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Abstract 

The general aim of the study was to investigate the signalling pathways 

utilised by cannabinoids. Cannabinoid CB1 receptor stimulation in DDT, MF-2 

smooth muscle cells induces a rise in [Ca21;, which is dependent on extracellular Cat' 

and modulated by thapsigargin-sensitive stores and MAP kinase suggesting 

capacitative Ca2+ entry (CCE). Non-capacitative calcium entry (NCCE) stimulated by 

arachidonic acid (AA) partly mediates histamine Hl receptor-evoked increases in 

[Ca2+]; in DDTI MF-2 cells. In the current study both Ca 2+ entry mechanisms and a 

possible link between MAP kinase activation and increasing [Ca2+];, were 

investigated. In the whole-cell patch clamp configuration, the cannabinoid receptor 

agonist CP 55,940 evoked a transient Cat+-dependent K+ current, which was not 

blocked by inhibitors of CCE, 2-APB and SKF 96365, although SKF 96365 did 

inhibit the outward current evoked by the refilling component of the response to 

histamine. AA but not its metabolites evoked a transient outward current and inhibited 

the response to CP 55,940 in a concentration-dependent manner. CP 55,940 induced a 

concentration-dependent release of AA, which was inhibited by the CB1 receptor 

antagonist SR 141716A. The non-specific Ca2+ channel blockers, La3+ and Gd3+, 

inhibited the CP 55,940-induced current at concentrations that had no effect on 

thapsigargin-evoked CCE. La3+ also inhibited AA-mediated currents. The effect of CP 

55,940 on AA release was abolished by phospholipase A2 inhibition with quinacrine. 

This compound also inhibited outward currents mediated by CP 55,940. The data 

supports the possibility that in DDT, MF-2 cells AA is an integral component of the 

CBI receptor signalling pathway, upstream of NCCE and, via PLA2, downstream of 

MAP kinase. 
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In a parallel line of work the present study aimed to identify the signalling 

events that might mediate a cannabinoid-induced inhibition of neurotransmission in 

the myenteric plexus, leading to a reduction in intestinal motility. Myenteric neurons 

were grown in primary culture enabling electrophysiological recordings to be made 

from individual cells to study the effects of cannabinoids on ion conductance. 

Immunohistochemistry validated these neurons as a model for those in situ, 

demonstrating that all CB1 receptor-positive cells express the cholinergic marker 

choline acetyltransferase. CP 55,940 was not shown to activate G-protein inwardly 

rectifying K+ channels but did inhibit evoked Ca2+ currents in myenteric cultures, a 

signalling mechanism that may underlie the CB1 receptor-mediated inhibition of 

neurotransmitter release from presynaptic sites. 

Nicotinic ACh (nACh) receptors are also expressed on cultured myenteric 

neurons. Stimulation of these receptors by nicotine evoked a transient inward current, 

which was inhibited by CP 55,940 and the endogenous cannabinoid anandamide, in 

an SR 14716A-insensitive manner. In fact, SR 141716A alone inhibited currents 

mediated by nACh receptors. PEA, a cannabinoid ligand whose effects are thought to 

occur independently of CB1/ CB2 receptor activation, also inhibited nicotine-induced 

currents. Pertussis toxin, a Gil,, inhibitor, did not reverse the cannabinoid-induced 

inhibition of nicotinic currents. In addition, CP 55,940 inhibited the sustained inward 

current evoked by 5-11T application in cultured myenteric neurons. The results 

suggest that cannabinoids inhibit nACh channels through a CB1 receptor-independent 

pathway in myenteric neurons, which would lead to a reduction in excitatory 

neurotransmission in the intact myenteric plexus. The inhibitory effect on the 5-HT- 

induced sustained inward current also suggests a cannabinoid-evoked inhibition of 

currents possibly mediated by the 5-HT1p receptor. 
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INTRODUCTION 



1.1 Background 

The hemp plant Cannabis sativa has been used for over 4000 years as both a 

therapeutic and recreational drug. The beneficial effects of these compounds were 

documented as early as the 4`h Century B. C. where it was used for the treatment of 

medical ailments such as malaria, constipation, rheumatic pains and female disorders. 

At present, there are a number of proven and potential therapeutic actions of 

cannabinoids (the active constituents of cannabis) such as anti-emetics (Lewis et al., 

1994; Abrahamov et al., 1995), analgesics (Pertwee, 2000; Iversen and Chapman, 

2002), anti-anxiolytics (Gaetani et al., 2003) and anti-convulsants (Wallace et al., 

2001). They may also have a use as anti-inflammatory agents (Zurier et al., 1998), 

immunosuppressive agents (Cabral et al., 1998) and in diseases such as glaucoma 

(Song and Slowey, 2000), Alzheimer's disease (Milton, 2002), multiple sclerosis 

(Baker et al., 2000) and in motor disorders such as Huntington's and Parkinson's 

disease (Van der Stelt and Di Marzo, 2003). 

To date, only two cannabinoid-based medicines have been given Food and 

Drug Administration (FDA) approval, dronabinol and nabilone (Beal et al., 1995; 

Palmer et al., 2002). Dronabinol is prescribed for patients with wasting syndromes 

such as Acquired Immunodeficiency Syndrome (AIDS) patients, to stimulate appetite, 

while nabilone is used to control the nausea produced by cancer chemotherapy. The 

major problem with developing cannabinoids as therapeutic agents is separating the 

beneficial effects from the unwanted side effects. This includes sedation, cognitive 

dysfunction and ataxia as well as the psychotropic effects. Therefore there is a great 

need to understand the pharmacology of the endogenous cannabinoid system, 

including the receptors at which they exert their effects. Only then will we be able to 
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exploit cannabinoids to their full potential, as therapeutic agents, while at the same 

time reducing the unwanted side effects. 

1.2 Cannabinoid receptors 

1.2.1 CB1 receptor 

The resin secreted by the plant C. sativa contains about 60 active compounds 

of which A9- tetrahydrocannabinol (e9-THC) is the principal psychoactive component 

(Gaoni and Mechoulam, 1964). Due to its highly lipophilic nature it was initially 

believed that A9-THC exerted its effects by interacting with the plasma membrane, 

stimulating or inhibiting membrane-associated enzymes and altering the physical state 

of ion channels (Hillard et al., 1985; Martin, 1986). Speculation about the cellular 

actions of cannabinoids was finally resolved when functional inhibition of adenylyl 

cyclase, and hence a reduction in cyclic adenosine monophosphate (cAMP; the 

second messenger produced by adenylyl cyclase), was observed following the 

addition of i9-THC to neuroblastoma cells (Howlett and Fleming, 1984). The 

inhibition was blocked with pertussis toxin (PTX) suggesting the involvement of a 

G110 protein (Howlett et al., 1986). These actions, as well as studies demonstrating 

stereoselectivity of the (-)-enantiomers of A9-THC (Dewey, 1986) and specific 

binding of radiolabeled agonists in rat brain membranes (Devane et al., 1988), 

indicated that most of the central cannabinoid effects were mediated by a specific 

membrane receptor protein, the CBI receptor. The CBS receptor was eventually cloned 

from rat cerebral cortex (Matsuda et al., 1990) and then later from human brain and 

testis (Gerard et al., 1991) and mouse brain (Chakrabarti et al., 1995). A splice variant 
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of the CB1 receptor was also isolated from human lung and was designated CBIA 

(Shire et al., 1995). 

The CB1 receptor is expressed in high abundance within certain regions of the 

brain that correlate well with the observed effects of cannabinoids, including 

impairments in cognition, memory, learning and motor coordination (Abood and 

Martin, 1992). Hence, CB1 receptors have been isolated in the hippocampus, basal 

ganglia, cerebral cortex, amygdala and cerebellum (Herkenham et al., 1990; Glass et 

al., 1997; Tsou et al., 1998a). Peripherally, CB1 receptors have been identified in the 

spleen and tonsils (Galiegue et al., 1995), the guinea-pig small intestine (Pertwee et 

al., 1996a), the mouse urinary bladder (Pertwee and Fernando, 1996), the mouse vas 

deferens (Pertwee et al., 1996b), sympathetic nerve terminals (Ishac et al., 1996; Vizi 

et al., 2001), hamster smooth muscle cells (Filipeanu et al., 1997), cat vascular 

smooth muscle cells (Gebremedhin et al., 1999) and at very low levels in adrenal 

gland, heart, prostate, uterus and ovary (Galiegue et al., 1995). 

Recent studies used in vivo imaging techniques (positron emission 

tomography) to identify CB1 receptor occupancy in mouse brain (Gifford et al., 

2002). The technique requires the use of radioisotopes that specifically bind to the 

target receptor. Interestingly, concentrations of cannabinoids that produced a 

profound sedation and inhibition of locomotor activity in mice did not reduce CB1 

receptor binding by radioisotopes in the cerebellum and hippocampus (Gifford et al., 

2002). This suggests that the occupancy of the CB1 receptor necessary for the 

behavioural effects of cannabinoids is very low. 
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1.2.2 CB2 receptor 

The second cannabinoid receptor, the CB2 receptor, was later cloned from 

human promyelocytic leukaemia cells (HL-60 cells) (Munro et al., 1993). This 

receptor shares with the CB1 receptor the structural feature typified by seven 

transmembrane spanning domains and is also coupled to a PTX-sensitive G protein. 

The clone has 68% amino acid sequence identity to the CB1 receptor, within the 

transmembrane domains, and only 44% identity throughout the total protein (Munro 

et al., 1993). CB2 receptors are restricted to the periphery where they have been 

observed in the marginal zone of the spleen (Munro et al., 1993; Schatz et al., 1997), 

in tonsils and on immune cells (B-cells, monocytes, T-cells) (Munro et al., 1993; 

Galiegue et al., 1995; Schatz et al., 1997). The localisation of CB2 receptors in 

immune tissues implies that cannabinoid-induced immunosuppression involves a 

receptor-mediated process (see section 1.4.6.7). 

1.2.3 CB,, receptor 

New data suggests the presence of novel, as yet, uncloned cannabinoid 

receptors. Using the brains of CBI receptor knockout mice (CB1"") it was shown that 

there was significant (though reduced) binding of the cannabinoid agonist [3H]WIN 

55,212-2 (Breivogel et al., 2001). Moreover, both WIN 55,212-2 and the endogenous 

cannabinoid anandamide were still able to stimulate some [35S]guanosine triphosphate 

(GTP)yS binding (an indicator of G-protein-coupled receptor activation) in CBI-/- 

brain, which was not blocked by the cannabinoid CB1 receptor antagonist SR 

141716A. Significant levels of stimulation were observed in the cortex and 
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hippocampus. In accordance with this finding Monory et al. (2002) showed that WIN 

55,212-2 was able to stimulate [35S]GTPyS binding in the cerebellum of CB1 mice. 

SR 141716A could not reverse this effect (Monory et al., 2002). Another study also 

using CB1-" mice found that WIN 55,212-2 was able to inhibit excitatory 

glutamatergic postsynaptic currents in the hippocampus (Hajos et al., 2001). The 

cannabinoid-mediated inhibition was sensitive to SR 141716A and was also inhibited 

by the vanilloid VRl receptor antagonist capsazepine (Hajos et al., 2001; Hajos and 

Freund, 2002a, b). Consistent with these observations WIN 55,212-2 attenuated the 

release of [3H]glutamate from CB1' mouse hippocampal synaptosomes (Kofalvi et 

al., 2003). However, in contrast to the elctrophysiological studies, SR 141716A and 

capsazepine did not antagonise the effect of WIN 55,212-2 (Kofalvi et al., 2003). In 

fact SR 141716A was shown to potentiate the inhibitory effect of WIN 55,212-2 

(Kofalvi et al., 2003). In the basolateral amygdala of anaesthetised rats WIN 55,212-2 

inhibited neuronal firing in an SR 141716A- and capsazepine-sensitive manner (Pistis 

et al., 2004). HU-210, another potent CBI receptor agonist, could not mimic the 

effects of WIN 55,212-2 (Pistis et al., 2004). Another study looking at a cannabinoid- 

mediated inhibition of cAMP formation in mouse astrocytes reported an SR 

141716A-insensitive action of WIN 55,212-2 (Sagan et al., 1999). 

Immunohistochemical staining confirmed that these astrocytes did not express CB1 

receptors, although the inhibitory actions of WIN 55,212-2 could be blocked by PTX 

suggesting the involvement of a G-protein-coupled receptor (GPCR) (Sagan et al., 

1999). 

In the periphery the endogenous cannabinoid anandamide induced mesenteric 

vasodilatation in CBI-/- mice, which was SR 141716A-sensitive (Jarai et al., 1999). 

This novel receptor differs from those in the brain as WIN 55,212-2 was not able to 
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produce vasodilatation (Jarai et al., 1999) and capsazepine was unable to inhibit 

vasodilatation (Jarai et al., 1999). Instead a nonpsychoactive synthetic cannabinoid 

analogue, abnormal-cannabidiol, was found to selectively stimulate the endothelial 

receptor. 

1.3 Cannabinoid receptor ligands 

1.3.1 Cannabinoid agonists 

Cannabinoid agonists can be divided into four main groups (see Palmer et al., 

2002 for review): - 

i) classical cannabinoids 

ii) non-classical cannabinoids 

iii) aminoalkylindole group 

iv) eicosanoid group 

The classical cannabinoid (CC) compounds are tricyclic terpenoid derivatives bearing 

a benzopyran moiety, of which A9-THC (Fig. 1.1) and its analogue HU-210 are 

examples. The only two licensed cannabinoid-based drugs (dronabinol and nabilone) 

are derived from this group. The CC structural features that seem to be important for 

cannabinoid activity are the phenolic hydroxyl group and the five-carbon alkyl chain 

(Goutopoulos and Makriyannis, 2002). Another CC receptor agonist worth 

mentioning is 0-1057. This stands out from established agonists in being readily 

soluble in water (Pertwee et al., 2000). The development of these new water-soluble 
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cannabinoids could facilitate drug delivery in the future e. g. the administration of 

cannabinoids by aerosol inhalation. 

The second non-classical cannabinoid (NCC) group, developed by Pfizer (USA), 

consists of bicyclic and tricyclic analogues of A9-THC lacking the pyran ring of CCs. 

The side chain and phenolic hydroxyl of the NCCs are crucial for activity. CP 55,940 

is a member of this group, exhibiting high affinity, efficacy and stereoselectivity for 

both cannabinoid receptors (Fig. 1.1). [3H]CP 55,940 was used to identify 

cannabinoid binding sites in rat brain, which led to the discovery of the CB1 receptor 

(Devane et al., 1988). 

The third group, developed by Sterling Winthrop (USA), is made up of 

aminoalkylindoles (AAls) and includes the potent CB1/ CB2 receptor agonist WIN 

55,212-2 (Fig. 1.1). The structures of these compounds are quite different from those 

in the first two groups. The 3-aroyl moiety and the 1-chain, which must contain 

nitrogen, are important for cannabinergic activity (Goutopoulos and Makriyannis, 

2002). 

The final group of compounds contains arachidonic acid (AA) derivatives and 

includes the extensively researched endogenous cannabinoids (or endocannabinoids) 

anandamide and 2-arachidonyl glycerol (2-AG) (Fig. 1.1). The structure of 

anandamide consists of AA coupled to ethanolamine through an amide linkage 

(Devane et al., 1992), whereas 2-AG is an arachidonylester rather than an amide 

(Stella et al., 1997). The endocannabinoid system is discussed in more detail later on 

(see section 1.4). 
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1.3.2 Cannabinoid antagonists 

To pharmacologically identify the receptor subtypes mediating cannabinoid 

effects, receptor-specific antagonists were developed. The first was WIN 56,098, 

which was shown to antagonise the effects of WIN 55,212-2 through the CB1 receptor 

(Pacheco et al., 1991). However, this antagonism was rather weak. More potent 

antagonists were developed including 6-bromopravadoline and 6-iodopravadoline 

(AM630) but they showed partial agonist behaviour in some preparations (Pertwee, 

1997). 

The most potent and well-characterised CB1 receptor antagonist is SR 

141716A (Rinaldi-Carmona et at., 1994), developed by Sanof (France) (Fig. 1.1). 

This compound readily displaces [3H]CP 55,940 from specific binding sites and has 

been shown to prevent cannabinoid-mediated effects, both in vivo and in vitro. 

Another compound also developed by Sanofi, SR 144528 (Fig. 1.1), exhibited greater 

selectivity for the CB2 receptor (Rinaldi-Carmona et al., 1998). 

There is convincing evidence that SR 141716A and SR 144528 produce 

opposite effects to those seen with CB1 receptor agonists. For example, in CB1 

receptor-transfected rat superior cervical ganglion neurons WIN 55,212-2 inhibited 

evoked Ca2+ currents (Pan et al., 1998). However, SR 141716A alone increased Ca2+ 

currents in a dose-dependent manner. Another study looked at the effects of 

cannabinoids on cAMP production in human brain regions, induced by the adenylyl 

cyclase activator forskolin (Mato et al., 2002). WIN 55,212-2 inhibited cAMP 

accumulation in the frontal cortex, hippocampus, cerebellum and striatum. Alone, SR 

141716A evoked a concentration-dependent increase in basal cAMP with the highest 

increases observed in the frontal cortex and cerebellum. Furthermore, in vivo, SR 
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141716A has been shown to increase locomotor activity (Compton et al., 1996), 

produce hyperalagesia (Richardson et al., 1997) and improve short-term memory 

(Terranova et al., 1995) in mice. In CB2-transfected Chinese hamster ovary (CHO) 

cells SR 144528 has also been shown to stimulate forskolin-induced adenylyl cyclase 

activity (Rinaldi-Carmona et al., 1998) and inhibit GTPyS binding (Ross et al., 1999). 

While some of these observations could be attributable to a direct antagonism 

of responses evoked at cannabinoid receptors by released endocannabinoids, the 

results together suggest that these compounds are acting as inverse agonists. Other 

CB1 receptor antagonists, AM251 and AM281, have also been developed, which are 

analogues of SR 141716A (Palmer et at., 2002). However, they share the same 

inverse agonist properties as the SR compounds. 

Recently, a novel cannabinoid ligand has become available, 0-2050. The 

ligand was shown to act as a CBS receptor antagonist in the mouse vas deferens but 

did not exhibit any inverse agonism, even at high concentrations (Martin et al., 2002). 

Further work is required to establish if the same `silent' antagonist properties are 

observed in other assays. The development of these `silent' antagonists will help to 

further define cannabinoid-mediated effects in the future. 

1.4 The endogenous cannabinoid system 

1.4.1 The discovery of endocannabinoids 

The discovery of a specific cannabinoid receptor in the brain suggested that an 

endogenous agonist must be present to stimulate it. The hypothesis that such an 

endocannabinoid should be lipophilic, like the classical exogenous cannabinoids, led 

Devane et al. (1992) to search for such a ligand in the hydrophobic fractions of 
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porcine brain extracts. Arachidonylethanolamide (anandamide) was eventually 

isolated from porcine brain providing the first evidence of an endogenous cannabinoid 

system. It was shown to bind and functionally stimulate not only the CB1 receptor 

(Devane et al., 1992; Felder et al., 1993; Vogel et al., 1993; Childers et al., 1994) but 

also the CB2 receptor (Slipetz et al., 1995; Shire et al., 1996). Together these studies 

showed that anandamide was able to displace cannabinoid agonist binding, dose- 

dependently inhibit electrically-evoked contractions in the mouse vas deferens, inhibit 

adenylyl cyclase and inhibit N-type Ca 2+ currents. These actions, like other 

cannabinoid agonists, were PTX-sensitive implicating the activation of Gjio-proteins. 

Anandamide was also able to mimic the effects of 09-THC in the mouse tetrad, an 

assay of cannabimetic activity including hypothermia, catalepsy, depression of motor 

activity and analgesia (Fride and Mechoulam, 1993; Smith et al., 1994). 

The relatively low affinity of anandamide for the CB, receptor suggested that 

other more potent endogenous agonists might exist. A second type of 

endocannabinoid was later isolated from canine gut (Mechoulam et al., 1995) and rat 

brain (Sugiura et al., 1995), 2-AG. It too was able to inhibit forskolin-stimulated 

cAMP production, inhibit electrically-evoked contractions of the mouse vas deferens 

and produce the typical tetrad of effects in mice normally observed to A9-THC 

(Mechoulam et al., 1995; Sugiura et al., 1996b). Furthermore, brain tissue 

concentrations of 2-AG were approximately 200-fold higher than those of 

anandamide (Stella et al., 1997). Evidence also exists which strongly suggests that 2- 

AG and not anandamide is the natural physiological ligand for both CB1 and CB2 

receptors. In neuroblastoma x glioma hybrid NG108-15 cells and HL-60 cells, 

expressing CBI and CB2 receptors respectively, cannabinoids evoked an increase in 

intracellular Ca2+ concentration ([Ca2+J; ) (Sugiura et al., 1999,2000). 2-AG induced 
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the greater agonistic activity when compared to anandamide and was also found to be 

more potent than synthetic cannabinoid agonists such as CP 55,940 and 

WIN 55,212-2. 

In the last few years more candidates for the role of endogenous cannabinoid 

ligands have been proposed, all sharing the typical AA backbone. These include 2- 

arachidonyl glyceryl ether (noladin ether), O-arachidonoyl-ethanolamine 

(virodhamine) and N-arachidonoyl-dopamine (NADA). Noladin ether, like 

anandamide, was also isolated from porcine brain (Hanus et al., 2001) while 

virodhamine was identified in rat brain, human hippocampus and in some peripheral 

tissues expressing the CB2 receptor (Porter et al., 2002). NADA was detected in both 

rat and bovine brain, with the highest levels found in the striatum and hippocampus 

(Huang et al., 2002). 

Noladin ether was shown to bind to the CB1 receptor with nanomolar affinity 

and to the CB2 receptor with low micromolar affinity and exhibited cannabimetic 

activity in the mouse tetrad (Hanus et al., 2001). Virodhamine was found to act as a 

partial agonist with in vivo antagonist activity at the CB1 receptor, although at the CB2 

receptor it acted as a full agonist (Porter et al., 2002). Interestingly, virodhamine is 

chemically very unstable and it is rapidly converted to anandamide in aqueous 

environments (Porter et al., 2002). As a potential endogenous antagonist at the CB1 

receptor, virodhamine adds a new form of regulation to the endocannabinoid system. 

NADA exhibited greater affinity for the CB1 receptor over the CB2 receptor 

and was found to be more potent and efficacious than anandamide as a CB1 receptor 

agonist, as assessed by measuring the stimulatory effect on Ca2+ release in N18TG2 

neuroblastoma cells (Bisogno et al., 2000). 
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1.4.2 Neuromodulatory action of endocannabinoids 

The main function of the endocannabinoid system is to regulate synaptic 

neurotransmission. Both anandamide and 2-AG serve as neurotransmitters in their 

own right, acting as retrograde messengers to inhibit neurotransmitter release through 

cannabinoid receptors located on presynaptic sites. Gill et al. (1970) described one of 

the first examples of a cannabinoid inhibiting neurotransmitter release. These authors 

found that i9-THC inhibited electrically-evoked contractions of the guinea-pig ileum 

but did not affect the response to exogenously applied acetylcholine (ACh) suggesting 

that the cannabinoid-induced inhibition was a presynaptic event. Depolarisation of 

cultured striatal and cortical neurons evoked a release of anandamide (Di Marzo et al., 

1994), which was shown to inhibit the electrically-evoked release of dopamine in rat 

striatal slices (Cadogan et al., 1997). During the past three decades cannabinoid- 

mediated inhibition of transmitter release has been identified in many experimental 

models including those using human tissue such as hippocampus, heart and ileum (see 

Schlicker and Kathmann, 2001 for review). 

The hippocampus is a prime example where extensive research has been 

conducted to elucidate the neuromodulatory actions of endocannabinoids. Depolarised 

rat hippocampal neurons rapidly release anandamide and 2-AG (Stella et al., 1997; Di 

Marzo et al., 1998), which may modulate long-term potentiation (LTP) (Terranova et 

al., 1995), a phenomenon whereby synapses become increasingly sensitive so that a 

constant level of presynaptic stimulation becomes converted into a larger postsynaptic 

output. The depolarisation is associated with an inhibition of the glutamatergic or 

GABAergic inputs received by these cells (Hajos et al., 2001; Wilson and Nicoll, 

2001) and is known as depolarisation-induced suppression of inhibition (DSI) and 
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excitation (DSE) respectively. The inhibitory effect on y-aminobutyric acid (GABA) 

release was mimicked by WIN 55,212-2 and blocked by the CBI receptor antagonist 

SR 141716A (Wilson and Nicoll, 2001; Ohno-Shosaku et al., 2001). In CB14' mice 

WIN 55,212-2 was also shown to inhibit glutamatergic transmission in the 

hippocampus, albeit through a novel cannabinoid receptor, whereas DSI was totally 

abolished (Hajos et al., 2001; Hajos and Freund, 2002a, b). Moreover, acute 

administration of cannabinoids reversibly impairs cognitive functions both in animals 

and humans (Sullivan, 2000), an effect probably mediated through the inhibition of 

glutamate release and a reduction in LTP. CB1 receptor-mediated DSE and DSI have 

also been demonstrated in the cerebellum of rats (Kreitzer and Regehr, 2001 a, b). This 

accumulated data suggests that the retrograde messenger in DSI and DSE is likely to 

be an endogenous cannabinoid. However, more in vivo studies are required to assess 

the physiological relevance of DSI and DSE. Work presented by Hampson et al. 

(2003) set out to define the specific conditions that elicit DSI at GABAergic synapses 

in rat CAI hippocampal pyramidal neurons. Attempts were made to elicit DSI with 

trains of pulses that mimicked hippocampal cell firing patterns in vivo, for instance 

when animals performed a short-term memory test. However, the authors concluded 

that, under their experimental conditions, the normal firing patterns of hippocampal 

neurons that occur in vivo do not appear to evoke DSI. 

Cannabinoid agonists including CP 55,940 and WIN 55,212-2 have also been 

shown to inhibit ACh release in the hippocampus (Gifford and Ashby, 1996; Gessa et 

al., 1997). This inhibitory effect on ACh release may also contribute to the negative 

effects on learning and memory associated with cannabinoids. 

CB, receptors are widely distributed in both the CNS and PNS (Herkenham et 

al., 1990; Tsou et al., 1998a; Ralevic, 2003) strongly suggesting that retrograde 
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inhibition by endogenous cannabinoids is an important mechanism in these areas, 

modulating the release of many neurotransmitters including those at excitatory and 

inhibitory synapses. 

1.4.3 Endocannabinoid synthesis 

Due to their lipophilicity endocannabinoids could not be stored in vesicles as 

they could diffuse freely across membranes. Instead it is believed that they are 

produced `upon demand' and released from neurons immediately after synthesis 

(Cadas et al., 1997; Mechoulam et al., 1998; Giuffrida et al., 1999). The biosynthesis 

and release of anandamide and 2-AG is coupled to postsynaptic depolarisation and the 

influx of Ca2+ into neurons (Di Marzo et al., 1994; Stella et al., 1997; Stella and 

Piomelli, 2001), although other stimuli including glutamate- (Hansen et al., 1999; 

Maejima et al., 2001) and dopamine- (Giuffrida et al., 1999) induced stimulation of 

neurons has also been shown to evoke endocannabinoid synthesis. 

It is thought that anandamide synthesis (Fig. 1.2A) involves phospholipase D- 

catalysed hydrolysis of a phospholipid precursor, N-arachidonoyl 

phosphatidylethanolamine (NArPE) (Di Marzo et al., 1994). In support of this, 

chromatographic and mass spectrometric analyses have shown that NArPE is present 

in murine brain, testes and leukocytes, where it may serve as a physiological 

precursor for anandamide (Di Marzo et al., 1994; Cadas et al., 1996; Cadas et al., 

1997). Studies have also characterised the Cat+-dependent trans-acylase that catalyses 

NArPE formation (Di Marzo et al., 1996a; Cadas et al., 1997). The discovery of this 
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A 

Phosphatidylethanolamine (PE) 

Ca 2+ N-acyl transferase 

N-arachidonoyl-PE (NArPE) 

PLD 

Anandamide 

B 

Phosphatidylinositol (P1) 

Ca2+ PLC PLA Ca2+ 

Diacylglycerol Lyso-P1 (DAG) 

DAGL lyso-PLC 

2-AG 

Figure 1.2 Pathways for the synthesis of anandamide and 2-AG. 
A, anandamide may be synthesised from the phospholipase D (PLD)-induced 
conversion of NArPE, which is initially derived from PE by the actions of the Cat+- 
dependent N-acyl transferase (Di Marzo et al., 1994; Cadas et al., 1997). B, a 
phospholipase C (PLC)-mediated hydrolysis of PI may produce DAG, which may be 
subsequently converted to 2-AG by DAG lipase (DAGL). Alternatively, 
phospholipase Al (PLA1) may generate lyso-PI, which may be hydrolysed to 2-AG by 
lyso-PLC activity. 2-AG production is also Cat+-dependent (Stella et al., 1997; Stella 
and Piomelli, 2001). 
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enzyme in brain areas containing high levels of anandamide (Cadas et al., 1997), for 

example hippocampus, cortex and striatum, strongly support its role in the 

physiological biosynthesis of the endocannabinoid. 

There are two possible routes for the biosynthesis of 2-AG in neurons (Fig. 

1.2B). The first involves the phospholipase C (PLC)-dependent hydrolysis of 

membrane lipids to form diacylglycerol (DAG), which may be subsequently 

converted to 2-AG by DAG lipase (DAGL) (Di Marzo et al., 1996b; Stella et al., 

1997). The alternative route involves a phospholipase Al (PLAT)-mediated production 

of lysophospholipids, which could be hydrolysed to 2-AG by a lyso-PLC enzyme 

(Piomelli et al., 1998). However, the fact that inhibitors of PLC and DAGL prevent 

the formation of 2-AG in cultures of cortical neurons suggests that the PLC/ DAGL 

pathway may be the predominant route through which 2-AG is synthesised (Stella et 

al., 1997; Stella and Piomelli, 2001). Moreover, two DAGL isozymes have just been 

cloned and enzymatically characterised (Bisogno et al., 2003). They were mostly 

found in the plasma membrane, were stimulated by Ca2+ and catalysed the Cat+- 

dependent formation of 2-AG. 

Very little is known about the biosynthesis of the three most recently proposed 

endocannabinoids, noladin ether, virodhamine and NADA. In N18TG2 

neuroblastoma cells, stimulation with ionomycin, an agent that evokes a release of 

Ca2+ from intracellular stores, did not produce noladin ether, under conditions where 

high levels of 2-AG are normally produced (Fezza et at., 2002). This might suggest a 

Cat+-independent pathway for the formation of this endocannabinoid in neurons. 

NADA may be synthesised from AA and dopamine or tyrosine (Huang et al., 2002). 
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1.4.4 Cellular reuptake of endocannabinoids 

Classical neurotransmitters are usually inactivated by facilitated re-uptake 

from neurons and subsequent enzymatic degradation. This process may also mediate 

the clearance of lipid messengers. Being lipophilic in nature, endocannabinoids can 

diffuse through the plasma membrane if their concentration is greater in the 

extracellular milieu compared to the intracellular environment. However, if this 

process is to be rapid it needs to be driven by controllable and selective mechanisms 

such as a membrane transporter or fast intracellular enzymatic hydrolysis, or both. 

Cellular reuptake of anandamide may involve a membrane-bound transporter 

molecule(s), known as the anandamide membrane transporter (AMT) (Di Marzo et 

al., 1994; Beltramo et al., 1997). Its mechanism of transport differs from that of 

amine and amino acid transmitters in that it does not require cellular energy or 

external Na+, implying that it may be mediated through facilitated diffusion, and it is 

saturable (Beltramo et al., 1997; Bisogno et al., 1997; Hillard et al., 1997). The 

substrate selectivity of the AMT has also been investigated (Piomelli et al., 1999). In 

human astrocytoma cells [3H]anandamide uptake was shown not to be affected by 

lipids that bear close structural resemblance to anandamide including AA, ceramide, 

prostaglandins and leukotrienes. However, [3H]anandamide uptake was competitively 

blocked by non-radioactive anandamide and the anandamide analogue AM404 

(Beltramo et al., 1997; Piomelli et al., 1999). 

The uptake of 2-AG may occur through the same transporter that targets 

anandamide. Anandamide and 2-AG can prevent each other's uptake, while the 

accumulation of either endocannabinoid is blocked with similar potencies by the 

transport inhibitor AM404 (Beltramo and Piomelli, 2001; Bisogno et al., 2001). Thus, 
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AM404 was shown to inhibit [14C]anandamide and [3H]2-AG accumulation in C6 

glioma cells (Bisogno et al., 2001). Despite these similarities, differences in their 

uptake have also been documented. For instance [3H]2-AG uptake by astrocytoma 

cells was reduced in the presence of AA, which had no effect on [3H]anandamide 

uptake (Beltramo and Piomelli, 2001). An explanation for this could be that the fatty 

acid may indirectly prevent the facilitated diffusion of [3H]2-AG by inhibiting its 

conversion to AA (possibly via product inhibition) in the intracellular compartment. 

Accordingly, interference of AA incorporation into phospholipids was shown to 

decrease [3H]2-AG uptake in astrocytoma cells but not [3H]anandamide (Beltramo 

and Piomelli, 2001). Hence, the rates of anandamide and 2-AG transport may differ in 

their sensitivity to intracellular degradation. 

Evidence also exists which suggests that noladin ether, virodhamine and 

NADA also use the same membrane transporter. In rat C6 glioma cells noladin ether 

inhibited the uptake of both anandamide and 2-AG and vice versa (Fezza et al., 2002). 

NADA and virodhamine were also able to inhibit anandamide uptake in C6 glioma 

cells (Huang et al., 2002) and basophils (RBL-2H3 cells) (Porter et al., 2002) 

respectively. 

However, it must be emphasised that the AMT and associated protein(s), as 

yet, have not been isolated or cloned leading some authors to doubt their existence. 

Glaser et al. (2003) examined the initial rates of anandamide accumulation (<1 

minute) in cultured N18TG2 neuroblastoma cells. These authors observed that 

anandamide uptake was not saturable but anandamide metabolism, measured by 

increasing ethanolamine concentration after five minutes pre-incubation was 

saturable. In addition, the supposed AMT inhibitor AM404 was shown to inhibit 

anandamide hydrolysis in rat brain homogenates by inhibiting fatty acid amide 
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hydrolase (FAAH; see section 1.4.5) (Glaser et al., 2003). AM404 was also shown to 

inhibit the uptake of anandamide, preincubated for 5 minutes, in neuroblastoma cells 

but, in contrast, had no significant effect on the initial uptake of anandamide (25 

second incubation). These results suggest that anandamide uptake is a process of 

simple diffusion, driven by metabolism and therefore the likely mechanism by which 

AM404 raises anandamide levels is by inhibiting FAAH. 

1.4.5 Endocannabinoid hydrolysis 

Once inside the cell both anandamide and 2-AG can undergo enzymatic 

degradation by the membrane bound protein FAAH (Ueda and Yamamoto, 2000; 

'Deutsch et al., 2001) and are immediately degraded to AA and ethanolamine or 

glycerol respectively (Deutsch and Chin, 1993; Di Marzo et al., 1994). FAAH 

distribution in the brain is highest in areas rich in CB1 receptors including the cortex, 

hippocampus and cerebellum (Thomas et al., 1997; Romero et al., 2002) and 

inhibitors of FAAH significantly potentiate anandamide effects in the behavioural 

`tetrad' in mice (Compton and Martin, 1997). This strongly supports a role of FAAH 

as a cannabimetic neuromodulator. Mice knockouts have also been created in which 

the FAAH enzyme is dysfunctional (Cravatt et al., 2001). These mice show a 15-fold 

higher level of anandamide in the brain compared to wild-types and also a reduced 

pain sensation, which is paralleled by the analgesic effect of FAAH inhibitors 

(Kathuria et al., 2003). 2-AG levels were not increased in FAAH knockouts 

(Lichtman et al., 2002). This is in agreement with previous reports on the existence of 

additional hydrolases for 2-AG degradation in porcine brain, rat platelets and 

macrophages (Di Marzo et al., 1999; Goparaju et al., 1999). This(ese) enzyme(s), 

21 



known as monoacylglycerol lipase(s) (MAGL), is(are) also expressed in rat brain 

regions with high CB1 receptor density, such as the hippocampus (Dinh et al., 2002), 

supporting the role of MAGL in the degradation of 2-AG. 

Esterification may provide a means to inactivate noladin ether (Fezza et al., 

2002), while methylation of NADA has been observed by catecholamine O-methyl 

transferase (Huang et al., 2002). 

1.4.6 Physiological functions of endocannabinoids 

1.4.6.1 Pain modulation 

The analgesic effects of cannabinoids have been well documented (see 

Pertwee, 2001 for review) and the role of endocannabinoids in pain modulation is 

supported by the presence of CB, receptors in central and peripheral sites associated 

with the processing of nociceptive messages. This includes the periaqueductal gray 

(PAG) and the rostral ventral medulla (Herkenham et al., 1991b; Tsou et al., 1998a, 

b), brain areas that suppress spinal responses to noxious stimuli, and the superficial 

layers of the spinal dorsal horn and the dorsal root ganglion (DRG) (Sanudo-Pena et 

al., 1999; Salio et al., 2002). 

Early studies demonstrated that WIN 55,212-2, administered 

intracerebroventricularly (i. c. v. ) in rats, suppressed tail-flick responses (Martin et al., 

1993). In anaesthetised rats extracellular single-unit recordings were obtained from 

wide-dynamic range (WDR) neurons (Hohmann et al., 1995), which respond to both 

touch and pain. The firing rate of WDR neurons increased in response to noxious 

mechanical pressure that was significantly reduced by WIN 55,212-2. 
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Endocannabinoids appear to participate in endogenous pain modulation by 

actions in the PAG. Intra-PAG microinjection of cannabinoid agonists CP 55,940 and 

HU-210 into rats were anti-nociceptive in the tail-flick test (Lichtman et al., 1996) 

and reduced formalin-evoked nociceptive behaviour (Finn et al., 2003) respectively. 

Moreover, Walker et al. (1999) used in vivo microdialysis to demonstrate that the 

PAG releases anandamide in response to pain stimuli (formalin injection) and 

electrical stimulation of the PAG, strongly suggesting that endocannabinoids do play 

a role in antinociception in this brain area. 

Immunohistochemical studies by Tsou et al. (1998a, b) showed that FAAH is 

present in the ventral posterior lateral nucleus of the thalamus. This nucleus is the 

termination zone of the spinothalamic tract, a pathway that is a major source of 

nociceptive information to the brain (Walker et al., 2002). In FAAH knockout mice 

the analgesic effect of exogenously applied anandamide was enhanced in a CBI 

receptor-dependent manner (Cravatt et al., 2001). 

Cannabinoids may also exert their analgesic effects through sites in the 

periphery. In mice anandamide and WIN 55,212-2 exhibited antinociceptive actions 

when injected into the hind paw together with formalin, in an SR 141716A-sensitive 

manner (Calignano et al., 1998). Peripheral injection of anandamide significantly 

inhibited noxious mechanically-evoked responses of spinal neurons in rats with 

hindpaw inflammation (Sokal et al., 2003). The inhibitory effect of anandamide was 

blocked by co-injection of the CB2 receptor antagonist SR 144528. CB2-mediated 

antinociceptive effects, especially involving inflammatory hyperalgesia, may result 

from an inhibitory effect on immune cells and hence a reduction in pro-inflammatory 

mediators (Malan et al., 2003). 
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1.4.6.2 Motor control 

The endocannabinoid system plays a regulatory role in movement and co- 

ordination (see Van der Stelt and Di Marzo, 2003 for review). Indeed, two out of the 

four symptoms in the mouse tetrad involve inhibitory effects on motor activity i. e. 

hypokinesia and catalepsy (Fride and Mechoulam, 1993; Pertwee, 1997). It is well 

known that CB1 receptors are abundantly distributed in the basal ganglia (both 

internal and external segments of the globus pallidus, substantia nigra, striatum), an 

area of the brain involved in the control of movement, particularly presynaptically on 

GABAergic striatonigral and striatopallidal projection neurons (Herkenham et al., 

1991a; Tsou et al., 1998a). CB1 receptors are also likely to be located on 

subthalamopallidal and/ or subthalamonigral glutamatergic neurons, as revealed by 

CB1 receptor mRNA in the subthalamic nucleus (Hohmann and Herkenham, 2000). In 

addition, both anandamide and 2-AG are present in the basal ganglia (Bisogno et al., 

1999). FAAH activity is also present in high levels in all regions of the basal ganglia, 

particularly in the globus pallidus and the substantia nigra (Desamaud et al., 1995), 

further supporting a functional role for the endocannabinoid system in the control of 

movement. 

The effects associated with cannabinoids in the basal ganglia presumably 

occur through the modulation of neurotransmitters that are involved in the control of 

movement, mainly GABA, glutamate and dopamine. Stimulation of CBI receptors 

localised on axonal terminals of striatal GABAergic neurons has been shown to 

potentiate GABA transmission by inhibiting the uptake of the neurotransmitter 

(Maneuf et al., 1996). This phenomenon could underlie the potentiation by 

cannabinoids of catalepsy in rats induced by the GABAA agonist muscimol (Wickens 
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and Pertwee, 1993). In contrast, some authors have reported an inhibitory effect of 

cannabinoids on GABA release including the substantia nigra (Chan et al., 1998) and 

striatum (Szabo et al., 1998). 

Szabo et al. (2000) showed that WIN 55,212-2 could inhibit electrically- 

evoked excitatory postsynaptic currents in the substantia nigra. This inhibition of 

glutamatergic transmission was reversed by SR 141716A supporting an involvement 

of CB1 receptors. Consistent with this finding, WIN 55,212-2 was shown to inhibit 

glutamate release from subthalamonigral neurons (Sanudo-Pena and Walker, 1997), 

leading to a reduction in motor activity (Miller et al., 1998). 

WIN 55,212-2 and CP 55,940 were unable to inhibit the electrically-evoked 

release of dopamine in the rat striatum (Szabo et al., 1999) suggesting that 

endocannabinoids do not directly modulate dopaminergic transmission. Instead 

changes in dopamine transmission may result from the modulation of glutamate and 

GABA by endocannabinoids. For example, the CBI receptor-mediated reduction in 

glutamatergic input to the substantia nigra (Szabo et al., 2000) would lead to a 

reduced activation of dopaminergic neurons in this region and a subsequent reduction 

of dopamine release in the striatum (Cadogan et al., 1997). 

1.4.6.3 Learning and memory 

As described earlier, the endogenous cannabinoid system modulates 

neurotransmitter release in the hippocampus, an area of the brain associated with 

learning and memory (see section 1.4.2). As such, cannabinoids have been shown to 

disrupt or enhance the performance of working memory tasks. In mice, O9-THC 

disrupted performance of working memory task (using the Morris water maze) at 
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doses lower than those required to elicit the classical tetrad of cannabimetic effects 

(Varvel et al., 2001). The CB1 receptor antagonist SR 141716A reversed these 

performance deficits. Conversely, administration of SR 141716A alone enhanced 

spatial memory tasks in rats as assessed by the radial-arm maze task (Lichtman, 

2000). 

In the hippocampus endocannabinoids were shown to interfere with the 

induction of LTP (Terranova et at., 1995; Stella et at., 1997), a possible candidate 

mechanism for learning and memory. This effect may occur through a cannabinoid- 

mediated reduction in glutamate release (Misner and Sullivan, 1999). However, a 

recent study by Diana et at. (2002) demonstrated that WIN 55,212-2 had no 

significant effect on LTP in the rat hippocampus, in experiments that controlled for 

basal glutamatergic synaptic transmission. This suggests that the negative effects in 

learning and memory, associated with cannabinoids, cannot be explained by a 

selective derangement of hippocampal LTP alone. 

Another important brain structure in cognitive function is the prefrontal cortex 

(PFC), which exhibits a high density of CB1 receptors (Herkenham et al., 1990). E9- 

THC increased presynaptic dopamine efflux and utilisation in the PFC (Chen et al., 

1990; Jentsch et al., 1997) while, in rat PFC slices, it was demonstrated that 

cannabinoids influence glutamatergic synaptic transmission and plasticity (Auclair et 

al., 2000). In this latter study the cannabinoid agonists CP 55,940 and WIN 55,212-2 

reduced monosynaptic excitatory postsynaptic potentials in an SR 141716A-sensitive 

manner. Taken together these observations suggest that the endocannabinoid and 

dopamine systems are closely co-operating in the regulatory role of cognition in the 

PFC. 
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1.4.6.4 Brain reward 

The psychotropic and addictive properties of cannabis suggest that 

endocannabinoids are involved in modulating reward pathways in the brain (see 

Lupica et al., 2004 for review). The central neuronal circuits involved in mediating 

reward aspects of most drugs of abuse (mesolimbic system) originate in an area 

known as the ventral tegmental area (VTA). One of the hallmark actions for drugs of 

abuse, including amphetamine, cocaine and opioids like morphine and heroin, is their 

ability to increase dopamine transmission of VTA dopaminergic neurons (Di Chiara 

and Imperato, 1988). 

Comparable to the dopaminergic nigrostriatal pathway, there is no co- 

localisation of CB, receptors in dopaminergic neurons of the VTA (Herkenham et al., 

1991b; Tsou et al., 1998a), which seems to rule out a direct control of 

endocannabinoids on dopamine transmission. Nevertheless, increased dopamine 

release and firing of dopaminergic neurons in the rat VTA has been found after 

systemic administration of O9-THC, WIN 55,212-2, HU-210 and CP 55,940 (French, 

1997; Gessa et al., 1998; Wu and French, 2000), as well as in brain slices containing 

the VTA (Cheer et al., 2000). Also noteworthy was the observation that these 

cannabinoid effects could be blocked by SR 141716A. This suggests that, in a similar 

manner to the basal ganglia, CB1 receptor-induced modulation of neurotransmission 

may modulate dopamine transmission. Szabo et al. (2002) showed that WIN 55,212-2 

could inhibit the electrically-evoked release of GABA in rat brain slices containing 

the VTA. This effect was reduced by SR 141716A. Hence, activation of CB1 

receptors in the VTA may increase dopaminergic activity through a reduction in 

inhibitory tone brought about by the blockade of intrinsic GABA release. 
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1.4.6.5 Feeding and appetite 

Cannabinoids enhance appetite and are clinically used for this purpose, 

particularly in AIDS and cancer patients (Beal et al., 1995; Palmer et al., 2002). A9- 

THC and anandamide have been shown to increase food intake in rats (Williams et 

al., 1998; Williams and Kirkham, 1999) while SR 141716A has been reported to 

inhibit the intake of palatable food and alcohol (Arnone et at., 1997; Simiand et al., 

1998). 

Food-deprived rats were found to exhibit enhanced levels of 2-AG in the 

hypothalamus, an area of the brain that is thought to control food intake (Kirkham et 

al., 2002). Levels of 2-AG decreased when the animals were fed. Leptin is considered 

to be a key signal through which the hypothalamus senses the nutritional state of the 

body (Mechoulam and Fride, 2001). In knockout mice that lacked leptin, 

hypothalamic levels of 2-AG were higher than controls but returned to normal values 

when leptin was injected (Di Marzo et al., 2001). CBI'/- mice were also shown to eat 

less than wild-types and SR 141716A reduced food intake in wild-type but not 

knockout mice (Di Marzo et al., 2001). These findings together indicate that 

endocannabinoids in the hypothalamus may tonically activate CB 1 receptors to 

maintain food intake, which are in turn modulated by the levels of leptin present. 

1.4.6.6 Cardiovascular regulation 

Endocannabinoids mediate changes within the cardiovascular system (see 

Randall et al., 2002 for review). Early studies have shown that anandamide causes 

bradycardia (with brief secondary hypotension) then a transient pressor effect, which 
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is followed by a delayed, but maintained, depressor action in anaesthetised rats (Varga 

et al., 1995,1996; Lake et al., 1997). The anandamide-induced stimulation of 

vanilloid VRl receptors, located on sensory nerves (see section 1.7.2), was thought to 

mediate the bradycardia as it was inhibited by the VRl receptor antagonist 

capsazepine but not SR 141716A (Malinowska et al., 2001). The transient pressor 

effect induced by anandamide appeared to be independent of the central nervous 

system and CB1 receptors as it was not blocked by cervical spinal cord transection, a- 

adrenoceptor blockade, or SR 141716A (Varga et al., 1996; Lake et al., 1997). The 

second depressor effect, which follows the transient pressor phase, may be mediated 

by presynaptic CB 1 receptor-evoked inhibition of sympathetic outflow (in the 

periphery) as the effect was attenuated by cervical spinal transection, a-adrenoceptor 

antagonists and SR 141716A, but not capsazepine (Varga et al., 1995,1996; Lake et 

al., 1997; Malinowska et al., 2001). 

Interestingly, in humans O9-THC induces a tachycardia, which can be 

inhibited by SR 141716A (Huestis et al., 2001). Normally the heart is under dominant 

vagal tone and so the 09-THC-induced tachycardia probably resulted from an 

inhibition of ACh release from cardiac vagal efferents via presynaptic CB1 receptors 

(Szabo et al., 2001). 

Some authors have suggested that endothelium-derived hyperpolarising factor 

(EDHF) is an endocannabinoid released from the vascular endothelium onto CB1 

receptors located on smooth muscle cells. In particular Randall et al. (1996) showed 

that SR 141716A inhibits nitric oxide (NO)- and prostanoid-independent, 

endothelium-dependent relaxations mediated by EDHF in the rat mesentery. 

However, further studies have indicated that the vasodilator action of anandamide had 

both an endothelium-dependent and endothelium-independent component and only 
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the former was sensitive to inhibition by SR 141716A (Chaytor et al., 1999; 

Mukhopadhyay et al., 2002a). This argues against anandamide itself being EDHF but 

together with the observation that anandamide and not O9-THC elicited vasodilatation 

in the rat mesenteric vascular bed (Wagner et al., 1999), lead to the idea of a novel 

endothelial cannabinoid receptor distinct from CB1 or CB2 receptors (Jarai et al., 

1999). 

Endocannabinoids may play a key role in producing the hypotension 

associated with haemorrhagic and endotoxic shock. Wagner et al. (1997) 

demonstrated in a rat model of haemorrhagic shock that activated macrophages 

release anandamide, which may contribute towards the hypotension. Following 

injection with SR 141716A the mortality of rats increased. Similarly in endotoxic 

shock the synthesis of 2-AG in platelets and anandamide in macrophages was 

increased (Varga et al., 1998). This suggests that endocannabinoid-mediated 

vasodilation may improve tissue oxygenation by counteracting the excessive 

sympathetic vasoconstriction triggered by haemorrhage or myocardial infarction. 

1.4.6.7 Immune modulation 

As mentioned earlier the presence of both CBI and, more abundantly, CB2 

receptors within areas devoted to host immunity suggest that endocannabinoids 

modulate immune function (see Parolaro et al., 2002 for review). In addition, immune 

cells such as macrophages and leukocytes have been found to both synthesise and 

degrade anandamide and 2-AG (Di Marzo et al., 1996a; Bisogno et al., 1997; Varga 

et al., 1998; Di Marzo et al., 1999). This strongly implicates immune cells in the 

30 



peripheral regulation of the endocannabinoid system and endocannabinoid 

homeostasis. 

Schwarz et al. (1994) examined the immunoregulatory effects of cannabinoids 

on mitogen-induced T and B human lymphocyte proliferation. Anandamide and CP 

55,940 caused significant inhibition of lymphocyte proliferation. Higher 

concentrations of cannabinoid were also shown to induce cell death by apoptosis 

(Schwarz et al., 1994). In mouse splenocytes 2-AG also demonstrated inhibitory 

effects on lymphocyte proliferation (Lee et al., 1995). 

Immunosuppression may occur through a change in immune cell shape and 

hence its functionality. Acute exposure of macrophages and human monocytes to 

anandamide and 2-AG respectively resulted in the cells rounding up and becoming 

non-mobile (Stefano et al., 1998,2000). The CB1 receptor antagonist SR 141716A 

blocked this action. 

During inflammation, due to injury or pathogen infection, immune cells 

produce several cytokines such as interferons (IFNs), tumour-necrosis factor-a 

(TNFa) and interleukins (ILs), which are signalling proteins that regulate immune 

responses. Evidence exists to suggest that cannabinoids inhibit the production of these 

cytokines. E9-THC reduced IFN levels and IL-2 production in mice infected with 

herpes simplex virus compared to controls (Ouyang et al., 1998) and also inhibited 

TNFa production by cultured mouse peritoneal macrophages (Zheng et al., 1992). 

Ihenetu et al. (2003) showed that WIN 55,212-2 inhibited IL-2 release from human 

mononuclear cells in a concentration-dependent manner. SR 144528 antagonised this 

effect, implicating the CB2 receptor. 
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Generally, endocannabinoid signalling plays a negative role in the onset of the 

immune response but an exact role for endocannabinoids and cannabinoid receptors in 

the maintenance of immune system homeostasis still needs to be defined. 

1.5 Signal transduction mechanisms of CB1 receptors 

1.5.1 Gjio-protein coupling 

The CBI cannabinoid receptor is a GPCR, comprising seven hydrophobic 

transmembrane (TM) helices (Fig. 1.3) and is a member of the rhodopsin subfamily of 

GPCRs. Cannabinoid agonists interact with the receptor within the pore formed 

within the TM helical cluster (Mukhopadhyay et al., 2002b). The three cytosolic 

loops and a putative fourth loop formed by palmitoylation at the juxtamembrane C- 

terminal region contribute to the activation of G proteins. The proximal CB1 receptor 

intracellular C-terminal domain (amino acids 401-417) is critical for G-protein 

coupling and the distal C-terminal tail domain (amino acids 418-472) modulates the 

magnitude and kinetics of signal transduction (Nie and Lewis, 2001). 

As with all GPCRs, cannabinoid receptors are predicted to share a common 

three-dimensional fold (Wess, 1998). Cannabinoid binding causes conformational 

changes in the receptor protein that promotes the receptor's association with 

heterotrimeric G-proteins. These G-proteins consist of an a-subunit bound to ßy 

complexes, which are attached to the intracellular surface of the cell membrane. 

Ligand binding triggers the exchange of GTP for guanosine diphosphate (GDP) on the 

a-subunit and results in both G-protein dissociation from the membrane and a- 

subunit dissociation from the ßy complex. The released G-protein subunits are then 
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Extracellular side 
Mu_ ý.. 

Gail & Gai2 Gail & Gao 

Figure 1.3 Two-dimensional structure of the human CB1 receptor. 
Three extracellular (El, E2 and E3) and intracellular (Cl, C2 and C3) regions are 
represented. Amino acid residues are denoted by the single letter abbreviation. The 
characterised sequences of the C3 intracellular residues are important for Gail and 
GW2 interactions and the C-terminal residues are important for Ga,; 3 and G. 
interactions (shaded circles). Figure adapted from Mukhopadhyay et al. (2002b). 
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able to activate enzymes and/ or ion channels, which leads to the induction of certain 

cellular responses. a-subunits possess intrinsic GTPase activity and a-GTP is 

eventually hydrolysed to a-GDP, which is able to bind free ßy complexes with high 

affinity. This reaction returns the system to the resting state. 

On the basis of amino acid similarity the G-protein a-subunits can be grouped 

into four major families: GS, Gi/o, Gq and G12113 (Wess, 1998). Presently, 6 different G- 

protein ß- and 12 y-subunits have also been described (Clapham and Neer, 1997). 

Activation of as- and a1-subunits is known to activate and inhibit distinct forms of 

adenylyl cyclase respectively (Simonds, 1999). G-proteins can also modulate the 

activity of ion channels through the direct binding of the ßy complex (N-type Ca2+ 

channels and inwardly rectifying K+ (Ki, ) channels) or indirectly by altering second 

messenger systems that modulate ion channel activation (A-type K+ channels) (Jan 

and Jan, 1997). 

Methods have been employed to analyse the selectivity of receptor/ G-protein 

interactions. Pharmacologically, G-protein-mediated responses have been classified 

into PTX-sensitive and PTX-insensitive because of the ability of the bacterial toxin to 

selectively inactivate G-proteins of the avo family (Wess, 1998). Biochemically, 

receptor activation of G-proteins can be measured by receptor stimulated [35S]GTP7S 

binding. This is a direct assay of receptor activation of G-proteins since it measures 

the exchange of bound GDP for GTP (or [35S]GTPyS) (Childers and Deadwyler, 

1996). 

Cannabinoid receptor stimulation of [35S]GTPyS binding has been quantified 

in rat membranes in the presence of excess GDP (Selley et al., 1996). In addition, 

most cannabinoid effects are sensitive to PTX implicating a CB1 receptor coupling to 

a Gi/o protein. 
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1.5.2 GS-protein coupling 

Evidence exists to suggest that CBI receptors can interact with Gg under 

conditions of PTX treatment that prevents the receptor's interaction with Gjo proteins. 

Stimulation of cAMP was observed in rat cultured striatal neurons and in CB1 

receptor-transfected CHO cells in response to the CB1 receptor agonist HU-210 

(Glass and Felder, 1997; Felder et al., 1998). This effect was SR 141716A-sensitive 

but did require the presence of forskolin. HU-210 and the dopamine D2 receptor 

agonist quinpirole inhibit cAMP production in striatal cultures when added separately 

(Glass and Felder, 1997). Interestingly, when these agonists were added together they 

augmented cAMP accumulation (Glass and Felder, 1997). Furthermore, Maneuf and 

Brotchie (1997) showed that high concentrations of WIN 55,212-2 could stimulate 

basal cAMP accumulation in a slice preparation of rat globus pallidus in the absence 

of forskolin and PTX. This effect was inhibited by SR 141716A. 

Another study using human embryonic kidney (HEK) 293 cells transfected 

with D2 and CB1 receptors indicated that expression of D2 receptors was sufficient to 

convert the inhibition of forskolin-stimulated cAMP production by CP 55,940 to a 

stimulation of cAMP production (Jarrahian et al., 2004). This would be consistent 

with an unmasking of the ability of the CBS receptor to couple to G., in addition to G;. 

Evidence supporting this included the observation that, within this experimental 

model, pretreatment with PTX eliminated cAMP inhibition but did not affect the 

stimulation of cAMP. Interestingly, the D2-mediated inhibition of forskolin-stimulated 

cAMP accumulation was not affected by the expression of CBI receptors (Jarrahian et 

al., 2004). In addition, concurrent activation of the CB1 and D2 receptor resulted in 

increased levels of cAMP compared with the activation of the D2 receptor alone. The 
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mechanism for this response could be explained by the ability of D2 receptors to 

sequester G; proteins such that they will no longer be available to couple to CB1 

receptors, leaving the CB 1 receptors to couple to G. In support of this mechanism, 

over expression of Ga,; allowed the inhibition of cAMP accumulation by CP 55,940 to 

prevail (Jarrahian et al., 2004). In addition, when the D2 receptor coupling to G; was 

compromised by persistent agonist stimulation (18 hour treatment of the cells with 

quinpirole), the CB1 receptor-G; inhibition was the prevalent response (Jarrahian et 

al., 2004). It was also shown that a 10 fold increase in the concentration of CP 55,940 

was required to stimulate cAMP production than inhibit its accumulation (Jarrahian et 

al, 2004) suggesting that the concentration of cannabinoids used may also determine 

the activation of either G; or G. 

A CB1 receptor interaction with G$ has also been demonstrated in CHO cells 

expressing human CB1 receptors (Bonhaus et al., 1998). Pretreatment with PTX was 

used to observe receptor coupling with GS. It was found that cannabinoid agonists 

(HU-210, CP 55,940, A9-THC, anandamide; order of potency for Gjio-coupled effects) 

were markedly less efficacious when stimulating forskolin-stimulated cAMP 

production (GS) than in inhibiting its formation (Gjio). The CB1 receptor antagonist SR 

141716A inhibited equally both cannabinoid accumulation and inhibition of cAMP 

(Bonhaus et al., 1998). Thus, these findings indicate that there is specificity among 

CBI receptor agonists in their relative abilities to activate Gs- and Gvo-coupled 

transduction pathways. 

Collectively the data strongly suggests that CB1 receptors may be dually 

coupled to both G, and G;, 0 proteins but the physiological significance of this needs 

further investigation. 
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1.5.3 Regulation of adenylyl cyclase 

The first characterised CB 1 receptor signal transduction response was the 

inhibition of adenylyl cyclase by micromolar concentrations of 09-THC in N18TG2 

neuroblastoma cells (Howlett and Fleming, 1984). This response was blocked by PTX 

suggesting the involvement of Gjlo proteins (Howlett et al., 1986). Since then the 

functional inhibition of adenylyl cyclase (and thus cAMP production) by CB1 

receptors has been identified in many other preparations. Cannabinoids have exhibited 

PTX- and SR 141716A-sensitive attenuation of cAMP accumulation in CHO cells 

expressing exogenous CBI receptors (Matsuda et al., 1990; Felder et al., 1993; Hillard 

et al., 1999). Brain regions in which cannabinoids are effective inhibitors of adenylyl 

cyclase are those most densely populated with cannabinoid binding sites. Thus, 

cannabinoid-mediated inhibition of cAMP has been demonstrated in slices of rat 

hippocampus, striatum, cerebral cortex and cerebellum (Bidaut-Russell et al., 1990). 

In addition, WIN 55,212-2, CP 55,940 and anandamide were shown to inhibit 

adenylyl cyclase activity in rat cerebellar membranes (Childers et al., 1994). In vivo, 

WIN 55,212-2 reduced forskolin-stimulated cAMP accumulation in the rat striatum, 

in an SR 141716A-sensitive manner (Wade et al., 2004). 

In conjunction with other reports of a CB1 receptor-mediated increase in 

cAMP (Glass and Felder, 1997; Felder et al., 1998; Maneuf and Brotchie, 1997), 

Busch et al. (2004) recently showed that anandamide evoked a concentration- 

dependent increase in cAMP in rat parotid glands. The CB1 receptor antagonist 

AM281 inhibited this effect. 

Nine distinct isozymes of adenylyl cyclase have been identified, which can be 

categorised into six distinct classes based on sequence and functional similarities 
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(Patel et al., 2001): (a) Adenylyl cyclase type I (AC-I) is found mainly in brain, is 

stimulated by Ca2/ calmodulin and is inhibited by Gp1 subunits and by G; Q; (b) AC- 

VIII is found only in brain and is only stimulated by Cat+/ calmodulin; (c) AC-II, AC- 

IV and AC-VII are activated by Gp,, providing that GSa is present; (d) AC-V and AC- 

VI are highly expressed in brain and heart, and they are inhibited by G;,, and low 

levels of Cat+; (e) AC-III is stimulated by a high concentration of Cat+/ calmodulin in 

the presence of Gas; (f) AC-IX is expressed at high levels in skeletal muscle and brain 

and, as yet, is found to be affected by Ga, s only. 

The influence of the adenylyl cyclase isoform on the outcome of the response 

to cannabinoid agonists has been investigated (Rhee et al., 1998). Monkey kidney 

COS-7 cells, expressing exogenous CB1 receptors, were transfected with each 

adenylyl cyclase isoform in turn and stimulated with the cannabinoid agonists HU- 

210 and WIN 55,212-2. AC-I, V, VI and VIII were shown to be inhibited by, whereas 

types II, IV and VII were stimulated by, CB1 receptor activation. The inhibition of 

AC-III by the cannabinoids was only observed when forskolin was used as a stimulant 

while AC-IX was inhibited only marginally. These results suggest that, in addition to 

the dual coupling of cannabinoid receptors to GS and Gil., the contrasting effects of 

cannabinoids on adenylyl cyclase activity could also be attributed to the specific 

isoform present in different cellular preparations. For example the globus pallidus 

contains mRNA encoding for AC-II (Furuyama et al., 1993) an area of the brain 

where CB1 receptor activation has been shown to induce an incresae in cAMP 

accumulation (Maneuf and Brotchie, 1997). 

Modulation of the intracellular cAMP concentration, thereby regulating 

protein kinase A (PKA) phosphorylation, can result in major changes in cellular 

activity. For example A-type K+ channels undergo PKA-regulated phosphorylation/ 
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dephosphorylation in the hippocampus, as one mechanism for cannabinoid-induced 

neuronal responses (Hampson et al., 1995; Mu et al., 2000). Given that gene 

regulation can also be modulated as the result of CAMP/ PKA (e. g. inhibition of 

cAMP response elements on genes), this mechanism may be particularly important for 

long-term changes in gene expression (Childers and Deadwyler, 1996). 

1.5.4 Regulation of mitogen-activated protein (MAP) kinase 

The MAP kinase pathway is a key signalling mechanism that regulates many 

cellular functions such as cell growth, transformation and apoptosis. Its activation is 

normally associated with the initial activation of a tyrosine kinase-linked receptor. 

This activates Ras and sets-up a signalling cascade beginning with the activation of 

the serine/ threonine kinase Raf (MAP kinase kinase kinase). Raf activates MAP 

kinase kinase (MEK) leading to the phosphorylation and activation of MAP kinase, 

which can phosphorylate various cytoplasmic and nuclear proteins. 

CB1 receptors have been shown to link positively to MAP kinase. In cultured 

U373MG human astrocytoma and CHO cells, expressing CB1 receptors, HU-210 and 

CP 55,940 activated a p42/44 MAP kinase (Bouaboula et al., 1995b; Galve-Roperh et 

al., 2002). These effects were PTX- and SR 141716A-sensitive (Bouaboula et al., 

1995b). Furthermore, the activation of MAP kinase in CHO cells was linked to the 

activation of a Na+/ H+ exchanger (NHE-1), a transporter involved in multiple cellular 

functions such as intracellular pH regulation and control of cell volume (Bouaboula et 

al., 1999). In vivo, acute administration of O9-THC induces a progressive and transient 

activation of p42/44 MAP kinase in rat dorsal striatum and nucleus accumbens (NAc) 

(Valijent et al., 2001), as well as in murine hippocampus (Derkinderen et al., 2003), 
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striatum and cerebellum (Rubino et al., 2004). These effects were blocked by SR 

141716A suggesting an involvement of the CB1 receptor. CP 55,940, \VIN 55,212-2, 

anandamide and 2-AG have also been shown to stimulate p38 MAP kinase in rat and 

murine hippocampus (Derkinderen et al., 2001). These effects were also mediated by 

the CB1 receptor as they were blocked by SR 141716A. Furthermore, the 

cannabinoids exhibited no stimulatory action in CBI"' mice (Derkinderen et al., 

2001). 

Mechanisms for the induction of MAP kinase by CB1 receptors have not been 

fully elucidated. Given the structure of cannabinoid receptors, and the sensitivity of 

responses to PTX, they are not believed to act as tyrosine kinase-coupled receptors 

(trk). Studies in primary rat astrocyte cultures showed that i9-THC and HU-210 

increased glucose metabolism, phospholipid metabolism and glycogen synthesis 

through the activation of MAP kinase (Sanchez et al., 1998b). The responses were 

PTX- and SR 141716A-sensitive. Two signal transduction pathways were proposed. 

The first involved the activation of phosphatidylinositol-3-kinase (PI3K), which in 

turn mediated tyrosine phosphorylation and activation of Raf. P13K may signal via 

protein kinase B (PKB) as A9-THC and CP 55,940 were able to simulate PKB in 

U373MG astrocytoma cells, in an SR 141716A-sensitive manner (Gomez del Pulgar 

et al., 2000; Galve-Roperh et al., 2002). The second pathway was initiated by 

sphingomyelin hydrolysis, release of the lipid second messenger ceramide and the 

subsequent activation of the Raf MAP kinase cascade (Sanchez et al., 1998b). A CB1 

receptor-mediated production of ceramide by E9-THC has also been demonstrated in 

rat C6 glioma cells (Sanchez et al., 1998a; Galve-Roperh et al., 2000). Furthermore, 

the induction of a PI3K/ PKB pathway, in response to cannabinoid receptor 

stimulation, was demonstrated in human prostate epithelial PC-3 cells (Sanchez et al., 
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2003). This in turn evoked the phosphorylation of p42/44 MAP kinase. Interestingly, 

antagonists at both the CBI and CB2 receptor inhibited the cannabinoid-mediated 

stimulation of PKB. 

CB1 receptor stimulation may also regulate MAP kinase activity indirectly 

through its effects on cAMP accumulation. In MCF-7 cancer cells, anandamide 

induced the activation of MAP kinase in a CB1 receptor-dependent manner (Melck et 

al., 1999). Forskolin and the cAMP analogue 8-Br-cAMP inhibited basal MAP kinase 

activity and significantly reduced the stimulatory effect of anandamide on MAP 

kinase activity compared to the endocannabinoid alone. In addition, anandamide 

affected cAMP levels at doses slightly lower than those required to stimulate MAP 

kinase (Melck et al., 1999). In rat hippocampal slices pretreatment with 8-Br-cAMP 

completely prevented the activation of MAP kinase by anandamide and 2-AG 

(Derkinderen et al., 2003). Finally, a study in NIE-1 15 neuroblastoma cells found that 

p42/44 MAP kinase activation by WIN 55,212-2 was inhibited by forskolin while the 

PKA inhibitor H-89 enhanced MAP kinase phosphorylation (Davis et al., 2003). 

Collectively the data suggests that a decrease in cAMP levels, and consequently in 

PKA activity, may participate in the stimulatory effects of CBI receptor activation on 

the MAP kinase pathway. 

MAP kinase activation can be linked to expression of immediate early genes, 

as has been demonstrated by a CB1 receptor-mediated expression of Krox-24 in 

human astrocytoma cells (Bouaboula et al., 1995a). I. c. v. injection of anandamide 

evoked an increase in c-Fos protein in rat brain with a generally similar distribution to 

that of functioning CB 1 receptors (Patel et al., 1998). In MCF-7 cancer cells the 

anandamide-induced stimulation of MAP kinase was shown to exert a subsequent 

down-regulation on prolactin receptors and trk nerve growth factor receptors (Melck 
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et al., 1999). This regulation of gene expression was thought to underlie the anti- 

poliferative effects of anandamide in these cells. In mouse hippocampus E9-THC 

induced the expression of immediate-early gene products including Krox-24, brain- 

derived neutrophic factor (BDNF) and c-Fos protein, which was prevented by the 

inhibition of MAP kinase (Derkinderen et al., 2003). BDNF and Krox-24, in 

particular, are known to be important for synaptic plasticity (Derkinderen et al., 2003) 

suggesting that gene regulation, through the activation of MAP kinase, is an important 

physiological mechanism by which cannabinoids can modulate synaptic plasticity. 

1.5.5 Modulation of ion channels 

The modulation of voltage-dependent ion channels (primarily N- and P/Q-type 

Ca 2+ channels and Kir and A-type K+ channels) is thought to underlie the cannabinoid- 

induced inhibition of neurotransmitter release at presynaptic sites (see section 1.9.7). 

The majority of these effects are mediated through the CB1 receptor, although there is 

evidence to suggest that cannabinoids modulate ion channel function directly. 

Evidence for both mechanisms (CB1 receptor-dependent and independent) are 

discussed in this section. 

1.5.5.1 Ca2+ channels 

Anandamide, WIN 55,212-2 and CP 55,940 act via CB1 receptors to inhibit 

N-type voltage-operated Ca2+ channels (VOCCs) leading to a decrease in Ca2+ influx 

in NG108-15 cells (Mackie and Hille, 1992; Felder et al., 1993; Mackie et al., 1993). 

The response was blocked by prior treatment of the cells with PTX, demonstrating its 
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mediation by G11,, proteins, and was independent of the cAMP pathway, as the 

response was not reversed by the addition of 8-Br-cAMP (Mackie et al., 1993). 

Sugiura et al. (1997) utilised fura-2 imaging to examine depolarisation-induced Ca2+ 

influx in high K+ depolarised NG108-15 cells. 2-AG and anandamide both attenuated 

the response. The N-type Ca2+ channel was presumed to mediate the depolarisation- 

evoked increases in Ca2+ current because the N-type channel antagonist w-conotoxin 

could block these responses (Caulfield and Brown, 1992; Mackie et al., 1993). In rat 

superior cervical ganglion neurons, transfected with CB1 receptors, WIN 55,212-2 

and CP 55,940 inhibited Ca2+ currents (Pan et al., 1996). These effects were both 

PTX- and w-conotoxin-sensitive suggesting an inhibitory effect on N-type Ca2+ 

channels. In rat striatal neurons WIN 55,212-2 inhibited corticostriatal glutamatergic 

synaptic transmission in an SR 141716A- and PTX-sensitive manner (Huang et al., 

2001). The inhibition of N-type Ca2+ channels was thought to mediate this effect as w- 

conotoxin abolished the WIN 55,212-2-mediated synaptic inhibition. 

Anandamide inhibited Q-type Ca2+ currents in AtT-20 pituitary tumour cells 

expressing exogenous CB1 receptors, which was inhibited by PTX (Mackie et al., 

1995). Fura-2 studies in rat cortical and cerebellar brain slices showed that 

anandamide inhibited P/Q-type Ca2+ fluxes (Hampson et at., 1998). This response was 

SR 141716A- and PTX-sensitive, confirming its mediation by Gil,, protein-coupled 

CB t receptors. 

In cultured rat hippocampal neurons WIN 55,212-2, anandamide and CP 

55,940 inhibited N- and P/Q-type Ca2+ currents in an SR 141716A- and PTX- 

sensitive manner (Twitchell et al., 1997; Shen and Thayer, 1998). Activation of CBI 

receptors by WIN 55,212-2 (at nM concentrations) inhibited only a fraction (17%) of 

the whole-cell Ca2+ current, even though more than half of this current is carried by 
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N- and P/Q-type Ca2+ channels (Shen and Thayer, 1998). Interestingly, the same 

study revealed that further inhibition of Ca 2+ currents could be obtained using 

micromolar concentrations of WIN 55,212-2. In addition, the inactive stereoisomer 

WIN 55,212-3 (µM concentrations) also inhibited Ca2+ currents in an SR 141716A- 

insensitive manner. This clearly indicates that at micromolar concentrations the 

effects of WIN 55,212-2 are not mediated by CB1 receptors, which may suggest a 

direct effect of cannabinoids on Ca2+ channels. The inhibitory effect of cannabinoids 

on N-type Ca2+ channels in the hippocampus is in accordance with the observations of 

Lenz et al. (1998). These authors showed that depolarisation-evoked DSI, in rat 

hippocampal slices, was completely blocked by o)-conotoxin. This suggests that an 

endocannabinoid-mediated inhibition of N-type Ca 2+ channels is required for a 

presynaptic reduction of GABA release. 

L-type Ca2+ channels can also be regulated via CB1 receptor stimulation. WIN 

55,212-2 inhibited L-type Ca2+ currents in cat cerebral arterial smooth muscle cells, in 

a PTX- and SR 141716A-sensitive manner (Gebremedhin et al., 1999). In retinal 

slices from larval tiger salamander, activation of CB1 receptors by WIN 55,212-2 led 

to the inhibition of L-type Ca24 channels in bipolar cells (Straiker et al., 1999). 

T-type Ca2+ currents, transfected in HEK293 and CHO cells and endogenously 

expressed in NG108-15 cells, were inhibited by anandamide (Chemin et al., 2001). 

This inhibitory effect was not mimicked by synthetic cannabinoids including WIN 

55,212-2, CP 55,940 and HU-210 and was not blocked by SR 141716A. PL (PLA2, 

PLC and PLD) and PK (PKA and PKC) pathways were also not involved (Chemin et 

al., 2001). From these observations it was suggested that anandamide directly inhibits 

T-type Ca 2+ channels. 
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1.5.5.2 K+ channels 

Exogenously expressed CB1 receptors couple positively to endogenous G. 

protein inwardly rectifying K+ (GIRK) channels in AtT-20 pituitary tumour cells 

(Mackie et al., 1995). WIN 55,212-2 activated an inward current, which showed 

inward rectification and was sensitive to low concentrations of barium (Ba2) (Mackie 

et al., 1995). In Xenopus oocytes, expressing CB1 receptors and either GIRKI or 

GIRK4 channels, WIN 55,212-2 was able to enhance currents carried by these 

channels, in a Ba2'-sensitive manner (McAllister et al., 1999). WIN 55,212-2 and CP 

55,940 inhibited glutamatergic signalling in the mouse NAc in an SR 141716A- 

sensitive manner (Robbe et al., 2001). Ba2' blocked this inhibition suggesting a 

cannabinoid-mediated activation of GIRK channels as a mechanism for the inhibition 

of neurotransmitter release. Forskolin did not alter presynaptic CB1 receptor actions 

suggesting that cannabinoids inhibited glutamate release independently from the 

CAMP/ PKA pathway (Robbe et al., 2001). Endogenously expressed Kir channels in 

HEK293 cells, transfected with the CB1 receptor, were activated by WIN 55,212-2 

and anandamide (Vasquez et al., 2003). These effects were antagonised by AM251 

implicating a CB 1 receptor-dependent mechanism. 

Importantly, Garcia et al. (1998) demonstrated that the WIN 55,212-2 evoked 

activation of GIRK channels, in CB1 receptor-transfected AtT-20 cells, could be 

inhibited by stimulation of PKC. The finding that a mutation in the CB, receptor 

prevented the ability of PKC to disrupt ion channel activation suggested that 

phosphorylation of the G-protein coupled receptor could inhibit its activity (Garcia et 

al., 1998). Hence, the stimulation of PKC may provide a mechanism to restore 

neuronal excitability and synaptic strength when endocannabinoid levels are high. 
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In cultured hippocampal neurons WIN 55,212-2 increased voltage-dependent 

A-type outward K+ currents (IA) (Deadwyler et al., 1995) and decreased voltage- 

independent D-type outward K+ currents (ID or delay current) (Mu et al., 1999) in a 

concentration-dependent, SR 141716A- and PTX-sensitive manner. A cannabinoid- 

mediated reduction in cAMP/ PKA was the mechanism shown to activate IA 

(Hampson et al., 1995) and inhibit ID (Mu et al., 1999). It was proposed that 

phosphorylation of the K+ channel inactivated IA and therefore a decrease in PKA 

would act to reverse this process (Hampason et al., 1995; Mu et al., 2000). As such, 

PKA inhibitors including IP-20, H7 and H8 mimicked the effects of WIN 55,212-2 on 

IA (Hampson et al., 1995; Mu et al., 2000) while activators of PKA including 8-Br- 

cAMP and forskolin produced opposite effects to WIN 55,212-2 (Hampson et al., 

1995). In addition, the phosphatase inhibitor okadaic acid blocked the stimulatory 

effects of WIN 55,212-2 on IA (Mu et al., 2000). IP-20 inhibited ID whereas 8-Br- 

cAMP potentiated ID (Mu et al., 1999). This suggests that PKA-mediated 

phosphorylation activates D-type channels, which may be the reason why WIN 

55,212-2 inhibits their activation. 

Interestingly, WIN 55,212-2 acting through postsynaptic CBI receptors was 

shown to decrease M-type K+ currents (IM) in hippocampal CAI neurons (Schweitzer, 

2000). The authors suggested that a CB, receptor-mediated increase in intracellular 

Ca2+ could be one of the mechanisms behind IM inhibition (see section 1.5.6). By 

reducing IM, cannabinoids diminish the ability of neurons to counteract 

depolarisations, favouring increased firing of action potentials, and thus induce 

hyperexcitability in the hippocampus (Schweitzer, 2000). Further studies are required 

to assess the physiological significance of this effect. 
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In cerebellar granule and COS-7 cells anandamide inhibited the acid-sensitive 

background K+ channel TASK-1 (Maingret et al., 2001). This effect was also 

observed with WIN 55,212-2 and CP 55,940 but not HU-210,2-AG and A9-THC and 

was not reversed with SR 141716A. This suggests a direct effect of anandamide on 

TASK-1 channels. TASK-1 is a member of a family of leak or background K+ 

channels that sets resting membrane potential (Maingret et at., 2001). Thus, inhibition 

of the channel would induce depolarisation and enhance excitability. Taking into 

account the localisation of TASK-1 in areas of motor control, such as motor neurons 

and cerebellar granular cells, Maingret et al. (2001) suggested that anandamide might 

influence motor behaviour through an interaction with TASK-1 but further studies are 

needed to support this hypothesis. 

1.5.5.3 Na+ channels 

A study by Nicholson et al. (2003) demonstrated the ability of anandamide 

and WIN 55,212-2 to inhibit voltage-dependent Na+ channels (activated by 

veratridine) in mice synaptosomes. The cannabinoids also blocked the veratridine- 

induced release of neurotransmitters from synaptosomes including GABA and 

glutamate. The CB1 receptor antagonist AM251 did not attenuate Na4 channel 

inhibition. In addition, anandamide and WIN 55,212-2 were able to displace the 

binding of [3H]BTX-B to voltage-dependent Na" channels (Nicholson et al., 2003). 

Together the data suggests that cannabinoids can directly modulate the activity of 

voltage-dependent Na+ channels, depressing synaptic transmission in the brain and, in 

turn, reduce both excitatory and inhibitory transmitter release. 
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1.5.6 Regulation of intracellular Ca2' concentration ([Ca2+]; ) 

[Ca2+]; was increased by 2-AG and WIN 55,212-2 in NG108-15 cells (Sugiura 

et al., 1996a). This effect was both PTX- and SR 141716A-sensitive. The PLC 

inhibitor U73122 was able to block the response suggesting an inositol triphosphate 

(InsP3)-mediated release of Caz+ from internal stores (Sugiura et at., 1997). The 

metabolically stable analogue of anandamide, methanandamide, was shown to deplete 

InsP3-sensitive Ca2+ stores in primary cultures of striatal astrocytes, in a PTX- 

sensitive manner (Venance et at., 1997). In cultured cerebellar granule cells 

methanandamide, WIN 55,212-2 and HU-210 augmented the Ca 2+ signal in response 

to depolarisation induced by high K+ (Netzeband et at., 1999). This response was 

mediated by postsynaptic CB1 receptors as the effect was antagonised by SR 141716A 

and PTX. U73122 also blocked the augmented Ca 2+ release suggesting a CB1 

receptor-mediated release of Ca2+ from InsP3-sensitive stores (Netzeband et at., 

1999). Collectively the data suggests that CBI receptor stimulation is coupled to PLC 

activation, through Gvo proteins, in turn increasing levels of InsP3 for the induction of 

Ca 2+ release from internal stores. 

In cultured human arterial endothelial cells anandamide evoked an increase in 

[Ca2+]; in an SR 141716A-sensitive manner (Fimiani et al., 1999). This increase in 

Ca2+ was coupled to the production of NO. Anandamide also induced a rise in [Ca2+]; 

in human umbilical endothelial cells (Mombouli et al., 1999). This increase was only 

marginally blocked by SR 141716A, insensitive to PTX and blocked by caffeine 

suggesting a release of Ca2+ from caffeine-sensitive intracellular stores. Anandamide 

also significantly increased NO synthase (NOS) activity as determined by enhanced 

conversion of L-[3H]arginine to L-[3H]citruline (Mombouli et al., 1999). These results 
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suggest that CB1 receptor-dependent and independent increases in [Ca2+]; and 

subsequent NO production may account for some of the vasodilator actions of 

anandamide. 

In Madin-Darby canine kidney (MDCK) cells CP 55,940 increased [Ca21; in a 

concentration-dependent manner (Chou et al., 2001). CP 55,940 was shown to release 

Ca2+ from thapsigargin (a sarcoplasmic/ endoplasmic reticulum Ca2+ adenosine 

triphosphate (ATP)ase (SERCA) inhibitor)-sensitive stores in an InSP3 -independent 

manner, as the response was not altered by U73122. Filipeanu et al. (1997) described 

an increase in [Ca2+]; in a hamster vas deferens smooth muscle cell line, DDTI MF-2 

cells, following CBI receptor stimulation by 09-THC. A cannabinoid-mediated release 

of Ca2+ from thapsigargin-sensitive stores was also established. DDTI MF-2 smooth 

muscle cells are employed in the present study to examine the signal transduction 

pathways induced by CB, receptor stimulation, which lead to increases in [Ca2-'];. The 

cell line is described in more detail in section 1.8. 

1.6 Signal transduction mechanisms of CB2 receptors 

The preparations employed in the current study (smooth muscle cells and 

cultured neurons) do not express CB2 receptors and therefore the signal transduction 

pathways of these receptors will not be described in detail. Similar to CB1, CB2 

receptors can modulate adenylyl cyclase and MAP kinase activity, through their 

ability to couple to Gi/o proteins (Felder et al., 1995; Kobayashi et at., 2001). 

However, in contrast to CB I, CB2 receptor stimulation is believed not to modulate ion 

channel function, as seen in AtT-20 cells transfected with CB2 receptors (Felder et al., 
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1995) and Xenopus oocytes transfected with CB2 and GIRK1/ 4 (Mcallister et al., 

1999). 

1.6.1 Regulation of adenylyl cyclase 

Cannabinoids were shown to inhibit adenylyl cyclase activity in a 

concentration-dependent manner in CHO cells transfected with the CB2 receptor 

(Bayewitch et al., 1995; Slipetz et al., 1995). This effect was PTX-sensitive 

suggesting signalling through Gil. proteins. The same effect of cannabinoids was also 

observed in COS cells expressing CB2 receptors (Slipetz et al., 1995). Again 

pretreatment with PTX blocked the cannabinoid-mediated inhibition. The inhibitory 

effect on cAMP production, induced by CB2 stimulation, is thought to underlie, in 

part, the regulation of immune function by cannabinoids (Kaminski, 1996). 

In contrast to CBI, CB2 receptors do not couple to G. Stimulation of cAMP 

accumulation by HU-210 and CP 55,940 was not observed after PTX treatment of 

CHO cells expressing the human CB2 receptor suggesting that this novel signalling 

pathway is unique to the CB1 receptor (Glass and Felder, 1997; Calandra et al., 1999). 

1.6.2 Regulation of MAP kinase 

Cannabinoids activate p42/44 MAP kinase in CHO cells (Bouaboula et al., 

1996) and HL-60 cells (Kobayashi et al., 2001) expressing the CB2 receptor. In both 

studies the effects could be blocked with PTX and the CB2 antagonist SR 144528. 

Cannabinoids were also shown to induce the expression of Krox-24 through a PKC- 

dependent activation of MAP kinase (Bouaboula et al., 1996). 
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Treatment of human prostate epithelial PC-3 cells with either O9-THC or 

methanandamide activated the PI3K/ PKB pathway, which in turn induced 

translocation of Raf-l to the membrane and phosphorylation of p42/44 MAP kinase 

(Sanchez et al., 2003). SR 144528 was able to inhibit this induction suggesting the 

involvement of the CB2 receptor. 

Interestingly, Kaplan and Kaminski (2003) recently showed that WIN 55,212- 

2 concentration-dependently inhibited p42/44 MAP kinase phosphorylation in 

stimulated mouse splenocytes. In addition, the MEK inhibitor PD 98059 decreased 

evoked IL-2 production in these splenocytes (Kaplan and Kaminski, 2003). This 

suggests that a cannabinoid-mediated reduction of MAP kinase may inhibit IL-2 

production in these cells and contribute a mechanism for immunosuppression by 

cannabinoids. Noteworthy, is that these authors did not determine the cannabinoid 

receptor subtype involved in mediating this response, although it is likely to be CB2- 

mediated as this is the most abundantly expressed cannabinoid receptor subtype in the 

immune system (Parolaro et at., 2002). 

1.6.3 Regulation of [Ca2}]; 

Anandamide initiated a rise in [Ca2+J; in calf pulmonary endothelial cells 

(Zoratti et al., 2003), which was sensitive to inhibition by the CB2 antagonist SR 

144528 but not the CB1 receptor antagonist SR 141716A. This increase resulted from 

the activation of PLC and a subsequent release of Ca2+ from InsP3-sensitive stores 

(Zoratti et al., 2003). 
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1.7 Interactions of cannabinoids with other receptor systems 

A number of investigations have demonstrated the ability of cannabinoids to 

modulate the activity of other receptor types. Therefore some of the behavioural 

effects of cannabinoids may occur through a synergistic action with other receptors 

and their signal transduction pathways. This section briefly describes some of these 

interactions. 

1.7.1 Opioid receptors 

Opioid compounds induce their pharmacological effects by activating µ-, 5- 

and K-opioid receptors (Thompson et at., 1993; Mansour et at., 1995) and share 

several actions with cannabinoids including hypothermia, hypotension, motor 

depression and antinociception (Bloom and Dewey, 1978). Pharmacological 

interactions between the cannabinoid and opioid systems have been suggested, mainly 

concerning antinociception. 

Smith et al. (1998) found that subcutaneous administration of 09-THC 

enhanced the antinociceptive potency of the opioid agonist morphine in the mouse 

tail-flick test. This action was SR 141716A-sensitive suggesting it was mediated 

through the CB, receptor. The K-opioid receptor antagonist nor-binaltorphimine and 

the 8-opioid receptor antagonist naltrindole was able to block the antinociceptive 

effect caused by the combination of A9-THC and morphine (Pugh et al., 1996). These 

authors suggested that the antinociceptive effects of morphine, which are 

predominantly mediated by µ-receptors, might be enhanced by A9-THC through 
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activation of x- and 6-receptors. This fact could be potentially useful in the treatment 

of pain. 

Although the biochemical mechanisms involved in these interactions remain 

unclear several hypotheses have been formulated. Carinabinoids and opioids might 

interact at the level of their signal-transduction mechanisms (Manazanares et al., 

1999) since opioid and cannabinoid receptors are coupled to similar intracellular 

signalling systems i. e. inhibition of adenylyl cyclase and Ca2+ channels via the 

activation of GPCRs (Childers et al., 1992; Reisine et al., 1996; Massi et al., 2003). 

Cannabinoids may have a direct effect on the synthesis and release of 

endogenous opioids such as enkephalins and dynorphins. Five day treatment with O9- 

THC significantly increased proopiomelanocortin gene expression (38%) in the 

arcuate nucleus of the rat hypothalamus (Corchero et al., 1997b) and increased 

prodynorphin (39%) and proenkephalin (34%) gene expression in rat spinal cord 

(Corchero et al., 1997a). This would suggest a cannabinoid-mediated increase in 

opioid peptide synthesis. Using microdialysis, Valverde et al. (2001) showed that 

acute administration of A9-THC increased the release of enkephalin-like material in 

the NAc of awake and freely moving rats suggesting cannabinoids can increase opioid 

release. 

1.7.2 Vanilloid VR1 receptor 

The VR1 receptor is a protein known to be primarily activated by noxious 

stimuli including heat, H+ ions and capsaicin, the ingredient found in chilli peppers 

(see Szallasi and Blumberg, 1999 for review). The receptor can be found on sensory 

neurons, where VRl channel opening causes Ca2+ influx and neurotransmitter release. 
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Studies have demonstrated that anandamide can activate the VRI receptor by 

binding to sites on the cytosolic side of the receptor (De Petrocellis et al., 2001). 

Anandamide activated cloned VRI ion channels expressed in HEK293, which could 

be blocked by the VRI receptor antagonist capsazepine (Zygmunt et al., 1999). 

Anandamide could also mimic the effects of capsaicin to evoke vascular relaxation in 

arteries of the guinea-pig, in a capsazepine-sensitive manner (Zygmunt et al., 1999), 

indicating that anandamide could activate VRI channels in physiological preparations. 

SR 141716A failed to attenuate the vasodilatory actions of anandamide while WIN 

55,212-2 had no effect. Some studies have shown that anandamide acts as a partial 

agonist at vanilloid receptors present in mouse trigeminal sensory neurons (Roberts et 

al., 2002) and in cultured DRG cells (Hwang et al., 2000). In contrast, other studies 

have demonstrated that anandamide acts as a full agonist in HEK293 cells transfected 

with human VR1 receptors (Smart et al., 2000) and isolated rat mesenteric arteries 

expressing endogenous VR1 receptors (Ralevic et al., 2001). 

Due to the dual effects of anandamide on inhibitory CBI and excitatory VRI 

receptors, Nemeth et al. (2003) investigated the effect of different concentrations of 

anandamide on neuropeptide release from sensory neurons of the rat tracheae, which 

express both CB1 and VR1 receptors. Low concentrations of anandamide (10 µM) 

inhibited peptide release in an SR 141716A- and PTX-sensitive manner. High 

concentrations of anandamide (50-100 µM) increased the release of peptides and this 

response was inhibited by capsazepine. Moreover, anandamide (10 . tM) evoked 

release of peptides in the presence of SR 141716A, in a capsazepine-sensitive manner. 

This suggests that low concentrations of anandamide can induce neuropeptide release 

from peripheral sensory nerve terminals by VRl receptor activation if the inhibitory 

CB1 receptors are blocked. However, since activation of these receptors was only 
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observed using high concentrations of anandamide the authors concluded that these 

potentiating effects are not likely to be relevant under physiological conditions 

(Nemeth et al., 2003). 

1.7.3 5-Hydroxytryptamine (5-HT)3 receptor 

The 5-HT3 receptor is a ligand-gated ion channel that is associated with mood, 

pain and emesis (Greenshaw, 1993). Early work by Fan (1995) in rat nodose ganglion 

neurons showed that anandamide, WIN 55,212-2 and CP 55,940 inhibited 5-HT- 

induced currents in a concentration-dependent manner. The inward current was 

sensitive to blockade by the specific 5-HT3 receptor antagonist MDL72222 suggesting 

a cannabinoid-mediated inhibition of 5-HT3 currents. 

A more recent study looked at the effect of cannabinoids in HEK293 cells 

transfected with the human 5-HT3A receptor only (i. e. no CB-receptor expression) 

(Barann et al., 2002). The 5-HT-induced currents were inhibited by A9-THC, WIN 

55,212-2 and anandamide in a concentration-dependent manner. The WIN 55,212-2- 

induced inhibition was not altered by SR 141716A and [3H]CP 55,940 was shown not 

to bind to HEK293 cells further suggesting that the effects are not mediated through 

either CB1 or CB2 receptors. Additional binding studies showed that WIN 55,212-2, 

anandamide and SR 141716A did not affect [3H]GR65630 binding to the 5-HT3 

receptor but 5-HT caused a concentration-dependent inhibition (Barann et al., 2002). 

This suggests that the cannabinoids do not interact directly with the active site of the 

receptor but may instead act allosterically at a 5-HT3 modulatory site (Barann et al., 

2002). 
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In vivo experiments were conducted to investigate whether cannabinoids also 

modulate the activity of rat peripheral 5-HT3 receptors on the terminals of 

cardiopulmonary afferent C-fibres (Godlewski et al., 2003). In the presence of SR 

141716A, injection of the 5-HT3 receptor agonist phenylbiguanide or capsaicin 

caused an immediate decrease in heart rate and mean arterial blood pressure. CP 

55,940 and WIN 55,212-2 attenuated the 5-HT3 receptor-induced bradycardia but 

failed to affect the capsaicin-evoked bradycardia (Godlewski et al., 2003). This data 

supports that of Barann et al. (2002) who suggested that cannabinoids might be 

mediating their effects through a direct interaction with the 5-HT3 receptor. 

1.7.4 N-methyl-D-aspartate (NMDA) receptor 

Areas rich in CB1 receptors including the basal ganglia and hippocampus also 

show a high expression of NMDA receptors (a glutamate-sensitive cationic channel 

involved in excitatory neurotransmission), which are important in the control of 

movement and memory formation (Ossowska, 1994; Thorat and Bhargava, 1994). 

Cannabinoids have been shown to have dual effects on NMDA receptor activity. 

Hampson et al. (1998) initially showed that 09-THC and anandamide inhibited 

NMDA receptor-induced Ca 2+ influx in rat cortical and cerebellar slices. This effect 

was CB1 receptor-mediated as it could be blocked by SR 141716A and PTX and 

involved the inhibition of P/Q-type Ca2+ channels. Interestingly, when the CB1 

receptor component was blocked, anandamide but not O9-THC produced a stimulatory 

effect on NMDA-induced Ca2+ responses including rat cortical, cerebellar and 

hippocampal slices. This effect was mimicked in Xenopus oocytes transfected with 

NMDA receptors, where both anandamide and the stable analogue methanandamide 
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dose-dependently potentiated NMDA-induced currents (Hampson et al., 1998). This 

latter result suggests a direct effect of anandamide on NMDA receptors. 

Methanandamide, WIN 55,212-2 and HU-210 have also been demonstrated to 

enhance NMDA-evoked Ca2+ flux in primary cerebellar cultures (Netzeband et al., 

1999). This effect was antagonised by SR 141716A, PTX and U73122 suggesting a 

CB1 receptor-mediated release of Ca 2+ from InsP3-sensitive stores was involved. 

Importantly, blockade of the PLC pathway unmasked a CB1 receptor-mediated 

inhibition of the NMDA-evoked Ca2+ response (Netzeband et al., 1999). 

1.8 Cannabinoid CB1 receptor-evoked intracellular signalling in DDT, MF-2 

smooth muscle cells 

1.8.1 Physiology of DDT1 MF-2 cells 

The DDT1 MF-2 smooth muscle cell line was derived from a Syrian hamster 

vas deferens carcinoma by Norris and Kohler (1974) and many studies have focused 

on the signal transduction pathways evoked in these cells. Histamine Hl receptors, 

P2Y-purinoceptors (stimulated by ATP), a-adrenoceptors and cannabinoid CBI 

receptors are endogenously expressed in this cell line and when stimulated all result in 

the mobilisation of Ca 2+ (Molleman et al., 1990,1991a; Begg et al., 2001). DDT, 

MF-2 cells are convenient for studying receptor-mediated increases in [Ca2+]; as they 

do not express VOCCs (Molleman et al., 1991b). An increase in [Ca2 jj does not 

contract the cells, as normally observed with most other smooth muscle cells (Webb, 

2003), although cc-actin polymerisation can be measured suggesting they retain a 

certain degree of their natural physiology (Mitsuhashi and Payan, 1988). 
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The intracellular signalling pathways evoked by CB, receptor stimulation in 

DDT1 MF-2 cells are further investigated in the present study, and compared with 

previous observations on intracellular signalling initiated by histamine Hl receptor 

stimulation. Therefore the following describes the H1 and CB1 receptor-induced 

signalling pathways already known to evoke an increase in [Ca2+];. 

1.8.2 Ca2+ modulation in DDT, MF-2 cells by Hi receptor stimulation 

H1 receptors are coupled to Gq proteins and evoke phosphatidylinositol 

diphosphate (PIP2) turnover into InsP3 and DAG, through the activation of PLC 

(Molleman et al., 1990,1991a; Begg et al., 2001) (Fig. 1.4). The InsP3-induced 

release of Ca2+ from the sarcoplasmic reticulum activates an outward Cat+-dependent 

K+ current (IK, Ca) that can be measured using the whole cell version of the patch 

clamp technique (Den Hertog et al., 1992). This is seen as a transient outward current. 

Therefore the size of the IK, ca can be used to indicate increases in [Ca21;. 

Furthermore, measurement of the membrane potential has demonstrated that 

histamine induces a hyperpolarisation that is most likely a result of the K+ efflux (Den 

Hertog et al., 1992). Inositol tetrakisphosphate (InsP4) production was also observed 

during Hl receptor stimulation and may be required to promote Ca2+ release from 

internal stores and activate IK, Ca, in addition to InsP3 and Ca2+ (Molleman et al., 

1991a). 

In DDT, MF-2 cells histamine evokes an outward current in the absence of 

extracellular Cat+, consistent with a release of Ca2+ from internal stores (Molleman et 

al., 1991a). Interestingly, subsequent histamine application, 30 minutes later in Cat+- 

free conditions, did not result in the mobilisation of [Ca2+]; and therefore no outward 
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Figure 1.4 The signalling pathways evoked during histamine HI stimulation in 
DDTI MF-2 cells. 
+ suggests activation, ? suggests a possible mechanism. Hl receptor stimulation 
increases InsP3 levels through a Gq protein-coupled activation of PLC. InsP3 induces a 
release of Ca 2+ from internal stores, which increases [Ca2 jj and subsequently 
activates IK, ca. InsP4 is also produced during H1 receptor stimulation, possibly from 
the conversion of InsP3, and modulates Ca + release from internal stores and IK, ca 
activation. The rise in [Ca2+]; also results from an AA-mediated influx of Ca2+ from 
the extracellular space. Stimulation of CCE may act to replenish depleted intracellular 
Ca2+ stores between histamine responses. 
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current was evoked (Molleman et al., 1991a). This suggests that extracellular Ca2+ is 

required to refill depleted internal stores between histamine responses and hence, re- 

addition of Ca2+ to the medium re-established the histamine-evoked outward current 

(Molleman et al., 1991 a). 

Van der Zee et al. (1995) explored the Hl receptor-evoked intracellular 

signalling pathways in more detail (Fig. 1.4). In the presence of heparin, to inhibit 

Ca2+ release from internal stores, histamine still evoked an outward current in DDTI 

MF-2 cells that was approximately 65% of control. The remaining current was 

inhibited by Lai+, a non-specific Ca2+ channel blocker (Van der Zee et al., 1995). This 

suggests that the rise in [Ca2+]; also involves a substantial influx of Ca2+ from the 

extracellular space. Several observations suggest that AA was acting as a second 

messenger to induce Ca 2+ influx by activating membrane-bound ion channels (Van 

der Zee et al., 1995). Firstly, AA evoked a concentration-dependent increase in [Ca21; 

that was significantly reduced in the absence of extracellular Cat+. This AA-evoked 

increase in [Ca2+]; was also shown to evoke an outward current that was sensitive to 

Lai+. Secondly, histamine stimulated [3H]AA release from DDT, MF-2 cells with a 

similar time course observed to that of the outward current evoked by histamine. 

Thirdly, inhibitors of the AA breakdown pathway, particularly cyclo-oxygenase and 

lipoxygenase, did not affect the characteristics of the histamine-induced [3H]AA 

release. Lastly, pre-treatment of cells with AA reduced the outward current evoked by 

subsequent histamine application (relating to Ca2+ influx) suggesting that AA was 

involved in the pathways initiated by H, receptor stimulation. The fact that the entire 

outward current was not abolished in the presence of AA and histamine rules out a 

direct effect of AA on IK. ca. 
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Van der Zee et al. (1995) did not further investigate the signalling pathways 

leading to the generation of AA. However, Hl receptor stimulation in DDT1 MF-2 

cells was shown to phosphorylate a p42/44 MAP kinase (Robinson and Dickenson, 

2001) whose activation was partly required to induce the histamine-evoked outward 

current (Begg et al., 2001). 

1.8.3 Ca2+ mobilisation in DDT, MF-2 cells by cannabinoids 

In DDT, MF-2 cells Filipeanu et al. (1997) evoked a concentration-dependent 

rise in [Ca2+]; using L9-THC. The rise in Ca2+ was directly measured using the fura-2 

technique. This mobilisation of Ca 2+ from internal stores was partially sensitive to 

inhibition by the CB1 receptor antagonist SR 141716A, and partially sensitive to 

thapsigargin. However, there was also a thapsigargin-insensitive component 

representing Ca 2+ influx that was neither mediated by the CB1 or CB2 receptor. 

Begg et al. (2001) used the whole cell version of the patch clamp technique to 

further investigate the signalling pathways evoked by cannabinoid stimulation and in 

particular the pathways leading to a rise in [Ca2+]; were explored (Fig. 1.5). CP 55,940 

evoked a concentration-dependent transient outward current in DDT, MF-2 cells, 

which was sensitive to inhibition by the CB1 receptor antagonist SR 141716A but not 

the CB2 antagonist SR 144528. Western blot analysis, using antibodies raised against 

the amino terminus of rat CBI, confirmed the expression of CB1 receptors. The rise in 

[Ca2+]; was entirely dependent on Ca2+ from the extracellular space as extrusion of 

Ca2+ from the extracellular medium abolished the response to CP 55,940. 

Thapsigargin also significantly reduced the cannabinoid-evoked outward current 

suggesting a release of Ca2+ from thapsigargin-sensitive intracellular stores was 
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Figure 1.5 The signalling pathways evoked during cannabinoid CB1 stimulation 
in DDT, MF-2 cells. 
+ suggests activation, - suggests inhibition, ? suggests a possible mechanism. CB1 
receptor stimulation activates MAP kinase (MAPK) and inhibits adenylyl cyclase 
(AC), through Gild proteins. This induces a rise in [Ca2+];. which in turn activates IK, ca. 
An increase in [Ca +]; may arise from CCE, via the depletion of thapsigargin-sensitive 
intracellular Ca2+ stores and subsequent Ca2+ influx through membrane-bound ion 
channels. MAPK activation may occur through a CB1 receptor-mediated reduction in 
cAMP or a separate pathway associated with Gil0 proteins, or both. 
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required. InsP3 does not mediate the release of Ca 2+ from internal stores, as the PLC 

inhibitor U73122 had no significant effect on the CP 55,940-evoked current. 

Furthermore, both the activation of MAP kinase and the inhibition of adenylyl cyclase 

are required to induce a rise in [Ca2+]; suggesting a link between MAP kinase 

activation and the increase in internal Cat+. A modulation of cAMP levels may be a 

means by which MAP kinase activity is regulated in DDTI MF-2 cells by 

cannabinoids (see section 1.5.4). 

Stimulation of the CB1 receptor has been shown to specifically activate the 

p42/44 MAP kinase in other tissues (Bouaboula et al., 1995b; Sanchez et al., 1998b). 

This suggests that a p42/44 MAP kinase may also be activated by CB1 receptor 

stimulation in DDT, MF-2 cells. 

1.8.4 Capacitative (CCE) and non-capacitative Ca 2+ entry (NCCE) 

The observation that both Ca2+ influx from the extracellular space and a 

release of Ca 2+ from thapsigargin-sensitive stores is necessary to evoke a rise in 

[Ca2+]; suggests that CB, receptor stimulation evokes CCE in DDT, MF-2 cells 

(Putney and McKay, 1999). This is a phenomenon whereby the depletion of 

intracellular Ca2+ stores is coupled to Ca2+ influx through store-operated Ca2+ 

channels (SOCCs) at the plasma membrane (Fig. 1.6). CCE can be demonstrated in 

both non-excitable cells such as epithelial cells (Yang et al., 2003) and excitable cells 

such as smooth muscle cells (Kwan et al., 1994; Broad et al., 1999). CCE has been 

proposed to replenish Ca 2+ stores, as observed in porcine vascular smooth muscle 

(Weirich et al., 2004). Thus, the observation that extracellular Ca2+ is required to 

produce successive histamine responses in DDT, MF-2 cells (Molleman et al., 1991a) 
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Figure 1.6 Capacitative Ca 2+ Entry (CCE) 
+ suggests activation, - suggests inhibition. The influx of Ca2+ through membrane- 
bound store-operated Cat{ channels (SOCCs), whose activation are dependent on the 
filling state of the internal stores, has been termed CCE. Hence, a receptor-mediated 
release of Ca2+ from InsP3-senstive stores can activate SOCCs and subsec1uent C2+ 
influx. In addition, agents that indirectly deplete Ca2+ stores, such as the Ca +-ATPase 
inhibitor thapsigargin (THP), can also evoke CCE. CCE has been shown to replenish 
intracellular Ca2+ stores, as well as provide sustained elevations in [Ca21;. The 
activation of SOCCs may lead to a direct refilling of depleted internal Ca 2+ stores. 
Increases in cytosolic Cat+, mediated by the activation of SOCCs, may provide an 
alternative mechanism by which intracellular Ca 2+ stores are replenished, via the 
action of Cat+-ATPases. For review see Putney and McKay (1999). 
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could implicate a role for CCE in intracellular store replenishment. CCE can also 

provide prolonged, sustained elevation of [Ca2+];, which may be desirable when tonic 

responses are needed, for example, in the maintenance of smooth muscle tone (Gibson 

et al., 1998). In corneal epithelial cells CCE was associated with the initiation of cell 

proliferation and migration by epidermal growth factor (Yang et al., 2003). 

As demonstrated by Van der Zee et al. (1995) the increase in [Ca2+]; in DDTI 

MF-2 cells was partly mediated by an influx of Ca2+ attributable to AA production. 

The same signalling pathway could also potentially mediate the Ca2+ entry process 

observed during CB1 receptor stimulation. This NCCE pathway, whereby AA 

mediates Ca2+ influx, has also been described in murine Balb-C 3T3 fibroblasts 

(Munaron et al., 1997), HEK293 cells (Mignen and Shuttleworth, 2000), rat aortic 

smooth muscle cells (Broad et al., 1999) and bovine aortic endothelial cells (Fiorio 

Pla and Munaron, 2001) and has been designated Ipc (arachidonate regulated Ca 2+ 

current; Mignen and Shuttleworth, 2000). The main property of this process is that 

Ca2+ influx is independent of store depletion and thus is non-capacitative. Thus, 

exogenous AA application still induced Ca2+ influx into cells whose intracellular 

stores were initially depleted (Broad et al., 1999; Fiorio Pla and Munaron, 2001; Luo 

et al., 2001b). 

1.8.5 Phospholipase A2 (PLA2) and the liberation of AA 

PLA2 catalyses the hydrolysis of the sn-2 position of membrane 

glycerophospholipids to liberate AA (Kudo and Murakami, 2002). So far three 

different types of PLA2 have been identified including secretory PLA2 (sPLA2), 

cytosolic PLA2 (cPLA2) and Cat+-independent PLA2 (iPLA2). The cPLA2 family (also 
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known as group IV PLA2) consists of three enzymes including cPLA2a, which is 

tightly regulated by Ca2+ and phosphorylation (Kudo and Murakami, 2002). Ca2+ is 

required for cPLA2a translocation to golgi, the endoplasmic reticulum and the nuclear 

envelope, and also stabilises the association of cPLA2a with the membrane, leading to 

AA release. Ca2+ may also combine with calmodulin (a decoder of Ca2+ signals) to 

form Cat+/ calmodulin kinase-II, which has been found to bind to cPLA2a and 

phosphorylate the Ser515 site resulting in an increase in enzyme activity (Kudo and 

Murakami, 2002). 

Maximal activation of cPLA2a also requires the sustained phosphorylation of 

Ser505 by MAP kinase, which results in up to a2 to 3-fold increase in the catalytic 

activity (Kudo and Murakami, 2002). 

Therefore, if NCCE mediates Ca2+ influx in DDT, MF-2 cells, during CB1 

receptor stimulation, the activation of a cPLA2 pathway could provide a link between 

MAP kinase activation and a resulting rise in [Ca2+];, via the production of AA. 

Experiments have yielded results indicating that cannabinoid receptor stimulation can 

induce AA mobilisation in rat brain cortical astrocytes (Shivachar et al., 1996) and in 

WI-38 fetal lung fibroblasts (Wartmann et al., 1995). In the latter experiment the rise 

in AA was associated with an increased phosphorylation and hence activity of both 

MAP kinase and the cPLA2 subtype. In addition, AA-mediated NCCE in other 

preparations involved the activation of cPLA2 (Munaron et al., 1997; Osterhout and 

Shuttleworth, 2000) and MAP kinase (Munaron et al., 1997). 
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1.9 The myenteric plexus 

1.9.1 Structure of the guinea-pig small intestine 

The small intestine is composed of two muscle layers, the outer longitudinal 

and the inner circular muscles (Fig. 1.7). In the outer layer, smooth muscle cells are. 

oriented along the length of the intestinal segments whereas, in the inner layer, 

smooth muscle cells are oriented transversally to the length of the intestine. A 

neuronal network, the myenteric plexus, separates these muscle layers and primarily 

controls contractions and relaxations of the gastrointestinal smooth muscle (Kunze 

and Furness, 1999). Propulsive motility (peristalsis) is induced by relaxation of 

intestinal muscle downstream (descending inhibitory reflex) and contraction of 

muscle upstream (ascending excitatory reflex) of the intestinal bolus. Another 

neuronal network that resides within the small intestine, the submucosal plexus, 

controls the secretory/ absorptive functions of the intestinal epithelium, local blood 

flow and neuro-immune responses (Cooke, 1998). 

1.9.2 Types of neurons in the guinea-pig myenteric plexus 

The myenteric plexus contains three major types of neurons, motor neurons 

(excitatory and inhibitory), interneurons and intrinsic primary afferent (sensory) 

neurons. These can be further subdivided depending on the neurotransmitters they 

release and the physiological function they evoke (Fig. 1.8). The following describes 

these subtypes in more detail. 
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Figure 1.7 Schematic diagram of the guinea pig small intestine. 
+ and - are innervations from excitatory (. ) and inhibitory (o) neurons respectively. 
Distension of the circular muscle (CM) at the oral side evokes a relaxation of CM 
downstream (descending inhibitory reflex) and contraction of the longitudinal muscle 
(LM) upstream (ascending excitatory reflex) of the intestinal bolus, pushing it along 
the length of the intestine. Peristalsis is also regulated by centrally-derived 
sympathetic and parasympathetic nerves. Abbreviations: myenteric plexus, MP, 
submucosal plexus, SP. 
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Figure 1.8 Schematic diagram showing the neuronal circuitry involved in 
regulating motility in the guinea pig ileum. 
+ and - are excitatory and inhibitory innervations respectively. The letters correspond 
to those in the table below, aiding neuronal identification. 

Transmitters Morphology Neurons 
a ACh, TK Dogiel type I/ S Excitatory motor neuron, 

LM 
b NO, ATP, VIP, PACAP Dogiel type I/ S Inhibitory motor neuron, 

LM 
c ACh, TK Dogiel type I/ S Excitatory motor neuron, 

CM 
d NO, ATP, VIP, PACAP Dogiel type I/ S Inhibitory motor neuron, 

CM 
e ACh, TK Dogiel type I/ S Ascending interneuron 
f ACh, ATP, NO, VIP Dogiel type I/ S Descending interneuron 
g ACh, ATP, SOM Dogiel type I/ S Descending interneuron 
h ACh, 5-HT Dogiel type I/ S Descending intemeuron 
i ACh, TK Dogiel type IF AH Primary afferent neuron 

Abbreviations: Longitudinal muscle, LM, myenteric plexus, MP, circular muscle, 
CM, submucosal plexus, SP, acetylcholine, ACh, tachykinins, TK, nitric oxide, NO, 
adenosine triphosphate, ATP, vasoactive intestinal polypeptide, VIP, pituitary 
adenylyl cyclase activating peptide, PACAP, somatostatin, SOM, 5- 
hydroxytryptamine, 5-HT, S-neuron, S, AH-neuron, AH. 
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1.9.2.1 Motor neurons 

Approximately 37% of myenteric neurons in the guinea-pig small intestine are 

classed as excitatory motor neurons (Furness, 2000). Both muscle layers receive 

excitatory ascending innervations (12% innervate the circular muscle, 25% innervate 

the longitudinal muscle), which are predominantly cholinergic and are mediated 

through muscarinic M2 and M3 receptors (Furness and Sanger, 2002). However, there 

is residual excitation that was resistant to the muscarinic receptor antagonist 

scopolamine but could be blocked by neurokinin NK1 receptor antagonists (Galligan, 

1999; Schneider et al., 2000). This suggests that this residual excitation is 

predominantly due to the release of tachykinins (TKs). Consistent with this result, 

motor neurons are immunoreactive for both the synthesising enzyme for ACh (i. e. 

choline acetyltransferase (ChAT)) and for TKs (Costa et al., 2000). It is thought that 

substance P and NKA are the principal TK transmitters (Lippi et al., 1998). In guinea- 

pigs the simultaneous blockade of NK1, NK2 and NK3 receptors slowed colonic 

peristalsis, although the effect was much less than that of the muscarinic antagonist 

atropine (Tonini et al., 2001). This suggests that ACh is the primary transmitter of 

excitatory motor neurons. Furthermore, low levels of physiological stimulation 

preferentially activate the cholinergic component of transmission whereas higher 

levels activate the TK component (Bornstein et al., 2004). 

Inhibitory motor neurons, which descend anally, also innervate both muscle 

layers. Approximately 18% of myenteric neurons are inhibitory (Furness, 2000); 16% 

innervate the circular muscle while only 2% innervate the longitudinal muscle. The 

inhibitory neurons contain NO, ATP, vasoactive intestinal peptide (VIP) and pituitary 

adenylyl cyclase activating peptide (Furness and Sanger, 2002). 
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Effects on the muscle from both the excitatory and inhibitory motor neurons 

are relayed at least in part via interstitial cells of Cajal (ICC), which are electrically- 

coupled to the muscle (Kunze and Furness, 1999). Disruption of ICC by treating mice 

with antibodies to kit, a receptor tyrosine kinase on the ICC, impaired excitatory and 

inhibitory transmission to the circular muscle of the ileum (Torihashi et al., 1995). 

1.9.2.2 Interneurons 

In the guinea-pig ileum the ascending myenteric interneurons are 

immunoreactive for ChAT and substance P (Brookes et al., 1997). Transmission 

between ascending interneurons and interneurons and ascending excitatory motor 

neurons is predominantly cholinergic, mediated via nicotinic receptors (see section 

1.9.4), although a component is also mediated by NK3 receptors (Bornstein et al., 

2004). 

There are at least three distinct classes of descending interneurons (Costa et 

al., 1996) displaying immunoreactivity for ACh, ATP, NO, 5-HT, VIP and 

somatostatin. They have outputs to inhibitory motor neurons, other interneurons and 

ascending interneurons (Mann et al., 1997). 

Transmission to and from descending interneurons can be divided into two 

distinct pathways, descending inhibition and descending excitation. In the descending 

inhibitory pathway in the guinea-pig ileum, transmission from interneurons to 

inhibitory motor neurons is largely mediated by ATP acting at P2x receptors (Bian et 

al,, 2000). Descending excitatory pathways in the guinea-pig ileum have been shown 

to be resistant to the nicotinic antagonist hexamethonium and instead 5-HT3 and P2x 

receptors are thought to predominantly mediate neurotransmission (Monro et al., 
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2002). Descending excitation is distinct from the neural pathways involved in 

regulating peristalsis as antagonists at these receptors failed to effect evoked 

peristaltic contractions (Monro et al., 2002). 

1.9.2.3 Intrinsic primary afferent neurons (IPANs) 

The first neurons in the intrinsic nerve circuits that are activated by 

appropriate stimuli are the IPANs (sensory neurons). In isolated guinea-pig small 

intestine, where extrinsic nerves no longer innervated the tissue and time was allowed 

for their endings to degenerate, reflexes, in response to mucosal distension and 

distortion, were not diminished relative to intestine that was isolated without 

denervation (Furness et al., 1995). This indicates that there are IPANs in the intestine, 

which makes up about 26% of the total number of neurons in the myenteric plexus 

(Furness, 2000). 

Intracellular microelectrodes have been used to record from IPANs in 

myenteric neurons, which were excited by chemical stimuli. Bertrand et al. (1997) 

demonstrated that acid (pH 3) and acetic acid (pH 7.2), applied to the surface of the 

guinea-pig ileal mucosa, elicited a burst of action potentials in myenteric IPANs. The 

neurons continued to respond when the bathing solution was changed to one 

containing high Mg2+ and low Cal' to block transmission, suggesting that the 

responses were not due to indirect activation by other neurons. 

Responses to tension generated by muscle contraction have also been 

recorded. Stretch of the intestine by around 40% was enough to excite most neurons 

(Kurze et al., 1998). However, it was not the stretch that stimulated the neurons but 
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the contraction of muscle cells in response to the stretch, as neurons were no longer 

excited in the presence of the muscle relaxant isoprenaline (a ß adrenoceptor agonist). 

IPANs receive synaptic inputs from other IPANs, which can be blocked by 

NK3 receptor antagonists (Alex et al., 2001). IPANs also transmit to interneurons and 

motor neurons, which may involve both ACh and TKs acting at nicotinic and NKl 

receptors respectively (Furness and Sanger, 2002). 

1.9.3 Electrophysiological and morphological classification of myenteric neurons 

Hirst et al. (1974) introduced a system that differentiated between membrane 

responses to intracellular derived action potentials. One class was termed an AH- 

neuron because extremely long after-hyperpolarisations (AHPs) were observed after 

an action potential. The second class was termed S-neurons because they exhibited 

prominent cholinergic synaptic inputs but not the slow AHP. The action potential 

recorded from the soma of S-neurons is completely blocked by the Na+ channel 

blocker, tetrodotoxin (TTX) and most S-neurons fire continuously when depolarised 

with a current pulse applied through the recording microelectrode (Hirst et al., 1974). 

S-neurons are likely to be interneurons and motor neurons in the myenteric plexus and 

exhibit fast excitatory postsynaptic potentials (fEPSPs) (Galligan, 2002). These fast 

synaptic responses are mediated through the activation of ligand-gated ion channels, 

predominantly nicotinic receptors (see section 1.9.4). 

Single electrical stimuli elicit fESPSs in some AH-neurons (Furness et al., 

1998) and trains of stimuli elicit slow EPSPs (sEPSPs) in all AH-neurons (Galligan, 

2002). The action potential in AH-neurons is partly mediated by an influx of Ca2+ and 

as a result was only partly blocked by TTX (Hirst et al., 1974). The action potential in 

73 



AH-neurons is followed by an AHP that lasts from 1-20 seconds. The AHP is 

mediated by Cat+-dependent K+ channels activated by Ca2+ entering the neuron during 

the action potential (North and Tokimasa, 1987; Furness et al., 1998). Under resting 

conditions AH-neurons fire one or two action potentials as the AHP limits the firing 

rate. AH-neurons are IPANs in the myenteric plexus (Furness et al., 1998; Galligan, 

2000). All sEPSPs have a long latency (often more than 50 ms) between the time of 

nerve stimulation and the onset of the response, and a long duration (seconds to 

minutes). The prolonged latency and duration occur because sEPSPs are mediated 

through intracellular signalling pathways activated by GPCRs, which lead to the 

inhibition of IK, ce and neuronal depolarisation. In guinea-pig myenteric AH-neurons 

sEPSPs were evoked by the NK3 receptor agonist senktide (Bertrand and Galligan, 

1995). This response was augmented by the addition of GTPyS but reduced by PLC 

and protein kinase inhibitors suggesting the response was mediated by G-protein 

activation of PLC and protein kinases. 5-HT application also evokes sEPSPs in AH- 

neurons (Pan et al., 1997). The response to 5-HT was antagonised by PTX and 

inhibitors of PKC and PKA (Pan et al., 1997). Activation of both PKA and PKC was 

thought to give rise to the inhibition IK, Ca. 

Morphologically myenteric neurons were categorised into two distinct groups. 

Dogiel type I neurons possess a single axon and short dendrites. Dogiel type II cells 

have multiple long processes arising from a smooth cell body. Within the guinea-pig 

small intestine Dogiel type II possess the electrical properties of AH-neurons and thus 

are IPANs (Brookes et al., 1995). Interneurons and motor neurons are classified as 

Dogiel Type I cells (Brookes et al., 2001). 
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1.9.4. Nicotinic ACh (nACh) receptors in the myenteric plexus 

1.9.4.1 Function of myenteric nACh receptors 

ACh acting at nACh receptors is the predominant mechanism of excitatory 

neurotransmission in the myenteric plexus. All electrically-evoked fEPSPs recorded 

from S- and AH-neurons are inhibited, in part, by nACh receptor antagonists such as 

hexamethonium and mecamylamine (Nishi and North, 1973; Hirst et al., 1974). Only 

about 25% of neurons in the guinea-pig myenteric plexus exhibit fEPSPs that are 

completely blocked by hexamethonium (Galligan and Bertrand, 1994). In the 

remaining neurons that exhibit hexamethonium-insensitive fEPSPs, other transmitters 

contribute to fast synaptic excitation including ATP and 5-HT. Noteworthy is the 

observation that, although most AH-neurons do not receive fast excitatory synaptic 

input, they express functional nACh receptors because exogenously applied nicotine 

was shown to depolarise AH-neurons in the intact guinea-pig myenteric plexus 

(Schneider and Galligan, 2000). 

Microlesion studies in the guinea-pig myenteric plexus showed that nACh 

receptors are localised on neurons that are in ascending and circumferential pathways 

(LePard and Galligan, 1999). Stimulation of orally-directed pathways produced 

fEPSPs that were completely blocked by hexamethonium. Surgical interruption of 

these pathways reduced the average amplitude but did not change the 

pharmacological properties of the fEPSP (LePard and Galligan, 1999). This suggests 

that nACh receptor activation is the predominant mechanism for neurotransmission in 

ascending pathways in the myenteric plexus. However, neurotransmission in 

descending excitatory pathways to the muscle layers was largely resistant to 
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hexamethonium, which is consistent with 5-HT and ATP being the predominant 

neurotransmitters in this pathway (Monro et al., 2002). 

1.9.4.2 Properties of myenteric nACh receptors 

ACh and nicotine acting at nACh receptors induces channel opening and an 

influx of cations into the cell (Paterson and Nordberg, 2000) including Ca2+ 

(Trouslard et al., 1993). The fEPSPs, in response to nACh receptor stimulation, were 

shown to result from an increase in cation conductance (Galligan and Bertrand, 1994). 

Neuronal nACh receptors consist of various complements of a ((x2-a7) and 

ß (ß2-p4) subunits and assemble according to a general 2a3ß stoichiometry, with the 

possibility of more than one a subunit within a pentamer (Paterson and Nordberg, 

2000). Each subunit is composed of four transmembrane segments (TM1-TM4), 

where TM2 is thought to form the lining of the ion channel (Paterson and Nordberg, 

2000). 

Recent immunohistochemical studies in cultured guinea-pig myenteric 

neurons identified the presence of a3, a5 and ß2 subunits (Zhou et al., 2002). U7 was 

also present but only on a few neurons. Zhou et al. (2002) also tried to characterise 

the pharmacological properties of nACh receptors in myenteric neurons. Inward 

currents evoked by ACh were blocked by nACh receptor antagonists with a rank 

order potency of mecamylamine > hexamethonium > dihydro-ß-erythroidine (DHßE). 

Mecamylamine and DH(3E exhibit high potency at ß4 and ß2 subunit-containing 

nACh receptors respectively (Zhou et al., 2002). a-bungarotoxin and a- 

methylcaconitine, antagonists that block 0 subunit-containing nACh receptors, did 

not affect nicotine-evoked inward currents in myenteric neurons (Zhou et al., 2002). 
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Electrophysiological studies performed in the intact myenteric plexus of the guinea- 

pig showed that cytisine, which is a full agonist at 04 subunit-containing nACh 

receptors, caused fast depolarisations in 70% of S-neurons but did not depolarise AH- 

neurons excited by nicotine (Schneider and Galligan, 2000). All responses caused by 

cytisine were blocked by mecamylamine. Collectively the data indicates that 

myenteric neurons predominantly express nACh receptors composed of 0, a5, ß2 

and ß4 subunits but do not express functional nACh receptors containing a7 subunits. 

In addition, most S-neurons express nACh receptors that contain 04 subunits whereas 

AH-neurons and a subset of S-neurons (-30%) may express nACh receptors that do 

not contain 04. 

1.9.4.3 Presynaptic nACh receptors 

From the results described above it seems fairly well established that nACh 

receptors are localised to the somatodendritic region of neurons where they mediate 

excitation of these neurons. However, there is evidence to suggest that nACh 

receptors may also be localised on nerve endings where these receptors mediate the 

release of neurotransmitters (Fig. 1.9). In whole guinea-pig ileum, contractions 

evoked by high concentrations of nicotine (> 100 µM) were significantly inhibited 

(but not completely blocked) by the simultaneous application of TTX (to abolish 

neurally mediated contractions) and the muscarinic antagonist scopolamine. 

(Galligan, 1999). The residual contractions evoked by nicotine were significantly 

reduced by the NKl receptor antagonist CP 96,345-1 (Galligan, 1999). These 

observations would be consistent with the activation of presynaptic nACh receptors 

on motor neurons at the neuromuscular junction that couple to the release of TKs. 
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Figure 1.9 Function of presynaptic nACh receptors (nAChRs) on excitatory 
myenteric motor neurons. 
+ suggests activation, ? suggests a possible mechanism. Activation of somatodendritic 
nAChRs induces neuronal depolarisation and a release of ACh and TKs (NKA and 
substance P) from the nerve terminal. These act on muscarinic (M) and NK receptors 
respectively to evoke smooth muscle contraction. Activation of presynaptic nAChRs 
facilitates neurotransmitter release from the nerve terminal. Presynaptic nAChRs may 
mediate positive feedback, stimulated by ACh, which is released from the same nerve 
terminal the receptors are expressed on. 
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Another study demonstrated that presynaptic nACh receptors are located on myenteric 

excitatory motor neurons that innervate circular smooth muscle of the guinea-pig 

ileum (Schneider et al., 2000). The study used a preparation that consisted of the 

circular smooth muscle and submucosal layers; referred to as the circular muscle-axon 

(CM-axon). In this preparation the motor neurons are physically separated from their 

cell bodies by the removal of the myenteric plexus. The nACh receptor agonist DMPP 

(> 30 µM) evoked contractions of the CM-axon, which were inhibited by the nACh 

receptor antagonist mecamylamine. Contractions were also inhibited by the addition 

of scopolamine and completely blocked in the presence of scopolamine and CP- 

96,345-1. This suggests the presence of presynaptic nACh receptors on motor 

neurons, which facilitate both ACh and TK release to evoke circular smooth muscle 

contraction. A recent study by Mandl et al. (2003) used the guinea-pig myenteric 

plexus-longitudinal muscle (MPLM) preparation to confirm the presence of 

presynaptic nACh receptors. This preparation consists of merely the longitudinal 

muscle and myenteric plexus and can therefore be used to investigate myenteric 

neurotransmission involved in ACh-mediated contractions of the longitudinal muscle. 

The study used a more potent, selective nACh receptor agonist, epibatidine, as high 

concentrations of nicotine and DMPP, as used in the previous studies, may have had 

additional non-specific effects (Mandl et at., 2003). In the presence of TTX, 

epibatidine (30 nM)-evoked contractions of the MPLM were completely inhibited. 

However, higher concentrations of epibatidine (300 nM) evoked contractions that 

were insensitive to TTX but were completely blocked by mecamylamine. The data 

provides further evidence for the existence of presynaptic nACh receptors on the 

terminals of myenteric motor neurons, although these receptors are operative only if 

the concentration of agonist is sufficient for their activation. 
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In the central nervous system the activation of presynaptic nACh receptors 

positively modulates transmitter release (Wonnacott, 1997). For instance, the 

activation of presynaptic nACh receptors by nicotine evokes the release of dopamine 

from striatal synaptosomes (Soliakov and Wonnacott, 1996) and ACh and 

noradrenaline from hippocampal synaptosomes (Kulak et al., 2001). Hence, 

presynaptic nACh receptors, on motor neurons in the myenteric plexus, may be a 

mechanism by which ACh and TK release could be enhanced during periods of high 

frequency nerve activity, when concentrations of ACh near the neuroeffector junction 

are high. Indeed, ChAT, substance P and NKA are all found in myenteric motor 

neurons (Costa et al., 2000) suggesting that these transmitters are released from the 

same nerve terminals. 

As nACh receptors are non-selective cationic channels they may facilitate 

neurotransmitter release either directly or indirectly (Wonnacott, 1997). nACh 

receptor activation may result in neuronal depolarisation, which would be sufficient to 

activate VOCCs and evoke neurotransmitter release. Alternatively, the high Ca 2+ 

permeability of nACh receptors may lead to sufficient Ca2+ influx to induce the 

release of neurotransmitter. 

1.9.5 The role of cannabinoids in the myenteric plexus 

CB1 but not CB2 receptor mRNA is present in the guinea-pig myenteric plexus 

(Griffin et al., 1997). This is consistent with immunohistochemical data, in the 

guinea-pig, that showed that myenteric primary afferent, interneuronal and motor 

neuronal cell bodies and nerve fibres express CB 1 receptors (Coutts et al., 2002). 

Furthermore, approximately 99% of CB1 receptor-positive cells are cholinergic 

80 



(Coutts et al., 2002). This distribution supports the established inhibitory effects of 

cannabinoids on gastrointestinal motility, propulsion and transit, which is likely to 

occur through an inhibition of presynaptic ACh release. 

CP 55,940 and WIN 55,212-2 inhibited electrically-evoked contractions (via a 

release of ACh at the neuromuscular junction) of the MPLM, which were reversed by 

SR 141716A (Pertwee et al., 1996a). ACh-induced contractions were not affected by 

CP 55,940 suggesting cannabinoids activate CB1 receptors located at presynaptic 

sites. This was later supported by the observation that CP 55,940 inhibits [3H]ACh 

release in the guinea-pig myenteric plexus, in an SR 141716A-sensitive manner 

(Coutts and Pertwee, 1997). Similar inhibitory effects of cannabinoids, mediated 

through the CB1 receptor, have also been described in the guinea-pig ileum circular 

muscle (Izzo et al., 1998) and the human ileum longitudinal muscle preparation 

(Croci et al., 1998). Cannabinoids have also been shown to modulate GABA (Begg et 

al., 2002b) and adenosine (Begg et al., 2002a) transmission in the guinea-pig MPLM. 

Both ethylenediamine (a GABA releasing agent) and adenosine were able to inhibit 

electrically-evoked contractions of the MPLM, mediated through the activation of 

GABAB and Al receptors respectively. This inhibition was reduced in the presence of 

CP 55,940, which suggests that cannabinoids may also increase excitatory 

neurotransmission in the myenteric plexus through a reduction in inhibitory tone. 

WIN 55,212-2, CP 55,940 and methanandamide inhibited evoked peristalsis in 

isolated guinea-pig ileum, in an SR 141716A-sensitive manner (Heinemann et al., 

1999; Izzo et al., 2000a). Methanandamide was shown to significantly inhibit the 

distension-induced ascending excitatory motor reflex contraction of the circular 

muscle (Heinemann et al., 1999). The methanandamide-induced inhibition of 

peristalsis was attenuated by the NO synthase inhibitor L-NAME and the Cat+- 
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dependent K+ channel inhibitor apamin (Heinemann et al., 1999). Thus, cannabinoids 

may depress peristalsis through a blockade of ascending excitatory motor pathways 

and the facilitation of inhibitory pathways operating via apamin-sensitive K+ channels 

and NO. 

Some effects of cannabinoids in the myenteric plexus are not mediated by the 

CB, receptor. Lopez-Redondo et al. (1997) showed that cannabinoids could block 

excitatory synaptic transmission within the myenteric plexus. Exposure of S-type 

myenteric neurons to CP 55,940 and WIN 55,212-2 significantly depressed the 

amplitude of electrically-evoked fEPSPs. Interestingly, the inhibitory effect of WIN 

55,212-2 was reversed in only 38% of the neurons with SR 141716A. Furthermore, 

SR 141716A alone caused a significant reduction in the amplitude of fEPSPs. This 

suggests a subset of S-neurons express CB1 receptors that modulate fast excitatory 

synaptic transmission. However, it would also seem that a subpopulation of myenteric 

S-neurons do not express CB1 receptors and therefore WIN 55,212-2 and SR 

141716A may act at a novel site(s) to inhibit fESPSs. Although anandamide has been 

shown to produce a dose-dependent inhibition of electrically-evoked contractions of 

MPLM (Pertwee et al., 1995) it might be a non-CB, receptor-mediated process as SR 

141716A was much less effective at blocking these inhibitory effects when compared 

to synthetic cannabinoid agonists such as CP 55,940 (Mang et al., 2001). 

Interestingly, anandamide increased both [3H]ACh release and muscle tone in naive 

MPLM tissue, which could be antagonised by the VRl receptor antagonist 

capsazepine but not SR 141716A. NKl and NK3 receptor antagonists were also able to 

inhibit the effect suggesting that anandamide may induce a release of TKs via VRl 

receptor stimulation, which in turn would release ACh through the stimulation of NKl 

and NK3 receptors. 
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Consistent with the observations in vitro, in vivo studies have also confirmed 

the inhibitory actions of cannabinoids on gut motility. WIN 55,212-2 and z9-THC 

have been shown to reduce gastric motility in mice and rats (Colombo et al., 1998; 

Izzo et al., 1999; Krowicki et al., 1999). These effects could be reversed with SR 

141716A, which alone stimulated gastric propulsion. The inhibition of gastric 

propulsion may involve CB1 receptors located in central sites as 09-THC-evoked 

inhibition of gastric motility, given by i. v. injection, could be mimicked by 

application of 09-THC to the dorsal surface of the medulla (Krowicki et al., 1999). A 

later study in rats found that SR 141716A given either orally or centrally (i. c. v. 

injection) inhibited the WIN 55,212-2-evoked (given i. c. v. ) inhibition of gastric 

motility, whereas, when SR 141716A was administered centrally, it did not affect the 

gastrointestinal action of WIN 55,212-2, administered by intraperitoneal (i. p. ) 

injection (Landi et al., 2002). Izzo et al. (2000b) indicated an exclusively locally 

elicited intestinal effect of i. p. WIN 55,212-2 in mice, since this persisted in animals 

in the presence of the ganglionic blocker hexamethonium, which rendered i. c. v WIN 

55,212-2 ineffective. Collectively the data suggests that cannabinoids primarily act at 

peripheral sites to inhibit gastric motility. 

Intestinal motility may be tonically inhibited by the endogenous cannabinoid 

system. Indeed, 2-AG has been isolated from canine gut (Mechoulam et al., 1995) 

while the rat small intestine contains high amounts of the metabolising enzyme FAAH 

(Katayama et al., 1997). SR 141716A alone has been shown to potentiate electrically- 

evoked contractions of (Pertwee et al., 1996a) and ACh release from (Coutts and 

Pertwee, 1997) the MPLM, but the inverse agonist properties of SR 141716A may 

detract from a constitutive activity of CB, receptors in this system. Compelling 

evidence for an endocannabinoid tone controlling propulsion comes from in vivo 
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studies in the mouse where anandamide and WIN 55,212-2 were shown to inhibit 

colonic motility in an SR 141716A-sensitive manner (Pinto et al., 2002). This 

included the observations that high amounts of anandamide and 2-AG were present in 

the mouse colon, SR 141716A alone stimulated colonic motility and colonic 

propulsion could be inhibited by VDM11, an AMT inhibitor. However, addition of 

the FAAH inhibitor phenylmethylsulfonyl fluoride has no inhibitory effect on 

electrically-evoked contractions of the MPLM (Pertwee et al., 1995), which suggests 

a lack of endocannabinoid tone in this preparation. 

1.9.6 Neurotransmitter release in the myenteric plexus 

The sequence of events underlying the process of synaptic transmission has 

long been established. Briefly, depolarisation of a neuron, arising from an increase in 

Na+ permeability (action potential), initiates the opening of VOCCs. The subsequent 

influx of Ca2+ into the neuron triggers the fusion of neurotransmitter-containing 

vesicles with the synaptic membrane (at the active zone). VOCC's become inactivated 

by neuronal hyperpolarisation, arising principally from an efflux of K' ions. This 

rectification reinstates a `resting' ionic balance across the neuronal membrane 

allowing the process to occur again. 

An early study by Takahashi et al. (1992) examined the Ca 2+ channels 

necessary for ACh release from isolated ganglia from the guinea-pig myenteric 

plexus. The nACh receptor agonist DMPP stimulated the release of [3HJACh, which 

was blocked by hexamethonium or significantly reduced by the N-type Ca2+ channel 

blocker co-conotoxin. Later studies using electrically-evoked contractions of the 

guinea-pig ileum confirmed that activation of N-type Ca2+ channels was required to 
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mediate cholinergic neurotransmission, although only during low frequency field 

stimulation (Tran and Boot, 1997). This was a presynaptic event as w-conotoxin did 

not affect responses to exogenously applied ACh. At higher frequencies a co- 

conotoxin-resistant component remained that could not be blocked by atropine or 

adrenoceptor antagonists propranalol and prazosin. This non-adrenergic non- 

cholinergic (NANC) component could be inhibited by the P/Q-type Ca2+ channel 

blocker w-agatoxin (Tran and Boot, 1997). These observations are quite interesting in 

the light of studies that have shown that higher levels of stimulation are required to 

evoke TK release from myenteric motor neurons (Bornstein et al., 2004). Together 

these results may suggest that at lower stimulus frequencies N-type Ca 2+ channels 

modulate synaptic release of ACh whereas at higher stimulus intensities TK release 

involves Ca2+ entry through P/Q-type channels. The release of other transmitters in 

the guinea-pig myenteric plexus has also been shown to rely on N- and P/Q-type Ca 2+ 

channels including GABA (Reis et al., 2002) and glutamate (Reis et al., 2000). 

Myenteric neurons have also been shown to express A-type K+ (Ren et al., 

2001; Starodub and Wood, 2000) and Kir (Zholos et al., 1999; Ren et al., 2001) 

channels, which are thought to regulate neuronal excitability in the myenteric plexus 

(Zholos et al., 1999; Starodub and Wood, 2000). 

1.9.7 Cannabinoid-mediated inhibition of neurotransmission in the myenteric plexus 

As described in section 1.5.5, CBI receptor stimulation can inhibit VOCCs 

(including N-, and P/Q-type), as well as activate K' channels (including Kir and A- 

type), which could be the mechanism by which cannabinoids inhibit neurotransmitter 

release in the myenteric plexus (Fig. 1.10). Indeed, the inhibitory actions of WIN 

85 



IA 
Presynaptic 

terminal 

Cý\\ f-TP KA 

CAMP 

_AC ATP 

ýý 
Na+ 

Ca2+ mw 

_/ CBS u 
ý ACh 

1 

+1 
Guo 

7 

CBS 

GIRK 

Figure 1.10 Possible mechanisms of cannabinoid-mediated inhibition of 
neurotransmitter release in myenteric neurons. 
+ suggests positive coupling, - suggests an inhibitory action. CB1 receptor stimulation 
may decrease neurotransmitter release by a direct inhibitory action of Gi/0 proteins on 
Ca2+ channels and/ or a direct activation of GIRK channels. The activation of IA, 
through the inhibition of AC and subsequent PKA reduction, may serve as another 
possible mechanism by which cannabinoids inhibit neurotransmitter release. 
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55,212-2 on electrically-evoked contractions of the MPLM were attenuated by 

forskolin and augmented by reducing the extracellular Ca2+ (Coutts and Pertwee, 

1998). This would be consistent with a cannabinoid-mediated inhibition of Ca2+ 

channels and possibly, through the inhibition of the cAMP/ PKA pathway, activation 

of IA, although this has not been confirmed by any electrophysiological studies. An 

activation of GIRK channels may also contribute to the inhibitory effect of 

cannabinoids on neurotransmitter release. 

Recently, anandamide and CP 55,940 have been shown to inhibit inward 

currents mediated by the activation of a7 nACh receptors in Xenopus oocytes (Oz et 

al., 2003; Oz et al., 2004). The inhibition involved a direct interaction of cannabinoids 

with the nACh receptors as the cannabinoid antagonists SR 141716A or SR 144528 

and the Goa inhibitor PTX could not reverse the effects. In addition, cannabinoid 

receptors were not even expressed in the experimental preparation. Although it has 

been shown that there are no functional a7 subunit-containing nACh receptors on 

myenteric neurons (Zhou et al., 2002), the hypothesis that cannabinoids may inhibit 

excitatory neurotransmission in the myenteric plexus, either through the direct 

inhibition of nACh receptors or in a CB1 receptor-dependent manner, is intriguing and 

definitely warrants further investigation. 

87 



1.10 Aims and rationale 

It is clear that much work is still needed to elucidate the signalling pathways 

evoked by the activation of both cannabinoid receptor subtypes. Utilisation of diverse 

effector systems by CB receptors (especially CBI) may explain how the response to 

cannabimetics varies across different types of cells. Understanding which 

physiological responses are mediated by these intracellular signalling systems is of 

great significance and may provide new grounds for the design of selective 

cannabimetic agents. 

The initial aim of the study is to further establish the intracellular signalling 

pathways evoked by cannabinoid CB1 receptor stimulation in smooth muscle cells, in 

particular, elucidating the intracellular pathways that evoke an increase in [Ca2+];. 

Secondly, the present study aims to identify the signalling events that might mediate a 

cannabinoid-induced inhibition of neurotransmission in the myenteric plexus. 

Specifically in: - 

a) DDT1 MF-2 smooth muscle cells 

" Explore the possibility that CB1 receptor activation evokes CCE. 

" Establish a signalling link between MAP kinase activation and 
increasing [Ca2+];, possibly through the generation of AA and hence 
NCCE. 

" Determine the subtype of MAP kinase phosphorylated and a time- 
course of its activation. 

- Establish a CB1 receptor-dependent activation of p42/44 MAP 
kinase. 

b) Cultured myenteric neurons 

" Validate guinea-pig myenteric neurons in primary culture as a model 
for those in situ. 
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- Establish the presence of cannabinoid CBI receptors on 
cultured myenteric neurons. 

- Ascertain the predominant neuronal type present in culture (e. g. 
cholinergic) and its expression of CBI receptors. 

" Determine the signalling events evoked by CB, receptor stimulation 
that could ultimately lead to an inhibition of neurotransmitter release. 

- Establish the effects of cannabinoids on evoked Ca 2+ currents 
in cultured neurons. 

- Ascertain if cannabinoids can activate K+ channels e. g. Kir. 

Determine if cannabinoids can inhibit excitatory neurotransmission via 
a modulation of nACh receptor signalling. 

- Investigate the effect of cannabinoids on inward currents 
evoked by nACh receptor activation. 

The data obtained from the smooth muscle cell line will provide a greater 

understanding of the cellular mechanisms by which cannabinoids evoke an increase in 

[Ca2+];. This may help to elucidate the cellular actions of cannabinoids in other 

preparations, where they have also been shown to evoke an increase in [Ca2+]1 i. e. 

vascular endothelial cells and kidney cells (Fimiani et al., 1999; Chou et al., 2001). In 

addition, further insight into the possible postsynaptic actions of cannabinoids may be 

gained. Results acquired from the neuronal cultures will help support existing ideas 

on how cannabinoids modulate synaptic transmission in both the central and 

peripheral nervous system i. e. modulation of Ca2+ and K+ conductance. Evidence for 

effects of cannabinoids on nACh receptor function would identify a novel mechanism 

through which cannabinoids modulate excitatory neurotransmission in the myenteric 

plexus and thus gut motility. 
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METHODS 
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2.1 Culture and patch clamping of DDT, MF-2 cells 

2.1.1 Cell culture 

DDTI MF-2 smooth muscle cells were cultured in monolayers at 37°C (25 cm2 

culturing surface) in Dulbecco's Modified Eagle's Medium (DMEM), supplemented 

with 10% fetal-calf serum (FCS), penicillin (50 µg/ ml), streptomycin (50 µg/ ml) and 

L-glutamine (2 mM). They were then kept in an atmosphere of 5% C02/ 95% 02, 

where they were grown to confluency. At this point the cells were harvested, by 

means of a plastic cell scraper, and plated onto glass cover slips, housed in 9.6 cm2 6- 

well plates. All culture media and supplements were obtained from Gibco (UK). 

2.1.2 Patch clamp technique: voltage clamp and current clamp 

The patch clamp technique was first described by Neher and Sakmann (1976) 

and involves the formation of a very high resistance seal (gigaseal, -109 ohms) 

between a recording micropipette and the membrane of a cell under investigation. 

These gigaseals are mechanically very stable, even when the area of enclosed 

membrane is disrupted and broken. Under this `whole-cell' patch configuration, 

voltage clamp and current clamp recordings can be performed (see section 2.1.5). 

Voltage clamp is a method of maintaining the voltage inside a cell (the 

membrane potential) at a constant value, while at the same time measuring the 

membrane current (generated by ion flux through open channels). The technique 

employs a negative feedback system where the membrane potential is measured and 

compared with a potential set by the experimenter (holding potential). Any variation 
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in the measured potential from that of the holding potential is instantly corrected for 

by an injection of current. This current is proportional (but opposite in polarity) to the 

membrane current of the patched cell. The technique allows the activity of ion 

channels to be studied at a constant membrane potential, enabling their properties to 

be more easily quantified. In addition, it also permits the study of biochemical 

processes that are taking place within a cell, which are able to modulate the activity of 

ion channels (e. g. second messenger modulation). 

In current clamp, cells are injected with a fixed amount of current and the 

membrane potential is recorded. Therefore no negative feedback system is required. 

The recording of action potentials is one example where current clamp is frequently 

used. 

Both techniques also have the added advantage that the pipette filling solution 

equilibrates with the cytosol of the cell, allowing the experimenter to have control 

over both the intracellular and extracellular medium. 

2.1.3 Micropipette preparation 

Borosilicate glass capillaries (Harvard Apparatus; GC150TF-10), containing 

an internal filament (to ease filling), were heated and pulled (P80/ PC; Sutter 

Instrument Co., U. S. A. ) to produce the micropipettes. They were then heat-polished 

(MF-830; Narishige, Japan) and backfilled with intracellular solution (ICS; see 

section 2.1.7 for composition), to give a typical resistance of 2-6 MCI. 
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2.1.4 Set-up 

Figure 2.1 depicts the patch clamp set-up used for making electrophysiological 

recordings. In brief, cells were placed in the bath contained in the centre of a perspex 

block, which in turn was positioned on the microscope table. An inverted microscope 

(TE 200; Nikon, UK) was used to visualise the cells under high power. The bath was 

initially filled with a physiological salt solution (ECS; extracellular salt solution, see 

section 2.1.7 for composition), by means of a gravity-driven superfusion system. 

Solutions were siphoned out (gravity-assisted) through a metal syringe needle located 

towards the rear of the perspex bath. 

Filled pipettes were mounted into the pipette holder, which was in turn 

connected to the pre-amplifier (probe). A chloride coated silver wire connected the 

pipette filling fluid to the probe input. The probe itself was held tightly in a course 

manipulator (MC35A; Narishige, Japan), permitting movement in the x, y and z 

direction, while finer movement was achieved using the hydraulic micromanipulator 

(MHW-3; Narishige, Japan). A tube, also attached to the pipette holder, enabled the 

internal pressure of the pipette to be changed. Current output was initially amplified 

(Axopatch 1D; Axon Instruments, U. S. A. ) and recorded using a digital interface 

(Digidata 1200; Axon Instruments, U. S. A. ). Changes in membrane current could then 

be viewed in real-time on a personal computer incorporating the pCLAMP 6 software 

(Axon Instruments, U. S. A. ). 

2.1.5 Gigaseal formation 

Before patching commenced a positive pressure (of about 4-5 cm of mercury) 

was applied to the pipette to blow away possible contaminations that could block the 
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tip. Monitoring of the pipette approach towards the cell was performed by the 

application of an electrical pulse (5 mV, 5 ms, 100 Hz) to measure pipette resistance. 

The approach could also be monitored visually by focusing the microscope above the 

cells and using the shadow of the pipette as a guide. 

The current response to the test pulse indicated the different stages in gigaseal 

formation (Fig. 2.2). As the pipette entered the bathing fluid a circuit was completed 

and the pipette resistance decreased. Contact with the cell caused the resistance to 

increase therefore decreasing the current response. At this point the positive pressure 

was removed and gentle, continuous suction was applied to form the gigaseal. The 

next steps were then performed under voltage clamp. Suction pulses were required to 

disrupt the membrane, under the patched micropipette, enabling whole cell recording. 

At this stage, both the analysis of resting leak current and compensation (and 

therefore measurement) of cell capacitance was possible. 

2.1.6 Current recording 

Experiments were performed at room temperature with cells initially under 

voltage clamp kept at a holding potential of -60 mV, which is close to the resting 

membrane potential for these cells (Molleman et al., 1989). A voltage step protocol 

was used to record currents mediated by the activation of voltage-dependent ion 

channels present in the preparation. Membrane currents were evoked by stepping the 

membrane potential from -60 mV to +90 mV, in 10 mV increments. 

Membrane currents, in response to drug application, were measured at a 

holding potential of -30 mV and are expressed as pA per pF membrane capacitance to 

correct for cell surface area. 
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Figure 2.2 Current responses during gigaseal formation. 
There is no circuit when the pipette is out of the bathing fluid (A). Only when the 
pipette comes into contact with the bathing fluid, is the circuit completed and current 
is allowed to flow. The current response is inversely proportional to the pipette 
resistance (B). On contact with the cell, pipette resistance increases, decreasing the 
current response (C). After gigaseal formation, a current response can no longer be 
visualised (D). After successful disruption of the membrane, a large capacitive 
transient is obtained (RC current) and whole cell recording can begin (E). 

(Adapted from Molleman, 2003) 
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2.1.7 Solutions 

Electrophysiological measurements were carried out with an ECS containing 

(mM): NaCl, 125; KC1,6; MgC12,2.5; NaH2PO4,1.2; Hepes, 20; glucose, 11; 

sucrose, 67; CaC12,1.2; pH to 7.4 with NaOH. The ICS contained (mM): NaCl, 5; 

KCl, 142; MgCI2i 1.2; Hepes, 20; glucose, 11; K-ATP, 5; Na-GTP, 0.1; pH to 7.2 

with KOH. All drugs were administered in the ECS, superfused at a rate of 4 ml// min. 

Post experimentation the apparatus was washed with dilute hydrochloric acid (0.1 M), 

absolute ethanol (Fischer, UK) and distilled water to ensure complete washout of 

residual cannabinoids. 

2.2 [3H]Arachidonic acid (AA) release in DDT, MF-2 cells 

[3H]AA release measurements were carried out in collaboration with the 

University of Groningen (Netherlands), where all the experimental work was 

undertaken. 

AA release was measured as described previously (Van der Zee et al., 1995). 

Cells were grown to confluency in 9.6 cm2 six well plates and labelled with 0.25 µCi 

of [3Ii]AA (Sigma, NL) in serum-free DMEM (1 ml), for 3 hours at 37°C. Serum-free 

DMEM was used as FCS can bind fatty acids, which would significantly reduce the 

amount of [3H]AA able to diffuse into the cells. Cells were washed once in ECS, 

twice with ECS containing 1% bovine serum albumin (BSA) (fatty-acid free) and 

once again with ECS to eliminate any unincorporated radioactivity. They were then 

allowed to equilibrate for 15 minutes. Inhibitors of the signalling pathway under 

investigation could then be added at the start of this equilibration period. Following 
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this the cells were incubated with CP 55,940 for 5 minutes. The experiment ended 

when the medium was removed and [3H]AA release was determined by liquid- 

scintillation counting. The effect of the inhibitors alone on AA efflux was also 

established. 

2.3 Intracellular Ca 2+ measurements in DDT, MF-2 cells 

[Ca2+]; measurements were also carried out in collaboration with the 

University of Groningen (Netherlands), where all experimental work took place. 

[Ca2+]; was measured using fura-2 fluorometry as reported previously 

(Molleman et al., 1991a). Cells in a monolayer were harvested using a cell scraper 

and loaded in suspension with 3 µM fura-2 acetoxymethylester at 220C for 45 minutes 

in the dark. Fluorescence was measured at 37CC. For measurements made to study 

CP 55,940 the area under the curve (AUC) was calculated starting at the point of drug 

application (t=0) to t=150 seconds. A dose-response curve for CP 55,940 was then 

constructed from the mean of these results. 

2.4 Western blot analysis 

2.4.1 p42/44 MAP kinase time course 

Western blot analysis was used to establish if CP 55,940 induces the 

phosphorylation of p42/44 MAP kinase in DDT, MF-2 cells. 

DDTI MF-2 cells were grown to confluency in P-60 dishes (Falcon, UK), on 

DMEM supplemented with 10% FCS, penicillin (50 pg/ ml), streptomycin 
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(50 µg/ ml) and L-glutamine (2 mM). The cells were then incubated in DMEM (0.1 % 

FCS) for at least 12 hours to ensure minimal activation of MAP kinases in the cells. 

Cells were activated with CP 55,940 (10 µM) at time points ranging between 

30 seconds and 30 minutes. In experiments involving inhibition with SR 141716A (1 

µM), cells were pretreated with the antagonist 15 minutes prior to CP 55,940 

activation. Control experiments were performed with vehicle (0.1 % ethanol) at the 

corresponding time points. 

After activation, the medium was immediately removed and the cells washed 

twice with 200 µl of ice-cold phosphate buffered saline (PBS), containing 100 µM 

sodium orthovanadate to inhibit phosphatases. 300 µl of boiling lysis buffer was then 

added to the dish, making sure to cover the entire surface. The lysis buffer contained 

10% glycerol (Fischer, UK), 2% sodium dodecyl sulphate (SDS), 76.5 mM Tris 

(Fischer, UK) and 1 mM sodium orthovanadate. The cell lysate was transferred to an 

Eppendorf tube, heated to 95°C for 5 minutes and then stored at -20°C until required. 

2.4.2 Determination of the protein content of cell lysates 

Protein content was determined using a bicinchoninic acid (BCA) protein 

assay. The lysates were defrosted and boiled at 95°C for 5 minutes, before being 

centrifuged for 3 minutes at 10,000 rpm. Triplicates of each sample (5 µl) were added 

to the inner wells of a 96-well plate, followed by 10 µl of ultra pure water (BDH, UK) 

to keep volumes constant. To the outer wells, 10 . tl of BSA standards (1-30 µg/ well) 

were added, again in triplicate. 5 µl of lysis buffer was subsequently added to each 

standard to ensure all wells were comparable. Addition of 10 µl ultra pure water with 

5 µl lysis buffer generated a blank. Finally, 100 µl of BCA reagent (Pierce, UK) was 
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added to each well, and incubated for 45 minutes at room temperature. Absorbency of 

the assay solutions was measured at 590 nm (Labsystems Multiskan RC) and the total 

protein content for each sample calculated using the standard curve. The sample 

volume required to load 20 µg of protein was then calculated. 

2.4.3 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was used to analyse the sample lysates, using the MINI-Protein II 

gel apparatus (BioRad). All apparatus was initially cleaned with industrial methylated 

spirits (IMS, 70%) (Fischer, UK) before being used. A 10% resolving gel was 

prepared and poured between the glass plates of the gel apparatus, approximately 

2/3rds of the way up the glass. Butan-2-ol (Fischer, UK) was applied over the top of 

the gel to prevent the inhibition of polymerization by air. The gel was left to 

polymerise at room temperature for 45 minutes. The alcohol was removed and the 

stacking gel poured over the resolving gel. Insertion of a 0.75 mm comb into the top 

of the stacking gel created the loading wells. A further 45 minutes was required for 

the stacking gel to polymerize. 

10% Resolving Gel (25 ml) 

Ultra pure water 
30% Acrylamide/ bisacrylamide 
1.5 M Tris-HC1(pH 8.8) 
10% SDS 
10% Ammonium persulfate (BDH, UK) 
TEMED (BDH, UK) 

9.90 ml 
8.35 ml 
6.25 ml 
0.25 ml 
0.25 ml 
15.0 µl 
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Stacking Gel (20 ml) 

Ultra pure water 
30% Acrylamide/ bisacrylamide 
0.5 M Tris-HCI (pH 6.8) 
10% SDS 
10% Ammonium persulfate 
TEMED 

12.20 ml 
2.60 ml 
5.00 ml 
0.20 ml 
0.10 ml 
20.0 µl 

Sample lysates were initially sonicated for 15 seconds to reduce their 

viscosity. Equal volumes of lysate and loading buffer were added together in a 

separate Eppendorf and boiled at 95°C for 5 minutes, before being spun at 10,000 rpm 

for 3 minutes. An SDS molecular weight marker (26 to 180 kDa) was also boiled for 

5 minutes at 95°C. The marker (10 µl) was loaded into the first lane followed by the 

prepared samples in subsequent lanes, Lanes that contained neither marker nor sample 

were filled with loading buffer (10 µl). The gel apparatus was transferred to an 

electrophoresis tank, filled with tank buffer (National Diagnostics, UK) and then run 

at 200 V until the dye was seen to reach the foot of the resolving gel (-45 minutes). 

Loading Buffer (I ml) 

Ultra pure water 180 µl 
0.5 M Tris-HC1(pH 6.8) 180 µl 
10% SDS 400 µl 
Glycerol 200 µ1 
2% Bromophenol blue 10 µ1 
ß-Mercaptoethanol (BDH, UK) 20 µl 

2.4.4 Immunoblotting of proteins 

The gel was removed from the tank and the resolving gel separated from the 

stacking gel. The resolving gel was incubated for 10 minutes in transfer buffer. Filter 
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paper was cut to match the size of the gel and placed in transfer buffer. 

Polyvinylidene diflouride (PVDF) membrane (Amersham, UK) was cut to match the 

size of the gel, dipped in absolute methanol (Fischer, UK) for 10 seconds, washed 

with Milli-Q water and also placed in transfer buffer. 

Transfer Buffer (1000 ml) 

39 mM Glycine 2.93 g 
48 mM Tris 5.82g 
20% Methanol 200 ml 

The base of a Trans-Blot Semi-Dry electrophoretic cell (BioRad) was initially 

dampened with transfer buffer. A piece of filter paper was placed in the middle, 

followed by the PVDF membrane, then the gel, and finally the second piece of filter 

paper. Protein transfer, from gel to membrane, proceeded at 0.8 Amps/ cm2 for 90 

minutes. The membrane was removed from the transfer cell and immediately placed 

into blocking buffer (wash buffer supplemented with 3% BSA), where it was agitated 

at room temperature for 3 hours. 

Wash Buffer (1000 ml) 

10 mM Tris 1.21 g 
100 mM NaC1 5.84 g 
0.1 % Tween 20 1.00M1 

After blocking the membrane was incubated in anti-phospho p42/ p44 

polyclonal antibody (New England Biolabs, UK) at a dilution of 1: 1000 in blocking 

buffer. It was then agitated overnight at room temperature. Following primary 

antibody incubation, the membrane was washed in wash buffer for 30 minutes, with 
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replacement of the buffer every 5 minutes. The membrane was then incubated with 

secondary antibody (goat anti-rabbit-HRP), diluted to 1: 10,000 in blocking buffer, for 

1 hour at room temperature on a rotating plate. Washing was then repeated (as above). 

2.4.5 Film development 

The membrane was placed onto cling-film, while equal volumes (3 ml) of 

enhanced chemo-luminescence (ECL) detection solutions A and B (Amersham, UK) 

were mixed and added to the protein side of the membrane. It was left for 1 minute, 

and the excess removed. The cling-film was then folded over, enveloping the 

membrane, making sure not to trap air bubbles. The membrane was exposed to 

autoradiography film (Hyperfilm-ECL from Amersham, UK) for 30 seconds to 10 

minutes, followed by incubation in Dektol developer (Kodak, UK) until bands were 

visualized. At this point the film was washed in water (1-2 minutes), then placed in 

Unifix fixer (Kodak, UK) before being washed again in water (1-2 minutes). 

2.4.6 Scanning densitometry 

Densitometry was used to quantify changes in band intensity and thus p42/44 

MAP kinase phosphorylation. Using the `Genesnap' programme, western blots were 

visualised using a transilluminator and the images saved onto a personal computer. 

Captured images were then transferred to the `Gentools' programme in order to 

measure band absorbance. Lanes were determined manually. Absorbance was 

determined by placing a border around the control band (at t=0) and then reading the 
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value obtained. Values from subsequent bands were determined as a% change in 

absorbance, compared to the control band. 

All materials were obtained from Sigma (UK) unless otherwise stated. 

2.5 Culture and patch clamping of myenteric plexus neurons 

2.5.1 Preparation of the myenteric plexus longitudinal muscle (MPLM) 

Dunkin Hartley guinea-pigs (450-550 g), of either sex, were sacrificed by 

cervical dislocation. The abdomen was cut open and the ileum removed by gently 

pulling away from the mesentery. Care was taken not to stretch the tissue. The tissue 

was immediately placed in Krebs solution, continuously gassed with 95% 02/ 5% 

CO2. Krebs solution contained (mM): NaCl, 118.3; KCI, 4.7; MgSO4,1.2; KH2PO4, 

1.2; NaHCO3,25; Glucose, 11.1; CaC12,2.5. A4 cm strip of ileum was stretched onto 

a glass pipette and immediately moistened with Krebs solution. The longitudinal 

strips were obtained by first lining up the mesentery along the length of the pipette 

and stroking tangentially away from it with a cotton wool bud, which had been soaked 

in Krebs solution (Fig. 2.3). This continued until a strip of longitudinal muscle along 

with the myenteric plexus was separated from the underlying circular muscle and 

mucosa. During the procedure, MPLM and ileum were kept moist in Krebs solution. 
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Figure 2.3 Preparation of the MPLM. 
Ileum was stretched onto a glass pipette and moistened with Krebs solution (A), with 
the mesentery lined up along the length of the rod (B). The longitudinal strips were 
obtained by stroking tangentially away from the mesentery with a cotton wool bud, in 
the direction of the arrows (B). Eventually a strip of longitudinal muscle, along with 
the myenteric plexus was separated from the circular muscle and mucosa. 
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2.5.2 Preparation of cultured myenteric neurons 

A 4cm strip of MPLM was cut into 0.5 cm sections and transferred to a sterile 15 cm3 

centrifuge tube, containing 3 ml of papain solution. The tube was placed in a 

waterbath (37°C) for 10 minutes, removed and the papain solution replaced by 3 ml of 

collagenase solution. It was then returned to the waterbath for a further 10 minutes. 

The tissue was triturated with a sterile, flame-polished tip pasteur pipette, and then 

placed back into the waterbath. The trituration process was repeated for a further two 

times before the cells were centrifuged for 5 minutes at 600 rpm, the supernatant 

discarded, and the cells resuspended in feeding medium. Centrifugation was repeated, 

the medium replaced and the cells resuspended. The cell suspension was transferred 

to individual P-60 dishes, housing collagen (Sigma, UK)-covered glass slides. 

Cultured neurons were incubated at 37°C in an atmosphere of 95% 02/ 5% CO2. The 

feeding medium was refreshed every 3 days. 

Papain Solution (warmed to 37°C in a waterbath before use) 

Hank's Balanced Salt Solution (Sigma, UK) 9 ml 
pH balanced (7.4) with 0.15 NaHCO3 
L-cysteine (Sigma, UK) 3.6 mg 
Papain (Roche, UK) 0.1 ml 

Collagenase Solution 

Hank's Balanced Salt Solution 9 ml 
Collagenase Type I (Sigma, UK) 9 mg 
Dipase (Roche, UK) 28 mg 

Feeding Medium 

DMEM 189 ml 
Antimitotic stock (see below) 3 ml 
Antibiotic stock (see below) 3 ml 
FCS 5 ml 
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Antimitotic Stock (3 ml aliquots, stored at -20°C) 

Ultra pure water 300 ml 
Cytosine ß-D-arabinofuranoside 24 mg 
hydrochloride (Sigma, UK) 
(+)-5-fluorodeoxyuridine (Sigma, UK) 246 mg 
Uridine (Sigma, UK) 12 mg 

Antibiotic stock (3 ml aliquots, stored at -20°C) 

Ultra pure water 60 ml 
L-glutamine (Sigma, UK) 584 mg 
Penicillin 3 mg 
Streptomycin 3 mg 
Glucose 6g 

2.5.3 Whole-cell recordings from myenteric neurons 

Cultures were left to attach for at least 3 days before patching commenced and 

recordings were taken. Cells were patched and drugs administered in the same manner 

as described for DDT, MF-2 cells, using the same composition of ECS and ICS 

unless otherwise stated (see section 2.1). Under voltage clamp myenteric neurons 

were kept at a holding potential of -60 mV, while under current clamp enough current 

was injected to keep the membrane potential close to -80 mV. 

2.5.3.1 Isolation of voltage-dependent Ca2+ currents 

Voltage-dependent Ca2+ currents were recorded using ECS containing (mM): 

NaCl, 115; KCI, 6; MgC12,2.5; NaH2PO4,1.2; TTX, 0.003; TEA, 10; Hepes, 20; 

glucose, 11; sucrose, 67; CaC12,2.5; pH to 7.4 with NaOH. The ICS contained (mM): 

CsCl, 142; MgC12,1.2; Hepes, 20; EGTA, 0.1; glucose, 11; K-ATP, 5; Na-GTP, 0.1; 

pH to 7.2 with NaOH. Tetrodotoxin (TTX) and tetraethylammonium (TEA) were 
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used in the ECS to block voltage-dependent Na+ currents and K+ currents 

respectively, unmasking and therefore enabling voltage-dependent Ca2+ currents to be 

recorded. Cs+, also used to block KK channels, replaced K+ in the ICS. EGTA, a Ca2+ 

chelator, was added to the ICS to `mop up' any Ca2+ ions within the pipette solution 

attributable to contaminations within the salts and distilled water. This decreases the 

[Ca2+]; (compared to using ICS without EGTA), which results in an increased Ca2+ 

concentration gradient between the intracellular and extracellular space. Therefore the 

driving force of Ca2+ into the cell is increased, thus potentiating evoked Ca2+ currents. 

Raising the CaC12 concentration in the ECS from 1.2 mM to 2.5 mM also increased 

the driving force of Ca 2+ into the cell. 

Stepping the membrane potential from -60 mV to +50 mV, in 10 mV 

increments, evoked inward Ca 2+ currents. Positive/ negative (P/N) leak subtraction 

was used when recording Ca2+ currents. This technique removes the passive 

components (attributable to capacitive transients and responses relating to leak 

resistance and membrane resistance) normally included within voltage step data, thus 

producing a `cleaner' trace of active currents. 4 sub steps (opposite in polarity and 'A 

of each subsequent voltage step) were applied from a holding potential of -60 mV and 

their cumulative current response added to the current response obtained by the 

subsequent voltage increment. 

2.5.3.2 Peak positive and negative membrane currents 

Membrane currents were evoked in myenteric neurons using a voltage step 

protocol. Cells were stepped from -100 mV to +50 mV, in 10 mV increments and the 

effect of CP 55,940 on these evoked currents was then established. Membrane 
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currents were recorded every 30 seconds for a period of 5 minutes, in the presence of 

CP 55,940. At each 30 second interval the peak negative current was taken as the 

most negative value during a single step protocol (i. e. -100 mV to +50 mV) and the 

peak positive current was taken as the current produced during a +50 mV step. 

Membrane currents recorded in the presence of CP 55,940 were then compared to 

currents recorded in the absence of cannabinoids. Each cell acted as its own control. 

2.5.3.3 Ramp protocol 

A ramp protocol was used to see if CP 55,940 activates Kir channels in 

myenteric neurons. During a ramp recording the membrane potential was stepped to - 

120 mV for 200 ms and then increased to -50 mV over 800 ms. Ramps were taken at 

30 second intervals for a period of 5 minutes, in the presence of CP 55,940. The ramp 

response under control conditions (no cannabinoid) was subtracted from the ramp 

response in the presence of CP 55,940. The data was then plotted as a current-voltage 

relationship. 

2.5.3.4 Current clamp 

Action potentials were recorded from myenteric neurons under current clamp. 

Action potentials were evoked by 6 consecutive current steps. To allow comparisons 

to be made between cells, current was adjusted to produce the same (passive) 

deflection in membrane voltage in each cell. The amount of current injected to 

produce this voltage deflection was calculated using Ohms law, due to the variation in 

membrane resistance between cells: - 
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I (current) =V (voltage)/ R (resistance) 

Ohms law was used to work out the deflection in membrane voltage in the first 

cell, produced by current injection. This voltage deflection was then used as the 

standard for subsequent cells: - 

V (membrane voltage) =I (injected current) xR (membrane resistance) 

As the amount of current injected was constant V oc R, where an increase in 

membrane resistance will produce a greater deflection in membrane voltage. 

Therefore the amount of current that was injected into subsequent cells (to produce 

the same voltage deflection as the first cell) was calculated using: - 

INC ='CI x (Rci/ RNC) 

INC = current to be injected into the new cell 
Ici = current injected (per step) into the 1st cell 
Rcl = membrane resistance of the IS` cell 
RNC = membrane resistance of the new cell 

Before recording cells were kept close to a membrane potential of -80 mV by 

constant current injection. 

2.5.4 Single channel recordings 

Single channel recording can be used to study the characteristics of individual 

ion channels in greater detail. The technique can also be used to investigate the direct 
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effects of ligands on ion channels, independent of intracellular signaling pathways 

induced by the activation of other cellular receptors. 

Single channel recordings in myenteric neurons were obtained in the ̀ outside- 

out' patch configuration, using low tip resistance pipettes (2-6 MO). The 

configuration was obtained by pulling away the patch pipette from the cell membrane 

in the `whole-cell' configuration, eventually breaking the membrane. The membrane 

then folds back on itself to form a gigaseal, with the extracellular surface still in 

contact with the ECS. The activation of individual ion channels located within this 

patch of membrane can then be recorded. 

Currents were amplified (x l 00 gain) using the Axopatch- ID amplifier, as 

described earlier for whole-cell recordings in DDTI MF-2 cells (see section 2.1). The 

composition of the ECS and ICS was also identical. Currents were sampled at 2 kHz 

and filtered at 1 kHz. Measurements were carried out at a holding potential of -70 

mV 

2.6 Immunohistochemical studies of cultured myenteric neurons 

Cells were fixed and sent to Dr. Angela Coutts, at the University of Aberdeen, 

for immunohistochemical study. The following briefly describes the methods used. 

2.6.1 Fixation 

Cultured cells were fixed in 4% paraformaldehyde (Sigma, UK) for 10 

minutes at room temperature then washed with PBS (pH 7.4). Cells were kept in PBS 

at 4°C until required for labelling. 
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2.6.2 Permeabilisation 

Fixed cells were permeabilised in 0.1% Triton X-100 (Sigma, UK) for 5 

minutes at room temperature then washed once with PBS. Non-specific binding sites 

were blocked by incubation of cultured cells with 25% donkey serum (Scottish 

Antibody Production Unit, Scotland) in PBS, for 20 minutes at room temperature. A 

blocking serum is normally used from the species which is the host for the secondary 

antibody. As donkey anti-rabbit Cy3 was used as the secondary antibody for CB1 

receptor detection, donkey serum was used to block non-specific binding sites. 

2.6.3 Cannabinoid CB1 receptor labelling 

Cells were incubated overnight at 4°C with a polyclonal antibody, raised in 

the rabbit against the C-terminus (401-473) of rat CBI receptor. The antibody was 

obtained from Dr. Ken Mackie (Univ. of Washington, Seattle, Washington, U. S. A. ). 

The stock solution concentration was I mg/ml and the dilution was 1: 500 in glucose- 

free PBS. The primary antibody was removed, the cells washed three times with PBS 

then incubated at room temperature with Cy3-conjugated donkey anti-rabbit (1: 250) 

(Jackson Immunoresearch Laboratories, U. S. A. ) for 90 minutes. Finally, cells were 

washed three times with PBS, mounted on microscope slides in Vectashield and 

sealed with nail varnish. Cells were either visualised in glucose-free PBS in plastic 

culture dishes before mounting, or through water immersion on the slide. 
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2.6.4 Dual labelling with cannabinoid CB1 receptor antibody and ChAT antibody 

ChAT polyclonal antibody, raised in sheep (Chemicon International, 

U. S. A. ), was used to identify cholinergic neurons. Fixed and permeabilised cells were 

incubated overnight at 4°C with a mixture of ChAT antibody (1: 500) and C-terminus 

CB1 receptor antibody (1: 500). After incubation, the primary antibody was removed, 

the cells washed three times with PBS, then incubated at room temperature with a 

mixture of Cy3-conjugated donkey anti-rabbit (1: 250) and Alexa 488-conjugated 

donkey anti-sheep (Molecular Probes, NL) for 90 minutes. Finally, cells were washed 

and mounted on slides as above. 

2.6.5 Dual labelling with cannabinoid CBI receptor antibody and neurofilament 

antibody (NFP-200) 

Fixed and permeabilised cells were incubated overnight at 4°C with a 

mixture of NFP-200 antibody (1: 500) (Sigma, UK) and C-terminus CB1 receptor 

antibody (1: 500). After incubation, the primary antibody was removed, the cells 

washed three times with PBS then incubated at room temperature with a mixture of 

Cy3-conjugated donkey anti-rabbit (1: 250) and Alexa 488-conjugated goat anti- 

mouse (Molecular Probes, NL) for 90 minutes. Finally, cells were washed and 

mounted on slides as above. 
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2.6.6 Control experiments 

2.6.6.1 Non-specific labelling with secondary antibodies 

Fixed and permeabilised cells were incubated overnight at 4°C with PBS 

only, omitting the primary antibody. Labelling with the secondary antibodies was 

carried out as outlined above. Cells were washed and mounted on slides for 

visualisation. 

2.6.6.2 Blocking of staining with the appropriate blocking peptide 

To check for specific staining with the cannabinoid CB1 receptor antibody, 

blocking peptide (100 mg/ ml-) was applied for 60 minutes at room temperature 

before CBI labelling. The blocking peptide is used to prevent specific antibody 

interactions with the antigen of interest e. g. C-terminus CB1 receptor protein. Hence, 

the blocking peptide should significantly reduce (or abolish) the amount of 

immunostaining normally observed. 

2.6.7 Image acquisition and processing 

Laser-scanning confocal imaging systems, either BioRad (Hercules, U. S. A. ) 

MicroRadiance attached to an Olympus (Tokyo, Japan) BX50WI microscope, 

Olympus U-RFL-T mercury lamp and Olympus TH3 light source or BioRad MRC 

1024 attached to Nikon Diaphot 200 microscope, Nikon HB-10101AF mercury lamp 

and light source, were used for image acquisition and processing. With the 
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MicroRadiance system, Cy3 was excited with a dedicated 543 mm line and emitted 

light passed through an E570LP filter, whereas Alexa 488 was excited with a 488 nm 

line and emitted light passed through an HQ515/30 filter. In multiple-labelling 

experiments images were obtained sequentially and merged off-line. Images were 

acquired and processed with LaserSharp software (BioRad). Images were edited with 

PhotoShop software. 

2.7 Data analysis 

Values are expressed as means ±standard error of the mean (S. E. M. ). 

Comparison of pairs of treatments was determined by Student's t-test. As control and 

experimental data had been obtained from separate cells, an unpaired t-test was used 

to analyse the results. A one way analysis of variance (ANOVA) test was performed, 

followed by a post hoc Dunnett test to assess significant differences between control 

and multiple test values. P<0.05 was considered to be significant. 
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2.8 Drugs used in the study 

NAME MAIN SUPPLIER SOLVENT 
CELLULAR 
ACTION 

Anandamide (AEA) Endogenous Tocris-Cookson Ethanol 
cannabinoid agonist (UK) 

2-aminoethoxydiphenylborane InsP3 receptor Tocris-Cookson DMSO 
(2-APB) antagonist/ SOCC (UK) 

inhibitor 
Arachidonic acid (AA) Cellular 2° messenger Sigma (UK) Ethanol 
Arachidonyl trifluoromethyl Selective inhibitor of Tocris-Cookson Ethanol 
ketone (ATK) cytosolic PLA2 (UK) 
1,1,1-Trifluoro-6Z, 9Z, 12Z, 15Z- 
heneicosateraen-2-one 
4-bromophenacyl bromide Non-specific inhibitor Sigma (UK) DMSO 
(4-BPB) of PLA2 

Cadmium (II) chloride (Cd2) Non-specific Ca BDH (UK) Distilled water 
channel blocker 

Caesium chloride (Cs+) Non-specific K BDH (UK) ICS 
channel inhibitor 

CP 55,940 Cannabinoid receptor Pfizer (UK) Ethanol 
(-)-cis-3-[2-Hydroxy-4-(1,1- agonist (CB i/ CB2) 
dimethylheptyl)phenyl]-trans-4- 
3 3-h drox ro 1c clohexanol 
EGTA Ca chelator Sigma (UK) ICS 
Ethylene glycol-bis-(2- 
aminoethyl)-N, N, N', N'- 
tetraacetic acid 
Gadolinium (III) chloride Non-specific Ca Sigma (UK) Distilled water 
Gd' channel blocker 

Hexamethonium (C6) Non-specific nACh Sigma (UK) Distilled water 
receptor antagonist 

5-H drox t tamine 5-HT 5-HT receptor agonist Sigma (UK) Distilled water 
Indomethacin Cyclo-oxygenase Sigma (UK) Ethanol 

inhibitor 
Lanthanum (III) chloride (La +) Non-specific Ca Sigma (UK) Distilled water 

channel blocker 
Methyllycaconitine citrate a7 neuronal nACh Tocris-Cookson Distilled water 
(MLA) receptor antagonist (UK) 
Nickel II chloride Ni SOCC inhibitor Sigma (UK) Distilled water 
Nicotine nACh receptor agonist Sigma UK Distilled water 
Palmitoylethanolamide (PEA) Endogenous Tocris-Cookson Ethanol 

cannabinoid ligand (UK) 
(independent of CBI/ 
C132 receptor for activation) 

Pertussis toxin (PTX) Gil, inhibitor Sigma (UK) 50% glycerol, 0.5 
M NaCl, 0.05 M 
Tris- ! cine 

Phenidone Lipoyxgenase/ cycio- Sigma (UK) DMSO 
oxygenase inhibitor 

Quinacrine Non-specific inhibitor Sigma (UK) Solubilised in 
of PLA2 DMSO; diluted in 

distilled water 
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NAME MAIN SUPPLIER SOLVENT 
CELLULAR 
ACTION 

SKF 96365 Inhibitor of SOCCs Tocris-Cookson Distilled water 
1-[2-(4-methoxyphenyl)-2-[3-(4- (UK) 
methoxyphenyl)propoxy]ethyl]- 
1H-imidazole hydrochloride 

SR 141716A CB 1 receptor antagonist Sanofi (France) Ethanol 
N-Piperidino-5-(4-chlorophenyl)- 
1-(2,4-dichlorophenyl)-4-methyl- 
3- azole-carboxamide 
Tetraethylammonium (TEA) K channel inhibitor Sigma (UK) Distilled water 
bromide 
Tetrodotoxin (TTX) Voltage-dependent Na Tocris-Cookson Solubilised in 

channel inhibitor (UK) acidic buffer (pH 
4.8); diluted in 
distilled water 

Tha si ar in SERCA inhibitor Sigma (UK) DMSO 
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RESULTS 
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3.1 CBI receptor signalling in DDT, MF-2 smooth muscle cells 

The following drugs, used to investigate the intracellular signalling pathways 

that lead to a CB1 receptor-mediated increase in [Ca21;, were either dissolved in 

distilled water, ethanol or dimethyl sulfoxide (DMSO). Therefore the effects of 

ethanol (0.2%) and DMSO (0.1%) on membrane currents in DDT, MF-2 cells were 

established. Ethanol (n=5) and DMSO (n=6) were found to have no observable effect 

on membrane currents (controls initially performed consecutively). Subsequent 

ethanol and DMSO controls were then performed randomly, throughout the 

investigation. 

3.1.1 Electrophysiological properties of DDTI MF-2 cells 

DDT, MF-2 cells exhibited a cell capacitance of 31.1 ±2.6 pF (n=11). To 

activate voltage-dependent ion channels, the membrane was stepped from -60 mV to 

+90 mV, in 10 mV increments. Voltage steps evoked outward currents in DDT1 MF-2 

cells, at higher membrane potentials (Fig. 3.1). Previous studies have shown that these 

outward currents are due to the activation of voltage-dependent K+ currents as they 

were abolished in the presence of Cs2+ (Begg, unpublished data). In addition, the 

synthetic cannabinoid agonist CP 55,940 (10 µM) has been shown to have no effect 

on these K+ currents (Begg, unpublished data). 
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Figure 3.1 The effect of voltage steps on membrane currents in DDT1 MF-2 cells. 
Voltage-dependent K+ currents were evoked in DDTI MF-2 cells by stepping the 
membrane potential from -60 mV to +90 mV, in 10 mV increments (n=15). Each 
trace represents a separate cell. 
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3.1.2 The effect of CP 55,940 on membrane currents: role of extracellular Ca2+ 

CP 55,940 was used at a concentration of 10 µM in all electrophysiological 

experiments, using the DDT, NE-2 cell line. This is due to work by Begg et al. 

(2001) who demonstrated that 10 µM CP 55,940 evoked a maximal response, which 

was sensitive to SR 141716 suggesting a CB1-dependent mechanism. CP 55,940 

(10 µM) evoked a transient outward current, in DDT, MF-2 cells, with peak amplitude 

of 21.3 ±0.9 pA/ pF after 167.7 ±21.1 seconds (Fig. 3.2A, n=11). Histamine (10 . tM), 

which releases Ca2+ from InsP3-sensitive stores and induces Ca2+ influx (Molleman et 

al., 1990,1991b), also produced a transient outward current with a peak amplitude of 

31.4 ±5.9 pA/ pF after 46.9 ±6.8 seconds of drug application (Fig. 3.2B, n=8). 

CP 55,940 (0.01-100 µM) induced a concentration-dependent increase in 

[Ca2+];, which was completely abolished with the removal of extracellular Ca 2-" 

(Fig. 3.3, n=4). However, the increase in [Ca2l; was only significant when CP 55,940 

concentrations of 10 µM or greater were used. Moreover, in Ca2+-free medium higher 

concentrations of CP 55,940 decreased [Ca2+];, which was significant at 100 µM (Fig. 

3.3, n=4, P<0.05, one way ANOVA). 

3.1.3 Capacitative Ca 2+ entry (CCE) 

3.1.3.1 The role of InsP3 receptors 

To examine the involvement of InsP3 receptors in the cannabinoid-induced 

response, the membrane-permeable InsP3 receptor blocker 2- 

aminoethoxydiphenylborane (2-APB) was used (Maruyama et al., 1997). To 
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Figure 3.2 The effect of the cannabinoid receptor agonist CP 55,940 and 
histamine on membrane currents in DDTI MF-2 cells. 
A, a sample trace of the effect of 10 µM CP 55,940 on resting membrane current 
(n=11). B, a sample trace of the effect of 10 µM histamine on resting membrane 
current (n=8). Horizontal bars indicate the presence of ligands. 
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Figure 3.3 The effect of CP 55,940 on [Ca2+];, in the presence and absence of 
extracellular Cat+. 
Fura-2 fluorometry was used to measure changes in [Ca2+]; in DDTI MF-2 cells, in 
response to CP 55,940 application (0.01-100 liM). Measurements were made in the 
presence (0, n=4) and absence ( , n=4) of extracellular Ca2+ (1 mM). Data 
represented as the mean [Ca2+]; (±S. E. M. ). 
Significant difference from CP 55,940 (0.01 µM): *P<0.05, **P<0.01, ***P<0.001 
(one way ANOVA). 

123 



determine a suitable concentration at which to use the inhibitor its actions on the 

histamine-evoked outward current were also assessed. 

Application of 2-APB (10 µM) had no effect on the outward current evoked 

by 10 µM CP 55,940 (23.6 ±9.1 pA/ pF, Fig. 3.4A and C, n=6) but at the same 

concentration 2-APB significantly reduced the histamine response to 2.7 ±2.3 pA/ pF 

(Fig. 3.4B and C, n=5, P<0.01). 2-APB (10 µM) alone had no effect on membrane 

currents (n=4). 

3.1.3.2 The role of store-operated Ca2+ channels (SOCCs) 

We investigated the possibility that CBI receptor stimulation evokes a rise in 

Ca2+ via CCE. The SOCC inhibitor SKF 96365 has been shown to inhibit receptor- 

mediated Ca2+ entry in platelets stimulated with thrombin, with an IC50 of 

approximately 10 µM (Merritt et al., 1990). At a concentration of 10 µM, SKF 96365 

had no effect on the cannabinoid-induced outward current (22.6 ±4.0 pA/ pF, Fig. 3.5, 

n=6). 

To determine if SKF 96365-sensitive channels are present in this cell type, the 

effect of the inhibitor on the response to histamine (10 . tM) was examined. Two 

applications of histamine, 10 minutes apart, evoked reproducible, transient currents, 

the second response being 97.9 ±19.0% of the first response (Fig. 3.6A, n=6). In the 

presence of 10 pM SKF 96365 there was no significant change to the initial histamine 

response (26.7 ±6.0 pA/ pF, n=5) but the second response was significantly reduced to 

49.2 ±9.1% of control (Fig. 3.6B and C, n=5, P<0.05). When applied alone 

SKF 96365 (10 µM) produced no observable change in membrane currents (n=4). 

124 



A 

1000 CP 55,940 
2-APB 

800 

Q 600 
CL 

400 
a) 

200 
U 

o 
0 woww ý 

0 200 400 600 800 

Time (s) 

B 

1000 Histamine 

800 
2-APB 

< 600 
a 

400 
aD 

200 

0 100 200 

Time (s) 

C 

40 
Q 

a 3o 
.r 20 

v 10 

CL 0 

Figure 3.4 The effect of 2-APB on currents evoked by CP 55,940 and histamine. 
2-APB (10 µM) was applied to cells for 10 minutes prior to application of either 
CP 55,940 (10 µM) or histamine (10 µM). A, a sample trace of the effect of 2-APB on 
the CP 55,940-mediated current. B, a sample trace of the effect of 2-APB on the 
histamine-evoked current. Horizontal bars indicate the presence of ligands. C, the 
effect of 2-APB on the mean peak current (±S. E. M. ) evoked by CP 55,940 (n=6) and 
histamine (n=5). 
Significant difference from histamine control: *P<0.01. 
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Figure 3.5 The effect of SKF 96365 on the CP 55,940-evoked outward current. 
SKF 96365 (SKF, 10 µM) was applied for 10 minutes prior to CP 55,940 (10 µM) 
application. A, a sample trace of the effect of CP 55,940 on resting membrane current 
in DDTI MF-2 cells (n=11). B, a sample trace of the effect of SKF 96365 on the 
outward current evoked by CP 55,940. Horizontal bars indicate the presence of 
ligands. C, the effect of SKF 96365 on the mean peak current (±S. E. M. ) induced by 
CP 55,940 (n=6). 
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Figure 3.6 The effect of SKF 96365 on reproducible histamine-evoked currents. 
Histamine (10 µM) was applied twice to cells, separated by a 10 minute washout. 
SKF 96365 (SKF, 10 µM) was applied for 10 minutes prior to initial histamine 
application and then continuously throughout the experiment. A, a sample trace of the 
currents evoked by histamine application (n=6). B, a sample trace of the effect of SKF 
96365 on histamine-evoked currents. Horizontal bars indicate the presence of ligands. 
C, the effect of SKF 96365 on the mean peak current (±S. E. M. ) evoked by the 2nd 
application of histamine, taken as a% of the 1st current response to histamine (n=5). 
Significant difference from histamine control: * P<0.05. 
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3.1.4 Non-capacitative Ca2+ entry (NCCE) 

Relocation of the electrophysiology apparatus made it necessary for a new set 

of CP 55,940 controls to be established. 10 µM CP 55,940 evoked a transient, 

outward current with a peak amplitude of 32.4 ±1.3 pA/ pF after 223.7 ±54.6 seconds 

(n=6, data not shown). The following experiments were compared against these new 

controls, with the exception of those using arachidonyl trifluoromethyl ketone (ATK). 

These results were compared against the first set of CP 55,940 controls as they were 

obtained under the original conditions, before the electrophysiology apparatus was 

relocated. The new CP 55,940 controls produced a significantly greater increase in 

current compared to the initial set of CP 55,940 controls (n=6, P<0.0001), which was 

also reflected by an increased latency to reach peak current. A shorter superfusion 

tube, used on the relocated electrophysiology apparatus, may have minimised the 

surface area available for the cannabinoids to stick to. Hence, a greater concentration 

of CP 55,940 may have entered the bath, evoking a larger current response in the 

cells. 

3.1.4.1 The role of arachidonic acid (AA) in Ca2+ signalling 

AA has been shown to produce a concentration-dependent rise in [Ca2+]; in 

DDT, MF-2 cells, with a maximal release of Ca2+ obtained at 1 mM AA (Van der Zee 

et al., 1995). This increase in Ca2+ was therefore expected to evoke an outward K+ 

current. In the present study, AA evoked a concentration-dependent, transient outward 

current (Fig 3.7, n=5). 
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Figure 3.7 The effect of AA on membrane current and CP 55,940-induced 

currents. 
AA (1-50 µM) was applied to DDT, MF-2 cells and the resulting change in membrane 
currents recorded. Once AA (10 and 50 µM)-mediated currents had returned to 
baseline, CP 55,940 (CP, 10 µM) was applied. A, a sample trace of the transient 

outward current evoked by 10 . iM AA and its effect on the CP 55,940-induced 

current. Horizontal bars indicate the presence of ligands. B, the effect of AA on 
membrane currents (n=5) and subsequent currents evoked by 10 µ1V1 (n=4) and 50 µM 
CP 55,940 (n=5). Data represented as the mean peak current (±S. E. M. ). 
Significant difference from AA (1 µM): *P<0.01, **P<0.001 (one way ANOVA). 
Significant difference from CP 55,940 control: tP<0.0001. 
Significant difference between test groups: ***P<0.01, tF<0.0001. 
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If pre-exposure to AA reduced the outward current seen to subsequent 

application of 10 µM CP 55,940, this would suggest that AA is involved in the 

intracellular signalling pathways that are evoked during CB1 receptor stimulation. 

However, if AA has no effect on the CP 55,940-evoked outward current this would 

suggest that the CB1 receptor signalling pathways do not involve AA production. 

DDT1 MF-2 cells were initially exposed to AA to induce a transient response. As soon 

as membrane currents had returned to baseline CP 55,940 was administered. 10 µM 

AA significantly inhibited the outward current induced by 10 p. M CP 55,940 to 9.9 

±0.7 pA/ pF (Fig. 3.7, n=4, P<0.0001, one way ANOVA) and at 50 µM completely 

abolished the cannabinoid-evoked response (Fig. 3.7B, n=5, P<0.0001, one way 

ANOVA). 

To further test the hypothesis that AA is generated in response to CB1 receptor 

stimulation, AA release was measured in [3H]AA-pre-labelled DDT, MF-2 cells. 

CP 55,940 produced a concentration-dependent efflux of AA, with maximal release 

achieved at 0.3 pM (Fig. 3.8A). To determine if a receptor-mediated production of 

AA was involved, the CB1 receptor antagonist SR 141716 (Rinaldi-Carmona et al., 

1994) was used to attempt to inhibit the [3H]AA efflux observed to 1 pM CP 55,940. 

SR 141716 (1 µM) alone induced a significant release of AA to 135.6 ±19.3% of 

basal (Fig. 3.8B, n=7, P<0.05), suggesting a partial agonist effect of this compound in 

this assay. CP 55,940 (1 )iM) evoked a significant release of AA to 199.2 ±23.4% of 

basal (Fig. 3.8B, n=30, P<0.01). In the presence of SR 141716 (1 PM) the CP 55,940- 

mediated release of AA was reduced to 139.8 ±13.8% of basal (Fig. 3.8B, n=14), 

comparable to the efflux observed with SR 141716 alone. 
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Figure 3.8 The effect of CP 55,940 on [3HIAA release in DDT1 MF-2 cells. 
A, [3H]AA-pre-labelled DDT, MF-2 cells were stimulated with CP 55,940 (0.03-10 
µM) and the release of radiation measured (n=8 experiments in triplicate). B, [3H]AA 
release was measured from cells stimulated with 1 µM CP 55,940 (n=30). These 
results were compared to [3H]AA measurements taken from cells pre-treated with SR 
141716 (1 µM; for 15 minutes), before stimulation with CP 55,940 (n=14). To 
establish the effects of SR 141716, [3H]AA release was measured from cells treated 
with SR 141716 alone (n=7). 
Basal AA release was taken as the amount of [3H]AA released in response to vehicle 
(DMSO, 0.1%). Data represented as the mean release of [3H]AA (ES. E. M. ), taken as a 
% of basal. 
Significant difference from basal (DMSO control): *P<0.05, **P<0.01, ***P<0.001. 
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3.1.4.2 The role of AA metabolites 

Indomethacin, a non-selective cyclo-oxygenase inhibitor (Bakalova et al., 

2002) and phenidone, a dual inhibitor of both cyclo-oxygenase and lipoxygenase 

(Kim et al., 2000) were used to establish if the response to CB1 receptor stimulation 

requires the production of AA metabolites. Pre-treatment of cells with indomethacin 

(10 µM) had no significant effect on the outward current evoked by 10 µM CP 55,940 

(30.1 ±3.2, pA/ pF, Fig. 3.9A and C, n=7). Phenidone (100 µM) also had no effect on 

the CP 55,940-mediated response (36.9 ±4.2 pA/ pF, Fig. 3.9B and C, n=5). No 

significant change in membrane currents was observed when indomethacin (10 µM, 

n=5) or phenidone (100 µM, n=6) were administered alone. 

3.1.4.3 Lanthanum (La3)-sensitive Ca2+ influx 

It has been reported that in the presence of the non-specific Ca2+ channel 

blocker La 3+ (50 µM), the histamine-evoked Ca 2+ influx in DDTI MF-2 cells was 

completely abolished, leading to a reduction of the outward current (Van der Zee et 

al., 1995). This Caz+ influx may represent the same NCCE pathway observed in other 

cell lines, which is also sensitive to inhibition by La 3+ (Fiorio Pla and Munaron, 2001; 

Mignen and Shuttleworth, 2000). To establish if Lai+-sensitive Ca 2+ channels are 

activated during CB1 receptor stimulation, its effects on the CP 55,940-evoked 

outward current were determined. Application of 50 pM Lai+, prior to CP 55,940 (10 

µM) application, completely abolished the cannabinoid response (Fig. 3.10A and C, 

n-7, P<0.0001). La 3+ (50 µM) alone evoked no change in membrane currents (n=5). 
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Figure 3.9 The effect of indomethacin and phenidone on CP 55,940-evoked 
outward currents. 
Indomethacin (10 µM) and phenidone (100 µM) were applied to cells for 10 minutes 
prior to CP 55,940 (10 µM) application. A, a sample trace of the effect of 
indomethacin on the outward current evoked by CP 55,940. B, a sample trace of the 
effect of phenidone on the CP 55,940-evoked current. Horizontal bars indicate the 
presence of ligands. C, the effect of indomethacin (n=7) and phenidone (n=5) on the 
mean peak current (±S. E. M. ) induced by CP 55,940. 
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Figure 3.10 The effect of La 3+ on currents evoked by CP 55,940 and AA. 
La3+ (50 µM) was applied for 5 minutes prior to CP 55,940 (CP, 10 . tM) and AA 
(10 µM) application. A, a sample trace of the effect of La 3+ on the CP 55,940-evoked 
current. B, a sample trace of the effect of La 3+ on the AA-induced current. Horizontal 
bars indicate the presence of ligands. C, the effect of La 3+ on the mean peak current 
(±S. E. M. ) induced by CP 55,940 (n=7) and AA (n=6). 
Significant difference from CP 55,940 control: **P<0.0001. 
Significant difference from AA control: *P<0.001. 
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To further explore a cannabinoid-mediated activation of NCCE, the effect of 

La 3+ on AA-induced Ca2+ entry was established. AA has also been shown to activate 

IK, Ca (Kirber et al., 1992), and therefore the study would help ascertain if AA 

production does indeed occur upstream of the Ca2+ entry process. La 3+ (50 PM) 

significantly reduced the response to 10 µM AA to a peak current of 5.4 ±4.3pA/ pF 

(Fig. 3.1OB and C, n=6, P<0.001). 

La 3+ can also potently inhibit CCE (Putney, 2001), so its effect on CCE 

induced in DDTI MF-2 cells was established. CCE in DDT, MF-2 cells was evoked 

with the SERCA inhibitor thapsigargin. In Ca2+-free medium, 1 µM thapsigargin 

induced an initial rise in [Ca2+]; resulting from the depletion of intracellular Ca 2+ 

stores (Fig. 3.1 IA). Re-addition of Ca2+ (1 mM) to the medium produced a sharp 

increase in [Ca21; reflecting the activation of CCE (Fig. 3.11A). Nickel (Ni2) has 

been shown to inhibit Ca2+ influx mediated by SOCCs in T-lymphocytes 

(Kerschbaum and Cahalan, 1999). In DDT, MF-2 cells, Ni2+ inhibited the Ca 2+ influx 

component of thapsigargin in a concentration-dependent manner (EC50: 0.8 mM, 

Fig. 3.11, n=3). At a maximum concentration of 100 µM, La3+ had no effect on the 

thapsigargin-induced elevation in [Ca2+]; (Fig. 3.12A, n=3), suggesting that separate 

Ca2+ influx pathways are initiated by CP 55,940 (NCCE) and thapsigargin (CCE). 

3.1.4.4 Gadolinium (Gd3+)-sensitive Ca2+ influx 

In rat aortic smooth muscle cells low concentrations (I µM) of Gd3' have been 

reported to inhibit CCE, while higher concentrations (100 µM) were shown to inhibit 

both CCE and NCCE (Broad et al., 1999). The effect of Gd3+ on CP 55,950-evoked 

membrane currents was investigated. Gd3+ (1 µM) inhibited the outward current 
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Figure 3.11 The effect of Ni2+ on thapsigargin-evoked CCE. 
Fura-2 fluorometry was used to measure changes in [Ca24] in DDT, MF-2 cells. 
Internal Ca2+ stores were initially depleted with 1 µ1v1 thapsigargin in Ca2+-free 
medium. Re-addition of 1 mM Ca 2+ to the external milieu produced a rise in [Ca2+]; 
reflecting the activation of CCE. A, a sample trace of the effect of Ni2+ on [Ca2+]; at a 
concentration of. 0.1-10 µM (a), 100 µM (b), 300 gM (c), 1 mM (d), 3 mM (e), 
10 mM (f). B, the effect of Ni2+ on thapsigargin-evoked Ca2+ influx (n=3). Data 
represented as the mean % inhibition of Ca + influx (±S. E. M. ). 
Significant difference from Ni2+ (0.1 PM): *P<0.05, **P<0.01, ***P<0.001, 
t P<0.0001 (one way ANOVA). 
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Figure 3.12 The effect of La 3+ and Gd3+ on thapsigargin-evoked CCE. 
Fura-2 fluorometry was used to measure changes in [Ca2+]; in DDTI MF-2 cells. 
Internal Ca2+ stores were initially depleted with 1 µM thapsigargin in Ca2+-free 
medium. Re-addition of 1 mM Ca2+ to the external milieu produced a rise in [Ca2+3]; 
reflecting the activation of CCE. Sample traces of [Ca2+]; in the presence of A, La + 
(n=3) at a concentration ranging from 0.01 to 100 p. M (a) and subsequent addition of 
Ni2+ 100 µM (b), 300 µM (c), 1 mM (d), 3 mM (e), 10 mM (f); B, Gd3+ (n=3) at a 
concentration ranging from 0.01 to 100 µM (a) and subsequent addition of Ni2+ 100 
µM (b), 300 µM (c), 1 mM (d). 
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produced by 10 . tM CP 55,940 to 7.5 ±3.6 pA/ pF (Fig. 3.13, n=9, P<0.0001). When 

applied alone 1µM Gd3+ produced no observable change in membrane currents (n=5). 

These results suggest that CP 55,940 may increase [Ca2+]; through a CCE 

pathway, so the effect of Gd3+ on thapsigargin-evoked CCE in DDT, MF-2 cells was 

also ascertained. Even at a maximum concentration of 100 UM, Gd3+ had no effect on 

thapsigargin-induced [Ca2+];, although subsequent Ni2+ application clearly inhibited 

the Ca2+ influx (Fig. 3.12B, n=3). This again is consistent with the idea that CP 

55,940 activates a Ca2+ influx pathway distinct from CCE. 

3.1.5 The role of phospholipase A2 (PLA2) in AA production 

PLA2 can generate free AA and cannabinoid-induced mobilisation of AA in 

WI-38 lung fibroblasts has been shown to involve the activities of the cPLA2 subtype 

(Wartmann et al., 1995). 

Arachidonyl trifluoromethyl ketone (ATK), a specific inhibitor of cPLA2 

(Street et al., 1993), has been shown to produce significant inhibition of AA release in 

agonist-stimulated neutrophils (Susztak et al., 1997). At a concentration of 15 µM, 

ATK had no significant effect on basal AA release in these cells (Susztak et al., 

1997). In DDT, MF-2 cells, 15 µM ATK alone evoked a transient outward current, 

which peaked at 25.9 ±4.2 pA/ pF (Fig. 3.14A and C, n=6). Application of ATK 

significantly reduced the outward current evoked by subsequent administration of 10 

µM CP 55,940 to 6.6 ±2.4 pA/ pF (Fig. 3.14A and C, n=7, P<0.0001). However, ATK 

has been shown to bind to the CB1 receptor (Koutek et al., 1994) suggesting the 

decrease in the outward current may be due to an inability of CP 55,940 to 

successfully bind to the CB1 receptor. Moreover, the stimulant effect of ATK alone in 
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Figure 3.13 The effect of Gd3+ on currents evoked by CP 55,940. 
Gd3+ (1 µM) was applied for 5 minutes prior to CP 55,940 (10 µM) application. A, a 
sample trace of the effect of Gd3+ on the CP 55,940-evoked outward current. 
Horizontal bars indicate the presence of ligands. B, the effect of Gd3+ on the mean 
peak current (±S. E. M. ) evoked by CP 55,940 (n=9). 
Significant difference from CP 55,940 control: * P<0.0001. 
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Figure 3.14 The effect of ATK on CP 55,940-evoked currents. 
ATK (15 µM) was applied to cells for 10 minutes prior to CP 55,940 (CP, 10 µ1M 
application. SR 141716 (SR, 1µM) was applied to cells for 5 minutes prior to ATK 
application. A, a sample trace of the current evoked by ATK (n=6) and its effect on 
the CP 55,940-evoked current. B, a sample trace of the effect of SR 141716 on the 
ATK-evoked response. Horizontal bars indicate the presence of ligands. C, the effect 
of ATK and SR 141716 on the mean peak current (±S. E. M. ) evoked by CP 55,940 
(n=7) and ATK (n=5) respectively. 
Significant difference from CP 55,940 control: *P<0.0001. 
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DDTI MF-2 cells may suggest the compound also has efficacy at the CBI receptor. To 

address this, the CB1 receptor antagonist SR 141716 was used to try to inhibit the 

ATK-evoked response. 1µM SR 141716 had no significant effect on the outward 

current evoked by ATK (25.4 ±9.4 pA/ pF, Fig. 3.14B and C, n=5). SR 141716 (1 

µM) alone had no effect on membrane currents (n=5). 

The non-specific PLA2 inhibitor 4-bromophenacyl bromide (4-BPB) (Roberts 

et al., 1977) was also used to investigate the activation of a PLAT signalling pathway. 

At a concentration of 10 µM, 4-BPB alone induced a transient outward current of 

peak amplitude 49.0 ±5.9 pA/ pF (Fig. 3.15A and D, n=7) and significantly inhibited 

the CP 55,940 (10 µM)-mediated outward current (6.3 ± 3.1 pA/ pF, Fig. 3.15E and 

D, n=9, P<0.0001). 4-BPB has been shown to activate Ca2+ influx in human gingival 

fibroblasts at concentrations lower than that used to inhibit PLA2 (Ogata et al., 2002). 

To further explore the actions of 4-BPB and help establish if the reduction of the CP 

55,940-induced response may be due to the inhibition of PLA2, the effect of CP 

55,940 on the outward current induced by 4-BPB was investigated. CP 55,940 (10 

µM) significantly reduced the outward current evoked by 10 pM 4-BPB to 8.4 ±4.4 

pA/ pF (Fig. 3.15C and D. n=5, P<0.001) suggesting that both CP 55,940 and 4-BPB 

stimulate similar signalling events that would lead to a cross-desensitisation of their 

responses. 

The effects of a second non-specific PLA2 inhibitor, quinacrine (Lu et al., 

2001), were explored. At concentrations of 10 µM and 30 µM, quinacrine inhibited 

the outward current evoked by 10 pM CP 55,940 to 20.7 ±2.6 pA/ pF (Fig. 3.16C, 

n=5, P<0.001, one way ANOVA) and 20.6 ±2.1 pA/ pF (Fig. 3.16A and C, n=9, 

P<0.01, one way ANOVA) respectively. However, at 100 µM, quinacrine showed no 

significant effect on the outward current (31.0 ±4.7 pA/ pF, Fig. 3.16B and C, n=6, 
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Figure 3.15 The effect of 4-BPB on currents evoked by CP 55,940. 
Cells were pretreated with 4-BPB (10 µM) for 10 minutes prior to CP 55,940 (10 µM) 
application. To determine the effects of CP 55,940 (10 µM) on the 4-BPB (10 PM)- 
induced response, 4-BPB was applied immediately after CP 55,940-evoked currents 
had returned to baseline. A, a sample trace of the effect of 4-BPB on resting 
membrane current. B, a sample trace of the effect of 4-BPB on the outward current 
evoked by CP 55,940. C, a sample trace of the effect of CP 55,940 on the outward 
current evoked by 4-BPB. Horizontal bars indicate the presence of ligands. D, the 
effect of 4-BPB on membrane currents (n=7) and currents induced by CP 55,940 
(n=9). The effect of CP 55,940 on currents evoked by 4-BPB (n=5). Data represented 
as the mean peak current (*S. E. M. ). 
Significant difference from 4-BPB control: *P<0.001. 
Significant difference from CP 55,940 control: **P<0.0001. 
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Figure 3.16 The effect of quinacrine on outward currents evoked by CP 55,940. 
Quinacrine (Quin, 10-100 µM) was applied to cells for 10 minutes prior to CP 55,940 
(CP, 10 µM) application. A, a sample trace of the effect of quinacrine (30 µM) on the 
outward current induced by CP 55,940. B, a sample trace of the effect of quinacrine 
(100 µM) on the CP 55,940-induced response. Horizontal bars indicate the presence 
of ligands. C, the effect of quinacrine, at a concentration of 10 µM (n=5), 30 j. tM 
(n=9) and 100 µM (n=6), on the mean peak current (ES. E. M. ) evoked by CP 55,940. 
Significant difference from CP 55,940 control: *P<0.01, **P<0.001. 
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one way ANOVA). Quinacrine (100 µM) alone had no effect on membrane currents 

in DDT, MF-2 cells (n=4). Previous reports have shown that quinacrine can directly 

modulate ILCa (Vanheel et al., 1999). To add further support to the 

electrophysiological data, and hence a CB1 receptor-mediated activation of PLA2, the 

effect of quinacrine on CP 55,940-evoked [3H]AA release was established (an assay 

independent of IK, Ca activation). Quinacrine (100 µM) abolished the CP 55,940 

(1 µM)-evoked AA release (107.8 ±10.4% of basal, Fig. 3.17, n=11, P<0.05). Alone 

quinacrine (100 µM) had no significant effect on basal [3H]AA efflux (116.9 ±19.8% 

of basal, Fig. 3.17, n=10). 
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Figure 3.17 The effect of quinacrine on the CP 55,940-induced release of [3H]AA. 
[3H]AA-pre-labelled DDT, MF-2 cells were stimulated with CP 55,940 (1 FM) and 
the release of radiation measured (n=30). These results were compared to [3H]AA 
measurements taken from cells pre-treated with quinacrine (100 . tM; for 15 minutes), 
before stimulation with CP 55,940 (n=11). To establish the effects of quinacrine, 
[3H]AA release was measured from cells treated with quinacrine alone (n=10). Basal 
AA release was taken as the amount of [3H]AA released in response to vehicle 
(DMSO, 0.1%). Data represented as the mean release of [3H]AA (±S. E. M. ), taken as a 
% of basal. 
Significant difference from basal (DMSO control): *P<0.01. 
Significant difference from CP 55,940 control: tP<0.05. 
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3.2 Western blot analysis of p42/44 MAP kinase in DDT, MF-2 cells 

Previous studies have demonstrated a CB1 receptor-mediated activation of 

p42/44 MAP kinase (Bouaboula et at., 1995b, 1999; Davis et al., 2003). To confirm 

the activation of a p42/44 MAP kinase in DDT, MF-2 cells, in response to CB 1 

receptor stimulation, western blot analysis was carried out on lysates prepared from 

cells treated with CP 55,940 (10 SM). Cells were stimulated for times ranging 

between 30 seconds and 30 minutes and a specific phospho-antibody was used to 

detect the phosphorylation of p42/44 MAP kinase. 

An upward trend was observed with CP 55,940 (10 µM) in ethanol 

(Fig. 3.18A, n=3), reflecting a possible time-dependent activation of p42/44 MAP 

kinases. Densitometry was used to quantify the effects of CP 55,940 on MAP kinase 

phosphorylation, revealed by western blot analysis (Fig. 318B). However, these 

results showed that there was no significance change in p42/44 phosphorylation at any 

of the time points tested, when compared to control (phosphorylation at t=0). 

The effects of vehicle (ethanol 0.1%) on p42/44 phosphorylation were 

established. Ethanol was also shown to phosphorylate p42/44 MAP kinase 

(Fig. 3.18A, n=3). In all cases the phosphorylation was as intense, if not greater, when 

compared to the results for corresponding time points for CP 55,940-activated cells. 

This suggests that the possible effects observed with CP 55,940 could be due to the 

activity of the ethanol. 

To determine if the phosphorylation was due to stimulation of the CB 1 

receptor, SR 141716 (1 µM) was used to try and inhibit the increase in 

phosphorylation observed in the presence of CP 55,940 (data not shown). However, 

these results were inconsistent as SR 141716 was shown to have varying effects on 
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Figure 3.18 Western blot analysis showing the time-dependent effect of 
CP 55,940 on p42/44 MAP kinase phosphorylation, in DDTI MF-2 cells. 
A, DDTI MF-2 cells were stimulated with either CP 55,940 (10 µM, n=3) or ethanol 
(0.1 %, n=3) at time points ranging between 30 seconds and 30 minutes. Cell lysates 
were then separated by SDS-PAGE electrophoresis and probed with anti-phospho- 
p42/44 antibody. B, densitometry was used to quantify CP 55,940-mediated changes 
in p42/44 MAP kinase phosphorylation, revealed by western blot analysis. Data 
represented as the mean absorbance (±S. E. M. ) as a% of control (absorbance at t=0). 
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the CP 55,940-induced phosphorylation (potentiate, inhibit or have no effect), which 

could never be repeated on subsequent blots. 

3.3 Cultured myenteric neuron immunohistochemistry 

So far the results of the current study have concentrated on the signalling 

events mediated by CB1 receptor stimulation on smooth muscle cells, a possible 

postsynaptic site of action for cannabinoids. The following work, investigating the 

signalling mechanisms behind a cannabinoid-mediated modulation of 

neurotransmission in the myenteric plexus, identifies possible neuronal sites of action. 

Initially, immunohistochemistry was used to validate myenteric neurons in 

primary culture as a model for those in situ. Following this, the effect of cannabinoids 

on these cultures could be explored. 

3.3.1 CB 1 receptor immunoreactivity on cholinergic neurons 

The CB1 receptor antibody showed dense labelling of all cultured myenteric 

neurons, including the cell body and neuronal processes (Fig. 3.19). Neuronal cultures 

also exhibited dual labelling with both the ChAT and CB1 receptor antibody 

suggesting the expression of CB1 receptors on cholinergic neurons (Fig. 3.20). 

The number of ChAT-positive cells was counted, and the proportion of these 

that were also positive for CB1 receptor protein was determined. 97.5 ±1.5% of 

ChAT-positive cells expressed CB1 receptors (n=556 ChAT-positive cells from 5 

different cultures with a minimum of 52 cells/ culture), while 100% of CBI-positive 

cells were cholinergic. 

149 



Figure 3.19 Immunostaining of cultured myenteric neurons with CB1 receptor 
antibody. 
C-terminus CB1 receptor antibody was used to label myenteric neurons in primary 
culture. Intense staining was observed over the entire neurons, including the cell 
bodies and the neuronal processes. 
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Figure 3.20 Dual labelling of cultured myenteric neurons with CBS receptor 
antibody and markers for cholinergic neurons. 
Cultured myenteric neurons were labelled with ChAT antibody (in green) and then 
co-labelled with C-terminus CB1 receptor antibody (in red). Yellow corresponds to 
overlap of the two antibodies and therefore co-localisation. 
Cholinergic neurons are present in culture and are shown to express canunabinoid CB1 
receptors. 
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3.3.2 Neurofilament (NF) immunostaining 

Immunostaining of NF protein was performed in cultured myenteric neurons 

as, in situ, cells labelled with the NFP-200 antibody show the cell morphology much 

more clearly than antibodies for CB1 receptors or ChAT. The NF antibody labelled a 

variety of cultured myenteric neurons, different in size, morphology and intensity of 

labelling of the soma (Fig. 3.21A). 

There were generally 3 types of neurons present: (1) neurons that showed 

bright, dense labelling of the soma, leaving a defined cell outline (Fig. 3.21A) (2) 

cells with less dense cytoplasmic labelling but with clear staining of individual 

intracellular neurofilaments and the outline of a large, ovid nucleus (Fig. 3.21B and 

C) (3) neurons that did not label with NFP-200 antibody at all (Fig. 3.21 Q. 

3.3.3 Double labelling of CB 1 receptor immunoreactivity with antibody against NF 

protein 

Virtually all NFP-labelled cells expressed CB1 receptors (Fig. 3.21C) but only 

a subset of CB1-positive cells expressed NF protein (Fig. 3.21D), while several CB1- 

positive cells did not label for NF protein at all (Fig. 3.21C). Due to the variation in 

the type of NFP labelling, which suggests different types of cells, and the great 

variability in proportion of cells labelled in different fields, it was not possible to give 

an accurate quantification of the total prevalence of NFP-labelled cells. 
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Figure 3.21 Characterisation of cultured myenteric neurons by double labelling 

with neurofilament (NF) antibody and CB1 antibody 
Cultured myenteric neurons were labelled with C-terminus CB1 receptor antibody and 
NFP-200. Red corresponds to CB1 receptor label and green to NF. Yellow 
corresponds to overlap of the two antibodies and therefore co-localisation. A, NFP 
labels a variety of cells, showing clear differences in size and morphology. B, NFP- 
positive cells express CBS receptors. C, several CBI-positive cells do not express NF 
protein (indicted by arrows). D, enlarged image of a single cell, labelled with both 

antibodies. Scale bars = 50 µM unless otherwise stated. 
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3.4 Patch clamping of myenetric neurons in primary culture 

3.4.1 Identification of voltage-dependent ion channels: isolation of Ca 2+ currents 

A voltage step protocol was used to determine the voltage-dependent ion 

channels present in cultured myenteric neurons. Membrane potentials were stepped 

from -100 mV to +50 mV, in 10 mV increments, while the resulting effect on 

membrane current was recorded. The voltage steps evoked a fast inward current, 

followed by a slower, more prolonged inward current, and finally an outward current 

(Fig. 3.22A). Fast inward currents were blocked by the voltage-dependent Na+ 

channel inhibitor TTX (300 nM), while outward currents were blocked by a 

combination of Cs+ in the pipette solution and TEA (10 mM), suggesting the 

activation of voltage-dependent K+ channels (Fig. 3.22B). Slower-activating, more 

prolonged, inward Caz+ currents were then unmasked (Fig. 3.22B) and inhibited by 

Cd 2+ (0.1 mM, Fig. 3.22C and D, n=3), a non-specific Ca 2+ channel antagonist (Bian 

et al., 2004). Threshold for the activation of Ca 2+ currents was at -30 mV, and the 

peak inward current was recorded at a test potential of 0 mV (71.3 ±6.8 pA/ pF, Fig. 

3.22D, n=11). 

3.4.2 Action potential generation 

Under current clamp, action potentials were evoked in myenteric neurons by 

increasing current steps that depolarised the membrane (-20 mV membrane deflection 

by each current step) (Fig. 3.23, n=9). Even at strong depolarisations only a single 

action potential was generated by each current step. This may be due to the long AHP 
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Figure 3.22 Isolation of voltage-operated Ca 2+ currents in myenteric neurons. 
A, a sample trace of the membrane currents evoked by voltage steps (-100 mV to +50 
mV, in 10 mV increments) in myenteric cultures (n=12). B, a sample trace of the 
inward Ca 2+ currents activated by voltage steps (-60 mV to +50 mV, in 10 mV 
increments), in the presence of TTX (300 nM) and TEA (10 mM). C, a sample trace 
of the effect of Cd 2+ (100 µM) on voltage-operated Ca 2+ currents (n=3). D, current- 
voltage relationship of the mean Ca 2+ currents (±S. E. M. ) evoked in the absence 
(0, n=11) and presence of Cd 2+ (0, n=3). 
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Figure 3.23 Action potential generation in myenteric neurons. 
Under current clamp, action potentials were evoked in myenteric neurons by 
increasing current steps (-20 mV membrane deflection by each current step) that 
depolarised the membrane (n=9). Each trace was recorded from a separate cell, held 
initially at around -80 mV (membrane potential), by sustained current injection. 
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observed after the propagation of each action potential, which persisted till the end of 

current injection. 

3.4.3 The effect of cannabinoids on membrane currents 

CP 55,940 and the endogenous cannabinoid anandamide were applied to 

cultured myenteric neurons to identify if cannabinoids evoked any change in 

membrane current. Application of either 10 µM CP 55,940 (n=4) or 10 µM 

anandamide (n=4) had no effect on membrane currents in myenteric neurons (data not 

shown). 

3.4.4 The effect of CP 55,940 on peak positive and negative membrane currents 

The effect of CP 55,940 on peak positive and negative membrane currents 

evoked by voltage steps (-100 mV to +50 mV, 10 mV increments) was investigated. 

As both CP 55,940 and anandamide produced no observable change in membrane 

currents (see section 3.4.3), voltage steps were applied at 30 second intervals for a 

total of 5 minutes in the presence of 10 µM CP 55,940. 

In the presence of CP 55,940 (10 µM) a slight decline in both peak positive 

and negative current was observed over time (Fig. 3.24, n=9). However, these 

reductions in peak positive and negative membrane current were not significant, when 

compared to currents evoked in the absence of CP 55,940 (Fig. 3.24). 
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Figure 3.24 The effect of CP 55,940 on peak positive and negative membrane 
currents evoked in cultured myenteric neurons. 
Peak positive (0) and negative ( ) membrane currents were recorded in neurons 
stepped from -100 mV to +50 mV, in 10 mV increments. The voltage step protocol 
was subsequently applied every 30 seconds for a total of 5 minutes, in the presence of 
10 . tM CP 55,940 (n=9). Data represented as the mean peak current (±S. E. M. ). 
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3.4.5 The effect of CP 55,940 on voltage-operated Ca2+ channels (VOCCs) 

Previous studies have shown that activation of the CB1 receptor can inhibit 

VOCCs, including N-, L- and P/Q-type Ca2+ channels (Mackie et at., 1995; Twitchell 

et al., 1997; Hampson et al., 1998; Gebremedhin et al., 1999) and this could be a 

mechanism by which cannabinoids inhibit neurotransmitter release in the myenteric 

plexus. Therefore the effect of CP 55,940 on voltage-dependent Ca2+ currents in 

cultured myenteric neurons was established. 

Ca2+ currents were evoked as previously described (see section 3.4.1), every 

30 seconds over a period of 5 minutes in the presence of CP 55,940 (10 µM, Fig. 

3.25A and B, n=11). These currents were then compared to Ca2+ currents evoked in 

the presence of vehicle (0.1% ethanol), at corresponding time points (Fig. 3.25C, D 

and E, n=10). Peak Ca2+ currents (evoked at 0 mV) in the presence of ethanol did not 

significantly change over time, when compared to peak currents induced in the 

absence of ethanol (Fig. 3.25D). In the presence of CP 55,940 (10 µM), peak Ca2+ 

currents were significantly inhibited after 3.5 minutes compared to ethanol controls, 

and at 5 minutes the greatest inhibition was observed (36.7% inhibition compared to 

corresponding ethanol time-point, Fig. 3.25D). The absolute decrease in peak current 

(taken as the difference in current at t=0 and t=5 minutes) was significantly greater in 

the presence of 10 pM CP 55,940 (35.8 ±6.5 pA /pF, n=11) compared to ethanol (5.1 

±2.1 pA/ pF, Fig. 3.25E, n=10, P<0.001). 
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Figure 3.25 The effect of CP 55,940 on voltage-operated Ca 2+ currents in 
cultured myenteric neurons. 
Ca2+ currents were evoked by voltage steps (-60 mV to +50 mV, in 10 mV 
increments) in the presence of CP 55,940 (10 µM, n=11), every 30 seconds for a 
period of 5 minutes, and then compared to Ca 2+ currents evoked at corresponding time 
points in the presence of ethanol (0.1%, n=10). A, a sample trace of the Ca 2+ currents 
evoked in the absence of CP 55,940. B, a sample trace of the Ca 2+ currents evoked in 
the presence of CP 55,940 after 5 minutes. C, current-voltage relationship of the mean 
Ca 2+ currents (±S. E. M. ) evoked in the presence of either ethanol (0) or CP 55,940 
(0), after 5 minutes. D, the effect of ethanol (0) and CP 55,940 (. ) on the mean 
inward current (±S. E. M. ) evoked at 0 mV. E, the difference between peak Ca 2+ 

currents at t=0 and t=5 minutes was taken as the absolute decrease in Ca + current. 
Data represented as the mean absolute decrease in inward current (±S. E. M. ). 
Significant difference from ethanol control: *P<0.05, **P<0.01, ***P<0.001. 
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3.4.6 The identification of G-protein inwardly rectifying K+ (GIRK) channel 

activation by CP 55,940 

Stimulation of CB1 receptors has been shown to activate GIRK channels. 

(McAllister et al., 1999; Guo and Ikeda, 2004). The activation of these channels could 

be a mechanism by which cannabinoids inhibit neurotransmitter release in myenteric 

neurons. 

A ramp protocol was used to identify if CB, receptor stimulation activates 

GIRK channels in cultured myenteric neurons. Ramp responses were taken at 30 

second intervals for a total of 5 minutes in the presence of 10 IiM CP 55,940. A 

current-voltage relationship of the data, from each 30 second period, showed that CP 

55,940 had no effect on the average current, over the voltage range tested (Fig. 3.26, 

n=9). 

3.4.7 Interaction between cannabinoids and nACh receptors in cultured myenteric 

neurons 

3.4.7.1 The effect of nicotine on membrane currents 

Endogenous application of nicotine to myenteric neurons in primary culture 

has been shown to produce a concentration-dependent, desensitising, inward current 

(Zhou et al., 2002). Consistent with this data, nicotine (1 mM) induced a transient, 

inward current, with peak amplitude of 29.5 ±5.2 pA/ pF after 33.6 ±1.8 seconds (Fig. 

3.27, n=17). 
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Figure 3.26 Determination of GIRK channel activation by CP 55,940 in cultured 
myenteric neurons. 
A ramp protocol was used to identify the activation of GIRK channels by CP 55,940 
(10 µM), present in myenteric cultures. The results were calculated by subtracting the 
ramp response (-120 mV to -50 mV over 800 ms) under control conditions from the 
ramp in the presence of CP 55,940, after 5 minutes (n=9). The results are typical of 
those obtained at earlier time points. The black trace represents the mean current with 
±S. E. M. represented by the grey traces. 

164 



0 

-200 

_- -400 

-600 
0 

-800 

0 30 60 90 120 

Time (s) 

Figure 3.27 The effect of nicotine on membrane currents in myenteric neurons. 
A sample trace of the effect of nicotine (1 mM) on resting membrane current in 
cultured myenteric neurons (n=17). Horizontal bar indicates the presence of ligand. 
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3.4.7.2 The effect of hexamethonium (C6) on nicotine-evoked currents 

Pretreatment with the non-specific nACh receptor antagonist C6 (100 µM) 

(Zhou et al., 2002) completely abolished the nicotine-evoked current (Fig. 3.28A and 

C, n=5, P<0.01). C6 (100 µM) had no effect on membrane currents when applied 

alone (n=3). 

3.4.7.3 The actions of methyllycaconitine (MLA) on nicotine-evoked currents 

Previous work by Oz et al. (2003) demonstrated that cannabinoids could 

inhibit nicotine-evoked currents in Xenopus oocytes transfected with the nicotinic a7 

subunit, independent of CB1/ CB2 receptor activation. Therefore we investigated the 

effect of the potent nACh receptor antagonist MLA (Turek et al., 1995), which 

specifically inhibits receptors expressing the a7 subunit. At a concentration of 100 

nM, MLA had no significant effect on the inward current evoked by I mM nicotine 

(26.9 ±5.9 pA/ pF, Fig. 3.28B and C, n=5). MLA (100 nM) alone produced no change 

in membrane currents (n=4). 

3.4.7.4 The modulation of nicotine-evoked currents by cannabinoids 

At concentrations of 1 µM and 10 µM the synthetic cannabinoid agonist 

CP 55,940 significantly reduced the response to nicotine (1 mM) to 12.9 ±3.9 pA/ pF 

(Fig. 3.29A and C, n=14, P<0.05, one way ANOVA) and 3.9 ±2.0 pA/ pF (Fig. 3.29B 

and C, n=9, P<0.01, one way ANOVA) respectively. 

166 



A 

200 Nicotine 
C6 

0 - 

< -200 
_a -400 - 

-600 - 

-800 

0 30 60 90 

Time (s) 

B 

200 

0 

Q -200 
a. 
c -400 

-600 
U 

-800 

C 

40 
U- 

30 

20 

10 
a) a 

0 

Figure 3.28 The effect of hexamethonium and MLA on nicotine-evoked currents 
in myenteric neurons. 
Hexamethonium (C6,100 µM) and MLA (100 nM) were applied to neurons for 5 
minutes prior to nicotine (1 mM) application. A, a sample trace of the effect of C6 on 
the nicotine-evoked inward current. B, a sample trace of the effect of MLA on 
nicotinic currents. Horizontal bars indicate the presence of ligands. C, the effect of C6 
(n=5) and MLA (n=5) on the mean peak current (±S. E. M. ) evoked by nicotine. 
Significant difference from nicotine control: *P<0.01 
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Figure 3.29 The effect of CP 55,940 on nicotine-evoked currents. 
CP 55,940 (CP, 1 µM and 10 µM) was applied to neurons for 5 minutes prior to 
nicotine (1 mM) application. A, a sample trace of the effect of CP 55,940 (1 4M) on 
the nicotine-induced current. B, a sample trace of the effect of CP 55,940 (10 µM) on 
the inward current evoked by nicotine. Horizontal bars indicate the presence of 
ligands. C, the effect of ethanol (0.2%, n=9) and CP 55,940, at a concentration of I 
µM (n=14) and 10 µM (n=9), on the mean peak current (±S. E. M. ) evoked by nicotine. 
Significant difference from nicotine control: *P<0.05, **P<0.01. 
Significant difference between test groups: tP<0.05. 
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The endogenous cannabinoid anandamide (AEA) also significantly inhibited 

the outward current evoked by nicotine (1 mM), in a concentration dependent-manner 

(Fig. 3.30, n? 8). Furthermore the inhibition caused by anandamide was greater than 

that of CP 55,940 at comparable concentrations, although this was not statistically 

significant. 

The effect of vehicle (ethanol) on nicotine-evoked currents was also 

established. Ethanol (0.2%) had no significant effect on the inward current evoked by 

1 mM nicotine (35.3 ±9.0 pA/ pF, Fig. 3.29C, n=9). 

3.4.7.5 The effect of SR 141716 on the cannabinoid-mediated inhibition of nicotine- 

evoked currents 

To determine the involvement of the CBI receptor in the cannabinoid- 

mediated inhibition of nicotinic currents the effect of the CB1 receptor antagonist, SR 

141716 was investigated. At concentrations of 300 nM and 1 µM, SR 141716 showed 

no significant reversal of the inhibition evoked by 1 µM CP 55,940 (20.6 ±5.6 pA/ pF, 

Fig. 3.31, n=15) or 10 . tM anandamide (0.3 ±0.4 pA/ pF, Fig. 3.31, n=10) 

respectively. 

Moreover, SR 141716 (300 nM and 1 µM) alone inhibited the inward current 

evoked by nicotine (1 mM) to 10.6 ±2.4 pA/ pF (Fig. 3.32B, n=12, P<0.01, one way 

ANOVA) and 7.7 ±3.6 pA/ pF (Fig. 3.32A and B, n=10, P<0.01, one way ANOVA) 

respectively. 
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Figure 3.30 The effect of anandamide on nicotine-evoked currents. 
Anandamide (AEA, 300 nM-10 µM) was applied to neurons for 10 minutes prior to 
nicotine (Nic, 1 mM) application. A, a sample trace of the effect of AEA (1 µM) on 
nicotine-induced currents. B, a sample trace of the effect of AEA (10 µM) on 
nicotine-induced currents. Horizontal bars indicate the presence of ligands. C, the 
effect of AEA on the mean peak current (±S. E. M. ) evoked by nicotine (n>_8). 
Significant difference from nicotine control: *P<0.05, *P<0.01 (one way ANOVA). 
Significant difference between test groups: tP<0.05. 
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Figure 3.31 The effect of SR 141716 on the cannabinoid-mediated inhibition of 
nicotine-evoked currents. 
SR 141716 (300 nM and 1 µM) was applied to neurons for 5 minutes prior to a 
subsequent application of either CP 55,940 (1 µM) or anandamide (AEA, 10 µM), 
followed by nicotine (1 mM). Data represented as the effect of SR 141716 on the 
mean peak current (±S. E. M. ) evoked by nicotine in combination with CP 55,940 
(n=15) or AEA (n=10). 
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Figure 3.32 The effect of SR 141716 on nicotine-evoked currents. 
Neurons were treated with SR 141716 (300 nM and 1 µM) for 5 minutes prior to 
nicotine (1 mM) application. A, a sample trace of the effect of 1 µM SR 141716 on 
the nicotine-evoked inward current. Horizontal bars indicate the presence of ligands. 
B, the effect of SR 141716, at a concentration of 300 nM (n=12) and 1 µM (n=10), 
on the mean peak current (±S. E. M. ) induced by nicotine. 
Significant difference from nicotine control: *P<0.01. 
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3.4.7.6 The actions of palmitoylethanolamide (PEA) on inward currents induced by 

nicotine 

So far the data suggests that the cannabinoid-mediated inhibition of nicotinic 

currents, in myenteric neurons, is independent of CB1 receptor activation. Therefore 

the effects of a cannabinoid ligand whose actions are thought to occur independently 

of CB1/ CB2 receptor activation, PEA (Lambert and Di Marzo, 1999), were 

investigated. PEA (1 µM) significantly inhibited the nicotine (1 mM)-evoked current 

to 15.6 ±4.1 pA/ pF (Fig. 3.33B, n=15, P<0.05, one way ANOVA) and at 10 µM 

inhibited the current to 10.9 ±1.4 pA/ pF (Fig. 3.33A and B, n=12, P<0.01, one way 

ANOVA). 

3.4.7.7 The effect of PTX on the cannabinoid-mediated inhibition of nicotine-evoked 

currents 

To further support a cannabinoid-mediated inhibition, independent of 

cannabinoid receptor activation, the effects of the Gu0 inhibitor, PTX were 

investigated (Begg et al., 2001). At a concentration of 100 ng/ ml, pre-incubation with 

PTX for 16hrs has been shown to significantly inhibit the outward current evoked by 

CB1 receptor activation in DDT, MF-2 cells (Begg et al., 2001). Myenteric neurons in 

primary culture were pre-incubated with PTX (100 ng/ ml) for at least 18 hrs prior to 

being patch clamped. PTX (100 ng/ ml) alone had no significant effect on the inward 

current evoked by 1 mM nicotine (28.3 ±8.0 pA/ pF, Fig. 3.34, n=14). The inhibition 

of nicotine (1 mM)-evoked currents, by 10 gM CP 55,940 (2.1 ±1.4 pA/ pF, n=6) or 
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Figure 3.33 The effect of PEA on nicotine-evoked currents. 
PEA (1 µM and 10 µM) was applied to neurons for 5 minutes prior to nicotine 
(1 mM) application. A, a sample trace of the effect of PEA (10 µM) on the nicotine- 
evoked inward current. Horizontal bars indicate the presence of ligands. B, the effect 
of PEA, at a concentration of 1 µM (n=15) and 10 µM (n=12), on the mean peak 
current (±S. E. M. ) evoked by nicotine. 
Significant difference from nicotine control: *P<0.05, **P<0.01. 
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Figure 3.34 The effect of pertussis toxin on the cannabinoid-mediated inhibition 

of nicotine-evoked currents. 
Myenteric cultures were pre-incubated with pertussis toxin (PTX, 100 ng/ ml) for 18 
hours prior to being patch-clamped. CP 55,940 (10 µM) and anandamide (AEA, 
10 . iM) were applied to neurons for 5 minutes prior to nicotine (1 mM) application. 
Data represented as the effect of PTX on the mean peak current (±S. E. M. ) evoked by 
nicotine alone (n=14) or in combination with CP 55,940 (n=6) or AEA (n=8). 
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10 µM ananäamide (1.3 ±0.6 pA/ pF, n=8), were not significantly reversed in the 

presence of PTX (100 ng/ ml) (Fig. 3.34). 

3.4.7.8 Single channel recording of nACh receptors 

The results imply that cannabinoids inhibit nACh receptor activation 

independent of CB1 receptor stimulation. To support the possibility that cannabinoids 

may be acting directly on the nACh receptor, single channel recording was used to 

establish the effect of cannabinoids on currents recorded from individual nACh 

channels. Previous studies have reported that ACh (100 µM) produces single channel 

currents with an amplitude of approximately 1.7 pA at -70 mV (Zhou and Galligan, 

1998). Therefore the application of 1 mM nicotine was expected to evoke a similar, if 

not greater, single channel open probability than 100 . tM ACh. However, the 

amplitude of noise during recording (4-5 pA) made it extremely difficult to 

distinguish between this and the activation of single channel currents by 1 mM 

nicotine (n=4, Fig. 3.35). 

3.4.8 The effect of CP 55,940 on 5-HT-evoked inward currents in cultured myenteric 

neurons 

Application of 5-HT has been shown to evoke a concentration-dependent 

inward current in cultured myenteric neurons (Zhou and Galligan, 1999). The inward 

current was biphasic, with an initial rapidly developing peak that desensitised in the 

presence of agonist, followed by a slower developing, sustained inward current (Zhou 

and Galligan, 1999). The 5-HT3 antagonist ondansetron completely blocked the 
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Figure 3.35 Single channel recording in cultured myenteric neurons. 
The outside-out patch configuration was used to obtain single channel recordings in 
myenteric cultures, treated with 1 mM nicotine (n=4). Each trace represents a separate 
cell. Due to the amount of noise the baseline spans approximately 4-5 pA, which 
could easily mask the activation of smaller single channel currents. The arrows point 
to slight decreases in current, which may represent the opening of single nACh 
channels rather than fluctuations in the baseline as a result of noise. 
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rapidly developing inward current but had no effect on the sustained current (Zhou 

and Galligan, 1999). In addition, it has been reported that cannabinoids can inhibit 5- 

HT3 receptors independent of CB1/ CB2 receptor activation (Barann et al., 2002; Oz et 

al., 2002). Therefore the effect of CP 55,940 on 5-HT-induced currents in cultured 

myenteric neurons was established. 

5-HT (50 µM) initially evoked a rapidly desensitising inward current, with 

peak amplitude 27.3 ±2.4 pA/ pF after 35.0 ±2.5 seconds (Fig. 3.36A and C, n=7) 

followed by a sustained inward current with an amplitude of 8.8 ±0.8 pA/ pF after 75 

seconds (Fig. 3.36A and D, n=7). At a concentration of 10 µM, CP 55,940 had no 

significant effect on the rapidly desensitising 5-HT (50 µM)-induced inward current 

(29.3 ±7.7 pA/ pF, Fig. 3.36B and C, n=5) but virtually abolished the sustained 

inward current (0.5 ±0.4 pA/ pF, Fig. 3.36B and D, n=5, P<0.0001). 
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Figure 3.36 The effect of CP 55,940 on currents evoked by 5-HT in myenteric 
neurons. 
Neurons were treated with CP 55,940 (10 µM) for 5 minutes prior to 5-HT (50 µM) 
application. A, a sample trace of the effect of 5-HT on resting membrane current in 
cultured myenteric neurons (n=7). B, a sample trace of the effect of CP 55,940 on the 
5-HT-induced current. C, the effect of CP 55,940 on the mean peak current (±S. E. M. ) 
evoked by 5-HT (n=5). D, the effect of CP 55,940 on the mean sustained current 
(±S. E. M. ) induced by 5-HT (n=5). 
Significant difference from 5-HT control: *P<0.0001. 
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4.1 DDT, MF-2 smooth muscle cells 

4.1.1 CB1 receptor-mediated increase in [Ca2+1; 

The present study sought to further define the signal transduction mechanisms 

mediating CB1 receptor-induced increases in [Ca2+]; in DDT, MF-2 smooth muscle 

cells. Previous work has shown that the cannabinoid agonist CP 55,940 evokes a 

transient outward current in this cell line, mediated by II, ca (Begg et al., 2001). The 

CP 55,940-evoked current is sensitive to inhibition by the CB1 receptor antagonist 

SR 141716A and is completely abolished by the removal of Ca2+ from the bathing 

solution (Begg et al., 2001). Similarly, we showed an increase in [Ca2+]; by 

CP 55,940, but only at high concentrations (? 10 µM). The increase was abolished by 

the removal of extracellular Ca2+ suggesting that the CP 55,940-induced increase in 

[Ca2+1; is entirely dependent on Ca2+ influx from the extracellular space, although 

Ca2' release from thapsigargin-sensitive stores is also shown to play a role (Begg et 

al., 2001). The lack of a significant increase in [Ca2jj at lower CP 55,940 

concentrations is surprising, especially in light of studies by Begg et al. (2001) who 

demonstrated that 1 µM CP 55,940 evoked a significant outward current in DDT1 

MF-2 cells, in an SR 141716A-sensitive manner. One explanation could be that 

smaller CP 55,940 concentrations evoke a localised increase in [Ca2+], which 

activates Cat+-dependent K+ channels close to the site of Ca2+ influx. A larger 

CP 55,940 concentration may produce a more `global' increase in cytosolic Cat+, due 

to a greater stimulation of Ca2+ influx, which is measured as a significant increase in 

[Ca24;. Furthermore, the distinct increase in [Ca2+];, seen at higher CP 55,940 

concentrations (? 30 MM), may be attributable to a combination of CB1- and non-CB1 
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receptor-dependent mechanisms. Further work is needed to establish the effect of 

SR 141716A on the CP 55,940-induced increase in [Ca2+];. 

Interestingly, 100 µM CP 55,940 significantly decreased [Ca21;, when 

extracellular Cali' was absent. This suggests that at least part of the Ca2+ transport 

mechanism is still operational (i. e. open Ca2+ channels) under these conditions but 

reversed due to the inverted driving force for Cat+. 

4.1.2 The role of capacitative Ca2+ entry (CCE) 

The requirement of both a release of Ca2+ from thapsigargin-sensitive stores 

and an influx of Ca2+ from the extracellular medium would imply a model for CCE, 

where the depletion of intracellular Ca 2+ stores is coupled to the activation of 

membrane-bound store-operated Ca 2+ channels (SOCCs) resulting in Ca2+ influx 

(Putney and McKay, 1999). 

DDTI MF-2 cells have been used previously to study increases in [Ca2+]; 

caused by the activation of histamine HI receptors, purine Pty receptors and a- 

adrenoceptors (Molleman et al., 1990,1991a). Hi receptor stimulation increased the 

production of InsP3 and InsP4, which was accompanied by an elevation in cytoplasmic 

Ca2+ (Molleman et al., 1991a). The generation of InsP3 requires the activation of PLC 

and hence the cleavage of PIP2 to DAG and InsP3 (Begg et al., 2001). The inhibitory 

effect of thapsigargin on the cannabinoid response may suggest a similar signalling 

pathway is utilised during CB1 receptor stimulation. However, inhibition of PLC has 

no effect on the outward current evoked by CP 55,940 (Begg et al., 2001) suggesting 

the CB 1 receptor-mediated increase in [Ca2+]; is independent of InsP3 generation. To 
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verify this conclusion the effect of 2-APB, a membrane-permeable InsP3 receptor 

antagonist, on the outward current evoked by CP 55,940 was established. 

2-APB had no significant effect on the CP 55,940-induced outward current at 

a concentration that was shown to significantly inhibit histamine-evoked currents. An 

InsP3-independent increase in [Ca2+]; has also been observed in MDCK tubular cells 

stimulated with CP 55,940 (Chou et at., 2001). In comparison with DDT1 MF-2 cells 

the increase in [Ca2+]; involved a release of Ca2+ from thapsigargin-sensitive stores 

and was significantly reduced (but not abolished) with the removal of extracellular 

Cat+. The actions of CP 55,940 were shown to occur independently of the CB1 

receptor as the CB1 receptor antagonist AM251 did not inhibit the increase in [Ca2+];. 

The study did not investigate the effects of other cannabinoid agonists or antagonists, 

including those more specific to the CB2 receptor, indicating that more work is needed 

to establish how CP 55,940 evokes a rise in [Ca24; in MDCK cells. 

In addition to its effects on the InsP3 receptor, 2-APB has been shown to 

directly block SOCCs in human platelets at concentrations used in the present study 

(Dobrydneva and Blackmore, 2001). This suggests that CCE does not mediate the 

cannabinoid-induced rise in [Ca2+]; in DDT1 MF-2 cells. We therefore used the SOCC 

inhibitor SKF 96365 to support the data obtained with 2-APB. SKF 96365 had no 

effect on the CP 55,940-evoked current at a concentration shown to significantly 

inhibit CCE in other systems (Merritt et al., 1990). Thus, together the SKF 96365 and 

2-APB data argue against CCE as a mechanism for CB1 receptor-evoked increases in 

[Ca2+];. To ascertain if SKF 96365-sensitive SOCCs are present at all in DDT1 MF-2 

cells the effects of the inhibitor on the outward currents evoked subsequently by 

histamine were determined. Interestingly, SKF 96365 had no effect on the initial 

response to histamine but significantly reduced the response to a second histamine 
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application suggesting that SKF 96365-sensitive SOCCs are present in DDT, MF-2 

cells. However, instead of mediating Ca2+ influx during the histamine response they 

may act to refill depleted internal Ca2+ stores between responses. Consistent with 

these results, Molleman et al. (1991a) showed that the removal of extracellular Ca2+ 

inhibited subsequent responses to histamine in DDT, MF-2 cells. In addition, the 

refilling of Ca2+ stores occurred independently of Hl receptor-mediated Ca2+ influx as 

store-refilling could still be demonstrated in the presence of the Hl receptor antagonist 

mepyramine (Dickenson and Hill, 1992). This is consistent with the idea that SOCC 

activation is dependent on the filling state of the stores and therefore independent of 

receptor occupation. Moreover, SKF 96365 has been shown to inhibit the refilling of 

Ca2+ stores following repeated M3-muscarinic receptor stimulation in vascular smooth 

muscle (Weirich et at., 2004). 

4.1.3 Non-capacitative Ca2+ entry (NCCE): the role of arachidonic acid (AA) 

The results obtained with 2-APB and SKF 96365 suggest that CCE does not 

mediate the increase in [Ca2+]; observed during CB1 receptor stimulation, although an 

influx of Ca2' is clearly required. Recently an NCCE pathway has been described 

which operates independently of intracellular store depletion. In this pathway the rise 

in [Ca2+]; occurs via Ca2+ influx activated by intracellular messengers including AA. 

AA-evoked Ca 2+ influx has been described in a variety of cell types including Balb-C 

3T3 mouse fibroblasts (Munaron et al., 1997), rat aortic smooth muscle cells (Broad 

et al., 1999), bovine aortic endothelial cells (Fiorio Pla and Munaron, 2001) and rat 

astrocytes (Sergeeva et al., 2003). In HEK293 cells the channels responsible for the 

AA-mediated Ca2+ influx were investigated and the resulting membrane current 
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designated as I, Ro (arachidonate-regulated Ca2+ current) (Mignen and Shuttleworth, 

2000). In addition, Van der Zee et al. (1995) demonstrated that AA initiated Ca2' 

influx during Hl receptor stimulation in DDT, MF-2 cells suggesting an NCCE 

pathway is operational in this cell line. This lends support to the possibility that CB1 

receptor stimulation induces a rise in [Ca21; through a similar non-capacitative 

pathway. 

Application of AA to DDT, MF-2 cells evoked a transient outward current, 

similar to that evoked by application of CP 55,940. Exogenous application of AA has 

been shown to induce Ca2+ influx in cells utilising NCCE (Munaron et al., 1997; 

Broad et al., 1999; Mignen and Shuttleworth, 2000; Fiorio Pla and Munaron, 2001) 

including DDT, MF-2 cells (Van der Zee et al., 1995) so it was expected to produce 

an outward K+ current. In order to determine if CB1 receptor-induced increases in 

[Ca2+]; occur through the activation of an ARC-like channel, the effects of AA on the 

CP 55,940-evoked current were established. AA concentration-dependently reduced 

the CP 55,940-evoked response. A similar result was obtained previously when AA 

was applied prior to histamine application in this cell line (Van der Zee et al., 1995). 

This resulted in an abolition of the histamine-evoked Ca2+ influx (NCCE), reflected 

by a reduction in the outward current. The remaining current was due to a release of 

Ca2+ from intracellular stores as it was abolished by the InsP3 antagonist heparin. 

These observations together also suggest that the Cat+-dependent K+ channels were 

not desensitised as a result of AA-mediated Ca2+ influx, otherwise a complete 

abolition of the subsequent histamine-evoked current would have been observed. 

Hence, the data collectively implies that AA activates the same Ca2+ channels that 

mediate Ca2+ influx during both CB1 and HI receptor stimulation. 
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To determine the presence of an AA-mediated NCCE pathway evoked by CB1 

receptor stimulation, [3HJAA release was measured in response to CP 55,940 

application. CP 55,940 evoked a concentration-dependent increase in [3H]AA release 

suggesting that CB1 receptor stimulation results in AA production. This was 

confirmed by using the CBI receptor antagonist SR 141716A, which blocked the CP 

55,940-evoked AA release completely. This compound appears to act as a partial 

agonist in view of its enhancement of basal AA efflux. It is known that SR 141716A 

can exhibit partial agonist effects in other experimental preparations (Schivachar et 

al., 1996; Smith et al., 2000). Previous work using DDT, MF-2 cells has shown that 

SR 141716A reduces both \9-THC-induced increases in [Ca2+]; and CP 55,940- 

evoked outward currents (Filipeanu et al., 1997; Begg et al., 2001). Together with our 

data this suggests that CP 55,940 generates AA in a CB1 receptor-dependent manner. 

In N18 mouse neuroblastoma cells (Hunter and Burnstein, 1997) and rat brain 

astrocytes (Schivachar et al., 1996) A9-THC has been shown to mobilise AA. These 

effects were SR 141716A-sensitive, implying the involvement of the CB1 receptor. 

The signalling implications for AA in the latter experimental preparation were not 

explored further but it is interesting that AA induces Ca2+ influx in primary rat 

astrocyte cell cultures (Sergeeva et al., 2003). AA was thought to activate Cali' 

channels directly in DDT, MF-2 cells as inhibitors of the cyclo-oxygenase and 

lipoxygenase pathway did not affect the characteristics of the histamine-induced 

[3H]AA release (Van der Zee et al., 1995). In accordance with this we found that 

inhibitors of either of these two pathways had no effect on the CP 55,940-evoked 

outward current in DDT, MF-2 cells. Comparable results have also been described in 

other preparations, where NCCE is mediated by AA rather than its metabolites 

(Munaron et al., 1997; Broad et al., 1999; Fiorio Pla and Munaron, 2001). This 
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further supports the possibility that CB1 receptor stimulation may initiate Ca2+ influx 

through AA-mediated NCCE. 

AA directly activates ARC channels in HEK293 cells (Mignen and 

Shuttleworth, 2000; Luo et al., 2001a) and aortic endothelial cells (Fiorio Pla and 

Munaron, 2001). However, other preparations have shown that an AA-mediated 

production of NO is a key regulator of the Ca2+ channels utilised during NCCE. In 

A7r5 vascular smooth muscle cells AA-mediated NCCE was mimicked by NO and 

abolished by the NOS inhibitor L-NAME (Moneer et al., 2003). In mouse parotid 

acini the NOS inhibitor 7-nitroindazole reduced AA-mediated Ca2+ influx (Watson et 

al., 2004). Interestingly, previous reports have shown that the NO donors GEA3162 

and sodium nitroprusside evoked an increase in [Ca2+]; in DDTI MF-2 cells (Favre et 

al., 1998). This increase was abolished in Ca 2+-free medium suggesting that NO 

induces Ca2+ influx from the extracellular space. From these collective results it is 

interesting to speculate that, in DDT, MF-2 cells, CBI or Hl receptor stimulation may 

evoke a rise in [Ca2+]; through an AA-mediated increase in NO, which in turn 

stimulates NCCE. 

4.1.4 La 3+ and Gd3+-sensitive Ca2+ influx 

The non-selective Ca2+ channel Blocker La 3+ abolished the CP 55,940-evoked 

outward current. At the same concentration La 3' has been shown to inhibit IARC in 

HEK293 cells (Mignen and Shuttleworth, 2000), bovine aortic endothelial cells 

(Fiorio Pla and Munaron, 2001) and DDT1 MF-2 cells (Van der Zee et al., 1995). La3+ 

was also able to inhibit outward currents evoked by AA, which suggests that AA 

production occurs upstream of Ca2+ entry and hence Ca2+ channel activation. 
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Complete abolition of the AA evoked response was not seen at a concentration that 

abolished the CP 55,940-induced response. This may be due to an AA-mediated 

release of Ca2+ from internal stores, which has been shown to occur at higher AA 

concentrations (Fioro Pla and Munaron, 2001; Watson et al., 2004). AA has also been 

shown to activate IK, ca directly in vascular smooth muscle cells at concentrations 

exceeding 5 µM (Kirber et al., 1992). However, if this mechanism solely mediated the 

outward current evoked by AA then such a significant reduction would not have been 

observed in the presence of Lai+. La 3+ can also inhibit CCE (Putney, 2001) so the 

effects of this inhibitor on thapsigargin-evoked CCE in DDT, MF-2 cells were 

investigated. Thapsigargin depletes Ca2+ stores by inhibiting the Ca2+ ATPase pumps 

present on the sarcoplasmic reticulum, thereby initiating CCE (Holda et al., 1998). 

Ni2+ decreased Ca2+ entry evoked by thapsigargin in a concentration-dependent 

manner but interestingly La3+ had no effect on the Ca 2-1- influx in response to 

thapsigargin, at a concentration seen to abolish the CP 55,940-evoked current. This 

clearly implicates a Ca2+ influx pathway separate from CCE, utilised during CB1 

receptor signalling in DDT, MF-2 cells. 

Gd3+, another inhibitor of Ca2+ influx, is able to distinguish between CCE and 

NCCE in rat aortic smooth muscle cells (Broad et al., 1999). At low concentrations (1 

µM) Gd3+ inhibited CCE, while at higher concentrations (100 µM) both CCE and 

NCCE were inhibited. In DDTI MF-2 cells Gd3+ (1 µM) inhibited the outward current 

in response to CP 55,940 but had no effect on CCE evoked by thapsigargin. Although 

other authors have shown the CCE pathway to be potently inhibited by 1 µM Gd3+ 

(Luo et al., 2001a; Putney, 2001), Gd3+-insensitive SOCCs are also expressed in other 

experimental systems (Fernando and Barritt, 1994,1995). The data obtained from the 

current study is consistent with previous work showing that low concentrations of 
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Gd3+ can inhibit currents mediated by I, Jc in HEK293 cells (Mignen et al., 2003) and 

inhibit Ca2+ influx in response to AA application in rat astrocytes (Sergeeva et al., 

2003). This may suggest that the AA-sensitive channels in rat aortic smooth muscle 

cells are distinct from those described in HEK293 cells and DDTI MF-2 cells. In 

support of this, SKF 96365 (100 nM) inhibited NCCE in rat aortic cells (Moneer et 

at., 2003) but at a 100 fold greater concentration has no effect on the CP 55,940- 

evoked outward current in DDT, MF-2 cells. Once again the Gd3" results are 

consistent with the idea that the Ca2+ influx pathway initiated during CB1 receptor 

stimulation is not capacitative. 

4.1.5 Properties of the arachidonate-regulated Ca24 (ARC) channel 

Three key properties are exhibited by ARC channels: Ca2+ entry is (1) 

activated by low AA concentrations (< 5µM), (2) directly triggered by AA and not by 

its metabolites, (3) independent from intracellular Ca2+ store depletion (Broad et al., 

1999; Fiorio Pla and Munaron, 2001; Luo et al., 2001b). Consistent with these 

properties of ARC channels, low concentrations of AA evoke a significant outward 

current in DDT, MF-2 cells while inhibitors of AA metabolism have no effect on CP 

55,940-evoked currents. However, it was previously shown that thapsigargin inhibited 

currents induced by CP 55,940 in DDT, MF-2 cells (Begg et al., 2001). This suggests 

that CB1 receptor-mediated Ca2+ influx is partly dependent on intracellular Ca2+ 

release, therefore opposing the third property exhibited by ARC channels. This could 

be explained by the reciprocal regulation of CCE and NCCE, described in cells 

exhibiting AA-mediated Ca 2+ influx (Luo et al., 2001a; Mignen et al., 2001; Moneer 

and Taylor, 2002). It was suggested that these pathways are coupled to one another, in 
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an inverse manner, forming two non-overlapping Ca2+ entry pathways. Hence 

thapsigargin, by evoking CCE, may be inhibiting CB1 receptor-mediated increases in 

[Ca2+]; in DDT, MF-2 cells due to the antagonism of AA-mediated NCCE. This 

mutual antagonism may provide an important mechanism for the cell guarding against 

toxic Ca2+ overload, which might occur if both Ca2+ entry pathways were operational 

at the same time. Interestingly, further work by Mignen et al. (2003) showed that 

calcineurin, a serine/ threonine protein phosphatase regulated by Cat+-dependent 

calmodulin binding, was involved in inhibiting I, c in HEK293 cells. Inhibitors of 

calcineurin reversed the inhibitory effect on ARC channels. Calcineurin activation 

was shown to be dependent on the sustained elevation of cytosolic Ca2+ resulting from 

the activation of SOCCs only and hence was shown to mediate the CCE-evoked 

inhibition of ARC channels (Mignen et al., 2003). 

The biophysical properties of the AA-activated Ca2+ channels are as yet 

unknown although recently light-sensitive channels present in Drosophila 

photoreceptors, belonging to the transient receptor potential-family, have been shown 

to be directly activated by fatty acids, including AA (Chyb et al., 1999). 

4.1.6 AA production via phospholipase A2 (PLA2) 

Another objective of the current study was to establish a link between MAP 

kinase activation and the resulting rise in [Ca21;. The results suggest that AA is 

involved in the signalling pathways induced during stimulation of the CB1 receptor. 

The liberation of AA can occur through the direct action of PLA2 on phospholipids. In 

particular the cPLA2 enzyme is associated with AA liberation, regulated by Ca2+ and 

requiring phosphorylation by MAP kinase for maximal activation (Lin et al., 1993; 
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Kudo and Murakami, 2002). In Balb-C 3T3 mouse fibroblasts, exhibiting NCCE, AA 

production was shown to occur through the activation of MAP kinase and cPLA2 

(Munaron et al., 1997). In addition, experiments in fetal lung fibroblasts have yielded 

results indicating that a cannabinoid-mediated increase in AA is also associated with 

an increased phosphorylation and hence activity of both MAP kinase and cPLA2 

(Wartmann et al., 1995), although later work revealed this was mediated by the CB2 

receptor (Hunter and Burnstein, 1997). To establish if a PLA2 enzyme was stimulated 

during CB 1 receptor stimulation in DDT, MF-2 cells, thus providing a link between 

MAP kinase and increasing [Ca2+];, inhibitors of PLA2 were used to try and block CP 

55,940-induced currents. 

The cPLA2 inhibitor ATK (15 µM) significantly inhibited the CP 55,940- 

evoked outward current, although by itself it induced a transient outward current in 

DDT, MF-2 cells. In neutrophils ATK has been shown to evoke a significant rise in 

AA, although only at concentrations exceeding 15 . tM (Susztak et al., 1997). ATK 

might induce a rise in AA in DDT, MF-2 smooth muscle cells at concentrations lower 

than those seen to generate AA in neutrophils. ATK (10 µM) has also been shown to 

inhibit lipoxygenase in neutrophils (Fonteh et al., 2002), which may contribute to a 

rise in AA if there is normally a continuous turnover of AA in DDT, MF-2 cells 

through this metabolic pathway. If the response to ATK is due to an increase in AA 

then the reduced cannabinoid response may be due to a desensitisation of the Ca2+ 

influx channels, similar to that seen with exogenous AA application prior to 

CP 55,940. ATK is an analogue of AA (Fig. 4.1) and is known to inhibit cPLA2 by 

binding to the active site of the enzyme (Trimble et al., 1993). Hence, ATK may be 

able to mimic the cellular actions of AA, including IARc activation, which would 

account for the outward current. 
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ATK has been shown to displace [3H]CP 55,940 binding to the CB1 receptor 

in intact neuroblastoma cells, with a K; of 0.65 µM (Koutek et al., 1994). The 

structural similarities to the endogenous cannabinoids may underlie the compound's 

ability to bind to the CB1 receptor (Fig. 4.1). Hence, the reduction in the CP 55,940- 

evoked current may be due to an inability of the cannabinoid to bind to the CB1 

receptor in the presence of ATK. ATK has also been shown to inhibit the iPLA2 

isoform at concentrations used to inhibit cPLA2 (Osterhout and Shuttleworth, 2000). 

Therefore it is impossible to determine if CB1 receptor stimulation activates cPLA2 

using this inhibitor alone. 

ATK has been shown to bind to the CBI receptor and in the present study also 

induces a response similar to that of CP 55,940 suggesting that it may also have 

efficacy at the receptor. To test this hypothesis ATK was applied in the presence of 

the CBI receptor antagonist SR 141716A to try and block the response. SR 141716A 

had no effect on the ATK-evoked current suggesting that the response is independent 

of CB1 receptor activation. Another selective inhibitor of cPLA2 (and analogue of 

AA) methyl arachidonyl fluorophosphonate (MAFP) (Lio et al., 1996) was also 

shown to exhibit antagonist actions at the CB1 receptor in the myenteric plexus 

longitudinal muscle (MPLM) preparation (Fernando and Pertwee, 1997). However, 

MAFP alone had no effect on electrically-evoked contractions suggesting it did not 

stimulate the C131 receptor (Fernando and Pertwee, 1997). Our data supports the idea 

that ATK may also be an antagonist at the CB1 receptor, although its stimulant effects 

in DDTI MF-2 cells are likely to involve a direct action on intracellular signalling 

pathways. 

Subsequent experiments to establish the role of PLA2 in CB1 receptor 

signalling used non-specific PLA2 inhibitors including 4-BPB and quinacrine. 4-BPB 
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(10 µM) significantly inhibited the outward current evoked by CP 55,940 but alone 

evoked an outward current in DDT, MF-2 cells. Previous studies in human gingival 

fibroblasts showed that 4-BPB significantly increased [Ca2+j; in a concentration- 

dependent manner (1-100 µM) (Ogata et al., 2002). The 4-BPB-induced Ca2+ 

mobilisation was abolished by the elimination of extracellular Ca2+ suggesting an 

influx of Ca2+ from the external medium is part of the response. The effect of 4-BPB 

was thought not to occur through its ability to inhibit PLA2 as ATK and quinacrine 

failed to evoke Ca2+ mobilisation (Ogata et al., 2002). Hence, 4-BPB may evoke an 

outward current in DDT, MF-2 cells by inducing Ca2+ influx. Interestingly, prior 

application of CP 55,940 inhibited the subsequent response evoked by 4-BPB. This 

suggests that 4-BPB may exploit a number of intracellular signalling pathways 

utilised during CB1 receptor stimulation, e. g. the activation of non-capacitative Ca2+ 

channels. Hence similar to ATK, the results obtained with 4-BPB and CP 55,940 

cannot attribute AA production solely through the actions of PLA2. 

Quinacrine (10-30 µM) reduced the CP 55,940-evoked current in DDT, MF-2 

cells but paradoxically at 100 pM had no effect. Application of quinacrine (100 µM) 

alone had no effect on membrane currents. Also noteworthy is that the level of 

inhibition was maximal at 10 . tM, with no further significant decrease at 30 µM, 

which may suggest that CB1 receptor stimulation in DDTI MF-2 cells induces a rise in 

Ca2+ via at least two pathways. 09-THC induced a release of AA in mouse peritoneal 

cells, which involved the activation of both PLA2 and PLD (Burnstein et al., 1994). 

AA can be released from DAG by DAGL (Lee and Severson, 1994). The generation 

of DAG, a secondary product of PLD metabolism, was thought to lead to the 

generation of AA in mouse peritoneal cells (Burnstein et al., 1994). In addition, 

quinacrine has been shown to directly interfere with ion channel function (Xiao et al., 
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2000), including Cat+-dependent K+ channels in rat arterial smooth muscle (Vanheel 

et al., 1999). This may account for the effects of quinacrine on evoked IK, Ca measured 

in DDT1 NU-2 cells. Therefore the effects of quinacrine on CP 55,940-evoked 

[3HJAA release was determined, an assay independent of IK, ca activation. Quinacrine 

(100 µM) alone had no effects on basal AA release and completely abolished the 

generation of AA induced by CP 55,940. The AA release data suggests that the 

primary pathway for AA production, during CB1 receptor stimulation, involves the 

activation of PLA2. However, as it is unclear what the non-specific actions of 

quinacrine are in DDT, MF-2 cells, which seem to interfere with evoked CB 1 receptor 

signalling pathways downstream of AA production, further work is needed to support 

a CB1-mediated activation of PLA2. 

The intracellular signalling pathways that evoked a release of AA in DDTI 

MF-2 cells during HI receptor stimulation have not been identified, although 

stimulation of the receptor has been shown to induce phosphorylation of MAP kinase, 

with significant phosphorylation occurring after only a minute (Robinson and 

Dickenson, 2001). This suggests an immediate action of MAP kinase, which possibly 

implicates a PLA2-induced release of AA during Hi receptor stimulation in DDTI 

MF-2 cells. Previous work has shown that both histamine- and CP 55,940-induced 

currents in DDT, MF-2 cells were inhibited by the MAP kinase inhibitor PD 98059, 

although histamine was less sensitive to this inhibition (Begg et al., 2001). This is 

consistent with the idea that the main increase in [Ca2+]; of the histamine response is 

derived from InsP3-sensitive stores and that PD 98059 could be inhibiting the NCCE 

component of the histamine response. 

The activation of a PLA2 pathway during CBI receptor stimulation could 

provide another explanation for a reduction in the CP 55,940-evoked outward current 
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seen with thapsigargin in DDTI MF-2 cells (Begg et al., 2001). Ca 2+ is required for 

cPLA2 translocation to the nuclear envelope and also stabilises the association of 

cPLA2 with the nuclear membrane (Kudo and Murakami, 2002). It could be proposed 

that a release of Ca2+ from internal thapsigargin-sensitive stores is required to initiate 

this process. However, it was shown that a Cat+-independent cPLA2 underlies the 

receptor stimulation of AA-mediated NCCE in HEK293 cells (Osterhout and 

Shuttleworth, 2000). Until more specific cPLA2 inhibitors are developed that do not 

interfere with cannabinoid signalling it will be difficult, pharmacologically, to 

ascertain an involvement of this subtype in CB1 receptor-mediated responses in 

DDTI MF-2 cells. 

4.1.7 Phosphorylation of p42/44 MAP kinase 

The subtype of MAP kinase activated during CB1 receptor stimulation in 

DDTI MF-2 cells along with the time course of its activation was investigated. 

Previous studies have shown that CB1 receptor stimulation activates a p42/44 MAP 

kinase in CHO cells and cultured U373MG human astrocytoma cells (Bouaboula et 

al., 1995a, b; Galve-Roperh et al., 2002). In addition, A9-THC activates p42/44 MAP 

kinase in the murine hippocampus (Derkinderin et al., 2003), striatum and cerebellum 

(Rubino et al., 2004), in an SR 141716A-sensitive manner. Hence, it seemed probable 

that CB1 receptor stimulation in DDT, MF-2 smooth muscle cells would also activate 

a p42/44 MAP kinase. 

DDT1 MF-2 cells were treated with CP 55,940 (+ ethanol) for time periods 

ranging between 30 seconds and 30 minutes, before proteins were separated by SDS- 

PAGE and immunoblotted with a specific anti-phospho p42/44 MAP kinase antibody. 
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The results hinted at a possible time-dependent activation of p42/44 MAP kinase, 

although densitometry data showed that this was not statistically significant, probably 

due to the limited n numbers. Hence, further western blot analysis (and densitometry 

data) is needed to increase the n values and thus establish if CP 55,940 produces a 

significant increase in p42/44 MAP kinase phosphorylation. 

Ethanol (0.1%) alone increased the phosphorylation of p42/44 MAP kinase. 

The phosphorylation was as intense, if not more intense, when compared to 

CP 55,940 at corresponding time points. This suggests that the effects observed with 

CP 55,940 could be due to the activity of the ethanol. In contrast, the 

electrophysiological data showed that 0.1% ethanol had no effect on membrane 

currents in DDT, MF-2 cells. Previous studies have also demonstrated that ethanol is 

able to activate a p42/44 MAP kinase, albeit at greater concentrations. In vascular 

smooth muscle cells 0.3% ethanol was able to induce a significant phosphorylation of 

MAP kinase compared to control, although at 0.1% ethanol no effect was observed 

(Sachinidis et al., 1999). In rat pancreatic cells ethanol also induced a marked 

phosphorylation of p42/44 MAP kinase, but the concentration of ethanol used was 

again three times higher than that used in the present study (Masamune et al., 2002). 

Paradoxically the results obtained with CP 55,940 in ethanol do not mirror 

those of ethanol alone. This could be explained if ethanol evoked an increase in MAP 

kinase phosphorylation, which was in fact reduced by CP 55,940. Recently such an 

effect of the cannabinoid WIN 55,212-2 has been demonstrated in mouse splenocytes 

(Kaplan and Kaminski, 2003). However, this contradicts the electrophysiological 

results demonstrating that MAP kinase activation is required to evoke a CB1 receptor- 

mediated increase in [Ca2+]; in DDT, MF-2 cells (Begg et al., 2001). Non-specific 

effects on intracellular signalling molecules including protein kinases have been 
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reported with PD 98059 (Davies et al., 2001). Therefore the electrophysiological data, 

suggesting that MAP kinase activation is required to evoke an increase in [Ca2+]; 

during CB1 receptor stimulation, needs further support from results using other MAP 

kinase inhibitors. 

To further establish if CBI receptor stimulation induces the phosphorylation of 

a p42/44 MAP kinase, SR 141716A was used to try and inhibit the effects of 

CP 55,940. However, the results proved difficult to interpret and were inconclusive. 

4.1.8 Problems associated with CBI receptor signalling in DDT, MF-2 cells 

In the current study there would be times when, at the beginning of a new 

passage, cells would stop responding to CP 55,940 but the application of histamine 

would still produce an outward current comparable to that of controls. The reason for 

this sudden abolishment, in what seemed only cannabinoid signalling, was unknown. 

Normally a new batch of cells (with a lower passage number) was unfrozen and 

experiments could continue. Hence, at regular intervals, especially in experiments 

involving the complete abolition of the cannabinoid response, DDT, MF-2 cells were 

frequently tested to see if they still responded to CP 55,940. However, this 

phenomenon became irreversible, even in newly unfrozen cells, which meant that 

further cannabinoid experiments in the DDTI MF-2 cell line became impossible to 

perform. Approximately 3-4 months was spent trying to establish and rectify the 

problem but to no avail. Numerous batches of DDT, MF-2 cells were unfrozen and 

tested. Morphologically they looked no different from cells used at the beginning of 

the study. The same batch of CP 55,940 was able to inhibit electrically-evoked 

contractions of the MPLM suggesting that the agonist was still active. All culture 
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media was changed, including the suppliers from which they were obtained but the 

problem still persisted. DDT, MF-2 cells, shown to respond to CP 55,940, were also 

obtained from our collaborators in Holland. These cells would work for a week or so 

but then, again, stop responding to CP 55,940 on the next passage. New cells were 

even obtained from the European Collection of Cell Cultures but although they 

responded to histamine, CP 55,940 still had no effect. Due to time constraints 

experiments concerned with DDT, MF-2 signalling had to cease. 

The abolition of the normal response to CP 55,940 suggests either an effect on 

the signalling pathways attributable solely to CB1 receptor stimulation or a direct 

effect on CB1 receptors. Previous studies have shown that CB1 receptors undergo 

agonist-induced desensitisation and internalisation in transfected HEK293 and 

neuroblastoma N18TG2 cells (Keren and Same, 2003). However, this would mean 

that cannabinoid agonists would have to be present before experiments i. e. during the 

cell culture stage. Valk et al. (1997) demonstrated that the IL-3-induced proliferation 

of myeloid 32D cells was enhanced by anandamide, in serum-free medium. When the 

cells were cultured in FCS, anandamide had no effect suggesting that anandamide or 

another cannabinoid ligand was present in FCS. Hence, although speculative, it may 

be possible that the FCS used to culture the DDT, MF-2 cells during the later stages 

of the study contained a high enough concentration of cannabinoid ligands to 

irreversibly desensitise and internalise CB1 receptors. As yet, no further explanations 

can be presented to explain the loss of CP 55,940-evoked currents. 
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4.1.9 Summary 

In summary the results obtained in DDT1 MF-2 smooth muscle cells have shown for 

the first time that stimulation of cannabinoid CBI receptors can lead to Ca 2+ influx 

mediated by AA (Fig. 4.2). This influx pathway is distinct from CCE and instead may 

involve the activation of IAxo and hence NCCE. The CCE pathway is operational in 

DDTI MF-2 cells and can refill depleted intracellular stores between responses, as 

shown with histamine Hi receptor stimulation. The current study also provides 

evidence for a CB1 receptor-mediated activation of PLA2, upstream of AA 

production, and likely downstream of MAP kinase. Western blot analysis hinted at a 

possible CP 55,940-induced phosphorylation of the p42/44 MAP kinase. However, 

due to the effects of vehicle (ethanol) alone on MAP kinase phosphorylation these 

results are difficult to interpret and thus further work is clearly required to 

convincingly associate CB1 receptor stimulation with p42/44 MAP kinase activation, 

in DDTI MF-2 cells. 

AA-mediated NCCE may underlie [Ca2+]; oscillations as demonstrated in cells 

derived from the exocrine avian nasal gland (Shuttleworth, 1996) and in HEK293 

cells (Shuttleworth and Thompson, 1998). Such signals are probably key determinants 

in the control of critical cell activities such as targeted regulation of kinases and 

phosphatases, ion channels, energy metabolism and secretions (Shuttleworth, 1999). 

Further work is required to establish if a similar role can be attributed to the activation 

of AA-mediated NCCE by CB1 receptors in DDT, MF-2 cells. 

201 



K+ 

GVo 

d 

LAýI 

CB1 'K, Ca 

MAPK 

PLAZ 

NCCE 

1 f [Caz+]; 

Ca 2+ 

D lo--- ýARC 

Figure 4.2 Possible intracellular signalling pathways evoked in DDTI MF-2 cells 
during CB1 receptor stimulation, which lead to an increase in [Ca2+]i. 
+ suggests activation, - suggests inhibition, ? suggests a possible mechanism. CB1 
receptor stimulation activates MAPK and inhibits AC, through Gil,, proteins. MAPK 
may subsequently phosphorylate PLA2, which in turn generates AA. AA induces an 
increase in [Ca2+]; via the activation of ARC-like channels, present on the cell 
membrane, and thus initiates NCCE. 
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4.2 Immunohistochemical study of cultured myenteric neurons 

Cannabinoids can inhibit gastrointestinal motility, which involves the 

stimulation of presynaptic CB1 receptors in the myenteric plexus that reduce ACh 

release (Pertwee et al., 1996a; Coutts and Pertwee, 1997). The signalling pathways 

associated with this inhibition are poorly understood so it was of great interest to 

establish the electrophysiological effects of cannabinoids in isolated myenteric 

neurons maintained in primary culture. However, before these neurons could be used 

they had to be validated as a model for myenteric neurons in situ. For instance, it had 

to be established that cultured myenteric neurons express CBI receptors. Myenteric 

neurons also form a heterogeneous population (Costa et al., 1996), although 82% of 

myenteric neurons in the guinea-pig ileum are cholinergic (Coutts et al., 2002). 

Therefore it was also necessary to know the most prevalent class of myenteric neuron, 

present in culture, which expressed the CBI receptor. Any effect of cannabinoids 

could then be associated with a specific neuron that had been patched. 

4.2.1 CB1 receptor expression on cholinergic neurons 

Immunohistochemistry, performed in collaboration with Dr. Angela Coutts at 

Aberdeen University, was used to characterise the neurons. Detection of cholinergic 

neurons was achieved with antibodies raised against ChAT, while CB1 receptors were 

detected with antibody raised against the C-terminus of the receptor. 97% of 

cholinergic neurons in culture expressed the CB1 receptor but more importantly all the 

neurons that labelled positively for CBI were cholinergic. This indicates that any CB1 

receptor-mediated effect in these cultures is on a cholinergic neuron. The data is 
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consistent with that of Coutts et al. (2002) who found that 98.5% of CBI-positive 

myenteric neurones, in situ, were cholinergic. 

The CBI receptor antibody densely labelled both the neuronal cell body and 

neuronal processes. It is generally assumed that CB1 receptors are localised to the 

presynaptic terminals where they inhibit the release of neurotransmitter. The cultured 

cells were initially permeabilised before being incubated with the antibody, which 

means intracellular epitopes are targeted. Therefore the dense labelling of the soma 

may be consistent with the production of CB1 receptor protein in the cell body and its 

subsequent transport to the processes. 

In the intact guinea-pig ileum, immunohistochemical studies identified CBI 

receptors on myenteric primary afferent, interneuronal and motor neuronal cell bodies 

and nerve fibres (Coutts et al., 2002). In the ascending excitatory pathway, which 

mediates smooth muscle contraction, these neuronal types are predominantly 

cholinergic (Brookes et al., 1997; LePard and Galligan, 2000; Furness and Sanger, 

2002). As all CB1 receptor-positive neurons were cholinergic in the myenteric 

cultures this implies that any effects obtained with cannabinoids could represent an 

action on any of these three main neuronal types. 

4.2.2 Neurofilament (NF) immunostaining 

Cultured cells were also incubated with antibody (NFP-200) raised against NF 

proteins as they show the cell morphology much more clearly than antibodies for CB1 

receptors or ChAT. The NF antibody labelled neurons of different sizes and shapes 

and differing intensity of labelling of the soma suggesting different types of cells are 

present in culture. This is consistent with the findings of Brehmer et al. (2002) who 
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used NF immunohistochemistry to look at pig myenteric neurones in situ. The great 

variation in morphology of the cultured neurons suggests, at least, the presence of 

Dogiel type I and II neurons and thus motor and/ or intemeurons and IPANs. 

However, due to the clumping of cells in culture it was impossible to see the 

morphology of every cell in order to be able to classify it, so it is unknown if some 

cell types survive the culturing process better than others. Moreover, the proportion of 

Dogiel types would inevitably vary even without clumping. 

Some neurons in culture were shown not to label with NFP-200 at all, which 

again has also been demonstrated in guinea-pig myenteric neurons in situ (Coutts et 

al., 2002). Only a subset of C131-positive cells expressed NF protein, which 

unfortunately was not quantified. In the whole guinea-pig myenteric plexus 58% of 

neurons that were positive for the CB1 receptor also labelled for NF protein (Coutts et 

al., 2002). 

4.2.3 Summary 

In summary, the immunohistochemistry has shown that cultured myenteric 

neurons express CB1 receptors, where they are localised on cholinergic neurons. 

Furthermore, the great variation in morphology of these cultured myenteric neurons is 

consistent with the variability in morphology of myenteric neurons in situ. This 

suggests the presence of different types of neuron (motor neuron, interneuron and 

IPANs) in culture, although an accurate proportion of Dogiel types could not be 

established. Hence, cultured myenteric neurons seem to be a valid model for 

establishing the mechanisms underlying a cannabinoid-mediated inhibition of 

cholinergic neurotransmission in situ. 
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4.3 Cannabinoid signalling in the myenteric plexus: effects on K+ and Ca 2+ 

conductance 

The immunohistochemical data validates cultured myenteric neurons as a 

model for those in situ. Hence, myenteric cultures can be used to help identify the 

CB1 receptor-mediated signalling events that may lead to a reduction in 

neurotransmitter release in the intact myenteric plexus. A CB1 receptor-mediated 

activation and inhibition of K+ channels and Ca2+ channels respectively has been 

described previously (Mackie et al., 1995; Twitchell et al., 1997; McAllister et al., 

1999; Mu et al., 1999) and has been shown to underlie the inhibitory actions of 

cannabinoids on neurotransmitter release in areas such as the mouse nucleus 

accumbens, rat striatum and hippocampus (Lenz et al., 1998; Huang et al., 2001; 

Robbe et al., 2001). Indeed, the inhibitory actions of WIN 55,212-2 on electrically- 

evoked contractions of the MPLM were attenuated by forskolin and augmented by 

reducing extracellular Ca2+ (Coutts and Pertwee, 1998). This implies a cannabinoid- 

mediated inhibition of Ca2+ channels and possibly, via the inhibition of the cAMP/ 

PKA pathway, activation of IA. Hence, electrophysiological experiments were used to 

establish the effects of cannabinoids on ion channels present in cultured myenteric 

neurons. 

4.3.1 Identification of voltage-operated ion channels 

A voltage step protocol was used to activate any voltage-operated ion channels 

present in myenteric cultures. Voltage steps evoked fast inward currents followed by a 

slower more prolonged inward current and finally an outward current. The fast inward 
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current was blocked by the Na+ channel inhibitor TTX and the outward current was 

blocked by the combination of Cs+ and TEA suggesting that voltage steps also 

activate voltage-dependent K+ channels in the cultures. This unmasked inward 

currents associated with the activation of voltage-operated Ca2+ channels (VOCCs), as 

the non-specific Ca 2+ channel antagonist Cd 2+ significantly inhibited them. Threshold 

for the activation of Ca2+ currents was -30 mV and the peak inward current was 

recorded at a test potential of 0 mV. This is consistent with previous reports 

investigating Ca2+ conductance in cultured myenteric neurons, derived from the 

guinea-pig ileum (Ren et al., 2001; Bian et al., 2004). 

4.3.2 Action potential propagation 

Action potentials were evoked in cultured neurons held under current clamp. 

Even at large membrane depolarisations all the neurons tested only generated a single 

action potential. S-neurons, which generate fEPSPs (Galligan, 2002), would be 

expected to evoke more than a single action potential during the period of current 

injection. After each action potential a long AHP was observed which was still 

evident at the end of current injection. Long AHPs in myenteric neurons have been 

associated with AH-neurons/ IPANs and are due to the activation of Cat+-dependent 

K+ channels (Furness et al., 1998). The AHP can last from 1-20 seconds and explains 

why AH-neurons fire significantly less action potentials compared to S-type neurons 

in a given time period. However, the action potential of AH-neurons also exhibits a 

prominent Ca24 hump (Furness et al., 1998), which was not observed in action 

potentials evoked in the myenteric cultures. Hence, the predominant neuronal type (S- 

or AH-neuron) present in culture cannot be identified using the electrophysiological 
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data alone. Furthermore, the results also hang a large question mark over the current 

electrophysiological classification of myenteric neurons, obtained using intracellular 

recordings, and therefore needs further clarification. 

4.3.3 The effect of CP 55,940 on peak positive and negative membrane currents 

Both CP 55,940 and anandamide were initially applied to naive neurons but 

were shown to exert no change in membrane currents. Previous reports have mostly 

described CB1 receptor-mediated effects on ion channels when the channel itself is 

active, such as the enhancement of currents through GIRK channels (McAllister et al., 

1999), the enhancement of IA (Hampson et al., 1995; Mu et al., 2000) and the 

inhibition of N- and P/Q-type Ca 2+ currents (Mackie et al., 1995; Twitchell et al., 

1997). Therefore the effects of CP 55,940 were determined on peak positive and 

negative membrane currents evoked by voltage steps. As the time taken for CP 55,940 

to induce an effect in cultured myenteric neurons was unknown, currents in response 

to voltage steps were recorded every 30 seconds for a period of 5 minutes, in the 

presence of the cannabinoid. A slight decrease in both peak positive and negative 

current was demonstrated over time, although this was not significant. 

4.3.4 CP 55,940-mediated activation of GIRK channels 

Stimulation of CB1 receptors has been shown to activate GIRK channels 

(McAllister et al., 1999; Guo and Ikeda, 2004), which would contribute to a reduction 

in neurotransmitter release. Kir channels are present in myenteric neurons (Zholos et 

al., 1999; Ren et al., 2001). Therefore CP 55,940 was used to determine if 
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cannabinoids could activate GIRK channels in cultured myenteric neurons. Within a5 

minute period of application, CP 55,940 had no effect on the average current evoked 

by ramp responses, designed to identify the activation of GIRK channels. An 

extremely important consideration when interpreting the results obtained in cultured 

myenteric neurons is that the patch is made on the soma. However, CB1 receptors are 

thought to be located on the presynaptic terminals (Pertwee et al., 1996a; Coutts and 

Pertwee, 1997), which are too small to be patched. Indeed, immunohistochemistry has 

shown that antibody for the CB1 receptor was closely associated with antibody for 

synpasin I, which labels protein related to the cytoplasmic surface of synaptic vesicles 

(Coutts et al., 2002). The current results suggest, at least, that cannabinoids do not 

activate somatodendritic GIRK channels. The possibility that CP 55,940 may be 

stimulating GIRK channels closer to presynaptic sites, which we are unable to record 

due to space clamp problems, cannot be ruled out. In neurons, the cytoplasm of 

narrow dendrites or axons can be considered as accumulating resistance along the 

length of the branch. As a result, areas of membrane distant from the pipette electrode 

(i. e. near the synapse) are poorly clamped. This phenomenon of poor voltage clamp 

due to significant cytoplasmic resistance is known as space clamp. 

4.3.5 CP 55,940-mediated inhibition of VOCCs 

The inhibitory effect of cannabinoids on Cat' channels, mediated by the CB1 

receptor, has been well documented and includes N-, L- and P/Q-type Ca2+ channels 

(Mackie et al., 1995; Twitchell et al., 1997; Hampson et al., 1998; Gebremedhin et 

al., 1999). The activation of N-type Ca 2+ channels has been shown to mediate the 

presynaptic release of ACh in the myenteric plexus (Takahashi et al., 1992; Tran and 
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Boot, 1997). At higher neuronal firing frequencies P/Q-type Ca2+ channels evoke 

NANC contractions in the guinea-pig ileum (Tran and Boot, 1997), which may result 

from a release of TKs from motor neurons that occurs at higher levels of stimulation 

(Bornstein et al., 2004). Hence, a CB1 receptor-mediated inhibition of N- and P/Q- 

type Caz+ channels would reduce the presynaptic release of neurotransmitter. 

Evoked inward Ca2+ currents were isolated in cultured myenteric neurons. The 

effect of CP 55,940 on these Ca2+ currents was established and compared to time- 

matched vehicle controls. It was found that the cannabinoid significantly inhibited 

Ca2+ currents compared to currents evoked in the presence of ethanol. The inhibitory 

effect of CP 55,940 was significant after 3.5 minutes and was maximal at 5 minutes. 

The maximal inhibitory effect of WIN 55,212-2 on electrically-evoked contractions of 

the guinea-pig MPLM lasted for 20 minutes, before being reversed by SR 141716A 

(Pertwee et at., 1996a). The maximal inhibitory effect of 09-THC on evoked 

contractions of the MPLM lasted at least 60 minutes (Pertwee et at., 1992). 

Collectively, these studies suggest a continual inhibition of evoked contractions of the 

MPLM for as long as cannabinoids are present. This is consistent with the results of 

the current study, where the inhibitory effect on Ca2+ currents did not diminish after 

time. A further reduction in Ca 2+ currents by CP 55,940 may have been observed if 

recordings had continued for longer. Further studies are now required to establish if 

the inhibitory effects of CP 55,940 are mediated by the CBI receptor. 

Bian et at. (2004) investigated the subtypes of VOCCs that constitute the Ca2+ 

currents evoked in guinea-pig myenteric neurons maintained in primary culture. The 

Ca2+ currents carried by N-type and P/Q-type channels represented approximately 

25% and 20% respectively of the total Ca 2+ current. In the present study maximal Ca 2+ 

currents, recorded at 5 minutes, were inhibited by approximately 37% in the presence 
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of CP 55,940, which is in agreement with the combined percentage of the Ca2+ current 

carried by N- and P/Q-type channels in myenteric cultures (-45%) (Bian et al., 2004). 

This supports the possibility that CP 55,940 inhibits N- and P/Q-type Ca2+ currents in 

cultured myenteric neurons. GABA release from the myenteric plexus was shown to 

couple to N- and P/Q-type Cat channels (Reis et al., 2002). Hence, the CB1 receptor- 

mediated inhibition of GABA release, described in the MPLM (Begg et al., 2002b), 

may also result from an inhibition of these Ca2+ channels. 

R-type Ca2+ channels carry around 50% of the total Ca2+ current evoked in 

myenteric neurons (Bian et al., 2004). Although there have been no reports of a 

cannabinoid-mediated inhibition of R-type Ca2+ channels, they may regulate 

neurotransmitter release in the myenteric plexus (Bian et al., 2004) and thus their 

inhibition by CP 55,940 cannot be ruled out. Clearly, further studies are required to 

establish the effect of cannabinoids on isolated Ca2+ currents carried by specific 

channel subtypes. 

Once again the neuronal region in which this inhibition was recorded should 

be considered. The current data suggests that CP 55,940 inhibits somatodendritic Ca2+ 

currents, which may contribute to other physiological effects. For instance, N-type 

channels contribute to Ca 2+ influx during the action potential in IPANs (Furness et al., 

1998) and therefore may participate in the regulation of cell excitability. Hence, a 

cannabinoid-induced inhibition of somatodendritic N-type channels might reduce 

neurotransmitter release through a decrease in neuronal excitability. 
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4.3.6 Summary 

In summary, cultured myenteric neurons express voltage-dependent Na+, K+ 

and Ca 2+ channels, whose activation are involved in the generation of action 

potentials. On the basis of these action potentials alone it is difficult to classify the 

neurons according to the current S- or AH-type electrophysiological classification 

scheme. However, it is assumed that both S- and AH-neurons are present in culture 

due to the presence of both Dogiel type I and type II neurons as demonstrated by 

immunohistochemistry. 

CP 55,940 did not activate GIRK channels in the myenteric cultures, at least 

on somatodendritic sites. Cannabinoids may activate GIRK channels in regions closer 

to the synaptic terminal, which we were possibly unable to record. 

Inhibition of Na+ and K+ currents unmasks inward Ca2+ currents, which were 

inhibited by CP 55,940. Although it seems that cannabinoids are inhibiting 

somatodendritic VOCCs the current data supports the possibility that cannabinoids 

may inhibit neurotransmitter release in the myenteric plexus by interfering with Ca2+ 

conductance. Further work is required to establish the involvement of the CB1 

receptor in the cannabinoid-induced inhibition and the Ca2+ channel subtype(s) that 

is(are) targeted. 

4.4 The interaction between cannabinoids and nACh receptors in cultured 

myenteric neurons 

Cannabinoids have been shown to modulate ligand-gated ion channels 

(Hampson et al., 1998; Barann et al., 2002; Oz et al., 2002) including an inhibition of 
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currents mediated by nACh receptors (Oz et al., 2003), although only in expression 

systems. A cannabinoid-induced inhibition of myenteric nACh currents would present 

a novel physiological mechanism by which cannabinoids regulate neurotransmission 

in the myenteric plexus. Therefore the effect of cannabinoids on nicotine-evoked 

currents in cultured myenteric neurons was investigated. 

4.4.1 Cannabinoid-mediated inhibition of nACh currents 

Previous studies using cultured myenteric neurons have demonstrated that 

stimulation of nACh receptors, with either ACh or nicotine, evokes a concentration- 

dependent desensitising inward current, which can be abolished by the nACh receptor 

antagonist hexamethonium (Zhou and Galligan, 1998; Zhou et al., 2002). Similarly, 

we showed that nicotine evokes a transient inward current in cultured myenteric 

neurons that was abolished in the presence of hexamethonium. This suggests the 

presence of somatodendritic nACh receptors, which is consistent with previous 

reports in the myenteric plexus localising nACh receptors to the somatodendritic 

region (Toroscik et al., 1991). 

Prior application of either CP 55,940 or the endogenous cannabinoid 

anandamide significantly reduced the nicotine-evoked inward current. At higher 

anandamide concentrations (10 µM) the inward current was virtually abolished. In 

Xenopus oocytes, transfected with a7-containing nACh receptors, anandamide 

inhibited nicotine-evoked inward currents, which were virtually abolished at 10 µM 

(Oz et al., 2003). CP 55,940 also significantly inhibited nicotinic currents, albeit at 

higher concentrations (>_ 3µM) suggesting a greater potency of anandamide in this 

preparation (Oz et al., 2004). The effects of anandamide could not be reversed by 
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SR 141716A or SR 144528 suggesting it was independent of CB1/ CB2 receptor 

activation (Oz et al., 2003). The anandamide-mediated inhibition was also insensitive 

to PTX treatment, the cAMP analogue 8-Br-cAMP and the AMT inhibitor AM404 

and anandamide caused no shift in the concentration-response curves for nicotine (Oz 

et al., 2003). Together these results suggest that anandamide and CP 55,940 act 

directly on nACh receptors in a non-competitive manner. Consistent with previous 

studies by Zhou et al. (2002), functional a7 nACh receptors are not present in 

cultured myenteric neurons, as the a7-specific nACh receptor antagonist MLA had no 

effect on nicotine-evoked currents. 

4.4.2 CB1 receptor-independent inhibition of nACh currents 

With previous reports demonstrating a direct inhibitory effect of anandamide 

on nACh receptors, the effect of SR 141716A on the cannabinoid-mediated inhibition 

of nicotinic currents was established. Interestingly, SR 141716A did not significantly 

reverse the inhibition seen to either CP 55,940 or anandamide. In fact, SR 141716A 

alone induced a significant inhibition of the inward current evoked by nicotine. This 

suggests an inhibitory effect of CP 55,940 and anandamide, which is independent of 

the CB1 receptor. The results obtained with SR 141716A alone may also indicate that 

this(ese) novel site(s) of action for the cannabinoids does not distinguish between 

established agonists or antagonists. Barann et al. (2002) showed that cannabinoids 

(specific to both the CBI and CB2 receptor) directly inhibit the 5-HT3A receptor 

transfected in HEK293 cells, including the CB, receptor antagonist LY 320135, 

although SR 141716A had no effect. Given that SR 141716A alone inhibits nicotinic 

currents in myenteric neurons it would seem feasible that the application of both 
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SR 141716A and CP 55,940 would produce a greater inhibitory effect. However, 

although insignificant, SR 141716A showed a slight reversal of the CP 55,940-evoked 

inhibition. This reversal was not observed with SR 141716A and anandamide 

suggesting that anandamide may act at a different site to that of CP 55,940. 

Anandamide can act as an agonist at vanilloid VRI receptors (Smart et al., 2000), 

which are expressed in myenteric neurons (Kulkarni-Narla and Brown, 2001). 

Activation of the receptor induces an influx of Cat+, which produced a significant 

inward current in transfected HEK293 cells and rat DRG neurons (Smart et al., 2000). 

However, application of anandamide alone in cultured myenteric neurons produced 

no change in membrane currents suggesting that VRl receptors are not activated. 

In frog saccular hair cells the opioid agonists endomorphin-1 and dynorphin B 

and the non-specific opioid antagonist naloxone were all shown to directly modulate 

a9/ alO-containing nACh receptors (Lioudyno et at., 2002). Endomorphin-1 and 

dynorphin B inhibited ACh-evoked currents that were only slightly reversed by 

naloxone. Naloxone produced a significant inhibition of the ACh-evoked currents by 

itself, although this inhibition was considerably less than that of the opioid agonists. 

From this the authors hypothesised that naloxone may compete with the opioid 

agonists in their interactions with the nACh receptor so the opioid effects are partially 

reduced. The same mechanism cannot be attributed to the effects of SR 141716A and 

CP 55,940 because, at the concentrations used in the present study, the inhibitory 

effects of SR 141716A alone on nicotinic currents were similar to that of CP 55,940. 

To further support a CB1 receptor-independent action of cannabinoids on 

currents mediated by nACh receptors, the effects of the cannabinoid ligand PEA were 

established. Unlike CP 55,940 and anandamide, PEA does not bind efficiently to CB1 

and CB2 receptors (Lambert and Di Marzo, 1999) but does mimic the effect of 
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cannabinoids in several assays. As such PEA decreases spontaneous activity in mice 

(Adams et al., 1995), possesses analgesic (Calignano et al., 1998) and anti- 

inflammatory activity (Berdyshev et al., 1998) and relaxes the rat isolated mesenteric 

artery (White and Hiley, 1998). PEA also significantly inhibited the nicotine-evoked 

currents in cultured myenteric neurons. 

The actions of the Gi/o inhibitor PTX on the cannabinoid-mediated inhibition 

were also determined. PTX also showed no reversal of the inhibitory effect evoked by 

either CP 55,940 or anandamide, at concentrations shown to significantly disrupt CB1 

receptor signalling in DDT1 MF-2 cells (Begg et al., 2001). Hence, collectively the 

results strongly suggest that currents mediated by nACh receptors are inhibited by 

cannabinoids independently of CB I/ CB2 receptor activation in myenteric neurons. 

Cannabinoids were shown to directly interact with NMDA (Hampson et al., 

1998), 5-HT3 (Barann et al., 2002; Oz et al., 2002) and nACh receptors (Oz et al., 

2003,2004), so the effect of CP 55,940 and anandamide on single channel recordings 

obtained from myenteric nACh receptors was investigated. However, due to the 

amplification of noise seen at gains that were required to visualise the opening of 

single nicotinic channels it was impossible to distinguish between the two. The noise 

problems could not be rectified within the time period of the current study but the 

work is essential to support a cannabinoid-mediated inhibition of nicotinic currents 

through a direct interaction with myenteric nACh receptors. 

Cannabinoids were thought to inhibit the opening of 5-HT3A channels in 

HEK293 cells through a possible binding to an allosteric modulatory site on the 

receptor (Barann et al., 2002). nACh receptors express binding sites for numerous 

exogenous and endogenous non-competitive molecules, including those for fatty acids 

such as AA, which inhibit channel function (Arias, 1998). This might suggest at least 
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why anandamide, an analogue of AA, is able to inhibit currents mediated by nACh 

receptors. Oz et al. (2004) showed that AA dose-dependently inhibited currents 

evoked by a7 nACh receptors in Xenopus oocytes. In the same study 2-AG and the 

metabolically stable analogue methanandamide showed a higher potency than AA for 

inhibiting nicotinic currents suggesting that it was the intact endocannabinoid and not 

the metabolite that altered receptor function. Hence, nACh receptors may express 

specific cannabinoid modulatory sites. These sites may exhibit a greater affinity or 

efficacy (or both) for the endocannabinoids compared to the synthetic cannabinoids. 

This could account for the greater potency of anandamide compared to CP 55,940 in 

inhibiting a7 nACh currents (Oz et al., 2004). Alternatively, there may be multiple 

sites that distinguish between endocannabinoids and synthetic cannabinoids, which 

could explain the effects of SR 141716A on the CP 55,940- but not anandamide- 

evoked inhibition of nicotinic currents observed in cultured myenteric neurons. 

4.4.3 Cannabinoid-mediated inhibition of 5-HT-evoked currents 

Zhou and Galligan (1999) have previously demonstrated that 5-HT application 

concentration-dependently evokes an inward current in cultured myenteric neurons. 

The inward current is biphasic, characterised by a rapidly desensitising current 

followed by a small, sustained current. Consistent with these observations we showed 

that 5-HT application also induced a biphasic inward current in cultured myenteric 

neurons. The 5-HT3 receptor antagonist ondansetron inhibited the rapidly developing 

and desensitising 5-HT-induced current leaving the smaller sustained current (Zhou 

and Galligan, 1999). Pharmacologically, the 5-HT receptor mediating the sustained 

current was never identified, but from the time course of the response the authors 
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believed it was consistent with it being mediated by 5-HT1p receptors (Zhou and 

Galligan, 1999). 

With the observed effects of cannabinoids on myenteric nACh currents and 

previous reports into a direct modulatory role of cannabinoids on 5-HT3 receptors 

(Barahn et al., 2002; Oz et al., 2002), preliminary experiments were used to establish 

the effect, if any, of CP 55,940 on the 5-HT-evoked currents in myenteric neurons. 

CP 55,940 had no effect on the initial rapidly developing inward current but 

significantly inhibited the sustained current. This suggests that cannabinoids do not 

modulate 5-HT3 receptor-mediated currents in cultured myenteric neurons but may 

inhibit currents evoked by the activation of the 5-HTIP receptor. Further work is 

required to establish if other cannabinoids, including anandamide, mimic the effects 

of CP 55,940 and if so determine the mechanism by which they mediate this effect 

e. g. through the activation of CB1 receptors or via another CBj-independent 

mechanism. 

4.4.4 Functional implications: cannabinoid-mediated inhibition of nACh receptors 

The current study provides evidence for a novel mechanism by which 

cannabinoids may modulate cholinergic neurotransmission in the myenteric plexus. 

As well as the inhibitory effect of cannabinoids on presynaptic ACh release (Coutts 

and Pertwee, 1997), they may be able to reduce gut motility through the inhibition of 

currents mediated by nACh receptors. Indeed, ACh acting at nACh receptors is the 

principal mechanism of excitatory neurotransmission in the myenteric plexus, 

eliciting fEPSPs in both S- and AH-neurons (Nishi and North, 1973; Hirst et al., 

1974). As S-neurons are likely to be interneurons and motor neurons (Galligan, 2002) 
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while AH-neurons are IPANS (Furness et al., 1998; Galligan, 2000), cannabinoids 

may be able to modulate cholinergic neurotransmission in all three types of neuron 

present in the myenteric plexus. Lopez-Redondo et al. (1997) demonstrated that 

electrically-evoked fEPSPs could be depressed in myenteric S-type neurons by 

CP 55,940 and WIN 55,212-2. The inhibitory effect of WIN 55,212-2 was only 

reversed in 38% of neurons with SR 141716A suggesting a predominantly CB1 

receptor-independent mechanism for the cannabinoid-induced reduction. In addition, 

SR 141716A alone caused a significant reduction in the amplitude of fEPSPs. These 

results would be consistent with the findings of the present study, where 

WIN 55,212-2 and SR 141716A could inhibit nACh receptor-mediated currents in a 

CB1 receptor-independent manner. The inhibition of cholinergic neurotransmission 

would in turn lead to a reduction in the amplitude of fEPSPs recorded in S-neurons. 

The activation of nACh receptors is the predominant mechanism for 

ascending excitatory neurotransmission in the myenteric plexus (LePard and Galligan, 

1999), thus regulating smooth muscle contraction. Approximately 27% of neurons in 

the guinea-pig myenteric plexus are motor neurons that innervate the longitudinal 

muscle; 25% are excitatory while only 2% are inhibitory (Furness, 2000). This 

implies that longitudinal muscle contraction is predominantly mediated by ascending 

excitatory cholinergic pathways (Brookes et al., 1992). Thus, the MPLM preparation, 

which consists of only the myenteric plexus and longitudinal muscle, is a good 

preparation to study cholinergic neurotransmission and subsequent smooth muscle 

contraction. Further studies in our group investigated the effects of CP 55,940 on 

nicotine-evoked contractions in the MPLM (Demuth et al., 2004). Nicotine 

predominantly evokes longitudinal muscle contraction by stimulating somatodendritic 

nACh receptors (Toroscik et al., 1991), which induces neuronal depolarisation and 
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subsequent neurotransmitter release (Galligan and Bertrand, 1994). Although nACh 

receptors are expressed on each of the three types of neuron present in the ascending 

excitatory pathway, ultimately nicotine application results in the depolarisation of 

motor neurons innervating the longitudinal muscle. Both ACh and TKs acting at 

muscarinic and NK receptors respectively evoke a contraction of the longitudinal 

muscle (Galligan, 1999; Schneider et al., 2000; Furness and Sanger, 2002). Nicotine 

induced a contraction in the MPLM, which was inhibited by CP 55,940 in a dose- 

dependent manner (Demuth et al., 2004). SR 141716A did not reverse the inhibitory 

effect of CP 55,940 on nicotine-evoked contractions, at a concentration shown to 

significantly block the CP 55,940-induced inhibition of electrically-evoked 

contractions in the MPLM. This suggests a CB1 receptor-independent inhibitory 

action of CP 55,940 on contractions mediated by nACh receptor activation and thus 

supports the physiological significance of a cannabinoid-mediated modulation of 

nACh receptor currents, as demonstrated in cultured myenteric neurons. As 12% of 

myenteric neurons in the guinea-pig small intestine are also excitatory ascending 

cholinergic neurons that innervate the circular muscle (Furness, 2000), it seems 

feasible that cannabinoids may, in part, be able to modulate the contraction of circular 

muscle through the same mechanism. Interestingly, PEA inhibited gastrointestinal 

motility in mice in vivo in an SR 141716A- and SR 144528-insensitive manner 

(Capasso et al., 2001). PEA was also applied in combination with hexamethonium (a 

ganglion blocker) but the PEA-evoked inhibition still persisted suggesting a 

peripheral site of action. When administered alone hexamethonium had no effect on 

gastrointestinal transit, which suggests cholinergic neurotransmission in the mouse 

myenteric plexus was not affected (Capasso et al., 2001). The effects of PEA on 

myenteric nicotinic currents, observed in the current study, might suggest a 
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mechanism by which the cannabinoid inhibits gastrointestinal motility in mice 

independently of CB1/ CB2 receptor activation. 

Presynaptic nACh receptors are also present on myenteric motor neurons that 

innervate both longitudinal and circular muscle (Galligan, 1999; Schneider et al., 

2000). During periods of high frequency stimulation, resulting in higher 

concentrations of ACh at the neuromuscular junction, activation of these presynaptic 

receptors is thought to further facilitate the release of neurotransmitter (Galligan, 

1999; Schneider et al., 2000; Mandl et al., 2003). Hence, if cannabinoids could also 

inhibit the presynaptic action of nACh receptors, this would present another 

mechanism by which cannabinoids modulate the release of neurotransmitter and thus 

gastrointestinal motility. Our research group investigated this concept using the 

MPLM preparation (Demuth et al., 2004). In the presence of the Na+ channel blocker 

TTX, effectively isolating the presynaptic nACh receptors, nicotine still evoked a 

contraction, although significantly less when compared to contractions in the absence 

of TTX. Both CP 55,940 and SR 141716A significantly inhibited the TTX-insensitive 

contraction evoked by nicotine suggesting that cannabinoids can also inhibit the 

opening of presynaptic nACh receptors. Interestingly, application of both CP 55,940 

and SR 141716A had an additive effect producing a significantly greater inhibition 

than either CP 55,940 or SR 141716A alone. This additive effect of CP 55,940 and 

SR 141716A was not seen in cultured myenteric neurons suggesting that 

somatodendritic and presynaptic nACh receptors may exhibit different properties, 

with regard to cannabinoid modulation at least. 

In the submucosal plexus of the guinea-pig ileum, immunohistochemistry 

demonstrated the expression of CB1 receptors on secretomotor neurons 

(MacNaughton et al., 2004). In addition, WIN 55,212-2 was shown to reduce 
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electrolyte transport in the ileum in response to electrical field stimulation, in an SR 

141716A-sensitive manner (MacNaughton et al., 2004) suggesting a CB, receptor- 

mediated inhibition of gastrointestinal secretions. fEPSPs are completely blocked by 

nACh receptor antagonists in the submucosal plexus (Evans and Surprenant, 1992). 

Hence, the current study may suggest another mechanism by which cannabinoids 

could inhibit gastrointestinal secretions i. e. an inhibition of currents mediated by 

nACh receptors expressed in the submucosal plexus. Indeed, our research group has 

shown that CP 55,940 inhibits nicotine-evoked ion transport in the guinea-pig ileum, 

in an SR 141716A-insensitive manner (unpublished work). 

4.4.5 Functional implications: cannabinoid-mediated inhibition of 5-HT1p receptors 

Preliminary studies showed that CP 55,940 inhibited the 5-HT-mediated 

sustained inward current in cultured myenteric neurons. This sustained current may 

arise from the activation of 5-HT, receptors (Zhou and Galligan, 1999), although 

further studies are required to support the involvement of this receptor subtype. 

5-HT1 receptors are expressed on myenteric AH-neurons (IPANs), where 

stimulation of the receptor evokes a long-lasting membrane depolarisation associated 

with the generation of sEPSPs (Mawe et al., 1986,1989). In vivo studies in mice have 

demonstrated that the 5-HT1p receptor antagonists BRL 24924 and 5-HTP-DP 

increase the gastric emptying of a liquid meal (Mawe et al., 1989) suggesting a tonic 

5-HT1 receptor-mediated activation of myenteric inhibitory neurons through the 

production of sEPSPs. This is consistent with the findings of Michael et al. (1997) 

who demonstrated that, of the 11.3% of guinea-pig myenteric neurons that express 5- 

HT1P receptors, 74% are found in the descending projections. In addition, the same 
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study showed that the 5-HT1p receptor agonist 5-OHIP reduced electrically-evoked 

contractions of the circular muscle, supporting the idea that 5-HT1p receptors mediate 

transmission through the inhibitory pathways. In the current study 5-HT application 

also evokes a rapidly developing current mediated by the 5-HT3 receptor (Zhou and 

Galligan, 1999) suggesting that myenteric neurons in primary culture express both 5- 

HT3 and 5-HT1p receptors. However, myenteric neurons that express both receptors 

have been shown to exhibit no preferential projection (Michael et al., 1997). 

An inhibitory effect of cannabinoids on currents mediated by 5-HT1p receptors 

may suggest at least a reduction of sEPSPs in the myenteric plexus. If cannabinoids 

were able to reduce 5-HTip receptor-mediated neurotransmission in the descending 

inhibitory pathways this would imply that cannabinoids might also be able to facilitate 

gastrointestinal transit. However, this is in complete contrast to reports by Heinemann 

et al. (1999) who demonstrated that cannabinoids, in part, depress peristalsis through 

the potentiation of inhibitory pathways. Clearly more work is required to define the 

functional implications of a cannabinoid-mediated inhibition of 5-HT1p receptors, if 

cannabinoids are indeed inhibiting currents mediated by this receptor subtype. 

4.4.6 Summary 

In summary CP 55,940 and anandamide have been shown to inhibit currents 

mediated by nACh receptors in cultured myenteric neurons, in a CB1 receptor- 

independent manner. The data presents a novel mechanism by which cannabinoids 

regulate gastrointestinal motility through a possible modulation of excitatory 

cholinergic neurotransmission in the myenteric plexus. Hence, this is also the first 

report of its kind demonstrating the physiological relevance of such a cannabinoid- 
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mediated modulation of nACh receptors. Cannabinoids may exert their effects at both 

somatodendritic and presynaptic nACh receptors, leading to an inhibition of neuronal 

depolarisation and ultimately a reduction in ACh release at the neuromuscular 

junction. 

Preliminary experiments have also demonstrated that CP 55,940 inhibits the 

sustained inward currents mediated by 5-HT application in cultured myenteric 

neurons. This may indicate an inhibitory effect of cannabinoids on currents mediated 

by 5-HTIp receptors in the myenteric plexus but the functional significance of this 

observation needs to be investigated further. 
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FUTURE WORK 
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5.1 DDT, MF-2 cells 

The current study has shown that AA forms an integral part of the signalling 

pathways associated with the stimulation of the CB1 receptor in DDT, MF-2 smooth 

muscle cells. The results obtained with the compounds La 3+ and Gd3+ helped us to 

identify this signalling pathway. However, where La 3+ was shown to inhibit both the 

CP 55,940- and AA-evoked outward current, Gd3+ was only shown to inhibit CP 

55,940-mediated currents. Therefore in order to further support a CB1 receptor- 

mediated activation of NCCE, the effect of Gd3+ on AA-induced currents should also 

be established, using the same concentration that was shown to inhibit the CP 55,940- 

evoked response. 

CP 55,940 was shown to increase [Ca2+];, although this was only significant at 

high concentrations. To support the involvement of the CB1-receptor, in response to 

increases in [Ca2+]; mediated by high CP 55,940 concentrations, further experiments 

are needed to ascertain the effects of SR 141716A in this assay. 

It is not known if AA directly activates Ca2+ influx or some intermediate 

molecule(s) is(are) involved. Previous reports in other preparations have shown that 

AA may evoke NCCE via the production of NO (Moneer et al., 2003; Watson et al., 

2004), which is interesting in the light of observations demonstrating that NO donors 

can induce Ca 2+ influx in DDT1 MF-2 cells (Favre et al., 1998). Future work could 

determine the effects of NOS inhibitors on both CP 55,940- and AA-evoked currents. 

Additionally, in the same manner where AA application was shown to inhibit 

subsequent responses to CP 55,940, the effect of NO donors on subsequent CP 

55,940- or AA-evoked currents could be determined. Furthermore, the effects of Lai' 

and Gd3+ on NO-mediated Ca2+ influx could also be established. 
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The reciprocal regulation of CCE and NCCE (Luo et al., 2001 a; Mignen et al., 

2001) may be one reason why thapsigargin inhibited the CP 55,940-evoked current in 

DDTI MF-2 cells (Begg et al., 2001). Calcineurin, stimulated during CCE, was shown 

to mediate the inhibition of NCCE in HEK293 cells (Mignen et al., 2003). It would 

therefore be interesting to investigate the effects, if any, of calcineurin inhibitors, such 

as cyclosporin and ascomyscin (Mignen et al., 2003), on the thapsigargin-mediated 

inhibition of CP 55,940 evoked responses in DDTI MF-2 cells. 

The supposed specific cPLA2 inhibitor ATK exhibited a cannabinoid-like 

action in this cell line, evoking an outward current alone. This is of great interest 

because the compound is known to bind to CB1 receptors (Koutek et al., 1994). The 

ATK-induced current was insensitive to CBI receptor blockade suggesting another 

mechanism of action that could be explored in more detail. Interestingly, ATK can 

inhibit electrically-evoked contractions of the guinea-pig ileum, which is again similar 

to the actions exhibited by cannabinoids (unpublished data). The CB1 receptor 

antagonist SR 141716A did not reverse the inhibition. Future work could explore the 

actions of ATK in the MPLM preparation, establishing the compounds mechanism of 

action as a cannabinoid-like agonist or cannabinoid antagonist. 

The results obtained from western blot experiments, to determine a time 

course of p42/44 MAP kinase phosphorylation, have been difficult to interpret, 

especially as ethanol may also be inducing phosphorylation. Clearly more work is 

required to obtain blots showing a CB1 receptor-mediated phosphorylation of the 

p42/44 MAP kinase in DDTI MF-2 cells. To enable us to determine if the pattern of 

phosphorylation already seen is due to CP 55,940 or ethanol treatment, SR 141716 

was used to try and block the effects of cannabinoid stimulation. At present these 
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results are inconclusive, however this work is critical to interpreting the western blots 

already produced using CP 55,940. 

The western blot results could be interpreted as a CP 55,940-mediated 

inhibition of MAP kinase, although the MAP kinase inhibitor PD 98059 was shown to 

reduce CP 55,940-evoked outward currents (Begg et al., 2001). Non-specific effects 

of PD 98059 on intracellular signalling molecules such as protein kinases have been 

described (Davies et al., 2000). Therefore it would be a good idea to support the 

electrophysiological data obtained with PD 98059 with other MAP kinase inhibitors, 

such as U0126, which exhibits 100-fold higher affinity for MEK than PD 98059 

(Favata et al., 1998). 

Western blots could also be used to establish the phosphorylation and hence 

activation of cPLA2 in response to CB1 receptor stimulation, where specific 

pharmacological tools have failed. Alternatively, a molecular approach could be used 

to determine the specific actions of cPLA2. Hunter and Bumstein (1997) used CBI 

antisense probes to reduce receptor expression levels in N18 mouse neuroblastoma 

cells and help identify a CB1 receptor-mediated increase in AA generation by 

O9-THC. In the same manner an overall reduction in cPLA2 in DDT, MF-2 cells could 

reveal that CP 55,940 evokes an increase in AA via this enzyme. 

5.2 Myenteric cultures 

Immunohistochemical studies were used to identify the presence of CD! 

receptors and their localisation, specifically to cholinergic myenteric neurons in 

primary culture. However, although it is believed that the cultures make up a 

hetrogenous population, the proportion of Dogiel types could not be established. It 
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was also difficult to classify the neurons based on the present electrophysiological 

data that was obtained. Now that cannabinoids have been shown to have effects in 

these cultures it would be of great interest to determine which neuronal type(s) 

(motor, interneuron or IPAN) exhibit(s) these cannabinoid-mediated effects. Hence, 

further immunohistochemistry could be used to identify the predominant neuronal 

type in culture and also its expression of CB1 receptors. For instance, guinea-pig 

myenteric neurons can be classified on the basis of immunoreactivity to the Cat+- 

binding proteins calbindin and calretinin. In situ calbindin is a predominant marker 

for IPANs but not motor neurons (Coutts et al., 2002). Conversely, calretinin is 

primarily immunoreactive for motor neurons and interneurons. In addition, AH- 

neurons, which are IPANs in the myenteric plexus (Furness et al., 1998), can be 

distinguished from S-neurons on the basis of their sensitivity to TTX. The action 

potentials recorded from S-neurons are completely blocked by TTX whereas, due to 

the Caz+ component, the action potential evoked in AH-neurons persists in the 

presence of the Na+ channel blocker (Hirst et al., 1974; Furness et al., 1998). Hence, 

the effect of TTX on the action potentials evoked in cultured myenteric neurons may 

help identify the predominant neuronal type present in culture, along with the 

neuronal type(s) affected by cannabinoids. 

CP 55,940 was shown to reduce both the peak positive and negative currents 

evoked in myenteric neurons. However, although this effect is probably due to a 

degradation of the patch, time-matched ethanol controls need to be performed and 

statistically compared to those results obtained in the presence of CP 55,940. 

CP 55,940 was shown to inhibit inward Ca 2+ currents evoked in myenteric 

cultures. Initially, it should be confirmed if this effect is mediated by CBI receptors. 

Thus the effects of CP 55,940 on evoked Ca 2+ currents, in the presence of SR 
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141716A, should be determined. The inward Ca 2+ current is associated with the 

activation of particular subtypes of VOCCs including N- and P/Q-type channels (Bian 

et al., 2004), which are know to be inhibited by cannabinoids in some preparations 

(Mackie et al., 1995; Twitchell et al., 1997; Hampson et al., 1998; Gebremedhin et 

al., 1999). In addition, about 50% of the Ca2+ current in cultured myenteric neurons is 

carried by R-type channels (Bian et al., 2004). Future work could isolate these 

specific currents, allowing the subtype of Ca2+ channel(s) inhibited by CP 55,940 to 

be identified. 

A-type K+ channels are expressed in myenteric neurons (Starodub and Wood, 

2000; Ren et al., 2001) and can be activated in a CB1 receptor-dependent manner 

(Deadwyler et at., 1995; Mu et al., 2000). In addition, a reduction in CAMP is 

involved in the pathways leading to a CB1 receptor-mediated decrease in 

neurotransmitter release in the myenteric plexus (Coutts and Pertwee, 1998), 

consistent with the activation of IA. Therefore the effects of CP 55,940 on currents 

mediated by the activation of A-type K+ channels should be investigated in the 

cultures. 

Cannabinoids inhibit myenteric nACh currents in a CBI receptor-independent 

manner. The CBI receptor antagonist SR 141716 was also shown to inhibit nicotine- 

evoked currents. It would be interesting to establish the effect of other cannabinoid 

antagonists including 0-2050, which acted as a `silent' CB1 receptor antagonist in the 

mouse vas deferens (Martin et al., 2002). Future work should also try to resolve the 

`noise' problems associated with single channel recording and thus establish if 

cannabinoids have a direct modulatory effect on the nACh receptors. 

CP 55,940 also inhibited the sustained current evoked by 5-HT application in 

cultured myenteric cultures. The effects of vehicle (ethanol) on the 5-lIT-induced 
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current should initially be determined. Subsequently, further work is needed to 

identify the 5-HT receptor mediating this sustained current. Previous work has 

suggested that it may be the 5-HT1p receptor (Zhou and Galligan, 1999). 5.11TIp 

receptor agonists such as 5-OHIP (Michael et al., 1997) could be used to see if they 

induce the same sustained inward current similar to that observed during 5-HH'f 

application. If so, the actions of CP 55,940 on this evoked current could be verified. 

In addition, the effects of 5-HT1p receptor antagonists, such as 13RL 24924 (Mawe et 

al., 1989), on the 5-HT-evoked sustained current could also be determined. Further 

work could then follow the same experimental design as those studies investigating 

the effects of cannabinoids on nicotinic currents in cultured myenteric neurons. 

Electrophysiological data could then be matched with functional 5-HT data obtained 

from the intact guinea-pig ileum. 

Cultured neurons could be used to ascertain the effects of cannabinoids on 

cholinergic neurotransmission, in either a CBI receptor-dependent or independent 

manner. Although difficult, recordings could be made between neuronal synaptic 

connections, with the use of at least two electrodes. One electrode could be used to 

evoke neuronal excitation while the other electrode(s) could be used to measure the 

response to this, in postsynaptic neurons e. g. the generation of action potentials. 

Cannabinoid effects on synaptic transmission, through connecting myenteric neurons, 

could then be studied in more detail, including any effects mediated at the presynaptic 

terminals. 
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