facet. The large ellipse seen for the 
first time in orientation (e) has moved to form a tight circle surrounding for- 

ward scattering. This can be seen on the photograph as the six bright points 

connected by interference structure. As a result, it has come to resemble a six 

spoked wheel with bright scattering features forming the spokes. The model 
cannot reproduce the rim of the wheel at this precise orientation but at Q± 1° 

the ellipse is still visible (not shown). However, the spokes are reproduced well. 
The reason for this is that at this orientation the only pure ray tracing point is 

at forward scattering. All of the scattering seen in the RTDF result is due to 

rays refracting through both hexagonal facets and being deflected towards one 
of the facet edges, resulting in six spokes. 

7.3.2 Case Study 1 

In the first case study, the orientation is approximately a= 0°, ß= 60.5° and 

y= 35°, between (b) and (c) in figure 7.5. Figure 7.7c shows the crystal in the 
best fit orientation from the point of view of the incident light. Each facet has 
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Figure 7.5: Results from the fixed orientation scattering experiment compared 
to pure ray tracing and the RTDF model. (a) a= 0°, 03 = 91°, ry = 43°. (b) 
o=0°, /3=73.5°, ry=40°. (c)a=0°, /i=55.5°, «y=40°. 
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Figure 7.6: Results from the fixed orientation scattering experiment compared 
to pure ray tracing and the RTDF model. (d) a= 0°, 0= 37.2°, -y = 35°. (e) 
a=0°, ß=180, ry=30°. (f)a=0°, Q=0°, -y =30°. 
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Figure 7.7: (a) Laboratory scattering pattern for a hexagonal column with 
orientation a= 0°, ß= 60.5° and ry = 35°. (b) Equivalent RTDF result. (c) 
The orientation of the crystal from the point of view of the incident light. (d) 
Equivalent GO result. 

been assigned a number with facets 1,3,4 and 5 exposed to the incident light. 

Figure 7.7a shows the laboratory photograph of the scattering pattern. The 

pattern appears slightly asymmetric because of the 'y Euler rotation. Figures 

7.7b and 7.7d show the equivalent results for RTDF and GO respectively. Note 

that the photograph in figure 7.7a again clearly shows interference fringes over 
much of the pattern. 

Comparing the GO and RTDF results, the effect of the new model can be clearly 

seen. The RTDF scattering pattern takes a much more realistic appearance than 

the GO result when compared to the photograph in a similar fashion to the last 

section. 
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In the next few paragraphs the origins of the various GO features shown in figure 

7.7d will be discussed while highlighting specific features that are enhanced by 

the new model. The GO points have been labelled for identification. All of 

the GO points are made up of contributions from several ray paths through the 

crystal. It will be stated that a given feature is caused by the dominant ray 

path on the understanding that there are likely to be small contributions from 

more complex paths. 

Examining figure 7.7b it can be seen that the bright arc through forward scat- 
tering that is reminiscent of the conic section created by scattering by a circular 
fibre is recreated by RTDF. This arc includes bright spots at points E and G 

that represent refractions through prism facets. For E, rays enter through facet 

3 and for G rays enter through facet 5. In both cases the rays leave the crystal 
through facet 7. There are external reflections from facets 5 and 3 at points D 

and H respectively, although they are not well defined in the photograph. The 
forward scattering peak at F is dominated by rays entering through facet 4 and 
leaving through facet 7, with no net deflection due to standard GO interactions. 
Also contributing to the arc are faint points at J and K. J is formed from rays 
entering through facet 3, internally reflecting several times and exiting facet 8. 
K is formed in a similar way except that the rays both enter and leave through 
facet 3. Finally there are two small faint features that contribute to the arc that 

are not labelled. Being near the centre of the image, the features are small and 
not visible in the figure but they are present in the raw data. Both are formed 

from several internal reflections with paths very closely related to J. The first 
is located between F and G where rays enter through facet 5 and eventually 
exit through facet 8. The second is located near E, found when moving in the 
direction of point D. Here, rays enter through facet 3 and exit through facet 6. 
In all cases along the scattering arc the bright GO spots are spread by the new 
model near horizontally to recreate the arc but also in a more vertical direction 

on the screen. This makes the pattern similar to the photograph, particularly 
in the case of the features above and below points E and G. 

There are numerous features below the main scattering arc most of which are 
created by ray paths including an internal reflection or a total internal reflection 
from the basal facet 2. Point M is the exception, the feature being dominated 
by an external reflection from the basal facet 1. All of the features compare 
better with the photograph in the RTDF result than the standard GO result. 
The features at points L and N represent rays entering through facets 3 and 5 

respectively. Some of the contributing ray paths are complicated, undergoing 
multiple internal reflections including one total internal reflection from the basal 
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facet 2. In both cases rays leave the crystal through facet 7. Point P is also 
due to complicated paths made up of multiple internal reflections. There are 

numerous entrance and exit facets for this feature with the only common facet 
interaction being the internal reflection from the basal facet 2. There are also 
two faint GO spots that are not labelled, both with complicated ray paths. To 

the left of point L is a spot formed from rays entering through facet 3 and 
exiting through facet 6. Between points M and N is a feature formed from rays 
entering through facet 5 and exiting through facet 8. 

Above the main scattering arc is a very interesting collection of features. There 

are six features in total in the vicinity of points A, B and C with two located 

at each. The left hand feature at point C is perhaps the most familiar as it is 
dominated by refraction through facets 1 and then 7. Being the only feature on 
the screen at this orientation representing refraction through a basal facet and a 
prism facet, it is effectively the 46° halo. This was confirmed experimentally by 
tilting the crystal into other orientations where it was observed that the feature 
did not move below 46°. The other five points are created by rays entering 
facet 1, undertaking a complex path of internal reflections and then leaving the 

crystal through one of the prism facets. The upper and lower points at A are 
created by rays leaving through facets 4 and 3 respectively. The upper and 
lower points at B are from rays exiting through facets 5 and 6 respectively. The 

right hand point at C is formed by rays leaving through facet 8. There is also a 
similar ray path that contributes to the 46° halo spot that exits through facet 
7. 

In the photograph and RTDF result in figures 7.7a and 7.7b one can see a 
hollow elliptical feature connecting points A, B and C. This feature persists 
when varying the ry Euler angle. Explaining it in terms of ray tracing, the 
feature is created by rays entering the basal facet 1 and internally reflecting up 
the length of the column. RTDF then allows rays to exit through any prism 
facet at a wide range of angles, some of the ray paths including an internal 

reflection from the basal facet 2. This cannot be reproduced by GO where the 
ray paths are strictly confined to specific scattering angles to create the features 

at A, B and C. This hollow elliptical feature can be likened to a guided wave 
effect and given the complexity of modelling such effects (for example, Reisinger 
[1321) it presents another potential application of the RTDF model. 
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Figure 7.8: (a) Laboratory scattering pattern for a hexagonal column with 
orientation a= 0°, /j = 35° and 'y = 34.5°. (b) Equivalent RTDF result. (c) 
The orientation of the crystal from the point of view of the incident light. (d) 
Equivalent GO result. 

7.3.3 Case Study 2 

In the second case study, the orientation is approximately a= 0°, Q= 35° and 
ry = 34.5° and is shown in figure 7.8c. This orientation sits close to (d) and 
between (d) and (e) in figure 7.6. The laboratory photograph, RTDF result 
and GO result are shown in figures 7.8a, 7.8b and 7.8d respectively. Similar to 

the first case study, the photograph shows many interference fringes. The GO 
features have again been labelled, those features that are related in origin to 
features from case 1 being denoted by the same letter but underlined. These 

relationships will be explained below. 
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The scattering pattern is dominated by a large ellipse. By rotating the crystal 
from the first case study orientation to this orientation, it is possible to see that 

the ellipse is formed by the main scattering arc from the first case folding over. 
The RTDF result matches well with the laboratory photograph. Of particular 
interest are the three arms extending from the forward scattering point below 

the main scattering ellipse. There are no GO points that correspond to these 
features at this orientation. However, the RTDF result provides three such 
features. Although at first it appears that the RTDF features are a result of the 
forward scattering point being spread out by the model, this is not in the main 
the case. It is true for the very early part of the arms but in the regions close to 

where the features appear strongest in the photograph, the sources are new ray 
paths that are not visible elsewhere on the screen or indeed possible using GO. 
All three features are dominated by two refractions with rays entering a prism 
facet and leaving through the basal facet 2. From left to right, the entrance facet 
for the three features are 3,4 and 5. In this way, the model at this orientation 
has reproduced a feature by creating a ray path that GO cannot create. 

With respect to the forward scattering point on the scattering arc the points 
D and E have swapped places, as have G and H. Being refractions through 
two prism facets, E and G are formed by the ray paths that contribute to the 
22° halo. In case 1, the points were at scattering angles of around 29° and 26° 
respectively and so it is not surprising that they move away from the forward 

scattering point given that the minimum scattering angle possible for the ray 
path is 22°. 

The bright points that contribute to the large ellipse are as follows. Point Q 
is dominated by a reflection from facet 4. Points R, S and V are formed by 

complex ray paths entering through facet 5 and exiting through facets 3,6 and 
4 respectively. Point T is formed from a range of complicated ray paths with the 
only common feature being either an internal or total internal reflection from 
facet 7. Points f and G are identical in origin to the equivalent lettered features 
in case 1. Point D is formed by complex ray paths both entering and leaving 
the crystal through facet 5. It is related to point D because this type of ray 
path was a minor contributor in case 1. The dominant contributor to point D, 

the external reflection from facet 5, has moved past the screen boundary. The 
faint feature at point U is due to complex reflection paths entering the crystal 
through facet 5 and exiting through facet 8. In this way it is similar to the faint 
feature between F and G in case 1. The forward scattering point, E is in the 
main identical to F in origin save for a few of the minor ray paths not persisting. 
Point ff is dominated by a reflection from facet 3 giving it a connection to point 
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H. It also includes the ray paths that created point K in case 1. There are two 

features at point J. Both points include complex ray paths with rays entering 

through facet 3 and exiting through facet 8, just like point J. The upper point 

at J also includes a range of other complex ray paths that all have at least one 
interaction with the basal facet 2, in some cases as the refraction out of the 

crystal. 

7.4 Particle Characterisation using 2D Scatter- 

ing Patterns 

In the preceding sections, the new model has been shown to create scatter- 
ing patterns on a screen that compare well with laboratory photographs. The 

scattering patterns generated using RTDF offer a degree of realism that is not 

possible with standard GO. It has been previously shown that spatial or 2D 

scattering patterns of single orientations can be used to distinguish between 

particle geometries and so aid in particle characterization in a range of scientific 
fields [11]. In the case of cirrus ice, the concept has been implemented in par- 
ticle instruments such as SID [12,133]. Such instruments use a laser beam to 
illuminate particles as they pass through the instrument and an array of detec- 

tors then measures the light scattering. By studying the relative signals from 

these detectors it is possible to distinguish between spherical and nonspherical 
particles and also to classify nonspherical particle geometries. The RTDF model 

could potentially be used to further develop such in-situ particle instruments. 
To illustrate this, the model will now be applied to a range of crystal shapes, a 
process that benefits from the flexibility of the model with regards to particle 
geometry. 

Consider an ideal particle characterisation instrument that has the ability to 
take in-situ images of 2D scattering patterns created by ice crystals in cirrus. 
The crystals pass through a chamber where they are illuminated by a laser 

of wavelength 550 nm. An array of sensors or a CCD captures an image of 
the resulting scattering pattern. To successfully characterise the geometry of 
a particle from such a pattern, one requires knowledge regarding the general 
characteristics of scattering patterns created by candidate geometries. In the 
following, figures 7.10 and 7.11 show how such general characteristics can be 

obtained from modelling results by comparing the scattering patterns from eight 
example geometries. All of the results presented use the same scatterer to screen 
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Figure 7.9: Illustrations of the eight geometries used in the particle characteri- 
sation discussion (not to scale). The three orientations shown for each geometry 
correspond to the scattering patterns in figures 7.10 and 7.11. The twelve boxes 
on the left correspond in layout to the twelve scattering patterns in figure 7.10. 
The twelve boxes on the right correspond to figure 7.11. Left side (top to 
bottom): Hexagonal column, hexagonal plate, capped column, hollow column. 
Right side (top to bottom): Bullet, bullet rosette, reconstructed germ rosette 
Gros48 and droxtal. 

configuration as found in section 7.3. Each result shows a 100 min square section 
of the screen. This means that the screen represents a large angular range of 
approximately 147° along the x and y axes. 

The eight geometries to be considered in this study are shown in figure 7.9 in 
the three orientations that each crystal takes, corresponding to ß= 0°, 0= 45° 

and Q= 90°. The layout of the geometries and orientations in the left hand side 
of the figure correspond directly to the layout of the scattering pattern results 
in figure 7.10. In the same way, the right hand side corresponds to figure 7.11. 
All orientations are shown from the direction of the incident light. This figure 

can be used as a reference as the discussion proceeds. 

Figures 7.10a, 7.10b and 7.10c show the 2D scattering patterns for a hexagonal 

column of size parameter 21rr/A = 50 with L/2r = 2.5 in the three orientations 
shown in figure 7.9. A range of orientations need to be studied because fixed 
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orientation 2D scattering patterns are strongly orientation dependent. One 

can see that the dominant feature in the patterns is the strong scattering arc 
through forward scattering appearing as a straight line in figure 7.10c. Rotating 

the crystal by decreasing the ß Euler angle past the orientation in figure 7.10b, 

this feature turns into an ellipse (as shown in section 7.3.3) before disappearing 

when close to the orientation in figure 7.10a. The scattering arc provides a 

simple signature of a columnar shape. This simplicity combined with the fact 

that the shape of the scattering arc is determined by the crystal orientation 
means it is possible to infer information regarding the crystal orientation from 

the scattering pattern. In practise, the obvious application would be to identify 

crystals taking preferred orientations in cirrus, a phenomenon discussed earlier 
in section 5.6. This would only be possible if the ideal instrument were able to 

ensure that the natural orientation of a crystal were preserved in the sampling 
process. 

The scattering patterns for a hexagonal plate are quite different from those for 

a column. Figures 7.10d, 7.10e and 7.10f show the scattering patterns for a 
plate of size parameter 100 with L/2r = 0.1. The hexagonal facets are oriented 
so that they face in the same directions as for the column cases (see figure 
7.9). For the plate the dominant feature is the six spoked star seen in the 
first image. Figure 7.10e shows that as you move to more oblique angles of 
incidence, the star is gradually distorted. Only near to the third orientation 
does the feature change into a more complicated pattern of scattering. Note 
that the horizontal line in figure 7.10f which corresponds to refraction through 

prism facets is thinner with a different intensity distribution to the equivalent 
column orientation in figure 7.10c. If the hexagonal nature of the crystals is 

near to regular then the spokes of the star observed for the plate will form arcs 
relative to each other that are in predictable positions, even as the orientation 
changes. With this information one could distinguish between the scattering 
patterns produced by columns and plates in most cases. Ambiguity could arise 
for patterns very close to 7.10a or 7.10d but there is only a small probability of 
these orientations occurring. The weighting towards either geometry for such 
ambiguous cases could be estimated in post processing from the ratio of columns 
to plates identified at less contestable orientations. It is interesting to note that 
the six spoked star seen for the plate and also in figure 7.10a for the column 
cannot be reproduced using GO. In the cases of figures 7.10a and 7.10d the GO 

result would be restricted to a point at forward scattering. 

It is not uncommon to observe capped columns, a combination of a column and 
one or two plates as discussed in section 5.2. Figures 7.10g, 7.10h and 7.10j 
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Figure 7.10: 2D scattering patterns for four geometries with three orientations 
shown for each (see text). All of the images are sections of the screen that are 
100 mm square in size with the forward scattering point at the centre. The 
geometries are: Hexagonal column (a, b, c), hexagonal plate (d, e, f), capped 
column (g, h, j) and hollow column (k, 1, m). 
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Figure 7.11: 2D scattering patterns for four geometries with three orientations 
shown for each (see text). All of the images are sections of the screen that are 
100 mm square in size with the forward scattering point at the centre. The 
geometries are: Bullet (a, b, c), bullet rosette (d, e, f), reconstructed germ 
rosette Gros48 (g, h, j) and droxtal (k, 1, m). 
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show the scattering patterns for a column identical in size to that used above 

capped with plates that have radii one and one and a half times the radius of the 

plate discussed in the last paragraph. The scattering patterns are an interesting 

combination of the patterns seen for the constituent geometries, most noticeable 
in figure 7.10h where both the column scattering are and the plate six spoked 
star are visible. 

Often observations show that columnar crystals contain hollow areas, partic- 
ularly at the ends as discussed in section 5.3. The scattering patterns for a 
crystal exhibiting strongly indented ends are shown in figures 7.10k, 7.101 and 
7.10m. The crystal is the same size as the column discussed above with inverted 

pyramids at the ends that meet at the crystal centre. Such a severe deformation 

of the crystal has a large effect on the scattering patterns created. Scattering 
features are closely packed while covering large areas of the screen, quite distinct 
from the other patterns in this study. This suggests that should an instrument 

with sufficient resolution be feasible in the future, it may be possible to identify 
degrees of crystal deformation in atmospheric ice. Clearly the degree of deforma- 

tion will have a large effect on the scattering patterns and more importantly the 

reliability of this finding rests upon the accuracy of modelling hollow features 

using such inverted pyramids. This has already been discussed in section 5.3, 

where it was shown that there is evidence to support this modelling approach 
such as the observation of small angle halos, though how generally applicable it 
is to atmospheric ice remains unclear. 

Many crystals observed in cirrus are considerably more complicated than columns 

and plates. One of the most common geometries is the rosette [124]. In this 

case, a 4-4 (four arm) pentagonal headed bullet rosette as defined by Iaquinta 

et al. [125] (discussed more thoroughly in section 5.6) will be considered. First 

consider the constituent bullet, the scattering patterns for which are shown in 
figures 7.11a, 7.11b and 7.11c. The bullet has the same radius and length (not 
including the head) as the column discussed above. The bullet scattering pat- 
terns are again distinct from a standard column, although it would be difficult 
to distinguish between a hollow column and a bullet given the closely packed 
features. It can be shown that a less severely deformed column than that con- 
sidered above would produce scattering patterns that very closely resemble the 
bullet. This suggests that deformities at column ends, whether depressions or 
extensions, produce similar results for the purposes of particle characterisation. 
Note that the results for a bullet given in figures 7. lla and 7. llb would not be 

exactly the same if the bullet head faced the incident light, although the overall 
discussion would remain unchanged. 
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Figures 7.11d, 7.11e and 7.11f show the 2D scattering patterns for the 4-4 rosette 

where all four arms are identical, all being examples of the bullet that has just 

been considered. The crystal is shown in the three orientations in figure 7.9. 

The scattering patterns are significantly more complicated than for the column 
or the plate. The defining feature of the patterns created by the rosette are the 

multiple examples of scattering arcs that resemble those created by the column. 
These exist because each arm of the rosette can contribute such a scattering 
arc. For example, in figure 7.11e all four scattering arcs can be seen. This 

creation of the scattering arcs by a rosette is maintained as long as the arms 
are long enough for single scattering from the individual arms to dominate over 

multiple scattering between the arms. If the rosette arms appear parallel when 

viewed from the direction of incident light, it may not be possible to discriminate 
between the scattering arcs. The number of arcs may also not correspond to 
the number of arms if one or more of the arms is close to parallel to the incident 
light, as seen in figures 7.1 ld and 7.11f where only three distinct arms are visible. 
This means it would not immediately be possible to reliably identify the number 
of rosette arms from a single orientation in an in-situ instrument, but for broad 

crystal habit classification purposes this is not a significant concern. It would 
however be possible to easily distinguish between columns and rosettes purely 
from the complexity of the scattering pattern. There is the possibility that 

rosette scattering patterns could be confused for plates given the arcs predicted 
in figure 7.10d. However, to replicate the positions of the scattering arcs exactly 
a six arm rosette with the aims all coplanar and separated by 60° angles would 
be required. Other geometries may succeed in individual orientations through 

chance but no other geometry would succeed for all orientations. An interesting 

point to note is the significant difference between the 2D scattering for the 

rosette and its constituent geometry, the bullet. In section 5.6, it was shown 
that the RTDF model confirms the common finding that the phase function 
for a rosette resembles quite closely that of its constituent component. The 2D 
scattering patterns show that the similarity rests only with averaged random 
orientations, as one would intuitively expect. 

It has been shown how scattering arcs can be created by each arm of a rosette if 
the arms are long enough for single scattering from the arms to dominate. Germ 

or budding rosettes are crystals where this is unlikely to be the case. They are 
also common in the atmosphere as they represent an earlier stage in the de- 

velopment of the longer arm rosettes. In section 6.2 Gros48 was introduced, a 
germ rosette geometry that was reconstructed from an ice analogue example. It 
is shown in the scattering orientations in figure 7.9. Figures 7.11g, 7.11h and 
7.11j show the scattering patterns and as expected they are extremely compli- 
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cated. Single scattering arcs from individual arms do not have the ability to 
form as the majority of the scattering involves the central area of the crystal. 
Once again, such a complex pattern would potentially allow this type of geom- 
etry to be distinguished from those considered above. Note that the scattering 
patterns are essentially orientation independent. It is interesting to note that 
it is expected that a rosette with rough surfaces will create scattering patterns 
that are similar in nature to those created by Gros48. Distinguishing between 

smooth and rough crystals is an area that possibly requires future attention 
given the significantly reduced asymmetry parameters measured for rough ice 
analogue crystals in the laboratory [134]. 

As discussed in section 5.5, it is often the case that small crystals below 50 pm 
are classified as ice spheres when they may actually be small faceted objects 
such as droxtals. Figures 7.11k, 7.111 and 7.11m show 2D scattering patterns 
for a droxtal with a radius that ensures the hexagonal facets are the same size as 
those in the column case above. The sphericity has been maximised by volume 
to as closely simulate a sphere as possible. The first thing to notice is that 
the patterns are very different to the concentric rings one might expect from 
Mie theory calculations for a sphere, highlighting significantly more differences 
than can be seen with an equivalent phase function comparison (see section 
5.5). A light scattering based probe can therefore distinguish between spherical 
and nonspherical particles, as has been shown in the field [12]. The droxtal 

scattering patterns are complicated, although the hexagonal nature of parts of 
the droxtal can be inferred from the patterns. The complexity of the droxtal 

patterns makes them reminiscent of the germ rosette patterns above. Given 

that Gros48 is an extreme case (the crystal has fifteen arms), the ability to 
distinguish between droxtals and germ rosettes on this evidence is likely to be 
limited unless instrument resolution is very high. However, it can be stated 
that it is possible to identify more complex, less spatial crystals such as droxtals 

and germ rosettes when compared to more expansive crystals such as the long 

armed rosettes with their clean pattern of clear scattering arcs. 

In this short discussion it has been illustrated how the RTDF model can in prin- 
ciple be used to aid particle characterization. Broad crystal habit classification 
is possible by studying such 2D light scattering patterns and further investiga- 
tion using the model will allow more sophisticated problems to be considered. 
The model allows rapid computation of such 2D scattering patterns for any crys- 
tal geometry. As well as broad classification considerations, it is theoretically 
possible to identify more in depth information. For example, the presence of 
crystal deformities such as hollow regions at column ends changes the 2D light 
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scattering predicted by the model. In practise, developing an instrument capa- 
ble of utilising the model to achieve such detailed crystal classification would 
be a major challenge. It may also be possible to detect crystals with preferred 
orientations in the field, particularly for hexagonal columns and plates, if the 

natural orientation can be preserved by the instrument. 
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Chapter 8 

Comparisons to Aircraft 
Radiance Measurements 

This chapter presents work undertaken at the UK Met Office during an eight 
and a half week visit early in 2005. Some of the discussion and results have 

been included in a Met Office Technical Note (911. 

Phase functions obtained from the RTDF model as well as from GO were used 
in conjunction with a Monte Carlo radiative transfer code to make comparisons 
with aircraft radiance measurements of cirrus held at the Met Office in Exeter. 
Calculations were initially performed for test geometries such as the hexagonal 

column, the droxtal and the polycrystal (which will be defined in section 8.3). 
These were followed by calculations for the reconstructed geometries of ice ana- 
logue crystals that were introduced in section 6.2. The method and results will 
be presented in the forthcoming sections. The chapter will address the suit- 

ability of the reconstructed geometries of ice analogue crystals as representative 
cirrus ice particle geometries in the cirrus cases considered. The candidature of 
the test geometries will also be considered. The effect of using size distribution 
functions for single geometries will be investigated. The combination of various 
geometries within size distribution functions to gain combined size and shape 
distributions will also be considered. 

185 
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8.1 Radiative Transfer Modelling 

All of the results presented in the preceding chapters have been single scattering 
results. Single scattering refers to the case where either an individual particle is 
being considered or a collection of identical particles whose concentration is low 

enough that each particle scatters light as if the other particles did not exist. 
This is also referred to as independent scattering. In most practical cases it is 

not possible to use the single scattering approximation because the scattered 
light from crystals does affect the scattering of other crystals. An exception 
to this is subvisual cirrus where the scattering medium can be considered thin 

enough to allow the application of the single scattering approximation. 

A large collection of particles that interact are treated using multiple scattering 
techniques. The problem is often referred to as the problem of radiative transfer. 
Equation 8.1 is a simple form of the radiative transfer equation which can be 

used to describe a multiple scattering system formed from non-emitting media. 

dI (s, 9,0) 
_ ds -KI (s, 9,0) +J (8.1) 

In equation 8.1, I is the intensity which is a function of path length (s) and di- 

rection (0, ¢) and ds is an element of the path length. Equation 8.1 is essentially 
a statement of conservation of energy. It describes the change in intensity per 
unit path length. The first term on the right hand side of the equation describes 

the attenuation of light travelling in a particular direction caused by extinction, 
K representing the extinction coefficient. The second term, J, is sometimes 
termed the source function. It is a sum of contributions from multiple scat- 
tering within the cloud, direct single scattering of solar radiation and thermal 
emission from the medium. In the following, it is assumed that there is no ther- 
mal emission. This is reasonable because for wavelengths shorter than 3.7 µm 
the solar component dominates over negligible thermal emission. The longest 

wavelength to be considered in this chapter is 1.61 µm. More information on 
the radiative transfer equation can be found in the literature, for example [38, 
Chapter 1] or more specifically related to cirrus [58, Chapter 131. 

There are many computational methods available that solve the radiative trans- 
fer equation for atmospheric applications, for example [135). In this study, a 
relatively simple Monte Carlo technique is used that considers a single cloud 
layer that is plane-parallel and homogeneous. A brief description of the method 
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follows. It is explained in more detail by Ley [136]. The code that implements 

the method was modified by Anthony Baran to run on VAX/Alpha machines 

and to provide support for multiple layers in 1992. In this method, radiances 

are calculated by tracing photon paths through the cloud. As a photon moves 
through the cloud, it can collide with the particles being considered and such an 

event may lead to it being scattered or absorbed. The single scattering albedo 
(defined using equation 2.11 in section 2.2.3) gives the probability that a photon 

will be scattered rather than absorbed as a result of a collision. This is con- 

sidered in the extinction term in the radiative transfer equation. If the photon 
is not absorbed, it is scattered into an angle found using a probability density 

function calculated from the single scattering phase function of the particle. On 

escaping from the cloud the photon is collected into a detector, the orientation 

of which provides the overall scattering angle. This contributes to the resulting 

angular radiance distribution. By applying this method to many photons one 

can build the angular radiance distribution of the whole cloud. 

In this study, all of the radiative transfer calculations use one million incident 

photons. In all cases, one scattering layer of particles is considered that is 

specified by an extinction optical depth value, 7. The extinction optical depth 
is a wavelength dependent dimensionless quantity, often referred to as just the 

optical depth. It is defined as the line integral of the sum of the scattering and 

absorption coefficients along a vertical path through the scattering layer. The 

sum of the absorption and scattering coefficients is equal to the inverse of the 

mean free path of a photon passing through a scattering medium. Consequently, 

in a uniform medium such as the cloud layer considered here the optical depth 

can be interpreted as a measure of the thickness of the scattering layer measured 
in units of mean free path. 

In many cases in the results that follow, the radiative transfer result given is 

a best fit for the optical depth, 7. This retrieved optical depth is obtained us- 
ing a X2 minimization technique to find the best agreement between calculated 
and observed angular radiance distributions. It will be quoted to the nearest 
0.05. This degree of accuracy was chosen to reduce computer time and it gives 
acceptable results throughout. Using optical depth values retrieved from obser- 
vations would be inappropriate because they would only be correct if the cloud 
model in terms of crystal geometries and cloud structure were accurate. In the 

case of the size distribution function work in section 8.6, the X2 minimization 
technique is also used to find the best fit value of the mean effective diameter, 
De, something that will be discussed in section 8.6. 
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Figure 8.1: A reproduction of figure 1 from Potter 1970 illustrating the use of 
a truncated phase function. 

The X2 minimization technique was made possible by obtaining the radiative 
transfer results for integer scattering angles only and then binning the radiance 

measurements into equivalent integer scattering angle bins. The radiance mea- 
surements will be represented here by a continuous line for ease of comparison 
to the model results. 

8.2 Phase Function Truncation 

A problem is sometimes encountered when solving a multiple scattering system 
using phase functions that exhibit large intensities at forward scattering due to 
diffraction. They can increase execution times significantly and in some cases 
lead to numerical instabilities in the calculations. To counter this, one can 
apply a delta function approximation as discussed in Potter [137]. The method 
removes the sharp diffraction peak at forward scattering. Photons scattered into 
the forward peak are scattered through only a very small scattering angle and so 
it is reasonable to assume that they are not scattered at all. This is implemented 
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by replacing the sharp forward diffraction peak with a Dirac delta function and 
then by considering the phase function without the delta function. Using this 

new truncated phase function simplifies the multiple scattering calculation. It 

is necessary when using the delta function approximation to adjust the single 

scattering albedo and the optical depth to match the truncated phase function, 

details of which are available in the referenced paper. 

An example of a truncated phase function is shown in figure 8.1. The figure is 

a recreation of figure 1 from Potter [137]. The complete phase function shows 
the cloud model phase function calculated from Mie theory by H. Cheyney 

[138] at a wavelength of 0.554 µm. The phase function used in Potter [137] 

is slightly modified because it exhibits some smoothing of the back scattering 

region. Figure 8.1 may exhibit slightly different normalisation as a result of the 

back scattering differences. The modifications are discussed further in Arking 

and Potter [138]. In the same reference, the size distribution function that the 

phase function was generated from is given. It is reproduced in equation 8.2. 

66 / \6 / 
n (r) 5! cI rc 

1 exp I -6r (8.2) 

In equation 8.2, n(r) is the fraction of particles with radii between r and r+ dr. 
The radius at which n is a maximum is given by r,, taken to be 4 µm here. 
This information was used to create the phase function in figure 8.1 using 1000 

spheres of different radii over the size parameter range from 25 to 75 as detailed 
in Arking and Potter [138]. 

The truncated phase function was used in the Monte Carlo radiative transfer 

code to reproduce the case of Potter (1371 figure 4 to ensure that it had been 

implemented correctly. The system is used in all of the forthcoming calculations. 

8.3 Candidate Crystal Geometries 

In the radiative transfer studies, a selection of crystal geometries are considered 
as candidate representative cirrus geometries. The hexagonal column (chapter 
4), the droxtal (section 5.5) and the three reconstructed ice analogue geometries 
(section 6.2) have been encountered in the preceding chapters. In this case, 
the hexagonal column is taken to be have an aspect ratio L/2r =2 with size 
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Figure 8.2: (a) An example of a polycrystal or Koch-fractal. (b) SDC_v1 (c) 
SDC_v2 (d) SDC_v4 

parameter 50. The droxtal has its sphericity maximised by volume with a 
circumscribing sphere of size parameter 50. When size distribution functions 

are used (sections 8.6 and 8.7), the crystal dimensions are scaled appropriately. 

There are two geometries that will be considered in this chapter that have not 
yet been discussed. The first is the polycrystal or Koch-fractal, built from a 
tetrahedral initial shape. The 25 pm example used here is shown in figure 

8.2a and is a Koch-fractal of the second generation. The GO single scattering 
properties of the polycrystal have been investigated by Macke, for example [23]. 

The phase function of the polycrystal remains unchanged when investigating 

examples of different sizes. The polycrystal does not represent a realistic cirrus 
ice crystal but is normally used to model the very complicated and irregular ice 

particles that can be found in the lower regions of cirrus. Radiative transfer 

calculations using GO phase functions for this polycrystal have been previously 

published and so it doubles as a useful test case. 

The second new geometry is that of the Spatial Double Centred (SDC) crystals. 
These crystals were constructed as the study progressed in a bid to increase 

scattering above 90° and to provide an alternative crystal geometry to be used 
to represent the larger more complex crystals within cirrus. 

The three SDC crystals that were considered are shown in figures 8.2b, 8.2c 

and 8.2d. It was found that the first two cases did not have a significant effect 
when compared to a hexagonal column and were put to one side. The final case, 
SDC_v4, was introduced with so many arms specifically to increase scattering 
above 90° because when considering bullet rosettes, the increase in scattering 
above 90° compared to a single bullet is almost totally due to multiple exter- 
nal reflections from arms. This crystal produced very limited success but is 
included here to illustrate how very complex crystals do not necessarily change 
the scattering characteristics of a cloud as much as one might intuitively expect. 
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Figure 8.3: A diagram of an aircraft taking radiance measurements. Solar 
radiation is incident at a solar zenith angle of O. The aircraft is banked at 
an angle of BA. The aircraft orbits below the cloud collecting measurements at 
azimuthal angles given by OA- 

The Analytic Phase Function (APF) [90] will also be considered. The APF is 
based upon the Henyey-Greenstein phase function [139] with some modifica- 
tions. The APF represents the scattering by an ensemble of nonspherical ice 

crystals. The APF is calculated using a set of of analytic expressions that de- 

pend on only one variable, the asymmetry parameter g. The APF is found to 

model the scattering of cirrus well and so can be used as a test case to which 
calculations from crystal geometries can be compared. 

8.4 The Aircraft Radiance Measurements 

Aircraft radiance measurements taken from three cases of cirrus will be con- 
sidered in this chapter. All of the data have been provided by the Met Office 

(:::: 4ýr 
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and were sampled using the Met Office C-130 aircraft. A schematic diagram of 
the aircraft taking the radiance measurements is shown in figure 8.3. In all of 
the cases considered in this chapter, the aircraft performed banked orbits below 

the target cloud. As the orbit proceeds, measurements are taken at a range of 

azimuthal angles, OA. The azimuthal angle is measured in a horizontal plane 

and represents the length of arc on the horizon. The azimuthal angles can be 

converted to scattering angles using the solar zenith angle O and the aircraft 
orbit banking angle BA which also define the scattering angle range that can be 

considered. 

In the following the flights will be referred to by their flight numbers. This 

section will provide a brief description of the three cirrus cases including the 
values of the solar zenith angle and the aircraft orbit banking angle for the 
specific sets of data that have been used. The data from flights A435 and A189 
included in this chapter have been previously published in Baran et al. [90] 
(both flights), Francis et al. [89] (flight A435) and Francis [140] (flight A189). 
The flights are described in more detail in those references. The third flight, 
A802, is described in more detail in Baran and Francis [141]. The data included 
in this chapter from flight A802 are not the same as those published in [141] 
because they were sampled at a different time. 

On 9th November 1995 radiance measurements were taken from a thin layer of 
frontal cirrus off the north-eastern coast of England. This flight is referred to as 
flight A435. The data made available from flight A435 to this study corresponds 
to an aircraft orbit banking angle of 53°. The solar zenith angle in this case 
was 74°, leading to sampled scattering angles between approximately 20° and 
127°. This study considers radiance measurements taken during the flight at 
wavelengths of 0.87 µm and 1.61 µm. This is the flight studied in figures 4 and 7 

of Baran et al. [90]. Cloud top was measured at 9.45 km with the cloud base at 
7.10 km, although some variation was recorded. The data were sampled during 

orbit number 4. 

Flight A189 occurred on 23rd April 1992 off the north-east coast of Scotland 

and took measurements from a layer of cirrus associated with a cold front that 
had passed over the UK the night before. The aircraft was banked at an angle 
of 30° with a solar zenith angle of 54.1°. This corresponds to sampled scattering 
angles between approximately 30° and 80°. The measurements considered here 

were taken at a wavelength of 0.55 µm during orbit number 1. This sample of 
cirrus had the cloud top at 9.9 km and the cloud base was at 7.0 km. 
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Flight A802 took radiance measurements on 17th October 2000 from a layer 

of cirrostratus over the Orkney Islands that was in advance of a warm front 

approaching the British Isles from the west. During the considered orbit below 

the cloud the aircraft banked at an angle of 60° with a solar zenith angle of 
72.5°. This corresponds to scattering angles between approximately 16° and 
131°, the largest angular range available in this study. Cloud top was measured 
to be at 9.75 km with cloud base at 8.5 km. This study considers measurements 
at wavelengths of 0.87 µm and 1.61 µm. The considered orbit was orbit number 
1. 

8.5 Single Crystal Clouds 

In this section a single cloud layer will be modelled where all of the constituent 
crystals are identical in size and shape. This is not at all realistic but such a 

consideration will give a good indication of whether a single crystal geometry can 
be used as a representative geometry for a given set of radiance measurements. 
The dimensions of the crystals were given in section 8.3. 

Three wavelengths are used in the calculations presented in this chapter, 
A=0.55 pm, A=0.87 µm and A=1.61 pm. The refractive indices for ice at 
these wavelengths are taken from Warren [1101. The values are n,. = 1.3110 

and n; = 3.11 x 10-9 for A=0.55 pm, nr = 1.3037 and nz = 2.65 x 10-7 for 

A=0.87 pm andnr=1.2889andni=3.372x10-4 forA=1.61µm. 

8.5.1 Flight A435: Comparisons at A=0.87 µm 

Figure 8.4 shows the single crystal cloud calculations for the hexagonal column, 
the droxtal, the polycrystal and the APF compared to measured radiances from 
flight A435 at A=0.87 µm. Calculations for both GO and RTDF are shown 
for the crystal geometries. In the interests of clarity, the comparisons are offset 
for each case by a factor of ten. The best fit values for the optical depth 'r for 
the GO and RTDF results are given in table 8.1. The APF result corresponds 
to a value of r=0.78 which agrees with previously published work [90}. 

The first thing to notice is that the improvements that the RTDF model provides 
over GO are still apparent following a radiative transfer treatment. This justifies 
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Figure 8.4: Radiative transfer calculations using GO and RTDF for the hexag- 
onal column, the droxtal, the polycrystal and the analytic phase function com- 
pared to radiance measurements from flight A435 at A=0.87 µm. Model 
radiances are generated using best fit values of the optical depth, r. 
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Crystal Geometry T (GO) T (RTDF) 
Hexagonal Column 0.65 0.65 

Droxtal 0.75 0.65 
Polycrystal 0.49 0.49 

Table 8.1: Best fit values for the optical depth -r found from the GO and RTDF 
results given in figure 8.4. 

the use of the RTDF model in multiple scattering calculations and confirms that 
RTDF effects are not washed out. 

The APF result in figure 8.4 is equivalent to the comparison shown in figure 4 

of Baran et at. [90]. The result is near identical which verifies that the radia- 
tive transfer method used here, different from that used in [90], is functioning 

correctly. The comparison between the APF and flight A435 in this case is 

reasonably good across the angular range. Of particular interest is the constant 
radiance exhibited by the APF above a scattering angle of 95°. This same be- 
haviour is clearly visible in the measured radiances from around 90° onwards 
and will be referred to repeatedly in the coming discussion. 

The GO polycrystal result in figure 8.4 is equivalent to the comparison shown in 
figure 8 of Francis et al. [89}. The result compares well with the published work 
indicating that the procedures employed for handling phase functions generated 

using codes based upon the Macke GO code are correct. The GO polycrystal 

result does not compare well to the measured radiances except between 30° 

and 50°. The shape of the profile across the rest of the angular range is quite 
different. The RTDF polycrystal result smooths the halo totally, producing a 
more realistic featureless plot. The overall shape of the RTDF polycrystal profile 
still does not provide a very good fit, although it is much improved with the halo 

removed. The polycrystal produces high side scattering and underestimation of 
the measured radiances above 95°. This is in large contrast to the APF. 

One might expect the hexagonal column to provide very good comparisons to 

measured radiances, given the prevalence of the geometry in cirrus and the 
fact that crystals based upon the geometry such as rosettes that are also very 
common scatter in a similar manner. The result in figure 8.4 shows that this 
is not the case. The halos are much too prominent in the calculated radiances, 
perhaps indicating that the chosen column is too large. The scattering above 
90° does not become constant or show any movement towards such behaviour, 
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something that can also be seen in much smaller hexagonal columns (for example 

section 3.5.2 figure 3.14) which shows that a smaller hexagonal column would 

not improve the comparison across the angular range. There is reasonably good 

agreement between 50° and 90°. The result suggests that the hexagonal column 

on its own is not a good representative geometry for the present case. 

A constant behaviour as seen in the APF above 95° is very difficult to reproduce 

using the types of crystal geometries that are found in cirrus in conjunction 

with GO based methods. The question of increasing scattering above 90° can be 

addressed in part using a droxtal. The droxtal result in figure 8.4 shows a steady 

rise in scattering above 80°. This provides the rare case of the phase function 

increasing in the scattering region immediately above 90°. This suggests that 
droxtal-like geometries may be useful in modelling cirrus. This will be discussed 

further in section 8.7. Overall, the droxtal does not compare well with flight 

A435 at this wavelength and is a worse fit than the hexagonal column when X2 

values are compared. The discrepancy at side scattering is large, although the 
halo regions are likely to improve if the droxtal is used to represent very small 
crystals which exhibit much less pronounced halos. 

: eometry Ir (GO) Ir (RTDF) Ir (RTDF dist=0.1) Ir (RTDF dist=0.2; 
Gros48 0.70 0.55 0.55 - 
Ros52 0.85 0.65 0.60 0.60 
Ros172 0.60 0.70 0.65 0.65 
SDC-v4 0.70 0.65 0.65 0.65 

Table 8.2: Best fit values for the optical depth r found from the GO and RTDF 
results given in figure 8.5. 

Figure 8.5 is a continuation of figure 8.4, considering the same flight data but the 

geometries of Gros48, Ros52, Ros172 and SDC-v4. The best fit values of r are 
given in table 8.2. The concept of distortion of crystal facets to simulate rough 
surfaces is introduced in this figure to illustrate the effect that it has in further 

smoothing halos and to investigate if such smoothing can assist in correcting 
the underestimation of scattering above 90°. During each ray-facet interaction, 

the facet normal is tilted randomly about its original direction. The tilt angle 
is calculated randomly to be between 0 and 01"I where Bd °x is defined using 

equation 8.3. In this equation, d is the distortion value that is quoted in the 
figures and is always between 0 and 1. More information is available in Macke 

et al. [23]. 
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Figure 8.5: Radiative transfer calculations using GO and RTDF for Gros48, 
Ros52, Ros172 and SDC_v4 compared to radiance measurements from flight 
A435 at A=0.87 µm. Model radiances are generated using best fit values of 
the optical depth, T. 
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The GO results in figure 8.5 are all similar. The clearest visible difference 
is in the strong 46° halo which is smallest for Gros48. The difference arises 
because the pure halo ray paths are less able to exist in the compact Gros48 

structure. The large GO halos result in poor comparisons to the flight data, 
the X2 minimization treatment ensuring that the scattering at larger angles falls 

well below the measured radiances. 

The RTDF results allow a more clear distinction between the geometries. The 

use of the RTDF model for Gros48 has a large effect on the GO profile. It 

exhibits a much improved 22° halo treatment with complete smoothing of the 
46° halo. Side scattering is significantly increased and although this means 
that above 90° the result is close to that of the flight data, the shape of the 
profile across a wider angular range is incorrect. Although the results presented 
are best fit comparisons, to consider how appropriate a given phase function is 
to reproducing the radiance measurements over individual angular ranges the 
shape of the scattering in those regions is the main indicator. It should not go 
unnoticed then that the RTDF result for Gros48 reproduces the shape of the 
scattering above 110° reasonably well. Introducing mild distortion of 0.1 has 

some further effect on the 22° halo. However, the shape of the halo has passed 
at this level of distortion the shape of the radiance measurements, suggesting 
that further distortion would not improve the comparison. This was indeed 
found to be the case on further investigation but the increased distortion plots 
are omitted in the interests of clarity. 

Ros52 is a less compact and larger crystal than Gros48. This means that the 
lengths of RTDF effective slits are likely to be longer and so deflections will be 
less pronounced. This is illustrated in the RTDF Ros52 result where the halos 
are still visible. However, the reduction in the halos results in a better balance 
compared to GO giving good agreement between 50° and 90°. The shape of 
scattering above 90° is still incorrect, not being strong enough compared to 
the measured radiances. The introduction of distortion does not affect the 
scattering above 50° at all. The halos are further smoothed, a distortion value 
of 0.2 reducing the 22° halo to a small hump and the 46° halo to nothing. The 
shape comparison in the halo regions is still not good but further distortion 
leads to poor shape agreement near 20°. In all of the RTDF cases for Ros52, 
above 90° the profile is similar to that of the polycrystal. 
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Ros172 is a large crystal of simple structure. The RTDF behaviour of the 

crystal is seen to be close to the GO result in figure 8.5. The overall shape of 
the profile differs little from the Ros52 results, particularly once facet distortion 

is introduced. One notable difference is the enhanced halos because of the 
increased crystal size and simplicity. The similarities to Ros52 result are to 
be expected given the similarity in the single scattering properties of the two 

crystals, as discussed in section 6.5. 

The SDC crystal provides results that are very similar to Ros52 and Ros172. 

The aim of the SDC crystals was to create a 3D spatial crystal that would be 

a better fit than Gros48 and Ros52 above 90° by increasing side scattering. 
When comparing the SDC phase function to that of a hexagonal column, some 
increase in side scattering is seen but it does not translate to a significant change 
in profile shape in the radiative transfer results, as shown in figure 8.5. Given 

the similarity in the radiative transfer result, the SDC crystal can therefore be 

replaced by one of Ros52 or Ros172. 

The results in figures 8.4 and 8.5 have shown that using crystals whose geome- 
tries are based upon hexagonal columns leaves two main problems in comparing 
to this flight data case. The first is the halo region, although this can be rectified 
to some extent using facet distortion or by using other methods for smoothing 
the halos which will be mentioned in section 8.6. The second problem is the 

underestimation of scattering above 90°. Referring back to the APF result, if 

one were able to introduce a constant radiance above 90° there would be a sig- 
nificantly improved comparison to flight A435. As will be shown in the coming 
sections, this feature is not restricted to this one cirrus case at this wavelength. 

8.5.2 Flight A435: Comparisons at A=1.61 µm 

The results in section 8.5.1 showed that the improvements offered by RTDF 

over GO persist following radiative transfer calculations. As a result, for the 

rest of this chapter the GO results will be omitted. 

Figure 8.6 provides comparisons to flight A435 measured radiances at 
A=1.61 µm. The geometries considered are Gros48, Ros52, Ros172 and the 
droxtal. The best fit values of r are given in table 8.3. Overall, the results are 
very similar to the A=0.87 µm results in the last section for each geometry. 
The absorption introduced at A=1.61 µm has a small effect in restricting the 
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Figure 8.6: Radiative transfer calculations using the RTDF model for Gros48, 
Ros52, Ros172 and the droxtal compared to radiance measurements from flight 
A435 at A=1.61 pm. Model radiances are generated using best fit values of 
the optical depth, T. 
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al Geometry Ir (RTDF) ,T (RTDF dist=0.1) Ir (RTDF dist=0.2 
Gros48 0.50 0.50 - 
Ros52 0.80 0.75 0.75 
Ros172 0.80 0.75 0.70 
Droxtal 0.55 0.55 - 

Table 8.3: Best fit values for the optical depth T found from the GO and RTDF 

results given in figure 8.6. 

halo strength, most noticeable in the Gros48 result where the best fit RTDF 

result compares better across the angular range with the measured radiances in 

terms of absolute radiances. The undistorted RTDF Gros48 result gives good 

shape and scale agreement around the 22° halo and above 110°. After distor- 

tion, the halo smooths further and the agreement worsens. In both cases the 

scattering pattern is still clearly incorrect between 30° and 110°. The shape of 
the profiles do not improve significantly for any of the other three geometries 

with respect to the comparisons at \=0.87 µm. Distortion is used for the first 

time in the case of the droxtal but it does not improve the comparison and if 

taken to larger distortion levels actually harms the comparison. 

The similarity between the results for Ros52 and Ros172 is again visible in 
these results. As a result of this, it is sensible to stop using Ros172 as a candi- 
date crystal. The results will continue to closely resemble those from Ros52 so 
producing no scientific benefit. 

8.5.3 Flights A189: Comparisons at A=0.55 pm 

The calculations in the preceding sections assumed an input radiance of 1 and 
then used a calculated cloud top radiance as a scaling value. The given value 
was supplied with the data. Such a value was not available for all of the cases be- 

cause when some of the measurements were taken it was not possible to produce 
a valid radiometric calibration for the radiometer. An alternative mechanism 
is employed in the remaining cirrus cases, as described in Francis [87]. A scat- 
tering angle is selected at which all of the model radiances are scaled to the 

measured value. At this scattering angle, an arbitrary value of unity is used 
for all radiances. The scattering angle is chosen by inspecting the model phase 
functions to be considered and identifying the scattering angle at which they 

exhibit the most agreement. This system means that the figures that follow 
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Figure 8.7: Radiative transfer calculations using the RTDF model for 
Gros48 and Ros52 compared to radiance measurements from flight A189 at 
A=0.55 µm. 

investigate how the radiances change with scattering angle (the shape of the 

profiles) rather than comparing absolute radiances. The best fit optical depth 

is not as important a quantity in this system because the variation of radiance 
with scattering angle is not very sensitive to changes in the optical depth. Given 

clearly defined halos, a best fit optical depth will he unrealistically high com- 
pared to the values considered in the case of flight A435. In each figure that 
follows using this system, the optical depth is kept at a constant value. This 

will not hinder the search for answers to the questions raised in the previous 
sections. 

Due to the solar zenith and aircraft orbit banking angles during the orbit in flight 
A189 that provides the available data, the scattering angle range is significantly 
lower when compared to the cirrus case discussed in the preceding sections. The 
data available from flight A189 were measured at a wavelength of A=0.55 µm. 
The radiances were scaled to unity at a scattering angle of 60°. Figure 8.7 shows 
comparisons to the measured radiances using RTDF for Gros48 and Ros52. The 

optical depth is kept constant at r=0.50. Following strong facet distortion to a 
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value of 0.4, Ros52 gives reasonable agreement above 50°. The same strong facet 

distortion yields very good agreement for Gros48. However, further study was 

not pursued in this case because of the radiance measurements being confined 
to an angular range of approximately 30°-80°. It is highly likely that if a wider 

angular range were available the Gros48 result would fail above 90° as shown in 

earlier sections. Using such strong distortion, it is possible with Gros48 to gain 

similar best fit agreement to that shown in figure 8.7 over the same restricted 

angular range using flight A435 data. This emphasizes the need to study as 

wide a range of scattering angles as possible when studying observation data. 

8.5.4 Flight A802: Comparisons at A=0.87 µm 

Given the importance of studying wide angular ranges, the next cirrus case to 

consider is flight A802 which provides data with a wide angular range. It is 
important to note that the results from flight A802 are very similar to A435. 
This is shown in figure 8.8 where the A=0.87 pm and the A=1.61 pm data from 

the two flights are plotted together, scaled to unity at a scattering angle of 45°. 
The overall shape agreement is good for both wavelengths except in the halo 

regions, forward of 30°. It would appear that in contrast to flight A802, flight 
A435 had a small halo feature present. This is visible in the results from both 

wavelengths. Given that this indicates a difference in the cloud composition, it 
is interesting to note that the constant behaviour above 90° is present for both 

cirrus cases. One thing to note is the wide variability of the A802 A=0.87 pm 
plot. Though not desirable, this does not prevent the important trends being 

observed. As in the case of the A435 and A189 flights, the data is binned in 1° 

steps. It is possible to gain a much smoother trend using a larger bin step but 
for consistency the value of 1° is used throughout this chapter. 

Figure 8.9 shows comparisons to flight A802 at A=0.87 µm for Gros48, Ros52, 
the droxtal and the APF. The results are scaled to unity at 45°. The optical 
depth is kept constant at 7- = 0.90. The distortion effects are not included here 
to enhance the figure clarity. The effect that facet distortion has is clear from 

the previous cases. 

The comparisons of Gros48 and Ros52 differ little from the equivalent flight A435 
comparison except that the lack of a halo signal in the flight data makes the 
model halos stand out. It is interesting to note that if the halos were sliced away, 
like the RTDF polycrystal result compared to equivalent GO result in figure 8.4, 
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then the comparison would be much improved. Strong distortion would help in 

this matter. The lack of constant behaviour above 90° persists. The droxtal 

comparison again differs little from the equivalent flight A435 comparison. 

The APF result offers by far the best comparison and is a closer fit than in the 
equivalent flight A435 case. The asymmetry parameter in this APF result is 
taken to be g=0.70 which is lower by 0.10 when compared to the flight A435 

comparisons. The lack of the halo in the flight A802 data is the reason for the 
improved comparison, matching better the featureless APF. 

8.5.5 Flight A802: Comparisons at A=1.61 pm 

Figure 8.10 shows A=1.61 µm comparisons to flight A802 for Gros48, Ros52 
and the droxtal. The radiances are scaled to unity at 45°. The optical depth 
is kept constant at r=0.50. At this wavelength it is easier to see the that the 
A802 comparisons resemble the equivalent comparisons for flight A435 data and 
how the lack of any halo peak in the measured radiances harms the comparison 
with the hexagonal column based crystals. 

It is clear from these results that none of the geometries that have been presented 
are good representative geometries for modelling the cirrus cases considered in 
this chapter. The indication from the results is that no single geometry will be 
able to model cirrus accurately using the single geometry cloud model. 

Interestingly, a combination of the three geometries used in figure 8.10 would 
provide a reasonably good shape comparison across the angular range. Gros48 
smooths the halos due to its compact nature and large RTDF deflections and 
the comparison below 50°, though not correct, is the best available without 
large amounts of facet distortion. Between 50° and 90° the result from Ros52 
that so closely resembles an individual hexagonal column provides good shape 
comparison. Immediately above 90°, the only geometry that has been consid- 
ered that provides a levelling or an increase above 90° is the droxtal. Although 
it exhibits a steady increase, a deviation from geometries that are based upon 
hexagonal columns such as a droxtal is essential in recreating this because even 
strong facet distortion does not alter the profile of a hexagonal column signifi- 
cantly in this angular range. Of course it is not possible to patch together phase 
functions to construct this ideal comparison but it may be that it is possible to 
use combinations of geometries and crystal sizes to better model the radiative 
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Figure 8.10: Radiative transfer calculations using the RTDF model for Gros48, 
Ros52, and the droxtal compared to radiance measurements from flight A802 
at A=1.61 µm. Radiances are scaled to unity at 45°. 
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properties of cirrus. The first step towards this is to consider size distribution 
functions. 

8.6 Size Distribution Functions 

A cloud of ice particles where every constituent member is identical is not very 
realistic. Ideally, a range of geometries is required that covers a range of crystal 
sizes. This makes the cloud very complicated and introduces many variable 
factors. To maintain the simplicity of the case initially, this section will consider 
a cloud of crystals of identical geometry but that are scaled over a range of sizes 
using a Size Distribution Function (SDF). 

The size distribution functions used in this study come from two sources. Fu 
[142] attempted to parameterize the solar radiative properties of cirrus by com- 
bining IGO results with 28 size distribution functions. Mitchell et al. [143] 
provide a further two size distribution functions. 

To scale geometries over a range of sizes, it is necessary to define the crystal size 
in some way. This is achieved by using the maximum dimension. The concept 
originates from the maximum dimension possible in a 2D projection of the shape 
of the crystal in a given orientation. It is used to classify particles using images 
of crystals taken by in-situ probes. In this case where phase functions generated 
by randomly oriented crystals are being considered, the maximum dimension is 
taken to be the maximum distance within the crystal. This is the same as the 
definition that was used in section 6.2. 

All 30 size distribution functions used in this chapter have 24 size bins con- 
sidering values of the maximum dimension from D=3 µm to D= 3100 µm. 
For each bin a value for the size distribution function is given indicating how 
strongly represented crystals of that particular size should be within the cloud. 

In utilising the size distributions, the phase functions and accompanying data 
for all of the 24 crystal sizes need to be created. This information can then 
be integrated over the size distribution function giving a representative phase 
function for the cloud. This representative phase function can be used as the 
input for the radiative transfer method described in section 8.1. 

It is possible using crystal geometries within a size distribution function to cal- 
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SDF Ros52 Gros48 
17 5.413 13.051 
24 6.345 15.301 
25 6.499 15.676 
7 7.339 17.696 
26 8.719 21.038 
20 9.097 21.940 
14 12.327 29.747 
21 13.179 31.795 
30 14.961 36.137 
6 15.168 36.588 
5 17.336 41.818 
27 20.415 49.293 
8 22.789 54.990 
16 25.937 62.577 
28 26.527 64.050 
29 27.578 66.527 
19 27.633 66.719 
9 30.421 73.430 
4 30.557 73.758 
22 34.203 82.548 
18 37.033 89.394 
2 39.412 95.142 
10 41.434 99.991 
23 53.683 129.606 
11 53.901 130.142 
3 54.394 131.331 
13 56.183 135.658 
1 56.244 135.793 
12 58.146 140.406 
15 1 66.099 1 159.664 

209 

Table 8.4: Calculated values of Dc for the crystals considered over the 30 size 
distribution functions used in this study. The table has been sorted to give 
ascending values of De. Values shown in bold that are underlined are those 
chosen as representing a range of De values for the crystal in question and so 
considered as a candidate best fit De. 

culate a value known as the mean effective diameter, De. It links the Ice Water 
Content (IWC) of the cloud to the geometry of the crystals. The definition 

used here is taken from Baran et al. [1441. An equivalent definition of a mean 
effective radius could be used that differs only by a factor of two [88]. The mean 
effective diameter is given by equation 8.4. 
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=3 
V(D)n(D)dD 

-3 
IWC 

De 
2f P(D)n(D)dD 2 piceAc 

(8.4) 

In equation 8.4, V (D) is the volume of a given crystal, P(D) is the projected area 
of a given crystal (in the case of random orientations, this is an average value), 
D is the maximum dimension of a crystal and n(D) is the size distribution 
function as detailed above. The mass density of bulk ice is given by pi,, and is 

set to unity. It is included to ensure that the units in equation 8.4 are consistent. 
A, is the total cross sectional area of ice crystals per unit volume. 

Table 8.4 provides the values of the mean effective diameter, De, using Gros48 

and Ros52 with the 30 size distribution functions considered in this section. 
Note that Gros48 gives higher values of De than Ros52. This is due to Gros48 
being a more compact crystal. If one compact crystal and one open rosette with 
the same volume are considered, the open rosette will have a larger average 
projected area so leading to lower values of De as defined above. 

In the following, the reconstructed ice analogue geometries Gros48 and Ros52 
are considered in conjunction with the thirty size distribution functions. Five 
of the size distribution functions are chosen for each crystal to represent the full 
range of values calculated for De. A best fit value of the optical depth using the 
A=0.87 µm channel is found for all five size distribution functions applied to 
each crystal. These values are then applied to the A=1.61 µm channel to obtain 
the best fit value of De. There is no scientific reason for not iterating through 
all 30 size distribution functions to find the best fit De but the computer time 
involved could not be justified for this investigation. 

Figure 8.11 shows the radiative transfer results for Ros52 (top) and Gros48 
(bottom) using the selected size distribution functions at A=0.87 µm compared 
to flight A435. Each data set represents a best fit value of the optical depth. 

In the case of Ros52, one can see that the size distribution function that is used 
has an impact upon the shape of the radiative transfer result. Most noticeable is 
the emergence of the halo features for SDF15, which corresponds to the largest 
effective mean diameter. This is not surprising because at larger crystal sizes 
the smoothing of halos by the RTDF model will begin to degrade so producing 
clearer sharper halos. In general, the halos are smoothed significantly when 
compared to the radiative transfer results from a cloud of original (single size) 
Ros52 crystals (compare to figure 8.5) and the general treatment in the halo 
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Figure 8.11: Radiative transfer results for a range of size distribution functions 

applied to the crystals Ros52 and Gros48 compared to radiance measurements 
from flight A435 at a wavelength of A=0.87 µm. 
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Figure 8.12: Best fit De radiative transfer calculations for flight A435 at a 
wavelength of A=1.61 µm. 

region is much improved as a result. The greatest deviation from the radiance 

measurements comes above 90° as with the single size Ros52 results. The under- 
estimation of scattering above this angle is clear and indicates that this crystal, 
if used in a scheme to represent the crystals within the cloud sampled by flight 
A435, must be used in conjunction with other crystal geometries. 

In the Gros48 result the halos can again be seen to emerge as the effective 

mean diameter increases. Note however that for this crystal this only begins to 

really turn into a peak at a much larger value of De. Using the size distribution 
functions improves the shape comparison with the measured radiances below 50° 
(compare to, for example, figure 8.5). Above this angle the side scattering is still 
too high. Above 110° the profiles do level off somewhat but not as noticeably 
as in the cloud of one size Gros48 crystals. One could not say confidently 
that the shape of the profiles in this angular range do replicate the radiance 
measurements well without comparisons at higher scattering angles but the 

comparison does seem better in this range than for any of the Ros52 results. 

The best fit values of the optical depth obtained in figure 8.11 have been applied 
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to the A=1.61 µm results. From this, a x2 minimization technique was applied 
to assess which size distribution function provides the best fit and hence find 

a best fit value of De. Figure 8.12 shows the best fit profiles for Gros48 and 
Ros52. An example APF result is plotted for comparison. 

One finds from the information presented in figure 8.12 a best fit value of 
De = 66.1 µm for Ros52 and De = 159.7 pm for Gros48. Both these results 
correspond to size distribution function 15. Unfortunately, both these De val- 
ues are the highest possible given the size distribution functions used for these 
two crystals. The value is therefore not reliable as a best fit because it cannot 
be proved that X2 is a minimum. A likely explanation for this behaviour is that 
if Gros48 and Ros52 are not good fits to the aircraft measurements, the value 
of De is likely to become as large as possible. This is because at A=1.61 µm, 
larger crystals will lead to greater absorption and increasingly featureless phase 
functions which are likely to provide a better fit. 

The APF is seen to give a reasonable result above 60° for the shape of the 
angular distribution of the measured radiances. It is in this region that the shape 
of the Ros52 result begins to deteriorate, after appearing to be a reasonable 
fit to both the APF and the measured radiances up to 50°. In contrast, the 

shape of the Gros48 profile is poor up to 50° and acceptable between 50° and 
90°. The intensity discrepancy seen between both profiles and the radiance 
measurements in regions where the shape appears reasonable can be due to the 

value of the optical depth used. More importantly, the intensity discrepancy 

shows that at this best fit value of the optical depth the balance of scattering 
is incorrect. If one had a result from radiative transfer calculations for a cloud 
model which gave better shape agreement across the whole angular range, the 
intensity discrepancy would disappear. As has been the case throughout this 
chapter, scattering above 90° does not level off for the ice analogue geometry 
reconstructions. 

In this section it has been shown that using size distribution functions can 
change the shape of radiative transfer results and have a large effect on halo 
features, making them more realistic. Using Ros52, one can obtain a very good 
shape fit for flights A435 and A802 below a scattering angle of 90° but it is still 
not possible to resolve the problem of the underestimation of scattering above 
90°. 
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Figure 8.13: Radiative transfer calculations using the RTDF model for a geom- 
etry ensemble (see text for details) compared to radiance measurements from 
flight A435 at A=0.87 µm. Model radiances are generated using best fit values 
of the optical depth, r. 

8.7 A Combined Size and Shape Distribution 

Function 

The preceding sections have failed to provide a cloud model that, accurately 

represents the aircraft radiance measurements. It is not realistic to assume that 

the cloud represents a size distribution of only one particle shape that is equally 
distributed throughout the whole cloud. The next level of complexity is to utilise 
a size and shape distribution function. Ensembles of crystals were created by 

applying different geometries to the size distribution function bins. For example, 
due to Gros48 being compact in nature it could be used to represent smaller 
crystals. Ros52 being a more open rosette could represent intermediate sized 
crystals. Large crystals could be represented by the aggregate crystal proposed 
by Yang and Liou [1271, SDCv4 or an 8-arm bullet rosette. 

An example ensemble result is shown in figure 8.13 that was generated using 
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SDF15. In this case, the first four size distribution bins were represented by 
droxtals, the largest having a maximum dimension of 25 µm. The remaining 
twenty bins were represented by the geometry of Ros52. The introduction of 
the droxtal changes the profile at larger scattering angles significantly, helping 

to level off the profile above 90°. The shape agreement across the angular 
range is still not sufficient to state that this ensemble satisfactorily represents 
the crystals in the cirrus case considered but there is a significant improvement 

above 60° compared to, for example, the results in figures 8.4,8.5 and 8.11. In 
figure 8.13, retrieved values of r=0.78 for the APF and of r=0.60 for the 

ensemble were found. 

Many other combinations of crystals with different size distribution functions 
have been considered but it was not possible to improve significantly on the re- 
sults presented in the preceding sections. The main problem remained flattening 

out the scattering above 90°. Using the droxtal to represent smaller crystals 
which provides a higher radiance contribution in this angular region was the 

only method found to address the issue. However, as shown in figure 8.13, use 
of the droxtal leads to discrepancies at smaller scattering angles. 

There are two points that should be considered at this stage. The first point 
is that apart from the droxtal, all of the crystals studied here are based on 
pristine hexagonal columns. This leads to all those scattering patterns being 

related so that large variations in the radiative transfer results are unlikely, 
even using the RTDF model. Some variation in geometry, like the introduction 

of the droxtal to the ensembles, is required to model the scattering correctly 
at all scattering angles. This does not mean that the ice analogue crystals 
themselves are not realistic cirrus geometries necessarily. It is likely that the 
cloud modelling requires a more sophisticated approach, something that will be 
discussed in the next section. 

The second point to make is that all of the size distribution functions are 
weighted by number towards smaller crystals. In the ensembles attempted in 
this investigation the radiative transfer results were seen to be dominated by the 
geometry that was used in the smallest size bins. In the case of figure 8.13, the 
ensemble is bound to fail if a droxtal is not a good representation of small crys- 
tals in all of the first four size bins. Further information regarding the nature 
of small crystals in cirrus is therefore most desirable. 
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8.8 Discussion 

Perhaps the most important result from this chapter is that the improvements 

made by the RTDF model over the GO model in single scattering results are not 
smoothed out after the model is used in conjunction with a radiative transfer 

code. This is an important, although expected, result. 

The results in section 8.5 show that a single representative geometry for cirrus 
is unlikely ever to be found. The examples selected were able to reproduce the 

aircraft radiances over limited ranges of scattering angles but were not suitable 
as generally representative geometries. This illustrates the importance of sam- 
pling as large an angular range as possible when conducting observations. More 

complex models of clouds need to be constructed to replicate flight data over 
wide angular ranges. The size distribution functions in section 8.6 have shown 
that unrealistically strong halos can be removed if the size distribution functions 
lean by number to the smaller size bins where halos are naturally smoothed out. 
Such size distribution functions, although realistic, cause further problems in the 
creation of clouds with varying crystal size and geometry because the scattering 
of the geometry in the smallest few bins tends to dominate. Unfortunately the 

values of the mean effective diameter De found using the ice analogue geometry 
reconstructions and the size distribution functions were not found to be reliable 
due to the value becoming very large, although it is likely that this was due to 
the fit to the aircraft data being unsatisfactory. 

The main problem in modelling the aircraft radiances was the inability to ob- 
tain a correctly shaped scattering profile above 90° which, it would appear, 
cannot be rectified using crystals that use pristine hexagonal columns as their 
base. It should be noted that this finding relates only to the test and recon- 
structed geometries and should not be taken as any conclusion about the actual 
geometries of the ice analogue crystals. The constant radiance above 90° that 
is replicated well by the APF is seen in both flights A435 and A802 at two 

wavelengths and so is not isolated to an individual cirrus case. The formulation 

of the APF at these scattering angles is itself based upon POLDER [1451 data 

which provide further observational evidence for such behaviour [90). It is clear 
from the comparison of the two sets of aircraft data that the clouds in question 
were different in terms of structure or crystal content to some degree because 

of the differences in the 22° halo region. Despite this the constant radiance 
feature persists at scattering angles above 90°. The question of how this con- 
stant radiance occurs is important because it suggests a deviation, somewhere 
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in the single or multiple scattering processes, from the scattering expected from 

hexagonal based crystals. It is important to remember that the phase functions 

for hexagonal columns calculated using IGO do not exhibit constant radiance at 

these scattering angles, for example figure 4.6 in section 4.4. Given the results 

presented above, it does not seem sensible to speculate about the explanation 
for this discrepancy between observation and calculation at this stage. 

The investigation in this chapter could have been expanded to fill a thesis by 

itself. There are many combinations of crystal sizes and geometries that could 
be worth exploring. If more time and resources were available specifically to 

expand the work in this chapter, there are some steps that would be taken to 

attempt to improve the comparisons to the measured radiances. For example, 
in all of the above modelling a single cloud layer has been used. Using multiple 
layers could help to create a more complete model of a cloud. Within each layer 

or size bin it may also be beneficial to consider a range of crystal geometries, 

particularly in the lower levels of a cloud where large complicated crystals are 
likely to be found. This could be easily achieved by adjusting the radiative 
transfer code to randomly select which geometry it should use from a list of 

appropriate geometries in a given section of the cloud for each photon-particle 
interaction. 

Macke [23] suggested that discrepancies between the modelled and observed 

cirrus radiative properties are most likely due to an inaccurate treatment of the 

ice crystals single scattering properties. This is true, but it is clear from this 

chapter that it is necessary to combine accurate single scattering calculations 
for a wide range of representative geometries with well constructed cloud models 
to accurately replicate observations across a wide angular range. 

It should be noted that facet distortion has been used in several of the figures in 

this chapter as a method of smoothing the halo regions. Halos can be smoothed 
in many ways such as simulating rough crystal surfaces by applying facet dis- 

tortion (an approximation in itself), introducing hollow features to the crystals, 
distorting the geometries of the hexagonal columns and implementing size dis- 

tribution functions. In reality, all of these are likely to exist in cirrus and so 
should be considered when modelling clouds. 
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Chapter 9 

Conclusions 

In the preceding chapters, a new model of light scattering applicable to dielec- 

tric faceted objects has been introduced. The new RTDF model combines ray 
tracing with diffraction on individual facets while maintaining the low compu- 
tational expense of standard GO. The current 3D implementation is built upon 
a 2D test model for long columns (7,81 and uses a system of effective slits to 

make it possible to consider a crystal facet of arbitrary shape. By introducing 
diffraction at individual facets, a physical optics correction is applied to stan- 
dard GO that has been derived using exact theory calculations for diffraction 

at a half-plane. 

The model is applicable to all crystals that fall in the size applicability range of 
the standard GO model. The introduction of a physical optics correction allows 
that size applicability range to be extended towards smaller crystals, although 
it is difficult to quantify a lower size limit. It has been shown that the model 
provides equally acceptable results when applied to crystals below the standard 
GO size range, although size parameters as low as twenty that would allow 
comparisons to near exact methods such as T-matrix are considered unreliable. 
It has also been shown that as the crystal size increases, the RTDF model 
approaches the GO result asymptotically. 

Throughout this thesis, the focus has been the application of the model to the 

problem of the radiative properties of cirrus ice crystals. The hexagonal nature 
of ice crystal geometries coupled with the size applicability of the model makes 
it very difficult to verify the results that the model produces. However, the 
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model has been tested against SVM and shown to offer significant benefits over 
standard GO. Comparisons to IGO at visible and near infrared wavelengths 
have been favourable, especially considering the difference in the computational 
expense associated with the two models. 

Comparisons to light scattering patterns created by an ice analogue hexagonal 

column in the laboratory have shown very good agreement. The RTDF model 
offers the possibility of creating 2D scattering patterns that represent scattering 
on a screen. Unlike GO, the new model can reproduce fixed crystal orientation 
results in this form as well as averaged random orientations. This makes the 
model potentially useful in particle characterization. It has been shown that 
different crystal geometries exhibit unique trends and characteristics that can 
be used to identify them. Interestingly, studying the RTDF model using this 
form of results highlighted that the new model not only spreads the direction of 
rays when compared to GO but it also allows some ray paths to exist that are 
not present in GO. It is important to note that possible particle characterization 
applications are not restricted to atmospheric science as there are many possible 
industrial applications. 

The model has been applied to a range of crystal geometries, illustrating the 
flexibility of the model. Several interesting points arose from these geometry 
studies that are directly relevant to the study of cirrus. For example, it was 
shown that hexagonal columns with indentations at the ends, also referred to as 
hollow columns, can potentially explain rare small angle halos as well as act as 
a contributory factor to the lack of observed 22° and 46° halos. It was observed 
that the inner edge of the 22° halo exhibited a gradual change in the degree of 
linear polarization with increasing indentation. This indicates that polarimetry 
could potentially be used to identify levels of crystal deformation. 

It has been suggested that small crystals in cirrus resemble the droxtal geometry 
[121]. Crystals below 50 pm are often classified as ice spheres because of a lack 
of resolution when using in-situ particle instruments. It was shown that not 
only does a droxtal exhibit large differences from a sphere in the phase function 
but that the degree of linear polarization bears little resemblance. This means 
that using ice spheres in models of cirrus clouds could harm the accuracy of 
climate modelling. It also provides scattering angles at which the two can be 
discerned. 

Bullets and bullet rosettes were considered and the previously known result 
that a bullet rosette has averaged random orientation scattering properties that 
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are very close to its constituent bullet was confirmed. The dramatic difference 

created in the scattering properties of a bullet rosette adopting preferred orien- 
tations compared to averaged random orientations as it falls through a cirrus 

cloud was illustrated. Questions were posed over the modelling of ice aggregates, 

suggesting that further work in this area would be advantageous. 

The model was also applied to three reconstructions of ice analogue geometries. 
The reconstruction of ice analogue geometries makes comparisons to laboratory 

measurements of more complex crystals a possibility. Although such compar- 
isons have not yet been made, the reconstructions have allowed comparisons to 

maximum dimensions, projected areas and volumes determined from CPI data 

from the actual ice analogue crystals. It was observed that when the CPI was 
in good focus, the agreement was to within a few percent. Interestingly, the 

germ rosette Gros48 which is highly nonspherical appears quasi-spherical when 
photographed by the CPI. This further emphasises the need for better under- 
standing of the geometries of small crystals in cirrus, especially given that the 

scattering properties of Gros48 were found to be quite different from a sphere 
or a droxtal. 

The model was compared to aircraft radiance measurements provided by the 
Met Office. A series of crystal geometries including the ice analogue geome- 
try reconstructions were assessed as to their suitability as representative cirrus 
crystal geometries. It was found that none agreed with the observation data 

over all scattering angles. A more sophisticated model of a cloud involving size 
distribution functions and multiple geometries was shown to be required but a 
successful model of this form was not obtained. Even so, it was seen that there 

were two main areas of disagreement between observations and crystals of a 
hexagonal nature. The first was the halo region which was overestimated in the 

model results. This is not of concern however because the use of realistic size 
distribution functions which are weighted towards smaller crystals where halos 

are less prominent smoothes the halo significantly. Several other possible expla- 
nations for the lack of halos were provided. The second area of disagreement 

was above 90° where two different cirrus cases exhibited a constant radiance. 
The phenomenon was observed in two wavelength channels for both cases. This 

constant radiance behaviour is commensurate with the analytic phase function 

which agrees with cirrus observations well. It was found that no hexagonal based 

crystal could replicate this behaviour, even by assuming rough facets. The same 
is true of results for hexagonal columns calculated using IGO. A droxtal was the 
only geometry that was found to offer anything other than a gradual decrease 

above 90° but its increase is too steep to offer the solution. By using a mixture 
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of crystals and a size distribution function it was shown that the behaviour 

could be replicated but at the expense of accuracy at lower scattering angles. 
The result still exhibited the best overall agreement from the investigation but 

there is room for further improvement. Avenues for extending the aircraft data 

investigation were discussed in section 8.8. 

It should be noted that enhanced understanding of the radiative properties 

of cirrus may yet have unexpected implications in the future in solar system 
exploration, given the observation of very thin cirrus on Mars by NASA's Mars 
Exploration Rover Opportunity [146]. 

The project has thrown up many questions and possible project extensions. For 

example, there is nothing in principle preventing the 2D scattering pattern form 

of results being extended to linear polarization. Given the extra information that 
has been gained from the comparisons to experiment in chapter 7 this would 
be a worthwhile extension to the project, particularly if the linear polarization 
becomes a focus in the future. 

A more complex addition to the project would be to extend the concept to 

curved surfaces. Although until now only crystal facets have been considered 
by the RTDF model, curved surfaces have long been treated by implementations 

of the GO model. It would be a substantial task because the model would need 
to be redefined in terms of the deflection angles used. A treatment of curved 
surfaces would allow the scattering of cirrus ice crystals in the lower portions of 
clouds that have suffered the rounding of facet edges through sublimation to be 

considered more accurately. Another possible application of such a treatment 

would be to allow calculations for spheres, ellipsoidal particles and long circular 

cylinders. A comparison to exact Mie theory could then be made. As a result, 

a better assessment of the size applicability of the model might be possible 
because the behaviour of Geometric Optics for a sphere and the size parameters 
for which it provides very good comparisons are well established. 

Through Babinet's principle it is possible using RTDF to create external diffrac- 

tion patterns by considering rays that pass by the crystal and are deflected to- 

wards it. Although in the implementation of the model described here there 

are currently no interference effects, the intensity distribution would broadly be 

correct given the agreement shown for diffraction at a slit in figure 3.3 of section 
3.2.2. This would be an interesting investigation because it would allow exter- 
nal diffraction patterns for arbitrary crystal projections to be estimated and 
compared to the results obtained using the equal area circular aperture method 
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common to the Macke GO code. It would be time consuming in comparison 
to the Macke method but it would allow bounds of accuracy to be put on the 

use of Fraunhofer diffraction pattern, something that is inappropriate for use in 

applications such as the fixed orientation 2D scattering patterns. It is expected 
that this form of external diffraction modelling is essential for phase functions of 
small crystals in fixed orientations since then external and internal components 
would be added together using both amplitude and phase. 

The lack of interference effects in the model has been raised several times in the 

preceding chapters. Most ray tracing programmes ignore interference effects be- 
tween rays, though not all [27]. The introduction of interference effects by using 
a phase tracing method represents a significant undertaking. Some success has 
been gained by introducing phase tracing and a ray based far field approxima- 
tion which includes physical optics effects into a two dimensional version of the 
RTDF model [108]. It was shown in reference [108] that scattering at forward 

and back scattering for fixed orientations was much improved when compared 
to exact SVM calculations for cylinders of infinite length. It has been high- 
lighted in previous chapters that the phase function close to direct forward and 
back scattering for many averaged random orientations is an area that would 
benefit from the introduction of such a treatment. It is likely that the lack of 
interference effects is also responsible for the shape of RTDF halos not agreeing 
with those found using IGO. It is not yet clear if it is feasible to implement 
interference effects in a complete RTDF model implementation that provides 
meaningful results without increasing the computational expense unreasonably. 
Work in this area is ongoing at the University of Hertfordshire. An improve- 

ment in the scattering results in the back scattering would further enhance the 
value of the RTDF model in depolarization ratio studies, as discussed in section 
2.6.3. There is a current collaboration exploiting results generated using the 3D 
implementation of the RTDF model [55]. 

The RTDF model uses a method whose basis is in classical physics yet provides 
opportunities to study light scattering calculations that are not yet possible with 
near exact or numerical methods due to computational restrictions. The results 
presented in the preceding chapters, particularly the comparisons to experiment, 
illustrate that the model has real promise in helping to fill the gap between the 
near exact methods and Geometric Optics. The model offers an impressive 
flexibility in terms of the geometries that can be considered combined with low 
computational overheads. The prospect of future improvements to the accuracy 
of the model and the many potential applications emphasises the need for further 
development, testing and application of the diffraction on facets model. 
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Appendix A 

Conventions 

This appendix provides explanations of conventions that are applied in the pre- 

ceding chapters to avoid confusion with other texts. Section A. 1 outlines the 

use of the terms size and length parameter and section A. 2 provides an explana- 
tion of Euler's rotation theorem and the convention for its use adopted during 

this project. Section A. 3 will define some terms that may not be considered 

standard that are used throughout the thesis. 

A. 1 Size and Length Parameter 

In the study of light scattering, the net size of a crystal has little importance. 

The key quantity is the size of the crystal with respect to the wavelength of the 
incident light. The size of a crystal with respect to the wavelength is defined by 

the size parameter X,., given by equation A. 1 where r is a characteristic radius 

of the crystal and A is the wavelength of the incident light. 

27rr 
Xr = (A. 1) 

For elongated geometries such as hexagonal columns, one radius does not provide 
sufficient information. Occasionally, a similar definition for the length of a 
column, Xi, can be used. This is shown in equation A. 2, where l is the length 
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of the column. 

2irL 
XL = (A. 2) 

In this thesis, the size of a hexagonal column is always defined by the size param- 
eter and a crystal aspect ratio, A, given in equation A. 3 where L is the crystal 
length and r the crystal radius. When considering more complex geometries, 
dimensions are described in terms of constituent column-like crystals or the size 
of defining facets. 

2r 
(A. 3) 

A. 2 Euler's Rotation Theorem 

Euler's Rotation Theorem states that any arbitrary rotation can be described 
by only three parameters. The ray tracing codes used in this project use Euler 

angles to describe the orientation of a crystal. Each Euler angle is a rotation 
about a body centred axis and using three such rotations, any orientation can 
be achieved. There are many conventions for Euler angles used throughout the 
literature. The convention used here is shown in figure A. 1. The first rotation 
is through an angle a about the z axis. The original axes move with the object 
and after the first rotation they are labelled x', y' and z'. The second rotation 
is through an angle ß about the x' axis. After the second rotation, the new axes 
are labelled x", y" and z". The final rotation is through an angle y about the 
z" axis. All three rotations are clockwise when looking in the positive direction 
of the axis of rotation. During the three rotations, the centre of mass of the 
crystal is positioned at the origin. 

To understand the fixed orientations discussed in chapter 7 it is important to 
know the orientation of a crystal for a=ß= -y = 0°. An illustration of the 
crystal in the fixed orientation being considered will always be given. For a 
hexagonal column, an orientation of a=ß= -y = 0° corresponds to the long 
axis aligned along the z-axis with two prism (rectangular) facets lying parallel 
to the g-z plane. 



A. 3 Miscellaneous Terms 

(a) z , z, fib) Z , Z' 
Z Zr 
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Figure A. 1: A demonstration of the use of Euler angles. The rotations 0, ß and 
-y are about the z, x' and z" axes respectively. 

A. 3 Miscellaneous Terms 

In this section a selection of terms are defined that are used frequently through- 

out the thesis that may not be considered standard. 

Basal Facet A facet acting as the `base' of a crystal. In this thesis the term 
is used exclusively as referring to the hexagonal facets of a hexagonal 

column. 

Prism Facet Used interchangeably with `rectangular facet' when describing 

the six non-basal facets of a hexagonal column. 

Forward Scattering Refers to a scattering direction. Direct forward scatter- 
ing is located in the direction of the incident light at a scattering angle 
of 0= 0°. The forward scattering region is a loose term referring to 

scattering angles within a few degrees of direct forward scattering. 

Back Scattering Refers to a scattering direction. Direct back scattering is 
located in the direction opposite that of the incident light at a scattering 
angle of 0= 1800. The back scattering region is a loose term referring to 
scattering angles within a few degrees of the back scattering point. 

Perpendicular Incidence Used in connection with hexagonal columns and 
plates. Light approaches the crystal at perpendicular incidence if the 
cylinder axis of the crystal is perpendicular to the incident light. Note 
that the crystal can rotate around the cylinder axis and still be considered 
as being at perpendicular incidence as long as the perpendicular condition 
is true. 
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Basal Incidence Used in connection with hexagonal columns and plates. Light 

approaches the crystal at basal incidence if the cylinder axis of the crys- 
tal is parallel with the incident light. In other words, if light is normally 
incident on one of the basal facets. 



Appendix B 

Publications List 

B. 1 Journal Publications 

" "A 3D implementation of ray tracing combined with diffraction on facets: 

Verification and a potential application" A. J. M. Clarke, E. Hesse, Z. 
Ulanowski and P. H. Kaye. Journal of Quantitative Spectroscopy and Ra- 

diative Transfer, 100(1-3) p. 103-114,2006. Reference: [531. Reproduction 

provided in Appendix C. 

" "Influence of size and shape on the back-scattering linear depolarization 

ratio of ice crystals: Comparison of experimental and modelling results" S. 

Büttner, M. Schnaiter, 0. Mähler, E. Hesse, A. J. M. Clarke, Z. Ulanowski, 

and P. Connolly. In preparation for submission, 2006. Reference: [551. 

B. 2 Conference Publications 

" "Using ice crystal analogues to validate cloud ice parameter retrievals from 

the CPI ice spectrometer data" Z. Ulanowski, P. Connolly, M. Flynn, 
M. Gallagher, A. J. M. Clarke, E. Hesse. In: Isaac G. A. (editor), 14th 
International Conference on Clouds and Precipitation, Bologna, 18th-23rd 
July 2004. IAMAS, p. 1175-1178. Reference: [101. 

" "A new model of light scattering by ice crystals using ray tracing combined 
with diffraction on facets" A. J. M. Clarke, E. Hesse, Z. Ulanowski and P. H. 

243 



244 Publications List 

Kaye. In: Proceedings of the 16th annual Aerosol Society AGM, 14th-15th 
April 2005, Bristol, UK. p. 71-74. 

" "A 3D implementation of ray tracing with diffraction on facets compared 
to SVM and experiment" A. J. M. Clarke, E. Hesse, Z. Ulanowski and P. H. 
Kaye. In: F. Moreno, J. J. Lopez-Moreno, 0. Munoz and A. Molina (ed- 
itors), 8th Conference on Electromagnetic and Light Scattering by Non- 
spherical Particles: Theory, Measurements and Applications, 16th-20th 
May 2005, Salobrena, Spain. p. 60-63. Reference: [147]. 

" "Introducing phase tracing into a computational method which combines 
ray-tracing with diffraction on facets" E. Hesse, Z. Ulanowski, A. J. M. 
Clarke, S. Havemann and P. H. Kaye. In: F. Moreno, J. J. Lopez-Moreno, 
0. Munoz and A. Molina (editors), 8th Conference on Electromagnetic 
and Light Scattering by Nonspherical Particles: Theory, Measurements 
and Applications, 16th-20th May 2005, Salobrena, Spain. p. 112-115. 
Reference: [108]. 

B. 3 Other Publications 

" "A new model of light scattering by ice crystals applied to aircraft radiance 
measurements using geometries that include examples reconstructed from 
ice analogue crystals. " A. J. M. Clarke. OBR Technical Note Number 54, 
Met Office, Exeter, UK. Reference: [91]. 

" "Diffraction on facets: A new model of light scattering. " A. J. M. Clarke. 
The Aerosol Society Newsletter, Issue No. 43. 



Appendix C 

Reproduction of Journal 
Publication 

In the forthcoming pages is a reproduction of Clarke et al. 2006 [53]. 

245 



EISEVIER 
Journal of Quantitative Spectroscopy & 
Radiative Transfer 100 (2006) 103-114 

journal of 
Quantitative 
Spectroscopy & 
Radiative 
Transfer 

www. elsevier. com! Locate! jgsrt 

A 3D implementation of ray tracing combined with diffraction 
on facets: Verification and a potential application 

Adrian J. M. Clarke*, Evelyn Hesse, Zbigniew Ulanowski, Paul H. Kaye 
Science and Technology Research Institute, University of Hertfordshire, Hatfield. Herts AL1O 9A B, UK 

Abstract 

A 3D implementation of a new model of light scattering applicable to dielectric faceted objects is introduced. The model 
combines standard geometric optics with diffraction on individual facets. It can be applied to any faceted geometry. The 

model adds no significant computational overheads to classical geometric optics yet provides much improved results. 
Initial results for long hexagonal columns are compared to SVM and appear favourable. 2D scattering patterns are 
calculated for a hexagonal column in a fixed orientation and compared to those created by ice analogue crystals in the 
laboratory with close agreement. The comparison includes the observation of a guided wave propagating along the length 

of the column. The new model is then applied to a selection of geometries to illustrate how it could be used to aid particle 
characterization, particularly in the case of cirrus ice. 
CC) 2005 Elsevier Ltd. All rights reserved. 

Keywords: Light scattering; Nonspherical particles; Diffraction; Cirrus 

1. Introduction 

Cirrus clouds play a major role in the balance of radiation between the earth, the atmosphere and space. 
The study of cirrus is crucial to the future success of climate models and weather forecasting. Though studied 
for many years, there is still a large uncertainty over the radiative properties of cirrus clouds. This is due 
mainly to the lack of strong theoretical models of light scattering by the constituent ice crystals for realistic 
shapes and sizes. 

T-matrix is a largely analytic exact technique that can be used for hexagonal columns for size parameters up 
to around 20 [t] but is computationally demanding and so cannot be applied to scatterers of larger size 
parameter at this time. If such implementation becomes possible, it will be the method of choice. Some success 
has been gained at intermediate size parameters using a generalization of the separation of variables method 
(SVM) to nonspherical particles [2,3]. Results from this method are used for comparison in Section 3. Other 
techniques exist but all involve more significant approximations and none allow flexible computation for 
larger sizes where most cirrus ice particles are classified. Traditionally, the method of choice for such 
intermediate and large crystals has been the geometric optics (GO) method. The modified Kirchhoff 
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approximation [4] calculates far fields from GO results and lead to the development of the improved geometric 
optics method [5], though the latter is computationally expensive. 

A new model has been proposed which modifies GO rays by introducing a deflection to take into account 
diffraction caused by the facet acting as an aperture. This method maintains the flexible and computationally 
inexpensive advantages of GO while producing much improved results. Following the work of Hesse and 
Ulanowski [6,7] where ray tracing with diffraction on facets (RTDF) was introduced in a 2D case, a 3D 
version is now presented. 

Given the rapid and flexible computation offered by ray-tracing based models, it is possible to create 2D 
light scattering patterns for even very complex nonspherical crystals. Such patterns provide much more 
information than azimuthally averaged scattering data such as a phase function. In contrast to standard GO, 
the new model can produce such patterns for fixed orientations as well as averaged random orientations. It has 
been shown that spatial scattering patterns of single orientations can be used to distinguish between particle 
geometries and so aid in particle characterization in a range of scientific fields [8]. In the case of cirrus ice, the 
concept has been implemented in particle instruments such as the small ice detector (SID) [9]. Such 
instruments use a laser beam to illuminate particles as they pass through the instrument and an array of 
detectors then measures the light scattering. By studying the relative signals from these detectors it is possible 
to distinguish between spherical and nonspherical particles and also to classify nonspherical particle 
geometries. The model could potentially be used as a very useful tool in further development of such in situ 
particle instruments. 

A brief description of the RTDF model is given in Section 2 followed by comparisons to SVM in Section 3. 
Adapting the model to create 2D scattering patterns is described in Section 4 and compared to ice analogue 
scattering patterns photographed in the laboratory in Section 5. In Section 6,2D scattering patterns for four 
crystal geometries will be presented and the concept of using the model for particle characterization will be 
briefly discussed. 

2. Description of the model 

The model builds upon the GO approach by applying a physical optics correction that has been derived 
using exact theory calculations for half-plane diffraction. As a ray refracts through or reflects from a facet it is 
deflected to take into account diffraction as if the facet were acting as an aperture. In the 2D version, angular deflections of GO rays due to diffraction at a slit were calculated using an approximate relationship obtained from the exact half-plane diffraction theory calculations. In three dimensions, we assume that the deflection of 
a ray caused by diffraction on a facet can be modelled by two deflections each obeying the basis of the 2D 
rules, regardless of facet shape. The first deflection is made towards the facet edge that is closest to the 
intersection point between the ray and facet. The second deflection is perpendicular to the first. External 
diffraction is provided by diffraction at a circular aperture of equal cross-sectional area. The model includes a 
full consideration of linear polarization and can be applied to virtually any faceted geometry including 
droxtals, rosettes and aggregates. The present implementation of the model is based upon the GO code by 
Macke et al. [10]. 

3. Comparison to SVM 

Fig. 1 shows the phase function and degree of linear polarization for a long hexagonal column calculated 
using RTDF over 50,000 averaged random orientations compared to GO and SVM. The column has a size 
parameter of 2nr/A = 50 with L/2r = 10 where L is the column length, r the column radius and A the 
wavelength of the incident light. Due to the approximation involved in the SVM calculation, the random 
orientations are restricted so that the long axis of the column is at least 12.96° from the direction of the 
incident light. A consequence of this restriction is the lack of the 46° halo and the backscattering peak in the 
SVM profile. In the phase function, one can clearly see the effect RTDF has on standard GO as it widens the 
22° halo peak, reduces both forward and backscattering and brings the profile closer to the SVM result across 
the angular range. The degree of linear polarization shows similar improvements, particularly in the halo 
region although discrepancies still remain. The calculations were performed on a standard desktop PC. In this 
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Fig. 1. Phase function (p, I) and degree of linear polarization (-P12/PI I) for a long hexagonal column of size parameter 2nr/A = 50 with 
L12r = 10. SVM, GO and RTDF results are shown. GO and RTDF represent 50,000 random averaged orientations (see text). 

case the RTDF calculation increased the computation time by only 27% when compared to GO. This 
illustrates the negligible increase in computational expense introduced by the model, maintaining the 
accessibility of the code to researchers with everyday computational resources, 

4.2D scattering patterns 

Phase functions such as those shown in Fig. I are functions only of the polar angle, 0. In producing this 
standard form of scattering result, there is an averaging over the azimuthal angle ¢ which leads to some 
information regarding scattering direction being lost. One of the benefits of using a ray tracing based model is 
that it is computationally reasonable to preserve both the 0 and 0 angles. Having such information not only 
provides a full description of the scattering but also allows the scattering patterns to be projected in two 
dimensions on to a virtual screen or array of sensors at some distance. This is something that can be recreated 
in the laboratory or in principle incorporated into an instrument. 

Modifications were made to both GO and RTDF codes to create 2D scattering patterns on a screen at some 
distance. Rays leaving the scatterer are collected into angular bins defined by polar (0) and azimuthal (4)) 
angles. The scattered intensities are normalized over all space to satisfy the condition shown in Eq. (1). 

f4n 
P(B, 0) dQ =1 

j2n rn P(8,0) sin 0 dOd4) = 1.4n 4n o �o 
The values in the bins are then projected on to a screen at some distance r in front of the scatterer. To do this, 
the angular coordinates are transformed into Cartesian coordinates on the screen by Eqs. (2) and (3). The 
forward direction is the negative z direction. If looking in the forward direction, the positive x-axis is to the left 
and the positive y-axis is pointing downwards. The polar angle 0 is measured from the forward direction. The 
azimuthal angle 0 is measured in an anti-clockwise direction from the positive x-axis when looking in the 
forward direction. This convention matches standard practice (for example [11, Chapter 1J), although unlike 



106 A. J. M. Clarke et at / Journal of Quantitative Spectroscopy & Radiative Transfer 100 (2006) 103-114 

standard practice we measure 0 from the negative z direction because that is the forward direction used in the 
ray tracing codes. 

x=r cos ¢ tan 9, (2) 

y=r sin 0 tan B. (3) 

Due to the transformations involved, one obtains an irregular grid of data points on the screen. In the 
following, this is overcome by generating a regular data grid using a linear interpolation method. 

5. Comparison to experiment 

Ice analogue crystals that exhibit optical properties very close to ice and that are stable at room temperature 
have been developed at the University of Hertfordshire [12]. An ice analogue hexagonal column with length 
61 µm and diameter 15 µm was mounted on a long 6 µm carbon fiber using high temperature epoxy adhesive to 
suspend it in the beam of a laser of wavelength 612 nm. The carbon fiber was attached to one of the prism 
facets very close to the end of the column. The laboratory apparatus included a rotation stage enabling the 
orientation of the crystal to be varied. The carbon fiber was strong enough to prevent vibrations and so ensure 
that the crystal was stable. The forward scattering pattern was projected from the crystal on to a flat 
transparent screen normal to the beam at a distance of 15 mm. A digital camera was mounted behind the 
screen to photograph the resulting scattering patterns. Fig. 2a shows one such photograph. The image has 
been inverted so that intensity increases from white to black. The bright near vertical scattering arc appearing 
in the middle of the image is the scattering pattern created by the carbon fiber. It is a feature that appears on 
all the photographs and can be disregarded in the following discussion. The crystal was oriented so that the 
carbon fiber was as close to perpendicular to the incident light as possible to minimize scattering away from 
this main arc. In terms of comparisons to the model, the effect of the carbon fiber away from the main 
scattering arc is likely to be small particularly given the low fraction of light that is transmitted by carbon. The 
forward scattering point is obscured by a beam stop. 

We shall consider two orientations of the hexagonal ice analogue and make comparisons to the new model. 
The orientations of the column are described using Euler angles. The convention used here first makes a 
rotation a about the z axis reorienting the x axis to x'. The second rotation ß is about the x' axis, reorienting 
the z axis to z'. The final rotation y is about the z' axis. All three rotations are clockwise when looking in the 
positive direction of the axis of rotation. An orientation of a=ß=y= 00 would correspond to a hexagonal 
column with the long axis lying along the z axis and with two prism facets being parallel to the y-z plane. 
During the rotations the center of mass of the crystal is positioned at the origin. In the experiment the camera 
was mounted behind the transparent screen and so in the following the required model results are mirrored at 
the y axis with respect to the transformations outlined in the previous section. 

It should be noted that all model 2D scattering patterns discussed in this paper do not include external 
diffraction. The external diffraction component will mainly contribute to the forward scattering peak. 
Considering Fraunhofer diffraction at a 15 µm slit (the diameter of the crystal in the current study), the central 
maximum would have a half aperture angle of less than 2.5°, which is covered by the beam stop. In any case, 
the low intensity interference features at larger scattering angles will be different from Fraunhofer diffraction 
patterns at a circular aperture. We shall also omit external diffraction in Section 6 for the same reasons. 

5.1. Case I 

In the first case, the orientation is approximately a= 0°, ß= 60.5° and y= 35°. Fig. 2c shows the crystal in 
the correct orientation from the point of view of the incident light. Each facet has been assigned a number with facets 1,3,4 and 5 exposed to the incident light. Fig. 2a shows the laboratory photograph of the scattering 
pattern. The pattern appears slightly asymmetric because of the y Euler rotation. Fig. 2b and d show the 
equivalent results for RTDF and GO, respectively. Note that the photograph in Fig. 2a clearly shows 
interference fringes over much of the pattern. The current version of RTDF does not take into account 
interference effects and so cannot recreate these fringes. 
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Fig. 2. (a) Laboratory scattering pattern for a hexagonal column with orientation x= 0°, li = 60.5° and y= 35°. (b) Equivalent RTDF 
result. (c) The orientation of the crystal from the point of view of the incident light. (d) Equivalent GO result. 

In the GO results, the scattering patterns are restricted to individual points of intensity, some distorted in 
shape due to the CTänSforniat10n on 10 the screen. The GO points have been labelled for identification. 
Comparing the GO and RTDF results, the effect of the new model can be clearly seen. The RTDF scattering 
pattern takes a more realistic appearance than the GO result when compared to the photograph. This occurs 
primarily by the model spreading the GO features into scattering arcs and features but also by allowing some 
ray paths to exist that are not present in the framework of pure GO. 

In the next few paragraphs we shall discuss the origins of the various GO features shown in Fig. 2d while 
highlighting specific features that are enhanced by the new model. All the GO points are made up of contributions 
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from several ray paths through the crystal. We shall state that a given feature is caused by the dominant ray path 
on the understanding that there are likely to be small contributions from more complex paths. 

Examining Fig. 2b it can be seen that the bright arc through forward scattering that is reminiscent of the 

conic section created by scattering by a circular cylinder is recreated by RTDF. This arc includes bright spots 
at points E and G that represent refractions through prism facets. For E, rays enter through facet 3 and for G 

rays enter through facet 5. In both cases the rays leave the crystal through facet 7. There are external 
reflections from facets 5 and 3 at points D and H, respectively, although they are not well defined in the 
photograph. The forward scattering peak at F is dominated by rays entering through facet 4 and leaving 
through facet 7, with no net deflection due to standard GO interactions. Also contributing to the arc are faint 

points at J and K. J is formed from rays entering through facet 3, internally reflecting several times and exiting 
facet 8. K is formed in a similar way except that the rays both enter and leave through facet 3. Finally there are 
two small faint features that contribute to the arc that are not labelled. Both are formed from several internal 
reflections with paths very closely related to J. The first is located between F and G where rays enter through 
facet 5 and eventually exit through facet 8. The second is located near E, found when moving in the direction 
of point D. Here, rays enter through facet 3 and exit through facet 6. In all cases along the scattering arc the 
bright GO spots are spread by the new model near horizontally to recreate the arc but also in a more vertical 
direction on the screen. This makes the pattern similar to the photograph, particularly in the case of the 
features above and below points E and G. 

There are numerous features below the main scattering arc most of which are created by ray paths including 
an internal reflection or a total internal reflection from the basal facet 2. Point M is the exception, the feature 
being dominated by an external reflection from the basal facet 1. All of the features compare better with the 
photograph in the RTDF result than the standard GO result. The features at points L and N represent rays 
entering through facets 3 and 5, respectively. Some of the contributing ray paths are complicated, undergoing 
multiple internal reflections including one total internal reflection from the basal facet 2. In both cases rays 
leave the crystal through facet 7. Point P is also due to complicated paths made up of multiple internal 
reflections. There are numerous entrance and exit facets for this feature with the only common facet 
interaction being the internal reflection from the basal facet 2. There are also two faint GO spots that are not 
labelled, both with complicated ray paths. To the left of point L is a spot formed from rays entering through 
facet 3 and exiting through facet 6. Between points M and N is a feature formed from rays entering through 
facet 5 and exiting through facet 8. 

Above the main scattering arc is a very interesting collection of features. There are six features in total in the 
vicinity of points A, B and C with two located at each. The left hand feature at point C is perhaps the most 
familiar as it is dominated by refraction through facets I and then 7. Being the only feature on the screen at this 
orientation representing refraction through a basal facet and a prism facet, it is effectively the 46° halo. This was 
confirmed experimentally by tilting the crystal into other orientations where it was observed that the feature did 
not move below 46°. The other five points are created by rays entering facet 1, undertaking a complex path of 
internal reflections and then leaving the crystal through one of the prism facets. The upper and lower points at A 
are created by rays leaving through facets 4 and 3, respectively. The upper and lower points at B are from rays 
exiting through facets 5 and 6, respectively. The right hand point at C is formed by rays leaving through facet 8. 
There is also a similar ray path that contributes to the 46° halo spot that exits through facet 7. 

In the photograph and RTDF result in Fig. 2a and b one can see a hollow elliptical feature connecting 
points A, B and C. This feature persists when varying the y Euler angle. Explaining it in terms of ray tracing, 
the feature is created by rays entering the basal facet I and internally reflecting up the length of the column. 
RTDF then allows rays to exit through any prism facet at a wide range of angles, some of the ray paths 
including an internal reflection from the basal facet 2. Thus the effect can be likened to a guided wave 
propagating along the length of the particle. This cannot be reproduced by GO where the ray paths are strictly 
confined to specific scattering angles to create the features at A, B and C. 

5.2. Case 2 

In the second case the orientation is approximately a= 0°, ß= 35° and y= 34.5° and is shown in Fig. 3c. 
The laboratory photograph, RTDF result and GO result are shown in Fig. 3a, b and d, respectively. Similar to 



A. J. M. Clarke el al. / Journal of Quantitative Spectroscopy & Radiative Transfer 100 (2006) 103-114 109 

the first case, the photograph shows many interference fringes. The GO features have again been labelled, 

those features that are related in origin to features from case I being denoted by the same letter but underlined. 
These relationships will be explained below. 

The scattering pattern is dominated by a large ellipse. By rotating the crystal from the case I orientation to 
this orientation, it is possible to see that the ellipse is formed by the main scattering arc from the first case 
folding over. The RTDF result matches well with the laboratory photograph. Of particular interest are the 
three arms extending from the forward scattering point below the main scattering ellipse. There are no GO 

points that correspond to these features at this orientation. However, the RTDF result provides three such 
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Fig. 3. (a) Laboratory scattering pattern for a hexagonal column with orientation x= 0°, /3 = 35° and y= 34.5°. (b) Equivalent RTDF 
result. (c) The orientation of the crystal from the point of view of the incident light. (d) Equivalent GO result. 
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features. Although at first it appears that the RTDF features are a result of the forward scattering point being 
spread out by the model, this is not in the main the case. It is true for the very early part of the arms but in the 
regions close to where the features appear strongest in the photograph, the sources are new ray paths that are 
not visible elsewhere on the screen or indeed possible using GO. All three features are dominated by two 
refractions with rays entering a prism facet and leaving through the basal facet 2. From left to right, the 
entrance facet for the three features are 3,4 and 5. In this way, the model at this orientation has reproduced a 
feature by creating a ray path that GO cannot create. 

With respect to the forward scattering point on the scattering arc the points D and E have swapped places, 
as have G and H. Being refractions through two prism facets, E and G are formed by the ray paths that 
contribute to the 22° halo. In case 1, the points were at scattering angles of around 29° and 26°, respectively, 
and so it is not surprising that they move away from the forward scattering point given that the minimum 
scattering angle possible for the ray path is 22°. 

The bright points that contribute to the large ellipse are as follows. Point Q is dominated by a reflection 
from facet 4. Points R, S and V are formed by complex ray paths entering through facet 5 and exiting through 
facets 3,6 and 4, respectively. Point T is formed from a range of complicated ray paths with the only common 
feature being either an internal or total internal reflection from facet 7. Points E and G are identical in origin 
to the equivalent lettered features in case 1. Point D is formed by complex ray paths both entering and leaving 
the crystal through facet S. It is related to point D because this type of ray path was a minor contributor in 
case 1. The dominant contributor to point D, the external reflection from facet 5, has moved past the screen 
boundary. The faint feature at point U is due to complex reflection paths entering the crystal through facet 5 
and exiting through facet 8. In this way it is similar to the faint feature between F and G in case 1. The forward 
scattering point, F is in the main identical to F in origin save for a few of the minor ray paths not persisting. Point H is dominated by a reflection from facet 3 giving it a connection to point H. It also includes the ray 
paths that created point K in case 1. There are two features at point J. Both points include complex ray paths 
with rays entering through facet 3 and exiting through facet 8, just like point J. The upper point at J also includes a range of other complex ray paths that all have at least one interaction with the basal facet 2, in some 
cases as the refraction out of the crystal. 

6. Particle characterization using 2D scattering patterns 

As we have seen, the new model creates scattering patterns on a screen that compare well with laboratory 
photographs. The scattering patterns generated using RTDF offer a degree of realism that is not possible with 
standard GO. Given the flexibility of the model with regards to particle geometry, we now apply it to a range 
of crystal shapes to demonstrate in principle how it could be used to aid particle characterization. 

Let us consider an ideal particle characterization instrument that has the ability to take in situ images of 2D 
scattering patterns created by ice crystals in cirrus. The crystals pass through a chamber where they are 
illuminated by a laser of wavelength 550 nm. An array of sensors or a CCD captures an image of the resulting 
scattering pattern. To successfully characterize the geometry of a particle from such an image, one requires 
knowledge regarding the general characteristics of scattering patterns created by candidate geometries. Fig. 4 
shows how such general characteristics can be obtained from modelling results by comparing the scattering 
patterns from four example geometries. All the results presented use the same scatterer to screen configuration 
as found in Section 5. This gives a large angular range on the screen of approximately 147° in the x direction. 

Fig. 4a-c show the 2D scattering patterns for a hexagonal column of size parameter 2itr/A = 50 with 
1/2r = 2.5 in three orientations. Using the Euler angle conventions described in Section 5, all three 
orientations have a= 0° and y= 30°. For Fig. 4a-c, ß takes the values 0°, 45° and 90°, respectively. We need 
to study a range of orientations because fixed orientation 2D scattering patterns are strongly orientation 
dependent. One can see that the dominant feature in the patterns is the strong scattering arc through forward 
scattering appearing as a straight line in Fig. 4c. Rotating the crystal by decreasing the ß Euler angle past the 
orientation in Fig. 4b, this feature turns into an ellipse (as we saw in Section 5.2) before disappearing when 
close to the orientation in Fig. 4a. 

A hexagonal plate gives quite a different result. Fig. 4d-f show the scattering patterns for a plate of size 
parameter 100 with 1/2r = 0.1. The hexagonal facets are oriented so that they face in the same directions as for 
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Fig. 4.2D scattering patterns for four geometries with three orientations shown for each (see text). All the images are sections of the 
screen that are 100 mm square in size with the forward scattering point at the center. The geometries are: Hexagonal column (a, b, c), 
hexagonal plate (d, e, f), rosette (g, h, j) and droxtal (k, I, m). 

the column cases. For the plate the dominant feature is the six spoked star seen in the first image. Fig. 4e shows 
that as you move to more oblique angles of incidence, the star is gradually distorted. Only near to the third 
orientation does the feature change into a more complicated pattern of scattering. If the hexagonal nature of 
the crystals is near to regular then the spokes will form arcs relative to each other that are in predictable 
positions, even as the orientation changes. With this information, one could distinguish between the scattering 
patterns produced by columns and plates in most cases. Ambiguity could arise for patterns very close to Fig. 
4a or d but there is only a small probability of these orientations occurring. The weighting towards either 
geometry for such ambiguous cases could be estimated in post processing from the ratio of columns to plates 
identified at less contestable orientations. It is interesting to note that the six spoked star seen for the plate and 
also in Fig. 4a for the column cannot be reproduced using GO. In the cases of Fig. 4a and d the GO result 
would be restricted to a point at forward scattering. 

Many crystals observed in cirrus are considerably more complicated than columns and plates. One of the 
most common geometries is the rosette [13]. We shall consider a 4-4 pentagonal headed bullet rosette as 
defined by laquinta et al. [14]. This ideal type of rosette is formed from a cubic ice embryo which can explain 
the near 70° angle of separation between rosette arms that is regularly observed in nature [15]. The crystal has 
four arms, each of which are the same radius and length as the column discussed above. In the orientation 
oc = /3 =y= 0°, the arms are oriented as follows. The first arm is parallel with the incident light with two prism 
facets lying parallel to the y-z plane, similar to the case of the column. The long axes of the other three arms 
are separated from the first by an angle of 109.47°, the supplement of the near 70° angle. Of these three, the 
long axis of one of the arms falls in the x-z plane. The bullet heads all meet at the origin. The projections of 
their long axes into the x-y plane are separated by intervals of 120°. 
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Fig. 4g, h and j show the 2D scattering patterns for the rosette in the same Euler angle orientations as the 
column and plate above (a = 0, ß= 0°, 45°, 90° and y= 30°). In these orientations the hexagonal facet from 
the first bullet is in the same orientation as the hexagonal facets from the column and plate cases. The 
scattering patterns are significantly more complicated than for the column or the plate. The defining feature of 
the patterns created by the rosette are the multiple examples of scattering arcs that resemble those created by 
the column. These exist because each arm of the rosette can contribute such a scattering arc. For example, in 
Fig. 4h all four scattering arcs can be seen. This creation of the scattering arcs by a rosette is maintained as 
long as the arms are long enough for single scattering from the individual arms to dominate over multiple 
scattering between the arms. If the rosette arms appear parallel when viewed from the direction of incident 
light, it may not be possible to discriminate between the scattering arcs. The number of arcs may also not 
correspond to the number of arms if one or more of the arms is close to parallel to the incident light, as seen in 
Fig. 4g and j where only three distinct arms are visible. This means it would not immediately be possible to 
reliably identify the number of rosette arms from a single orientation in an in situ instrument but for broad 
crystal habit classification purposes this is not a significant concern. It would however be possible to easily 
distinguish between columns and rosettes purely from the complexity of the scattering pattern. There is the 
possibility that rosette scattering patterns could be confused with those from plates given the arcs predicted in 
Fig. 4e. However, to replicate the positions of the scattering arcs exactly a six arm rosette with the arms all 
coplanar and separated by 60° angles would be required. No other geometry could succeed for all orientations. 

It is often the case that small crystals below 50 gm are classified as ice spheres when detailed information 
regarding their geometry is not available. In situ imaging instruments such as the CPI [161 are unable to 
classify these crystals definitively because they do not have the necessary resolution at these very small sizes [17]. It has been suggested that these spheres are actually small faceted geometries such as droxtals [18]. The 
phase function of a sphere can be very different from that of such a crystal, particularly in the side scattering 
region and so correct characterization could be important for radiative transfer modelling [17]. Fig. 4k-m 
show 2D scattering patterns for a droxtal with a radius that ensures the hexagonal facets are the same size as those in the column case above. The sphericity has been maximized by volume to as closely simulate a sphere 
as possible. The three orientations are such that the hexagonal facets face in the same direction as the column 
and plate cases above. The first thing to notice is that the patterns are very different to the concentric rings we 
might expect from Mie theory calculations for a sphere, highlighting significantly more differences than can be 
seen with an equivalent phase function comparison. A light scattering based probe can therefore distinguish 
between spherical and nonspherical particles, as has been shown in the field [9]. The droxtal scattering patterns 
are complicated, with no distinctive scattering arcs. This makes them reminiscent of the patterns predicted by 
the model for germ or budding rosettes (not shown) where the rosette scattering arcs do not dominate. We are 
therefore able to identify more complex, less spatial crystals when compared to the long armed rosettes with 
their clean pattern of clear scattering arcs. 

In this short discussion we have illustrated how the RTDF model can in principle be used to aid particle 
characterization. Broad crystal habit classification is possible by studying such 2D light scattering patterns and further investigation using the model will allow more sophisticated problems to be considered. The model 
allows rapid computation of such 2D scattering patterns for any crystal geometry. As well as broad 
classification considerations, it is theoretically possible to identify more in depth information. For example, 
the presence of crystal deformities such as hollow regions at column ends changes the 2D light scattering 
predicted by the model. In practice, developing an instrument capable of utilizing the model to achieve such detailed crystal classification would be a major challenge. It may also be possible to detect crystals with 
preferred orientations in the field, particularly for hexagonal columns, if the natural orientation can be 
preserved by the instrument. 

7. Conclusions 

A 3D implementation of ray tracing combined with diffraction on facets has been introduced. The model 
uses the GO approach as a foundation and utilizes a physical optics correction that has been derived using 
exact theory calculations for half-plane diffraction. It has been compared to SVM and experiment. On 
comparison with SVM the model has produced encouraging results. 2D scattering patterns for fixed as well as 
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averaged orientations can be computed. Fixed orientation 2D scattering patterns for a hexagonal column have 
been compared to experiment with good agreement, illustrating the improvements over GO. The model can be 
applied to any crystal geometry and is computationally inexpensive. These benefits combined with the ability 
to generate fixed orientation 2D scattering patterns make the model a potentially useful tool in the field of 
particle classification and in situ instrument design. This principle has been demonstrated by comparing the 
scattering patterns created by four ideal geometries. A further benefit of the RTDF model concerns the 
possibility of relating the presence of features in scattering patterns to the passage of light through specific 
regions of a given particle, which can be useful as an aid in understanding the scattering process and how it is 
affected by particle geometry. This is illustrated by the observation of a guided wave propagating along the 
length of a hexagonal column. Although this paper has concentrated on the possible applications to cirrus ice, 
the model can be applied to any dielectric faceted objects. It is hoped that future developments such as the 
introduction of interference effects will further improve the model 1191, particularly in the backscattering 
region where there are potential applications in LIDAR remote sensing. 
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