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Foreword 

The work presented in this thesis is conducted at the School of Engineering and Technology, 

Science & Technology Research Institute, University of Hertfordshire, UK, from October 2010 

to January 2015, under the supervision of Dr Rajnish Calay, Dr Rashid Ali, Dr Zhijun Peng 

and Dr Georgios Pissanidis.  

 

The research work reported in this thesis sets out to develop a black-box (empirical) model for 

the mesophilic anaerobic digestion (AD) process. The goal is to have a better understanding of 

how physico-environmental operating parameters influence biogas and methane production. 

Experimental work is carried out to determine the effects of four operating parameters on 

biogas and methane production in a laboratory scale. In addition, the data acquired from the 

experiments is utilised to construct the mesophilic AD models for this research study, in 

MATLAB through System Identification method.  

 

The introduction of this thesis in Chapter 1 presents the theme of the research work. It 

highlighted the irreversible impact of global energy production and consumption, especially, 

fossil fuels, on the environment and all life forms, as well as discussed the possible alternative 

energy sources that can mitigate these risks. In addition, this part discussed the environmental 

and health risks resulting from increasing municipal solid waste (MSW) generation due to 

rising human population and industrial advancement. Furthermore, it introduced the concept 

of AD, which is the process by which bacteria breakdown organic materials in the absence of 

oxygen to produce biogas and digestate (biofertiliser). Massarutto (2010) suggests that AD is 

the ideal technology for sustainable management of organic materials to produce a source of 
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renewable energy, and an effective waste management technique that provides economic, 

health and environmental benefits. 

 

Following the introduction is a review of scientific articles relating to AD process (Chapter 2). 

This discussed some of the operating parameters that influence the activities of anaerobic 

bacteria. The improvement and current state of in AD are also reviewed in Chapter 3. Chapter 4 

discusses the complex interaction of different species of anaerobic bacteria that constitute the 

four steps of digestion process as well as the experimental work conducted in this work. 

Chapter 5 discusses the collection and analysis of the experimental results, considering the 

effects of temperature, pH, mixing speed and pressure on biogas and methane production while 

Chapter 6 discusses the construction of black-box model through MATLAB System 

Identification Toolbox. Two nonlinear model structures, autoregressive with exogenous input 

(NARX) and Hammerstein-Wiener (NLHW) with different nonlinearity estimators and model 

orders are chosen by trial and error and utilised to estimate the models. The performance of the 

models is determined by comparing the simulated outputs of the estimated models and the 

output in the validation data. The approach is used to validate the estimated models by checking 

how well the simulated output of the models fits the measured output. The best models for 

biogas and methane production are chosen by comparing the outputs of the best NARX and 

NLHW models (each for biogas and methane production), and the validation data, as well as 

utilising the Akaike information criterion (AIC), to measure the quality of each model relative 

to each of the other models. The NLHW models mhw2 and mhws2 are chosen for biogas and 

methane production, respectively. The identified NLHW models mhw2 and mhws2 represent 

the behaviour of the production of biogas and methane, respectively, from mesophilic AD. Of 

all the candidate models studied, the nonlinear models provide a superior reproduction of the 

experimental data over the whole analysed period. (Chapter 6). 
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 The thesis also discussed the scalability of black-box models. Finally, conclusions and 

recommendation for further research work are covered in Chapter 7. 

 

This thesis presents the most vital outcomes of this work, which has been partially published 

as a conference paper in a journal, and the citation of the paper is as follows:  

Ogbonna E. C., Ali R., Pissanidis G. (2013): Simulation Model for Mesophilic Anaerobic 

Digestion Heating System. Renewable Energy Research and Applications (ICRERA), 2013 

International Conference: 505-510, doi: 10.1109/ICRERA.2013.6749807. The full copy of this 

paper is located in Appendix C. 

  

http://dx.doi.org/10.1109/ICRERA.2013.6749807
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Abstract  

Anaerobic digestion, which is the process by which bacteria breakdown organic matter to 

produce biogas (renewable energy source) and digestate (biofertiliser) in the absence of 

oxygen, proves to be the ideal concept not only for sustainable energy provision but also for 

effective organic waste management. However, the production amount of biogas to keep up 

with the global demand is limited by the underperformance in the system implementing the 

AD process. This underperformance is due to the difficulty in obtaining and maintaining the 

optimal operating parameters/states for anaerobic bacteria to thrive with regards to attaining a 

specific critical population number, which results in maximising the biogas production. This 

problem continues to exist as a result of insufficient knowledge of the interactions between the 

operating parameters and bacterial community. In addition, the lack of sufficient knowledge of 

the composition of bacterial groups that varies with changes in the operating parameters such 

as temperature, substrate and retention time. Without sufficient knowledge of the overall 

impact of the physico-environmental operating parameters on anaerobic bacterial growth and 

composition, significant improvement of biogas production may be difficult to attain. 

 

In order to mitigate this problem, this study has presented a nonlinear multi-parameter system 

modelling of mesophilic AD. It utilised raw data sets generated from laboratory 

experimentation of the influence of four operating parameters, temperature, pH, mixing speed 

and pressure on biogas and methane production, signifying that this is a multiple input single 

output (MISO) system. Due to the nonlinear characteristics of the data, the nonlinear black-

box modelling technique is applied. The modelling is performed in MATLAB through System 

Identification approach. Two nonlinear model structures, autoregressive with exogenous input 

(NARX) and Hammerstein-Wiener (NLHW) with different nonlinearity estimators and model 



 vi 

 

orders are chosen by trial and error and utilised to estimate the models. The performance of the 

models is determined by comparing the simulated outputs of the estimated models and the 

output in the validation data. The approach is used to validate the estimated models by checking 

how well the simulated output of the models fits the measured output. The best models for 

biogas and methane production are chosen by comparing the outputs of the best NARX and 

NLHW models (each for biogas and methane production), and the validation data, as well as 

utilising the Akaike information criterion to measure the quality of each model relative to each 

of the other models. The NLHW models mhw2 and mhws2 are chosen for biogas and methane 

production, respectively. The identified NLHW models mhw2 and mhws2 represent the 

behaviour of the production of biogas and methane, respectively, from mesophilic AD. Among 

all the candidate models studied, the nonlinear models provide a superior reproduction of the 

experimental data over the whole analysed period. Furthermore, the models constructed in this 

study cannot be used for scale-up purpose because they are not able to satisfy the rules and 

criteria for applying dimensional analysis to scale-up. 
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 Introduction 

1.1 Introduction 

This chapter presents the research work theme, highlighting the impact of global energy 

production and consumption, especially, the effects of fossil fuels on the environment and all 

life forms. It also discussed the possible alternative energy sources that can mitigate the 

environmental and health risks linked to fossil fuels. In addition, it discussed the environmental 

and health risks due to increasing municipal solid waste (MSW) generation. Furthermore, the 

concept of AD is introduced, including its suitability for providing a sustainable energy source 

as well as implemented as an ideal organic waste management system. Finally, the problem 

statement, aim and objectives of this research work are discussed. 

 

1.2 Background 

1.2.1 Energy and environmental problems 

Energy and its impact on the environment are interrelated (Ahuja and Tatsutani, 2009). The 

environmental impacts of energy production and energy utilisation are irreversible (Sidik et al., 

2013, Budiyono et al., 2013; Abdullahi et al., 2011; Espinoza-Escalante et al., 2009; Tejada 

and Gonzalez, 2006). First, energy consumption continues to escalate year after year due to 

increasing human population, rising living standards and rapid growth of energy intensive 

industries in emerging economies (OECD, 2011; Ahuja and Tatsutani, 2009). Global reserves 

of fossil fuels, our primary source of energy, are finite and are being depleted (Sidik et al., 

2013; Budiyono et al., 2013, OECD, 2011). 

 

Second, the conversion of the chemical energy of fossil fuels to useful work involves 

combustion, the products of which include greenhouse gases such as CO2 and NO2 (NRC, 
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2010; Tsoutsos et al., 2005). Emissions of these gases are not only harmful to many life forms 

but also contribute to the cause of climate change (Budiyono et al., 2013, OECD, 2011). With 

ever increasing energy consumption we are exhausting our reserves of fossil fuels, intensifying 

the deterioration of the quality of the air we breathe and increasing global warming. 

 

In order to mitigate the two aforementioned risks, there is a need to explore alternative sources 

of energy that are sustainable. The potentials of sustainable energy sources such as solar, wind, 

geothermal and biomass, if fully harvested, could provide satisfactory solutions to the global 

energy and environmental challenges (EC, 1997; EC, 1995). The renewable energy sources are 

discussed as follows. 

 

Solar energy: 

Solar could be the world’s ideal source of energy, it is free and inexhaustible (Tudorache and 

Kreindler, 2010). It has the capacity to provide more than 10,000 times the global annual energy 

requirement (Tsoutsos et al., 2005; Greenpeace, 2005). Not only is solar abundant and infinite, 

it also offers substantial environmental benefits relative to fossil fuels, our primary energy 

sources (Tsoutsos et al., 2005; Tsoutsos et al., 2003a; Tsoutsos, 2001; Boyle, 1996; Johansson 

and Burnham, 1993). However, solar systems are linked to a number of adverse environmental 

impacts such as land use, visual impact and effects on buildings (Hestnes, 1999; OECD/IEA, 

1998; Boyle, 1996).  

 

In addition, solar energy is not available at all time. To generate power from solar, there must 

be sunlight, which makes it impossible to produce power at night or even in some hours of 

daylight in places situated in the temperate, continental and polar climates. Solar energy in 

these climates decreases during the winter months as there are fewer sunlight hours, resulting 
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in the reduction of the intensity of solar radiation. In these circumstances, energy must be stored 

or obtained elsewhere at night or during the winter months when there is no sunshine. 

 

Wind energy: 

The Wind is another potential source of energy that is gaining prominence in the world (UCS, 

2013). It is one of the ideal sources of renewable energy (UCS, 2013). It is infinite, plentiful 

and produces no toxic contamination or greenhouse gases (UCS, 2013). Although the wind 

offers many possibilities to replace the conventional sources of energy, yet it has a number of 

undesirable impacts on the environment. These include land use that varies from site to site 

(NREL, 2012; NREL, 2010; Denholm et al., 2009; Michel et al., 2007), impact of wind turbines 

on wildlife and habitat, most especially bats and birds’ death (NWCC, 2010) and effect on 

public health, especially sound and visual disturbances.  

 

Like solar energy, wind energy has its own limitations; it is unpredictable. Wind turbines 

cannot generate electricity when any wind is blowing, thus making wind energy not suitable 

for a single source energy solution (Rasmussen, 2010). In addition, wind energy is sited 

typically in coastal and hilly areas (SNH, 2014). Cities situated within the plane topographies 

will not be able to harness wind energy as much as in coastal and hilly geographies, making 

wind energy non-universal. 

 

Geothermal energy: 

Geothermal energy is another source of renewable energy. It is from the heat confined inside 

the earth crust (Gagel et al., 2007; Barbier, 2002). It can be utilised to generate electricity when 

the temperature is above 150 oC. On the other hand, geothermal energy can be applied directly 

for space heating and industrial processes when the temperature is below 150 oC (Fridleifsson, 
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2003; Barbier 2002; Fridleifsson, 1996). Geothermal resources are estimated to be 2,000±140 

Terawatts hour per annum (TWh/a) worth of electricity, as well as more than 7,000 TWh/a 

worth of heat that can be used for direct space heating or industrial applications (Fridleifsson, 

2003; Fridleifsson, 2001; Stefansson, 1998). The International Energy Outlook 2013 (IEO, 

2013) estimated that the total energy consumption of the world would be 184,634.73 TWh in 

2020 and 240,318.22 TWh in 2040. This means that the global geothermal energy can only 

contribute about 5 % of the projected total world energy requirement for 2020 and 3.8 % for 

2040 (IEO, 2013). 

 

It is apparent that geothermal energy cannot meet the global energy requirement. There are a 

number of geological environments that support exploitable geothermal energy. The 

geothermal fields with a temperature above 150 oC suitable for electricity generation are mainly 

trapped in locations where there is young volcanism, seismic and magmatic action 

(Fridleifsson, 1996), which do not occur in every country. On the other hand, the geothermal 

resources with a temperature below 150 oC that could be utilised directly are found in many 

parts of the world (Fridleifsson, 1996). Furthermore, the exploitation of geothermal energy 

results to some environmental threats, such as emission of gases like, CO2, H2S, NH3, N2, H2, 

and CH4
 (Barbier, 2002; Fridleifsson, 2001), wildlife extinction, destruction of natural 

vegetation and land use (Barbier, 2002; Fridleifsson, 2001). 

 

Biomass energy: 

Biomass is also another source of renewable energy that has the promise to mitigate the impact 

of global energy production on the environment and resource conservation (Wang, 2014). The 

use of biomass to produce sustainable energy can replace fossil fuels and also minimises CO2 

and CH4 emission, which contribute significantly to global warming (Kusch et al., 2011).  The 
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conversion of biomass to energy has a variety of techniques that are currently applied, which 

is broadly classified into thermochemical and biochemical/biological processes (Cheng et al., 

2014; Cheng, 2013; Tonini, 2013; Caputo et al., 2005; McKendry, 2002). Thermochemical 

conversion process consists of combustion, gasification, pyrolysis, and liquefaction (Ciubota-

Rosie et al., 2008; Caputo et al., 2005; Demirbas, 2004; McKendry, 2002; Demirbas, 2001; 

Demirbas, 1998; Overend, 1998; Solantausta, 1995). While biochemical/biological conversion 

method is made up of aerobic fermentation, anaerobic digestion (AD) and mechanical 

extraction (Ciubota-Rosie et al., 2008; Caputo et al., 2005; McKendry, 2002; Demirbas, 2001; 

WEC, 1994). However, AD is the ideal biomass energy conversion technology due the 

advantage of not only producing renewable energy source but also well suited for organic waste 

management in the municipalities and rural areas (Kusch et al., 2011). 

 

Every energy conversion process, including biomass conversion concepts, have some degree 

of negative impacts on the environment. Biomass conversion techniques also have a number 

of environmental concerns, such as air pollution, deforestation, as well as the impact on the 

cultivation of food crops (Ciubota-Rosie et al., 2008). But, unlike any other source of 

sustainable energy, biomass energy can achieve a neutral CO2 contribution to the environment 

(Ciubota-Rosie et al., 2008; Jefferson, 2006; Robu, 2005).  

 

This is attained by creating a balance between the harvested biomass for energy and the 

consumption of the CO2 produced in the process of energy conversion and utilisation by new 

biomass plant growth (Ciubota-Rosie et al., 2008; Jefferson, 2006; Robu, 2005). According to 

Miner (2010), carbon neutral activity is the one that balances the release of CO2 into the 

atmosphere and the absorption from the atmosphere. The carbon neutral cycle is illustrated in 

Figure 1.1 (Miner, 2010). 
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1.2.2 Municipal solid waste generation and the world population 

The United Nations (UN) in 2007 projected that the world population will increase by 

2.5 billion between 2007 and 2050, that is, from 6.7 billion in 2007 to 9.2 billion in 2050 (UN, 

2007). This increase is equivalent to the population of the world in 1950 and will be absorbed 

by the less developed parts of the world, whose population is likely to rise from 5.4 billion in 

2007 to 7.9 billion in 2050, whilst the developed nations are expected to remain marginally 

constant at 1.2 billion people (UN, 2007). Similarly, UNFPA (2007) forecasted that about 

5 billion people would live in the municipal areas by 2030. 
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As a result of the continuous growth of the world population as well as improvement in the 

standard of living of people and industrial advancement, the amount of municipal solid waste 

(MSW) generated is on a constant rise. The Organisation for Economic Corporation and 

Development (OECD, 2004), stated that between the year 1980 and 2000 the amount of 

municipal waste generated in its member states increased by about 54%. In another report, 

OECD stated that its member states are generating over 4 billion tonnes of MSW annually 

(OECD, 2013). In addition, it reported that in 2012 each person within the 28 EU member 

states generated an average of 492 kg of MSW (Eurostat, 2014). In the same report, each person 

in the UK generated an average of 472 kg of MSW (Eurostat, 2014).  

 

Similarly, DEFRA reported that the UK generated 31.1 million tonnes of MSW in 2012 

(Themelis and Bourtsalas, 2013). It is established that MSW is a global problem, but the 

improper waste management in developing countries increases the susceptibility to 

environmental and health hazards. These potential risks include air pollution, emission of 

greenhouse gases, underground water contamination, cholera, typhoid fever and bubonic 

plague (Antonis, 2013; Boadi and Kuitunen, 2005; DEFRA, 2004)  

 

1.2.3 Evolution of waste management concepts 

Before the advent of industrial revolution, the nature of waste produced was mainly 

biodegradable, such as vegetable, human waste and ashes from the incineration of other waste 

materials (Chandler et al., 1997; Ascari et al., 1992). The management of waste was not 

complex due to the utilisation as fertiliser or soil conditioner on farmland (Sangodoyin and 

Ipadeola, 2000; Chandler et al., 1997; Ascari et al., 1992; Nightingale, 1954). The industrial 

evolution in the 19th century created a significant increase in the global economic activities, 

resulting in mass migration of people to the industrial cities from the rural areas (Ayomoh et 
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al., 2008). The increase in industrial activities and the constant growth in human population, 

especially in the cities led to a significant increase in the quantity of solid waste generation 

(Ziadat and Mott, 2005). As a result, waste management becomes a critical issue to humanity 

(Articlebase, 2011; Melosi, 2005; Chandler et al., 1997). The different techniques used to 

minimise the challenges of waste management include landfill, incineration, recycling and 

biological reprocessing.  

 

Landfill and incineration are the oldest and most common form of waste management 

techniques (Themelis and Ulloa, 2007). Many countries, particularly the developing countries, 

still apply landfill as the main waste management system (EEA, 2009; Themelis and Ulloa, 

2007; Massarutto, 2001; Buclet and Godard, 2000). Landfills had been linked to a number of 

environmental and health hazards, like air contamination (Davoli et al., 2010), strong odours 

and smells perceived over 1 km from landfill sites (HPA, 2011), congenital malformation and 

low birth weight among babies born to women living within 2 km from landfill sites (Forastiere 

et al., 2011). 

 

Due to the risks associated with landfill, many countries instituted frameworks on landfill 

regulation. One of the most prominent frameworks legislated by the EU is the Waste 

Frameworks Directive (Directive 75/442/EEC, replaced by the modified Directive 

2008/98/EC). The framework emphasises the reduction of waste that goes to landfills (EEA, 

2009). Similarly, the United States Environmental Protection Agency (USEPA) on October 9, 

1991, publicised a revised minimum technical requirement for MSW landfills (USEPA, 1991). 

This regulation led to the closure of many smaller landfills in the USA, reducing the total 

number from 6,500 in 1988 to 1,767 in 2003 (USEPA, 2003). In addition, the USEPA (1991) 
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framework include guidelines for remodelling old landfills, construction of new landfill 

systems and the type of waste that go into them (Daskalopoulos et al., 1997).  

 

The remodelled and new landfill systems are equipped with impermeable liners and caps as 

well as a subsystem that collects and treats leachate. They also have gas wells and pipes that 

collect and transport landfills gas, mainly methane, to where it is utilised for electricity or heat 

generation (Themelis and Ulloa, 2007). Furthermore, the landfill systems consist of impervious 

layer covers applied when full to prevent rainwater as well as facilitate biodegradation process 

(Themelis and Ulloa, 2007). 

 

The application of incineration to reduce the excess quantity of household and agricultural 

waste dates back to thousands of years ago (Petts, 1994). Incineration involves the combustion 

of solid waste to produce ash residue (Petts, 1994). It is an effective way of reducing the volume 

of MSW and the demand for landfill space. However, it is related to possible environmental 

and health risks. These include airborne emission of dioxins (hazardous chemicals) (HPS, 

2009), Sulphur dioxide (SO2) (Roberts and Chen, 2006, also cited by Fewtrell, 2012) and 

nitrogen dioxide (NO2) (Forastiere et al., 2011), which can cause cancer and death.  

 

Similarly, a number of countries enacted frameworks for incineration systems due to the 

potential dangers. The Waste Incineration Directive (WID) 2000/76/EC of European 

Parliament and of the Council (WID, 2000), and the Waste Incineration (England and Wales) 

Regulations (WIR) 2002 (WIR, 2002) are some of the frameworks instituted. The aim of the 

directives is to innovate incineration systems in order to minimise the environmental and health 

risks (DEFRA, 2009). The recycling method of waste management is not discussed further in 

this thesis, but the biological reprocessing is discussed as follows. 
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1.2.4 Motivation of anaerobic digestion for organic waste management  

Appropriate waste management practice is crucial for any sustainable society. It prevents air, 

soil and water pollution as well as improves public health, decreases greenhouse gas emission 

and preserves natural resources. The AD system, which is a type of biological reprocessing, is 

the ideal waste management technique (Bohn, 2010; Hartmann et al., 2004). AD is the process 

by which bacteria breakdown organic material to produce biogas (renewable energy source) 

and digestate (biofertiliser) in the absence of oxygen. It involves not only the collection and 

safe disposal of organic waste but also sustainable management of organic material to create a 

source of renewable energy as well as provide economic, health and environmental benefits 

(Massarutto, 2010). According to Bohn (2010), AD reduces greenhouse gas emission more 

than any other waste management systems. It is an effective method of recovering energy and 

nutrients from organic material (Hartmann et al., 2004). The following are some of the benefits 

of AD system (DEFRI, 2009). 

 Contribution towards mitigation of climate change and other environmental targets; 

 Treatment of biodegradable wastes to generate biogas, a renewable energy that can be 

utilised to produce electricity and heat from combined heat and power (CHP) or for 

vehicle fuel; 

 Diversion of organic wastes from landfills and capturing of methane emission from 

organic wastes; 

 Provision of organic fertiliser and soil conditioner for agriculture and land use; and 

 A source of revenue generation to farmers and other practitioners, as excess energy and 

digestate are sold, which adds to the nation’s gross domestic product (GDP). 
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1.3 Problem statement 

The enhancement of biogas production is crucial in recent years due to increasing demand for 

biogas, resulting from the global quest for alternative sources of energy that are sustainable 

(Krustok et al., 2013; van Foreest, 2012; Rajendran et al., 2012; Ploechl et al., 2010). However, 

the production of biogas to keep up with the global demand is limited by the underperformance 

in the system implementing the AD process. This underperformance is due to the difficulty in 

obtaining and maintaining the optimal operating parameters/states for anaerobic bacteria to 

thrive with regards to attaining a specific critical population number, which results in 

maximising the rate of biogas production. This problem continues to exist as a result of 

insufficient knowledge of the interactions between the operating parameters and bacterial 

community. In addition, the lack of sufficient knowledge of the composition of bacterial groups 

that varies with changes in the operating parameters such as temperature, substrate and 

retention time. Without sufficient knowledge of the overall impact of the physico-

environmental operating parameters on anaerobic bacterial growth and composition, 

significant improvement of biogas production may be difficult to attain.  

 

In order to mitigate this problem, the construction of a suitable dynamic mathematical model 

is required that enables a better understanding of the relationship between the operating 

parameters and biogas production. This facilitates the means of predicting the behaviour of 

bacteria in AD, under different physico-environmental operating parameters 

 

A number of AD models have been developed by previous studies (Batstone et al., 2002; Amon 

et al., 2007; Keymer and Schlicher, 2003; Angelidaki et al., 1999; Boyle 1976; Buswell and 

Mueller, 1952). However, the current models are mainly dependent on assumptions that 
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consequently result in neglect of real-life scenarios, which limits a more realistic study on AD 

process. 

 

1.4 Aim and objectives 

An effective digester operation is one that maintains the optimal operating parameters/states 

for anaerobic bacteria to thrive with regards to attaining a specific critical population number 

which results in maximising the rate of biogas production.  

 

The aim of this PhD study is to develop a black-box (empirical) model for mesophilic AD 

process, in order to understand better, how physico-environmental operating parameters 

influence biogas and methane production. More specific there is a need to consider the control 

limits for the controlled parameters necessary for improving methanogenesis reaction while 

ensuring an enhanced digestion operation.  

 

In order to accomplish this goal, the following objectives are addressed. 

1. Identify and understand the performance variables of mesophilic AD system (Chapter 

2); 

2. Conduct a critical review of the operating parameters that influence the production of 

biogas and methane under mesophilic condition. For this research work the following 

four operating parameters are considered; temperature, pH, mixing speed and pressure 

(Chapter 2); 

3. Determine the limits for the four operating parameters and their impact on biogas and 

methane production. This includes a series of laboratory experiments with each of the 

operating parameters. The data obtained from the investigations are analysed and the 
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range of values for each operating parameter that recorded the highest performance in 

terms of biogas quantity production and quality are determined (Chapters 4 & 5); 

4. Construct a black-box model each for biogas production and methane production. The 

limits of the four operating parameters considered are analysed further in order to 

establish their correlation with biogas and methane production. Subsequently, two 

nonlinear multi-parameter black-box models are constructed using System 

Identification method through MATLAB functions. The models are able to predict the 

behaviour of the real system with sufficient accuracy (Chapter 6); and  

5. Determine the scalability of black-box models. This is to determine the possibility of 

scale-up of the black-box models constructed in this research study. 

 

1.5 Summary 

This chapter has presented the concept of this research work. It highlighted the impact of energy 

production and consumption on the environment and all live forms, as well as the global need 

for an alternative energy source that is sustainable. It also discussed the risks of increasing 

MSW on the environment and public health. In addition, the chapter introduced AD as the ideal 

technology for both a sustainable energy source and organic waste management. It then 

presented the problem statement, as well as the aim and objectives of this research work. The 

following chapter discusses the review of previous and relevant scientific articles in AD 

technology. 
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 Development in Anaerobic 

Digestion: Literature Review 

2.1 Introduction 

The application of AD was recorded in China and India over 2000 years ago when it was used 

for treating animal manure (Nayono, 2010; Veenstra, 2000). However, not until the 19th century 

was AD applied for wastewater and solid waste treatment (Nayono, 2010; Residua, 2009). The 

reason for the gap was due to the perception of AD as a slow and ineffective technology for 

organic waste treatment, especially for the increasing wastewater volume in industrialised and 

densely populated municipalities (Nayono, 2010; Gijzen, 2002; Polprasert, 2001). The first 

properly constructed AD plant was in a leper colony in Bombay, India in 1859 (Abbasi et al., 

2012; Khanal, 2008; Meynell, 1976). Similarly, the first account of AD system in England, 

UK, was in 1895, during which biogas was generated from sewage treatment plant and utilised 

as fuel for street lamps in Exeter (Residua, 2009; McCabe and Eckenfelder, 1957). AD 

technology has continued to gain prominence in many countries, particularly, in the recovery 

of renewable energy from household and municipal waste (Holm‐Nielsen, 2009). In addition, 

AD contributes to sanitation improvement, greenhouse gas mitigation, and production of 

organic fertiliser (Wang, 2014; Johansen et al., 2013, Vaneeckhaute et al., 2013; Wang et al., 

2011; Zheng et al., 2010). This chapter presents a discussion of the various physico-

environmental operating parameters that influence the performance of AD process, as it relates 

to anaerobic bacteria activity and biogas production. 

 

2.2 Operating parameters that influence AD performance 

There are a number of operating parameters that influence anaerobic bacterial activities such 

as specific growth rate, degradation rate, substrate utilisation and biogas production (Rajendren 
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et al., 2012; Deublein and Steinhauser, 2008; Al Seadi et al., 2008). For improved performance 

of AD process, it is necessary to maintain the appropriate range of the operating parameters 

that support optimal growth of anaerobic bacteria (Rajendren et al., 2012; Deublein and 

Steinhauser, 2008; Al Seadi et al., 2008). In order to maintain the stability of anaerobic reaction, 

it is crucial to maintaining a balance between the rate of organic acid formation and methane 

production (Bernard, 2012; USEPA, 2008). Maintaining a proper equilibrium between 

acidogenic and methanogenic bacteria requires that the operating parameters are kept within 

their different optimal ranges (Bernard, 2012; USEPA, 2008). The operating parameters 

discussed in this thesis include pH, temperature, substrate characteristics, hydraulic retention 

time (HRT), organic loading rate (OLR), mixing and carbon to nitrogen (C/N) ratio (Rajendren 

et al., 2012; Deublein and Steinhauser, 2008; Yadvika et al., 2004; Gerardi, 2003). 

 

2.2.1 pH 

The performance of AD process is affected by variation of pH in the digester (Cioabla et al., 

2012; Khalid et al., 2011; Romano and Zhang, 2011; Kumar, 2010; Wu et al., 2009). Each 

bacterial group in AD process has a specific range of pH values at which they optimally 

multiply and are most active (Khalid et al., 2011). Various studies have shown that anaerobic 

bacteria can function in a pH range of 5.5 - 8.5 (Nayono, 2009; Al Seadi et al., 2008; Lay et 

al., 1998; RISE-AT, 1998; Stronach et al., 1986). On the other hand, Cioabla et al., (2012) 

limited the pH range at which anaerobic bacteria can withstand to 6.5 – 8.0. However, it is 

reported that the optimum pH range for AD is 6.8 - 7.2 (Cioabla et al., 2012; Ward et al., 2008), 

which is the pH range for optimal growth of methanogenic bacteria. Other studies reported 

different optimal pH ranges for methanogenic bacterial growth, such as 6.8 - 7.6 (Nayono, 

2009; Lay et al., 1998; Stronach et al., 1986), 7.0 - 8.0 (Al Seadi et al.’2008) and 6.5 - 8.2 (Lee 

et al., 2009b). The ideal optimal pH value for methanogenesis is 7.0, the neutral pH  (Wang, 
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2014; Khalid et al., 2011; Yang and Okos, 1987; Huber et al., 1982), which should be the target 

pH value for biogas production. Furthermore, Hydrolytic and acidogenic bacteria are found to 

multiply optimally at lower pH levels of 5.5 and 6.5, respectively (Khalid et al., 2011; Kim et 

al., 2003).  

 

Methanogenic bacteria are sensitive to the acidic environment; their growth, as well as methane 

production, are inhibited in acidic condition (Wang, 2014; Kangle et al. 2012). Organic acids 

produced during acidogenesis can decrease the pH level of the reaction below 5.0 and 

consequentially, limit the growth of methanogenic bacteria (Kangle et al. 2012). Since 

methanogenic bacteria utilise the organic acids, decrease in their population would lead to 

excess volatile fatty acids (VFAs) accumulation, resulting in digester sour – a situation 

whereby methanogenic bacteria fail to keep pace with acidogenic bacteria and the digester 

becomes acidic (Kozani, 2014). The acidic condition can be caused by any of or a combination 

of the following factors, temperature change, toxic compound or sudden addition of a large 

quantity of digestible organic matter. However, when there is less population of acidogenic 

bacteria than methanogenic bacteria in AD process, the pH value can increase beyond 8.0, 

which can cause an increase in the concentration of ammonia, and result in digester failure 

(Lusk, 1999).  Since methanogenesis is the rate-limiting stage of AD, it is important to keep 

the pH value of digester within methanogenesis optimal range of 6.8 - 7.2. 

 

2.2.2 Temperature 

Temperature is characterised as the most important parameter that influence AD process 

(Cioabla et al., 2012; Chae et al., 2008; Choorit and Wisarnwan, 2007). The reason for this is 

due to the impact of temperature on all the processes involved in AD, which includes physico-

chemical properties of substrates in the digester as well as the kinetics and thermodynamics of 
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biological processes (Çalli, 2012; Kangle et al. 2012; Boe, 2006). The different groups of 

anaerobic methanogenic (methane forming) bacteria can multiply under various temperature 

limits (USFDA, 2012; Lamprecht, 2009; Bisschops et al., 2009; Lettinga et al., 2001). Figure 

2.1 shows the rate of growth of different methanogens at varied temperature ranges (Lettinga 

et al., 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure. 2.1, different methanogenic bacteria grow in varied temperature ranges. 

Psychrophilic methanogens can multiply under temperature between 0 – 20 oC, with optimum 

temperature range of 10 – 15 oC (Schmidt and Schaecheter, 2012; Willey et al., 2008; Lettinga 

et al., 2001; Hoyle, 2003; Temper et al, 1983; Winter et al, 1982; Morita, 1975). Mesophilic 

bacteria can populate at temperature between 10 – 45 oC, but grow optimally at temperature 

range of 35 – 40 oC (Schmidt and Schaecheter, 2012; Willey et al., 2008; Lettinga et al., 2001; 

Hoyle, 2003; Temper et al, 1983; Winter et al, 1982; Morita, 1975). Whilst thermophilic 

bacteria can withstand a higher temperature range of 25–65 oC, and the optimum temperature 
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range is between 50–60 oC (Schmidt and Schaecheter, 2012; Willey et al., 2008; Hoyle, 2003; 

Lettinga et al., 2001; Morita, 1975). In addition, AD process can operate at temperatures above 

60 °C, which is referred to as extreme-thermophilic (Frock and Kelly, 2012; Abreu et al., 

2010). Mackie and Bryant (1981) reported that low rates between these optimal temperatures 

could be attributed to lack of adaptability of the different methanogenic bacteria.  

 

AD is predominantly operated at a mesophilic temperature range (Li et al., 2014; Wang et al., 

2010). This is because there are more variety of bacteria that multiply at a mesophilic 

temperature range, thus mesophilic digestion is considered more stable than thermophilic and 

psychrophilic systems (Li et al., 2014; Wang et al., 2010). Similarly, mesophilic bacteria adapt 

to changing environmental conditions more than thermophilic bacteria (Li et al., 2014; Wang 

et al., 2010; Cheremisinoff 2008). In addition, thermophilic AD systems require more energy 

to maintain the required temperature, thereby making it more expensive to operate (OECD, 

2010; Cheremisinoff 2008). However, thermophilic anaerobic process has faster degradation 

rate than mesophilic digestion, resulting in shorter HRT, higher rate of methane production and 

kill pathogens better than mesophilic AD process (Li et al., 2014; Zhao, 2011; Luostarinen, 

2005; Mata-Alvarez, 2002; Lettinga et al., 2001; NREL, 1992). 

 

2.2.3 Carbon to Nitrogen (C/N) ratio  

The relationship between the proportion of carbon and nitrogen in a substrate is referred to as 

the carbon to nitrogen (C/N) ratio (Kangle et al., 2012). Different substrates have dissimilar 

C/N ratios. It is essential to maintain a suitable C/N ratio that can facilitate optimum bacterial 

growth in the digestion process (Kangle et al., 2012). Higher concentration of nitrogen in AD 

leads to excess ammonia production and can increase the pH level beyond 8.5, which is toxic 

to methanogenic bacteria (Kangle et al., 2012; Mata-Avarez, 2000). However, low nitrogen 
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concentration can result in acidic digester content, leading to insufficient ammonia production, 

which in effect, inhibits methane production (Kangle et al., 2012; Hartmann and Ahring, 2006; 

FOA, 1992). The nitrogen content in the substrate is converted to ammonia, which neutralises 

the VFAs produced by acidogenic bacteria, thereby maintaining the pH level at near neutral 

that is favourable for methanogenic bacterial growth and improved methane production (FOA, 

1992; Speece and McCarty, 1964). Kimchie (1984) suggested that C/N ratios lower than 10:1 

will be inhibitory to digestion process, but higher than 23:1 will not support optimum digestion 

process. In order to keep the optimal balance between carbon and nitrogen, substrates with high 

or low C/N ratios can be co-digested, such as animal manure and organic solid wastes (Kumar, 

2012; Zaher et al., 2007). 

 

2.2.4 Substrate characteristics 

The performance of AD can be affected by the characteristics of the substrate such as 

composition, degradability, homogeneity, fluid dynamics, particle size and C/N ratio (Nayono, 

2009; Steffen et al., 1998). Solid waste, especially the organic content of MSW may differ due 

to a number of reasons, including weather condition, cultural habits, seasons of the year and 

manner in which they are collected (Nayono, 2009).  

 

The proportion of substrate composition (carbohydrates, proteins and fats) influences its 

biodegradability as well as methane yield potential (Hartmann and Ahring, 2006). Substrates 

that contain a greater amount of fats yield more methane than the same quantity of 

carbohydrates and proteins (Angelidaki et al., 1990; Hanaki et al., 1981). This is because more 

energy is stored in the bonds of fat molecules (Fernandes et al., 2009). When electrons migrate 

from the atom, like carbon, with a low affinity for electrons to atom, such as oxygen, with a 

high affinity for electrons, energy is given off (Fernandes et al., 2009). So, more energy is 
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released when fatty acids are oxidised than when the same process takes place in carbohydrate 

and proteins (Fernandes et al., 2009; Mosier et al., 2005). However, fat-rich substrates degrade 

slower than that of carbohydrates and proteins. This is due to the slower hydrolytic phase of 

fat catabolism compared to that of carbohydrates and proteins, which are more readily 

hydrolysed (Neves et al., 2008; Vidal et al., 2000). 

 

The fluid dynamics of the substrate, which changes with seasons of the year, can influence the 

performance of anaerobic digester (Motte et al., 2013). Substrate with high water content may 

increase digester volume and require higher heat input per m3 of digester content, thereby 

reducing digester effectiveness (Motte et al., 2013; Steffen et al., 1998). However, a substrate 

with low water content, meaning that the total solids (TS) of the substrate is high, can cause 

ineffective mixing performance, scum layer formation, solid sedimentation and clogging 

(Motte et al., 2013; Steffen et al., 1998). Steffen et al. (1998) suggested that for conventional 

Continuous Stirred Tank Reactor (CSTR), a type of digester, TS concentration of substrate 

should be about 6–10 %. TS is the ratio measured in percentage of the weight of solids left 

after the substrate sample was dried in an autoclave at 105 ℃  for approximately 24 hours and 

the weight of the original substrate sample (Sluiter et al., 2008). TS is represented 

mathematically in Eq. 2.1 (Sluiter et al., 2008): 

   %TS = 
((𝐷𝑃𝑊+𝐷𝑆𝑊)−𝐷𝑃𝑊)

 𝑂𝑆𝑊
 x 100              (2.1) 

Where, 

DPW, DSW, OSW represent dry pan weight, dry sample weight and original sample 

weight, respectively. 

 

Furthermore, the particle size of the substrate can significantly affect AD performance (Hajji 

and Rhachi, 2013; Hartmann and Ahring, 2006). Particle size reduction increases the available 
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specific surface area that facilitates biodegradation, especially in hydrolysis stage, resulting in 

an increase in methane production as well as a reduction in the quantity of residue generation 

(Hajji and Rhachi, 2013; Hartmann and Ahring, 2006; Palmowski and Müller, 2000; Hills and 

Nakano, 1984). Mshandete et al. (2006) found that by reducing the size of sisal fibre waste to 

2mm, the methane production potential and total fibre biodegradation improved by 

approximately 20 % and 31–70 %, respectively. This has shown that pre-treating the particle 

size of the substrate can enhance both the performance of anaerobic digester as well as improve 

methane production. 

 

2.2.5 Hydraulic retention time (HRT) 

The hydraulic retention time (HRT) is the time it takes for complete digestion of substrate 

(Hartmann and Ahring, 2006; Lu and Ahring, 2005). The HRT of AD depends on some factors, 

which include process temperature, substrate composition, particle size, and digester 

configuration (Hartmann and Ahring, 2006; Lu and Ahring, 2005). The HRT for substrates 

digested in mesophilic AD process varies from 10 – 40 days, while that treated in thermophilic 

digester can take up to 3 – 14 days (Hartmann and Ahring, 2006; Lu and Ahring, 2005). The 

HRT can be determined analytically from the relationship between digester volume and the 

volume of substrate fed per unit time as shown in Eq. 2.2 (Al Seadi et al., 2008). 

    HRT = 
𝑉𝑅

𝑉
                (2.2) 

Where, 

 HRT = hydraulic retention time (days) 

 𝑉𝑅 = digester volume (𝑚3) 

 𝑉 = volume of substrate fed per unit time (𝑚3/𝑑 

 



22 

 

Due to the relatively slow growth of methanogenic bacteria, sufficient HRT is required for 

repopulation in order to make up for the bacteria discharged with the effluent (liquid discharged 

from the digester) (Zaher et al., 2007). Thus, maintaining bacterial population to cope with any 

inconsistency in the organic loading rate (OLR) (Zaher et al., 2007). 

 

2.2.6 Organic loading rate (OLR) 

OLR is the quantity of organic material (substrate) that is to be digested by a particular volume 

of the digester in a particular period of time (Al Seadi et al., 2008). Loading anaerobic digester 

above its sustainable capacity can cause accumulation of fatty acids, which inhibits AD 

process, resulting in process failure and low or no methane yield (Al Seadi et al., 2008; 

Vandevivere, 1999; Rise-at, 1998). OLR can be used as a measure of how much dry matter 

that can be loaded into a digester per volume of a unit time as presented in Eq. 2.3 (Al Seadi et 

al., 2008). 

 𝐵𝑅  = 𝑚 ∙  
𝐶

𝑉𝑅
                   (2.17) 

Where, 

𝐵𝑅 = organic load (kg/d ∙ 𝑚3) 

m = mass of substrate fed per time unit (kg/d) 

c = concentration of organic matter (%) 

𝑉𝑅 = digester volume (𝑚3) 

 

However, improper OLR can affect biogas production (Al Seadi et al., 2008). As mentioned 

above, if the concentration of organic material loaded to the digester is high, it can lead to the 

high production of organic acids during acidogenesis, which decreases pH level below the 

acceptable level and in effect, decreases the population of methanogenic bacteria. Since 

methanogenic bacteria utilise the organic acids, a decrease in their population will result in 
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VFAs accumulation and consequently digester sour (Lusk, 1999). However, the lack of 

sufficient organic material in the digester leads to a shortage of VFAs, as a result, reduces the 

population of methanogenic bacteria. The effect of the reduced number of methanogenic 

bacteria results in the rise of the digester pH beyond the optimum level, thereby, increases the 

ammonia content that leads to digester failure (Lusk, 1999).   

 

2.2.7 Mixing 

The anaerobic digesters require mixing/stirring to improve contact between bacteria and 

substrate, facilitating bacterial access to nutrients in substrate (Meroney and Colarado, 2009; 

Wards et al., 2008). Mixing prevents scum formation and thermal stratification in the digester 

(Meroney and Colarado, 2009; Karim et al., 2005). By mixing digester contents, a denser 

particulate such as heavy solids particles and sand are kept suspended to avoid sedimentation 

(Wards et al., 2008; Kaparaju et al., 2007).  

 

There are different types of mixing systems, such as gas mixing, pumped mixing, long shafted 

paddle mixing, wall mounted draft tube mixing and submersible mixers (Wards et al., 2008; 

Karim et al., 2005; Burton and Turner, 2003). The AD process does not always require 

continuous mixing, in practice, intermittent mixing is often applied; which can vary from a few 

times a day to several times an hour. Excessive mixing upsets bacterial population (Lindmark, 

2014). However, moderate mixing is preferable for improved digestion (Lindmark, 2014), 

which is supported by the findings of this study and reported in Chapter 5 of this thesis. 

 

2.3 Types of anaerobic digester  

The anaerobic digester is the main component of AD. It is an airtight tank that can be of any 

shape (cylindrical, rectangular, square and egg-shaped), where biodegradation of substrate and 
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biogas production take place (Ward et al., 2008). The design of anaerobic digester is required 

to contain the following basic objectives; to make a sustainable and continuous high organic 

load rate possible, to achieve a short HRT as possible and to optimise the production of methane 

(Khalid et al., 2011; Ward et al., 2008). The anaerobic digester can be broadly categorised 

according to the feeding mode (batch and continuous) and by the solid content of the substrate 

(dry and wet digestion) (Ward et al., 2008). 

 

2.3.1  Feeding mode (batch and continuous) 

The batch digester is considered the simplest to design, construct and operate (Khalid et al., 

2011). The digester is fed with substrate mixed with water to form a slurry, then sealed and 

allowed for a length of time. During the HRT, biogas production progresses to a maximum and 

then decreases slowly as bacterial effectiveness decreases. Not only that the batch digester is 

simple to construct and operate, it is also not expensive. It can perform rapid digestion process 

and be utilised easily to measure the rate of digestion (Khalid et al., 2011; Koppar and 

Pullammanappallil, 2008; Weiland, 2006; Parawira et al., 2004; Vandeviere et al., 2002; 

Ouedraogo. 1999). However, batch digester has some limitations, including volume restriction, 

the inconsistent rate of biogas production and varying the proportion of methane content in 

biogas (Linke et al., 2006). 

 

Unlike batch system, continuous fed digester requires daily loading of an organic substrate 

(Ward et al., 2008). The volume is designed large enough to contain the daily substrate feeding 

throughout the HRT (Ward et al., 2008). Continuous feed system can be divided into two types, 

namely, single-stage and two-stage or multistage digesters (Vandevivere et al., 2002; Lissens 

et al., 2001). In one-stage continuous feed system, all the four steps of AD process take place 

simultaneously in one digester. One major disadvantage of this system is that the entire 
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biochemical processes are kept under the same operating parameters, despite the fact that the 

growth rate of the various bacterial groups involved and their optimal pH ranges are different 

(Geradi, 2003; Vandevivere et al., 2002).  

 

 

 

 

 

 

 

 

 

 

However, a two-stage or multistage continuous feed system have the four stages of AD process 

take place in two separate phases in two digesters; hydrolysis/acidification take place in one 

digester and acetogenesis/methanogenesis processes occur in another digester. The product of 

the first stage (hydrolysis/acidification) in the first digester is fed into the second digester for 

the acetogenesis/methanogenesis step (De Baere, 2000; Schober et al., 1999). The separation 

of hydrolysis and acidification processes from acetogenesis and methanogenesis processes is 

mainly because they do not perform optimally under the same optimal pH range (Liu et al., 

2006a; Liu et al., 2006b; Zoetemeyer et al., 1982).  
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The two or multi-stage system maintains better process stability than the one-stage system, 

particularly during the metabolism of substrates that can be easily hydrolysed (Ward et al. 

2008; Bouallagui et al., 2005; Mata-Alvarez, 2002). Although multi-stage system costs more 

to construct and maintain, it is more effective compared to the single-stage method. A study 

reported by Nielsen et al, (2004), where a one-stage and a two-stage thermophilic system fed 

with cattle dung were compared. The result of the study shows that the two-stage system 

produced 6 - 8% higher specific methane as well as effectively removed 9% more volatile 

solids than the one-stage process. In another study, MSW was utilised as the substrate, a two-

stage system was found to produce 21% methane more than a single-stage system (Liu et al. 

2006a). The multi-stage system is capable of handling variation in OLR and quality as well as 

maintains optimal conditions for the entire process than single-stage system (Rapport et al., 

2008). Despite the various advantages of the multi-stage system over the single-stage system, 
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yet the multi-stage system has not been widely applied for commercial purposes (Rapport et 

al., 2008; Vandevivere et al., 2002; de Baere, 2000). This is attributed to the added design 

complexity and extra costs in constructing and operating a multi-stage anaerobic digester 

(Rapport et al., 2008; Vandevivere et al., 2002; de Baere, 2000). 

 

2.3.2 Solid content (wet and dry) 

The AD system can also be categorised as wet or dry digestion system, depending on the 

concentration of the total solids of substrate (Ward et al. 2008). Wet AD system is intended to 

process a dilute substrate, like slurry, which has its total solids concentration less than 15%. 

Whilst dry AD system is designed to digest substrate that contains 15 - 40% total solids (Lissens 

et al., 2001). 

 

In wet digestion system, if the incoming substrate contains total solids higher than 15%, it can 

be diluted to make the appropriate slurry by adding deionised water, recirculated process water, 

or co-digested with another substrate with a lower total solids concentration (Hartmann and 

Ahring, 2006). For instance, Organic Fraction of Municipal Solid Waste (OFMSW) can be 

blended with sewage sludge to form the suitable slurry for wet digestion (Hartmann and 

Ahring, 2006; Luning et al., 2003). Wet digestion system is useful in processing low solid 

organic materials such as food industry liquid waste and sewage sludge (Hartmann and Ahring, 

2006). However, the disadvantages of wet digestion system include the requirement for 

continuous mixing of slurry in the digester, which results in extra energy consumption by the 

mixer; the digester volume may be reduced as heavy and inert materials accumulate at the 

digester base due to sedimentation (Banks and Stentiford, 2007; Vandevivere et al., 2002). In 

addition, it requires larger digester volume compared to dry digestion system, more robust 
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water pumping and piping and utilises more energy to heat the extra digester volume (Banks 

and Stentiford, 2007; Vandevivere et al., 2002).  

 

The dry digestion system has the advantage of minimising the process risk posed by the 

suspension of fibrous organic materials, like straw or straw-containing animal dung in the 

digester, which is common with wet AD process (Kalia and Singh, 1998). Furthermore, dry 

digestion system requires less energy for mixing and heating of digester content, less digester 

volume as well as reduced water consumption (Kottner, 2002; Vandeveivere et al., 2002; 

Hoffmann, 2001). However, due to the high solid concentration of such substrates, dry AD 

system requires a higher technical equipment for substrate handling, mixing devices, pumping 

and pre-treatment compared to the wet system (Sigrid et al., 2011; FNR, 2009; Lissens et al., 

2001).  

 

2.4 Summary 

This chapter has discussed a number of operating parameters that influence anaerobic bacterial 

activity and subsequently, biogas and methane production. It is found that in order to improve 

biogas production; the system is required to maintain the appropriate limits of the various 

operating parameters that support the optimal growth rate of anaerobic bacteria. In addition, 

the different categories of anaerobic digesters, which are characterised by either the feeding 

mode or the solid content of the substrate. The review of the relevant scientific articles is 

continued in the next chapter with a focus on the improvement and the current state in AD 

technology. 
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 Improvement and current state 

in AD: Literature Review 

3.1 Introduction 

Many studies have been going on for the past decades in the field of AD with the aim of 

improving biogas productivity (Syngellakis, 2014; Montgomery and Bochmann, 2014; 

Brebbia, 2010; Ahring, 2003; Van Lier et al., 2001). The review of the relevant scientific 

articles in AD technology discussed in Chapter 2 above covered the physico-environmental 

operating parameters and their influence on AD performance, as well as the different types of 

anaerobic digesters based on the feeding mode and substrate solid content. However, this 

chapter discusses the relevant improvements and current state in AD technology, which include 

pre-treatment processes, co-digestion of different organic materials and process modelling. 

 

3.2 Pre-treatment for process enhancement 

Pre-treatment is the means of improving biogas yield per volume or mass unit of input 

substrate, by treating a substrate in advance before loading it into a digester (Malatak, 2013). 

In AD, especially when digesting complex substrate, it is not the entire substrate that is 

converted to biogas. This is due to the inability of the bacteria to gain access to the whole 

substrate (Malatak, 2013). Simple substrates such as cellulose and hemicellulose are easily 

biodegradable in AD. However, when combined with lignin, like lingo-cellulosic, they become 

complex (long chain polymer) and reduce in biodegradability (Van Liere, 2011). In digesting 

complex substrates, hydrolysis becomes another limiting stage (Zhang and Cai, 2008; Zhang 

et al., 2007; Noike et al., 1985). Meaning that apart from methanogenesis, biogas production 

also depends on the rate of hydrolysis - biodegradability (Fernandes, 2009). 
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A number of pre-treatment methods have been developed for AD process, which can be applied 

separately or combined (Donoso-Bravo and Fdz-Polanco, 2013; Quinones et al., 2012; Luo et 

al., 2012; Bishnoi, 2012; Erden and Filibeli, 2009; Perez-Elvira et al., 2009). The methods are 

broadly characterised into mechanical, chemical, biological, thermal and ultrasonic.  

 

Mechanical method is a means of pre-treatment that is utilised mainly to reduce substrate 

particle size, by grinding and pressing in order to break the cell walls (Quinones et al., 2012). 

The advantages of reducing substrate particle size include an increase in the available specific 

surface area that facilitates biodegradation, increase in methane production and a decrease in 

the quantity of residue generation. 

 

Chemical is the second method of pre-treatment process, which is applied by acidifying or 

alkalising the substrate (Quinones et al., 2012). Mata-Alvarez et al. (2000) reported the pre-

treatment of fibres with NaOH, NH4OH and a combination of both chemicals resulted in 

improving biogas and methane production. In addition, Lopez-Torres and Espinosa-Llorens 

(2008), reported that increase in methane potential occurred when fibre was mixed with CaO. 

 

In biological pre-treatment, the substrate is broken down aerobically in advance before feeding 

it to the digester. This process has shown to reduce solid particles, improve degradation rate 

and methane production (Mata-Alvarez et al., 2000; Capela et al., 1999). In another 

development, enzymes were used to catabolise substrate prior to feeding it to the digester, 

which is found to enhance degradation, while improving biogas production (Donoso-Bravo 

and Fdz-Polanco, 2013; Luo et al., 2012; Quinones et al., 2012; Petersson et al., 2007). 
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The thermal process is another kind of pre-treatment method used in AD. It utilises high 

temperature (130 – 180 oC) in conjunction with pressure (5 - 8 bar) to break the cell structure 

of organic substrate (Buddle et al., 2008). De-coupling and hydrolysing the protein and starch, 

make the complex substrate more readily available for bacterial consumption (Bishnoi, 2012; 

McCartyet al., 1986; Haug et al., 1983). According to Jolis et al. (2008), thermal pre-treatment 

achieved a 55 to 60 % volatile solids destruction. 

 

Furthermore, ultrasonic pre-treatment is applied in the catabolism of complex substrate like 

sewage sludge (Carrere et al., 2010). In this process, cell structure of sludge is mechanically 

disrupted due to induced cavitation (Carrere et al., 2010; Tiehm et al., 1997). It is found that 

cell disintegration changes the characteristics of sludge, resulting in an increase in 

biodegradability and improving volatile solid removal (Tiehm et al., 2001; Tiehm et al., 1997). 

In addition, it enhances biogas production (Erden and Filibeli, 2009; Perez-Elvira et al., 2009; 

Salsabil et al., 2009; Ward et al., 2008; Braguglia et al., 2008; Neis and Nickel, 2008; Xie et 

al., 2007; Bougrier et al., 2005; Bien et al., 2004; Chu et al., 2002; Onyeche et al., 2002; Wang, 

et al., 1999). 

 

3.3 Co-digestion of different substrates 

Co-digestion is a process in AD by which two or more substrates are homogenously blended 

and simultaneously digested (Agdag and Sponza, 2007). The AD was initially applied to a 

single substrate, single purpose treatment plant (Wu, 2007). However, studies have shown that 

AD process is more stable and achieves more potential benefits as a result of co-digestion (Wu, 

2007; Hartmann and Ahring, 2005; Murto et al., 2004; Mata-Alvarez et al., 2000). Co-digestion 

enhances biogas production due to the supply of the required nutrients by the co-substrates 

involved (Mata-Alvarez et al., 2000). This achievement in nutrient balance leads to better 
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digester performance and improved biogas production (Wu, 2007; Hartmann and Ahring, 

2005). Murto et al. (2004) reported that co-digestion of solid slaughterhouse waste, fruit, 

vegetable and manure improved the buffering capacity of digester – the ability of digester to 

react to changes in pH. In other words, the buffering capacity of the digester is the measure of 

the amount of alkalinity present in the digester.  

 

In addition, co-digestion is found to maintain the appropriate balance of C/N ratio in AD (Desai 

et al., 1994) and to reduce the concentration of nitrogen (Cuetos et al., 2008). For instance, the 

mixture of substrate with low nitrogen content and lipid is found to enhance biogas production 

(Castillo et al., 2006) as well as reduce the risk of acid accumulation and high concentration of 

ammonia that cause digester failure (Khalid et al., 2011; Castillo et al., 2006). In another study, 

co-digestion of the substrate that contains high moisture (liquid manure or sewage sludge) and 

substrate of poor moisture content is found to enhance the total solids (TS) content of digester 

(AgSTAR, 2012). Similarly, co-digestion involving substrate with high moisture content is 

found to dilute toxic compounds, thereby improving digester performance and biogas 

production (AgSTAR, 2012; Khalid et al., 2011; Braun, 2002). 

 

Furthermore, a study by Macias-Corral et al., (2008) revealed that blending and digesting cow 

manure and organic fraction of municipal solid waste (OFMSW) enhances methane 

production. Other benefits derived from co-digestion include increase in biodegradation of 

organic materials (AgSTAR, 2012), stability and digestion rate improvement (Cornell et al., 

2012) as well as higher mass conversion (Kangle et al., 2012), resulting in lower weight and 

volume of digestate (effluent). However, co-digestion has some disadvantages such as, an 

increase in digester effluent COD (chemical oxygen demand), need for additional pre-

treatment, higher mixing requirement and higher energy requirement (Braun, 2002). Co-
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digestion is a well-established practice in Europe, especially in Germany and Scandinavia 

(Appels et al., 2011; Environment Agency, 2010; Braun and Wellinger, 2009). Co-digestion 

plants for treating food waste and sewage sludge have been built in Germany, Switzerland and 

Denmark (Braun and Wellinger, 2009). The first co-digestion plant built in the UK is for the 

digestion of animal manure and food waste (Environment Agency, 2010). However, the co-

digestion of food waste and sewage sludge is not in existence yet in the UK due to the different 

regulatory and management regimes guiding the digestion of the two substrates (Iacovidou et 

al., 2012; Environment Agency, 2010). 

 

3.4 Process modelling  

Process models have brought about simplification of processes and utilised to describe and 

predict the behaviour of processes as well as their required outputs (Sulaiman et al., 2011). 

Process models play an essential role in process understanding, process development, online 

diagnostic, and process automation (Craven et al. 2012; Sulaiman et al., 2011; Tham, 2000). 

Choosing the appropriate model depends on a number of factors such as the intended 

application, quality, quantity and the nature of the available experimental data (Craven et al. 

2012; Lombardozzi and Sparks 2012; Müller et al., 2009; Bernacchi et al., 2009; Gómez et al., 

2005; Hoffman et al., 2004; Boomen et al., 2002). Process models can be categorised as 

mathematical, statistical and quantitative. Mathematical models are further divided into 

mechanistic (white-box) and empirical (black-box) model as illustrated in Figure 3.1 (Vázquez-

Cruz et al, 2014; Ljung, 2001). 
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3.4.1 Mathematical models description 

The complexity associated with bioprocess, which includes AD process, means that modelling 

is required in order to describe and predict the behaviour of the process in real life. As 

mentioned above, mathematical models are classified into mechanistic (white-box) and 

empirical (black-box) models (Vázquez-Cruz et al, 2014; Ljung, 2001). However, there is also 

another type of mathematical model known as a gray-box model, which combines the 

characteristics of white-box and black-box models (Vázquez-Cruz et al, 2014; Ljung, 2001). 

Henceforth in this thesis, mechanistic and empirical models are referred to as white-box and 

black-box models, respectively. 

 

White-box model: This is the type of mathematical model that is constructed based on the 

prior knowledge of the chemical, physical and biological sub-processes of the system 

(Vázquez-Cruz et al, 2014; Ljung, 2001). It is constructed based on the kinetics and 

stoichiometry of the individual identified reaction (Fang, 2010). White-box model usually 

employs a state-space model construction method to define the internal structure of the 

complex biochemical and physico-chemical processes (Fang, 2010). White-box model can rely 

Process models

Mathematical

Mechanistic 

(White-box)

Empirical (Black-box)

Statistical

Quantitative

Fig. 3.1. Classification of process models 



35 

 

on many assumptions and can be difficult to construct due to the complex nature of biochemical 

reactions (Yu et al., 2013; Fang, 2010) 

 

The Monod kinetics model, which is one of the most used mathematical models for bioprocess 

is a white-box model (Craven et al. 2012; Liu et al., 2008; Zeng et al., 1998; Mitsdorffer, 1991; 

Glacken et al., 1989; Bree et al., 1988; Bergter, 1983; Chen and Hashimoto, 1978; Powell, 

1967; Contois, 1959; Moser, 1958). The Monod kinetics model for bacterial growth depends 

on the relationship between specific growth rate and substrate concentration (Gerber and Span, 

2008).  

 

The relationship between the substrate flow rate and the volume of the digester is the dilution 

rate (Stanbury et al. 1995). 

D =  
𝐹

𝑉
                 (3.1) 

Where,  

D is the dilution rate (h-1), which is the ratio of the volumetric flow rate of nutrient 

supplied to the digester and the volume of the digester  

V is the volume of digester (m3)  

 F is the volumetric flow rate (m3h-1) 

 

In addition, the rate of change of bacterial concentration is as follows: 

    
d𝑋

d𝑡
 = (µ - D) X                          (3.2)  

Where,  

X is the bacterial concentration (mg/l)  

t is the time of incubation (day)  

 µ is the specific growth rate (day-1) 
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The bacterial growth is µX, while the bacterial output is DX. 

 

Under steady-state conditions, the new substrate fed into the digester balances the loss of 

bacteria from the digester. 

 
d𝑋

d𝑡
 = 0                                  (3.3) 

Then, Eq. 3.2 becomes,  

µ = D                 (3.4) 

 

According to Monod (1949), the nonlinear relationship between substrate concentration and 

specific bacterial growth rate is: 

    µ = µmax 
𝑆

𝐾𝑠 + 𝑆
                        (3.5) 

Where,  

µ is the specific growth rate (day-1) 

µmax is the maximum specific growth rate (day-1) 

S is the substrate concentration (mg/l) 

Ks is the half-velocity constant (g/l), meaning the substrate concentration at one-half of 

the maximum growth rate (µmax/2). 

The Monod model for bacterial growth shows that the specific rate of bacterial growth 

increases rapidly at low substrate concentration and vice versa until a bacterial saturation level 

is attained, as illustrated in Figure 3.2 (Gerber and Span, 2008). This indicates that the substrate 

concentration is the limiting factor for the bacterial growth rate. The saturation point is the 

maximum specific bacterial growth rate (µmax). 
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According to Contois (1959), the accuracy of the Monod model is high for pure bacterial 

cultures and simple substrates. In addition, Grady (1969) concluded that µmax is exclusive for 

individual bacterial cultures. However, Pfeffer (1974) suggested that the Monod model is 

insufficient to describe the degradation of complex substrate like municipal wastes. te 

Boekhorst et al. (1981) supported the finding of Pfeffer (1974) and added that the Monod model 

is sufficient for homogenous bacterial cultures, but cannot be used to describe processes 

involving heterogeneous bacterial cultures. Due to the shortfalls associated with Monod 

kinetics model, other authors modified the model as shown in Table 3.1. 

   

 

 

The growth of mesophilic bacteria is closely related to substrate degradation and influenced by 

the operating parameters. The models discussed in this section are based on the relationship 

between bacterial concentration, specific bacterial growth rate and substrate concentration. 

 

 

µ = µmax 
𝑆

𝐾𝑠 + 𝑆
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Fig. 3.2. Monod specific growth rate 

Table 3.1. List of the modified Monod models 

Model Author Eq. No. 

µ = µmax 
𝑆𝑛

𝐾𝑠+ 𝑆𝑛 
 

Moser, 1958 (3.6) 

µ = µmax 
𝑆

𝐾𝑐+𝑋+𝑆  
 = µmax 

𝑆

∙
𝐾𝑐∙𝑋

𝑆
+1  

 
Contois, 1959 (3.7) 

µ = µmax 
(𝐾+𝐿+𝑆)

2∙𝐿  
 ∙ (1 −  √1 − 

4∙𝐿∙𝑆

(𝐾+𝐿+𝑆)2

2
) 

Powell,1967 (3.8) 

µ = µmax 
𝑆 𝑆1⁄

𝐾+ 
(1−𝐾)∙𝑆

𝑆1

 
Chen and Hashimoto, 1978 (3.9) 

µ = µmax 
𝑆

𝐾𝑠+𝑆
∙ [1 − exp  (−

𝑡

𝑇
)] Bergter, 1983 (3.10) 

µ = µmax 
𝑆𝑛

𝑆𝑛∙(1+𝐾𝑏 ∙ 𝐺𝑠 ∙ 𝑆
𝑛) 

 
Mitsdorffer, 1991 (3.11) 
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However, despite the various modifications of the Monod model for bacterial growth, it is 

concluded that these models with only one set of kinetic parameters are insufficient to describe 

biological processes of any retention time or degradation of complex substrates (Gerber and 

Span, 2008; Rao and Singh, 2004). Hence, the first-order models, which are also a type of 

white-box model, are developed (Gerber and Span, 2008; Rao and Singh, 2004). An example 

of the first-order model is the model developed by Rao and Singh, (2004). 

   𝑘 (
d𝑆

d𝑡
 = − 𝑘 . 𝑆)           (3.12) 

Where,  

 k is the kinetics of bacterial growth due to enzyme activity 

 

The first-order kinetics were applied in the hydrolytic step of the models developed by Bryers 

(1985), Angleidaki et al. (1999), Knobel and Lewis (2002) and Siegrist et al. (2002). However, 

Shin and Song (1995) applied the first-order kinetics for all the steps of the process. Although, 

the first-order models are easy to deal with, the accuracy is for confined requirements only 

(Hashimoto et al., 1981). Hashimoto et al. (1981) concluded that it is not possible to use first-

order models for the prediction of optimum conditions of maximum biological activity or 

process failure. 

 

Furthermore, the Anaerobic Digestion Model 1 (ADM1) developed by the International Water 

Association (IWA) task group in 2002 is a white-box, state-space model (Batstone et al., 2002). 

It utilised the theoretical concepts of material conservation and biochemical reactions to 

construct the structure of the model (Fang, 2010). The constituent bacterial population and 

processes of ADM1 are based on several assumptions in order to keep the model simple (Yu 

et al., 2013; Fang, 2010). In addition, the ADM1 requires several input parameters 
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implemented in the form of differential algebraic equations (DAE) and differential equations 

(DE) (Yu et al., 2013; Batstone et al., 2002)  

 

Grey-box model: This is a combination of the white-box and black-box model. It is applied 

when there is not enough theoretical knowledge of the system to construct a white-box model. 

Then, the construction of the model is based on the prior knowledge of the system dynamics 

and the estimation of the unknown model parameters from measured input-output data 

(Vázquez-Cruz et al, 2014; Krishna, 2010; Brus, 2005). The disadvantage of grey-box 

modelling is that it requires a large number of parameters for a detailed complex system such 

as AD process (Brus, 2005). 

 

Black-box model: These models utilise data generated from the process to define the 

relationship between input and output variables (Vázquez-Cruz et al, 2014; Krishna, 2010). 

The block diagram of black-box model is shown in Figure 3.3.  

 

 

 

 

 

Black-box models depend on the availability of data for model estimation and validation 

(Vázquez-Cruz et al, 2014). According to Krishna (2010), the main disadvantage of black-box 

models is that the functions of the parameters lack deep physical significance – unable to 

describe process parameters such as mass transfer coefficients, heat and reaction kinetics. 

However, black-box models can adequately represent the trends in process behaviour and are 

as effective as the white-box models. In addition, black-box models have the advantage of 

 

Fig.3.3. Block diagram of black-box process 

 

Input variables Black-Box Output variables 
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sufficiently modelling a process when knowledge about the process is vague or in the case of 

a complex process whereby it is impossible to solve the resulting equations (Krishna, 2010). 

Furthermore, in a number of situations, it is impractically feasible to apply white-box models 

due to financial and time constraints; hence, black-box models are utilised (Krishna, 2010). 

 

The Black-box models are further classified into linear and nonlinear forms. The linear 

category is made up of the main transfer function and time-series models, and the nonlinear 

type is composed of neural network and time-series, as illustrated in Figure 3.4 (Vázquez-Cruz 

et al, 2014; André, 2013; Kumar and Zhao, 2011; Krishna, 2010; Stein et al., 2007; 

Aufhammeret et al., 2006). 

 

Fig.3.4. Classification of black-box models 

 

3.4.2 Linear black-box models 

For general linear models in time-domain, the following equation describes the model. 

   y(t) = G(𝑧−1, θ)u(t) + H(𝑧−1, θ) ε(t)            (3.13) 

 

Black-box models

Linear

Transfer function

Time-seriel

Nonlinear

Neural network

Time-seriel
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Where, 

 u(t) is the system input at time t 

y(t) is the system output at time t 

 G(𝑧−1, θ) is the transfer function of the deterministic part of the system 

 H(𝑧−1, θ) is the transfer function of the stochastic part of the system 

 e(t) is the disturbance of the system which is usually zero-mean white noise 

 𝑧−1 is the backward shift operator 

The G(𝑧−1, θ) specifies the relationship between the input and output variable. Whilst the 

H(𝑧−1, θ) specifies the effects of  the random disturbance on the output variable (Ljung, 2001).  

 

For linear black-box models, G and H in Eq. 3.13 are rational transfer functions in the delay 

operator with unknown numerator and denominator polynomials defined by the following 

equations (Ljung, 2001):  

  G(𝑧−1, θ) = 
𝐵(𝑧,𝜃 )

𝐴(𝑧,𝜃)𝐹(𝑧,𝜃)
                       (3.14) 

Similarly,  

H(𝑧−1, θ) = 
𝐶(𝑧,𝜃)

𝐴(z,𝜃)𝐷(𝑧,𝜃)
              (3.15) 

 The perimeter vector θ is the set of model parameters that contain the coefficients bi, ci, di and 

fi of the transfer functions, which are eliminated in the following equations to make them appear 

simpler. Hence, Eq. 3.13 becomes; 

   A(z)y(t) = 
𝐵(𝑧)

𝐹(𝑧)
 u(t – n) + 

𝐶(𝑧 )

𝐷(𝑧 )
 ε(t)             (3.16) 

Where, 

 n is the system delay 

A(z), B(z), C(z), D(z) and F(z) are polynomials in connection with the backward shift operator 

and described by the following equations.  
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A(z) = 1 + 𝑎1𝑧−1 + ⋯ +  𝑎𝑛𝑎𝑧−𝑛𝑎            (3.17) 

B(z) = 1 + 𝑏1𝑧−1 + ⋯ +  𝑏𝑛𝑏𝑧−𝑛𝑏            (3.18) 

C(z) = 1 + 𝑐1𝑧−1 + ⋯ +  𝑐𝑛𝑐𝑧−𝑛𝑐            (3.19) 

D(z) = 1 +  𝑑1𝑧−1  + ⋯ +  𝑑𝑛𝑑𝑧−𝑛𝑑            (3.20) 

F(z) = 1 + 𝑓1𝑧−1  + ⋯ +  𝑓𝑛𝑓𝑧−𝑛𝑓            (3.21) 

Where na, nb, nc, nd, and nf are structural parameters.  

 

However, when one or more of A(z), C(z), D(z) and F(z) are set to 1, then simpler models are 

created such as Box-Jenkins (BJ), output error (OE), autoregressive with exogenous terms 

(ARX) and autoregressive-moving average with exogenous terms (ARMAX) models. For 

instance, when C(z), D(z) and F(z) are set to one, ARX model is created.  

A(z)y(t) = B(z)u(t – n) + ε(t)             (3.22) 

 

When A(z), C(z) and D(z) are equal to1, the resultant model is the OE model. 

   y(t) = 
𝐵(𝑧)

𝐹(𝑧)
 u(t – n) + ε(t)              (3.23) 

 

When A(z) is equal to1, the general linear model becomes the BJ model. 

y(t) = 
𝐵(𝑧)

𝐹(𝑧)
 u(t – n) + 

𝐶(𝑧 )

𝐷(𝑧 )
 ε(t)                     (3.24) 

 

When D(z) and F(z) are equal to1, the general linear model is reduced to ARMAX model. 

A(z)y(t) = B(z)u(t – n) + C(z) ε(t)            (3.25) 

 

Figure 3.5 represents the different linear black-box models. 
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Fig. 3.5. Different linear black-box models 

 

Furthermore, the predictor associated with Eq. 3.16 is of “pseudo-linear” regression form 

(Sjoberg et al., 1995; Liung and Soderstrom, 1983). 

   ŷ(𝑡|𝜃) = θT φ(t, θ)              (3.26) 

The regressors, which are the components of φ(t, θ) are in the following general forms (Sjoberg 

et al., 1995): 

 u(t – k) is associated with the B-polynomial 

 y(t – k) is associated with the A-polynomial 
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 ŷu(𝑡|𝜃) is the simulated output from past input (u) only and is associated with the F-

polynomial 

 ε(t – k) = y(t – k) - ŷ(𝑡 −  𝑘|𝜃) is the prediction error associated with the C-polynomial 

 εu(t – k) = y(t – k) – ŷu (𝑡 −  𝑘|𝜃) is the simulation error associated with the D-

polynomial 

 

In addition, linear state-space models are common representations of dynamic models. They 

are similar to the ARX models, describing the same kind of linear relationship between inputs 

and outputs (Ljung, 2002). 

   x(t + 1)  = Ax(t) + Bu(t) + Kε(t)             (3.27) 

   y(t) = Cx(t) + Du(t)  + ε(t)             (3.28) 

Where,  

 x(t) is the vector of state variables 

 A, B, C and K are the matrices 

If K = 0, it means that noise source ε(t) affects only the output. Also, if D = 0 it means that 

there is no direct influence from u(t) to y(t). 

 

3.4.3 Nonlinear black-box models 

The nonlinear black-box models are subdivided into time-series and neural network based 

models as shown in Figure 3.1. In the nonlinear time-series models, the behaviour of the 

process is modelled by combining the weighted cross-products and powers of the variables in 

the representation (Krishna, 2010). However, the perimeters of the functions remained linear, 

thereby facilitating the identification process.  
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Black-box models can be dynamic or static depending on their relationship with time. If the 

observed inputs (u) and outputs (y), form a dynamic system: 

   ut = [u(1), u(2), …, u(t)]             (3.29) 

   yt = [y(1), y(2), …, u(t)]             (3.30) 

Then, the general nonlinear dynamic black-box model is as follows: 

   y(t) = g(ut-1, yt-1) + ε(t)              (3.31) 

Where, 

 y(t) is a vector that contains the outputs at time t 

 u(t) is a vector that contains the inputs at time t 

 g(ut-1, yt-1) is the model structure to be selected 

 ε(t) is the noise on the output at time t  

The additional term ε(t) in Eq. 3.31 denotes that the subsequent output, y(t), is not an exact 

function of the past data. However, ε(t) must be small so that given the past data, g(ut-1, yt-1) is 

a good predictor of y(t). 

In order to find the nonlinear function g in Eq. 3.31, g(ut-1, yt-1) is parameterised with a finite-

dimensional parameter vector θ (Ljung, 2001; Sjoberg et al., 1995). Then, g(ut-1, yt-1) becomes  

g(ut-1, yt-1, θ). According to Sjoberg et al, (1995), this parameterisation is usually an 

approximation of the quality assessed by means of the fit between the model and the data. 

 

Though, mapping the increasing number of past observations (ut, yt) into a finite dimensional 

vector φ(t) of fixed dimension, 

   g(ut-1, yt-1, θ) =  g(φ(t), θ)             (3.32) 

Where,  

   φ(t) = φ(ut-1, yt-1)              (3.33) 



46 

 

In Eq. 3.33, the vector φ(t)  is called regression vector, while its components on the right-hand 

of the equation are referred to as regressors (Sjoberg et al., 1995). Parameterising the regressors 

gives: 

   φ(t) = φ(ut-1, yt-1, θ)              (3.34) 

 

In addition, similar to the linear black-box regression structure in Eq. 3.26, the nonlinear case 

is of the following form. 

   ŷ(𝑡|𝜃) = g(φ(t), θ)              (3.35) 

For the input and output case, u(t – k) and y(t – k) are measured variables. While ŷu(𝑡|𝜃), ε(t – 

k) = y(t – k) - ŷ(𝑡 −  𝑘|𝜃) and εu(t – k) = y(t – k) – ŷu (𝑡 −  𝑘|𝜃) are based on preceding outputs 

from the black-box model ŷ(𝑡 −  𝑘|𝜃). If the measured outputs y(t – k) in the regressors are 

substituted by the last simulated output ŷ(𝑡 −  𝑘|𝜃) then, the output from Eq. 3.35 becomes 

equal to ŷu(𝑡|𝜃) (Sjoberg et al., 1995). The following are examples of nonlinear black-box 

model structures. 

 Nonlinear autoregressive with exogenous terms (NARX) models use u(t – k) and y(t – 

k) as regressors 

 Nonlinear output error (NOE) models use u(t – k) and ŷu (𝑡 −  𝑘|𝜃) as regressors 

 Nonlinear autoregressive moving average with exogenous terms (NARMAX) models 

use u(t – k), y(t – k) and 𝜀(𝑡 −  𝑘|𝜃) as regressors 

 Nonlinear Box-Jenkins (NBJ) models use u(t – k), ŷ(𝑡 −  𝑘|𝜃), 𝜀(𝑡 −  𝑘|𝜃) and εu(t – 

k) as regressors 

 Nonlinear Hammerstein-Wiener (NLHW) models use u(t – k) and ŷu (𝑡 −  𝑘|𝜃) as 

regressors 

However, the NOE, NARMAX and NBJ as well as the nonlinear state-space models are 

considered recurrent structures (Ali, 2010; Sjoberg et al., 1995). This is because the past 
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outputs from the models have to be fed back into the model computation, thereby required 

more considerable computation to fit the data (Ali, 2010; Sjoberg et al., 1995). In addition, it 

is difficult to check the conditions under which the obtained predictor model is stable (Sjoberg 

et al., 1995). 

 

The black-box modelling method has been applied in a number of AD systems, such as the 

model of Beck (1980), which utilised black-box method for the identification of a single-

input/single-output (SISO) model for volatile acid concentration as input and volumetric gas 

flow rate as output. Also, black-box models were used to model the combustion process of the 

internal combustion engine (Maass, 2011). 

 

Neural network 

The neural network has gained prominence in nonlinear modelling (Billings, 2013a). It is a 

computational model that interconnects a large number of computational units called neurons, 

to form a network capable of performing complex computational tasks (Billings, 2013b; 

Sulaiman et al., 2011). Generally, with the use of certain learning algorithm, the neural network 

receives training to learn and to represent the data set (Billings, 2013a). The process of 

determining the weights that decide the strength of the connection between the neurons in the 

network and enable it to model the mechanism that yielded the data set involves learning a 

mathematical expression of the system (Billings, 2013a).  

 

The neural network has the advantage of robustness, suitable for nonlinear models, very 

adaptive in nature and able to function even when there is a failure in one of the elements 

(Billings, 2013a). It does not require the prior knowledge of the interrelationships that existed 

between the input and output variables. Rather, what it needed to function is the specification 
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of the network design and enough quantity of steady input data (Yu et al., 2012). However, the 

limitation of a neural network for AD process model development is the difficulty in utilising 

the model to design a digester or scale up AD system (Yu, 2013). This is due to the various 

level of input-output relationships required to train the model for real life process application, 

which could be susceptible to overfitting or underfitting, as well as takes a long time to process 

large networks (Tabatabaei et al., 2010). 

 

3.5 Summary 

This chapter has presented some improvements made in AD technology. Pre-treatment is an 

important development in AD process as it reduces the substrate particle size, especially in 

hydrolysis. Consequently, it increases the available specific surface area that facilitates 

biodegradation, which in effect enhances biogas production, as well as reducing the quantity 

of residue generation. In addition, co-digestion of two or more substrates has shown to enhance 

biogas production. This is due to the combined positive effect achieved by the supply of the 

required nutrients from the co-substrates involved. Furthermore, the chapter discussed the 

different mathematical models, mainly the white-box and black-box models. The various 

mathematical models provide the possibility of describing and predicting the behaviour of AD 

process. The discussion in the next chapter focuses on the experiments conducted in this study. 
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 Experimental Apparatus and 

Methodology 

4.1 Introduction 

The AD is a multi-step process involving several groups of anaerobic bacteria. These groups 

of bacteria promote a series of sequential biochemical reactions/processes in converting 

organic material to biogas (Baker and Evans, 2009). The biochemical processes consist of the 

following four main steps; hydrolysis, acidogenesis, acetogenesis and methanogenesis (Korres 

et al., 2013; Zieminski and Frac, 2012; Nwuche and Ugoji, 2010; Amani, 2011; Al Seadi et al., 

2008). This chapter presents the discussion of the biochemical processes of AD that result in 

biogas production. It also discussed the theoretical chemical conversion of complex organic 

compounds to molecules of methane and carbon dioxide. Furthermore, the chapter describes 

the laboratory experiments conducted in this study, which investigates the influence of 

temperature, pH, mixing speed and pressure on biogas and methane production.  

 

4.2 Bacteriological and biochemical processes in AD 

The AD is the process by which bacteria breakdown organic matter in the absence of oxygen 

to produce biogas and digestate (NNFCC, 2011). Biogas is a mixture of methane (CH4), carbon 

dioxide (CO2) and traces of other gases, including ammonia (NH3), hydrogen (H2) and 

hydrogen sulphide (H2S) (NNFCC, 2011; Hiremath et al., 2009; Gallert and Winter, 2005; 

Kelleher et al., 2002; McKendry, 2002; Veeken et al., 2000).  

 

The AD is a process that depends on the complex interaction of different species of bacteria 

(Kangle et al., 2012; Baker and Evans, 2009). In order to achieve a stable AD process and 

optimal biogas production, it is important to maintain the balance between the various bacterial 

groups (Wang, 2014). This balance could be affected by changes in the physico-environmental 
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conditions, which could result in accumulation of intermediary products (short-chained organic 

acid molecules) that may inhibit the entire AD process (Hooshyari et al., 2009; Wong et al., 

2009; Liu et al, 2009; de Bok et al, 2004). The short-chained organic acid molecules are called 

volatile fatty acids (VFAs) (Marchaim, 1992). 

 

The conversion of organic material to biogas using AD technology is a complex biochemical 

reaction that is composed of successive multi-step processes and parallel reactions (Korres et 

al., 2013; Kangle et al., 2012; Khalid et al., 2011; McCarty, 1982). The degradation process of 

complex organic polymers involves interrelated steps that facilitate the catabolism of organic 

material to smaller units. Each of the stages is performed by a specific group of bacteria, which 

successively break down the product of the previous step. The putrefaction of organic material 

takes place in four sequential steps, which are hydrolysis, acidogenesis, acetogenesis and 

methanogenesis illustrated in Figure 4.1 (Korres et al., 2013; Zieminski and Frac, 2012; Al 

Seadi et al., 2008; Veeken et al., 2000; Marchaim, 1992). 

 

Hydrolysis: This is the first stage of AD process, at which organic polymers are broken down 

into soluble monomers by hydrolytic enzymes excreted by hydrolytic bacteria (Kangle et al., 

2012). At this step, carbohydrates are hydrolysed into glucose, proteins converted into amino 

acids while lipids are transformed into glycerol and fatty acids (Zieminski and Frac, 2012; 

Nayono, 2009; Al Seadi, 2008). The conversion of glucose into simple sugar is illustrated in 

Eq. 4.1 (Korres et al., 2013; Ostrem, 2004; Themelis and Verma, 2004).  

 

    C6H10O4 + 2H2O             C6H12O6 + 2H2            (4.1) 
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Acidogenesis: The second stage of AD process is also referred to as fermentation. The products 

of hydrolysis, simple sugars, amino acids and fatty acids are catabolised by acidogenic bacteria 

to form acetate, carbon dioxide, hydrogen, VFAs and alcohols. At this stage, acetate can be 

utilised by methanogenic bacteria and converted directly to methane (Nayono, 2009; Al Seadi, 

2008). The following three chemical equations illustrate the three different conversions of 

 

 

 
  

Fig.4.1. Stages in AD process 
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glucose by acidogenic bacteria into ethanol, propionate acid and acetic acid, as signifies in Eq. 

4.2, Eq. 4.3 and Eq. 4.4, respectively (Korres et al., 2013; Ostrem, 2004; Themelis and Verma, 

2004; Bilitewski et al., 1997; Marchaim, 1992).  

 

C6H12O6             2CH3CH2OH + 2CO2             (4.2) 

C6H12O6 + 2H2            2CH3CH2COOH + 2H2O            (4.3) 

C6H12O6            3CH3COOH               (4.4) 

 

Acetogenesis: At this stage, the products of acidogenesis that have not yet transformed to 

methane by methanogenic bacteria are converted into the methanogenic substrate by 

acetogenic bacteria. Low molecular VFAs are oxidised into acetate, hydrogen gas and carbon 

dioxide (Nayono, 2009; Al Seadi et al., 2008; Ostrem, 2004; Themelis and Verma, 2004). 

Also in acetogenesis, VFAs that have carbon chains longer than two units, as well as alcohols 

with carbon chains longer than one unit are oxidised into acetate or propionate and hydrogen 

gas (Al Seadi et al., 2008). The presence of hydrogen in this phase raises the hydrogen partial 

pressure that can inhibit the oxidation process (Al Seadi et al., 2008). For continuous 

conversion of VFAs into acetate, hydrogen gas and carbon dioxide, it is required to reduce 

the hydrogen partial pressure enough to thermodynamically let the process proceed (Nayono, 

2009; Ostrem, 2004). Lowering the hydrogen partial pressure can be achieved by the 

presence of hydrogen-consuming bacteria in the digestion process, leading to the conversion 

of all the VFAs (Nayono, 2009; Ostrem, 2004). The concentration of hydrogen measured by 

its partial pressure can be an indicator of the performance of AD process (Mata-Alvarez, 

2003). Examples of acetogenic reactions are illustrated in the conversion of propionate, 

glucose, ethanol and bicarbonate to acetate in Eq. 4.5, Eq. 4.6, Eq. 4.7 and Eq. 4.8, 

respectively (Korres et al., 2013; Ostrem, 2004; Marchaim, 1992; McInerney et al. 1981). 
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CH3CH2COO- + 3H2O             CH2COO- + H+ + HCO3
- + 2H2           (4.5) 

C6H12O6 + 2H2O            2CH3COOH + 2CO2 + 4H2             (4.6) 

CH3CH2OH + 2H2O            CH3COO- + 2H2 + H+             (4.7) 

2HCO3
- + 4H2 + H+            CH3COO- + 2H2O             (4.8) 

 

Methanogenesis: This is the final stage of AD process; the VFAs are converted to methane 

and carbon dioxide, which is biogas, by the activities of methanogenic bacteria. The 

conversion of acetate to methane and carbon dioxide is presented in Eq. 4.9 and Eq. 4.10, 

while the transformation of alcohol into biogas is shown in Eq. 4.11. Furthermore, the 

conversion of hydrogen and carbon dioxide to biogas is presented in Eq. 4.12 (Korres et al., 

2013; Nayono, 2009; Al Seadi et al., 2008; United Tech, 2003; Omstead et al., 1980; Thauer 

et al., 1977).  

 

2CH3CH3OH + CO2            2CH3COOH + CH4            (4.9) 

CH3COOH            CH4 + CO2             (4.10) 

2C2H5OH + CO2           2CH3COOH + CH4           (4.11) 

CO2 + 4H2            CH4 + 2H2O            (4.12) 

 

The stability of anaerobic process depends on methanogenesis. This is due to the slower growth 

of methanogenic bacteria than other groups of anaerobic bacteria involved, besides very 

sensitive to changes in operating parameters (Wang, 2014; Zupancic and Grilc, 2012). Because 

of these reasons, methanogenesis is considered the rate-limiting step of AD process (Zupancic 

and Grilc, 2012). Methanogenic bacteria multiply and perform optimally at neutral pH 

condition (Nayono, 2009; Al Seadi et al., 2008; Gas Technology, 2003). Sudden temperature 
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change can inhibit the activity of methanogenic bacteria, resulting in less or no methane 

production (Çalli, 2012; Gao et al., 2011; Ahn and Forster, 2002). According to Davis and 

Cornwell (1998), the kinetics of methanogenesis determines the kinetics of the entire anaerobic 

biochemical process. 

 

4.3 Further review of the operating parameters 

The influence of operating parameters on biogas production is very challenging especially in 

the rural areas of developing nations (Pham et al., 2014; Cu et al., 2012). Millions of biogas 

production plants in countries like China, India, Tibet, Pakistan, Bangladesh and Vietnam are 

utilised mainly to produce biogas for cooking and lighting purposes (Bruun et al., 2014). Even 

in these simple biogas plants, the impacts of the operating parameters were critical. In addition 

to the review of the operating parameters in Chapter 2, the four operating parameters 

(temperature, pH, mixing speed and pressure) investigated in this research work are further 

discussed in this section. 

 

For a reaction to occur, reactants require kinetic energy that facilitates their collusion with one 

another (Brown et al., 2009). Increasing the temperature of the reaction causes reactants’ 

molecules to gain more kinetic energy that enables them to move about faster and collide 

frequently (Brown et al., 2009), thereby increasing the rate of reaction. Similarly, the rate of 

metabolism in bioprocess increases with temperature (Hoegh-Guldberg and Bruno, 2010). In 

AD process, the rate of anaerobic reaction increases as the operating temperature rises, but up 

to a certain temperature, known as the optimum temperature (Calli, 2012; Kent, 2000). Apart 

from increasing the rate of reaction by increasing the heat energy input, substrates utilised for 

biological process also require energy for the reaction to proceed (Starr and McMillan, 2014). 

The required energy, referred to as activation energy, is ideally supplied to the substrates by 
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the input heat energy (Dominiczak, 2007; Alters, 2000). In order to mitigate the influence of 

temperature, several simple biogas digesters in the countries like China and India are buried 

underground to maintain the temperature within the digesters (Pham et al., 2014, Kossman et 

al., 1997).  

 

A number of researchers have investigated the effect of temperature on biogas production (Ma 

et al., 2013; Gavala et al., 2003; Chen and Hashimoto, 1978). Usman et al. (2012) investigated 

the influence of temperature on biogas production from two maize samples, which were 

digested at different temperatures, 30 ℃, 45 ℃, and 60 ℃. The goal of the study was to 

determine the most suitable temperature for the process, that is, the temperature that achieved 

the highest biogas production from the given maize samples (Usman et al., 2012). Pandey and 

Soupir (2012) also conducted a study to determine how the given temperatures (25 ℃, 37 ℃, 

and 52.3 ℃) influenced biogas production from AD of dairy manure. Furthermore, Zhao 

(2011) investigated how a change in temperature affected the production of biogas from the 

treatment of domestic wastewater. The results of the reviewed studies show that without the 

right digester temperature the production of biogas is limited and can make AD less reliable 

and unattractive as a means of sustainable energy source. 

 

Similarly, the importance of stabilising the process pH within the optimum range in AD cannot 

be overemphasised. As discussed in section 2.2.1, the impact of pH variation on biogas 

production is very significant. It shows that a significant decrease in pH below 7.0, the neutral 

value, could result in the acidic slurry in the digester, which could inhibit biogas production. 

However, the significant rise in pH above the neutral level causes the slurry to become alkaline, 

thereby limiting or halting biogas production. For this reasons, many studies have been 

conducted with the goal of investigating the impact of pH variation on biogas production.  
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Sumardiono et al. (2013) investigated the effect of COD/N (Chemical Oxygen 

Demand/Nitrogen) ratios of the substrate and pH control on biogas production from vinasse. 

The author found that at COD/N ratio of 600/7, the controlled pH sample had about 10% COD 

removal more than that of the fluctuating pH. The author concluded that the biogas production 

at the controlled neutral pH is more than the biogas generated at the fluctuating pH. 

 

Another study was carried out utilising four similar samples of dairy wastewater, but with 

variable starting pH values (Kheiredine et al., 2014). It was found from the biodegradation test 

that the highest COD removal of 90.8% was recorded for the sample with initial pH of 7.0, 

followed by 79.64% for 9.5 pH, 63.75% for 5.5 pH and 49.11% for 4.0 pH. The experiment 

further shows that the highest methane content was produced by the sample that has the starting 

pH of 7.0, and it followed the same sequence as the results obtained from the biodegradation 

test, with negligible methane production as the pH decreases below 5.5 (Kheiredine et al., 

2014). The biodegradation process signifies the degree and rate at which organic material is 

broken down by bacteria, and in this case, to produce methane and carbon dioxide (Kheiredine 

et al., 2014). Furthermore, Budiyono et al. (2013) conducted a similar biodegradation test with 

three samples of bioethanol waste containing different pH values at the start of the digestion 

process. The results obtained indicated that the sample that started with pH of 7.0 generated 

the highest biogas production of 3.81 mL/g COD, while the other two samples with initial pH 

of 6.0 and 8.0 produced 3.25 mL/g COD and 3.49 mL/g COD of biogas, respectively 

(Budiyono et al., 2013). 

 

Similar to temperature and pH, the significance of mixing in AD to improve biogas production 

has been widely acknowledged (Sindall et al., 2013). However, relatively, less emphasis has 
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been made on exploring the specific impact of mixing speed on the production of biogas 

(Sindall et al., 2013). A number of researches were carried out to determine the effect of mixing 

speed on biogas production. A study conducted by Hoffmann et al. (2013), on the effect of 

mixing intensities on biogas production, utilising cow manure as substrate. In that study, four 

continuously stirred digesters containing similar samples at four different mixing speeds of 

1500, 500, 250 and 50 rpm are operated. The author found that the performance of the digester 

stirred at 1500 rpm was adversely affected, leading to lower biogas production and higher VFA 

concentration. In contrast, the digester that operated at 500 rpm achieved the highest biogas 

production. Also observed is that the other two digesters operated at 250 and 50 rpm produced 

biogas marginally at the same rate, but higher than the 1500 rpm digester (Hoffmann et al., 

2013). 

 

Furthermore, another research utilised velocity gradient, through computational fluid dynamics 

(CFD) to determine the influence of mixing speed on biogas production. Velocity gradient is 

the velocity variance between adjacent layers of fluid (CEE, 2012). The author used velocity 

gradient as a proxy for mixing intensity of turbulence (Sindall et al., 2013). The results from 

the study showed that as the velocity gradient was lowered from 9.7 𝑠−1 to 7.2 𝑠−1, which 

represented a reduction in the mixing speed from 100 to 50 rpm, increase in biogas production 

is recorded. Nevertheless, as the velocity gradient increased from 9.7 𝑠−1 to 14.3  , for 

increasing mixing speed from 100 to 200 rpm, biogas production was found to decrease 

(Sindall et al., 2013).  

 

The operating pressure is the last parameter investigated; however, less emphasis has been 

made on evaluating its effect on biogas and methane production (Chen et al., 2014). Research 

conducted by Abe and Horikoshi (2001) and cited by Chen et al. (2014), reported that 
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methanogenic bacteria can be metabolically active at a pressure up to 100 bar. In addition, it is 

reported that pressurised anaerobic digester can improve methane production, thereby, refining 

the quality of biogas (Chen et al., 2014; Lindeboom et al., 2011; Hayes et al., 1990). Increasing 

digester pressure liquefies the CO2 content of biogas, which decreases the overall biogas 

production, but improves the quality of biogas produced as it contains a higher proportion of 

methane (Lindeboom et al., 2011). 

 

Similarly, a study performed by Chen et al. (2014) to investigate the impact of two different 

digester pressure, 1.5 and 9 bar, on biogas production, revealed that biogas generated by the 

9 bar digester contained about 74.5 % methane. Whilst biogas produced by the 1.5 bar digester 

contained approximately 66.2 % methane. The outcome of this experimentation signifies that 

increasing the operational digester pressure can improve the methane content of the biogas 

produced. 

 

 The reason why CO2 liquefied in the two studies cited is that it has a higher solubility in water 

compared to methane. From the solubility table, the solubility of CO2 and methane in water 

(1ml/100ml) at 20 ℃ and 1atm is 0.782 and 0.032 g/kg, respectively (Yalkowsky et al., 2010). 

This means that CO2 dissolves in water more than methane at the same temperature and 

pressure. According to Henry’s law, the solubility of a gas in a liquid is directly proportional 

to the pressure of that gas above the surface of the solution (Yalkowsky et al., 2010). However, 

according to Japan-Agency for Marine-Earth Science and Technology (2007), it is difficult to 

explain the effects of pressure on complex metabolic systems, like AD, based on a simple 

volume law. Consequently, it is difficult to describe the influence of pressure on the actual 

production of biogas.  
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This study has shown the impact of each of the operating parameters evaluated not only on 

biogas production but also on the quality of the produced biogas. However, the following 

section presents the discussion of the laboratory experimentation of the combined effect of 

temperature, pH, mixing speed and pressure on biogas production and the methane content of 

the produced biogas under mesophilic condition.  

  

4.4 Experimental procedures 

This section contains the methodology and steps of all the laboratory experimentations 

conducted in this research work. It covers the preparation of the bacteria culture media and the 

substrate (organic samples), as well as the experimental setups. A total of 27 experiments were 

performed, involving the four operating parameters and each repeated four times. The 

experimental design of 26 of them is in such a way that only one parameter is manipulated 

while the other three operating parameters are maintained at the same given value throughout 

the investigation for all the variables of the manipulated parameter. The remaining experiment 

is performed with all the four investigated operating parameters manipulated simultaneously 

in three different intervals of eight hours each. Furthermore, this research work investigated 

the impact of co-digestion of wastewater sludge (WWS) and food waste (FW) on biogas and 

methane production. The study provided more insight on the behaviour of mesophilic anaerobic 

bacteria and the response of biogas production. The obtained results are presented in Chapter 5, 

which are utilised to construct the process model. In addition, all the data generated from the 

experiments are found in appendix A. 

  

4.4.1 Preparation of bacterial culture media  

Bacteria culture is a medium by which bacteria is supplied with all the elements (nutrients) 

they require for growth (Bauman, 2007). The media for this study is prepared by weighing out 
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1.0 g of glucose into a conical flask, mixed with 90 mL of deionised water. The solution was 

inoculated with 10 mL of WWS, obtained from Thames Water Rye Meads Sewage Treatment 

Plant, Stanstead Abbortts, UK, to make up the solution to 100 mL. The vigorously stirred flask 

was covered airtight with a rubber cork. The anaerobic environment was achieved within the 

conical flask by supplying it with nitrogen through a tube for 20 minutes, which displaced the 

dissolved oxygen present. Afterwards, the prepared bacteria culture was placed in an incubator 

operating at 39 ℃ for 12 hours. The prepared bacteria culture media was utilised to inoculate 

all the samples in this study, except for samples for co-digestion tests. The setup for bacterial 

culture preparation is shown in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2 Impact of variable temperature on biogas production 

The experimentation was carried out with four units of 2 L volume New Brunswick BioFlo 

111 Batch/Continuous fermentors (digesters), operated in batch mode under mesophilic 

condition. The sample fed to the digesters contains a mixture of 10 g of glucose, 13 g of nutrient 

 
   

Fig. 4.2. Bacterial culture preparation 
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broth, 900 mL of deionised water and inoculated with 100 mL of the bacterial culture 

previously prepare, to make up the working volume to 1 L. In order to make the environment 

inside the digesters anaerobic (free from oxygen), nitrogen was supplied into the digesters for 

30 minutes and dissolved oxygen contained in the digesters was displaced. The digesters were 

continuously stirred at 250 rpm while the digester pressure was controlled at 0.7 bar. The 

sample in the digester was retained for 24 hours.  

 

The pH was maintained automatically at 7.2 by the supply of 2 M concentration of Sodium 

Hydroxide (NaOH) solution through the base peristaltic pump. The operating temperatures 

investigated are 32 oC, 34 oC, 36 oC, 38 oC, 40 oC and 42 oC. The biogas was collected through 

a tube inserted into the headspace of digesters to allow venting of biogas into a Tedlar gas 

sample bag attached to it. The cross-section of the digester and the experimental setup are 

shown in Figures 4.3 and Figures 4.4, respectively. The biogas and methane production were 

recorded every hour, using Biogas 5000 portable gas analyser connected to the gas collection 

tube. The experiments were repeated four times for each of the operating temperatures and the 

data obtained are analysed and discussed in Chapter 5.  
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Fig. 4.3. Cross-section of New Brunswick BioFlo 111 Digester 
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The technical specifications for both Biogas 5000 gas analyser (Geotech, 2012) and New 

Brunswick BioFlo 111 Batch/Continuous fermentor (New Brunswick, 2010) are presented in 

Table 4.1 and Table 4.2, respectively. 

 

 

 

 

 

 

 
 

Fig. 4.4. Setup of BioFlo 111 Digester 
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Table 4.1 Biogas 5000 technical specifications  

Gas ranges 

 

Gases measured CO2 and CH4 By dual wavelength infrared sensor with reference 

channel 

Standard gas cells Cell Range Typical 

accuracy 

(range : 

accuracy) 

Typical accuracy 

(range : accuracy) 

     

 CH4 0-100% 0-70% : ±0.5% 

(vol) 

70-100% : ±1.5% (vol) 

 CO4 0-100% 0-60% : ±0.5% 

(vol) 

60-100% : ±1.5% (vol) 

Pump 

Flow 550 ml/min typically 

Flow fail point -200 mbar vacuum - user settable 

Maximum vacuum restart -375 mbar approximately with flow rate of approx 80ml/min 

Facilities 

Temperature measurement -10°C to +75°C with optional probe 

Temperature accuracy ±0.5°C with optional probe 

Flow measurement Via Pitot tube, orifice plate, or anemometer 

Alarm User selectable alarms 

Communications Via USB lead or wireless Bluetooth 

Relative pressure measurement ±500 mbar 

Relative pressure accuracy ±4 mbar typically (should be zeroed before reading) to ±15 mbar max 

Barometric pressure measurement 500 to 1500 mbar, ±5 mbar accuracy 

Available memory 10 IDs *, 500 readings 

Environmental conditions 

Operating temperature range -10°C to +50°C 

Atmospheric pressure range 700 to 1200 mbar 

Relative humidity 0-95% noncondensing 

Certification rating 

ATEX II 2G Ex ib IIA T1 Gb (Ta = -10°C to +50°C) 

MCERTS MC/130240/00 

ISO17025 Calibration to UKAS certificate number 4533 

CSA Ex ib IIA T1 (Ta= -10°C to +50°C) (Canada), AEx ib IIA T1 (Ta= -10°C 

to +50°C) (USA) 
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Table 4.2. New Brunswick BioFlo 111 technical specifications  
Vessel Working Volume 0.48-1.12L 

Total Volume 2.0 

Controller Master Control 

Station 

Controls 1-4 vessels, 32 control loops per vessel; stores 10 recipes 

& 8 process variables per vessel for trend graphing. Includes an 

industrial touchscreen monitor/user interface, 3 built-in pumps & 

connectors for all utilities & communications signals used by 

fermentor/bioreactor 1. 

Utility Station One each required for optional 2nd, 3rd or 4th slave 

fermentors or bioreactors. Each includes 3 built-in pumps & 

connectors for all utilities & communications signals for its 

individual fermentor/bioreactor. 

Touchscreen 

Interface/Display 

15-inch industrial monitor capable of supporting up to 4 

fermentors/bioreactors. One is standard with the 

Master Control Station. Optional 2nd touchscreen available for use 

with slave fermentors/bioreactors, to replicate the image shown on 

the Master display. 

Temperature Indication Digital display in 0.1°C increments 

Range From 5°C above coolant temperature to 80°C (setting range: 4-

80°C). 

Control PI control employing PWM of heater and cooling water 

Sensor Platinum RTD probe 

Agitation Drive Permanent magnet motor with high torque input. 

Indication Digital display in 1 RPM increments. 

Range 50-1200 RPM 

Control PI-controlled 

Sensor Optical photoplastic disc 500 lines/rev with quadrature output. 

Impellers 2 six-bladed Rushton turbine impellers provided 

Exhaust Filter 0.2μm disposable filter 

Condenser Stainless steel, water-cooled in headplate 

Aeration 4-Gas System Up to 4 gases, including air, N2, CO2 & O2, delivered to ring 

sparger 

Sparger Ring sparger 

Inlet Filter 0.2μm absolute disposable filter 

N2 Gas For calibration of DO probe 

pH Indication Digital display in 0.01 pH increments 

Range 2-12 pH 

Control P&I 

Sensor pH gel-filled probe 

DO Indication Digital display in 0.1% increments 

Range 0-200% 

Control P&I, Agitation, O2 Enrichment. Also GasFlow Rate if 

equipped with mass flow controller 

Sensor Polargraphic probe 

Other Sensors Foam/Level One foam/level sensor is standard 

Options Redox or second pH and second DO probes available 

Pumps Pumps 1 & 2 Assignable peristaltic pumps 

Fixed speed (12 RPM) or variable duty cycle 

Available control modes: Off, Prime, Base, Acid, 

Foam, Levl2 Wet, Lvl2 Dry, Lvl 3 Wet or Lvl3 Dry. 

Pump 3 Assignable peristaltic pump 

Fixed speed (100 RPM) or variable duty cycle 

Available control modes: Off, Prime, Base, Acid, 

Foam, Levl2 Wet, Lvl2 Dry, Lvl 3 Wet or Lvl3 Dry. 

Utilities Water 10 PSIG maximum, 50 μm filtration 

Gas 10 PSIG maximum    

Ambient Operating Conditions 10-30 C, up to 80% relative humidity, non-condensing 
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4.4.3 Effect of variable pH on biogas production 

The goal of the experiment is to determine how variable pH values influence biogas and 

methane production in the anaerobic biodegradation of glucose. The experimental setup and 

procedure are similar to that described in section 4.4.2, except that temperature was controlled 

at 39 oC. In addition, the operating pressure and mixing speed were maintained at 0.7 bar and 

250 rpm, respectively, with HRT of 24 hours. The experiment was repeated four times for each 

of the investigated pH values; 5.0, 6.0, 7.0, and 8.0. The variable pH values were achieved by 

automatically adjusting the digester pH to the set-point through the addition of 2 M of 

hydrochloric (HCL) acid and 2 M of NaOH into the digesters. The biogas and methane 

production were measured every hour by gas analyser similar to that of the temperature 

discussed above. The outcome of the experiments is analysed and discussed in Chapter 5. 

 

4.4.4 Influence of digester pressure on biogas and methane production 

The investigation carried out to ascertain the impact of digester pressure on biogas and methane 

production is described in this section. The experimental procedure, setup and HRT are similar 

to that described in sections 4.4.1 and 4.4.2. The temperature, pH and mixing speed were 

regulated at 39 oC, 7.2 and 250 rpm, respectively. The initial digester pressure was set at 0.7 bar 

using vacuum/pressure pump and monitored by a pressure gauge. The experiment was repeated 

with different operation pressures, 0.5, 0.3 and 0.1 bar. In addition, four repetitions of the 

experiment for each of the given operation pressures were performed. The biogas production 

and methane proportion were monitored as described in section 4.4.2 and the findings are 

reported and discussed in Chapter 5. 
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4.4.5 Impact of mixing speed on biogas production 

The effect of mixing speed on the biogas production and its methane concentration are also 

investigated in this study. Mixing as highlighted in section 2.2.7, facilitates contact between 

bacteria and nutrients from substrates (Meroney and Colarado, 2009; Wards et al., 2008), 

thereby improving digester performance. However, inappropriate mixing speed can affect the 

performance of digester as found in this study. 

 

The methodology and experimental setup are similar to that discussed in section 4.4.3. The 

operating temperature was set at 39 oC, while the digester pH and pressure were maintained at 

7.2 and 0.7 bar, respectively. The operating speed of the mixer was initially set at 60 rpm and 

the experiment was retained for 24 hours. Biogas was collected as usual through the tube 

inserted into the headspace of digester into a Tedlar gas sample bag while online biogas and 

methane production were monitored every hour via the gas analyser connected to the tube. The 

experiment was performed with three other operating mixing speeds; 300, 600 and 2000 rpm. 

The experiment for each of the mixing speeds was repeated four times and the data obtained is 

discussed in Chapter 5. 

 

4.4.6 Effect of simultaneous manipulation of operating parameters 

An experiment is conducted to evaluate the impact of simultaneously manipulating the 

operating parameters investigated in this study on biogas production. The experiment was 

repeated four times under mesophilic conditions. The data obtained from this investigation is 

utilised to test the estimated model. The parameters were manipulated simultaneously with 

three different values at eight hours interval. The temperature, pH, mixing speed and pressure 

were initially set at 35 oC, 8.5, 900 rpm and 0.3 bar, respectively. After eight hours, the values 

of the parameters were changed to 37 oC, 6.2, 500 rpm and 0.4 bar for temperature, pH, mixing 
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speed and pressure, respectively. Then at the 17th hour, the values of the parameters were 

altered again, in the same order, to 41 oC, 6.8, 120 rpm and 0.5 bar. 

 

4.4.7 Influence of co-digestion on biogas production 

As mentioned in section 3.1.2, co-digestion can improve nutrient balance, biodegradability, as 

well as digester performance and biogas production in AD. The methodology for the study was 

as follows: 

 

1. Preparation of substrates 

The substrates utilised for this experiment are wastewater sludge (WWS), obtained from 

Thames Water Rye Meads Sewage Treatment Plant, Stanstead Abbortts, Hertfordshire, and 

food waste (FW) collected from the cafeteria of the University of Hertfordshire, all in the UK. 

The activated sludge used as inoculum was obtained from Thames Water Rye Meads Sewage 

Treatment Plant. The FW consists of fish, rice, chicken, beef, bread, fresh vegetables and 

scrambled egg, which were ground with a grinding machine to reduce their particle size. All 

the FW samples collected throughout the study are of the same basic content. 

 

2. Total solids (TS) determination 

The TS content of both FW and WWS were determined by applying the Laboratory Analytical 

Procedure (LAP) methodology, described in LAP Determination of Total Solids in Biomass 

and Total Dissolved Solids in Liquid Process Sample (Sluiter et al., 2008, cited by Sluiter et 

al., 2010, Shekiro 111 et al., 2014 and Ritchie, 2014). For this study, TS was determined by 

drying the samples at 105 oC for 12 hours in an autoclave. 
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3. Co-digestion experiment 

The experiment was performed with 3 L glass vessels (digesters), operated in batch mode, 

under mesophilic condition. The aim of this experimentation is to investigate the influence of 

the co-digestions of WWS and FW on the biogas production. The digester temperature was 

maintained at 39 oC and the mixing was performed by fabricated rotating shakers at 150 rpm. 

The volume of each sample in the digester was 2 L and the influent and effluent pH values for 

all the samples were noted. Furthermore, the environment within the digesters was made 

anaerobic by displacing the dissolved oxygen with nitrogen, which was supplied by a rubber 

tube inserted through the digester rubber cork. Each of the samples was retained in the digester 

for seven days. The experimental setup is illustrated in Figure 4.5 and biogas was harvested by 

a tube inserted into the headspace of digesters, which transferred the gas to a Tedlar gas sample 

bag. Gas analyser coupled to the tube monitored the rate of biogas production per day and the 

corresponding methane content. In order to achieve the ideal mixing ratio of the co-substrates, 

three different mass ratios of FW: WWS were tested at 30:70, 50:50 and 70:30. In addition, 

FW and WWS were tested as a single substrate, which was utilised as a reference for the mixed 

samples. Each of the experiments was repeated five times and the results are discussed in 

Chapter 5. 

 

 

 

 

 

 

 

 
Fig. 4.5. Setup of co-digestion experiment 
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4.5 Summary 

This chapter has discussed the bacteriological and biochemical processes that make up the AD 

process. These are successive multi-step and parallel reactions such as hydrolysis, 

acidogenesis, acetogenesis and methanogenesis, which are the action of a specific group of 

anaerobic bacteria for each step/process. Of all the processes methanogenesis is found to be 

the limiting step as it determines the effectiveness of the entire AD. The chapter also discussed 

the different experimentations to evaluate the effects of temperature, pH, mixing speed and 

pressure on the biogas production. Furthermore, it discussed the influence of the co-digestion 

of different ratios of FW and WWS on the biogas production. The data obtained from all the 

experiments conducted in this chapter are analysed and discussed in Chapter 5. 
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 Results and Discussions 

5.1 Introduction 

The experimental procedures for the impact of four operating parameters and co-digestion, 

under the mesophilic condition, on biogas and methane production, are discussed in Chapter 4. 

Because of the huge amount of data collected from the investigations conducted in this study, 

this chapter could not accommodate such amount of data, rather they are documented in 

appendix A. This chapter contains the analyses and discussions of the results collected from 

the experiments, which are presented in graphical forms.  

 

5.2 The impact of temperature on biogas and methane production 

This section discusses the relationship between temperature variation and biogas production in 

mesophilic AD of glucose. The effect of this relationship in terms of average biogas production, 

cumulative biogas production and total biogas production are plotted. Similarly, the methane 

content of the biogas at different digester temperatures are also presented in graphs. 

 

5.2.1 Average rate and cumulative biogas production 

The average biogas production rate and average cumulative biogas production are presented in 

Figures 5.1 and 5.2, respectively. 
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Figure 5.1 presents the rate of biogas production from the digestion of glucose at 32, 34, 36, 

38, 40 and 42 oC with HRT of 24 hours. As evident, the 36, 38, 40 and 42 oC digesters began 

biogas production at the 2nd hour, while the setups that operated at 34 oC, and 32 oC, 

commenced biogas production at the third and seventh hour, respectively. Indicating that the 

substrate and anaerobic bacteria received enough energy (activation energy) required for 

biodegradation to proceed from the 36, 38, 40 and 42 oC digesters within the second hour of 

the digestion process, which resulted in biogas yield within the second hour. Although the four 

digesters provided enough activation energy for the anaerobic reaction to commence, it is 

observed that the biogas production rate for 42 oC digester is the lowest at the beginning of the 

production, while the highest is recorded in the 40 oC digester, followed by the 38 oC digester 

and then the 36 oC digester. Indicating that 42 oC temperature is beyond the mesophilic optimal 

temperature range of the digester. 

 

 
Fig. 5.1. Average rate of biogas production at different temperatures 
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In addition, the 38, 40 and 42 oC digesters peaked at the ninth hour. Again, the digester that 

was operated at 42 oC generated the lowest peak, whereas the 40 oC digester produced the 

highest peak, followed by the 38 oC digester. The 36 oC digester is found to peak at the 12th 

hour, ahead of the 34 and 32 oC digesters that peaked at the 13th and 18th hour, respectively. 

This signifies that the 40 oC digester has the tendency to produce more biogas than the rest of 

the digesters within the first 10 hours of the digestion, followed by the digester that was 

operated at 38 oC. 

 

Furthermore, the rate of biogas production remained positive for all the digesters up to the 20th 

hour, when the biogas production rate from the 42 oC digester became negative, meaning that 

the production of biogas was on the decline and lower than the production of the previous hour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.2. Average cumulative biogas production at different temperatures 
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Similarly, the comparison of the average cumulative biogas produced at 32, 34, 36, 38, 40 and 

42 oC as seen in Figure 5.2. It shows that the 40 oC digester-generated the highest average 

cumulative biogas production, followed by the 38 oC digester, then the third highest cumulative 

biogas is produced in the 36 oC digester. Whilst the 32 oC digester yielded the lowest average 

cumulative biogas, followed by the 34 oC digester and then the 42 oC digester. It is seen that 

the average cumulative biogas produced in the 42 oC digester is not the lowest, however, Figure 

5.2 shows a significant drop in biogas production as digester temperature was elevated from 

40 to 42 oC. This means that the temperature range that yielded the highest average cumulative 

biogas is 38 – 40 oC. 

 

5.2.2 Total volume of biogas production 

The average total volume of biogas production from the impact of variable operating 

temperatures is presented in Figure 5.3. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.3. Average total volume of biogas yield at different temperatures 
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As seen in Figure 5.3, as digester temperature increased from 32 to 39 oC, the average total 

biogas volume production increased, although not a linear relationship. As the temperature was 

further elevated from 39 to 40 oC, the production of biogas is relatively constant. However, as 

the temperature marginally increased beyond 40 oC, the volume of biogas yield is seen to 

decline. Implying that increase in temperature within the mesophilic range, but not beyond the 

higher optimal value, can improve biogas yield, but further temperature increase beyond the 

optimal range can cause a decline in biogas production. In addition, it is seen in Figure 5.3 that 

the digester temperature rose beyond 40 oC, supporting the reports of previous studies (Babaee 

et al., 2013; Usman et al., 2012; Chae et al., 2008; El-Mashad et al., 2004). Hence, it is deduced 

from Figures 5.1, 5.2 and 5.3 that the optimum temperature range for AD of glucose under the 

mesophilic condition for this research work is 37 - 40 oC. 

 

5.2.3  Methane production at varying temperature 

The relationship between variable temperatures and methane production is shown Figures 5.4 

and 5.5 for average rate and average cumulative methane production, respectively. 

 

 

 

 

 

 

 

 

 

  
Fig. 5.4. Average rate of methane proportion at different temperatures 
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The rate of methane production presented in Figure 5.4 shows a similar behaviour to that of 

the biogas production rate in Figure 5.1. However, as seen in Figure 5.4, the 36, 38, 40 and 

42 oC digesters began methane production at the third hour, while the setups that operated at 

34 and 32 oC, commenced methane production at the fourth and eighth hour, respectively. In 

addition, the 38, 40 and 42 oC digesters peaked at the ninth hour. The digester that was operated 

at 40 oC produced the highest peak, followed by the 38 oC digester. The 36 and 34 oC digesters 

reached their peak at the 12th hour, ahead of the 42 oC digester, which peaked at the 13th hour. 

Then the 32 oC digester peaked at the 18th hour.  

 

Furthermore, the rate of methane production remained positive for all the digesters up to the 

19th hour, when the methane production rate from the 42 oC digester became negative. Other 

digesters, except the 34 oC digester, also produced negative methane production rate but at 

different times. The negative methane production rate means that the production of methane 

was on the decline and is lower than the methane production of the previous hour. 

 

 

 

 

 

 

 

 

 

As seen in Figure 5.5, the digester that was operated at 40 oC recorded the highest average 

cumulative methane production, followed by the digester with operating temperature of 38 oC.  
Fig. 5.5. Average cumulative methane production at different temperatures 
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The digester with a temperature of 36 oC provided the third highest average cumulative 

methane production, then the 42 oC digester. However, the 32 oC digester generated the least 

average cumulative methane after the 34 oC digester. 

 

5.2.4 Average total volume of methane production at different temperatures 

Figure 5.6 shows the average total methane production relative to temperature variation.  

 

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure 5.6, the impact of temperature on the total volume of methane yield is similar 

to the effect of temperature on the total volume of biogas production in Figure 5.3. It shows 

that as the operating temperature of the digesters increased from 32 to 39 oC, the total volume 

of methane production increased, though not a linear relationship. It is also seen that further 

increase in temperature from 39 to 40 oC, resulted in a relatively constant methane production. 

However, as the digester operating temperature slightly increased beyond 40 oC, the volume of 
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Fig. 5.6. Average total volume of methane yield at variable temperature 
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methane yield dropped. Indicating that 42 oC is above the temperature limit of which it supports 

the growth of the methanogenic bacteria. 

 

5.3  Effect of pH  

This section discussed the results obtained from the investigation conducted on the influence 

of pH variation on biogas production and methane concentration of the biogas.  

 

5.3.1 Rate and cumulative biogas production at various pH values 

The result of the experiment to determine the effects of pH variation on biogas and methane 

production are discussed in this section. The rate of biogas production and the cumulative 

biogas production are presented in Figures 5.7 and Figures 5.8, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.7. Average rate of biogas production at different pH values 
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As seen in Figure 5.7, all the digesters commenced biogas production at the same time, except 

the digester that was operated at pH of 5.0. The reason for this is that all the digesters were 

operated at the same temperature of 39 oC. The digester that operated at pH of 5.0 recorded no 

biogas yield, as seen in both Figures 5.7 and 5.8 because the activity of methanogenic bacteria 

was halted due to the acidic condition. This finding supports the reports by previous studies, 

which states that AD failure occurs when the pH inside the digester is below 5.5 (Nayono, 

2009; Al Seadi et al., 2008). 

 

In addition, it is seen in Figure 5.7 that the rate of biogas production for pH6 digester is higher 

than the pH7 and pH8 digesters between the second and third hour. Afterwards, pH7 digester 

significantly increased biogas production rate to about 80% higher than the pH6 and pH8 

digesters. The pH7 digester peaked at the fourth hour and remained at that peak for two hours, 

and then took a sharp drop between the sixth and seventh hour. Finally, the rate of biogas 

production for pH7 digester reached a steady state at the 10th hour. However, the pH6 and pH8 

digesters came to steady state in the 21st and 19th hour, respectively. This indicates that the 

organic conversion of substrate to biogas was almost completed at the 10th, 21st and 19th hour 

for pH7, pH6 and pH8 digesters, respectively. It took the pH7 digester 10 hours to reach a 

steady state, meaning that the HRT to complete organic conversion process was about half of 

the time it took pH6 and pH8 digesters. Apart from the pH5 digester that produced no biogas, 

it is seen that pH6 digester recorded the lowest biogas production rate, followed by the pH8 

digester while the highest rate is generated by the digester that was operated at pH of 7.0. 

 

Similarly, the influence of pH on the cumulative biogas production presented in Figure 5.8, 

shows that the highest cumulative biogas yield is recorded by the pH7 digester, then followed 
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by the pH8 digester, whereas the pH6 digester produced the lowest biogas production apart 

from the pH5 digester that recorded no biogas production.  

 

 

 

 

 

  

 

 

 

 

 

 

 

5.3.2 Average total volume of biogas production at different pH values 

This section discusses the impact of variable pH values on the total volume of biogas 

production. As seen in Figure 5.9, the average total volume of biogas yield decreased as pH 

value decreased as well as increased from the pH of 7. In addition, it is evident in Figure 5.9 

that there was no biogas production until about 5.5 pH due to the acidic condition of the digester 

content, which inhibits methanogenic bacterial activity. This result supports the previous 

studies that suggest that the ideal pH value for methanogenesis is 7.0 and the optimal pH range 

is 6.8 – 7.2.  

 

 

 
 

Fig. 5.8. Average cumulative biogas production at different pH values 
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5.3.3 Methane production rate and cumulative methane production at different pH 

values 

 

The average methane production rate and cumulative methane production are presented in 

Figure 5.10 and Figure 5.11 

 

 

 

 

 

 

 

 
 

Fig. 5.9. Average total volume of biogas production at different pH values 
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The methane production rate at variable pH as seen in Figure 5.10 is similar to the biogas 

production rate at variable pH seen in Figure 5.7. All the digesters commenced methane 

production at the same time, apart from the pH5 digester that produced no methane at all due 

to the acidic condition. In addition, in Figure 5.10, the rate of methane production for pH7 

digester peaked about the sixth hour and then took a sharp drop. Finally, the rate of methane 

production for pH7 digester reached almost the steady state at the 19th hour. However, it is seen 

that the methane production rate for pH6 and pH8 digesters are close on average. 

 

 

 

 

 

 

 

Fig. 5.10. Average methane production rate at different pH values 
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As seen in Figure 5.11, the average cumulative methane production is highest at digester pH 

of 7.0. In addition, the cumulative methane production for pH6 digester is slightly higher than 

the pH8 digester. Whilst the pH5 digester did not produce methane.  

 

 

 

 

 

 

 

 

 

 
Fig. 5.11. Average cumulative methane production at different pH values 
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5.3.4 Average total volume of methane production at different pH values  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 shows that from pH of 5.0 to 5.5 no methane was produced, but as digester pH 

increased from 5.5 to 6.8, the average total volume of methane production increased. However, 

methane production is seen to be relatively stable between pH 6.8 and 7.2. As digester pH 

exceeded 7.2 the average total volume of methane production is seen to decline, which supports 

the suggestion that the optimum mesophilic pH range for methanogenesis is 6.8 – 7.2. 

 

It is not that no gas was produced at pH of 5.0, rather, there is no detection of methane in the 

generated gas due to the inhibition of methanogenic bacteria by the acidic condition in the 

digester. No further evaluation was carried out in the produced gas in order to determine its 

composition. Since there is no methane detection on the gas produced at this pH, no biogas is 

accounted for, as biogas is primarily the combination of methane and carbon dioxide. Hence, 

the absence of methane production in AD process means that no biogas is produced. 

 

 
Fig. 5.12. Average total volume of methane production at different pH values 
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5.4 Influence of digester pressure  

This section discusses the experimental results from the influence of digester pressure variation 

on biogas and methane production. 

 

5.4.1 Rate and cumulative biogas production at different digester pressures 

The average biogas production rate and average cumulative biogas production under different 

digester pressures are presented in Figure 5.13 and 5.14, respectively. 

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure 5.13, the rate of biogas production did not follow a particular pattern with 

respect to the varied operating pressures. It is difficult to explain why there is no particular 

response of biogas production rate to the increase or decrease in digester pressure. This result 

is in agreement with the work of Japan-Agency for Marine-Earth Science and Technology 

(2007), which highlights the difficulty in explaining the influence of pressure on complex 

metabolic systems, which includes the AD process. 

 

 
 

Fig. 5.13. Average rate of biogas production at different pressures 
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 It is seen in Figure 5.14 that there is a marginal difference in the cumulative biogas yield of 

the different samples at as the digester operating pressure increases. This might be because of 

the small difference in the operating pressure. However, the studies by Chen et al. (2014), 

Lindeboom et al. (2011) and Hayes et al. (1990) shows that there is a decrease in biogas 

production as operating pressure increases. This is because part of the generated CO2 in biogas 

liquefies with an increase in digester operating pressure, thereby reducing the overall biogas 

production while increasing the concentration of methane in the biogas. The phenomenon is 

based on gas solubility; the CO2 being more soluble in water than methane liquefies at the same 

temperature and pressure (Yalkowsky et al., 2010), resulting in more concentration of methane 

in the biogas. 

 

 
Fig. 5.14. Average cumulative biogas production at different pressure values 
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5.4.2 Average total volume of biogas production at variable digester pressure 

The average total volume of biogas production at variable digester pressure is presented in 

Figure 5.15.  

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure 5.15, the total volume of biogas yield marginally increases as digester 

pressure decreases from 0.7 to 0.1 bar. In Figure 5.15, it is seen that the 0.1 bar digester 

generated the highest total biogas production, followed by the 0.3 bar digester while the 0.7 bar 

digester yielded the lowest biogas behind the 0.5 bar digester. The reason for this is also based 

on the solubility of gases. 

 

5.4.3 Methane production rate and cumulative methane yield at different digester 

pressure 

The relationship between pressure and methane production rate and cumulative methane 

production are presented in Figure 5.16 and Figure 5.17, respectively. 

 

 

Fig. 5.15. Average total biogas production at different pressure values 
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Figure 5.16 shows a similar behaviour as the biogas production rate at various digester 

pressure, with no clear pattern. This is also attributed to the difficulty in describing the effects 

of pressure on the complex metabolic process. 

 

 

 

 

 

 

 

 

  
Fig. 5.17. Average cumulative methane production at variable pressure 
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Fig. 5.16. Average methane production rate at different pressures 
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As seen in Figure 5.17, the variation of digester pressure marginally influenced the amount of 

methane production. This is similar to the behaviour of biogas to the given operating pressures. 

The small difference in the digester operating pressures utilised in this study may have 

contributed in the reason why there is no significant change in cumulative methane production 

with an increase in the digester operating pressure. 

 

5.4.4 Average methane concentration at different digester pressures 

The influence of variable digester pressure on the methane proportion is seen in Figure 5.18. 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure 5.18, an increase in digester pressure resulted in an increase in methane 

proportion. Though the increment is marginal due to the small increase in the digester operating 

pressure. As the digester pressure increases from 0.1 to 0.7 bar, the methane proportion is found 

 
Fig. 5.18. Average methane proportion at different pressures 
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to increase. The significant of this result highlights the importance of digester pressure in AD, 

with regards to improving the methane concentration in biogas. 

 

5.4.5 Average total methane production at different digester pressures 

The influence of variable digester pressure on methane production is seen in Figure 5.19. 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure 5.19, methane production increases as digester pressure increase from 0.1 to 

0.7 bar. Though the increment is marginal due to the small increase in the digester operating 

pressure. The significant of this result highlights the importance of digester pressure in AD, 

with regards to improving methane production. 

 

5.5 Effect of mixing speed 

This section discusses the impact of various mixing speed on biogas and methane production. 

 

 
Fig. 5.19. Average total methane production different pressures 
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5.5.1 Average rate and cumulative biogas production at various mixing speeds 

The average biogas production rate and cumulative biogas production relative to different 

mixing speeds are presented in Figures 5.20 and 5.21, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure 5.20, the 60 and 300 rpm digesters maintained a similar rate of biogas 

production throughout the digestion process. In addition, the 60 and 300 rpm digesters 

produced the highest peak between the eighth and the .11th hour of retention time. It is seen in 

Figure 5. 20 that the rate of biogas production for 600 rpm digester is higher than the 60, 300, 

and 2000 rpm digesters between the 12th and 20th hour. Furthermore, the plot shows the 

continuous decline in biogas production from the 2000 rpm digester for two hours, between 

the 16th and 18th, which is indicated by the negative biogas production rate. However, the biogas 

production picked up again for another two hours, before reaching the steady state at the 20th 

hour, signifying that no more increase in biogas production by the 2000 rpm digester. 

 

 

Fig. 5.20. Average rate of biogas production at various mixing speed 
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Similarly, in Figure 5.21 the 60, 300 and 600 rpm digesters maintained parallel biogas 

production pattern between the third and 10th hour while the 2000 rpm digester produced little 

or no biogas before the fifth hour. The 2000 rpm digester improved between the fifth and 15th 

hour, where the biogas production peaked between the 14th and 15th hour. It then gradually 

declined before reaching the steady state at the 20th hour. The cumulative biogas production by 

the 600 rpm digester is lower than the 60 and 300 rpm digesters and reached its biogas 

production peak at about the 20th hour before it the gradual decline. Contrarily, the cumulative 

gas generated by the 300 rpm digester is the highest for all the samples, but marginally higher 

than the 60 rpm digester. Making 300 rpm the optimal mixing speed relative to the other mixing 

speed investigated and for the quantity of the samples utilised in this study. It means that there 

is a marginal increase in biogas production as the mixing speed increased from 60 to 300 rpm. 

However, a further increase in the mixing speed to 600 rpm shows a decrease in the biogas 

production. In addition, as the mixing speed is further increased to 2000 rpm, there is even 

  

 
Fig.5.21. Average cumulative biogas production at different mixing speed 
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much more reduction in biogas production relative to the biogas produced by the 60 and 

300 rpm digesters. 

 

5.5.2 Average total volume of biogas production at variable mixing speeds 

The bar chart in Figure 5.22 presents the average total volume of biogas production at different 

operating mixing speeds. 

 

 

 

 

 

 

 

 

 

 

 

 

The average total volume of biogas production at different mixing speeds as seen in Figure 

5.22, shows that the digester that was operated at 300 rpm produced the highest volume of 

biogas, followed by the 60 rpm digester. However, the 2000 rpm digester recorded the lowest 

total volume of biogas production, behind the 600 rpm digester. For this study, the optimal 

mixing speed range is 150 – 300 rpm. Further study is required in this area, with the goal of 

investigating the relationship between various mixing speeds and a specific quantity and total 

solids of substrates. 

 
Fig. 5.22. Average total volume of biogas production at different mixing speeds 
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5.5.3 Average rate and cumulative methane production at various mixing speeds 

The average biogas production rate and cumulative methane production relative to different 

mixing speeds are presented in Figures 5.23 and 5.24, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure 5.23, the 60 and 300 rpm digesters maintained nearly a similar pattern 

throughout the digestion process. In addition, the 60 and 300 rpm digesters produced the 

highest peak at the fourth hour. It is seen in Figure 5.23 that while the rate of methane 

production for the 60, 300 and 600 rpm digesters was declining, the methane production rate 

for the 2000 rpm digesters was increasing just after the fourth hour. Furthermore, the plot 

shows that the methane production rate for the 2000 rpm digesters was negative from the 16th 

hour, indicating the continuous decline in methane production from the 2000 rpm digester.  

 

Fig. 5.23. Average rate of methane production at various mixing speeds 
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The influence of variable digester mixing speed on the cumulative methane production is 

presented in Figure 5.24. 

 

 

 

 

 

 

 

 

  

 

 

As seen in Figure 5.24, the cumulative methane production to the different mixing speeds is 

similar to the cumulative biogas production was seen in Figure 5.21. This is because the 

methanogenic bacterial activity is responsible for the behaviour of the methane and biogas 

production.  

 

5.5.4 Average total volume of methane production at variable mixing speeds 

The average total volume of methane produced at various mixing speeds is presented in Figure 

5.25. It shows a similar pattern as the average total volume of biogas production see in Figure 

5.22. The 300 rpm digester produced the highest methane, followed by the 60 rpm digester, 

whereas, the 2000 rpm produced the lowest average total volume of methane. In addition, as 

the mixing speed increased from 300 rpm, the methane production is seen to decline, indicating 

that the optimal mixing speed is exceeded.  

 
Fig. 5.24. Average cumulative methane production at different mixing speeds 
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5.6 Influence of simultaneous manipulation of multiple inputs on biogas and methane 

production 

 The experiment is conducted to explore the significance of simultaneous manipulation of four 

operating parameters. The operating parameters are temperature, pH, mixing speed and 

pressure. The operating parameters were simultaneously altered at three different intervals of 

eight hours each. The data obtained from the experiment is used to test the black-box developed 

in this research study. 

 

5.6.1 Biogas and methane production 

The initial value for temperature, pH, mixing speed and pressure for the experiment are set at 

35 oC, 7.6, 700 rpm and 0.3 bar. This is followed by another parameter adjustment after eight 

hours to 37 oC, 5.4, 500 rpm and 0.4 bar, and the final amendment made to temperature, pH, 

mixing speed and pressure are 41 oC, 6.8, 120 rpm and 0.5 bar, respectively. The impacts of 

 
Fig.5.25. Average total volume of methane production at different mixing speeds 
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the simultaneous alteration of the operating parameters on biogas and methane production are 

presented in the following plots. 

 

5.6.1a Average rate and average cumulative biogas production 

The effect of this experimental design on biogas production rate is presented in Figure 5.26. 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure 5.26, the rate of biogas production gradually increased from the fourth hour 

and peaked after two hours at the sixth hour. It then declines and becomes negative, indicating 

a continuous decline in biogas production that is lower than the biogas production of the biogas 

production recorded in the previous hour. Furthermore, the rate of production picked up again 

but was still on the negative axis for another 4 hours before biogas production ceased and did 

not resume until the end of the experiment. The reason why biogas production was halted from 

the 13th hour was due to the reduction of the digester pH to 5.4, at which the digester content 

becomes acidic and inhibited the activity of the methanogenic bacteria, consequently halting 

 
Fig. 5.26. Average rate of biogas production at simultaneous variance of input 

parameters 
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methane production that combines with CO2 to forms biogas. Despite increasing the pH to 6.8 

at the 17th hour, the system did not recover for the rest of the experiment as seen in Figure 5.26. 

Indicating that pH inhibition of methanogenic bacteria is difficult to reverse. This result 

supports the study of Kangle et al. (2012). 

 

The average cumulative biogas production is presented in Figure 5.27. 

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure 5.27, the average cumulative biogas production peaked at the eighth hour. It 

then decreased to the 13th hour at which biogas production is halted. The reason for the 

termination of biogas production is similar to the one given for the biogas production rate in.  

 

5.6.1b Average rate and average cumulative methane production for Expeiment31 

The influence of the adjustment of the operating parameters on methane production is presented 

and discussed in this section.  

 

 
Fig. 5.27. Average cumulative biogas production at simultaneous adjustment of input 

parameters 
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In Figures 5.28, the average methane production rate is presented. 

 

 

 

 

 

 

 

 

 

 

 

 

The response of methane to the simultaneous adjustment of the operating parameters is similar 

to that of biogas pattern is seen in Figure 5.26. The rate of methane production as seen in Figure 

5.28 reached the peak at the sixth hour. It then decreased to the minimum on the negative axis 

at the tenth hour. Then the rate of methane production increased again up to the 12th hour when 

it halted and did not recover. This is due to the acid condition caused by the adjustment of 

digester pH to 5.4, which inhibited the methanogenic bacteria.  

 

Furthermore, the average cumulative methane production is presented in Figure 5.29. 

 

 

 

 

 
Fig. 5.28. Average rate of methane production at simultaneous adjustment of input 

parameters 
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Similarly, the average cumulative methane production as seen in Figure 5.29 increased rapidly 

and peaked at the seventh hour as observed in Figure 5.27. It then dropped to the zero level at 

the 13th hour when methane production ceased, because of the same reason stated for the biogas 

production rate. 

 

5.7 Influence of co-digestion on biogas and methane production  

This section discusses the significance of the results obtained from the investigations carried 

out to determine the effect of co-digestion on biogas and methane production. Samples of Food 

waste (FW) and Wastewater sludge (WWS) are co-digested in the following ratio: FW only 

represented as (S1); WWS only (S2); 0.3FW+0.7WWS (S3); 0.5FW+0.5WWS (S4) and 

0.7FW+0.3WWS (S5). The results obtained are presented in the following plots. 

 

5.7.1 Average rate of biogas production at different co-digestion ratio 

The biogas production rate is presented in Figure 5.30. 

 
Fig. 5.29. Average cumulative methane production at simultaneous adjustment 

of the operating parameters 
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As seen in Figure 5.30, the average rate of biogas production from co-digestion of substrates 

at different ratios followed nearly a similar pattern. This indicates that the response of the 

anaerobic bacteria to the operating parameters of all the samples is similar. The biogas 

production rate peaked on the fifth day for all the samples and the decreased. However, the S4 

sample recorded the highest biogas production rate, followed by the S5 digester and the S3 

digester. Whilst the S1 sample generated the lowest biogas production rate, followed by the S2 

sample, which is the single-substrate samples. The result shows that co-substrates samples 

performed better than the single-substrate samples. The negative rate of biogas production 

indicates that the conversion of substrate to biogas was nearly completed, thereby resulting in 

a continuous decline in the rate of biogas production. 

 

 

 

 
Fig. 5.30. Average rate of biogas production at different co-substrate ratio 
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Similarly, Figure 5.31 shows that S4 digester produced the highest cumulative biogas followed 

by the S5 digester and then again, the S3 digester. Furthermore, it was observed that the 

digestion of WWS as a single substrate generated the lowest average cumulative biogas while 

the second lowest is produced by the digestion of FW only substrate, that is, SI and S2, 

respectively. Implying that co-digestion of FW and SSW improved the digestion process, as 

suppose to the digestion of FW and WWS as single substrates. In addition, S4 was found to be 

the best co-substrate ratio for co-digestion of FW and WWS for improved biogas production 

for this study. 

 

5.7.2  Average methane production rate at different co-substrate ratio 

As seen in Figure 5.32, the average rate of methane production from co-digestion of substrates 

at different ratios followed nearly a similar pattern. This indicates that the response of the 

anaerobic bacteria to the operating parameters in all the samples is similar. The methane 

production rate peaked at the fifth day for all the samples and the decreased. However, the S4 

 
Fig. 5.31. Average cumulative biogas production at different co-substrate ratio 
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sample recorded the highest methane production rate, followed by the S5 digester and the S3 

digester. Whilst the S2 sample generated the lowest biogas production rate, followed by the S1 

sample, which is the single-substrate samples. The result shows that co-substrates samples 

performed better than the single-substrate samples. The negative rate of methane production 

indicates that the conversion of substrate to methane was nearly completed, thereby resulting 

in a continuous decline in the rate of methane production. 

 

 

 

 

 

 

 

 

 

 

 

5.7.3 Average cumulative methane production at different co-substrate ratio 

The average cumulative methane production as seen in Figure 5.33, shows that all the samples 

recorded their individual highest methane production on the fifth day. It also indicated that the 

co-substrate digesters performed better than the single-substrate digesters. Similarly, figure 

5.33 shows that S4 digester produced the highest cumulative methane, which implies that S4 

is the best co-substrate ratio for the co-digestion of FW and WWS for this study. This study 

has shown that co-substrate digestion offers better digester performance than the single-

 
Fig. 5.32. Average methane production rate at various substrate ratio 

 

 

 

 

 

 

 

 

 

-500

-300

-100

100

300

500

700

900

1100

40 60 80 100 120 140 160 180

M
et

h
an

e 
p
ro

d
u
ct

io
n
 r

at
e 

(m
L

/h
)

Time (h)

S1

S2

S3

S4

S5



104 

 

substrate digestion, which supports the work previously conducted on co-digestion (Wu, 2007; 

Mata-Alvarez et al., 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

5.7.4 Observed process characteristics  

The observation of the responses of biogas and methane production to variable temperature, 

pH, mixing speed and pressure plotted and discussed in this chapter indicate that mesophilic 

AD process is a nonlinear dynamic system. The properties of the nonlinear system include the 

following. 

1. The mesophilic AD process does not satisfy both superposition and homogeneity 

principles.  

Superposition - For a system S to satisfy superposition principle (Cuff, 2012): 

If y1 = Sx1 and y2 = Sx2, then y1 + y2 = S(x1 + x2) 

 Homogeneity - For a system S to satisfy homogeneity principle (Cuff, 2012): 

If y = Sx, and k is a constant then yk = S(xk) 

 
Fig. 5.33. Average cumulative methane production at different co-substrate ratio 
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2. The system has multiple equilibrium points. The curves of the plots in this chapter 

signify the multiple equilibrium points. The equilibrium point is a point x0 in the state 

space of autonomous system �̇� = f(x), when the state x reaches x0 and stays at x0 for all 

times (Canon, 2016). The equilibrium points for a nonlinear system is the solution to 

the equation: 

f(xn) = 0               

Where, n nonlinear equations in n unknowns have to be solved and the solution is 

between 0 and infinity.  

3. The pattern of some plots of the system demonstrated randomness irrespective of the 

deterministic nature of the system. 

 

5.8 Summary 

This chapter has presented the results of the experimentations conducted in this research work. 

It is found that the biogas production is influenced by the variation in the operating temperature, 

pH, mixing speed and pressure. The outcome of this study has also shown that for improved 

biogas production, all the operating parameters need to be maintained at their individual 

optimum range. In addition, the behaviour of the system under consideration shows that it is a 

nonlinear process. Furthermore, this chapter highlighted the importance of co-digestion of 

substrates as well as the importance of the appropriate ratio of the co-substrates in achieving 

improved biogas production. The next chapter presents the modelling of nonlinear 

multiparameter models for mesophilic AD process, which is based on the response of biogas 

and methane production to the overall impact of the operating parameters considered in this 

study. 
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 Black-Box Model Construction 

6.1 Introduction 

Chapters 4 and 5 discussed the method, generation and analysis of the data from the 

experimental investigation of the influence of temperature, pH, mixing speed and pressure on 

biogas and methane production. More specific, Chapter 4 discussed the experimental study to 

determine the effects of the multi-parameter input on biogas and methane production, while 

Chapter 5 present an analysis of the implications of these effects based on the data obtained 

from the experimentations - how the input variables influenced the production of biogas and 

methane. However, the discussion in this chapter centres on the construction of multivariable 

nonlinear mathematical models for mesophilic AD process from experimental measurement 

considering a multiple input single output (MISO) configuration. The purpose of the models is 

to predict the production of biogas and methane under mesophilic conditions. The models in 

this thesis are constructed using System Identification method. Figure 6.1 shows the block 

diagram of the model identification process. 
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Fig. 6.1. Block diagram for model identification (Schoukens et al., 2012) 
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6.2 System Identification modelling method 

System Identification is a method of estimating mathematical models of a dynamic system 

from measured input-output data (Schoukens et al., 2012). It is implemented under MATLAB 

functions (Ljung, 2015; Ljung, 2010). The procedure of estimating a model of a dynamic 

system from measured input-output data (based on the System Identification algorithms) 

consists of three main phases (Ljung, 2015). 

 Design of the experimental setup and data collection, 

 Selection of the most appropriate model structure, and 

 Identification of method to select a particular model in the set based on the information 

in the input-output data 

 

In more detail, System Identification modelling method is composed of a number of steps as 

shown in the flowchart in Figure 6.2a.  
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Fig. 6.2a. Flowchart of steps in System Identification modelling method 
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I. A Good design of experimental setup and data collection ensures that the relevant 

variables are measured and collected with sufficient accuracy in order to reflect the 

behaviour of the dynamic system under consideration. The input-output data from the 

dynamic system, which is acquired through experimentation, is used by System 

Identification Toolbox to estimate the values of adjustable parameters in a given model 

structure (Ljung, 2015). The quality of a model depends on the how well the data 

collected from experimental setup reflects the behaviour of the dynamic system (Ljung, 

2015). 

 

II. The data organisation involves splitting of sample data into two parts; one part is used 

for model estimation and the other part is used for model validation purpose (Ljung, 

2015). The bigger the size of the data set for model estimation, the more information is 

obtained about the system and the better the model fit the data (Tangirala, 2015; 

Villanverde and Banga, 2013). Data organisation also include the separation of output 

vector and sampling time from the estimation and validation data sets, which are the 

information required for the construction of discrete-time models (Ljung, 2015). 

Furthermore, the organisation of data also includes the conversion of estimation and 

validation data sets into iddata objects, which is the representation of time-domain data 

and the required data structures by MATLAB for System Identification (Ljung, 2015) 

 

III. The model structure is the mathematical relationship between input and output 

variables, with unknown parameters (Ljung, 2015). System Identification method 

requires the selection of model structure in order to determine the numerical values of 

the parameters of the model (Ljung, 2015).  
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IV. Model order is an important component in System Identification modelling method, 

which is represented by one or more numbers whose definition is a function of the 

model structure (Ljung, 2015; Pillonetto et al., 2013). The model order represents the 

set of a number of poles and number zeros, as well as delays for defining the type of 

model structured used for model identification (Ljung, 2015; Sugiki, 2014).  

 

V. In model estimation, System Identification Toolbox uses estimation algorithms and the 

selected model structure to determine the numerical values of model parameters (Ljung, 

2015).  

 

VI. Model validation is used to determine how close the model is to the actual system 

(mesophilic AD process). This involves comparing the simulated output of the model 

and output of the measured data (Ljung, 2015; Proctor et al. 2013; Rahiman et al., 

2009). 

 

VII. Model evaluation is used to analyse the suitability of the estimated model with respect 

to how close the simulated output of the model compares with output of measured data 

of the actual system for a specific stimulus (Vazquez-Cruz et al., 2014). If the 

evaluation shows that the model output compares “reasonably” (accuracy evaluation) 

with the measurement of the actual system, based on the desired accuracy figure, then 

the modelling process is complete. However, if the results of the model evaluation are 

not satisfactory, then it is necessary to reconsider the previous steps of the model 

construction as seen in Figure 6.2a.  
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It is essential to consider the various levels of accuracy of data and information utilised in 

constructing the models in this study, especially when evaluating the quality of the models, 

which are affected by: 

 The assumptions based on views from general knowledge and discussions with experts 

in the field; 

 Knowledge of the stoichiometry and analytical relationships guiding the processes; 

 The relationships between input and output variables being experimentally determined 

and presented in the form of data; and 

  Statistical correlations that might exist 

 

6.2.1 Choice of a suitable mathematical model 

The choice of a suitable mathematical model is an important prerequisite to constructing a 

satisfactory model of a bioprocess. In section 3.2, the two main types of mathematical model 

(white-box and black-box models) were discussed. White-box models require an in-depth 

knowledge of the system under consideration in order to represent the system in a sufficiently 

detailed manner to reproduce the process behaviour (Krishna, 2010); however, the knowledge 

about AD process is limited. This is due to the poor understanding of the bacterial community 

responsible for AD process, particularly with respect to the composition of the bacterial 

community and the bacterial response to different substrates and operations (Li, 2013; Riviere 

et al., 2009).  

 

Monod kinetic white-box model is inadequate to describe AD process because of the presence 

of a single set of kinetic parameters involved (Vázquez-Cruz et al, 2014). Again, white-box 

models such as ADM1 that are based on the first principal is computationally intensive to fit 
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because of the requirement for a large number of kinetic parameters implemented in the form 

of DAE and DE set (Yu et al., 2013).  

 

Furthermore, the financial and time constraint, which limits the construction of white-box 

models, especially when dealing with a complex process, such as AD, whose process 

knowledge is vague. According to Heams (2006), white-box models have little or no 

significance in AD because of their inadequacy to consider all the stages of the anaerobic 

process, operating parameters and history of operational data. Another drawback of white-box 

models is the lack of consideration for the actual physico-environmental operating parameters 

that influence anaerobic bacterial activity. Leading to the inability of the white-box model to 

describe AD process when physico-environmental parameters need to be considered for a more 

realistic study of the operation. Due to these limitations, it may not be practically feasible to 

apply white-box models to predict the production of biogas and methane from measured input-

output data for this study. 

 

However, black-box models are based on the availability of input-output data for model 

identification (Vázquez-Cruz et al, 2014). They require no in-depth knowledge of the system 

under consideration; thereby can be applied when there is little or no knowledge about the 

process. Though the parameters of the functions of black-box models lack physical 

significance, yet black-box models can adequately represent the trend in system behaviour even 

in a complex process where it is not possible to solve the resultant equations (Krishna, 2010). 

In addition, black-box models can adequately predict biogas and methane production from 

input-output data. Therefore, black-box models are considered for the construction of the 

models for mesophilic AD process from measured MISO data for this study. 
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6.2.2 Black-box model identification procedure  

Given an overview of how the System Identification Toolbox “works” to construct models 

based on input-output data sets as seen in Figure 6.2a. The flowchart in Figure 6.2b shows the 

actual procedure followed in this study to estimate the multi-input-single-output (MISO) 

nonlinear black-box models from experimental data, which are discussed in more specific 

details as applied to this research work in the following steps. The models are estimated in 

MATLAB command line, and the execution codes for various processes are documented in 

Appendix B. 
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Step 1: Design of experimental setup and data collection 

The design of experimental setup for this research study, which is discussed in Chapter 4, is 

utilised to investigate the influence of multi-input parameters on biogas and methane 

production. The data set utilised for the model identification, which is in time-domain, contains 

624 data samples, collected from 26 experiments with a sample time of 1 hour for a 24-hour 

duration, as described in Chapter 5. The inputs u(t), are composed of 26 variables: eight 

variables of temperature (in ℃), six variables of pH, six variables of mixing speed (in rpm) and 

six variables of pressure (in bar). The output vector y(t) contains a single variable: biogas or 

methane.  

 

Step 2: Data organisation 

The input-output data collected from the experiments are loaded into MATLAB Workspace. 

The input data sets contain a 4-by-25 matrix for each set and the output data is a vector. The 

output vector, as well as the time vector, are extracted from the 26 experiments in MATLAB 

command line. An iddata object is created for each of the 26 experimental data sets with the 

following syntax (Ljung, 2015).  

 iddata_object = iddata(y, u, Ts)  

This creates an iddata object containing a time-domain output variable y, and input variable u. 

Where Ts specifies the sampling time of the experimental data (Ljung, 2015). An iddata object 

is a basic object and the required data structure by MATLAB for handling input-output 

variables in System Identification Toolbox (Ljung, 2015).  

 

Step 3: Data quality analysis and data selection 

The quality of the data collected from the experiments is analysed using the input-output data 

plot shown in Figure 6.3 and Figure 6.4 for biogas and methane production, respectively. 
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The plot seen in Figure 6.3 is used to inspect and clean data. The plot shows that the output 

data generated from the experiment with pH of 5 is zeros all through due to the none production 

of methane, which is the major constituent of biogas, resulting from the acid state of the digester 

sludge. Therefore, the data from the experiment with pH of 5 is dropped, leaving the total 

experimental data used for the estimation and validation of the nonlinear black-box models to 

25.  

 

Similarly, the plot in Figure 6.4 is used to inspect and clean the input-output data for methane 

production. 

 

 

Fig. 6.3. Input-output data plot for biogas production 

Exp. 5 pH 
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The plot in Figure 6.4 shows that the output data generated from the experiment with pH of 5 

is zeros all through due to non-production of methane at the acid state of digester sludge. 

Therefore, the data from the experiment with pH of 5 is also dropped, leaving the total 

experimental data used for the estimation and validation of the nonlinear black-box models to 

25.  

 

The 25 iddata objects from the 25 experiments for both biogas and methane production are split 

into two unequal subsets, 17 iddata objects are used for model estimation and eight iddata 

objects are used for model validation. All the iddata objects for model estimation are merged 

into a single iddata object; de for biogas production and ze for methane production. Similarly, 

 

Fig. 6.4. Input-output data plot for methane production 

Exp. 5 pH 
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all the iddata objects for model validation are merged into one iddata object, dv for biogas 

production and zv for methane production, with the following syntax (Ljung, 2015). 

de or dv = merge (iddata1, iddata2 …. IddataN) 

The merged estimation and validation iddata objects contain individual iddata objects that 

represent all the four input parameters. 

 

Step 4: Model structure selection 

The choice of a suitable model structure is based on the understanding of the System 

Identification method as well as the dynamic systems under consideration (Murray-Smith, 

2015). As discussed in section 6.2.1, mesophilic AD process is a nonlinear system, which can 

be adequately represented by black-box models. There are a variety of nonlinear black-box 

model structures that are available for modelling mesophilic AD process, such as NARX, NOE, 

NARMAX, NLHW and NBJ, discussed in section 3.2.1. However, NARX and NLHW model 

structures are often used for nonlinear black-box model identification (Rankovi´c et al., 2012). 

The NARX and NLHW are the two model structures used to estimate the models for biogas 

and methane production for this research work. The model structures have different 

nonlinearity estimators that are specific to the selected model structures.  

 

The output plot for NARX and NLHW models do not show a good Fit with the incorrect 

complexity of the nonlinearity estimators (Alexandridis and Zapranis, 2014; Zhang, 1997, cited 

in Matlab 2016a). The complexity of the nonlinearity estimators is specified using the 

NumberOfUnits (number of units in nonlinear estimator) (Alexandridis and Zapranis, 2014; 

Zhang, 1997, cited in Matlab 2016a). This is a positive integer that can be chosen automatically 

when the number of units is determined from estimation data. Or interactively, when the 

number of units is determined during model estimation (Alexandridis and Zapranis, 2014; 
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Zhang, 1997, cited in Matlab 2016a). A higher number of units signifies a more complex 

nonlinearity estimator. A nonlinear estimator with a fewer number of units will result in 

underfitted model (Alexandridis and Zapranis, 2014). However, specifying more number of 

units will lead to overfitted model (Alexandridis and Zapranis, 2014). 

 

Selecting the appropriate nonlinearity estimator complexity requires validating a low complex 

model first and then progressively increase the complexity and validate accordingly (Zhang, 

1997, cited in Matlab 2016a). The quality of the models reduces as the nonlinearity estimator 

becomes too complex (Zhang, 1997, cited in Matlab 2016a). The reduction in quality of the 

performance of the models is only seen if independent estimation and validation data sets are 

used (Alexandridis and Zapranis, 2014; Zhang, 1997, cited in Matlab 2016a). Therefore, it is 

essential to select the suitable number of units in nonlinearity estimators for a particular model 

estimation. According to Alexandridis and Zapranis (2014), the simplest way to select the 

optimal number of units is by trial and error. 

 

Step 5: Model orders selection 

Model order is used for estimating nonlinear black-box models (Ljung, 2015). It is a set of 

positive integers that represent the poles, zeros and delays used for defining the regressor 

configuration for NARX models, and the linear subsystem transfer function for NLHW models 

(Ljung, 2015; Sugiki, 2014).  

 

The model order for NARX models are in the form [na nb nk], where na signifies the number 

of past output terms used to predict the current output, nb represents the number of past input 

terms used to predict the current output, and nk specifies the delay from input to the output in 

terms of the number of samples (Ljung, 2015).  
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Similarly, the model order for NLHW models are in the form [na nf nk], where na signifies the 

number of past output terms used to predict the current output, nf specifies the number of poles 

of the linear transfer function, and nk specifies the delay from input to the output in terms of 

the number of samples (Ljung, 2015).  

 

A poor model Fit can be as a result of the incorrect model order. Ideally, the lowest-order model 

that adequately describes the system dynamics well is preferred (Ljung, 2015; Sugiki, 2014). 

If the model order is too low, it can result in model underfitting. Similarly, If a model order is 

too high it can cause a model to be overfitted (Ljung, 2015; Sugiki, 2014). Both underfitting 

and overfitting are undesirable in a model, however, overfitting has more impact than 

underfitting in that it causes the model to fit the noise, instead of the actual behaviour of the 

system under consideration. The selection of model orders is by trial and error (Ljung, 2015; 

Sugiki, 2014). 

 

The remaining steps in model identification, including model estimation, model validation and 

model evaluation are discussed more in the following sections as necessary due to the 

description being specific to the selected model structures. 

 

6.2.3 NARX model estimation 

The NARX model is characterised by regressors and a nonlinear estimator (Ljung, 2015; 

Shariff et al., 2014). The nonlinear estimator is composed of a parallel combination of nonlinear 

and linear functions. The regressors are described as delayed inputs and outputs from the 

nonlinearity identification, which are inputs to the nonlinear estimator functions, as shown in 

Figure 6.5 (Ljung, 2015; Shariff et al., 2014). 
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The NARX model is described by the following equation (Shariff et al., 2014). 

y(t) = f [y(t – 1), …y(t – ny),…, u(t), u(t – 1), u(t – nu )] + 𝜀(t)      (6.1) 

Where,  

y(t) is the output 

 u(t) is the input 

 𝜀(t) is the noise signals 

 ny is the maximum lags of past output 

 nu is the maximum lags of past inputs 

 f is the nonlinear function 

 u(t - 1) and y(t - 1) are the regressors 

 

Step 6a: NARX model estimation for biogas and methane production 

Two important elements, model order and nonlinearity estimators, which are required for the 

estimation of black-box models, are chosen by trial and error. The NARX models are estimated 

in MATLAB command line with the following syntax. 

M = narx (iddata, model order, nonlinearity estimator),   

 

Fig.6.5. Block diagram of NARX models (Ljung, 2015; Shariff et al., 2014) 
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where M is the NARX models. 

 

The Fit (in %) of the estimated model is the mean square error (MSE) between the measured 

data and the simulated output of the model (Ljung, 2015). A model of perfect fit (no error), 

means that the Fit is 100 %. Similarly, a model that is not able to describe any of the variation 

of the output and only the mean level corresponds to a Fit of 0% (Ljung, 2015).  

 

To get a measure of how good the Fit of the estimated model to the measured data is, the 

simulated output of the model is compared to the output of the measured data (Ljung, 2008; 

Ljung, 2015). This approach is used to validate the estimated models by checking how well 

the simulated output of the models fits the measured output (Ljung, 2008; Ljung, 2015). The 

model output plot comparing the simulated output of the models and the measured output, the 

percentage of the output the model reproduces, which is the ‘Best Fit’, is computed using the 

following equation (Ljung, 2008): 

     Best Fit = (1 −  
|𝑦− �̂�|

|𝑦− �̅�|
) x 100                (6.3) 

Where, y is the measured output, �̂� is the simulated output, and �̅� is the mean of y. The Fit 

ranges from 100%, which indicates a perfect Fit, to 0% that corresponds to a very bad fit. The 

measured data is reffered to as the validation data. 

 

Comparing the quality of different estimated models, a model is considered to describe the data 

well when the Fit to the validation data is high. If an estimated model has a higher Fit to the 

validation data than another model, then the first model is considered to describe the real system 

better. The comparison between the simulated output of the model and the output in the 

validation data is computed by the ‘compare’ command in MATLAB with the following syntax 

(Ljung, 2015). 
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 Compare(M), where M is the estimated model 

 

As seen in the plots in Figure 6.3, the responses of biogas production to the variables of 

Temperature, pH, Mixing speed and Pressure, indicate that mesophilic AD system is in the 

region of the third order. The first model order chosen for the estimation of NARX models for 

this study is [ones(1,1), ones(1,4), ones(1,4)], which is equivalent to [1 1 1] = [na nb nk]. It 

means that the output variable is predicted by the output and all the four input variables, and it 

is being delayed by one sample. With the MATLAB default ‘wavelet’ nonlinearity estimator, 

the function nlarx, which is used to facilitate the estimation of NARX models (Shariff et al., 

2014), and the model order, the NARX model mx1 is estimated.  

 

Similarly, five more models are estimated using the following five different model order: 

[ones(1,1), ones(1,4), 2*ones(1,4)] for model mx2; 

[2*ones(1,1), ones(1,4), 2*ones(1,4)] for model mx3; 

[2*ones(1,1), 2*ones(1,4), 2*ones(1,4)] for model mx4; 

[3*ones(1,1), ones(1,4), ones(1,4)] for model mx5; and 

[3*ones(1,1), 3*ones(1,4), ones(1,4)] for model mx6. 

 

The six estimated models are evaluated by comparing their simulated output and the output in 

the validation data, dv, as shown in Figure 6.6. 
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As seen in Figure 6.6, the result of the evaluation shows that the best model is mx3 as the 

model has a higher Fit (79.63%) to the validation data than other estimated models. For the 

estimated model mx3, the number of units in ‘wavelet’ is automatically chosen by the 

estimation algorithm, which is 7. In order to explicitly specified the number of units in the 

‘wavelet’, 7 is replaced with 6, 8 and 9, and are used to estimate models mx7, mx8, and mx9, 

respectively, with the same model order [2*ones(1,1), ones(1,4), 2*ones(1,4)] used to 

estimate model mx3. The models are evaluated with the validation data as shown in Figure 

6.7. 

 

 

 

 

Fig. 6.6. Evaluation of estimated NARX models with different model moder for 

biogas production 
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The result of the evaluation as seen in Figure 6.7 shows that there is about 5% improvement 

of the previously estimated model mx3 when the number of units in the ‘wavelet’ is increased 

from 7 to 9. This indicates that model mx9 is a better model than models mx3, mx7 and mx8, 

and the best performing NARX model with ‘wavelet’ estimator for biogas production for this 

study. 

 

Apart from ‘wavelet’ estimator two other nonlinearity estimators ‘treepartition’ and 

‘sigmoidnet’ are used to estimate two new NARX models, mx10 and mx11, respectively. The 

models are estimated with the estimation data (de), model order [2*ones(1,1), ones(1,4), 

2*ones(1,4)] and their respective nonlinearity estimator. The estimated NARX models mx9, 

mx10 and mx11 are evaluated with the validation data as presented in Figure 6.8. 

 

Fig. 6.7. Evaluation of estimated NARX models with different number of units in 

the ‘wavelet’ estimator for biogas production 
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As seen in Figure 6.7, the evaluation shows that the model mx9 with ‘wavelet’ nonlinearity 

estimator performed better than the models mx10 and mx11 with ‘treepartition’ and 

‘sigmoidnet’ nonlinearity estimators, respectively. Therefore, the estimated model mx9 is 

considered the best NARX model that describes the dynamics of mesophilic AD for biogas 

production for this research work. 

 

Similarly, estimating the NARX model for methane production, involed all the steps followed 

to estimate the NARX model for biogas production. The data acquired from methane 

production, a constituent of biogas production, is split into two subsets, 17 data sets for the 

 

Fig. 6.8. Evaluation of NARX models with different nonlinearity estimators for 

biogas production 
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estimation data (ze) and eight data sets for the validation data (zv). Six different NARX models 

are estimated with ‘wavelet’ nonlinearity estimators and the following model order: 

[ones(1,1), ones(1,4), ones(1,4)] for model ms1; 

[ones(1,1), ones(1,4), 2*ones(1,4)] for model ms2; 

[2*ones(1,1), ones(1,4), 2*ones(1,4)] for model ms3; 

[2*ones(1,1), 2*ones(1,4), 2*ones(1,4)] for model ms4; 

[3*ones(1,1), ones(1,4), ones(1,4)] for model ms5; and 

[3*ones(1,1), 3*ones(1,4), ones(1,4)] for model ms6. 

 

The estimated models are evaluated by comparing their simulated output and the output in the 

validation data, zv, as shown in Figure 6.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.9. Evaluation of NARX models with different model order for methane 

production 
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As seen in Figure 6.9, the result of the evaluation shows that the best model is ms4 as the 

model has a higher Fit (78.38%) to the validation data than other estimated models. The 

number of units in the ‘wavelet’ estimator is automatically chosen by the estimation 

algorithm as 10 for model ms4. In order to explicitly specified the number of units in 

‘wavelet’, 10 is replaced with 9, 11 and 12, and are used to estimate models ms7, ms8, and 

ms9, respectively, with the same model order [2*ones(1,1), 2*ones(1,4), 2*ones(1,4)] used to 

estimate model ms4. The models are evaluated with the validation data as shown in Figure 

6.10. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

The result of the evaluation as seen in Figure 6.10, shows that there is a marginal 

improvement of about 1% on the previously estimated model ms4 when the number of units 

in ‘wavelet’ is reduced to 9. This indicates that model ms7 is a better model than models ms4, 

 

Fig. 6.10. Evaluation of estimated NARX models with different number of units in 

‘wavelet’ estimator for methane production 
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ms8 and ms9, and the best performing NARX model with ‘wavelet’ estimator for methane 

production for this study. 

 

Likewise, apart from ‘wavelet’ estimator two other nonlinearity estimators ‘treepartition’ and 

‘sigmoidnet’ are used to estimate two new NARX models, ms10 and ms11, respectively. The 

models are estimated with the estimation data (ze), model order [2*ones(1,1), 2*ones(1,4), 

2*ones(1,4)] and their respective nonlinearity estimator. The estimated NARX models ms7, 

ms10 and ms11 are evaluated with the validation data as presented in Figure 6.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The result of the evaluation as seen in Figure 6.11 shows that the model ms7 with ‘wavelet’ 

nonlinearity estimator performed better than the models ms10 and ms11 with ‘treepartition’ 

 

Fig. 6.11. Evaluation of NARX models with different nonlinearity estimators for 

methane production 
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and ‘sigmoidnet’ nonlinearity estimators, respectively, when compared with the validation 

data. Therefore, the estimated model ms7 is considered the best NARX model that describes 

the dynamics of mesophilic AD for methane production for this research work. 

 

6.2.4 Hammerstein-Wiener model estimator 

The Nonlinear Hammerstein-Wiener (NLHW) model consists of three serial blocks, such that 

a dynamic linear block is placed in between the input and output static nonlinear blocks, as 

presented in Figure 6.12 (Abbasi-Asl et al., 2012). 

 

 

 

 

 

The three components of Hammerstein-Wiener model are represented with the following three 

mathematical expressions (Abbasi-Asl et al., 2012).  

 

For the static input nonlinear function, 

w(t) = f (u(t))                           (6.4) 

Where,  

w(t) is an input to the linear function B/F. 

 

For the dynamic linear block, 

x(t) = 
𝐵

𝐹
 w(t)                            (6.5) 

Where, 

 

Input 

nonlinearity 

(f) 

Linear 

block (B/F) 

 

Output 

nonlinearity 

(h) 

 

u(t) w(t) 

 

x(t) 

 

y(t) 

 

Fig. 6.12. Block diagram of Hammerstein-Wiener model (Abbasi-Asl et al., 2012) 
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x(t) represents a linear transfer function. The dimension of x(t) is also the same as y(t), 

while B and F have similar characteristics as polynomial in the linear OE model.  

 

Considering the inputs nu and outputs ny, the dynamic linear block is a transfer function that 

has the matrix entries as (Abbasi-Asl et al., 2012): 

Transfer function = 
𝐵𝑗𝑖 (𝑞)

𝐹𝑗𝑖(𝑞)
                             (6.6) 

Where, 

j = 1, 2, …, ny and i = 1, 2, …, nu, represent possible number of inputs and outputs, 

respectively 

 

The output static nonlinear function is expressed mathematically as: 

y(t) = h(x(t))                            (6.7) 

The Eq. 6.7 is a nonlinear function that converts the output of linear block to the system output. 

Both w(t) and x(t) are internal variables that define the input and output of the linear block. The 

f function is known as the input nonlinearity because it acts on the linear block. While the h 

function signifies the output nonlinearity, because it acts on the output port of the linear block 

(Abbasi-Asl et al., 2012). However, in the absence of the input nonlinear block, the model 

becomes a Wiener model. Similarly, if the output nonlinear block is not present, then the model 

becomes a Hammerstein model (Choo et al., 2012). 

 

Step 5b: NLHW model estimation for biogas and methane production 

The NLHW models are estimated with the syntax (Ljung et al., 2007): 

Mhw = nlhw(Data, Orders, InputNonlinearity, OutputNonlinearity); 
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Where Mhw is the NLHW model, model Order = [nb bf, nk], which specifies the orders and 

delay of the linear function, InputNonlinearity and OutputNonlinearity specify the nonlinearity 

estimators for two nonlinear blocks. 

 

Similar to the NARX model estimation, the initial model order used for estimating the NLHW 

model mhw1 is [ones(1,4), ones(1,4), zeros(1,4)]. This means that in the linear block, the output 

is the sum of the four first order transfer function driven by the four inputs. The nonlinearity 

estimator is the pwlinear for both InputNonlinearity and OutputNonlinearity. The model mhw1 

for biogas production is estimated using MATLAB command line. Two more NLHW models 

are estimated with the same InputNonlinearity and OutputNonlinearity, data de and the 

following model order: 

[2*ones(1,1), 2*ones(1,4), 2*ones(1,4)] for model mhw2; and 

[3*ones(1,1), ones(1,4), ones(1,4)] for model mmh3 

 

The estimated models are evaluated by comparing their simulated outputs to the output in the 

validation data, dv, as shown in Figure 6.13. 
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As seen in Figure 6.13, the result of the evaluation shows that the NLHW model mhw2, which 

has a Fit of 93.05% to the validation data, is considered a better model than models mhw1 and 

mhw3. This is because the Fit of mhw2 to the validation data is higher than that of mhw1 and 

mhw2. 

 

Again, three other NLHW models, mhw4, mhw5 and mhw6, are estimated with the data de and 

model orders similar to the ones used to estimate models mhw1, mhw2 and mhw3 but with 

different nonlinearities for both InputNonlinearity and OutputNonlinearity - unitgain and 

saturation, respectively. The estimated models are evaluated by comparing their simulated 

outputs to the output in the validation data, dv, as shown in Figure 6.14. 

 

 

 

Fig. 6.13. Evaluation of NLHW models with pwlinear for both nonlinearities for 

biogas production 
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The result of the evaluation as seen in Figure 6.14 reveals that model mhw5 has a higher Fit to 

the validation data than mhw4 and mhw6, indicating a better NLHW model. 

 

Furthermore, the InputNonlinearity and OutputNonlinearity are replaced with saturation and 

deadzone, respectively, and used to estimate models mhw7, mhw8 and mhw9. The estimated 

models are evaluated with the validation data dv as presented in Figure 6.15. 

 

 

 

 

 

 

 

Fig.6.14 Evaluation of NLHW models with unitgain and saturation nonlinearities for 

biogas production 
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The result of the evaluation as seen in Figure 6.15 reveals that model mhw8 has a higher Fit to 

the validation data than mhw7 and mhw9, which signifies a better NLHW model. 

 

The selection of the best NLHW model for biogas production is performed by comparing the 

simulated output of the best model from each of the set of the nonlinearity combinations 

presented in Figure 13, Figure 14 and Figure 15 (models mhw2, mhw5 and mhw8) and the 

output in the validation data as plotted in Figure 6.16. 

 

 

 

 

 

Fig. 6.15. Evaluation of NLHW model with saturation and deadzone nonlinearities for 

biogas production 
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The result of the analysis seen in Figure 6.16 shows that the three estimated NLHW models 

performed very well in comparison to the output in the validation data. In addition, the three 

models are estimated with identical model order, [2*ones(1,1), 2*ones(1,4), 2*ones(1,4)].  

However, model mhw2 marginally describes the dynamic system better than the other two 

models, indicated by a slightly higher Fit to the validation data than models mhw5 and mhw8. 

Therefore, model mhw2 is the best NLHW model for biogas production for this study. 

 

The estimation of NLHW model for methane production is performed using similar syntax 

used to estimate the best of the NLHW models for biogas production from each set of the 

nonlinearity combinations. Using the same model order, the three estimated NLHW models for 

 

Fig. 6.16. Comparison of the best NLHW model for biogas broduction 
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methane production are evaluated by comparing their simulated output and the output in the 

validation data zv as shown in Figure 6.17.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure 6.17, the evaluation indicates that model mhws2 is marginally better than 

models mhws5 and mhws8, because model mhws2 better fits the validation data (96.04% vs. 

94.79% and 94.37%). Therefore, model mhws2 is the best performing NLHW model for 

methane production for this research work. 

 

Step 6: Post-estimation analysis – model selection 

The selection of the models for this study is carried out by evaluating the quality of the best 

estimated NARX and NLHW models for biogas and methane production, and choosing the one 

that best describes the mesophilic AD system behaviour within the acceptable bounds. This 

 

Fig. 6.17. Evaluation of estimated NLHW models with different nonlinearity 

combinentios for methane production 
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research study utilises two different Goodness of Fit (GoF) approaches to measure the quality 

of NARX and NLHW models, in order to determine the best model each that describes well 

the production of biogas and methane. These approaches include the following: 

 Comparing simulated output to measured output; and 

 Comparing models using Akaike Information Criterion (AIC);  

 

Comparing simulated output to measured output: 

This approach is used already in this study to compare the performance of different models 

within the same model structure. The NARX and NLHW models for biogas and methane 

production are compared using the ‘compare’ command in MATLAB, in order to determine 

which model best fits the validation data.  

 

For biogas production, the simulated outputs of the estimated NARX model (mx9) and NLHW 

model (mhw2) are compared to the output in the validation model (dv) as presented in Figure 

6.18. 
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As seen in Figure 6.18, the evaluation indicates that NLHW model mhw2 is better than NARX 

model mx9, because model mhw2 better fits the validation data (93.05% vs. 85.60%). 

Therefore, comparing the simulated outputs of the estimated models NARX and NLHW and 

the output in the validation data, model mhw2 is the best model that describes the system better 

for biogas production for this research work. 

 

Similarly, the simulated outputs of estimated NARX model ms7 and NLHW model mhws2, 

and the output in the validation data are compared for methane production and the result is 

presented in Figure 6.19. 

 

 

 
Fig. 6.18. Comparison of the estimated NARX and NLHW models for biogas 

production 
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The result of how well the different models (NARX model ms7 and NLHW model mhws2) fits 

the validation data, as seen in Figure 6.19, indicates that NLHW model mhws2 is better than 

NARX model ms7 because model mhw2 better fits the validation data (96.04% vs. 79.41%). 

Once again, comparing the simulated outputs with the measured output approach, the NLHW 

model mhws2 is the best model for methane production for this study. 

 

Comparing models using Akaike Information Criterion (AIC): 

The second approach used to select the best models for this research study is the AIC, which 

is utilised to compare the quality of the best NARX model and the best NLHW model for 

biogas and methane production 

 

Fig. 6.19. Comparison of the estimated NARX and NLHW models for methane 

production 
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The AIC provides a measure of model quality by simulating the situation where the model is 

tested on a different data set (Ljung, 2008). Akaike’s theory states that the most accurate model 

is the one with the smallest AIC (Ljung, 2008, Ljung, 2015). The AIC is defined by the 

following equation (Ljung, 2008, Ljung, 2015): 

                           AIC = log V + 
2𝑑

𝑁
      (6.8) 

Where V is the loss function, d is the number of estimated parameters, and N is the number of 

values in the estimation data set. 

 

The loss function V is defined by the following equation (Ljung, 2008): 

                         V = det(
1

𝑁
∑ 𝜀(𝑡, 𝜃𝑁)(𝜀(𝑡, 𝜃𝑁))𝑇𝑁

1 )       (6.9) 

where 𝜃𝑁 represents the estimated parameters. 

For d<<N: 

                         AIC = log (𝑉(1 +
2𝑑

𝑁
))     (6.10) 

 

Computing AIC in MATLAB, the aic command is used to compare the different models for 

biogas and methane production and the syntax is as follows (Ljund, 2008). 

AIC = aic(m1, m2) for biogas and methane production. 

 

For biogas production, the comparison of NARX model mx9 and NLHW model mhw2 using 

AIC approach indicates that NLHW model mhw2 is a more accurate model than NARX as it 

gives the smaller AIC (9.6273 vs. 13.8054). 

 

Similarly, the execution of the aic command indicates that NLHW model mhws2 is a more 

accurate model than NARX ms7 as it gives the smaller AIC (8.0308 vs. 13.2119) for methane 

production. 
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The measure of the quality of the NARX and NLHW models for biogas and methane 

production using the two GoF approaches indicates that NLHW model mhw2 and NLHW 

model nhws2 are the best models for biogas production and methane production, respectively, 

for this study. Therefore, NLHW model mhw2 is chosen as the model for biogas production, 

and NLHW model mhws2 chosen for methane production.  

 

The mathematical expression for NLHW models is as follows: 

y(t) = [
𝐵(𝑧)

𝐹(𝑧)
]u(t) + ε(t)               (6.11) 

Where, y(t) is the output (biogas or methane production), u(t) is the input (operating 

parameters) and ε(t) is the noise signals 

 

For biogas production, the domain-mathematical expression from the estimated nonlinear 

multi-parameter model, NLHW model mhw2, is as follows: 

Gb(z) = 
1 − 15.8 z^−1

1 − 1.935 z^−1 − 0.9871 z^−2 
 * Temp +  

0.8907 − z^−1

1 − 1.963 z^−1 + 0.9837 z^−2
 * pH + 

−0.7488 + z^−1

1 − 1.811 z^−1 + 0.8417 z^−2 
 * MS + 

     
−0.12+ z^−1

1 − 1.947 z^−1 + 0.9988 z^−2
 * Press + ε(t)           (6.12) 

 

Similarly, for methane production, the domain-mathematical expression from the estimated 

nonlinear multi-parameter model, NLHW model mhws2, is as follows: 

 

Gm(z) = 
1 − 0.7134 z^−1

1 − 1.876 z^−1 − 0.9137 z^−2 
 * Temp +  
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−0.698 − z^−1

1 − 1.913 z^−1 + 0.9218 z^−2
 * pH + 

1 − 0.9726 + z^−1

1 − 1.993 z^−1 + z^−2 
 * MS + 

     
1 − 0.2323+ z^−1

1 − 1.908 z^−1 + 0.9307 z^−2
 * Press + ε(t)           (6.13) 

Where, Temp (in ℃), pH, MS (in rpm) and Press (in the bar) are temperature, pH, mixing speed 

and pressure respectively, while Gb(z) and Gm(z) (in mL) represent biogas and methane 

production, respectively. The following are a range of the values of the operating parameters 

at which the Eq. 6.12 and Eq. 6.13 are based on. 34<Temp<42 ℃; 5.0<pH<8.0; 

60<MS<2000 rpm; and 0.1<Press<0.7 

 

Step 7: Model testing: simulation error analysis 

Simulation error occurs as a result of inaccurate input data, inaccurate physical model and 

limited accuracy of the solutions of the governing equations (Kocak, 2012; Christie, 2005; 

Oberkamfa, 2002). 

 

The input error is the error in the data utilised to specify the problem. It is the error from the 

experimental error, which is classified as random or systematic errors (Christie et al., 2005; 

Oberkamfa, 2002). Random and systematic errors are problems associated with measurements 

(Christie et al., 2005; Oberkamfa, 2002). The physical model error is due to the effects of the 

phenomena, which are inadequately represented in the simulation (Kocak, 2012; Christie et al., 

2005). Solution error is the difference between the approximate solution of the equations 

obtained with the numerical algorithms used in the simulation and the exact mathematical 

solution of the governing equations for the model (Kocak, 2012; Christie et al., 2005; 

Oberkamfa, 2002).  
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It is assumed that the models constructed in this study are not affected by the measurement and 

physical errors. This is due to the care is taken in the experimental setup and acquisition of 

data, as well as following the principle and procedure for identifying nonlinear black-box 

models using System Identification method. However, there is the possibility of error that may 

exist in the constructed models. 

 

To analyse the error, the Root Mean Square Error (RMSE) is used. The RMSE is a commonly 

used measure of the difference between the measured outputs of a system in consideration and 

the outputs predicted by a model of the system (Chai and Draxler, 2014). The individual 

differences are called residuals, and the RMSE is used to combine the errors into a single 

measure of productive power (Chai and Draxler, 2014). 

 

The RMSE of a model prediction with respect to the estimated output is the square root of the 

mean squared error, which is computed as follows (Chai and Draxler, 2014).  

  RMSE = √
∑  𝑛

𝑖=1 (�̂�𝑖− 𝑦𝑖)2

𝑛
 (mL)              (6.14) 

Where, n is samples of model errors, y is measured output values and �̂� is simulated output 

values  

 

The percentage error of the system for biogas and methane production is calculated by dividing 

the RMSE by the measured output values, as follows. 

  %Error = 
𝑅𝑀𝑆𝐸

∑ (𝑦)𝑛
𝑖=1

 x 100              (6.15) 

 

The Simulink model as shown in Figure 6.20a, which represents Eq. 6.15 and Eq. 6.16, is used 

to simulate some intervals of a range of variables of two of the operating parameters at which 
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the models are based on. The internal part of error estimator in Figure 6.16 is shown in Figure 

6.21. The variables of temperature and pH which are used experimentally to generate the 

measured output values (biogas or methane), are also utilised to simulate the models for biogas 

and methane production, in order to compute the RMSE and the percentage error between the 

simulated output values of the models mhw2 and mhws2, and the measured output values of 

biogas and methane production.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following Tables show the result of the Simulink model, containing simulated output, 

measured output and percentage error for biogas and methane production. 

 

 

Fig. 6.20a. Simulation of percentage error from models for biogas and methane 

production  

 Fig. 6.20b Error estimator 
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Temperature (℃) 39 43 

Simulated output (mL) 2809 2310 

Measured outpit (mL) 2752 2460 

Percentage error (%) 2.1 -6.5 

 

Table 6.1a. Test for biogas production model mhw2 for variables of 

temperature 

 

Temperature (℃) 39 43 

Simulated output (mL) 1830 1522 

Measured outpit (mL) 1875 1553 

Percentage error (%) -2.4 -2.0 

 

Table 6.1b. Test for methane production model mhws2 for variables of 

temperature 

 

pH 7.3 8.3 

Simulated output (mL) 2620 2240 

Measured outpit (mL) 2570 2149 

Percentage error (%) 1.9 4.2 

 

Table 6.2a. Test result for biogas production model mhw2 for variables of pH 

 

pH 7.3 8.3 

Simulated output (mL) 1691 854 

Measured outpit (mL) 1734 827 

Percentage error (%) -2.5 3.3 

 

Table 6.2b. Test result for methane production model mhws2 for variables of pH 
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The analysis of simulation error as seen in Tables 6.1a – 6.2b, compares the simulated and 

measured output for biogas and methane production. It shows that the percentage error for 

biogas and methane production are less than 7% and 4%, respectively, signifying a small 

simulation error. The negative percentage error in some of the values of the tests indicates that 

the measured output is higher than the simulated output at those variables and vice verse. 

 

6.2.5 Comparison between the biogas and the methane production models 

The biogas and methane production models are constructed using the same nonlinear black-

box model structure, NLHW models. The similarities of biogas production and methane 

production model support the response of biogas and methane production as seen in the plots 

in Chapter 5. This goes to strengthen the claim that methanogenesis is the limiting stage in AD 

process. Meaning that the behaviour of methanogenic bacteria determines the performance of 

AD process with regards to biogas production. 

 

Although the NLHW models produced a high fit to the respective estimation data for biogas 

and methane production, there is the possibility of the following weaknesses in these models. 

1. It is uncertain that these models can fit well data from the four input parameters that 

are significantly higher or lower than the data used in this study. 

2. If the production of biogas and methane are considerably influenced by other 

operating parameters outside temperature, pH, mixing speed and pressure, it is 

unlikely that these models will give a good fit to the data, or able to predict the 

behaviour of mesophilic AD system well.  
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6.3 Bioprocess Scale-up 

There are several ways of developing and implementing biological processes, which are 

operated at different scales, such as laboratory, pilot and large scales. Many laboratory-scale 

processes that are used for research work are developed with the goal of screening and 

developing better bacterial strains, improving existing culture and performing the process more 

effectively with enhanced productivity (Najafpour, 2006). Usually, the production design of 

large-scale bioprocesses is developed in the laboratory, where all the factors that influence the 

intended output production are evaluated through experiments (Najafpour, 2006). Many 

factors, such as physical and biochemical, influence the production of biogas and methane as 

discussed in Chapter 2. The results from the laboratory process are transferred to the pilot-scale 

for verification by a relatively simple scale-up, after which they are transferred to large-scale 

(Galindo and Ramirez, 2013; Najafpour, 2006).  

 

In other to scale-up a bioprocess, a useful technique called dimensional analysis (DA) is applied 

(Galindo and Ramirez, 2013; Moreira and Wallece, 2012; Najafpour, 2006). DA is the analysis 

of the relationship between various physical quantities by identifying their basic dimensions 

and units, as well as tracking these dimensions as calculations or comparisons (Gibbings, 

2011). In DA, only quantities with similar dimensions are subtracted, added or compared 

(Barnett, 2007). Applying DA to scale-up requires certain rules and criteria to be followed. 

These criteria include maintaining geometric similarities and the keeping dimensionless 

numbers (DNs) constant (Galindo and Ramirez, 2013; Moreira and Wallece, 2012; Najafpour, 

2006).  

 

One way of obtaining DNs is from a structured grouping of all the parameters and variables 

that influence bioprocess outcome (Galindo and Ramirez, 2013). However, this method is 
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prone to errors as the omission of one important variable can differ the outcome (Galindo and 

Ramirez, 2013). The other way to achieve the DNs is to work with the ratios of time constants, 

forces and velocities (Galindo and Ramirez, 2013). This method is less prone to errors and 

often used (Galindo and Ramirez, 2013). The DNs from the ratios include Reynolds number 

or momentum factors, power consumption per unit volume of liquid, impeller tip velocity, 

liquid mixing and recirculation time and volumetric of mass transfer coefficient, which are 

discussed in detail in the books written by Simpson and Sastry (2013), Moreira and Wallece 

(2012) and Najafpour (2006).  

 

According to Najafpour (2006), the geometric similarities and constant power per unit volume 

have been applied in the scale-up of most fermentation processes for alcohol and organic acid 

production, which are some of the products of acidogenesis, the second stage of methane 

production in AD process. However, there are some limitations associated with applying DA 

for scale-up of bioprocess (Moreira and Wallece, 2012; Najafpour, 2006). It is practically 

impossible to keep all the DNs constant during scale-up (Moreira and Wallece, 2012; 

Najafpour, 2006). For instance, mixing and mixing time is a major concern in applying DA for 

scale-up, because large-scale digesters may not have uniform mixing, whilst mixing is not a 

problem in lab-scale and pilot-scale digesters (Najafpour, 2006).  

 

In applying DA for scale-up, the operating parameters are well controlled and certain rules 

have to be followed in changing the digester size to meet special criteria (Najafpour, 2006). In 

addition, maintaining only digester similarities and keeping some DNs constant may not satisfy 

the requirements of bioprocess design (Moreira and Wallece, 2012; Najafpour, 2006). The 

basic concept of DA, which is the geometric similarity, is usually maintained in scale-up from 
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laboratory to pilot scale. However, in the large-scale, it presents a real design challenge because 

the configurations of the digester are often changed (Moreira and Wallece, 2012). 

 

6.3.1 Scale-up of Black-box Model 

The black-box approach is based on laboratory-scale or pilot-scale investigations, which 

focuses mainly on the manipulated and measured parameters (Heams, 2006). These 

parameters, such as physical, chemical and biochemical phenomena, can form the major factors 

of scale-up (Steel, 2007; Heams, 2006). The advantage of black-box model approach is that it 

allows for faster development of the determined configuration, by considering the target as 

several small black-box systems (Heams, 2006).  

 

However, in opposition to nonlinear black-box model approach to scale-up, Heams (2006) 

reports that this approach offers less assurance as there are many physical, chemical, 

biochemical and microbiological phenomena that are not well explained (Heams, 2006). 

Meaning that the rules to maintaining the geometric similarities as well as keeping the DNs 

constant are not followed in nonlinear black-box model scale-up. Additionally, some authors 

reported that nonlinear black-box approach limits applications to the experimental conditions 

that generated the model, thereby, allows only the interpolation of the results and consequently, 

difficult to use for scale-up (Steel, 2007; Cybulski et al., 2001; Wentzel and Ekama, 1997). 

 

The nonlinear black-box models constructed in this study focuses only on four manipulated 

parameters; temperature, pH, mixing speed and pressure. Although the geometric similarities 

required to apply DA to scale-up can be maintained, it is not possible to account for all the 

physical and biochemical parameters involved in a bacterial growth environment that are not 

considered in this study. It means that the nonlinear black-box models constructed in this study 
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lack the basis to apply DA to scale-up. Since the models are not able to satisfy the rules and 

criteria for DA, they cannot be used for the scale-up purpose.  

 

One of the ways it can be possible to apply nonlinear black-box model to scale-up is to make 

assumptions about all the manipulated physical and biochemical operating parameters not 

considered in this study. Then the nonlinear black-box models can satisfy the criteria to apply 

DA to scale-up, however, the model would not be considered a black-box, rather, a grey-box 

model. Another way is if the digester geometric increase produces a corresponding linear 

output, then the target can be considered as a multiple of laboratory linear black-box model. 

Further study is encouraged in this area to explore the possibility of nonlinear black-box model 

scale-up in mesophilic AD process. 

 

6.4 Summary,  

This chapter has described how the nonlinear multi-parameter black-box models for biogas and 

methane production are constructed. The process includes the selection of black-box model 

technique due to inadequate knowledge of AD process. The estimation and validation of the 

experimental data are performed in MATLAB, through System Identification toolbox. The 

identified NLHW models mhw2 and mhws2 represent the behaviour of the production of 

biogas and methane, respectively, from mesophilic AD. Of all the candidate models studied, 

the nonlinear models provide a superior reproduction of the experimental data over the whole 

analysed period. Other appealing features of these HLHW models reside in the simplicity of 

the nonlinearities considered and the possibility to include new nonlinearities, as well as in its 

easy implementation. The models are prone to possible weaknesses and cannot be applied for 

scale-up purpose due to the inability of black-box models to satisfy the dimensional analysis 

criteria.  
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 Conclusions 

7.1 Introduction 

The study is set out to develop a black-box model for mesophilic AD process, in order to 

understand better, how physico-environmental operating parameters influence biogas and 

methane production. The research has also sought out to consider the control limits for the 

controlled parameters necessary for improving methanogenesis reaction while ensuring an 

enhanced digestion operation. The review of the relevant academic articles showed that much 

progress has been made in AD technology. However, much work is still needed to improve the 

knowledge of AD, specifically, the interactions between the operating parameters and bacterial 

community. In addition, the composition of bacterial groups that varies with changes in the 

operating parameters.  

 

This research work sought to provide solution to the following objectives: 

 Identify and understand the performance variables of mesophilic AD system (Chapter 

2); 

  A critical review of the operating parameters that influence the performance of biogas 

and methane production was undertaken. For this research work the following four 

operating parameters are considered; temperature, pH, mixing speed and pressure 

(Chapter 2); 

 Determine the limits for the four operating parameters and their impact on biogas and 

methane production. This includes a series of laboratory experiments with each of the 

operating parameters. The data obtained from the investigations are analysed and the 

range of values for each operating parameter that recorded the highest performance in 

terms of biogas and methane production (Chapters 4 & 5); 
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 Construct a black-box model each for biogas and methane production. The limits of the 

four operating parameters considered are analysed further in order to establish their 

correlation with biogas and methane production. Two nonlinear multi-parameter black-

box models are constructed through System Identification method in MATLAB. The 

models are able to predict the behaviour of the real system with sufficient accuracy 

(Chapter 6); and 

  Determine the scalability of black-box models. The black-box models constructed in 

this study focused only on four manipulated parameters. Although the models can 

maintain the geometric similarities required to apply DA to scale-up, it cannot account 

for all the other physical and biochemical parameters involved in the bacterial growth 

environment that are not considered in this study, making it difficult to use the models 

for scale-up (Chapter 6). 

 

7.2 Observed Outcomes 

The main observed outcomes with respect to the individual objectives of the study are chapter 

specific. This section unifies the observed outcomes to provide a solution to the aforementioned 

objectives of this study. 

 

 Identify and understand the performance variables of mesophilic AD system through a 

critical review of the operating parameters that influenced the process performance: 

i. Influence of the operating parameters on AD performance: Various operating 

parameters influence the performance of AD system. Different operating parameters 

have a different degree of impact on biogas and methane production. The temperature 

is considered the most significant parameter in AD process as it influences the entire 

biochemical process. Anaerobic bacteria are grouped based on their temperature 
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preference and tolerance. The different types of AD are characterised by their bacterial 

group, which are based on the temperature favourite of the bacterial group. These 

include psychrophilic, mesophilic and thermophilic AD, which operates at 0 – 20 oC, 

10 – 45 oC and 45 – 65 oC, respectively. The mesophilic AD process, which is the type 

of AD process considered in this study, performs optimally at a temperature range of 

38 – 40 oC (Chapter 3).  

 

Similarly, pH is an important parameter in AD, however, its variability does not impact 

on the entire anaerobic reactions. This is because different bacterial groups of the multi-

step process of AD have variable pH preferences, irrespective of the type of AD 

implemented. In Chapter 5 of this thesis, it is found that there is no record of methane 

production at pH of 5.0. This is because the activity of methane forming bacteria is 

inhibited in acid condition. However, acidogenesis thrive in acidic condition up to a 

low pH of 4.0 (Chapter 5). 

 

Furthermore, some of the operating parameters, such as mixing/mixing speed, 

hydraulic retention time, pressure and substrate characteristics; do not actually halt 

biogas and methane production as in the case of temperature and pH. However, they 

influence the enhancement of biogas and methane production (Chapter 5). 

 

ii. Anaerobic digestion process improvement: Various enhancements have been 

achieved in AD technology in other to improve biogas and methane production. These 

include pre-treatment, co-digestion and system modelling. 
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iii. Co-digestion of two or more substrates - The simultaneous digestion of two or more 

different substrates improves digestion process as investigated in this research work. In 

co-digestion, the participating substrates supply the required nutrients, which improves 

the performance of AD. It is found that improving the nutrient balance resulted in 

improved biodegradation, process stability and biogas production. The experiments 

reported in Chapter 5 show that better biodegradation and conversion of substrates to 

biogas is achieved by co-digestion of wastewater sludge and food waste compared to 

the digestion of only wastewater sludge or food waste. The study also found that co-

digestion of substrates produced more methane than the single-substrate digestion, thus, 

improving the quality of biogas. This indicates that co-digestion offers better process 

performance than single-substrate digestion (Chapter 5). 

 

iv. System Modelling - A number of previous studies (Chapter 2) reviewed show that 

modelling is an important tool for a complex system like AD process. It is used to 

describe and predict the behaviour and output of systems in real life. Mathematical 

modelling is generally classified into white-box models and black-box models. 

However, when there is the availability of some information about the system under 

consideration but not enough to apply the white-box models, then the known 

information is combined with the input/output data generated from physical 

experimentation, which is known as a grey-box model. In other words, grey-box model 

is the combination of the white-box and black-box models (Chapter 3). The black-box 

models are selected (Chapter 6). Moreover, some of the previous models constructed 

for predicting biogas production are reviewed and the outcome contributed to shaping 

the basis for developing the models for this study (Chapter 3). 
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 Determining the limits for some key parameters that influence mesophilic AD: 

Several factors, which are categorised into the physical, biological and chemical need 

to be considered for achieving effective mesophilic AD. This study considers the 

bacteriological and biochemical processes involved in AD (Chapter 4). In addition, it 

investigated the impacts of temperature, pH, mixing speed and pressure on AD under 

mesophilic conditions. The goal is to measure and compare the biogas and methane 

production for all the variables of temperature, pH, mixing speed and pressure, in order 

to determine the variables that achieved the highest biogas and methane production 

(Chapter 4). 

 

i. Bacteriological and biochemical processes involve in anaerobic digestion: The 

process of AD involves complex interactions of diverse species of bacteria organised 

in four different steps that function almost simultaneously. The four steps include 

hydrolysis, acidogenesis, acetogenesis and methanogenesis. In hydrolysis, complex 

organic polymers such as carbohydrates, fats and proteins are broken down to simple 

sugars, lipids and amino acids. The acidogenic bacteria convert the products of 

hydrolysis into hydrogen, carbon dioxide, alcohols and VFAs. At this stage, acetic acid 

contained in the VFAs are converted directly to methane by methanogenic bacteria. The 

remaining products of acidogenesis are transferred to the acetogenic stage, where they 

are converted to mainly acetic acid and finally, the methanogenic bacteria utilise the 

acetic acid as a substrate to produce methane.  

 

Methanogenesis is considered the rate-limiting stage of the AD process, thereby 

determining the stability of the entire process. Methanogenic bacteria are very sensitive 

to changes in operating parameters. Since they limit the kinetics of the entire anaerobic 
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biochemical process, the operating parameters of the whole process need to be 

maintained at the optimal range of methanogenesis (Chapter 4). 

 

ii. Investigation of the influence of multiple operating parameters: 

Temperature: The influence of mesophilic digestion of glucose for all the following 

variables of temperature, 32, 34, 36, 38, 40 and 42 oC on biogas and methane production 

is studied. Each of the experiments was kept at a constant temperature for the whole 

duration of 24 hours. The results show that the digester set at 32 oC for the entire 

duration generated the lowest biogas and methane production. Whereas the highest 

biogas and methane production are from the digester maintained at 40 oC, followed by 

the 38 and 36 oC digesters. The production of biogas and methane are found to decline 

as the digester temperature marginally exceeds 40 oC, indicating that the 42 oC 

temperature is beyond the temperature that supports the growth of mesophilic anaerobic 

bacteria.  

 

From this study, the optimum temperature range is between 38 – 40 oC. This means that 

in order to achieve a constant improved biogas production in mesophilic AD, digester 

temperature needs to be maintained within the optimal temperature range for the entire 

duration of the process (Chapter 4). 

 

pH: The influence of pH variation on the biogas and methane production was also 

studied. Different pH value is maintained for each digester throughout the retention 

time of 24 hours. The pH values investigated include 5.0, 6.0, 7.0 and 8.0. It is found 

that the pH of 5.0 inhibited the methanogenic process, thereby no methane is produced. 

However, the digester that was operated at pH of 7.0 generated the highest biogas and 
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methane production. The result also shows that as the pH moves below or beyond 7.0, 

the biogas and methane production decline. Indicating that as closer the pH value is to 

7.0, the neutral value, the better the performance of the  

methanogenic process. Thus, for continuously improved biogas and methane 

production, the pH needs to be kept close to the neutral value (Chapter 4).  

 

Mixing speed: Mixing is important for optimal AD performance; however, excessive 

mixing can cause a number of problems such as lowering the surface tension of solution 

in the digester, and accumulation of solids over liquids within the digester. Results from 

the experimentation of the influence of mixing speed variation on biogas production 

show that digesters that operated at minimal or moderate mixing speed performed better 

than the digester with vigorous mixing. Among all the four mixing speeds 

experimented, the 60, 300 and 600 rpm are found to produce more biogas and methane 

than the 2000 rpm digester. In addition, the digester that operated at 2000 rpm mixing 

speed delayed biogas and methane production at the initial stage of the process due to 

the excessiveness of the mixing. The vigorous mixing does not only impact negatively 

on the performance of AD, but it also increases the cost of energy used by the mixing 

system, thereby increasing the overall operating cost of the system and making the AD 

technology less attractive (Chapter 4). 

 

Pressure: The results of the experiment carried out to evaluate the influence of digester 

operating pressure on biogas and methane production shows that the 0.7 bar digester 

produced less biogas than the 0.1 bar digester. However, the methane production by the 

0.7 bar digester is more than the 0.1 bar digester. This is because more carbon dioxide 

content in biogas from 0.7 bar digester is liquefied compared to biogas produced by 
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0.1 bar digester. It is therefore recommended that appropriate digester operating 

pressure need to be chosen, but not exceeding 100 bar, which is the maximum operating 

pressure that methanogenic bacteria can tolerate (Chapter 4). 

 

 Constructing multi-parameter models for biogas and methane production:  

This study has presented two nonlinear multiparameter models for mesophilic AD for 

predicting the biogas production and the methane production. The modelling utilised 

raw data generated from lab experiments of the influence of four operating parameters, 

temperature, pH, mixing speed and pressure on the biogas and methane production. 

Due to the nonlinear characteristics of the acquired data, the nonlinear black-box 

modelling technique is used to construct the models.  

 

The black-box modelling offers some advantages over the white-box modelling 

technique; it requires no in-debt knowledge of the system under consideration, as well 

as adequately predict the biogas and methane production from input-output data. In 

addition, black-box modelling considers all the stages of the anaerobic process, 

operating parameters and history of operational data unlike the white-box modelling 

(Chapter 6).  

 

Two nonlinear model structures, autoregressive with exogenous input (NARX) and 

Hammerstein-Wiener (NLHW) with different nonlinearity estimators and model orders 

are chosen by trial and error and utilised to estimate the models. The performance of 

the models is determined by comparing the simulated outputs of the estimated models 

and the output in the validation data. The approach is used to validate the estimated 

models by checking how well the simulated output of the models fits the measured 
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output. The best models for biogas and methane production are chosen by comparing 

the outputs of the best NARX and NLHW models (each for biogas and methane 

production), and the validation data, as well as utilising the Akaike information 

criterion. The NLHW models mhw2 and mhws2 are chosen for biogas and methane 

production, respectively. The identified NLHW models mhw2 and mhws2 represent 

the behaviour of the production of biogas and methane, respectively, from mesophilic 

AD. Of all the candidate models studied, the nonlinear models provide a superior 

reproduction of the experimental data over the whole analysed period. (Chapter 6). 

 

The favourable outcomes indicate that black-box simple models can estimate biogas 

and methane production, as well as contributed to improving the knowledge of 

mesophilic AD process. The constructed models can replicate the mesophilic AD 

process and forecast its response for a given multiple operating parameters used in the 

study with sufficient accuracy. Although the models may not have been the perfect 

representation of the behaviour of mesophilic AD process with regards to predicting 

the biogas and methane production. However, this study has opened up the opportunity 

for further research on modelling mesophilic AD process with multiple parameters. It 

is then inferred that this research work on the construction of mesophilic AD models 

for predicting biogas and methane production is successful. 

 

 Determining the scalability of black-box model. 

This study considered only four operating parameters in the construction of the black-

box models. Although geometric similarities required to apply DA (Dimensional 

Analysis) to scale-up can be achieved, but it is not possible to account for all the other 
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physical and biochemical operating parameters involved in a bacterial growth 

environment that are not considered in this study.  

 

In addition, with the nonlinear black-box models, it is practically impossible to keep all 

the DNs (Dimensionless Numbers) constant, meaning that the models constructed in 

this study lack the basis to apply DA to scale-up. Since the models are not able to satisfy 

the rules and criteria for DA, they cannot be used for the scale-up purpose (Chapter 6).  

 

7.3 Limitation of this study  

The study has presented an empirical contribution to improving mesophilic AD process, which 

is achieved through experimentation and applying System Identification Toolbox in MATLAB 

to construct nonlinear black-box models. This research work encountered possible limitations 

that need to be considered. The limitations are categorised in terms of methodological and 

longitudinal effects that influenced the experimentation and interpretation of the study. 

1. Methodological limitations: 

 Sample size - The design of the experiment is such that only one operating parameter 

is manipulated at a time while the other three operating parameters are maintained at 

the same value throughout the investigation for all the variables of the manipulated 

operating parameter. This methodology is repeated for all the variables of temperature, 

pH, mixing speed and pressure. As a result, the number of sample units used for this 

study is reduced. The study is not able to capture the response of biogas and methane 

production if the design of the experiment is different. Because of the reduced sample 

size, it is difficult to find a comprehensive relationship between operating parameters 

and biogas as well as methane production. 
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 Lack of available and reliable data – The scope of analysis for this study is limited 

due to the insufficient evaluation of produced biogas sample to identify the entire gas 

composition. The reason for this is due to the gas analysed used in this study not 

equipped enough to identify and measure the proportion of other gases like carbon 

dioxide, hydrogen and ammonia present in biogas sample. Not only did it limit the 

scope of analysis conducted in this research work, but also significantly hindered the 

study of the relationship between operating parameters and other gases contained in 

biogas sample.  

 

In addition, there is the possibility of lack of data reliability, which is likely to be as a 

result of biogas sample contamination, resulting from transporting biogas sample from 

the laboratory in the University of Hertfordshire, where it is produced, to the laboratory 

in Imperial College London, where it is analysed. Another reason that could be 

responsible for data unreliability, in this research work, is the possible laboratory 

incompatibility that may alter the environmental conditions of the biogas samples. 

 

 Mode of data collection – The sample interval for the experiments performed in this 

research work could also contribute to the possible limitations in this study. Reducing 

sample interval from 60 minutes (used in this study) to 60 seconds, would increase the 

sample size and reduce any possible random error effect. Also, the manual acquisition 

of data, due to the unavailability of computerised data acquisition system, may likewise 

affect the accuracy of data.  

 

2. Researcher limitations: 
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 Longitudinal effects - The availability of time to conduct a thorough study is 

constrained by the due date of this research work. It did not only limit the scope of the 

study but also reduced the number of experiments conducted (sample size), which could 

have provided more information about mesophilic AD, thereby, improving the accuracy 

of the outcome of this study. 

 Insufficient equipment: The lack of sufficient equipment is one of the major factors 

that limited this study. It adversely affected almost every stage of this research work, 

from experimental setup to sample size, data collection and data analysis. 

 

7.4 Recommendations for Further Work 

In other to construct models that can reflect the behaviour of mesophilic AD with improved 

predictive accuracy, additional studies are required, which include the following. 

a) A further study is needed with the design of experimental setup in such a way that a 

variable of the operating parameters is investigated at a time with all the possible 

combinations of all the variables of other operating parameters. This methodology 

would require many experiments to be conducted. The purpose is to increase the sample 

size, as well as generate the best combination of the variables of the operating 

parameters at which the optimal production of biogas and methane is attained. In 

addition, it will increase the amount of information that can be used to improve the 

accuracy and robustness of the models. 

 

b) Further investigation consisting of more operating parameters that influence biogas and 

methane production is encouraged. The models developed in this study are limited in 

their ability to predict the behaviour of mesophilic AD due to the influence of other 

operating parameters that are not considered in this study. Thus, a study that 
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incorporates more operating parameters would produce a model that is more dynamic 

and more robust, with improved predictive accuracy. 

 

c) Additional study is also required to determine the entire gas content of biogas, as well 

evaluate how the individual gases respond to different combinations of the variables of 

the operating parameters. The study can be undertaken in conjunction with the previous 

recommended further studies or as a separate study utilising already acquired data. The 

proposed study is set out to find what combination of the variables of the operating 

parameters encourages the production of any of the gases that constitute biogas. The 

findings of the study can then be utilised to construct a model that improves methane 

production. 

 

d) Further study is required to explore the possibility of black-box model scale-up, as it 

relates to mesophilic AD process. 

 

This study has developed two pilot nonlinear multi-parameter black-box models for mesophilic 

AD process, which are based on the input-output data. This has demonstrated the need for 

developing multi-parameter models that reflect the behaviour of mesophilic AD process with 

sufficient accuracy. With adequate models in place, it is possible to evaluate the actual system, 

in order to reduce process disturbance that reduces or inhibits process efficiency.  

 

Based on the models constructed in this research work, further studies are possible with the 

goal of improving biogas and methane production. The enhancement of methane production 

through mesophilic AD process is an appropriate answer to the global quest for alternative 
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energy source that is sustainable, as well as a satisfactory solution for environmental and health 

risks associated with fossils fuels. 
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Appendices 

Appendix A: Raw Experimental Data 

The following tables are the experimental data generated from the various experiments 

conducted in this research work: 

Average experimental data for temperature variables for biogas production: 

Time (h) 32 (oC) 34 (oC) 36 (oC) 38 (oC) 40 (oC) 42 (oC) 

Average biogas production (mL) 

1 0 0 0 0 0 0 

2 0 0 10.2 56 75.6 3.999 

3 0 40.6 75.6 101 200.4 40.6 

4 0 80.8 164.2 162.8 270.6 93.8 

5 0 100 220.6 232.4 350.8 123 

6 0 137.2 270.6 274.2 490.8 205.2 

7 20.4 194.8 351 352 900.4 247.8 

8 49.6 211 610.4 587.2 1208.4 284 

9 80 504.6 921 1210.8 2150.8 640.9 

10 100 716.4 1245 1720 2299.8 903.4 

11 170.8 813.8 1664.8 1901 2391.6 1223.4 

12 249.6 1300.4 2130.8 2191.4 2509.2 1554.4 

13 480 1520.4 2217.8 2380.8 2608 1954 

14 713.8 1751.4 2251 2433.8 2658.4 2173.8 

15 951 1851 2316 2566 2674.4 2214.4 

16 1312 1870.8 2345.8 2581.2 2687.8 2264 

17 1450 1911.4 2382.6 2601.6 2796.2 2286.8 
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18 1551 1961 2398.8 2659.2 2833.6 2304 

19 1721.8 1983.8 2404 2703.6 2848.4 2316 

20 1760.6 2001 2410.4 2750.8 2856.2 2354.4 

21 1772.8 2053 2417.4 2756 2902 2273.8 

22 1808.2 2036 2428 2760.4 2910.6 2234.4 

23 1803 2010.6 2441.4 2766.4 2896.8 2214 

24 1751.2 2001.6 2417.6 2755.8 2882.6 2202.6 

 

 Average experimental data for pH variables for biogas production: 

Time (h) pH5 pH6 pH7 pH8 

 Average biogas production (mL) 

1 0 0 0 0 

2 0 0 0 0 

3 0 221.4 111.2 65.4 

4 0 501.8 280.8 111.2 

5 0 556.4 880 276 

6 0 667.2 1500.6 609 

7 0 776.4 2100 723.6 

8 0 890 2165 889 

9 0 1001 2334.4 1000.2 

10 0 1276.4 2444.8 1160.6 

11 0 1336 2447.8 1221.2 

12 0 1443.2 2451.2 1444.8 

13 0 1555.8 2455.4 1555.2 

14 0 1610.8 2501.2 1612.4 
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15 0 1666 2515 1779.4 

16 0 1775.8 2555.4 1890 

17 0 1835.6 2561.4 2111.2 

18 0 1887.6 2570.4 2164.6 

19 0 2000.2 2571.8 2223.8 

20 0 2111 2572 2223.6 

21 0 2175.5 2570.6 2228.4 

22 0 2176.4 2570 2230.8 

23 0 2180.4 2568.4 2235.2 

24 0 2180.4 2564.4 2241.2 
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 The experimental data for pH variables for methane proportion: 

pH 5 6 7 8 

Time (h) Average methane proportion (%) 

 pH5 pH6 pH7 pH8 

1 0 0 0 0 

2 0 0 0 0 

3 0 20.4 22.4 13.2 

4 0 21.3 25.1 15.3 

5 0 21.9 27.5 18.4 

6 0 22.5 35.4 20.5 

7 0 23.4 42.6 22.4 

8 0 23.7 46.3 24.4 

9 0 26.1 50.4 25.6 

10 0 28.1 53.1 27.5 

11 0 28.7 55.9 28.1 

12 0 32.1 58.1 29.7 

13 0 32.4 60.2 30.2 

14 0 33.8 63.6 31.2 

15 0 35.5 64.8 33.1 

16 0 36.1 66.1 33.9 

17 0 37.7 66.8 34.3 

18 0 39.8 67.2 34.7 

19 0 41.1 67.3 35.2 

20 0 42 67.5 36 

21 0 42.8 67 37.1 
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22 0 43.2 67 38.6 

23 0 43.6 67.1 41.6 

24 0 43.4 66.8 40.1 
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 Average experimental data for mixing speed variables for biogas production: 

Time (h) 60 rpm 300 rpm 600 rpm 2000 rpm 

Average biogas production (mL) 

1 0 0 0 0 

2 0 0 0 0 

3 9.835 9.9 13.886 0 

4 27.337 28.426 22.713 0.725 

5 53.25 62.417 30.864 1.607 

6 85.01 100.495 40.003 44.695 

7 125.039 131.037 60.295 105.943 

8 170.98 187.919 78.635 280.469 

9 246.189 270.157 108.927 403.921 

10 477.932 551.351 216.99 624.04 

11 662.972 699.288 374.17 775.983 

12 1248.44 1299.48 566.154 923.088 

13 1386.243 1448.427 712.228 1176.463 

14 1506.908 1572.857 960.577 1342.453 

15 1614.934 1671.636 1170.302 1358.886 

16 1690.114 1756.958 1400.976 1345.772 

17 1721.566 1775.247 1462.721 1322.994 

18 1739.69 1808.921 1595.478 1286.17 

19 1763.341 1865.618 1672.81 1178.759 

20 1851.276 1906.031 1784.045 1103.005 

21 1871.194 1921.918 1794.752 1093.271 
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22 1876.462 1949.288 1769.024 1086.152 

23 1859.193 1937.858 1734.061 1078.495 

24 1849.748 1918.488 1668.545 1063.987 
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 Average experimental data for mixing speed variables for methane proportion: 

Time (h) 60 rpm 300 rpm 600 rpm 2000 rpm 

Average methane proportion (%) 

1 0 0 0 0 

2 0 0 0 0 

3 11.7 13.2 25.3 0 

4 27.1 28.2 28.2 9.8 

5 35.5 38.7 30.7 15.2 

6 42.4 43.6 33.1 27.4 

7 46.1 48.1 35.3 40.6 

8 48.7 51.3 40.1 47.8 

9 50.1 53.6 43 53.3 

10 53.1 55.1 48.2 56.7 

11 55.7 56.2 51.2 59.1 

12 58 59.5 53.2 61.4 

13 60.2 61.5 55.3 61.9 

14 63 64.7 57.3 63.7 

15 64.3 65.4 60.3 64.5 

16 64.8 65.7 62.1 64.1 

17 64.7 66 63.6 63.4 

18 65 66.5 64.1 62.7 

19 65.6 66.9 65.1 60.9 

20 66.2 67.2 65.9 59.1 

21 66.6 67.5 65.2 58.5 
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22 66.7 68 65.5 58.2 

23 66.2 67.5 64.5 57.9 

24 66 67.1 64.2 57.6 
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 Average experimental data for pressure variables for biogas production: 

Time (h) 0.7 bar 0.5 bar 0.3 bar 0.1 bar 

Average biogas production (mL) 

1 0 0 0 0 

2 0 0 0 0 

3 21.86 31.37 83.2 102.73 

4 62.707 93.878 115.6416 118.41 

5 119.45 123.28 179.6012 217.84 

6 157.56 303.44 377.3172 403.82 

7 176.64 354.72 391.5 423.31 

8 196.2 402.89 422.864 501.3 

9 308.67 501.24 678.5653 931.77 

10 683.65 966.06 1178.766 1329.4 

11 809.09 1260 1486.471 1758 

12 842.11 1281 1560.58 1864.9 

13 1011.1 1490.4 1771.199 2093.7 

14 1154.8 1688.9 1951.596 2213.7 

15 1232.4 1849.4 2149.482 2408.4 

16 1454.7 2095.3 2429.584 2637 

17 1566.8 2247.4 2616.3 2850.1 

18 1751.4 2597.5 2946.807 3118.8 

19 1901.9 2707.5 3088.064 3266.2 

20 1950.1 2778 3146.516 3337.1 

21 1990.1 2831 3191.4 3443.8 
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22 2010.3 2969.1 3408.339 3621.4 

23 2060.1 2931.1 3425.823 3630 

24 2099.3 2893.3 3430.801 3608 
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 Average experimental data for pressure variables for methane proportion: 

Time 

(h) 

0.7 bar 0.5 bar 0.3 bar 0.1 bar 

Average methane proportion (%) 

1 0 0 0 0 

2 0 0 0 0 

3 32.2 28.2 20.5 15.6 

4 35.5 30.5 23.1 17.6 

5 42.6 34.3 25.5 20.9 

6 46.3 37.7 29 23 

7 49.5 43.2 33.5 24.8 

8 52.3 46.6 36.4 36.3 

9 57.6 49.7 40.6 32.6 

10 59.1 52.9 44.2 35.5 

11 61.2 55.4 47.3 39.5 

12 63 58.4 51.2 43.6 

13 63.7 58 53.9 46.4 

14 65 59.8 56 49.3 

15 66.7 61.5 58 52.6 

16 68.4 63.1 60.2 54.2 

17 71.5 64.4 61.6 56.5 

18 73.2 66.9 62.3 59.9 

19 75.4 68.3 62.9 60.4 

20 75.7 69.4 63.5 61.2 
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21 76.1 70.6 63.8 61.9 

22 76.3 70.8 63.7 62.7 

23 76.5 71.2 63.6 62.4 

24 76.8 71.5 63.3 61.6 
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Appendix B: MATLAB Modelling Codes 

MATLAB modelling codes: 

 

%Data processing 

  

%Load data containing all the parameters from mat files into your own variables. 

  

load('Biogas_data.mat');       

  

  

%extract from the K_data.mat the time vector. 

Time=parameters(2:end,1);           

  

Time=3600*Time;                    %the time vector values in hours. 

  

%From the data loaded extract  production for temperatures and pH, mixing speed and 

pressure. 

  

Temperature32=parameters(2:end,2);     %Extract the measurements for the Temperature at 32 

degrees. 

pH5=parameters(2:end,3);                        %Extract the measurements for pH of 5. 

ms60=parameters(2:end,4);              %Extract the measurements for ms 60. 

pressure700=parameters(2:end,5);          %Extract the measurements for pressure 700 mbar 

  

Temperature34=parameters(2:end,6);     %Extract the measurements for the Temperature at 34 

degrees. 

pH6=parameters(2:end,7);                        %Extract the measurements for pH of 6 

ms270=parameters(2:end,8);             %Extract the measurements for ms 300 

pressure600=parameters(2:end,9); 

  

Temperature36=parameters(2:end,10);      

pH65=parameters(2:end,11);                         

ms300=parameters(2:end,12);              

pressure500=parameters(2:end,13); 

  

  

Temperature38=parameters(2:end,14);      

pH7=parameters(2:end,15);                         

ms500=parameters(2:end,16);              

pressure300=parameters(2:end,17); 

  

Temperature40=parameters(2:end,18);      

pH75=parameters(2:end,19);                         

ms600=parameters(2:end,20);              

pressure200=parameters(2:end,21); 

  

Temperature42=parameters(2:end,22);      
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pH8=parameters(2:end,23);                         

ms2000=parameters(2:end,24);              

pressure100=parameters(2:end,25); 

Temperature35=parameters(2:end,26); 

Temperature37=parameters(2:end,27); 

% Creation of an iddata object for each of the experiments. 

%Experiment 1 

InputExp1=ones(25,4); 

InputExp1(1:end,1)=32.*InputExp1(1:end,1);      %Temperature (C) 

InputExp1(1:end,2)=7.1.*InputExp1(1:end,2);     %pH 

InputExp1(1:end,3)=250.*InputExp1(1:end,3);     %Mixing speed (rpm) 

InputExp1(1:end,4)=0.7.*InputExp1(1:end,4);     %Pressure (bar) 

OutputExp1=Temperature32; 

SystemEperiment1=iddata(OutputExp1,InputExp1,3600); 

SystemEperiment1.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment1.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment1.OutputName=''; 

SystemEperiment1.OutputUnit='mL'; 

  

%Experiment 2 

InputExp2=ones(25,4); 

InputExp2(1:end,1)=34.*InputExp2(1:end,1);      %Temperature (C) 

InputExp2(1:end,2)=7.1.*InputExp2(1:end,2);     %pH 

InputExp2(1:end,3)=250.*InputExp2(1:end,3);     %Mixing speed (rpm) 

InputExp2(1:end,4)=0.7.*InputExp2(1:end,4);     %Pressure (bar) 

OutputExp2=Temperature34; 

SystemEperiment2=iddata(OutputExp2,InputExp2,3600); 

SystemEperiment2.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment2.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment2.OutputName=''; 

SystemEperiment2.OutputUnit='mL'; 

  

%Experiment 3 

InputExp3=ones(25,4); 

InputExp3(1:end,1)=36.*InputExp3(1:end,1);      %Temperature (C) 

InputExp3(1:end,2)=7.1.*InputExp3(1:end,2);     %pH 

InputExp3(1:end,3)=250.*InputExp3(1:end,3);     %Mixing speed (rpm) 

InputExp3(1:end,4)=0.7.*InputExp3(1:end,4);     %Pressure (bar) 

OutputExp3=Temperature36; 

SystemEperiment3=iddata(OutputExp3,InputExp3,3600); 

SystemEperiment3.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment3.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment3.OutputName=''; 

SystemEperiment3.OutputUnit='mL'; 

  

%Experiment 4 

InputExp4=ones(25,4); 

InputExp4(1:end,1)=38.*InputExp4(1:end,1);      %Temperature (C) 

InputExp4(1:end,2)=7.1.*InputExp4(1:end,2);     %pH 

InputExp4(1:end,3)=250.*InputExp4(1:end,3);     %Mixing speed (rpm) 
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InputExp4(1:end,4)=0.7.*InputExp4(1:end,4);     %Pressure (bar) 

OutputExp4=Temperature38; 

SystemEperiment4=iddata(OutputExp4,InputExp4,3600); 

SystemEperiment4.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment4.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment4.OutputName=''; 

SystemEperiment4.OutputUnit='mL'; 

  

%Experiment 5 

InputExp5=ones(25,4); 

InputExp5(1:end,1)=40.*InputExp5(1:end,1);      %Temperature (C) 

InputExp5(1:end,2)=7.1.*InputExp5(1:end,2);     %pH 

InputExp5(1:end,3)=250.*InputExp5(1:end,3);     %Mixing speed (rpm) 

InputExp5(1:end,4)=0.7.*InputExp5(1:end,4);     %Pressure (bar) 

OutputExp5=Temperature40; 

SystemEperiment5=iddata(OutputExp5,InputExp5,3600); 

SystemEperiment5.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment5.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment5.OutputName=''; 

SystemEperiment5.OutputUnit='mL'; 

  

%Experiment 6 

InputExp6=ones(25,4); 

InputExp6(1:end,1)=42.*InputExp6(1:end,1);      %Temperature (C) 

InputExp6(1:end,2)=7.1.*InputExp6(1:end,2);     %pH 

InputExp6(1:end,3)=250.*InputExp6(1:end,3);     %Mixing speed (rpm) 

InputExp6(1:end,4)=0.7.*InputExp6(1:end,4);     %Pressure (bar) 

OutputExp6=Temperature42; 

SystemEperiment6=iddata(OutputExp6,InputExp6,3600); 

SystemEperiment6.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment6.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment6.OutputName=''; 

SystemEperiment6.OutputUnit='mL'; 

  

%Experiment 7 

InputExp7=ones(25,4); 

InputExp7(1:end,1)=39.*InputExp7(1:end,1);      %Temperature (C) 

InputExp7(1:end,2)=5.*InputExp7(1:end,2);     %pH 

InputExp7(1:end,3)=250.*InputExp7(1:end,3);     %Mixing speed (rpm) 

InputExp7(1:end,4)=0.7.*InputExp7(1:end,4);     %Pressure (bar) 

OutputExp7=pH5; 

SystemEperiment7=iddata(OutputExp7,InputExp7,3600); 

SystemEperiment7.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment7.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment7.OutputName=''; 

SystemEperiment7.OutputUnit='mL'; 

  

%Experiment 8 

InputExp8=ones(25,4); 

InputExp8(1:end,1)=39.*InputExp8(1:end,1);      %Temperature (C) 
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InputExp8(1:end,2)=6.*InputExp8(1:end,2);     %pH 

InputExp8(1:end,3)=250.*InputExp8(1:end,3);     %Mixing speed (rpm) 

InputExp8(1:end,4)=0.7.*InputExp8(1:end,4);     %Pressure (bar) 

OutputExp8=pH6; 

SystemEperiment8=iddata(OutputExp8,InputExp8,3600); 

SystemEperiment8.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment8.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment8.OutputName=''; 

SystemEperiment8.OutputUnit='mL'; 

  

%Experiment 9 

InputExp9=ones(25,4); 

InputExp9(1:end,1)=39.*InputExp9(1:end,1);      %Temperature (C) 

InputExp9(1:end,2)=7.*InputExp9(1:end,2);     %pH 

InputExp9(1:end,3)=250.*InputExp9(1:end,3);     %Mixing speed (rpm) 

InputExp9(1:end,4)=0.7.*InputExp9(1:end,4);     %Pressure (bar) 

OutputExp9=pH7; 

SystemEperiment9=iddata(OutputExp9,InputExp9,3600); 

SystemEperiment9.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment9.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment9.OutputName=''; 

SystemEperiment9.OutputUnit='mL'; 

  

%Experiment 10 

InputExp10=ones(25,4); 

InputExp10(1:end,1)=39.*InputExp10(1:end,1);      %Temperature (C) 

InputExp10(1:end,2)=8.*InputExp10(1:end,2);     %pH 

InputExp10(1:end,3)=250.*InputExp10(1:end,3);     %Mixing speed (rpm) 

InputExp10(1:end,4)=0.7.*InputExp10(1:end,4);     %Pressure (bar) 

OutputExp10=pH8; 

SystemEperiment10=iddata(OutputExp10,InputExp10,3600); 

SystemEperiment10.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment10.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment10.OutputName=''; 

SystemEperiment10.OutputUnit='mL'; 

  

%Experiment 11 

InputExp11=ones(25,4); 

InputExp11(1:end,1)=39.*InputExp11(1:end,1);      %Temperature (C) 

InputExp11(1:end,2)=7.1.*InputExp11(1:end,2);     %pH 

InputExp11(1:end,3)=60.*InputExp11(1:end,3);     %Mixing speed (rpm) 

InputExp11(1:end,4)=0.7.*InputExp11(1:end,4);     %Pressure (bar) 

OutputExp11=ms60; 

SystemEperiment11=iddata(OutputExp11,InputExp11,3600); 

SystemEperiment11.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment11.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment11.OutputName=''; 

SystemEperiment11.OutputUnit='mL'; 

  

%Experiment 12 



214 

 

InputExp12=ones(25,4); 

InputExp12(1:end,1)=39.*InputExp12(1:end,1);      %Temperature (C) 

InputExp12(1:end,2)=7.1.*InputExp12(1:end,2);     %pH 

InputExp12(1:end,3)=300.*InputExp12(1:end,3);     %Mixing speed (rpm) 

InputExp12(1:end,4)=0.7.*InputExp12(1:end,4);     %Pressure (bar) 

OutputExp12=ms300; 

SystemEperiment12=iddata(OutputExp12,InputExp12,3600); 

SystemEperiment12.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment12.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment12.OutputName=''; 

SystemEperiment12.OutputUnit='mL'; 

  

%Experiment 13 

InputExp13=ones(25,4); 

InputExp13(1:end,1)=39.*InputExp13(1:end,1);      %Temperature (C) 

InputExp13(1:end,2)=7.1.*InputExp13(1:end,2);     %pH 

InputExp13(1:end,3)=600.*InputExp13(1:end,3);     %Mixing speed (rpm) 

InputExp13(1:end,4)=0.7.*InputExp13(1:end,4);     %Pressure (bar) 

OutputExp13=ms600; 

SystemEperiment13=iddata(OutputExp13,InputExp13,3600); 

SystemEperiment13.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment13.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment13.OutputName=''; 

SystemEperiment13.OutputUnit='mL'; 

  

%Experiment 14 

InputExp14=ones(25,4); 

InputExp14(1:end,1)=39.*InputExp14(1:end,1);      %Temperature (C) 

InputExp14(1:end,2)=7.1.*InputExp14(1:end,2);     %pH 

InputExp14(1:end,3)=2000.*InputExp14(1:end,3);     %Mixing speed (rpm) 

InputExp14(1:end,4)=0.7.*InputExp14(1:end,4);     %Pressure (bar) 

OutputExp14=ms2000; 

SystemEperiment14=iddata(OutputExp14,InputExp14,3600); 

SystemEperiment14.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment14.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment14.OutputName=''; 

SystemEperiment14.OutputUnit='mL'; 

  

%Experiment 15 

InputExp15=ones(25,4); 

InputExp15(1:end,1)=39.*InputExp15(1:end,1);      %Temperature (C) 

InputExp15(1:end,2)=7.1.*InputExp15(1:end,2);     %pH 

InputExp15(1:end,3)=250.*InputExp15(1:end,3);     %Mixing speed (rpm) 

InputExp15(1:end,4)=0.1.*InputExp15(1:end,4);     %Pressure (bar) 

OutputExp15=pressure100; 

SystemEperiment15=iddata(OutputExp15,InputExp15,3600); 

SystemEperiment15.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment15.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment15.OutputName=''; 

SystemEperiment15.OutputUnit='mL'; 
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%Experiment 16 

InputExp16=ones(25,4); 

InputExp16(1:end,1)=39.*InputExp16(1:end,1);      %Temperature (C) 

InputExp16(1:end,2)=7.1.*InputExp16(1:end,2);     %pH 

InputExp16(1:end,3)=250.*InputExp16(1:end,3);     %Mixing speed (rpm) 

InputExp16(1:end,4)=0.3.*InputExp16(1:end,4);     %Pressure (bar) 

OutputExp16=pressure300; 

SystemEperiment16=iddata(OutputExp16,InputExp16,3600); 

SystemEperiment16.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment16.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment16.OutputName=''; 

SystemEperiment16.OutputUnit='mL'; 

  

%Experiment 17 

InputExp17=ones(25,4); 

InputExp17(1:end,1)=39.*InputExp17(1:end,1);      %Temperature (C) 

InputExp17(1:end,2)=7.1.*InputExp17(1:end,2);     %pH 

InputExp17(1:end,3)=250.*InputExp17(1:end,3);     %Mixing speed (rpm) 

InputExp17(1:end,4)=0.5.*InputExp17(1:end,4);     %Pressure (bar) 

OutputExp17=pressure500; 

SystemEperiment17=iddata(OutputExp17,InputExp17,3600); 

SystemEperiment17.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment17.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment17.OutputName=''; 

SystemEperiment17.OutputUnit='mL'; 

  

%Experiment 18 

InputExp18=ones(25,4); 

InputExp18(1:end,1)=39.*InputExp18(1:end,1);      %Temperature (C) 

InputExp18(1:end,2)=7.1.*InputExp18(1:end,2);     %pH 

InputExp18(1:end,3)=250.*InputExp18(1:end,3);     %Mixing speed (rpm) 

InputExp18(1:end,4)=0.7.*InputExp18(1:end,4);     %Pressure (bar) 

OutputExp18=pressure700; 

SystemEperiment18=iddata(OutputExp18,InputExp18,3600); 

SystemEperiment18.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment18.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment18.OutputName=''; 

SystemEperiment18.OutputUnit='mL'; 

  

%Experiment 19 

InputExp19=ones(25,4); 

InputExp19(1:end,1)=39.*InputExp19(1:end,1);      %Temperature (C) 

InputExp19(1:end,2)=7.1.*InputExp19(1:end,2);     %pH 

InputExp19(1:end,3)=270.*InputExp19(1:end,3);     %Mixing speed (rpm) 

InputExp19(1:end,4)=0.7.*InputExp19(1:end,4);     %Pressure (bar) 

OutputExp19=ms270; 

SystemEperiment19=iddata(OutputExp19,InputExp19,3600); 

SystemEperiment19.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment19.inputUnit={'C', ' ', 'rpm', 'bar'}; 
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SystemEperiment19.OutputName=''; 

SystemEperiment19.OutputUnit='mL'; 

  

%Experiment 20 

InputExp20=ones(25,4); 

InputExp20(1:end,1)=39.*InputExp20(1:end,1);      %Temperature (C) 

InputExp20(1:end,2)=7.1.*InputExp20(1:end,2);     %pH 

InputExp20(1:end,3)=250.*InputExp20(1:end,3);     %Mixing speed (rpm) 

InputExp20(1:end,4)=0.6.*InputExp20(1:end,4);     %Pressure (bar) 

OutputExp20=pressure600; 

SystemEperiment20=iddata(OutputExp20,InputExp20,3600); 

SystemEperiment20.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment20.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment20.OutputName=''; 

SystemEperiment20.OutputUnit='mL'; 

  

%Experiment 21 

InputExp21=ones(25,4); 

InputExp21(1:end,1)=39.*InputExp21(1:end,1);      %Temperature (C) 

InputExp21(1:end,2)=(6.5).*InputExp21(1:end,2);     %pH 

InputExp21(1:end,3)=250.*InputExp21(1:end,3);     %Mixing speed (rpm) 

InputExp21(1:end,4)=0.7.*InputExp21(1:end,4);     %Pressure (bar) 

OutputExp21=pH65; 

SystemEperiment21=iddata(OutputExp21,InputExp21,3600); 

SystemEperiment21.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment21.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment21.OutputName=''; 

SystemEperiment21.OutputUnit='mL'; 

  

%Experiment 22 

InputExp22=ones(25,4); 

InputExp22(1:end,1)=39.*InputExp22(1:end,1);      %Temperature (C) 

InputExp22(1:end,2)=(7.5).*InputExp22(1:end,2);     %pH 

InputExp22(1:end,3)=250.*InputExp22(1:end,3);     %Mixing speed (rpm) 

InputExp22(1:end,4)=0.7.*InputExp22(1:end,4);     %Pressure (bar) 

OutputExp22=pH75; 

SystemEperiment22=iddata(OutputExp22,InputExp22,3600); 

SystemEperiment22.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment22.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment22.OutputName=''; 

SystemEperiment22.OutputUnit='mL'; 

  

%Experiment 23 

InputExp23=ones(25,4); 

InputExp23(1:end,1)=39.*InputExp23(1:end,1);      %Temperature (C) 

InputExp23(1:end,2)=7.1.*InputExp23(1:end,2);     %pH 

InputExp23(1:end,3)=500.*InputExp23(1:end,3);     %Mixing speed (rpm) 

InputExp23(1:end,4)=0.7.*InputExp23(1:end,4);     %Pressure (bar) 

OutputExp23=ms500; 

SystemEperiment23=iddata(OutputExp23,InputExp23,3600); 
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SystemEperiment23.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment23.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment23.OutputName=''; 

SystemEperiment23.OutputUnit='mL'; 

  

%Experiment 24 

InputExp24=ones(25,4); 

InputExp24(1:end,1)=39.*InputExp24(1:end,1);      %Temperature (C) 

InputExp24(1:end,2)=7.1.*InputExp24(1:end,2);     %pH 

InputExp24(1:end,3)=250.*InputExp24(1:end,3);     %Mixing speed (rpm) 

InputExp24(1:end,4)=0.2.*InputExp24(1:end,4);     %Pressure (bar) 

OutputExp24=pressure200; 

SystemEperiment24=iddata(OutputExp24,InputExp24,3600); 

SystemEperiment24.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment24.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment24.OutputName=''; 

SystemEperiment24.OutputUnit='mL'; 

  

  

% Experiment 25 

InputExp25=ones(25,4); 

InputExp25(1:end,1)=35.*InputExp25(1:end,1);      %Temperature (C) 

InputExp25(1:end,2)=7.1.*InputExp25(1:end,2);     %pH 

InputExp25(1:end,3)=250.*InputExp25(1:end,3);     %Mixing speed (rpm) 

InputExp25(1:end,4)=0.7.*InputExp25(1:end,4);     %Pressure (bar) 

OutputExp25=Temperature35; 

SystemEperiment25=iddata(OutputExp25,InputExp25,3600); 

SystemEperiment25.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment25.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment25.OutputName=''; 

SystemEperiment25.OutputUnit='mL'; 

  

% Experiment 26  

InputExp26=ones(25,4); 

InputExp26(1:end,1)=37.*InputExp26(1:end,1);      %Temperature (C) 

InputExp26(1:end,2)=7.1.*InputExp26(1:end,2);     %pH 

InputExp26(1:end,3)=250.*InputExp26(1:end,3);     %Mixing speed (rpm) 

InputExp26(1:end,4)=0.7.*InputExp26(1:end,4);     %Pressure (bar) 

OutputExp26=Temperature37; 

SystemEperiment26=iddata(OutputExp26,InputExp26,3600); 

SystemEperiment26.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment26.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment26.OutputName=''; 

SystemEperiment26.OutputUnit='mL'; 

%Using KI, K2, K3 as estimation data sets and K6 as validation data set 

%merging all estimation iddata to a single iddata object; 

%This is for all the measurements that will be considered for the model extraction. 

Overall_iddata=merge(SystemEperiment1,SystemEperiment2, SystemEperiment3, 

SystemEperiment8, SystemEperiment11, SystemEperiment12, SystemEperiment17, 

SystemEperiment18, SystemEperiment19, SystemEperiment20, SystemEperiment21, 
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SystemEperiment25, SystemEperiment16, SystemEperiment22, SystemEperiment23, 

SystemEperiment24, SystemEperiment26);  

  

                    %VALIDATION PROCESS 

  

 %merging data to a single iddata object; 

%This is for all the measurements that will be considered for the model extraction. 

Overall_iddata_val=merge(SystemEperiment4,SystemEperiment5, SystemEperiment6, 

SystemEperiment9, SystemEperiment10, SystemEperiment13, SystemEperiment14, 

SystemEperiment15);  

   

%Estimation data and validation data have been entered and two iddata objects have been 

created: 

%Overall_iddata contains the experiment results for the model identification process. 

%Overall_iddata_val contains the experiment results for the model validation. 

de=(Overall_iddata); 

dv=(Overall_iddata_val); 

  

  

 %NALRX MODEL 

  

  

%mx1 = nlarx(de, [ones(1,1), ones(1,4), ones(1,4)], wavenet) 

%mx2 = nlarx(de, [ones(1,1), ones(1,4), 2*ones(1,4)], wavenet) 

%mx3 = nlarx(de, [2*ones(1,1), ones(1,4), 2*ones(1,4)], wavenet) 

%mx4 = nlarx(de, [2*ones(1,1), 2*ones(1,4), 2*ones(1,4)], wavenet) 

%mx5 = nlarx(de, [3*ones(1,1), ones(1,4), ones(1,4)], wavenet) 

%mx6 = nlarx(de, [3*ones(1,1), 3*ones(1,4), ones(1,4)], wavenet) 

  

%compare(dv,mx1, mx2, mx3, mx4, mx5, mx6) 

  

  

%The numbers of units (wavelets) of the two WAVENET estimators have been automatically 

chosen by the estimation algorithm. These numbers are displayed below. Notice the 

abbreviations 'nl'='Nonlinearity' and 'num'='NumberOfUnits' 

%mx4.Nonlinearity(1).NumberOfUnits %using full property names 

  

%nanbnk = [2*ones(1,1), ones(1,4), 2*ones(1,4)]; 

  

%The number of units in the WAVENET estimators can be explicitly specified instead of being 

automatically chosen by the estimation algorithm: 

%mx7 = nlarx(de, nanbnk, [wavenet('num',6)]); 

%mx8 = nlarx(de, nanbnk, [wavenet('num',8)]); 

%mx9 = nlarx(de, [2*ones(1,1), ones(1,4), 2*ones(1,4)], [wavenet('num',9)]) 

  

  

%compare(dv,mx7, mx8, mx9)  

  

%Nonlinear ARX Model - Trying Other Nonlinearity Estimators 
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%mx10 = nlarx(de, nanbnk, treepartition); 

  

%The SIGMOIDNET estimator can also be used. Estimation options such as maximum 

iterations (MaxIter) and iteration display can be specified using NLARXOPTIONS command. 

%opt = nlarxOptions('Display','on'); 

%opt.SearchOption.MaxIter = 2; 

%mx11 = nlarx(de, nanbnk, sigmoidnet); 

  

%compare(dv, mx12, mx13) 

  

  

  

%Function PLOT may be used to view the nonlinearity responses of various models. 

%plot(mx7, mx12, mx13) 

  

  

%Estimation of Hammerstein-Wiener Model (Both Input and Output Nonlinearities) 

  

  

%Indicate both input and output nonlinearities for a Hammerstein-Wiener model. As in the 

case of Nonlinear ARX models, we can use a string (rather than object) to specify the 

nonlinearity estimator. 

  

%mhw1 = nlarx(de, [1 5 3], wavenet); 

%ws = warning('off','Ident:estimation:NparGTNsamp'); 

%mhw1 = nlhw(de, [4, 8*ones(1,4), 8*ones(1,4)],pwlinear, pwlinear); 

  

%mhw1 = nlhw(de, [ones(1,4), ones(1,4), zeros(1,4)], 'pwlinear', 'pwlinear'); 

mhw2 = nlhw(de, [2*ones(1,4), 2*ones(1,4), 2*zeros(1,4)], 'pwlinear', 'pwlinear'); 

%mhw3 = nlhw(de, [3*ones(1,4), ones(1,4), zeros(1,4)], 'pwlinear', 'pwlinear'); 

  

%compare(dv, mhw2) 

%compare(dv,mhw1, mhw2, mhw3) 

  

%mhw4 = nlhw(de, [ones(1,4), ones(1,4), zeros(1,4)], 'unitgain', 'deadzone'); 

%mhw5 = nlhw(de, [2*ones(1,4), 2*ones(1,4), 2*zeros(1,4)], 'unitgain', 'deadzone') 

%mhw6 = nlhw(de, [3*ones(1,4), ones(1,4), zeros(1,4)], 'unitgain', 'deadzone'); 

  

  

%compare(dv,mhw4, mhw5, mhw6) 

  

%mhw7 = nlhw(de, [ones(1,4), ones(1,4), zeros(1,4)], 'saturation', 'deadzone'); 

%mhw8 = nlhw(de, [2*ones(1,4), 2*ones(1,4), 2*zeros(1,4)], 'saturation', 'deadzone') 

%mhw9 = nlhw(de, [3*ones(1,4), ones(1,4), zeros(1,4)], 'saturation', 'deadzone'); 

  

  

%compare(dv,mhw2, mhw5, mhw8) 
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%compare(dv, mx9, mhw2) 

 

  

%AIC = aic (mx9, mhw2) 

  

%The limit values of the SATURATION estimators can be accessed. The short-hands 

'u'='input', 'y'='output', and 'nl'='Nonlinearity' are available 

 

%Data processing 

  

%Load data containing all the parameters from mat files into your own variables. 

  

load('Methane_data.mat');       

  

  

%extract from the K_data.mat the time vector. 

Time=parameters(2:end,1);           

  

Time=3600*Time;                    %the time vector values in hours. 

  

%From the data loaded extract  production for temperatures and pH, mixing speed and 

pressure. 

  

Temperature32=parameters(2:end,2);     %Extract the measurements for the Temperature at 32 

degrees. 

pH5=parameters(2:end,3);                        %Extract the measurements for pH of 5. 

ms60=parameters(2:end,4);              %Extract the measurements for ms 60. 

pressure700=parameters(2:end,5);          %Extract the measurements for pressure 700 mbar 

  

Temperature34=parameters(2:end,6);     %Extract the measurements for the Temperature at 34 

degrees. 

pH6=parameters(2:end,7);                        %Extract the measurements for pH of 6 

ms270=parameters(2:end,8);             %Extract the measurements for ms 300 

pressure600=parameters(2:end,9); 

  

Temperature36=parameters(2:end,10);      

pH65=parameters(2:end,11);                         

ms300=parameters(2:end,12);              

pressure500=parameters(2:end,13); 

  

  

Temperature38=parameters(2:end,14);      

pH7=parameters(2:end,15);                         

ms500=parameters(2:end,16);              

pressure300=parameters(2:end,17); 

  

Temperature40=parameters(2:end,18);      
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pH75=parameters(2:end,19);                         

ms600=parameters(2:end,20);              

pressure200=parameters(2:end,21); 

  

Temperature42=parameters(2:end,22);      

pH8=parameters(2:end,23);                         

ms2000=parameters(2:end,24);              

pressure100=parameters(2:end,25); 

Temperature35=parameters(2:end,26); 

Temperature37=parameters(2:end,27); 

% Creation of an iddata object for each of the experiments. 

%Experiment 1 

InputExp1=ones(25,4); 

InputExp1(1:end,1)=32.*InputExp1(1:end,1);      %Temperature (C) 

InputExp1(1:end,2)=7.1.*InputExp1(1:end,2);     %pH 

InputExp1(1:end,3)=250.*InputExp1(1:end,3);     %Mixing speed (rpm) 

InputExp1(1:end,4)=0.7.*InputExp1(1:end,4);     %Pressure (bar) 

OutputExp1=Temperature32; 

SystemEperiment1=iddata(OutputExp1,InputExp1,3600); 

SystemEperiment1.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment1.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment1.OutputName=''; 

SystemEperiment1.OutputUnit='mL'; 

  

%Experiment 2 

InputExp2=ones(25,4); 

InputExp2(1:end,1)=34.*InputExp2(1:end,1);      %Temperature (C) 

InputExp2(1:end,2)=7.1.*InputExp2(1:end,2);     %pH 

InputExp2(1:end,3)=250.*InputExp2(1:end,3);     %Mixing speed (rpm) 

InputExp2(1:end,4)=0.7.*InputExp2(1:end,4);     %Pressure (bar) 

OutputExp2=Temperature34; 

SystemEperiment2=iddata(OutputExp2,InputExp2,3600); 

SystemEperiment2.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment2.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment2.OutputName=''; 

SystemEperiment2.OutputUnit='mL'; 

  

%Experiment 3 

InputExp3=ones(25,4); 

InputExp3(1:end,1)=36.*InputExp3(1:end,1);      %Temperature (C) 

InputExp3(1:end,2)=7.1.*InputExp3(1:end,2);     %pH 

InputExp3(1:end,3)=250.*InputExp3(1:end,3);     %Mixing speed (rpm) 

InputExp3(1:end,4)=0.7.*InputExp3(1:end,4);     %Pressure (bar) 

OutputExp3=Temperature36; 

SystemEperiment3=iddata(OutputExp3,InputExp3,3600); 

SystemEperiment3.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment3.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment3.OutputName=''; 

SystemEperiment3.OutputUnit='mL'; 
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%Experiment 4 

InputExp4=ones(25,4); 

InputExp4(1:end,1)=38.*InputExp4(1:end,1);      %Temperature (C) 

InputExp4(1:end,2)=7.1.*InputExp4(1:end,2);     %pH 

InputExp4(1:end,3)=250.*InputExp4(1:end,3);     %Mixing speed (rpm) 

InputExp4(1:end,4)=0.7.*InputExp4(1:end,4);     %Pressure (bar) 

OutputExp4=Temperature38; 

SystemEperiment4=iddata(OutputExp4,InputExp4,3600); 

SystemEperiment4.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment4.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment4.OutputName=''; 

SystemEperiment4.OutputUnit='mL'; 

  

%Experiment 5 

InputExp5=ones(25,4); 

InputExp5(1:end,1)=40.*InputExp5(1:end,1);      %Temperature (C) 

InputExp5(1:end,2)=7.1.*InputExp5(1:end,2);     %pH 

InputExp5(1:end,3)=250.*InputExp5(1:end,3);     %Mixing speed (rpm) 

InputExp5(1:end,4)=0.7.*InputExp5(1:end,4);     %Pressure (bar) 

OutputExp5=Temperature40; 

SystemEperiment5=iddata(OutputExp5,InputExp5,3600); 

SystemEperiment5.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment5.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment5.OutputName=''; 

SystemEperiment5.OutputUnit='mL'; 

  

%Experiment 6 

InputExp6=ones(25,4); 

InputExp6(1:end,1)=42.*InputExp6(1:end,1);      %Temperature (C) 

InputExp6(1:end,2)=7.1.*InputExp6(1:end,2);     %pH 

InputExp6(1:end,3)=250.*InputExp6(1:end,3);     %Mixing speed (rpm) 

InputExp6(1:end,4)=0.7.*InputExp6(1:end,4);     %Pressure (bar) 

OutputExp6=Temperature42; 

SystemEperiment6=iddata(OutputExp6,InputExp6,3600); 

SystemEperiment6.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment6.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment6.OutputName=''; 

SystemEperiment6.OutputUnit='mL'; 

  

%Experiment 7 

InputExp7=ones(25,4); 

InputExp7(1:end,1)=39.*InputExp7(1:end,1);      %Temperature (C) 

InputExp7(1:end,2)=5.*InputExp7(1:end,2);     %pH 

InputExp7(1:end,3)=250.*InputExp7(1:end,3);     %Mixing speed (rpm) 

InputExp7(1:end,4)=0.7.*InputExp7(1:end,4);     %Pressure (bar) 

OutputExp7=pH5; 

SystemEperiment7=iddata(OutputExp7,InputExp7,3600); 

SystemEperiment7.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment7.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment7.OutputName=''; 
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SystemEperiment7.OutputUnit='mL'; 

  

%Experiment 8 

InputExp8=ones(25,4); 

InputExp8(1:end,1)=39.*InputExp8(1:end,1);      %Temperature (C) 

InputExp8(1:end,2)=6.*InputExp8(1:end,2);     %pH 

InputExp8(1:end,3)=250.*InputExp8(1:end,3);     %Mixing speed (rpm) 

InputExp8(1:end,4)=0.7.*InputExp8(1:end,4);     %Pressure (bar) 

OutputExp8=pH6; 

SystemEperiment8=iddata(OutputExp8,InputExp8,3600); 

SystemEperiment8.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment8.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment8.OutputName=''; 

SystemEperiment8.OutputUnit='mL'; 

  

%Experiment 9 

InputExp9=ones(25,4); 

InputExp9(1:end,1)=39.*InputExp9(1:end,1);      %Temperature (C) 

InputExp9(1:end,2)=7.*InputExp9(1:end,2);     %pH 

InputExp9(1:end,3)=250.*InputExp9(1:end,3);     %Mixing speed (rpm) 

InputExp9(1:end,4)=0.7.*InputExp9(1:end,4);     %Pressure (bar) 

OutputExp9=pH7; 

SystemEperiment9=iddata(OutputExp9,InputExp9,3600); 

SystemEperiment9.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment9.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment9.OutputName=''; 

SystemEperiment9.OutputUnit='mL'; 

  

%Experiment 10 

InputExp10=ones(25,4); 

InputExp10(1:end,1)=39.*InputExp10(1:end,1);      %Temperature (C) 

InputExp10(1:end,2)=8.*InputExp10(1:end,2);     %pH 

InputExp10(1:end,3)=250.*InputExp10(1:end,3);     %Mixing speed (rpm) 

InputExp10(1:end,4)=0.7.*InputExp10(1:end,4);     %Pressure (bar) 

OutputExp10=pH8; 

SystemEperiment10=iddata(OutputExp10,InputExp10,3600); 

SystemEperiment10.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment10.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment10.OutputName=''; 

SystemEperiment10.OutputUnit='mL'; 

  

%Experiment 11 

InputExp11=ones(25,4); 

InputExp11(1:end,1)=39.*InputExp11(1:end,1);      %Temperature (C) 

InputExp11(1:end,2)=7.1.*InputExp11(1:end,2);     %pH 

InputExp11(1:end,3)=60.*InputExp11(1:end,3);     %Mixing speed (rpm) 

InputExp11(1:end,4)=0.7.*InputExp11(1:end,4);     %Pressure (bar) 

OutputExp11=ms60; 

SystemEperiment11=iddata(OutputExp11,InputExp11,3600); 

SystemEperiment11.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 
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SystemEperiment11.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment11.OutputName=''; 

SystemEperiment11.OutputUnit='mL'; 

  

%Experiment 12 

InputExp12=ones(25,4); 

InputExp12(1:end,1)=39.*InputExp12(1:end,1);      %Temperature (C) 

InputExp12(1:end,2)=7.1.*InputExp12(1:end,2);     %pH 

InputExp12(1:end,3)=300.*InputExp12(1:end,3);     %Mixing speed (rpm) 

InputExp12(1:end,4)=0.7.*InputExp12(1:end,4);     %Pressure (bar) 

OutputExp12=ms300; 

SystemEperiment12=iddata(OutputExp12,InputExp12,3600); 

SystemEperiment12.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment12.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment12.OutputName=''; 

SystemEperiment12.OutputUnit='mL'; 

  

%Experiment 13 

InputExp13=ones(25,4); 

InputExp13(1:end,1)=39.*InputExp13(1:end,1);      %Temperature (C) 

InputExp13(1:end,2)=7.1.*InputExp13(1:end,2);     %pH 

InputExp13(1:end,3)=600.*InputExp13(1:end,3);     %Mixing speed (rpm) 

InputExp13(1:end,4)=0.7.*InputExp13(1:end,4);     %Pressure (bar) 

OutputExp13=ms600; 

SystemEperiment13=iddata(OutputExp13,InputExp13,3600); 

SystemEperiment13.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment13.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment13.OutputName=''; 

SystemEperiment13.OutputUnit='mL'; 

  

%Experiment 14 

InputExp14=ones(25,4); 

InputExp14(1:end,1)=39.*InputExp14(1:end,1);      %Temperature (C) 

InputExp14(1:end,2)=7.1.*InputExp14(1:end,2);     %pH 

InputExp14(1:end,3)=2000.*InputExp14(1:end,3);     %Mixing speed (rpm) 

InputExp14(1:end,4)=0.7.*InputExp14(1:end,4);     %Pressure (bar) 

OutputExp14=ms2000; 

SystemEperiment14=iddata(OutputExp14,InputExp14,3600); 

SystemEperiment14.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment14.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment14.OutputName=''; 

SystemEperiment14.OutputUnit='mL'; 

  

%Experiment 15 

InputExp15=ones(25,4); 

InputExp15(1:end,1)=39.*InputExp15(1:end,1);      %Temperature (C) 

InputExp15(1:end,2)=7.1.*InputExp15(1:end,2);     %pH 

InputExp15(1:end,3)=250.*InputExp15(1:end,3);     %Mixing speed (rpm) 

InputExp15(1:end,4)=0.1.*InputExp15(1:end,4);     %Pressure (bar) 

OutputExp15=pressure100; 
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SystemEperiment15=iddata(OutputExp15,InputExp15,3600); 

SystemEperiment15.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment15.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment15.OutputName=''; 

SystemEperiment15.OutputUnit='mL'; 

  

%Experiment 16 

InputExp16=ones(25,4); 

InputExp16(1:end,1)=39.*InputExp16(1:end,1);      %Temperature (C) 

InputExp16(1:end,2)=7.1.*InputExp16(1:end,2);     %pH 

InputExp16(1:end,3)=250.*InputExp16(1:end,3);     %Mixing speed (rpm) 

InputExp16(1:end,4)=0.3.*InputExp16(1:end,4);     %Pressure (bar) 

OutputExp16=pressure300; 

SystemEperiment16=iddata(OutputExp16,InputExp16,3600); 

SystemEperiment16.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment16.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment16.OutputName=''; 

SystemEperiment16.OutputUnit='mL'; 

  

%Experiment 17 

InputExp17=ones(25,4); 

InputExp17(1:end,1)=39.*InputExp17(1:end,1);      %Temperature (C) 

InputExp17(1:end,2)=7.1.*InputExp17(1:end,2);     %pH 

InputExp17(1:end,3)=250.*InputExp17(1:end,3);     %Mixing speed (rpm) 

InputExp17(1:end,4)=0.5.*InputExp17(1:end,4);     %Pressure (bar) 

OutputExp17=pressure500; 

SystemEperiment17=iddata(OutputExp17,InputExp17,3600); 

SystemEperiment17.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment17.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment17.OutputName=''; 

SystemEperiment17.OutputUnit='mL'; 

  

%Experiment 18 

InputExp18=ones(25,4); 

InputExp18(1:end,1)=39.*InputExp18(1:end,1);      %Temperature (C) 

InputExp18(1:end,2)=7.1.*InputExp18(1:end,2);     %pH 

InputExp18(1:end,3)=250.*InputExp18(1:end,3);     %Mixing speed (rpm) 

InputExp18(1:end,4)=0.7.*InputExp18(1:end,4);     %Pressure (bar) 

OutputExp18=pressure700; 

SystemEperiment18=iddata(OutputExp18,InputExp18,3600); 

SystemEperiment18.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment18.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment18.OutputName=''; 

SystemEperiment18.OutputUnit='mL'; 

  

%Experiment 19 

InputExp19=ones(25,4); 

InputExp19(1:end,1)=39.*InputExp19(1:end,1);      %Temperature (C) 

InputExp19(1:end,2)=7.1.*InputExp19(1:end,2);     %pH 

InputExp19(1:end,3)=270.*InputExp19(1:end,3);     %Mixing speed (rpm) 
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InputExp19(1:end,4)=0.7.*InputExp19(1:end,4);     %Pressure (bar) 

OutputExp19=ms270; 

SystemEperiment19=iddata(OutputExp19,InputExp19,3600); 

SystemEperiment19.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment19.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment19.OutputName=''; 

SystemEperiment19.OutputUnit='mL'; 

  

%Experiment 20 

InputExp20=ones(25,4); 

InputExp20(1:end,1)=39.*InputExp20(1:end,1);      %Temperature (C) 

InputExp20(1:end,2)=7.1.*InputExp20(1:end,2);     %pH 

InputExp20(1:end,3)=250.*InputExp20(1:end,3);     %Mixing speed (rpm) 

InputExp20(1:end,4)=0.6.*InputExp20(1:end,4);     %Pressure (bar) 

OutputExp20=pressure600; 

SystemEperiment20=iddata(OutputExp20,InputExp20,3600); 

SystemEperiment20.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment20.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment20.OutputName=''; 

SystemEperiment20.OutputUnit='mL'; 

  

%Experiment 21 

InputExp21=ones(25,4); 

InputExp21(1:end,1)=39.*InputExp21(1:end,1);      %Temperature (C) 

InputExp21(1:end,2)=(6.5).*InputExp21(1:end,2);     %pH 

InputExp21(1:end,3)=250.*InputExp21(1:end,3);     %Mixing speed (rpm) 

InputExp21(1:end,4)=0.7.*InputExp21(1:end,4);     %Pressure (bar) 

OutputExp21=pH65; 

SystemEperiment21=iddata(OutputExp21,InputExp21,3600); 

SystemEperiment21.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment21.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment21.OutputName=''; 

SystemEperiment21.OutputUnit='mL'; 

  

%Experiment 22 

InputExp22=ones(25,4); 

InputExp22(1:end,1)=39.*InputExp22(1:end,1);      %Temperature (C) 

InputExp22(1:end,2)=(7.5).*InputExp22(1:end,2);     %pH 

InputExp22(1:end,3)=250.*InputExp22(1:end,3);     %Mixing speed (rpm) 

InputExp22(1:end,4)=0.7.*InputExp22(1:end,4);     %Pressure (bar) 

OutputExp22=pH75; 

SystemEperiment22=iddata(OutputExp22,InputExp22,3600); 

SystemEperiment22.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment22.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment22.OutputName=''; 

SystemEperiment22.OutputUnit='mL'; 

  

%Experiment 23 

InputExp23=ones(25,4); 

InputExp23(1:end,1)=39.*InputExp23(1:end,1);      %Temperature (C) 
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InputExp23(1:end,2)=7.1.*InputExp23(1:end,2);     %pH 

InputExp23(1:end,3)=500.*InputExp23(1:end,3);     %Mixing speed (rpm) 

InputExp23(1:end,4)=0.7.*InputExp23(1:end,4);     %Pressure (bar) 

OutputExp23=ms500; 

SystemEperiment23=iddata(OutputExp23,InputExp23,3600); 

SystemEperiment23.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment23.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment23.OutputName=''; 

SystemEperiment23.OutputUnit='mL'; 

  

%Experiment 24 

InputExp24=ones(25,4); 

InputExp24(1:end,1)=39.*InputExp24(1:end,1);      %Temperature (C) 

InputExp24(1:end,2)=7.1.*InputExp24(1:end,2);     %pH 

InputExp24(1:end,3)=250.*InputExp24(1:end,3);     %Mixing speed (rpm) 

InputExp24(1:end,4)=0.2.*InputExp24(1:end,4);     %Pressure (bar) 

OutputExp24=pressure200; 

SystemEperiment24=iddata(OutputExp24,InputExp24,3600); 

SystemEperiment24.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment24.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment24.OutputName=''; 

SystemEperiment24.OutputUnit='mL'; 

  

  

% Experiment 25 

InputExp25=ones(25,4); 

InputExp25(1:end,1)=35.*InputExp25(1:end,1);      %Temperature (C) 

InputExp25(1:end,2)=7.1.*InputExp25(1:end,2);     %pH 

InputExp25(1:end,3)=250.*InputExp25(1:end,3);     %Mixing speed (rpm) 

InputExp25(1:end,4)=0.7.*InputExp25(1:end,4);     %Pressure (bar) 

OutputExp25=Temperature35; 

SystemEperiment25=iddata(OutputExp25,InputExp25,3600); 

SystemEperiment25.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment25.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment25.OutputName=''; 

SystemEperiment25.OutputUnit='mL'; 

  

% Experiment 26 

InputExp26=ones(25,4); 

InputExp26(1:end,1)=37.*InputExp26(1:end,1);      %Temperature (C) 

InputExp26(1:end,2)=7.1.*InputExp26(1:end,2);     %pH 

InputExp26(1:end,3)=250.*InputExp26(1:end,3);     %Mixing speed (rpm) 

InputExp26(1:end,4)=0.7.*InputExp26(1:end,4);     %Pressure (bar) 

OutputExp26=Temperature37; 

SystemEperiment26=iddata(OutputExp26,InputExp26,3600); 

SystemEperiment26.InputName={'Temperature', 'pH', 'Mixing speed', 'Pressure'}; 

SystemEperiment26.inputUnit={'C', ' ', 'rpm', 'bar'}; 

SystemEperiment26.OutputName=''; 

SystemEperiment26.OutputUnit='mL'; 
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%Using KI, K2, K3 as estimation data sets and K6 as validation data set 

%merging all estimation iddata to a single iddata object; 

%This is for all the measurements that will be considered for the model extraction. 

Overall_iddata=merge(SystemEperiment1, SystemEperiment2, SystemEperiment3, 

SystemEperiment8, SystemEperiment11, SystemEperiment12, SystemEperiment17, 

SystemEperiment18, SystemEperiment19, SystemEperiment20, SystemEperiment21, 

SystemEperiment25, SystemEperiment16, SystemEperiment22, SystemEperiment23, 

SystemEperiment24, SystemEperiment26); 

  

                    %VALIDATION PROCESS 

  

 %merging data to a single iddata object; 

%This is for all the measurements that will be considered for the model extraction. 

Overall_iddata_val=merge(SystemEperiment4,SystemEperiment5, SystemEperiment6, 

SystemEperiment9, SystemEperiment10, SystemEperiment13, SystemEperiment14, 

SystemEperiment15);  

%Overall_iddata=merge(SystemEperiment1,SystemEperiment2, SystemEperiment3, 

SystemEperiment7, SystemEperiment8, SystemEperiment11, SystemEperiment12, 

SystemEperiment17, SystemEperiment18, SystemEperiment19, SystemEperiment20, 

SystemEperiment21,SystemEperiment25, SystemEperiment4,SystemEperiment5, 

SystemEperiment6, SystemEperiment9, SystemEperiment10, SystemEperiment13, 

SystemEperiment14, SystemEperiment15, SystemEperiment16, SystemEperiment22, 

SystemEperiment23, SystemEperiment24,SystemEperiment26);  

    

%Estimation data and validation data have been entered and two iddata objects have been 

created: 

%Overall_iddata contains the experiment results for the model identification process. 

%Overall_iddata_val contains the experiment results for the model validation. 

ze= Overall_iddata; 

zv=(Overall_iddata_val); 

  

  

%NALRX MODEL 

  

  

%ms1 = nlarx(ze, [ones(1,1), ones(1,4), ones(1,4)], wavenet) 

%ms2 = nlarx(ze, [ones(1,1), ones(1,4), 2*ones(1,4)], wavenet) 

%ms3 = nlarx(ze, [2*ones(1,1), ones(1,4), 2*ones(1,4)], wavenet); 

%ms4 = nlarx(ze, [2*ones(1,1), 2*ones(1,4), 2*ones(1,4)], wavenet) 

%ms5 = nlarx(ze, [3*ones(1,1), ones(1,4), ones(1,4)], wavenet) 

%ms6 = nlarx(ze, [3*ones(1,1), 3*ones(1,4), ones(1,4)], wavenet) 

  

%ompare(zv,ms1, ms2, ms3, ms4, ms5, ms6) 

   

   

  

%The numbers of units (wavelets) of the two WAVENET estimators have been automatically 

chosen by the estimation algorithm. These numbers are displayed below. Notice the 

abbreviations 'nl'='Nonlinearity' and 'num'='NumberOfUnits' 

%mx4.Nonlinearity(1).NumberOfUnits %using full property names 
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%nanbnk = [2*ones(1,1), 2*ones(1,4), 2*ones(1,4)]; 

  

  

  

%The numbers of units (wavelets) of the two WAVENET estimators have been automatically 

chosen by the estimation algorithm. These numbers are displayed below. Notice the 

abbreviations 'nl'='Nonlinearity' and 'num'='NumberOfUnits' 

%mx4.Nonlinearity(1).NumberOfUnits %using full property names 

  

  

%The number of units in the WAVENET estimators can be explicitly specified instead of being 

automatically chosen by the estimation algorithm: 

%ms7 = nlarx(ze, nanbnk, [wavenet('num',9)]) 

%ms8 = nlarx(ze, nanbnk, [wavenet('num',11)]) 

%ms9 = nlarx(ze, nanbnk, [wavenet('num',12)]) 

  

  

%compare(zv,ms7, ms8, ms9)  

  

%Nonlinear ARX Model - Trying Other Nonlinearity Estimators 

  

%ms10 = nlarx(ze, nanbnk, treepartition); 

  

%The SIGMOIDNET estimator can also be used. Estimation options such as maximum 

iterations (MaxIter) and iteration display can be specified using NLARXOPTIONS command. 

%opt = nlarxOptions('Display','on'); 

%opt.SearchOption.MaxIter = 2; 

%ms11 = nlarx(ze, nanbnk, sigmoidnet); 

  

%compare(zv,ms7, ms10, ms11) 

  

  

  

%Nonlinear ARX Model - Trying Other Nonlinearity Estimators 

  

%ms2 = nlarx(ze, nanbnk, treepartition); 

  

%The SIGMOIDNET estimator can also be used. Estimation options such as maximum 

iterations (MaxIter) and iteration display can be specified using NLARXOPTIONS command. 

%opt = nlarxOptions('Display','on'); 

%opt.SearchOption.MaxIter = 2; 

%ms3 = nlarx(ze, nanbnk, sigmoidnet); 

  

%compare(zv, ms2, ms3) 

  

%ms4 = nlarx(ze, nanbnk, sigmoidnet ('NumberOfUnits',5)); 

  

%compare(zv, ms3, ms4) 
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%Function PLOT may be used to view the nonlinearity responses of various models. 

%plot(mx1, mx2, mx3) 

  

  

  

%NLHW Model 

  

%mhws1=nlhw(ze, [2*ones(1,4), 3*ones(1,4), zeros(1,4)], 'saturation', 'deadzone'); 

%compare(zv, ms1, mhws1) 

  

  

%mhws1 = nlhw(ze, [ones(1,4), ones(1,4), zeros(1,4)], 'pwlinear', 'pwlinear'); 

mhws2 = nlhw(ze, [2*ones(1,4), 2*ones(1,4), 2*zeros(1,4)], 'pwlinear', 'pwlinear'); 

%mhws3 = nlhw(ze, [3*ones(1,4), ones(1,4), zeros(1,4)], 'pwlinear', 'pwlinear'); 

  

  

%compare(zv,mhws1, mhws2, mhws3) 

%compare(zv,mhws2) 

%mhws4 = nlhw(ze, [ones(1,4), ones(1,4), zeros(1,4)], 'unitgain', 'deadzone'); 

%mhws5 = nlhw(ze, [2*ones(1,4), 2*ones(1,4), 2*zeros(1,4)], 'unitgain', 'deadzone'); 

%mhws6 = nlhw(ze, [3*ones(1,4), ones(1,4), zeros(1,4)], 'unitgain', 'deadzone'); 

  

  

%compare(zv,mhws4, mhws5, mhws6) 

  

%mhws7 = nlhw(ze, [ones(1,4), ones(1,4), zeros(1,4)], 'saturation', 'deadzone'); 

%mhws8 = nlhw(ze, [2*ones(1,4), 2*ones(1,4), 2*zeros(1,4)], 'saturation', 'deadzone'); 

%mhws9 = nlhw(ze, [3*ones(1,4), ones(1,4), zeros(1,4)], 'saturation', 'deadzone'); 

  

  

%compare(zv,mhws2, mhws5, mhws8) 

%compare(zv,ms7,mhws2) 

 

%AIC = aic (ms7, mhws2) 
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