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Abstract 

A mathematical description of the electromagnetic fields of non-paraxial laser beams is 

derived and used to calculate the trapping forces on spherical particles. The fields are exact 

solutions to the wave equation. A set of closed-form expressions for the scalar field of such a 

beam is presented first. The solution for the order 00 is equivalent to the wave of a combined 

complex-point source and sink. In the far field the two lowest order solutions, 00 and 01, 

closely match the energy density produced by a high-numerical aperture lens illuminated by a 

paraxial Gaussian beam. At the large beam waist limit these two solutions reduce to the 

paraxial beam form. However, it is found that only the 01 order solution is physically 

realizable, since the total energy flux through the transverse section of the 00 order beam is 

infinite. The scalar solutions of arbitrary order are then used to derive solutions to the vector 

wave equation. Next, the electric and magnetic fields that closely fit the far-field boundary 

conditions for a focusing lens are constructed from the solutions for the orders 00 and 01. 

These fields are in general elliptically polarized at the beam waist. However at the large beam 

waist (paraxial) limit and in the far field limit the fields become linearly polarized. The 

electromagnetic field due to order 01 is used to calculate the Maxwell stress tensor, and hence 

the trapping forces exerted on a dielectric microsphere in a single beam laser tweezers setup. It 

is demonstrated that the electromagnetic theory model based on the 5th order Gaussian beam 

approximation due to Barton is accurate for almost paraxial beams (numerical aperture 
NA<0.25), when compared to the model derived here. However, for strongly focused beams 

(NA>l) the 5th order approximation breaks down. Trapping forces on water droplets 

suspended in air and on polystyrene spheres suspended in water, exerted by a Gaussian laser 

beam focused with lenses of various numerical apertures are calculated. It is established that a 

model accurate for a strongly focused beam is vital, since in order to trap a particle effectively 

a focusing lens with NA>1 is required. 
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Chapter 1 Background 

1. Background 

1.1. Introduction 

The laser beam of light is generated inside the resonator cavity of the laser by the process 

of spontaneous emission, stimulated emission and absorption. These processes are 

triggered by an electromagnetic (E. M. ) wave interacting with a material. Lasers generate or 

amplify coherent radiation at frequencies in the infrared, visible and ultraviolet regions of 

the E. M. spectrum. Many different laser materials and many different atomic systems are 

used to produce laser cavities. The main types include: semiconductor based lasers such as 

the GaAs laser, gas based lasers such as the HeNe laser and solid state lasers such as the 

ruby or neodymium yttrium aluminium garnet (Nd: YAG) laser. The resonator cavity of the 

laser can be viewed in analogy with the quantum mechanical particle in a box problem. 
Hence the resonator cavity gives rise to transverse E. M. modes (TEM modes) and 
longitudinal modes (standing wave modes). Since the lowest order transverse oscillation 

mode (TEMoo) of the laser cavity gives rise to a light beam with a Gaussian irradiance 

profile, it is referred to as a Gaussian beam. Pioneering work describing the laser resonator, 
based on diffraction theory, was presented by Schawlow and Towns [1]. Fox and Lie [2] 

were the first researches to calculate the modes of the laser cavity using scalar diffraction 

theory. A laser beam, like any other form of light, is based on an E. M. wave propagating in 

space and carrying momentum. In addition the laser beam has some very specific 

properties such as very high directionality, monochromaticity, coherence and radiance [3]. 

These properties lead to an enormous variety of applications. Each area of application 

makes use of one or more of these characteristic properties of the beam. It is possible to 

separate the areas of applications of laser beams into two categories; weakly or unfocused 

and strongly focused laser beams. 

Unfocused and weakly focused Gaussian beams: 

The laser beam is not focused in applications such as laser pointers, lidar speed guns, 

telecommunication and light interference based applications, since use is made of the high 

directionality, monochromaticity, coherence and radiance of the laser beam. If for example 
in a laser pointer or lidar speed gun the beam would be strongly focused, then the laser 

pointer would shine a large faint spot onto the screen it is pointed at, since the beam would 
lose its property of high directionality and hence would be strongly divergent. Similarly a 
lidar gun would not function properly, since only a small amount of the laser light would 

be reflected back off the body work of the vehicle it is pointed at and the greatest part of 

the light would shine into the space surrounding the vehicle. In a lidar gun [4], a battery 
1 



Chapter 1 Background 

powers the laser diode. This diode emits infrared laser pulses every five milliseconds. 

Filters receive pulses reflected off a target object and focus them onto an avalanche diode, 

which converts them to electronic signals. High-speed timing circuitry tracks the time it 

takes for a pulse to reflect and return from the target, and algorithms use the data to 

determine the object's distance. The algorithm calculates the distance again for subsequent 

pulses and then computes the velocity by dividing the change in distance by the change in 

time. In a laser pointer a laser diode emits a beam of light in the visible region of the E. M. 

spectrum. This low power laser light beam can then be pointed onto any screen. In 

telecommunication the laser beam is internally reflected when propagating along optical 

fibers. In this application use is made of the properties of directionality and coherence of 

the laser light. In interference based applications, such as holography use is made of the 

high coherence of the laser light. 

Strongly focused Gaussian beams 

Tightly focused Gaussian laser beams are used in applications such as laser printers, metal 

cutting instruments, surgical instruments, burning of wafers for microchips, microscopy, 

optical information storage (CD and DVD players), light scattering from particles and 

entrapment and manipulation of particles. In light scattering applications, a laser beam is 

shone on an object, and the scattered field is investigated in order to determine the size, 

structure and refractive index of the particle. In this application use is made of the high 

degree of monochromaticity of the laser beam. In applications such as CD/DVD players, 

use is made of the high directionality and radiance of the laser beam. In order to read a CD 

a laser beam scans the surface of the disc, if the surface of the disc reflects the light, it is 

regarded in binary terms as a one and if it is not reflected, then the signal is regarded as a 

zero. Therefore a sequence of ones and zeros can be obtained. The same principle is used 

in DVD players. The data density of DVD's is much greater than that of CD's. So in order 

to store more data it is useful to focus a laser beam as strongly as possible. In applications 

such as metal cutting, surgical instruments and laser printers, use is mainly made of the 

property of radiance. In some of these applications the laser in effect bums a hole. The 

more focused the beam is, the more heat is produced at the focus. Furthermore in 

applications such as surgical instruments and metal cutting it can be said that the tighter the 

beam is focused, the less damage is inflicted to the regions in the proximity of the focus, 

since the focal spot becomes smaller. In the case of a laser printer, where the laser beam is 

used to charge the drum, the resolution can be increased by decreasing the focal spot 
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Chapter 1 Background 

radius. In this work the attention is concentrated on the manipulation of microparticles. 
Atoms can be trapped by laser light since light carries momentum, and thus exerts 

radiation forces. If an atom is bombarded with a beam of light of a particular frequency, it 

will continuously absorb and re-emit photons. As the atom absorbs each photon, it receives 

a momentum kick in the direction of the light beam propagation. These kicks add up to 

produce a scattering force, which is proportional to the momentum of each photon and the 

number of photons that the atom scatters per second. For each photon, which is absorbed 
by the atom, one is emitted. Since the photons are released with no preferred direction, the 

changes in momentum caused by the emission, average to zero. Absorption and emission 
have the net effect of pushing the atom in the direction of the light propagation. It is 

impossible to construct a light trap out of any configuration of light beams if the scattering 
force is proportional to the light intensity. The problem is that the beams cannot be 

arranged to generate only inward directed forces. Any light that enters a trapping region 

must eventually escape and must therefore carry outward directed forces as well. Atoms 

can be trapped due to the dipole force. An E. M. field with a local maximum can be 

achieved in a dynamic system. Since light is made up of a rapidly oscillating E. M. field, a 
focused laser beam can produce an alternating E. M. field with a local maximum. When 

this field interacts with an atom, it alters the distribution of electrons within the atom, 
thereby inducing an electric dipole moment. As the field changes polarity, the dipole 

moment of the atom also switches around. As long as the field changes at a rate slower 
than the natural oscillation frequencies of the atom, the dipole moment remains aligned 

with the field. Thus the atom continues to move towards the local maximum. In the 1980's 

and early 1990's work on atom trapping has stimulated renewed interest in manipulating 

neutral particles. Not only atoms, but also micron-size particles, such as polystyrene 

spheres, can be optically trapped. The steep gradient of the irradiance profile at the centre 

of a focused laser beam gives rise to trapping forces. As long as the light is tuned away 
from absorption frequencies of the particle, it will be drawn into the region of highest light 

intensity. In 1970 Ashkin [5] trapped micron-size latex spheres suspended in water 
between two focused, counter propagating beams of light. It was later realised that if a 

single beam is focused tightly enough, the gradient force would suffice to overcome the 

scattering force that pushes the particle in the direction of propagation of the laser beam [5, 

6,7]. 

Today, a commonly used technique to manipulate microparticles is "optical trapping". An 

optical trap is also known as a "laser tweezers". Laser tweezers use a strongly focused laser 

3 
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beam, with wavelength in the near infrared region of the E. M. spectrum, to hold in place or 

to move a microparticle. Laser tweezers can also be used to hold and move organelles 
inside of cells without puncturing the intervening membranes. Thus laser tweezers are a 

non-contact method. The optical tweezers can easily be integrated with a conventional 

microscope by introducing the laser light into the body of the microscope and focusing it 

with the viewing objective. Observation of the trapped particles is made possible by a CCD 

camera attached to the microscope [7,8]. Ashkin and Dziedzic [9] found that laser 

tweezers are able to handle live bacteria and other organisms without apparently damaging 

them. The ability to trap live organisms without harming them is surprising, since the 

intensity at the focal point is about 1011 Wm"2 [7]. It turns out, that as long as the organism 
is very nearly transparent at the frequency of the trapping light, the beam passes through 

the object without significant energy being absorbed and converted into destructive heat or 

even generating damaging photochemistry. Furthermore, the organism is effectively cooled 
by the surrounding water. This ability has captured the imagination of biologists. Berns [6] 

has managed to manipulate chromosomes inside a cell nucleus. On an even smaller scale 
Chu [7] and colleagues have managed to manipulate a single DNA molecule by attaching 

polystyrene spheres to the ends of a strand of DNA and holding the spheres with two 

optical tweezers. But a tightly focused laser beam can also act as scalpel or scissors in 

medical applications in order to perform minimally invasive surgery on organs. Laser 

scissors consist of a tightly focused beam of light with wavelength in the near ultraviolet 

region of the E. M. spectrum, which ablates the material at the focus of the beam. The 

beams of scissors and tweezers differ significantly in duration and intensity. Whereas the 

scissors employ short pulses of high irradiance, tweezers make use of continuous, low- 

irradiance beams. In biological applications the cell membrane can be incised, i. e. the laser 

cutting a micron-size hole that seals within a fraction of a second. Through this technique, 

called optoporation (pore production through optical means), molecules can be inserted 

into a cell when the pores are open without permanently damaging the membrane. 
Furthermore using laser scissors, particular changes in a chromosome, deep within the cell, 

can be produced, which persists in the cloned progeny of those cells. In Europe, laser- 

scissors have been used for the manipulation of human gametes (sperm and egg) as part of 

a procedure called assisted hatching. The scissors thin or remove a small area of the 

protective zona pellucida of eggs that have been fertilised in a laboratory dish. The very 

early embryos are then placed in the womb, where the thinning of the zona appears to abet 
implantation. By using these techniques it was found that the pregnancy rate can be 

increased by more than 50 percent [6]. Berns [6] and his colleagues have used laser 
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scissors to open a single cell in order to analyse its chemical components at any given 

moment. If a laser is focused on or above the glass microscope slide on which the cell 

rests, a minuscule cloud of ionised gas, called microplasma, is formed. The expansion and 

contraction of this micro plasma generates mechanical stresses that can rupture the cell. By 

placing a tiny glass capillary tube just above the cell, it is possible to collect its contents 

and to analyse them, producing a snapshot of the cell's biochemistry at that moment. This 

technique has the potential for applications in single-cell analytical chemistry. One 

particular goal is to determine the exact identities and concentrations of proteins important 

in cancer at the single-cell level. In all applications of laser tweezers and scissors precision 

and selectivity is very important. Precision refers to the targeting of the laser beam exactly 

to the correct point, selectivity pertains to the controlled alteration of the target while 
leaving the surrounding unaffected. In this area of application, use is made of the fact that 

the irradiance profile of a TEMoo mode Gaussian laser beam has cylindrical symmetry 

along the axes of propagation and the irradiance profile is of Gaussian form. This implies 

that the irradiance profile is clearly defined and hence the E. M. field accurately calculable. 
The advantage of using a laser which produces a Gaussian distribution of energy is that the 

energy forming the focal spot can be characterised by a bell shaped curve. Because only 

the peak of this curve may have sufficient energy to alter a particular target organelle, the 

effective spot can be significantly smaller than the diameter of the measured focal spot. For 

example a neodymium yttrium aluminium garnet (Nd: YAG) laser operating at a 

wavelength of 532 nm can produce a beam spot radius of 499 nm when focused with a 

state-of-the-art, oil-immersion microscope objective at 100 x magnification [6]. It could 
intuitively be assumed that a laser beam would behave in accordance with the ray optics 

approximation but, as will be demonstrated, this is not the case. In order to make advances 
in many of these areas, it is advantageous to have an accurate, mathematical description of 

the laser beam. The first aim of the present research is to derive a model which describes 

the E. M. field of a tightly focused Gaussian laser beam. The second aim is to use the 

derived E. M. field in order to calculate the Maxwell stress tensor and hence to determine 

the optical trapping forces exerted on a dielectric spherical particle. The principle of the 

generation of such a beam will be examined. The most common approximation models 

such as the paraxial beam approximation, the fifth order Gaussian beam approximation, a 

model based on the complex source point model and a numerical method based on Fourier 

transform theory will be discussed. It will be demonstrated that the paraxial Gaussian beam 

approximation is accurate for weakly focused beams. However for strongly focused beams 

this model is not accurate enough. Some of the new developments require the half angle 
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divergence to be as close to 90 as possible. In order to improve precision, a good 

understanding of the physical properties of a strongly focused Gaussian beam is required. 

Thus without precise models describing the tightly focused Gaussian beam the forces 

acting on an optically trapped object cannot be calculated with reasonable accuracy. 

Recent studies have shown the necessity of a better description of such a beam in order to 

make further developments in all areas of applications discussed above. The aim of this 

chapter is to discuss the generation of laser beams and their properties. In the chapters 2,3 

and 4a new model is derived which leads to a closed form description of a tightly focused 

laser beam of arbitrary order. Since many applications are based on the E. M. field 

produced by a laser, there is a need for an exact E. M. model; therefore the presented model 
is an exact vector description of a tightly focused laser beam. Using this new E. M. model, 

the forces exerted by a strongly focused Gaussian beam on a dielectric microsphere are 

calculated in chapter 5. 

Since the laser light is an E. M. wave, the most basic equations any closed form description 

of a Gaussian beam has to satisfy are Maxwell's equations and the wave equation, that can 
be derived form the four Maxwell equations: 

V" E(r, t)= p(r) (1.1) 
s 

V"B(r, t)=0 (1.2) 

V xB(r, t)= pJ(r, t)+ep 
3t't 

(1.3) 

8B r, t VxE(r, t)=- t (1.4) 

Where E(r, t) is the electric field intensity at position r= xi + yj + zlk , 
i, j and lc being the 

Cartesian unit vectors, and time t. B(r, t) is the flux density at position r and time t, J(r, t) 

is the electric current density, p(r) is the charge density, Ir--AU,, is the absolute 

permeability, A is the vacuum permeability of free space and u,. is the permeability of the 

material, e=hr is the absolute permittivity, 4 is the permittivity of free space and sr is the 

permittivity of the material 

In the case of a physical realisable time-harmonic E. M. field, in regions remote from any 

sources, such as the field produced by a propagating laser beam, in a linear, isotropic, 

homogeneous, non magnetic medium, the absence of free charge and current, i. e. p(r)=0 

and J(r, t) =0 is implied. Thus Egs. (1.1-1.4) reduce to 
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V. E(r, t)=0 

V. B(r, t)=0 

aE r, t VxB(r, t)=euo at 

aBr, t VxE(r, t)=- at 

Taking the curl of Eq. (1.8) 

ýx (V x E(r, t)) =- 
a(V xB (r, t)) 

Background 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

using the vector identity: Vx (0 x E(r, t)) = 0(v " E(r, t))- V2E(r, t) and substituting Eq. 

(1.7) into Eq. (1.9) yields with the help of Eq. (1.5) 

p2E(r, t)-E, uo 
a2 E(r, t) 

-0 , at 2 

where V2 is the Laplacian operator, given in Cartesian coordinates by 

V2_ az 
+az +a2 ax2 ay2 az2 

Remembering that the speed of light in vacuum can be expressed as 

1 
C= 

Popo 

It follows that 

1 
CPO =vZ. 

Therefore Eq. (1.10) can be rewritten as 

r, t (1.11) OZE(r, t) 
1äi E( 

-=0 v2 at2 

7 



Chapter 1 Background 

where v is the velocity of light in a medium. Assuming a time harmonic factor e'`", with 

w being the angular frequency, and defining the propagation constant of light in a medium, 

k, as k= ýv epo =v, Eq. (I. 11) becomes 

(02 +k2)E(r, t)= 0. (1.12) 

Further, in the considered case, it can be shown from Eqs. (1.7) and (1.8), that there is the 

following dependence between E(r, t) and the magnetic field intensity H(r, t), 

Vx E(r, t) = iw, u0H(r, t) 

Ox H(r, t) = -iweE(r, t), 

where in the considered case H(r, t) = 
B(r, t) 

po 

Thus for the magnetic field intensity Eq. (1.12) can be written as 

(02 +k2)H(r, t)=0. (1.13) 

In order to derive the E. M. field of a laser beam, it is easier to first discuss the form of the 

exact solution to the scalar wave equation 

V2u(r, t)= 
1 a2u(r, t) (1.14) 

v2 öt2 

and subsequently derive the solution in chapter 2. Referring to Eq. (1.14), u(r, t) is a scalar 

field and r= xZ + y2 + z2 is the location of a point P with respect to the origin of the 

coordinate system. It will be demonstrated in chapter 3 how a vector solution to the wave 

equation can be obtained based on the scalar solution to the wave equation. Consider a 

light disturbance at a position P and time t represented by a scalar function u(r, t); for the 

case of linearly polarised waves, this function may be regarded as a representation of the 

electric or the magnetic field strength. It is also assumed here, that the wave considered is 

monochromatic. The field of such a monochromatic wave may be written as [10] 

u(r, t) = U(r)cos(O(r)- wt) . (1.15) 

8 
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Where U(r) and O(r) are the amplitude and phase, respectively, of the wave at position P. 

Since u(r, t) is generally complex, and only the real part of u(r, t) has physical meaning, 

Eq. (1.15) can be rewritten, using complex notation, as 

u(r, t) = Re[U(r»'("'-'- 'l ] 

where Re means "the real part of'. 

(1.16) 

u(r), is given by the following complex function of position (sometimes called phasor) 

u(r) = U(r)e`ýý'ý (1.17) 

In the case where u(r, t) represents an optical wave, it must satisfy the scalar wave equation 

Eq. (1.14) at each source free point. However, since the time dependence e"1°1 is known, 

the complex function u(r) is an adequate description of the disturbance. Substituting 

Eq. (1.16) into Eq. (1.14) leads to 

Re[V 2u(r)e-" ]= Re - 
co2 z 

u(4-1" 
IV 

or 

Re[V 2u(r)] = Re[- k2u(r)] . (1.18) 
It thus follows from Eq. (1.18) that the complex disturbance u(r) must satisfy the time- 

independent equation 

(v2 +k2)u(r)=0 (1.19) 

known as the Helmholtz equation. Where the function u(r) represents the spatial part (that 

is the time-independent part) of the solution of the wave equation. 

Another important aspect to consider is, that E. M. waves carry energy. The instantaneous 

energy flux through a particular area is given by the instantaneous Poynting vector 

S; 
�� 

(r, t) = E(r, t)x H(r, t). (1.20. a) 
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However, since the irradiance is a measurable quantity it is necessary in order to obtain the 

physical quantity of interest, to again only consider the real part of E(r, t) and H(r, t). Thus 

Eq. (1.20. a) is re-expressed according to Wangsness [11] as 

S(r, t) = Re[E(r, t)]x Re[H(r, t)]. (1.20. b) 

Since the electric and magnetic field intensities of the E. M. waves oscillate in time, so does 

the Poynting vector. Hence the quantity of interest is the time averaged Poynting vector 
(S). In order to calculate the time averaged Poynting vector [11 ], the electric and magnetic 

field intensities are written as 

E(r, t)= Eoe`(k"-aN) (1.21) 

and 

(1.22) 0 

where the propagation vector k=kk , Eo and Ho are arbitrary constant vectors. In order to 

simplify the expressions, the following substitution is made: 

E(r, O) = Eoe''*" (1.23) 

and 

H (r, 0) = Hoe"' . (1.24) 

The real part of E(r, O) and H(r, O) are abbreviated in the derivations below as ER(r, O) and 

HR(r, O). Similarly the imaginary parts are abbreviated as EXr, 0) and Hj(r, 0). 

Thus Eqs. (1.21) and (1.22) can be written as 

E(r, t)= (E, 
Q(r, O)+iE, (r, 0)Xcosovt-isincot) (1.25) 

and 

H (r, t) = (H 
R 

(r, 0) + iH, (r, 0)Xcos wt -i sin wt). (1.26) 

Hence 

10 
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Re[E(r, t)] = E,, (r, 0)cos cot + E, (r, 0)sin cot 

and 

Re[H(r, t)] =H1, (r, 0)cos at + H, (r, O)sin cot. 

Background 

(1.27) 

(1.28) 

On substitution of Eqs. (1.27) and (1.28) into Eq. (1.20. b), the Poynting vector can be 

rewritten as 

S (r, I)= (E 
R 

(r, 0) xHR (r, 0)) cos 2 cot + (E 
R 

(r, 0) x H, (r, 0) + E, (r, 0) xH 1e 
(r, 0)) cos ct sin trat 

+ (E, (r, O)x H, (r, 0))sin2 cot 

(1.29) 

Now averaging the Poynting vector over one cycle of oscillation leads to 

I [(E 
, 
(r, 0) xHR (r, 0)) + (E, (r, 0) x H, (r, 0))], (1.30) 

since (cos2 cot) = (sin2 cot) =-l and (cos wt sin alt) = 0. 
2 

It is now interesting to demonstrate, that Eq. (1.30) can be obtained in a different way. 

Taking the complex conjugate of Eq. (1.26) leads to 

H*(r, t)=(HR(r, 0)-iH, (r, 0)Xcoscot+isincot)=(HR(r, 0)-iHJ(r, 0))'", (1.31) 

where asterisk represents complex conjugation. Similarly Eq. (1.25) can be rewritten as 

E(r, t) = (E1e (r, 0)+iE, (r, 0)»-` . (1.32) 

Thus 

E(r, t) x H' (r, t) =ER (r, 0) x H,, (r, 0)+ E, (r, 0) x H, (r, 0) + (1.33) 
i (E, (r, 0) x H1e (r, 0) -ER 

(r, 0) x H, (r, 0)) 

By taking the real part of Eq. (1.33) and comparing the result with Eq. (1.30) it follows that 

the time averaged Poynting vector is given by 

(S(r)) _ Re[E(r, t)x H'(r, t)]. (1.34) 
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Two closely related quantities to the time averaged Poynting vector, are the time averaged 

electric and magnetic energy densities given by Pedrotti and Pedrotti [12) as 

ýuE(r)) =I cE(r, t)"E'(r, t) (1.35) 

and 

(uy(r))= -u. 
H(r, t)"H'(r, t) , (1.36) 

which can be obtained using similar calculations as above. Additionally (uß (r)) = (ux (r)) 
. 

The total time average energy density is given by (uE (r)) + (u, (r)) 
. 

Thus 

(u (r )) _ eE (r, t) . E' (r, t) =1 p0 H (r, t) 9 H' (r, t) 

Especially in optics the irradiance at a position r (12] 

2 IiE(rt). 
E'(r, t)=jill(r, t). H'(r, t) (1.37) 

of a plane E. M. wave is of interest. 

Since a laser beam of light is generated in an optical resonator, it is necessary to discuss the 

optical resonator first. 

1.2. The optical resonator 

Fox and Lie [2] were the first researchers to calculate the oscillations modes of the plane 

parallel resonator using scalar diffraction theory. However their treatment did not lead to 

an analytical solution describing the resonator modes. Boyd and Gordon [13] however 

found an analytical solution for the resonator modes, by considering a confocal resonator 

cavity instead of a plane parallel resonator. The field treated by Fox and Li [2] can be 

described by a scalar quantity u(r) representing, for instance, the magnitude of the electric 

field. uj(ri) is an arbitrary field distribution at a point P, on mirror 1. This distribution will, 

due to diffraction, produce a field distribution u2(r2) at a point P2 on mirror 2. 

(See Fig. 1.1. ) ,n is the normal to mirror 1 and 2: 

12 
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XI X3 

x 

Y 

L Y2 

Background 

Fig. 1.1. Mode calculation for a plane parallel resonator by use of Kirchhoff diffraction integral (adapted from Svelto [3]). 

Fox and Li [2] found that the field u2(r2) at a general point P2 on mirror 2 can be expressed 

in terms of the field ui(r1) at a general point Pi on mirror 1, using the Fresnel-Kirchhoff 

diffraction integral, as 

u2(r2) =t 1u1 (r1)e1 2_ß, I(1+cosB)dSj 
(1.38) r 2ý. Ir2 -r, ) 

Where Ir2-rlI 
= 

V(X2 
-xl +2 -YlY +(z 2 -zlP is the distance between the points 

P1 and P2,8 is the angle that Ir2-rlI makes with the normal to mirror 1, n, at P1, dSl is the 

surface element around P1, k=, A being the wavelength. The integral must be 

evaluated over the entire surface S1. A distribution u(r) corresponding to a cavity mode is 

considered instead of a general distribution ui(ri). If the two mirrors are identical, then the 

field distribution on mirror 2, as calculated by Eq. (1.38) must again be equal to u(r) apart 

from some constant factor o. Thus the following equation is obtained 

i u(r )e`k 
1l'2-°1(1 

+ cos 9)a 
r 

2 _II 
ou(r2) __ 2A 

1Irr (1.39) 

Eq. (1.39) is a Fredholm homogeneous integral equation of the second kind [3]. Its 

eigensolutions u(r) give the cavity-mode field distribution over the mirrors. Once the field 

distribution u(r) on the mirrors is known, it is possible, through Eq. (1.38), to calculate the 

field distribution at any point inside (standing wave) or outside (travelling wave) the 

resonator [3]. Fox and Li [2] made the approximation that the propagating wave inside the 

cavity is a purely transverse spherical wave; i. e. the wave has no longitudinal component. 

Fox and Li [2] considered the case where the cavity length L is much greater than its 

transverse dimension a, i. e. L»a, Thus Eq. (1.39) was considerably simplified as 

13 
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cos 0 .1 and Ire - r, I=L can be substituted in the amplitude factor appearing under the 

integral sign. In order to get a suitable approximate expression for the phase factor 

k jr, - r, (, jr, - r, + is written as 

jr, 
-r, 1= [L2 +(x, -x2)2 +(y, -Y2)2J` 

(1.40) 

= L+ 21 2L 
[(x, 

-xß)2 +(Yl -Y2)2]+e, 

where a binomial expansion was used and it is apparent that L= z2 - z, . The remainder of 

the power series, e, can be neglected provided that ke<< 2ir[3]. As e consists of a 

converging series having terms of alternating signs, it follows that its value is smaller than 

the magnitude of the first term. 

Boyd and Gordon [13] considered the confocal resonator, assuming for simplicity reasons, 

that the two mirrors have square cross sections of dimensions 2a (Fig. 1.2. ), and have the 

same radius of curvature. Thus the foci of the two mirrors coincide at the centre of the 

cavity. It is thus implied that the length of the cavity is equal to the radius of curvature. 

jr. V. l 

2a 

L 

Z 

Fig. 1.2. Mode calculation for a confocal resonator using Kirchhoff diffraction integral (adapted from Svelto [3]) 

In their derivation it was also assumed that L»a, cos 0 =1 and jr, - r, I=L can be 

substituted in the amplitude factor appearing under the integral sign in Eq. (1.39). However 

the net result of this assumption is, that the analytic solutions presented by Boyd and 

Gordon [13] are not exact solutions to the scalar Helmholtz equation. Instead they are 

solutions to the paraxial wave equation. 
14 
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1.3. The paraxial wave equation 

E. M. fields in free space or in any uniform isotropic medium are governed in general by 

the scalar wave equation. Thus by only considering the electric field, Eq. (1.19) can be 

rewritten as 

[v2+k2]E(x, y, z)=o (1.41) 

where E(x, y, z) is the phasor amplitude of a field distribution that varies with time as 
Fox and Li [2] made the approximation that the propagating wave inside the cavity is a 

purely transverse spherical wave. As the optical beam propagates along the cavity axes, the 

primarily spatial dependence of E(x, y, z) is an ekz variation. Since the transverse profile of 

the beam changes slowly with distance z due to diffraction and propagation effects, E(x, y, z) 
is redefined as: 

E(x, y, z) = Eou(x, y, z)e' (1.42) 

where u(x, y, z) is a complex scalar wave amplitude which describes the transverse profile 
of the beam. Substituting Eq. (1.42) into Eq (1.41) yields in Cartesian coordinates 

32u(x, 
y'Z) + 

a2u 
y, 

Z) + a2uaz, 
2 

'Z) +2ik ffi (, y, z) 
= 0. (1.43) 

ONY 

However Eqs. (1.42) and (1.43) can also be expressed in cylindrical coordinates as 

E(p, 0, z) = Eou. (P, 0, z)e' 

and 

(1.44) 

1a auc (p 9, z) +1 
a2uß(p, 9, z) a2u, (p, 9, z) au (p 9, z) 

_ 
pap 

p ap p2 a02 + az2 +2ik az -0 (1.45) 

respectively, where p= Jx2 + y' . It 
has to be emphasized that with the e`k' dependence 

factored out, the remaining z dependence of the wave amplitude u(x, y, z) or uc(p, 9, z), is 

basically caused by diffraction effects, and this z dependence will in general be slow 

compared not only to one optical wavelength, as in e"kz , but also in the transverse variations 

due to the finite width of the beam. The slowly varying dependence of u(x, y, z) or uc(p, 6, z) 

15 
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respectively on z is mathematically expressed by the paraxial approximation [14] in 

Cartesian coordinates as 

a2uýZ'y'Z) 
«I2k 

au(' 
'Z) or 

a2uax'Y, z) 
or 

a2U(x, Y, z) 
, (1.46) 

and in cylindrical coordinates as 

a2u, (P, e, z) « 2k 
8uc(p, 0, z) 

or 
a2u, (P, o, z) 

or 
a2uc(P, O, z) 

. (1.47) öz2 öz äp2 ä0Z 

Thus the paraxial wave equation can be written in Cartesian coordinates as 

V u(x, y, z) + 2ik (x' " 
az =0 (1.48) 

and in cylindrical coordinates as 

02u, (P, 0, z)+2ik 
au`(PZ0, Z) 

_0. (1.49) 

where V is the Laplacian operator on the coordinates in the transverse plane. 

1.3.1. Solutions to the paraxial wave equation 

Boyd and Gordon [13] found the following eigenfunctions for the resonator modes in 
Cartesian coordinates 

`xZ+y2ý 

ums (xýY, z) = 
w° H. xý H. Yý 

e (s) e (1. SO. a) 
w(z) w(z) w(z) 

in the literature referred to as the Hermite-Gaussian beam modes (TEM, �n). Since it is 

known from section 1.2. that u(r) represents the magnitude of the electric field say, it is 

possible to write 

16 
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Emn(x yfZ)=Eoumn(x, y, z) 

The functions H(s) and Ha(s) in Eq. (1.50. a) are the Hermite polynomials of the mth and 

nth order (n=O, 1,2, ... and m=0,1,2, ... ). The Hermite polynomials are given by Boas 

[15] as 

Hn(sý (-1)ne, " 
dsd n e-s2 (1.51) 

On solving Eq. (1.51) it is found that 

H0(s)=1 

H, (s) = 2s (1.52) 

H2(s)=4s' -2 

Since the beam is focused at the centre of the confocal resonator, it is convenient to choose 
the origin of the Cartesian coordinate system to be at the centre of the resonator. 
The beam spot radius w(z) which appears in Eq. (1.50. a) is given by Svelto [3] as 

( lz 
w(z) = wo 1 +I 

LI 
(1.53) 

where 

wo =ý or wö k=L (1.54) 

is the spot radius at the centre of the resonator. The smallest spot radius occurs at the 

origin, z=0. The quantity wo is therefore usually referred to as the spot radius at the beam 

waist, or the beam waist radius, and the z coordinate is measured along the propagation 

direction with its origin at the waist. For z=± 
L 

(i. e. on the mirrors) Eq. (1.53) gives 

4z 
=± -fl ='wo . Thus the spot radius at the mirrors is larger than that at the centre 

of the resonator. This is readily understood from the fact that the mirrors tend to focus the 

17 
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beam at the resonator centre. The functions R(z) and O(z), which appear in the phase term, 

the last exponential factor of Eq. (1.50. a), are given by Svelto [3] as 

i 
R(z)=z 1+ L 

2z (1.55) 
2z 

0(z) = tan-' 

From Eq. (1.50. a) it can be shown that the equiphase surfaces are, to a good 

approximation, spherical with radius of curvature equal to R(z). (R(z) is +ve when the 

centre of curvature is to the left of the wavefront. ) For z=0 (centre of the resonator) R=oo 

and the wavefront is plane, as expected from symmetry considerations. For z= ±L (i. e. on 

the mirrors) R=L. This shows that, as expected, the two mirror surfaces are also equiphase 

surfaces. If a laser beam is focused by a lens, then the minimum spot radius is at the focus 

(focal spot), referred to as the beam waist. Also in this case, the coordinate system has its 

origin at the beam waist. However Eqs. (1.53 and 1.55) are written with the help of Eq. 

(1.54) in a different form, by expressing the terms 
2Z 

and 
L 

in terms of wo. Thus Eq. 

(1.53) becomes 

2 

w(z) = wo 1+ (1.56) 
0 

and Eqs. (1.55) become 

x 
R(z) =z1 +°x 

Az 
(1.57) 

O(z) = tan-' Ilz 
)Two 

In cylindrical coordinates the eigenfunctions for the resonator modes can obtained from 

[ 16] and written in a form consistent with [ 13] as 

Wo p"n ýp2 
», 

2(s) 
! I2 

(z)+6-(2m+n+1)/(s)I 

um� (P, 9, z) =WO 
W(VZý) 

cos(n B)Lm 
W(Z)2 JeeL, (1.58. a) 

or in terms of the magnitude of the electric field 

Emn (P, e, z) = Eoumn (P, a, z) " (1.58. b) 
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In the literature, these eigenfunctions are referred to as the Laguerre-Gaussian beam modes 

(TEMrmn). Where Lm (s) are the associated Laguerre polynomials (m=O, 1,2, ... and n is 

not restricted to be an integer. The only restriction is that n>-1) [15] 

s-"e' d' 
Lm (S) =m 

(s"+Me-') (1.59) 
m! ds 

On solving Eq. (1.59) it is found that 

Lö (s) =1 
L, (s)=n+1-s (1.60) 

L, (s)= I (n+1Xn+2)-(n+2)s+ I 
s2 22 

Substituting n=m=0 into Eq. (1.50. a) or Eq. (1.58. a) and only considering the amplitude 

part of these equations, it can be seen that the amplitude A(x, y, z) or A(p, O, z) respectively of 

the E. M. wave is proportional to 

x2+y2 

A(x, y, z) oc e ""(sý (1.61) 

or 

A(p, B, z) ae Wt=)z 
) 

(1.62) 

From Eq. (1.62) it is apparent that the amplitude profile is gaussian in form. At the beam 

waist, w(z)=wo and it can be seen from Eq. (1.62) that if two, then Aocl/e. Thus w(z) is 

the distance at which the amplitude is 1/e times that on axis. 

1.3.2. Validity of the paraxial wave equation 

An optical beam can be made up of a superposition of plane wave components travelling in 

directions making various angles with the z axis. Thus the axial and transverse variation of 

a plane wave component E(x, z) (considering for simplicity reasons only one transverse 

coordinate) travelling at an angle 0to the z axis, in the xz plane can be written according to 

Siegman [14] as 
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E(x, z) = Eoet sinO+izc«e = Eou(x, z)e' (1.63) 

Then the exact form of the reduced complex scalar wave amplitude u(x, z) , and its 

approximate form in the paraxial approximation, becomes (using the small angle 

approximation given by Boas [15]) 

s 
ik @r_Bz 

u(x z) = ek51n 
9-ikz(I-cose) 

-- eZ (1.64) 

By using the small angle approximation, the normalized first and second derivatives of 

u(x, z) in the transverse direction take the values 

i 
2k c3u(x' z) 

= -2k2(1 - cos 9) e +k202 
u(x, z) az 

(1.65) 
1 ö2u(x, z) 

_-k2sin29%r-k2O2 

u(x, z) äx2 

However the second derivative in the z direction takes on the form 

1 a, u(x, z) 
__k2(1-cos9)Z -- _k204 (1.66) 

u(x, z) az2 4 

z 

This is smaller than either of the preceding terms by the ratio 4 
(0 measured in radians). 

This ratio will be very much less than 1 as long as 0: 5 
2 radian. Thus paraxial optical 

beams can be focused or can diverge at cone angles up to approximately 30 degrees, before 

significant corrections to the paraxial wave equation become necessary [14). Therefore 

even though the paraxial wave approximation is not an exact solution to Maxwell's 

equations, it is a simple representation of a weakly focused Gaussian beam. As the paraxial 
Gaussian beam description was the first description of the laser beam, all the nomenclature 
is based on it. Furthermore the paraxial approximation can be used as a benchmark for any 

other model, which describes a Gaussian beam. As in the so-called paraxial limit, i. e. for a 

weakly focused beam, any such model should produce the same results as the paraxial 

approximation. 
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1.4. Description of a Gaussian laser beam. 

The Gaussian laser beam is produced inside the resonator cavity of the laser. The adjective 

Gaussian is given since TEM, nn modes are defined to be the product of a Hermite 

polynomial and a Gaussian function. Since in the case of the TEM00 mode the Hermite 

polynomials of zero-order, Ho(s)=1, are multiplied with a Gaussian function, the radial 

profile of a beam propagating along the z axis is thus Gaussian along the x and y directions. 

Hermite-Gaussian laser beams are used in rectangular coordinates, as they are produced by 

rectangular laser cavities. Semiconductor based lasers normally have such cavities. 

However it is also possible to obtain Laguerre-Gaussian beams from a single longitudinal 

mode HeNe laser that operates in a stationary TEM*oI hybrid mode configuration [17]. The 

Gaussian function here is multiplied by the generalized Laguerre polynomials. Since the 

Laguerre polynomial of zero-order L°o(s)=1, the radial profile of a lowest order beam 

propagating along the z axis is Gaussian, and is symmetric, with the axes of symmetry 
being the z axis. These modes are thus called the "Laguerre-Gaussian modes. Since both 

the Hermite-Gaussian and Laguerre-Gaussian functions each form a complete basis sets of 

orthogonal functions, it is possible to expand any Hermite solution in terms of Laguerre 

functions and vice versa. The normalised Gaussian irradiance profile at the beam waist of 

the few lowest order TEM,,,,, which are obtained by substituting Eq. (1.50. b) into Eq. 

(1.37) and normalising the functions to 1, with wa =., can be seen from Figs. 1.3. a), 

1.4. a) 1.5. a) and 1.7. a). Fig. 1.6. a) represents the mode produced by a linear superposition 

of the TEMoi and the TEM1o modes. These modes are sometimes in the literature shown as 
density plots. The density plots for these modes can be seen in Figs. 1.3. b), 1.4. b) 1.5. b) 

and 1.7. b). Fig. 1.6. b) represents the density plot of the mode produced by a linear 

superposition of the TEM0I and the TEMIO modes. It is clearly visible from these plots that 

the normalised irradiance profile is Gaussian only for the lowest order TEM00. 
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Background 

Figs. 1.8. a), 1.9. a) and 1.10. a) shows the normalised irradiance profile at the beam waist, 

which are obtained by substituting Eq. (1.58. b) into Eq. (1.37) and normalising the 

functions to 1, with wo =, for the few lowest order TEMimn Laguerre-Gaussian beam Nf2 

modes. Again only the lowest order mode TEM*oo has a Gaussian irradiance profile. The 

density plots for these modes can be seen in Figs. 1.8. b), 1.9. b) 1.10. b). From Figs. 1.9. a) 

and b) it is apparent why the TEM*oI mode is referred to in the literature as the donut 

mode. This mode can also be constructed by a linear superposition of a TEMIO and TEMo1 

Hermite-Gaussian beam mode [14], which is apparent by comparing Fig. 1.6. a) with Fig 

1.9. a) and Fig. 1.6. b) with Fig. 1.9. b). Siegman [14] claims that this linear superposition of 

the Hermite-Gaussian modes oscillating separately and independently, with slightly 

different oscillating frequencies, due to the astigmatism introduced by the Brewster 

window in the laser, are more likely to be responsible for the donut mode, than the TEM101 

Laguerre-Gaussian beam mode. He further claims that an m=0 Laguerre-Gaussian mode 

cannot exist, since a Laguerre-Gaussian mode can never have a null on axis. 

1 
0.6 
0.6 
0. a 
0.2 

0 
-4 

Fig. 1.8. a) TEM'ou Lagueire-gaussian beam mode Fig. I . 2i. b) Density plot TEM'W Laguerre- 
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23 

Pig. I 
. 
7b) Density plot fEMiiHermite- 

Gaussian beam mode 



Chanter 1 

1 
0.8 

1(r)0.6 0.4 
02 

0 

N' 0ýYr '! / 

0 ky 
kx ýi 

ig 1 ') a) I IIM',, I I . agucrru-gaussian hcam mode 

1 
0.8 
0.6 

.4 
0 
0.2 

0 

`.,. I 

Fig. 1.10. a) TEM*11 Laguerre-gaussian beam mode Fig. 1.1 O. b) Density plot TEM'� Laguerre- 

gaussian beam mode 

Background 

In real lasers the Brewster windows and any other tilted surfaces or distorted elements 

usually provide a small but inherent rectangular symmetry to the laser cavity. Thus real 

lasers elect to oscillate in near- H erm i te-Gaussi an modes rather than near-Laguerre- 

Gaussian modes. 

1.5. Laser beam transformation 

Before a laser beam is put to use, it is usually transformed in some way [3]. There are four 

types of transformations; 1) spatial transformation, 2) amplitude transformation, 3) 

wavelength transformation and 4) time transformation, which are often interrelated. The 

most common type of transformation is the one which occurs when the beam is made to 

propagate in free space through a suitable optical system. This produces a change in the 

spatial distribution of the beam. Thus this is called "spatial transformation" of the laser 

beam. Amplitude transformation occurs when a beam is passed through an optical 

amplifier or attenuator. Wavelength transformation occurs when the wavelength of the 

beam is changed as a result of propagation through a suitable non-linear matec\al. The 

Fig. 1.9. b) Density plot f6M'm Laguerre- 

gaussian beam mode 
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temporal behavior of the laser beam can be modified by a suitable electro-optical or non- 

linear optical element. This is called "time transformation". For example the time variation 

of the output from a pulsed laser may be changed. As this work deals with the behavior of 

a strongly focused Gaussian laser beam, only the spatial transformation will be considered. 

1.6. Gaussian beam propagation 

The expressions for the beam spot radius w and radius of curvature R of the equiphase are 

given by Eq. (1.56) and the first equation in Eqs. (1.57). The propagation properties of this 

beam depend only on the wavelength and the value of wo of the spot radius at the beam 

waist. Once wo is known, both the amplitude and phase are known at the waist. It has to be 

emphasised that the wavefront is plane at the waist. Eq. (1.56) shows that the square of the 

beam spot radius at a distance z from the waist is given by the sum of the squares of the 

[12 
spot radius at the waist, w 2, and the contribution arises from diffraction. 

MVO 

If a TEMoo Gaussian beam is focused by a lens of focal length f (See Fig. 1.11. ), then just 

before the lens, the spot radius w, and the radius of curvature Ri of the beam can, 

according to Eqs. (1.56) and the first equation in Eqs. (1.57) be written as 

z 

w, = wo, 1 +2 (1.67) 

R, = L, 1+ 
("IW'll Z 

(1.68) 
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P, P2 

Fig. 1 .11. Comparison of the focusing of a spherical wave and the focusing of a Gaussian beam 

by a lens of focal length f. (adapted from Svelto [3]) 

Background 

If the beam is focused by a thin lens, then the amplitude distribution must remain 

unchanged upon passing through the lens. There cannot be a discontinuous change of spot 

radius. Thus the beam spot size just after the lens, w2, is equal to the beam spot size just 

before the lens, w1,. I. e. 

W2 W1 (1.69) 

In order to calculate the corresponding wavefront curvature, the case of a spherical wave 

propagating through the same lens is considered. From geometrical optics there follows, 

the well-known result, that 
1+1=1. 

Since the radii of curvature R1 and R2 of the two 
pqf 

spherical waves just before and just after the lens are equal to p and -q respectively, it is 

implied that 

i_1_i (1.70) R, R2 f 

Thus a Gaussian beam remains a Gaussian beam after passing through a thin lens system, 

hence the result also applies to a thick lens, as a thick lens can be regarded as a sequence of 

thin lenses. The spot radius w02 at the new beam waist and the distance L2 of this waist 

from the lens can be obtained by using Eq. (1.56) and the first equation in Eqs. (1.57) in 

reverse: 
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Lý_ft x'oL f2-. % 
w02 (1.71) 

Lz =f± 
w02 fz -fo Woi 

From these both w02 and L2 can be obtained. The quantityfo in Eq. (1.71) is given by 

Svelto [3] as 

c0_ 
MVOI WO2 

A 
(1.72) 

When the first waist is coincident with the first focal plane (LIf), the second waist also 

coincides with the second focal plane of the lens (L2 j). In general, the planes of the two 

waists are not conjugated in accordance with the geometrical optics result, i. e. 
1+1$1 The explanation for this phenomenon is that a Gaussian beam undergoes a 

Lý L2 f 

phase shift given by the second equation in Eqs. (1.57), referred to as the Gouy phase shift, 

when being focused by a lens. A phenomenon which does not occur when an ideal plane 

wave is focused by a lens. 

Another important aspect to consider is the aperture transmission. Finite apertures will be 

present in any real optical system. The irradiance of a Gaussian beam falls off very rapidly 

with the radius beyond the spot radius w. The easiest way to calculate the total power of 

the Gaussian beam is to consider the power of the beam at the beam waist. Substituting Eq. 

(1.50. b) for the m=0, n=0 into Eq. (1.37) gives the following expression for the irradiance 

at a position r 
2 

Iýr) _1 Eo E wo 
eZ 

2 fro w(z) 

Substituting w(z)=wo into Eq. (1.73) and evaluating the integral 

2 
_Z 

P 

P=ZEö alle 0pdPd9 
F7-', 

I 

(1.73) 

(1.74. a) 
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where p= x2 + y2 and 0= arctan(y) are the usual plane polar coordinates, leads to the 
x 

following expression for the beam power at the beam waist: 

P=4Eö Týo (1.74. b) 

Thus it can be seen from Eqs. (1.73) and (1.74. b) that the radial irradiance variation of a 

Gaussian beam is given by 

2p2 

1(r` = ý2 
e Z)2 

z 
(1.75) 

Thus the power transmission, for a Gaussian beam of spot radius w passing through a 

centred circular aperture of diameter 2a, is given by Siegman [14] as 

Zi 2a2 

Power transmission = ZZ f0 A fö ew pýp 0= 1-e "'Z (1.76) 

An aperture with radius a=w transmits X86% of the total power in the Gaussian beam. 

Thus one refers to this as the 
1 

criterion for aperture size. 
e 

1.7. Definition of the Rayleigh range 

The term Rayleigh range is sometimes used in antenna theory to describe the distance 

z that a collimated beam travels from an antenna of aperture diameter d (assuming 

d»2) before the beam begins to diverge significantly. As it is important to know how 

rapidly an ideal Gaussian beam will expand due to diffraction spreading as it propagates 

away from the waist region, it is necessary to find a parameter, which describes the 

distance a collimated Gaussian beam travels before it begins to spread significantly. If the 

input spot radius wo at the waist is made smaller, the beam expands more rapidly due to 

diffraction, i. e. the beam remains collimated over a shorter distance in the near-field and 

diverges at a larger angle in the far-field. The distance, which the beam travels from the 
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waist before the beam diameter increases by a factorJ, or in other words, before the 

beam area doubles, is given by the parameter 

z= zR = 
ý° 

= Rayleigh range. (1.77) 

Thus by taking the square root of Eq. (1.77) and substituting z=zR into Eq. (1.56) it is 

indeed found that w(z)= wo. The Rayleigh range marks the approximate dividing line 

between the "near-field" (Fresnel) region and the "far-field" (Fraunhofer) region for a 

beam propagating outwards from a Gaussian waist. At the points z=± zR the radius of 

curvature is a minima, and its value is R=b=2zR. The confocal parameter b is defined as the 

full distance between the wo spot radius points of a Gaussian beam, which is focused 

from an aperture down to a waist and then expands again 

2 

b= 2z,, =2A°= confocal parameter. (1.78) 

Thus the confocal parameter is equal to twice the Rayleigh range. 

1.8. The far-field 

In the far-field (z»ZR) the beam size expands linearly with distance [14]. By substituting 
Eq. (1.77) into Eq. (1.56), Eq. (1.56) can be written in terms of the beam waist radius and 
the Rayleigh range as 

z 

w(z) = wo l+ 
(r-ZZ 

(1.79) 

Using the fact that in the far-field (Z»ZR), the 
1 

spot radius w(z), for the field amplitude in 
e 

the far-field for a Gaussian beam coming from a waist with spot radius wo, is given by 

w(z) 
w°z 

=2 (1.80) 
ZR ZWO 
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1.9. Focusing a Gaussian beam 

The focusing of a collimated Gaussian beam can be viewed as the far-field beam problem 

in reverse as has been demonstrated in section 1.6.. Having derived Eq. (1.80) a very useful 

equation can be obtained by considering the fact that the waist region now becomes the 

focal spot of spot radius wo and the focusing lens can be viewed as being in the far-field at 

z;: t±f. If w(f) is the Gaussian spot radius at the lens, Eq. (1.80) can be rewritten as follows 

wow(f) 
ýf 

(1.81) 

This implies that the incident Gaussian beam should fill the aperture of the focusing lens to 

the largest extent possible without a severe loss of power due to the finite aperture of the 

lens and also without serious edge diffraction effects. 

1.10. The need for a vector description of a focused laser beam 

So far only a scalar solution to the Helmholtz equation has been considered. However in 

general there is a strong need for a vector description of a Gaussian beam. In the paraxial 

beam approximation the spherical wave is purely transverse, but as will be demonstrated in 

chapter 2, the spheroidal wave actually has a transverse and a longitudinal component. 

Thus in order to get a detailed description of the E. M. field of the beam, a vector 

description is required. It will be demonstrated in chapter 5 that in order to calculate the 

forces exerted by a focused beam on a dielectric sphere it is necessary to calculate the 

Maxwell stress tensor. These calculations require a vector description of the E. M. field. 

Additionally, when an E. M. field crosses the boundary between two media, a certain 

proportion of the incident field is reflected and a certain proportion of the field is 

transmitted. By calculating the Fresnel reflection and transmission coefficients it is 

possible to determine how much of the incident field is reflected and how much is 

transmitted. However it is demonstrated in chapter 5, that the Fresnel reflection and 

transmission coefficients are polarization dependent. It is thus necessary to take the 

polarization of the E. M. field, which is a vector quantity into account too. There is also 

another reason why a vector description is needed. At the beam waist and in the far-field 

the radius of curvature R(z) of the spherical wavefront is infinite [14], i. e. R(z=0)=oo and 

R(z=oo)=oo. Thus the wave can be regarded as a plane wave. As the beam propagates 
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outwards from the beam waist, the wavefront becomes gradually curved, and the radius of 

curvature drops rapidly. For z»zR the radius of curvature then increases and R(z)-*z, i. e. 

the Gaussian beam becomes essentially like a spherical wave centered at the beam waist. 

The strongest curvature of the wavefronts is observed at z=zR, where R(zR)=2zR. As there is 

a rapid change of curvature of the wavefront in the near-field the direction of the field is 

important. Thus if the curvature of a field is of interest, then a vector description is 

required. 

1.11. The different methods used to describe a focused Gaussian beam 

Early mathematical descriptions of a focused Gaussian beam were based on solutions to 

the paraxial scalar wave equation. These solutions assume that the propagating wave is 

approximated as a purely transverse spherical wave; i. e. the wave has no longitudinal 

component. It was demonstrated that the solutions to the paraxial scalar wave equation in 

Cartesian coordinates are the Hermite-Gaussian beam modes and the solutions in 

cylindrical polar coordinates are the Laguerre-Gaussian beam modes. However, these 

solutions are not exact solutions to the scalar Helmholtz equation. Thus in order to obtain 

an exact mathematical description of a focused laser beam, it is necessary to find a 

separable solution to the scalar Helmholtz equation. Another method to describe a focused 

Gaussian beam is to use the Davis approximation [18], which is generally referred to as the 

fifth order Gaussian beam approximation. This procedure is an infinite series expansion in 

powers of the beam parameters, where 

1 
S kwo 

(1.82) 

This series expansion satisfies Maxwell's equations exactly. In the fifth order 

approximation the series expansion is truncated at s4. Due to this truncation the fifth order 

approximation is not an exact solution of Maxwell's equations [19,20]. Barton [19] used 

the Davis approximation in order to derive symmetric E. M. fields. Decamps [21] 

generalized the paraxial spherical wave by considering this wave in the complex plane. 

This method is referred to in the literature as the complex source point method. Other 

methods, described in the literature are methods based on Fourier series expansions [22, 

23]. Landesman and Barrett [24] have assumed a spherical wave as the basic propagation 

function of the Gaussian beam. In order to obtain a solution to the scalar Helmholtz 

equation, they performed their calculations in the oblate spheroidal coordinate system. 
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Sheppard and Saghafi [25] as well as Ulanowski and Ludlow [26] independently pointed 

out, that a complex source point method cannot be a physical realizable description of a 
focused laser beam, since the presence of the source results in a singularity occurring in the 

focal plane at a radius equal to the Rayleigh range. In order to overcome this problem, 
Sheppard and Saghafi [25] as well as Ulanowski and Ludlow [26] introduced a complex 

sink. Hence it was demonstrated that the field produced by the sum of the source and the 

sink lead to a physically realizable solution to the scalar Helmholtz equation. Nieminen et 

al. [27] used a multipole expansion method to calculate the E. M. field and then point 

matched this field against the E. M. field determined by measurement or calculated using 

the paraxial approximation. 

The aim of the following section is to present the most important models (excluding the 

work of Sheppard and Saghafi [25] and Ulanowski and Ludlow [26], as their work was 

published during the period of this research), which have been used to describe a focused 

Gaussian beam mathematically, in more detail and to discuss their shortcomings. 

1.11.1. The fifth order Gaussian beam approximation 

The paraxial Gaussian beam approximation has proven to be very successful in describing 

the characteristic radiation fields of stable spherical resonators. The difficulty with the 

theory is, that no exact solution to Maxwell's equations is obtained, instead a solution to 

the paraxial scalar wave equation is obtained, and further no procedure is given for 

deriving the higher order correction terms, which then would lead to an exact solution to 

Maxwell's equations. The second difficulty with this theory is that only the transverse 

component of the electric field, which satisfies the paraxial scalar wave equation, is 

worked out and the other two components are omitted. Lax, Louisell and McKnight [28] 

have overcome this problem by starting with the exact Maxwell equations and expanding 

the electric field vector in powers of s. They also pointed out, that it follows from the exact 

Maxwell equations, that for a plane polarised E. M. field, polarised in the x direction say, 

the electric field must be independent of the x coordinate. Thus in the derivation of the 

paraxial wave equation X should have been set equal to zero. But as they describe later 

on in their paper, it is appropriate to set 
E#0. 

Lax et al. [28] referred to this problem äx 

as an apparent paradox. The reason why there is no paradox is, that the lowest order 
expanded field is purely transverse. However for the next higher order a small longitudinal 

component of the field must be present and its size depends on s. Davis [ 18] simplified the 
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method presented by Lax et al. [28] by assuming that the E. M. vector potential A(r, t) is 

linearly polarised along one of the two transverse directions, in order for the non-vanishing 

transverse component of A(r, t) to obey the scalar wave equation. Davis states that this 

procedure is only beneficial in the free field case, since the assumption that the vector 

potential A(r, t) is linearly polarised fails when a current exists which is dependent on the 

electric field. 

1.11.1.1. The derivation of the fifth order Gaussian beam approximation 

Davis assumed a monochromatic beam within a homogeneous, isotropic, non-conducting 

(p=O), non-magnetic (u=p) dielectric medium Maxwell's equations for such a 

medium are given by Eqs. (1.5 - 1.8). He introduced the vector and scalar potential A(r, t) 

and c(r, t) and related them to E(r, t) and B(r, t), with a harmonic time dependence of e ice`. 

Since the divergence of B(r, t) is zero (Eq. 1.6), B(r, t) can be written as 

B(r, t) =Vx A(r, t). (1.83) 

Thus substituting Eq. (1.83) into Eq. (1.8) yields 

VxE(r, t)=- 
a (VxA(r, t)), 

or interchanging differentiation with respect to time and space gives 

Vx E(r, t)+ 
at =0 (1.84) 

It follows from Eq. (1.84), that the expression in brackets should be equal to the gradient of 

the scalar potential (D(r, t): 

E(r, t)+ 
aA(r, t) 

_ -Vc 
(r, t) 

or 

E(r, t) = -0(D(r, t)- 
aA(r, t) (1.85) 

Further in the considered case 
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H(r, t) = 
B(r'tý (1.86) 

Euo 

and substituting Eq. (1.86) into Eq. (1.7) yields 

Vx H(r, t) =- at't) 
(1.87) 

substituting Eq. (1.86) into Eq. (1.83) gives 

H(r, t)= 
1 (OxA(r, t)) (1.88) 
PO 

Taking the curl of Eq. (1.88) and substituting the result into Eq. (1.87) leads to 

IVx (V x A(r, t)) =E 
aE(r) 

. (1.89) 
Iuo 

Substituting Eq. (1.85) into Eq. (1.89) leads to 

I vx(OxA(r, t))=-s 
a 

Vý(r, t)+aA(r, 
t) (1.90) 

at 
( 

at 
)' 

ýo 

Using the vector identity 

Ox(OxA)=0(0"A)-02A 

Eq. (1.90) can be rewritten as 

i (0(D " A(r, t))- V'A(r, t)) = -E 
[vocr(rt) 

+ 
a2A(r'tý 

(1.91) 
A 

at ar2 

Rearranging Eq. (1.91) gives: 
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a2A(r, t) 
-V09Ar, t +, uos 

J=o. 
V 2A(r, t)-µ06 

a2( at 

Taking the divergence of Eq. (1.85) and using Eq. (1.5) 

V"E(r, t)=-V"I V (r, t)+aAat= 
lJ 

is obtained. Thus interchanging differentiation with respect to time and space gives 

V2c(r, t)+ aV. A(r, t) o. (1.93) at 
From Eq. (1.92) and Eq. (1.93) it can be seen that the equations for A (r, t) and c (r, t) are 

not independent. Since E (r, t) and B (r, t) determine the force exerted on the charge, and 

thus are more directly linked to the physical world, then for a given E(r, t) and B(r, t) 

field, the vector potential A(r, t) cannot be uniquely defined by the relation given in Eq. 

(1.83). Hence there is some degree of arbitrariness. In order to uniquely define A(r, t), its 

divergence needs to be specified. By a gauge condition we understand the specification of 

the divergence of A (r, t). In the case considered we are working in the Lorentz gauge, 

where the divergence of A (r, t) is given by 

V" A(r, t)+, uoe a`Dr t) =0 . (1.94) 
cit 

Thus substituting Eq. (1.94) into Eq. (1.92) yields 

V2A(r, t)-, u. e atrýt) =0 (1.95) 

and substituting Eq. (1.94) into Eq. (1.93) leads to 

O'c(r, t) Po£ as 1 r, t) = 0. (1.96) 
at2 
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It can be seen form Eq. (1.95) and Eq. (1.96) that these are independent equations for 

A (r, t) and c (r, t). By substituting v=1, k= CO 
=2 and making use of the fact that 

a2A(r, t) 
= -0) = 2(j) 

ate 
2A(r, t) and ate -w (r, t), Eq. (1.95) and Eq. (1.96) can be 

rewritten as follows: 

V2A(r, t)+k2A(r, t)= 0 

OZc(r, t)+k2i(r, t)= 0 

Rearranging Eq. (1.94) gives 

V"A(r, t)__ 0E 
(r, t) 

(1.97) 

(1.98) 

(1.99) 

- Further, the chosen harmonic time dependence implies that 
äA (atr' t) 

-iwA(r, t) and 

acD(r, t) 
= _ic&, (D(r, t). As next, from Eq. (1.99) the following expression for cv(r, t) is 

at 
found: 

(D(r, t)=-k2 o. A(r, t) (1.100) 

Now Eq. (1.85) can be rewritten in terms of the vector potential A (r, t) as 

E(r, t)= 0Z (0(D"A(r, t))+k2A(r, t)). (1.101) 

In order to describe a paraxial beam, A (r, t) is assumed to be polarised in the transverse 

direction, and it is also anticipated that the waves are nearly plane. A Cartesian coordinate 

system, with A (r, t) being polarised along the x axis and the beam propagating along the z 

axis is assumed. Thus in the scalar case Ax (r, t) i =A (r, t) and (Ay (r, t) j Az (r, t) k=0). In 
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order for A (r, t) to be a physical solution, A (r, t) has to satisfy the scalar Helmholtz 

equation (Eq. 1.19). Thus by replacing u(r) with A(r) Eq. (1.19) can be rewritten as 

where A(r) is given by 

V2A(r)+k2A(r)=0 , (1.102) 

A(r)= yr(r)e`kz (1.103) 

For the next part of the derivation it is convenient to consider yýx, y, z)e' instead of 

yo(r)e`". It is also known from section 1.3., and replacing u(r) with yr(x, y, z), that yixy, z) is 

a slowly varying function in the z direction. Thus by substituting yr(xyz)e`k' into Eq. (1.19) 

leads to 

V2yr(x, y, z)+2ikaw(Xzy'z) =0 . (1.104) 

Davis introduced the dimensionless transverse variables x=woý and y= word. From section 
1.7., it is known that there is a characteristic diffraction length, confocal parameter b, 

Davis [18] set z=2ZRý. Substituting these new variables into Eq. (1.104) leads to 

aZZ 
+ 

a22 
V/(ý, 77, +2i 

aw(ý, 77, +S2 
a2Vv(ý, 17,0 =o, (1.105) a aý ac aC2 

where s=0. If the beam waist radius wo is large compared to %, then s is small 

compared to unity. In this case Davis [ 18] claims it to be natural to seek a series solution of 
Eq. (1.105) of the form 

o(11,4)+s2 w2(4; , l, +s4Vl 4(ý, i1,4)+... (1.106) 

where according to Barton [ 19] 

äßz 
+a 

222 
+ 2t V. (ý, q, 5) =o (1.107) 
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a2 + a2 +2i 
)V2 

( , ý, 
a2ýo(_, 17, ý') (i. ios) aZa; 2 

a2 
+ 

a2 
+2i 

a aZýV2( , 77, ý) (1.109) 
aZa, 7Z a; w(4ý, 77,0 aß2 

Eq. (1.107) is the familiar paraxial beam equation, which has the solution 

Vo(ý, 71,0 =-iQe'°2Q , 
(1.110) 

where here p2=e+r2 and Q=i1 
+2; 

Davis [18] expressed Eq. (1.110) in the slightly different form, namely 

yro(ý, rp )=e 
r(P+Qp2) 

, (1.111) 

where iP =1n(- iQ). Substituting the expression for ý, and using Eq. (1.77), into Q leads to 

Q= 
1ý 

7avol 

Thus 

- iQ = 
iAz 

l+7aVÖ 

Therefore 

In(-iQ)=-ln 1+ l 
mvo 

Hence 

iP= -1n I+ l 
wwa 

(1.112) 
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P can be decomposed into its real and imaginary parts [21]. The real part of P represents 

the phase shift difference 0 between the Gaussian beam and an ideal plane wave. The 

imaginary part of P produces an amplitude factor) , which gives the expected intensity 
z 

decrease on axis due to the expansion of the beam. 

Re(iP) = -1n 1+ 
ýZ (1.113) 

'o 

Im(iP) =- arctan 
ýz 

(1.114) 
mvo 

Further since iP =1n(- iQ), Eq. (1.111) can be written as 

! /o (ý, q, ý; ) = e'Pe`Qo2 = _IQe''2 , (1.115) 

which is identical to Eq. (1.110). 

Decomposing the product iQ into its real and imaginary part and using Eq. (1.77) when 

substituting into Q, it is found that 

Q= 
iZý 

-i+- ZR 

and 

Re(iQ)= 

1+ Z 
ZR 

Which can be written, using Eq. (1.56) as 

Re(iQ)_-w ý 
(Z) (1.116) 
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The imaginary part of the product iQ is given by 

IM(IQ) = 
ZR 

z2 
z(1 +z2 

By using the first equation in Eqs. (1.57) together with Eq. (1.77) it is found that 

Im(iQ) = 
RýZ) 

= 
ZR( 

Z) 
(1.117) 

Finally substituting Eqs. (1.116), (1.117) and (1.114), using the relationship of the second 

equation in Eqs. (1.57) into Eq. (1.115) leads to 

(F2+y2) 

w _-x22 
YZ (k 

2Rýz) -0(_) 

yi (x, y, z) )e 
ýzý 

z 

Hence A(x, y, z) can be written for the lowest order mode as 

\x2+y2ý 
x2+y I! k +kz-4(z) 2R(z) 

ýi)e W2(=) e, 

which is identical to Eq. (1.50. a) for the lowest order. 

By substituting Eq. (1.110) into Eq. (1.108) Davis [18] found 

Y/2(ý, 171 '; )=-(2iQ+iP4Q3 
o(ý, 1l, ý) (1.118) 

and by substituting Eq. (1.118) into Eq. (1.109) Barton [19] found 

1V4(('77'4) = 
(-6Q2 

-3p4Q4 +2ip6Q3 -0.5p8Q6)/'o(ý, 77,0). (1.119) 
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Substituting ý=x, i=y and ; =? 2 
into Eq. (1.103) and using the expansion given in 

wo wo kwo 

Eq. (1.106), A(r) can be written in vector form to fifth order ins as 

rc 
(1.120) 

Thus an expression for the E. M. field to fifth order in s can be obtained by substituting Eq. 

(1.120) into Eq. (1.101) and Eq. (1.88). However these expressions for the electric and 

magnetic field lack symmetry, beyond the first order case. Since A(r) = AF (r) I it can be 

seen that by calculating the curl of A(r) 

H(r, t)= 
1 (VxA(r, t))= 

1 aAZ(r, t)_aAy(r, t) i+ aAx(r, t)_aA'(r, t) :+ 
, uo , u0 äy äz öz är c' ay 

that H, (r, t) =0 for all orders of s. Barton [19] has demonstrated that a Gaussian beam 

description, for which the electric and magnetic field component expressions are 

symmetric, can be obtained by repeating the derivation with 

A(r, t)'= A., (r, t) j= yr(r, t)'eA. j. (1.121) 

Barton [19] set 

E'(r, t) =Vx A'(r, t). (1.122) 

By substituting Eq. (1.122) into Eq. (1.7) it is found that 

vxB'(r, t)= -p. ar(VxA'(r, t)) (1.123) 

or, interchanging differentiation with respect to time and space and substituting Eq. (1.86) 

gives 

Vx H'(r, t)__A' r, t) 
_0. (1.124) 

9 at ) C 
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It follows from Eq. (1.124) that 

H'(r, t) aA'(r, t) 
_ V(D(r, t), (1.125) 

6 at 

rearranging Eq. (1.125) leads to 

H'(r, t)= s VT(r, t)+ 
aAatr, t) (1.126) 

and substituting Eq. (1.86) into Eq. (1.8) yields 

VxE'(r, t)=-fca 
öH' r, t)1 (1.127) 

substituting Eq. (1.122) and Eq. (1.126) into Eq. (1.127) gives 

vx(vxA'(r, t))=-poi vac(r, t)+a2A(r°`) (i. i2sý ar ar2 

or 

v(0"A'(r, t))-V2A'(r, t)=-po-- ° 
at +a2A'(r't) (1.129) 

at e 

Rearranging Eq. (1.129) leads to 

V(0 " A'(r, t)) - V2A'(r, t)+, uoe V 
aý 

at 
(r't)+ a2A 

at 2 
r't) 

= 0. (1.130) 

Since these derivations are done in the Lorentz gauge, Eq. (1.94) needs to be substituted 
into Eq. (1.130). 
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Thus 

or 

Background 

- V'A'(r, t)+ fýos 
0 

ö1(rýt) =0 

V2A'(r, t)-, roe a2 '(r, t) =0 (1.131) at 2 

Taking the divergence of H'(r, t) and using Eq. (1.6), Eq. (1.86) and Eq. (1.126) leads to 

V V. H'(r, t) = eV " (VcI(rt)ý =o (1.132) at 
) 

and interchanging differentiation with respect to time and space gives 

V2D(r, t)+a V. A'(r, t)=0. (1.133) 

By substituting Eq. (1.94) into Eq. (1.133) Eq. (1.96) is obtained. 

It can be seen form Eq. (1.131) that an independent equation for A'(r, t) has been obtained. 

Since a2 
at(r't) -w2A'(r, t), Eq. (1.131) can be rewritten as follows: 

V2 A'(r, t) + k'A'(r, t) =0 (1.134) 

From Eq. (1.99) and Eq. (1.100), using 
aA'(r, t) 

_ -icoA rt Eq. (1.125) can be 

rewritten in the following way: 

H'(r, t)= 1 Coe (v(0 9 A'(r, t))+k'A'(r, t)). (1.135) 

Barton [19] added the solutions of Eq. (1.101) and Eq. (1.88) in an appropriate way to the 

solutions of Eq. (1.135) and Eq. (1.122) and divided the result by two. Thus he found the 

following expression for the E. M. field components, to fifth order in the parameters. 
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E, = Eo11+s2(- p'Q2 -ip`Q' -2Q42)+s'[2p`Q +3ip6Q' -0.5p'Q` +(8p'Q` +2ip`Q'h=ýýYo( , ý7, ýý'a 

E. =L {s1(_2 i7)+s4[(8P2Q' +2ipýQ/: )7JIWo( , ýJ, c» 2 

E. =Eo{s(-2Q ý+s3I(6P'Q'+2ipQ ]+s5[(-20p'Q'-10ip6Q`+P'Q'hýwo( 
>n, 

ýý'2 

H, =IEo{s'(-2Q'ýr1)+s'I(8p2Q'+2ip`Q' tlýýl/oý >rI>ýý`: 
IC 

H, =, 
FeEoIl+s'(-p'Q'-ip'Q3-2Vif)+s'[2p'Q`+3ip6Qf-0.5p°Q`+(8p2Q'+2ip"Q'ý1DWa(ý,, 1.4)e" 

H: =i Eo{s(-2Qri)+s)[(6p2Q'+2ip"Q'ý]+s[( 20p"Q'-1Oip6Q'+pQ') Jvjý, 
g7,4) 

(1.136) 

where is given by Eq. (1.110). Eo in the Eqs. (1.136) is the electric field 

amplitude at the focal point of the beam ( -i O). Barton [19] then also stated that there 

exists the following relationship between the beam power P and 1E012 : 

1Eo'2 _ 
4P 

ýýcwöýl+sZ +l. Ss"ý 

The components of the E. M. field Eq. (1.136) and the relationship between the beam 

power and , EOI2, are the quantities required in order to compute the radiation forces (see 

Chapter 5). 

1.11.1.2. The limitations of the fifth order Gaussian beam approximation 

The fifth order Gaussian beam approximation is not an exact solution to Maxwell's 

equations. However, as was demonstrated in the derivations above, the fifth order Gaussian 

beam approximation is a solution to the paraxial wave equation as the beam parameter s 
tends to zero, i. e. in the paraxial limit. Barton [19] has tested the fifth order Gaussian beam 

approximation against Maxwell's equations and found that this approximation becomes 

less and less accurate as s becomes large. He found that if an error of 1% is acceptable, 

then the fifth order approximation can be used for s values less than 0.2, or in other words 
for ratios of wavelengths to beam waist radii of less than 1.26. Fig. 1.12. a) shows the 

irradiance profile, in the focal plane z-=y=0, normalized to 1 at x=0, of a strongly (s= 
I) 

focused Gaussian beam and Fig. 1.12. b) of a weaker (s=0.2) focused Gaussian beam in the 

focal plane z--y=o, normalized to 1 at x=0. It is apparent from Fig. 1.12. a) that the fifth 
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order Gaussian beam approximation produces an inappropriate profile for a tightly focused 

beam. 

Fig. 1.12. a) 
Irradiance profile of a strongly focused Gaussian beam 

in the focal plane z=yyO, normalized to I at z-0, 

I 
for a beam parameter s=T 

2 

1.11.2. Gaussian spherical waves 

In Eq. (l . 
39) the Green's function 

Fig. 1.12. b) 

Irradiance profile of a weaker focused Gaussian beam 

in the focal plane zry=o, normalized to 1 at x=0, 

for a beam parameter s--0.2. 

G(rzjr, )= 
Ire -r. 1' (1.138) 

which is an exact solution to the wave equation, was used in the Kirchhoff's diffraction 

integral. This Green's function represents a uniform spherical wave, diverging from a 

source point P1(r1). Hence the field i (r2, r), at a point P2(r2) due to a source at point 
P1(rl) can be written as: 

_ eikin-FI 
Ire - rºI 

(1.139) 

Again a small variation along the z axis is assumed. Thus using the binomial expansion, 
Eq. (1.139) can be written as 

Ire-r, l=(z-z0)+(x-x02+(y-Y. 
)Z+... 

(1.140) 
2(z-zo) 

where for reasons of convenience the origin (xo; yo, zo) of the Cartesian coordinate system is 

located at P1(ri). In the denominator of Eq. (1.138) even the quadratic term of Eq. (1.140) 

can be dropped [14]. 
A e' 
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If a uniform spherical wave diverging from a source point (xo, yo, zo), and being observed 

at an observation point (x, y, z) is considered and if the axial distance z-zo between the 

source and observation points is sufficiently large compared to the transverse coordinates 

xo, yo and x, y, then the field distribution produced by this wave at point x, y on the plane 
located at distance z can be written, using the paraxial approximation as 

(X-x0 )2 +(Y-YO I2 (x-x01- +(Y-YO )2lI 
ik I ü (x, Z) 

Ie 
2(z-. 0) 

-1 eJk( 
2R(z) 

J 

Z- zo R(z) 
l (1.141) 

where here R(z)=z-zo gives the radius of curvature of the spherical wave at plane z. The 

phase variation e1 ''', Z) across the transverse plane at fixed z for such a paraxial spherical 

wave with radius of curvature R(z) thus has the quadratic form 

(x-x )Z +(Y-Y°)2 it (x-x°)2 +(Y-Y°)Z (1.142) 
2(z-z°) R(z) 

The radius of curvature R(z) of the wave at plane z can be written in a more general form 

as 

R(z)=Ro+z-zo (1.143) 

with Ro being the value at the earlier plane zo. Thus the radius of curvature of such a 
spherical wave increases linearly with distance as the wave propagates forward to any 
other plane z. 

1.11.3. The complex source point method 

Decamps [21 ] derived the complex source point method. This method has been widely 

used in order to describe the radiation profile of a Gaussian beam. Using this method it was 
demonstrated by Sheppard and Saghafi [25], during the time period of this research, that it 

is possible to derive an exact solution to Maxwell's equations, but there is a problem with 
the physical interpretation of this method, i. e. what is a complex source? Or, since laser 

beams propagate in real space, how come a Gaussian beam needs to be described by a 

source located in the complex plane? 
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1.11.3.1. Introducing complex source point coordinates 

A paraxial spherical wave in the form given in Eq. (1.141) cannot by itself be a very useful 

analytical form for a real physical beam, however, because the amplitude of the spherical 

wave does not fall off with transverse distance from the axis. Such a wave instead extends 

out to infinity in the transverse direction and carries therefore an infinite amount of energy 

and power in the transverse plane (as well as having large deviation from a true sphere far 

off the axis) [14]. Eqs. (1.141-1.143) satisfy the paraxial wave equation or the Huygens- 

Fresnel integral exactly for an arbitrary choice of source point co-ordinates xo, yo, zo. It is 

thus implied that these co-ordinates are simply constant parameters, which cancel out 
identically when the spherical wave expression is put into the paraxial wave equation or 

the Huygens-Fresnel integral. Hence complex values for the source point co-ordinates can 

be used. For simplicity xo, yo are set equal to zero and the axial location zo of the source 

point is converted into a complex number, by subtracting from it an arbitrary complex 

quantity q0. Hence the pure real value zo in the spherical wave expression is replaced by 

the complex value zo-qo. This is equivalent to replacing the radius of curvature 

R(z)=Ro+z-zo with q(z) =z- (z0 - q0) = qo +z- zo . Thus the value of the new "complex 

radius" at the source plane z=zo is just q(zo) = qo . The spherical wave divergence from this 

complex source point is obtained by replacing R(z) with q(z) in Eq. (1.141). Thus the 

divergence of the complex spherical wave can be written as 

ikl x2y2 

J_ 
fkl x2+y 

__ 
1 l2(z =0+90) 

1l 
2qß= u(x'y'z) 

z-z0 +qo 
e 

q(z)e 
(1.144) 

where the complex radius of curvature is given by 

q(z) = qo +z- zo (1.145) 

As q(z)is complex, the expression in Eq. (1.144) can be separated into a real and an 

imaginary part. If the quantity 
I 

is separated into its real and imaginary part in the 
q(z) 

form 
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+ (1.146) 
q(z) ri qýZ) j 

. 146) 

then the spherical wave expression can be rewritten as 

(x2+Y2x2+321 

ü(x y Z) 
1e 24r(z) 29i c=1 (1.147) 

q(z) 

remembering that qr(z) and q; (z) are always defined by Eq. (1.146). 

The exponent for this complex source point beam has an imaginary quadratic transverse 

variation, corresponding to a spherical wave with a real radius of curvature, and a purely 

real quadratic transverse variation, which gives a Gaussian transverse amplitude profile, 

with a transverse fall-off determined by the imaginary part of [14]. These variations 
q(z) 

are both contained in the complex radius of curvature q (z) as given by Eq. (1.146), 

1.11.3.2. Gaussian beam propagation in complex source point approach 

The lowest order Gaussian beam, which is characterized by a spot size wo and a planar 

wavefront R0=oo in the transverse dimension, at the beam waist (zo=O) is considered. In this 

case Eqs. (1.57) can be rewritten, using Eqs. (1.77) as 

R(z) =z+ 
ZR (1.148) 
z 

z 0=tan-' - ZR 

Since the free space parameter q(z) obeys the following propagation law [14] 

q(z) qo +z =z- iz1e (1.149) 

with the initial value 
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q0 = -i A° _ -izR (1.150) 

the normalized field pattern for such a Gaussian beam is given by [14] 

rx2+ Z -Y' "2 

_2 
qo ikz+ikl 

2q(=) 

)=2 

eikz-iO(z) - 
x2WZ(=)+ik 

2R(z) 

u(x'y'z) 
ýr wo9(z) 

el 
;z w(z) 

e J' (1.151) 

where the complex radius of curvature q(z) is related to the spot size w(z) and the radius of 

curvature R(z) at any plane z by the definition 

9(z) R(z) 
+1ß'2(z) (1.152) 

At first sight it seems that the complex source point method is the ideal way in which to 

describe a propagating Gaussian beam. However as pointed out at the beginning of this 

section, laser beams propagate in real space, and the link between a source in the complex 

plane and such a beam is not physical, even though the expression given in Eq. (1.151) is 

identical to the expression in Eq. (1.50. a) for the 00 order. 

1.11.4. The Fourier transform approach 

The principle on which the Fourier transform approach is based is that a Gaussian beam 

can be decomposed into a set of infinite plane waves, all travelling at different angles to 

the axis of propagation. In the literature Mansuripur [22] and Kant [23] have based their 

models on the Fourier transform method. The idea to evaluate the diffraction integral in 

this way is good. However by decomposing the beam, automatically an approximation is 

introduced and it is thus impossible to find an exact solution to Maxwell's equations. 

Additionally the diffraction integral is evaluated numerically and thus no analytic solution 

is obtained. 
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1.11.5. The method based on spheroidal functions 

Background 

Landesman and Barrett [24] showed that it is possible to consider a real source point 

spherical wave in the prolate spheroidal co-ordinate system, where the real source point is 

located at one of the foci of the prolate co-ordinate system. By then transforming this 

system into the oblate spheroidal co-ordinate system they transmuted a spherical wave with 

a real point source on axis into a Gaussian beam. However the wavefunction presented by 

[24] has a circular singularity of radius equal to the Rayleigh range, in the beam waist 

plane and a discontinuity occurring on the focal disk circumscribed by the singularity. As 

there is a singularity present, it implies that [24] found a solution, which violates the 

conservation of energy. It will be demonstrated in the next chapter that the discontinuity 

and the singularity can be removed. Hence the solution presented by [24] becomes physical 
in the sense that the energy of the beam is conserved and that the beam is propagating in 

the real space. 

1.12. The need for an exact vector solution 

Unfortunately, no exact, mathematical vector description of a Gaussian beam is available. 
Instead approximation models based on the fifth order Gaussian beam approximation [18, 

19] and diffraction based approximations {22,23] are in use. Recent studies have shown 

that the above approximation techniques are not accurate enough in some of the 

applications using strongly focused laser beams. Thus there is a need for a more accurate 
description of the Gaussian beam especially in areas such as optical trapping. Most 

notably, the existing theories are not adequate in cases where the laser beam is focused by 

a high numerical aperture lens. It has been discussed in this chapter that the previous 

attempts to obtain closed form analytical scalar as well as vector solutions for focused 

beams have failed - for example giving rise to singularities [24]. The only known accurate 

scalar description is the complex source point model with the introduction of a complex 

sink in order to cancel out the singularity present in the standard model [25]. The 

disadvantage of this model is the difficulty of its interpretation and visualisation. Thus in 

the following chapters, an accurate vector model, describing the Gaussian laser beam, will 
be developed, which uses [24] as a starting point, is singularity free and is an exact solution 

to Maxwell's equations, also satisfying the required boundary conditions at the beam waist, 
in the paraxial limit, and in the far-field. Since Landesman and Barrett [24] presented a 
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scalar solution to the Helmholtz equation, it is appropriate to find an exact scalar solution 
first. This solution is derived in chapter 2. As it is possible to construct a vector solution 
from a scalar solution, this solution will be derived in chapters 3 and 4. Once the vector 

solution is known, it is possible to calculate in chapter 5 the optical trapping forces exerted 

on a dielectric microsphere by a focused Gaussian laser beam. 

tý 
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Chapter 2 The solution to the scalar Helmholtz equation 

2. The solution to the scalar Helmholtz equation 

2.1. Introduction 

The aim of this chapter is to derive an exact set of solutions to the scalar Helmholtz 

equation. As was mentioned in chapter 1, such a set of solutions can be expressed in terms 

of spherical harmonics. In order to derive a solution to the Helmholtz equation which 
describes a laser beam used for optical tweezers, it is necessary to first determine the most 

suitable laser beam mode, used in interference, light scattering and entrapment 

applications, which was thought to be the TEM'oo Laguerre-Gaussian beam mode. This 

beam mode satisfies the paraxial wave equation but is not an exact solution to the scalar 

Helmholtz equation. It will be demonstrated in section 2.4. that the lowest order beam 

mode, referred to as order 00, has an infinite beam power, and thus cannot be a physically 

realizable beam mode. However it will be demonstrated that order 01 has finite beam 

power and that the irradiance profile of this beam mode shows close resemblance with the 

one of TEM*00. Nevertheless it is useful, for didactic reasons, to use the order 00 beam 

mode as the starting point for all derivations. 

Based on the cylindrical symmetry of the TEM*oo beam mode about the axis of 

propagation, the Helmholtz equation will be separated in the most appropriate coordinate 

system which is, as it turns out, the oblate spheroidal coordinate system, in order to derive 

the exact solutions to the scalar Helmholtz equation. Since in the limit of infinitely short 

wavelength or large beam waist (paraxial limit), in the plane of the beam waist the 

spherical wavefronts of the TEM*oo can be regarded as plane wavefronts, it is possible to 

test the derived solution with respect to satisfying the paraxial wave equation in this limit. 

In the far-field, the solution is expected to represent a spherical wave with its center at the 

origin. It is also worth mentioning that if the oblate spheroidal coordinate system is 

extended out to infinity, it turns into the spherical polar coordinate system. Therefore it is 

possible to test if the irradiance profile is Gaussian on the surface of the Gaussian reference 

sphere. 

It will further be demonstrated, that the spheroidal wave model presented here and the 

complex source point model described by Sheppard and Saghafi [1] are identical and 

indeed satisfy the paraxial beam approximation, and in the limit of infinite radius of the 

principal surface (far-field limit), the irradiance profile is indeed Gaussian. 
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2.1.1. The most suitable laser beam mode 

The solution to the scalar Helmholtz equation 

The most suitable laser beam mode for any of the following three areas of applications 1) 

interference, 2) light scattering and 3) entrapment is the TEM`00 Laguerre-Gaussian mode. 
Such a beam mode can be produced by a HeNe laser. This beam mode is monochromatic, 
has a Gaussian irradiance profile at the beam waist given by 

z 
I ýrý = I°e '"° (2.1) 

and has cylindrical symmetry about the z-axis. Hence the considered beam mode is a well- 
defined beam mode. 

2.1.2. The scalar Helmholtz equation 

The scalar Helmholtz equation (Eq. (1.19) with V/ (r) replacing u(r) is given by 

(OZ +k2)W(r)= 0 (2.2) 

This equation is only valid for steady monöchromatic waves, and therefore transient waves 

are not included in the solution of this equation. Thus a valid description of a Gaussian 

beam must satisfy the Helmholtz equation and Maxwell's equations. Furthermore, 

according to the proof below, if yr (r) is a solution of the Helmholtz equation, then its 

complex conjugate is a solution as well. 

Proof- 

According to Eq. (2.2) [V2 +k2 ]yr(r) = 0. 

Hence, (V2+k2)*W*(r)=(V2+k2)yr'(r)=0, 

where asterisk denotes complex conjugation and k is assumed to be real. 

Since the laser cavity, which is being considered for interference, light scattering and the 

closely related entrapment applications has cylindrical geometry, it is convenient to 

represent the scalar Helmholtz equation in a different coordinate system than the Cartesian 

one. 
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2.2. Curvilinear coordinates 

The family of curvilinear coordinates, which is used in this research, includes the 

following orthogonal coordinate systems: spherical polar coordinates, cylindrical polar 

coordinates, oblate spheroidal coordinates and prolate spheroidal coordinates. In order to 

change from one coordinate system to another, the rules of coordinate transformations 

given by Spiegel [2] have to be obeyed. The rectangular Cartesian coordinates x, y, z of 

any point can be expressed as functions of (ui, u2, u3) and so 

X°X(UI, U2, UA 
. 
3'-y(u1, U2, U3) and Z=Z(u1, U2, uA (2.3) 

The assumption that Eqs. (2.3) can be solved in terms for ul, u2i u3 in terms of x, y and z 

implies that 

u1 =u1(x, y, z), u2=u2(x, y, z) and u3=u3(x, y, z). (2.4) 

The functions given in Eqs. (2.3) and (2.4) are assumed to be single-valued and have 

continuous derivatives in order that the correspondence between (x, y, z) and (ul, u2i U3) is 

unique. If the position vector of a point P is defined as r= xi + yj + A, then the three 

scalar Eqs. (2.3) can be written as a single vector equation r=r(ul, u2, u3). A tangent vector 

to the curve ul at the point P, for which ü2 and u3 are constants, is given by 
. Therefore 

1 

er 

the unit tangent vector el in this direction is e, = 
au' 

, so that 
ar 

=h1e1, where ör öul 

öui 

h, = 
I-or 

. Similarly if e2 and e3 are unit tangent vectors to u2 and u3 curves at P 5; 
1 

respectively, then 
Or 

= h2e2 and 
ar 

= h3e3 , where h2 = 
ar 

and h3 = 
ar 

The 
20 

äu2 ätt3 iTU 

functions h I, h2 and h3 are called "scale factors" and the unit vectors el, e2 and e3 are in the 

directioh of increasing ul, u2 and u3 respectively. In order to express the scalar Helmholtz 

equation and Maxwell's equations in the various coordinate systems, it is necessary to 

express the Laplacian in these coordinate systems. For this purpose the Lapläcian in 

curvilinear coordinates can be written in its most general form as , 
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V2 
a h2 h, 

+7 
(A, h3+ah, h2 a 

)] 

. (2.5) 
h1h2h3 au, h, äu, äu2 h2 äu2 äu, h3 äu3 

2.2.1. Example 1: The scalar Helmholtz equation in spherical coordinates 

The spherical polar coordinates are related to the Cartesian coordinates as follows: 

x=r sin 6 cos O 

y=r sin B sin O 

z=r cos 9 

or 

r= Vx1+y2+z2 
x2 +yý 

e=tan- 
Z 

=tan-' y 

(2.6) 

(2.7) 

The scale factors in this coordinate system can be evaluated from Eq. (2.6), using the 

method given in the previous section and setting ul=r, u2=8 and u3=q5 in the following 

manner: 

är öxl 2 
= sin2Ocos2O+sin2Osin2o+cos2e 

aul 
( h, _= ax I +(ä1 + Or lJ C 

and using the fact that sin2a+ costa=1 

h, = ýsin' B cos 20+ sin 2+ cos' 0 =1 

zz 
h 

yar, = 
ax 

+az=r cost Ocos2 0+cos2 9sin2 b+sin2 9=r 2 
VIf2 

ae 00 ae 

and 
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zzz 

h= 
är 

_ 
ax 

++ 
a2 

=r sine 0sin2 0+sin' 0cos2 0= rsin9. 3 ao ao ao 
(2.8) 

The square of the unit length element is given by: 

and therefore 

ds2= (hidut)2 + (hzdu2)2 + (h3du3)2 

hi=h, =1, hz=he=r, h3=ho=rsinO 

On substitution of these scale factors into Eq. (2.5), the Laplacian of the scalar function 

O(r, 0,0) in spherical polar coordinates is given by 

is2 aw(r, e, _) 1ai V/ a=w(r, e, O) O2 r'B, 0)= r+- sing 
( 

r2 ar Or r2-sin 0 00 00 r2 sin2 0 002 

(2.9) 

If the solutions to the Helmholtz equation Eq. (2.2) is written in product form, 

yr(r, 0,0) = R(r)O(9)(D(O), it is possible to separate the Helmholtz equation into equations 

for each different variable. 

The radial equation associated with Eq. (2.2) can then be written as 

r' 
d2R(r) 

+ 2r 
d dr) 

+ [k'r2 - n(n + 1)]R(r) =0. (2.10) 

Solutions to Eq. (2.10) are the spherical Bessel functions, j�(r) or spherical Neumann 

functions y�(r) or the spherical Hankel functions of the first and second kind, hn i) (r) and 

h, "' (r). 
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The Bessel functions 

(_1)" zfl+p 
JP (x)=gEr(n+l)r(n+p+l) x2 

where Jp(x) is called the Bessel function of the first kind [3] of order p, where p is a 

constant, but not necessarily an integer, and r(q) is the gamma function, defined as 

r(q) =f x"-'e-*dx, q>O. 
0 

The second solution to Bessel's equation is J_p(x)=(-1' Jp(x). In this case p is an integer. 

Here the first and second solutions are two dependent solutions of Bessel's equation 

x2y"+xy'+(x2 -p2)y = 0. 

Where a dash denotes first derivative with respect to x and two dashes denote second 
derivative with respect to x. The combination of the first and second solution of Bessel's 

equation is called the Neumann function 

N s(np)J, (x) - j, (x) 
P 
(x) )= Yn (x) )= cb 

sin(, rp) 

The Hankel functions of the first and second kind 

HP" (x) = J, (x) + iN, (x) 

H p" (x) = J, (x) - iN, (x) 

If P= 
221=n+2, 

na positive integer, then J, (x) and Np(x) are called Bessel functions 

of half odd integral order; they can be expressed in terms of sin(x), cos(x) and powers of x. 
The spherical Bessel functions are closely related to them as can be seen from the formulae 

in Eqs. (2.11. a) and (2.11. b). 
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The spherical Bessel functions 

The solution to the scalar Helmholtz equation 

F7gxj(2n+1)12(X)=X 
"1d 

"sin x J" (x) -x dx x (2.11. a) F"d 
cos x Y"(x)Y2"+I)/2(x)=-x --- 

x dx x 

are solutions to the spherical Bessel equation, 

x 2y ''+2xj)+[k2x2 - n(n + l)ly = 0, 

with the corresponding spherical Hankel functions of the first and second kind 

h21 (x)=j, (x)+iY�(x) 
1. b h. (21x)=Jn(x)-iya(x) (2.1 ) 

Solving Eqs. ( 2.11. a) leads to the following expressions for n=0,1,2. 

n Jf(x) Yn(X) 

0 
. 
/o(x) = 

sinx 
Yo(x)=_cosx 

x x 

1 
jl(x)=s _-c 

x 
Yº(x)=_cxx_smx 

x x z 

rl3 sin x3 cos x sin x 1 x = _ - 
(3 cos x3 sin x cos x Y x)_- + 

2 . 
1\' / 

x3 x2 x 
2 

x3 2 

xx 

Table 2.1. Expressions for spherical Bessel and spherical Neumann functions of order n=0,1,2. 

The separated polar angular equation associated with Eq. (2.2) is the associated Legendre 

equation 

in 8 sin 0d dOe 
+ n(n + 1) -sin 2B 

O(9) =0 (2.12) 
s0 

t_ 

In the case where Oranges from zero to ; r, the constant n must be an integer. 
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Thus the solutions to Eq. (2.12) are 

O(B) =P, 1m(cosO) 9 (2.13) 

where P�m(cos 0) are the associated Legendre functions, with m=0,1,2,... and n zm. 

The associated Legendre functions 

Using Rodrigues formula [3], the associated Legendre functions are defined as 

P'"(s)= 1 (1-s2)mlZ d"" (s2 
-1)" (2.14) 

2"n! ds" m 

In the case where cos9>1, the angle is complex. 

Solving Eq. (2.14) leads to the following expressions for n=0,1,2 and m=0,1. 

0 1 

0 Po (s)1 " 

P, °(sý=s 

2 
P=(s)= 

1(3s2-1) PZ(s)=3s 1-s2 
2 

Iaoie Z. Z. txpressions for Inc associated Legendre functions for values otn O, 1,2 and m-U, I 

The separated azimuthal equation associated with Eq. (2.2) is 

Id2 (D(O) 2 m c(O) d2 
(2.15) 

It immediately follows from Eq. (2.15) that c is periodic in 0 with period 2; c The general 

solutions of Eq. (2.15) is 

(U = Acos(m 0) + Bsin(m 0) . 

The solution to the scalar Helmholtz equation 
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Chapter 2 The solution to the scalar Helmholtz equation 

or 

(D _ e" (2.16) 

The solutions to the separated Helmholtz equations can be multiplied together in order to 

give a combined eigensolution to the scalar Helmholtz equation, which is the product of 

these separable solutions. Landesman and Barrett [4] presented the solution 

VVnm(r, 6,0)=h. (')(r)P�°'(cosO)et'mO 
, (2.17) 

where only one of the spherical Bessel functions, namely the Hankel function of the first 

kind, representing an outward traveling wave is used. The et im solution to Eq. (2.16) was 

chosen, because of it being of the most general form. 

2.2.2. Example 2: The oblate spheroidal coordinate system 

The oblate spheroidal coordinate system is an orthogonal coordinate system. With da 

constant, the parametric equations relating the oblate spheroidal coordinates to the 

Cartesian coordinates are given by Landesman and Barrett [4] as 

x=d coshpsin9cosO 

y=d cosh, usin0sin0 

z= dsinhpcos0 

with either 
05 95 ,0<, u < oo, 05 0: 5 27t 

or 

0<_0S2ir, -oo<, u<oo, O50S2n. 

(2.18) 

Substituting ý=sinhu and 77 cosO into Eq. (2.18) leads to the alternative parametric 

equations 

x=d 1+7= 1-q2 cos0 

y=d 1+ý2 1-772 sin0 (2.19) 

z=dýq 
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Chapter 2 The solution to the scalar Helmholtz equation 
with 

-1 _<77<1,0<_ý, <oo, 0<_0_<27t 

or 

0577-< 1, -oo<4<oo, O50: 5 2, r. 

The scale factors for this coordinate system can be calculated, using the method described 

in section 2.2.. From Eqs. (2.19), (here, u1=ý, u2=17 and u3=O) it is found that 

+Z+2=dZ+Z, h, =h= 
larl 

_ ("X)' 4 aý a aý 1+2 

h _h -G 
a/x2(ay)2(oz2 

=d 
2+ýZ 

1-ý 2° au2 ail a%7 
d917 

and 
I 

z2 ox oz h3 = h, _&3=ý+ ao 

s+ý=d1+21_ 
rý2 (2.20) 

The square of the unit length element is given by 

ds2= (hidui)2 + (h2du2)2 + (h3du3)2 . 
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Chapter 2 The solution to the scalar Helmholtz equation 

2 

Fig. 2.1. Oblate spheroidal coordinate system (taken from [41) Fig. 2.2. Focal circle for the oblate spheroidal coordinate 

system (taken from (41) 

The oblate spheroidal coordinate system is formed by rotating a system of confocal ellipses 

and hyperbolas about the minor axis (z axis) of the ellipse. It is seen from Fig. 2.2. [4] that 

the focus of the oblate spheroidal coordinate system is a circle in the x -y plane. The 

spacing of the foci of the ellipses/hyperbolas, is 2d. Later on it will be demonstrated, that d 

is the same as the Rayleigh range [5]. The hyperboloids of revolution consist of one single 

continuous sheets. The physical motivation for the introduction of this coordinate system 

is, that the ellipses are related to the wavefronts. The contour of constant amplitude in the 

beam is represented as a hyperboloid of one sheet. In Fig. 2.1. the distances between 

ellipses / hyperbolae and the foci are shown as r+ and r_ respectively: 

VI 
(2.21) 

r=d[1+ 2- i-q2] 

In the oblate spheroidal coordinate system, the surface I ý) =constant >0 is an oblate 

ellipsoid with major axis of length 2dcosh u and minor axis of length 2d1 sinh l. The 

surface ý=0 is a circular disk of radius d centered at the origin in the x -Y plane. The 

surface I' I= constant <1 is a hyperboloid of revolution of one sheet whose asymptotes 

pass through the origin inclined at an angle ©= cos-' i with the z axis. The surface q=0 is 

the x -y plane, except for the circular disk ý=0. The surface 0= constant is the azimuthal 

plane containing the z axis. The angle 0 is measured from the x-z plane. 

ýý 

65 



Chapter 2 The solution to the scalar Helmholtz equation 
2.2.3. Example 3: The prolate spheroidal coordinate s, sY tem 

The prolate spheroidal coordinate system is an orthogonal coordinate system. With da 

constant, the parametric equations relating the prolate spheroidal coordinates to the 

Cartesian coordinates, are given by Landesman and Barrett [4] as 

x=d sinh, u sin 0 cos 0 

y=d sinh, u sin 9 sin 0 (2.22) 

z=dcoshpcosO 

where 

0SO574,0<, u<oo, 0S0: 9 2n 

Substituting =coshp and r7=cos9 into Eq. (2.22) leads to the alternative parametric 

equations 

x=d ý2 -ih-i72 coso 

V1'70 (2.23) 

z=dýq 

with 

-1517: 51,15ý<öo, 05052n 

The scale factors for this coordinate system can be calculated, using the method described 

in section 2.2. From Eq. (2.23) (here, uj=ý, u2=r7 and u3=O) it is found that 

222 

h, = h4 
ax 

+ 
aY Z+ äa 2 

=d 2 ýl 

_L_ 
Vr 

_ax2ý2+a 

2= 

d22 

ýlZ ý! ' röq öq ö 1- 772 

and 
222 

h3 = h0 ý+a+ 
'00 

=d2 -1 1- (2.24) 
1 

't 13aU 
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Chapter 2 The solution to the scalar Helmholtz equation 

The square of the unit length element is given by 

ds2= (hldu1)2 + (h2du2)2 + (h3du3)2 . 
x, y 

X 

2 

Fig. 2.3. Prolate spheroidal coordinate system (taken from [4]) Fig. 2.4. Focal points for the prolate spheroidal coordinate 
system (taken from [4]) 

The prolate spheroidal coordinate system is formed by rotating a system of confocal 

ellipses and hyperbolas about the major axis (z axis) of the ellipse. The foci of the prolate 

spheroidal coordinate system occur on this axis and are located symmetrically about the 

origin of the Cartesian coordinates at a distance equal to d from the origin [4]. (see 

Fig. 2.3. and Fig. 2.4). The hyperboloids of revolution consist of two separate sheets. In 

Fig. 2.3. the distances between ellipses / hyperbolae and the foci are shown as r4. and r. 

respectively: 

(2.25) 

In the prolate spheroidal coordinate system, the surface I ýI =constant >1 is a prolate 

ellipsoid with major axis of length 2dß and minor axis of length 2d sinh u. The surface 

ý= I is a straight line along the z axis from z=-d to z--+d. The surface 1 r7I = constant <1 is 

a hyperboloid of revolution of two sheets whose asymptotes pass through the origin 

inclined at an angle 0= cos'' i with the z axis. The surface 1 271= 1 is the part of the z-axis 

for which' IzI >d. The surface O= constant is the azimuthal plane containing the z axis. The 

angle 0 is measured from the x-z plane. 
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Chapter 2 The solution to the scalar Helmholtz equation 
2.2.4. The scalar Helmholtz equation in oblate spheroidal coordinates 

By substituting the scale factors from Eq. (2.20) into Eq. (2.5) the scalar Helmholtz 

equation in oblate spheroidal coordinates is obtained. This equation can be written as 

(V2 +k2)Y 0) = 
(l+ Z)aý( , '/ýY) +v 

(1-i72}aý( 

aa a17 a? 7 

l+ýZ 1-r72) a02 

(2.26) 

Landesman and Barrett [4] have demonstrated that Eq. (2.26) is not directly separable. 
They argued, that since the oblate spheroidal coordinate system, when extended out to 
infinity, turns into the spherical polar coordinate system, the wavefunction given by Eq. 

(2.17) is necessarily a solution to Eq. (2.26) when the oblate spheroidal coordinate system 
is extended out to infinity. Using rather complicated coordinate transformations from 

prolate spheroidal coordinates into oblate spheroidal coordinates, they found that the 

argument (s) of the associated Legendre functions can be expressed as 

l+41 
s= 

17 +iý 
(2.27) 

in oblate spheroidal coordinates, denoted by (O/S), and the argument of the spherical 
Bessel function, i. e. r, can be expressed as 

t=kd(-iri) (2.28) 

in oblate spheroidal coordinates. Making these substitutions Landesman and Barrett 

showed that 

W mm 
(4' i' )ors (2.29) 

indeed represents a complete set of solutions to the scalar Helmholtz equation in oblate 

spheroidal coordinates, where h�tl"(t) is the Hankel function of the first kind. At first sight 
there could be reason for concern that the argument of the associated Legendre functions is 

complex. However from Rodrigues formula (Eq. (2.14)) it can be seen that there is no 

restriction attached to the argument (s) of the associated Legendre functions. It can 

similarly be seen from section 2.2.1. that there is no restriction attached to the argument (x) 
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Chapter 2 The solution to the scalar Helmholtz equation 

of the spherical Bessel functions. Furthermore from Fig. 2.5., showing the spherical polar 

coordinate system superimposed on the prolate spheroidal coordinate system, it can be 

seen that if the point source is located at the focus f' of the prolate spheroidal coordinate 

system instead of at the centre of the spherical polar coordinate system f, as is the case 

when the coordinate system of choice is the spherical polar coordinate system, then 

cos(O') =z 
rld , instead of cos(O) = 

E. 
. Using the coordinate transformation from prolate 

spheroidal coordinates, denoted by (P/S), to oblate spheroidal coordinates given by 

Landesman and Barrett [4] as ý(p/s)=tiý(ois) and using Eq. (2.19) it can be seen that 

cos(O, ) =z 
+d is indeed equal to s. Therefore -1 5sS1. 
r' 

x. Y 

z 

Fig. 2.5. The spherical polar coordinate system superimposed on the prolate spheroidal coordinate system. Showing the 

geometry of the spherical polar coordinate system whose origin is shifted to one of the foci of the prolate spheroidal 

coordinate system. 

It was mentioned in section 1.11.5. that the approach from Landesman and Barrett [4] 

violates the principle of conservation of energy. This will be demonstrated in the next 

section and a new scalar solution will be presented which satisfies the conservation of 

energy criterion. 
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Chapter 2 The solution to the scalar Helmholtz equation 
2.3. The exact solutions to the scalar Helmholtz equation 

In their work Landesman and Barrett [4) assumed a spherical wave expanding outwards 
from a real point source located at z=-d, in prolate spheroidal coordinates (see Fig. 2.5. ) as 

the basic propagation function of the Gaussian beam instead of the complex point source 

on the axis. In order to determine a solution to the scalar Helmholtz equation, a general 

solution that is separable in the coordinate system of choice has to be assumed. The oblate 

spheroidal coordinate system is well-suited to express the propagation of a Gaussian beam 

due to the simplicity of describing a contour of constant amplitude in the beam as a 
hyperboloid of one sheet, which is one of the oblate spheroidal coordinate surfaces. The 

ellipses can be related to the wavefronts. The focus in the oblate spheroidal coordinate 

system is a circle perpendicular to the z axis. 

Eq. (2.29) can be interpreted as a spherical wave expanding outward from the focal point. 
Substituting m=n=0 into Eq. (2.29) leads to 

e-k" e" 
Voo (ý, 77) = it 

(2.30) 

and substituting m=0, n=1 into Eq. (2.29) leads to 

e-kde" yroT (ý, ri)=- 
t 

1+- S (2.31) 

By investigating the properties of these functions, it is found that there exists a circular 

singularity of radius d in the beam waist plane and a discontinuity occurring on the focal 

disk circumscribed by the singularity for yrý'ý(, i) and Thus the function 

yr(1) which is a solution to the Helmholtz equation, is not a valid solution, due to 

the singularity being an apparent violation to the conservation of energy [5]. A graphical 

representation of the circular singularity of radius d in the beam waist plane can be seen 
from Figs. 2.6. and 2.7.. Fig. 2.6. shows also clearly the discontinuity at the beam waist. 
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kg 

Fig. 2.6. Plot of the real part of the wave given by 

Eq. (2.30) for m=n=0 k=1, d=2.3, and y0 

in the vicinity of the geometric focus, 

showing the singularity and the discontinuity. 

(Adapted from (51) 

Fig. 2.7. Plot of the real part of the wave given by 
Eq. (2.31) for m=0, n=1, k=1, d=2.3 and }-0 
in the vicinity of the geometric focus, showing 
the singularity. 

In order for the functions to represent physical solutions, they must satisfy the wave 

equation and Maxwell's equations and must be singularity free. By plotting the real part of 

the amplitude A of yrý'ý( q) and respectively along the z axis, it can be seen from 

Figs. 2.8. and 2.9. that the discontinuity arises at the beam waist. 

kz 

Fig. 2.8. Plot of the real part of the wave given by 

Eq. (2.30) for m=n=0, k=1, d=2.3 and xrO 

in the vicinity of the geometric focus, 

showing the discontinuity. 

By plotting the real part of the amplitude A of yrý'ý( , rý)and respectively along 

the x axis, it can be seen from Figs. 2.10. and 2.11. that the circular singularity of radius d 

arises at the beam waist. 

ti 
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Fig. 2.9. Plot of the real part of the wave given by 
Eq. (2.31) for m=0, n=I, k-1, d=2.3 and x-y=O 
in the vicinity of the geometric focus, 

showing the discontinuity. 
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AX 

Fig. 2.10. Plot of the real part of the wave given by Fig. 2.11. Plot of the real part of the wave given by 

Eq. (2 30) for m=n-0, k=1, d=2.3 and , y=z=0 Eq. (2.31) for m=0, n=1, h=1, d=2.3 and y=z=0 

at the geometric focus, showing the singularity. at the geometric focus, showing the singularity. 

Since 01)mn(4, r1, O)ors represents an outward travelling wave, it can be said that 

Y' MR 

(( 

, 
77, o)o/s 

= e-k'h(, 2)(t)Fm(. s»lml), (2.32) 

represents a complete set of solutions to the Helmholtz equation in oblate spheroidal 

coordinates, representing an inward travelling wave. Where hn(2)(t) is the Hankel function 

of the second kind, of order n. 

Substituting m=n=O into Eq. (2.32) leads to' 

e'y'e-" 17) it 
(2.33) 

and substituting m=0, n=l into Eq. (2.32) leads to 
-kd -Ir 

Wöa) (ý07) =e to 
t 

-1 s (2.34) 

It can be clearly seen from Figs. 2.12. and 2.13. that the waves based on Eqs. (2.33) and 
(2.34) respectively, also have a circular singularity of radius d in the beam waist plane and 

a discontinuity occurring on the focal disk circumscribed by the singularity. 
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Fig. 2.12. Plot of the real part of the wave given by 

Eq., (2.33) for m=n=0, k--I, d=2.3 and }z0 in the vicinity 

of the geometric focus, showing the singularity and 

the discontinuity. 

The solution to the scalar Helmholtz equation 

Fig. 2.13. Plot of the real part of the wave given by 

Eq. (2.34) for m=0, n=1, k=1, d=2.3 and y =O in the 

vicinity of the geometrical focus, 

showing the singularity. 

By plotting the real part of the amplitude A of yr. 2)(ý, q)and y' (, i) respectively along 

the z axis, it can be seen from Figs. 2.14. and 2. I5. that the discontinuity arises at the beam 

waist. 

By plotting the real part of the amplitude A of yroo)(ý, 77)and respectively along 

the x axis, it can be seen from Figs. 2.16. and 2.17. that the circular singularity of radius d 

arises at the beam waist. 

.. 
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Fig. 2.15. Plot of the real part of the wave given by 

Eq. (2.34) for m=0, n=l, k1, d-2.3 and x rO 
in the vicinity of the geometric focus, 

showing the discontinuity. 

Fig. 2.14. Plot of the real part of the wave given by 

Eq. (2.33) for k=l, d=2.3 and x)-0 

in the vicinity of the geometric focus, 

showing the discontinuity. 
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kx 

Fig. 2.16. Plot of the real part of the wave given by 

Eq. (2.33) for m=n=0, k=1, ßh2.3 and )-z =O 

at the geometric focus, showing the singularity. 

Ar 

Fig. 2.17. Plot of the real part of the wave given by 

given by Eq. (2.34) for m=0, n=1, h=1, d-2.3 and, y=z=0 

at the geometric focus, showing the singularity. 

On close inspection of table 2.1. it can be seen that the spherical Bessel functions j�(x) are 

regular since the limit of 
sin x, and 

sin 
2x - 

cos x as x tends to infinity is 0 and the limit as 
xxx 

x tends to 0 is 1 and 0 respectively. 

Proof 

In order to calculate the limit of jo(x), L' Hopital's rule can be applied directly, since for 

x=0, jo W=. Thus using L' Hopital's rule it is found that lim sin x_ li cos x 
0 x-+° x ý° 1 

In the case ofji(x) the function has to be transformed into 

j, (x) = 
12 (sin x-x cos x) in order to apply L' Hopital's rule. Then 
x 

sinx-xcosx cosx-cosx+xsinx sinx lim = lim = lim = 0. 
x-, o x2 -º0 2x 

) 

,02 

The Neumann functions y�(x) on the other hand are not regular, since 
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lim cos x ) 
--c x-O x o 

lim cosx 
--0 x-te x 

lim - 
cos x 

- 
sin x 

x-iO xz x --00 

lim 
°° - 

cosx 
2 

sinx 
- - x . x x 

Thus the Hankel functions h, (') (x) and h�(2)(x) are not regular either [7]. 

It can be seen from Eqs. (2.11. b) that 

(2.35) 

Since Eq. (2.35) does not contain the Neumann function, the chosen superposition is 

regular. Adding Eq. (2.30) and (2.33) leads to 

sin t ýýýýý17) =e_, 
t (2.36) 

Similarly adding Eq. (2.31) and (2.34) leads to 

sin t cost Vo, (ý, 17) =e_, 
t2 ts 

(2.37) 

Thus by forming a superposition of V1)mn(, rlO)ois and 2)mn( 
, 77, c)ois in accordance with 

Eq. (2.35) it is found that the singularities and discontinuities cancel out, and a physical 
solution is thus obtained. Graphically this can be clearly seen from Figs. 2.18. and 2.19. for 

t' ((, q) and yra, (, i) respectively. 

Fig. 2.18. Plot of the real part of the combined wave, 

given by Eq. (2.36) for m=0, n=0, lei, d-2.3 and yrO 
ih the vicinity of the geometric focus, 

showing no singularity and no discontinuity. 

Fig. 2.19. Plot of the real part of the combined wave, 

given by Eq. (2,37), for m=0, n=l, k=1, d=2.3 and}-O 
in the vicinity of the geometric focus, 

showing no singularity. 

a -9 

75 



Chapter 2 The solution to the scalar Helmholtz equation 
Therefore the general solution to the wave equation can be written as 

V 
mit 

(4,17 

1)= 
e_dJn 

(t)' 

nm 

rs»ttm¢ (2.38) 

Based on the derivations of Landesman and Barrett [4], it can be seen that the focal radius 
d in oblate spheroidal coordinates is identical to the Rayleigh range (see section 1.7), thus 

from here on d is referred to as the Rayleigh range. 

In order to avoid complicated coordinate transformations in the future, it is appropriate at 

this stage to identify that t is related to the complex radius R, used in the complex source 

point method. In the literature R is usually defined as 

R= z2 + y2 +(z-id)2 (2.39) 

where x, y and z are the Cartesian coordinates. By squaring the equations in Eq. (2.19), 

using the fact that sin 20+ cost 0=I and substituting the expressions for x2, y2 and z2 into 

Eq. (2.39); this equation can be rewritten in terms of ý and r7 as 

R=d 1+ý' 1-17Z + (2172 -2iýri-1 =d 2 -2i rý-i 2 =d((-ii ), 

or 

t= kR . 
(2.40) 

Similarly s can be expressed in terms of the complex radius as 

(z - id (2.41) sR 

Therefore the singularity-free spheroidal wave model for the lowest order is identical to the 

complex source-sink point model presented in [1]. 

Furthermore, it is now possible to prove, using Eq. (2.39), that the oblate spheroidal 

coordinate system is indeed identical to the spherical coordinate system, if extended out to 

infinity. 
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Proof: 

The solution to the scalar Helmholtz equation 

Eq. (2.39) can be written in spherical polar coordinates, using Eqs. (2.6), as 

R= r2 -gird cos 8- d' , using the binomial expansion theorem, 

r1 d2 
R =yrZ -gird cosO-d2 me r- 2 2id cos0- 

and 

li- 
1 2id cos B-d ' 

=tim 1-- =1. r->ao r r2 2r Y2 

Thus by substituting Eqs. (2.40) and (2.41) into Eq. (2.38), the general solution can be 

written as [5] 

VIm. (x, Y, z) = e- 'J� (kR)P' z Ride:, m, . (2.42) 

The problem with the physical interpretation of the complex source point method is 

resolved since the complex spherical wave with a complex point source on the axis is 

mathematically identical to the real spherical wave with a real point source on axis in the 

prolate spheroidal coordinate system. The superposition L' (x y, z) can be interpreted as 

having a source and a sink on axis, i. e. a source on axis for the outward travelling wave 

and a sink on axis for the inward travelling wave. This superposition is a solution to the 

scalar Helmholtz equation, since the spherical Bessel functions are a solution to the radial 

equation (Eq. 2.10). 

Substituting Eqs. (2.40) and (2.41) into Eq. (2.36) leads to 

_�, sinkR 
yr® (x, y, z) =e 

and similarly substituting Eqs. (2.40) and (2.41) into Eq. (2.37) leads to 

ti 

sinkR coskR z-id 
Viol (x, Y, z) = e_ _ k2R2 kR R 

(2.43) 

Z,. (2.44) 
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Chapter 2 The solution to the scalar Helmholtz equation 
In order to establish the kind of properties the Woo(xy, z) and yiol(xy, z) functions have as 

these waves propagate in time, equation (2.43) and equation (2.44) are normalised to 1 at 
the origin (x=y=z=0). The normalisation constants are given by 

Nc®= yr®(0,0,0»rß(0,0,0) = e-" 
Sl 

dkd 

Nco, = (p p , o1(ß ) e-sinn 
kd cosh kd 

yr, o , ,000,0 = ý` -k2d2+ kd 

(2.45) 

Thus the normalised functions are 

yr°°(x' y' Z) = 
yip (x, y, z) 

= 
kd sin kR 

(2.46) 
'"°"" NcOD kR sinh kd 

and 

sin kR 
_ 

cos kR z- id 

-Vf�(x, 
y, z)- kZR2 kR R 

°''"""" 
(X, Y, zý - Nc01 

- kZsinh 
kd 

+ cosh kd 
(2.47) 

d' kd 

In order to take the time dependence e"°` into account, these functions are multiplied by 

e il ". Figs. 2.20. show the real part of the normalised amplitude voo, no,.,,, (x%y, z) at time 

t=0,1,2,3,4 for k=1 and d=2.3 and (x y, a)= (O, y, O) (a), (x, y, z)= (x, 0,0) (b) and 

(x, Y, z)=(O, O, z) (c). 
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Fig. 2.20. a) Real part of the amplitude of yioo,,. -(O, y, O) normalised 

to 1 at x--y--z=0 along they axis for k=1, d=2.3. Time t=0 (red), 

t=1 (blue), t=2 (not visible, flat line on top of y axis) 

t=3 (yellow), 1=4 (black). 

Fig. 2.20. b) Real part of the amplitude of {uoo, -. dx, 0,0) normalised 

to 1 at x--y--z=0 along the x axis for k=1, d=2.3. Time t=O (red), 

t=1 (blue), t--2 (not visible, flat fine on top of x axis) 

t=3 (yellow), t=4 (black). 

Fig. 2.20. c) Real part of the amplitude of Vw, 1,,, (0,0, z) normalised to 1 

at x=y=z=O along the z axis for k=1, d=2.3. Time t=0 (red), t=1 (blue), 

t=2 (green), t=3 (yellow), n4 (black). 

It can be clearly seen from Fig. 2.20. a) and Fig. 2.20. b) that the superposition of the 

outgoing and incoming wave gives rise to a pure standing wave at the beam waist. This is 

due to interference of the outgoing and incoming wave. From Fig. 2.20. c) it can be seen 

that the superposition of the outgoing and incoming wave gives rise to a wave which 

propagates along the z axis which has no component propagating along the x or y direction 

at the beam waist. 

Fig. 2.21. show the real part of the normalised amplitude wol, no,,,, (x, y, z) at time t=-0,1,2,3,4 

for k=1 and d=2.3. and (x, y, z)= (O, y, O) (a), (x, y, z)= (x, 0,0) (b) and (x, yz)=(O, O, z) (c). 
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Fig. 2.21. a) Real part of the amplitude of gioj,,,,,, �(O, y, O) normalised 

to I at x--y--z=0 along they axis for k=1 and d=2.3. Time t=0 

and t=4 (not visible, flat lines on top of y axis), t=1 (blue), 

t=2 (green), t=3 (not visible since overlapped by t=l ). 

Fig. 2.21. b) Real part of the amplitude of tool-(x, 0,0) normalised 

to I at x--y--z=0 along the x axis for k=l and d=2.3. Time t=0 and 

t=4 (not visible, flat lines on top of x axis), t=1 (blue), 

r=2 (green), t=3 (not visible since overlapped by t=l). 

Fig. 2.21. c) Real part of the amplitude of gio,,, o,,,, (O, O, z) normalised to I 

at x=y=z=O along the z axis for k= 1, and d=2.3. Time t=0 (red), t=1 (blue), 

t=2 (green), t=3 (yellow), t=4 (black). 

It can be clearly seen from Fig. 2.21. a) and Fig. 2.21. b) that also in the case foi, norm(x, y, z) 

the superposition of the outgoing and incoming wave gives rise to a pure standing wave at 

the beam waist. From Fig. 2.21. c) it can be seen, like in the case of Woonor,, (x, y, z) that the 

superposition of the outgoing and incoming wave gives rise to a wave which propagates 

along the z axis which has no component propagating along the x or y direction at the beam 

waist. The main difference between the standing wave produced by yioo, no, m(x, y, z) and 

Doi, norm(x, Y, z) is in their phases. 

Fig. 2.22. a), Fig. 2.23. a), Fig. 2.24. a) Fig. 2.25. a) and Fig. 2.26. a) show a three 

dimensional view of the real part of Woo, norm(x, 0, z) for k=1, d=2.3 and values of time 

t=0,1,2,3 and 4 in the y=0 plane. Fig. 2.22. b), Fig. 2.23. b), Fig. 2.24. b) Fig. 2.25. b) and 

Fig. 2.26. b) show the corresponding amplitude contours. 
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Fig. 2.22. a) Amplitude distribution at t=O of the real part of yroo,,,,,,, �(x, 0, z), 

for k= I and d=2.3. 

ký 

Fig. 2.22. b. ) Amplitude contours at t =O of the 

real part of yioo�o�,, (x, 0, z), for k=l and d=2.3 in the plane 

of the beam axis. 
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Fig. 2.23. a) Amplitude distribution at t=1 of the real part of yroo,,,,,,,, (x, 0 z), 

for k=1 and d=2.3. 

Fig. 2.23. b. ) Amplitude contours at t=1 of the 

real part of yioo,,,,,,, (x, 0, z), for k=1 and d=2.3 in the plane 

of the beam axis. 
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Fig. 2.24. a) Amplitude distribution at t=2 of the real part of yroo.,,,,, �, (x, 0, z), Fig. 2.24. b. ) Amplitude contours at t=2 of the 

for k= I and d=2.3. real part of y/w,,,,, m(x, 0 z), for k=1 and d=2.3 in the plane 

of the beam axis. 
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15 15 

Fig. 2.25. a) Amplitude distribution at t=3 of the real part of groo,,,,,,,,, (x, 0, z), 

for k= I and d=2.3. 
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Fig. 2.26. a) Amplitude distribution at t=4 of the real part of woo., ß(x, 0 z), 
for k=l and d=2.3. 

b 

Fig. 2.25. b. ) Amplitude contours at t=3 of the 

real part of Woo,,, m, (x, 0, z), for /r-1 and d=2.3 in the plane 

of the beam axis. 
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Fig. 2.26. b. ) Amplitude contours at t--4 of the 

real part of woo, w, m(x, 0 z), for krl and d=2.3 in the plane 

of the beam axis. 

From Fig. 2.20. b) it is seen that the wave vanishes on the x axis at the beam waist for t=2. 

The straight line along the x axis in Fig. 2.24. b) thus can be interpreted as the amplitude of 

the wave being zero along the x axis. 

Fig. 2.27. a), Fig. 2.28. a), Fig. 2.29. a) Fig. 2.30. a) and Fig. 2.31. a) show a three 

dimensional view of the real part of yioi, norm(x, 0, z) for k=1, d=2.3 and values of time 

t=0,1,2,3 and 4 in the y=O plane. Fig. 2.27. b), Fig. 2.28. b), Fig. 2.29. b) Fig. 2.30. b) and 

Fig. 2.31 
. 
b) show the corresponding amplitude contours. 
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Fig. 2.27. a) Amplitude distribution at t=0 of the real part of Vol.,,,,.,, (x, 0, z), Fig. 2.27. b. ) Amplitude contours at t-0 of the 

for k= I and d=2.3. real part of yioi,,,,,,, (x, 0, z), for k --l and d=2.3 in the plane 

of the beam axis. 
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Fig. 2.28. a) Amplitude distribution at t=1 of the real part of yroi.,,,,.,,, (x, 0, z), Fig. 2.28. b. ) Amplitude contours at t --I of the 

for k= I and d=2.3. real part of gioi, (x, 0, z), for k --I and d=2.3 in the plane 

of the beam axis. 
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Fig. 2.29. a) Amplitude distribution at t=2 of the real part of yrot,,,,.,,, (x, 0, z), Fig. 2.29. b. ) Amplitude contours at t=2 of the 

for k= I and d=2.3. real part of q%oj, -(x, 0 z), for k=1 and d=2.3 in the plane 

of the beam axis. 
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Fig. 2.30. a) Amplitude distribution at r-3 of the real part of groi,,,,,,,,, (x, 0 z), Fig. 2.30. b. ) Amplitude contours at t=3 of the 
for k= I and d=2.3. real part of wo,,,,, -(x, 0 z), for k=1 and d=2.3 in the plane 

of the beam axis. 
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Fig. 2.31. a) Amplitude distribution at t=4 of the real part of woi,,,,,,,,, (x, 0 z), Fig. 2.3!. b. ) Amplitude contours at 1=4 of the 

for k= I and d=2.3. real part of Wo,,,,,,,, (x, 0, z), for k=I and d=2.3 in the plane 

of the beam axis. 

From Fig. 2.21 
. 
b) it is seen that the wave vanishes on the x axis at the beam waist for t=0,4. 

The straight lines along the x axis in Figs. 2.27. b) and 2.31 . 
b) thus can be interpreted as the 

amplitude of the wave being zero along the x axis. The distortion of the equal phase lines 

in the contour plots is due to the presence of the standing wave. 

However if the value of kd is increased, the standing wave component in the yioo(x, y, z) and 

yioi(x, y, z) is reduced greatly as can be seen from Figs. 2.32. and Fig. 2.33.. Fig. 2.32. shows 

the real part of the amplitude of V/oo, norm(x, y, z) at time t=0,1,2,3,4 along they axis for z=0, 

k=1 and d=5. Fig. 2.33. shows the corresponding real part of y'oi, norm(x, y, z). 
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Fig. 2.33. Real part of the amplitude of Wb,,,.,., (Oy, O) 

along they axis for k=1, d=5. Time t=0 and t=4 (not 

visible, flat line on top of y axis), t=1 (blue), t=2 (green), 

t=3 (not visible since overlapped by t=1). 

Fig. 2.34. and 2.35. show the time averaged energy density of <uoo(x, y, z)> and <uoi(x, y, z)> 

respectively, calculated in accordance with Eq. (1.35) and normalised to 1 at the origin for 

a value of kd=1, where 

E,, (x, y, z)=EoV,, m(x, y, z) (2.48) 

The standing wave component in the case of Voo(x, y, z) and 4oi(x, y, z) grows significantly as 

the product kd is reduced. However in the case of yioi(x, y, z) this component dies off more 

rapidly than in the case of ioo(x, y, z). It can therefore be concluded that the standing wave 

component in the case of t/ioi(x, y, z) is weaker than in the case of yioo(x, y, z). 

Fig. 2.34. Time averaged energy density plot for <uoo(x. y, z)> 

with kd=l in the focal plane z=y=O and normalised to l at x=0. 

Fig. 2.35. Time averaged energy density plot for <uo, (x, y, z)> 
with kd=l in the focal plane z=y=O and normalised to I at x=O. 

It was pointed out by Ulanowski and Ludlow [5] that in order to produce such interference, 

a focusing element that subtends a solid angle greater than 27ris required. 

85 

Fig. 2.32. Real part of the amplitude of qfOO�o,,,, (O, y, O) 

along they axis for k=1, d=5. Time t=0 (red), 

t=I (blue), t=2 (not visible, flat line on top of y axis) 

t=3 (yellow), t=4 (black). 



Chapter 2 The solution to the scalar Helmholtz equation 

Since the irradiance profile of a Gaussian beam needs to be Gaussian by definition, it is 

necessary to investigate the irradiance profile. Using Eq. (2.48), (2.42) and (1.37) it is 

found that the irradiance is given by 

Imý(X, Y, Z)= 2 Eo (X, Y, z)V mý(X, Y, z) (2.49) 
rzc,. 

ýV 

From Figs. 2.36. and 2.37. it can be seen that the irradiance profiles at the beam waist, 

normalised to 1 at x=y=z=0, of yioo(x, y, z) and Vloi(x, y, z) are indeed Gaussian. The 

irradiance profiles, normalised to 1, of yri i(x; y, z) and W12(xy, z) though resemble the 

irradiance profile of the donut mode (Figs. 2.38. and 2.39. ). Thus the beam modes, that can 

be considered to represent a focused Gaussian beam are the orders based on yioo(x, y, z) and 

WoI(x, y. z)" 

0 

1(r) 
0 

YH 

Fig. 2.36. Irradiance profile of the t. xy, z) beam mode at the Fig. 2.37. Irradiance profile of the ryoi(xy, z) beam mode at the 

beam waist for k=1 and d=2.3, normalised to 1. beam waist for k=I and d=2.3, normalised to 1. 
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t 
0.8 
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I(r0.4 
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Fig. 2.38. Irradiance profile of the yii i(xy, z) beam mode at the Fig. 2.39. Irradiance profile of the W12(xy, z) beam mode at the 

beam waist for kk I and d=2.3, normalised to 1. beam waist for ! mal and d-2.3, normalised to 1. 
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2.3.1. Testing the exact solutions to the scalar Helmholtz equation 

In order to test if the solutions to the scalar Helmholtz equation indeed represent a 

Gaussian beam, it is necessary to check the irradiance profile at the beam waist and in the 

far-field. Since at the beam waist, the irradiance profile in the limit of infinitely short 

wavelength or large beam waist (paraxial limit) is given for a Gaussian beam by Eq. (2.1), 

it is necessary to test if this is also the case for the solutions presented herein. Since only 

the irradiance profile due to yioo(x, y, z) and yiol(xy, z) have what looks like a Gaussian 

irradiance profile, it is necessary to check, if their irradiance profile indeed is given by Eq. 

(2.1) in the paraxial limit. In the far-field, the solution is expected to represent a spherical 

wave with its centre at the origin. The irradiance profile due to woo(x y, z) and yvot(x, y, z), in 

the far-field should according to Ulanowski and Ludlow [5] be similar to the irradiance 

profile of an aberration free lens which obeys the sine condition, illuminated by a paraxial 

Gaussian beam. 

2.3.1.1. Testing the results against the paraxial Gaussian beam approximation 

In order to test the wavefunctions Woo(x, y, z) and yioi(xv z) against the paraxial Gaussian 

beam approximation, these functions are investigated at the beam waist (z=0). In order to 

make a direct comparison with Eq. (2.1), the ratio 

2p2 

IlrJ 
=e "02 

lo 
(2.50) 

is considered. However, using Eq. (1.77) and the fact that p= x2 +7, Eq. (2.50) is 

rewritten as 

k ., 
2+y2 

1 x, y, 0 
_ed (2.51) 

Io 

the irradiance is given, in accordance with E q. by In the case of iuoo(x, y, z) q" ( 
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2 
E e-2kd 

(ek 
x2-y2+d2 

- e-k -x2-y2+d2 
) 

I(x'y'o)°° 
2 

I\ 
k2 -x2 y2 +d2 

(2.52) 
F76. 

The normalisation constant Io is referred to in this case as Iooo, and is obtained by setting x 

and y equal to zero in Eq. (2.52). Thus 

1Z FT6ro e-Zý eM - e- ,2 
10,00 =2 Eo 

k2d2 
(2.53) 

Similarly in the case of Wol(x y, z) the irradiance is given, in accordance with Eq. (2.49) by 

_x2-y2+d2 
-e 

-kx -2 y2+d2 ek_x2-y2+d2 +e -kx2 _ -y2+d2 
2 

- 

e-2kd d2 
ek 

+ 

1 
k2 x2+y2-d2 k2-y2+d2 

I(x, Y, O)ol =2 Eö ýo 
- X2 _ y2 + d2 . (2.54) 

The normalisation constant 10 is referred to in this case as loot, and is obtained by setting x 

and y equal to zero in Eq. (2.54). Thus 

e_d eý +e_ 
2 

12 FT. 
2 e' - 

10,01 2 Eo e k2d 2 kd 
(2.55) 

However since the limit when the product kd goes to infinity, which means that the beam is 

paraxial with infinitely short wavelength, is of interest, it is convenient to perform the 

following substitution: 

p=kd 

kZ_ kkd kp 
dd 

Hence I(x, y, 0)oo and I(x, y, 0)ol can be rewritten in terms of p as 
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2 

_kPx2_kPY2 
2 kPx2 kPY2 2 

e_2p ed 
*P 

-edd 
+P 

12 FTO 

I(x , y, O)°° 2 Eo ßx2 
- 

knv2 +p2 dd 

and 

1s 
I(x, Y, O)01= 2 Eö 

Similarly Io, oo and lo, oi can be rewritten in terms ofp as 

(2.57) 

2s e"2P eP -e-P)2 
I0, ß 2 

Eo 
f-o p2 

(2.58) 

and 

(2.56) 

$ ý+ 
2 *P' k12. 

+ °2 2 SPY 2 

ed d° 
_e 

ddedd+P +e dd 

e 2pp2 
kP 

+2_ kp2 
_ 

kp. 3 2 
ddp dd 

kp2 AI 
d dV +pZ 

1zEe 
_ZP e° - e-P + ep + e-° 

2 Eo --2 (2.59) 
fro Pp 

The last step is to calculate the ratios 
I ýxI0, 

oo 00 
° and 

I I0,01 1 in the limit asp tends to 
oi 

infinity. It is found that 

krx2+y2 

lim 
I ýx, YýOýoo 

_ e- 
\d 

p- ' 

0.00 (2.60) 
k(xZ+y2) 

lim 
1 (x, Y, 0)ot 

_ed p-, m 
0,01 

Comparing the results from Eqs. (2.60) with the result for a lowest order Laguerre- 

Gaussian beam mode TEM'oo, Eq. (2.51), it can be seen that these results are identical. 

Thus the scalar solutions have the correct form in the paraxial limit. 
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2.3.1.2. Testing the results at infinite radius of the Gaussian reference surface 

It has been suggested by Ulanowski and Ludlow [5] that in order to represent the wave of a 

paraxial Gaussian beam focused by an aberration-free lens which obeys the Abbe sine 

condition, in the limit where the radius of the Gaussian reference sphere goes to infinity, 

the ratio Q(a), of the irradiance I(r, a) and I(r, O) should be of the form 

-2 
LT4 

-aý 

) 

Q(a)=1im 
I(r'a) 

= cos(a)e 'Z (2.61) 
I(r, 0) 

where a is the angle between -iu'2 and 7n'2 on the Gaussian reference sphere and I(r, O) is 

the on axis normalisation constant . As can be seen from Fig. 2.40., the width of the 

Gaussian distribution is dependent on the yvalue of Eq. (2.61), where yis a dimensionless 

parameter representing the width of the paraxial beam with respect to the focal length of 

the lens and measured at the point at which the irradiance function drops to 
Z. 

e 

n 

-. -Z 

Gaussian reference Q(a) for two different yvalues. 

surface (principal surface) 
Fig. 2.40. The irradiance distribution on the Gaussian reference sphere 

Ulanowski and Ludlow [5] state that since the wave in Eq. (2.36) is the sum of the 
incoming part (Eq. (2.30)) and the outgoing part (Eq. (2.33)) of the same wave, it is 

legitimate to examine these parts separately for the purpose of investigating boundary 
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conditions. Since this statement is true for any order mn, only the outward travelling wave 

i. e. it)mn(xy, z) is considered in the far-field. 

In order to calculate the irradiance profile due to y/»oo(xy, z) and V1)ol(x, y, z) on the 

Gaussian reference sphere it is convenient to express these functions in spherical polar 

coordinates. In the following calculations the only variables are the Rayleigh range d and 

the radius of the Gaussian reference sphere r. The complex radius in spherical polar 

coordinates is obtained by substituting Eqs. (2.6) into Eq. (2.39). Since the normalised 

irradiance on the reference sphere is of interest, gin Eqs. (2.6) is replaced by a. However, 

as the irradiance is proportional to the product of the wavefunction and its complex 

conjugate, it is useful to use separate expressions for the complex radius and its complex 

conjugate in spherical polar coordinates, namely 

R, 
p = r2-2irdcosa-d2 

R;,, =r +2ird Cosa-dZ 
(2.62) 

The wavefunctions yJ1»oo(r, a) and 1 
ol(r, a) in spherical polar coordinates can be written 

as 

ie-eik r22irdcosa-2 le_ eARIP 

Yýöoýý (r, a) 
k r2-2irdCosa-d2 kRyp 

e-'eis r2-21rdcosa-d2 1 
-1 (rcosa-id) 

yrä(r, a) 
kr-2irdcosa Zd2 (2.63) 

k r2 -2irdcosa-d 
e_, t,, eAzSP 1 

_ -1 
(rcosa-id) 

kR2 
sp 

( 

ikR, 
P 

In order to calculate the corresponding normalisation constants f o, oo(r, 0) and l/1»o, ol(r, 0) 

respectively on the axis, it can be seen from Eqs. (2.6) (replacing Cwith a), that sin (a) 

needs to be zero. Hence a=0, z=r and RSP r-id. By substituting these values into Eqs. 

(2.63) and multiplying these equations with their complex conjugates and 
! 

Ea the 
F0TO 

following values fore o, oo(r, 0) and /' o, oi(r, 0) are obtained: 
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I o, °° 
(r, O) 

2 
Eo 2 

fro k2r 2l+ d2 
(2.64) 

10) (r , O)= 
1 

E2 
FT-ro k2(r2 +d2)+1 

22kd 2 k`(r2+d2) 

In order to calculate the irradiance normalised to 1 in the far-field limit, i. e. as r -> co, an 

analytic expression for the normalised irradiance due to 1J »oo(r, a) and due to V)ol(ra) 

needs to be obtained. Since RSp and its complex conjugate are different for r2-d2<0 and 

r2-d2>0 it is necessary to calculate the roots of RSp and its complex conjugate explicitly. 
This is achieved by using the general formulae given by Abramowitz and Stegun [7] as 

z= pe'B = p(cos0+isin6')= x+iy 
Izi= x2+Y2 =p 

arg z= arctanl Z) 
=0= arctan( I' (2.65) 

\xl \ReJ 
0 

.vz= 
jpe2 

where z represents a complex variable, "Re" stands for the real part and "Im" represents 
the imaginary part. In order to use Eqs. (2.65) effectively, it is necessary to write the 

irradiance due to u Woo(r, a) and the irradiance due to yr' o1(r, a) in the following form 

1 FT- e-te'e i (r, a)=-Ea 2 kz ýr2 
-d2)2 +4r2d2 cosy a 

(2.66) 
e-2 Awl -1 

(rcosa-id 
-1 -1 

(rcosa+id) 

a) =1 EZ 
ikR, 

p 
iklýP 

eRsp-Rlpý 20 , uo kZ (r2 
-dZ)2 +4r2d2 cost a 

sP 

Further it is necessary to evaluate e 
!k( RJp -R 

explicitly. This is achieved by defining a new 

variable 

a=Rs,, -R* ='fr2-2irdcosa-d2_/r2 +2irdcosa-d2 (2.67) 

Thus the exponent can be written as ika. Now, the two terms in Eq. (2.67) can be identified 

as the roots of two complex variables. In order to evaluate these roots it is useful to define 

two further variables 
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a, =r2 -girdcosa-dZ 
a2 =r2+ 2irdcos a-d2 

(2.68) 

In order to find the roots of al and a2, the arguments 0 and 8Z are found from Eq. (2.65) 

using the real and imaginary parts of at and a2 respectively. The modulus pi and p1 of al 

and a2 is also obtained from Eq. (2.65). By performing these calculations the following 

expressions 

Re[a, ]= Re[a, ]=r2-d2 

Im[a, -grdcosa 
Im[a2]=2rdcosa 

rd cosa B, =- arctan 2 
r2 -d2l 

02 = arctan(2 rd cos 
2) 

A= p2 = (r2 
-d2)2 +4r2d2 cost a 

are obtained. 

(2.69) 

sP ý 

Substituting the expressions form Eqs. (2.69) into Eq. (2.65), e 
! tRsP -R 

can be written as 

[2k[(r2_d2)2+4r242cos2a]'4 

sin(2 arctanl 2 
Zcosi JJJ 

el 
r -d 

1 
Ji 

(2.70) 

By substituting Eq. (2.70) into Eqs. (2.66) and dividing these equations with the 

corresponding normalisation constants Po, oo (r, 0) and ! %o#, 0) respectively, given in 

Eqs. (2.64), the following ratios due to 1 oo(r, a) and J »oi(r, a) are obtained: 

ý% 4l 
2k{(r2-d2)2 +4r2d2 coat a sing 

_arctan( 
l2 

Z-dcos 2 
)) 

I22 
`lrJ 

Iý(r, a)_e -2 e( ýr+dý 
iQ (r, O) (r 2+ d 2) 2+ 4r 2d2 cos 

2a 

k2e 2hh 
1 

-1 
(rcosa-id 

- ikI -1 
(rcosa+idXr2+d2)2 

of 
(r, a) ik 

x [(r2 

-d2)2 +4r=d2 cost a k2(r2 +d2)+1-2kd] 
jy( 

2k[(, 2-d2 )z 
+4r2d2 cat aJ sin (2 arctan( 2_d2 

11 

l . 22 JJ 

e 

(2.71) 
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In the far-field limit these ratios become 

Qoo (a) = tim 
1 
ool) 

(r' a) 
= e-2kd(I-co, a) 

r-iao 
ý( O) lo. oo rý 

(2.72) 

Q (a) =tim = cost (aý-2k, p-w. a) 
r-, ao 

c of jo 
of 

(r, o 

Ulanowski and Ludlow [5] identified yin Eq. (2.61) to be 

_ 
w, 

7-y 

where w is the beam radius and f is the focal length. It can be clearly seen that Eqs. (2.72) 

are not equal to Eq. (2.61). Further Ulanowski and Ludlow [5] state that although the forms 

of the first of Eqs. (2.72) and Eq. (2.61) are different, there is a close resemblance, since 

2(1 - cos a) =4 sin2 2, and the two irradiances become approximately equal if = 
is set 

equal to d=2°, therefore establishing a direct correspondence between the beam 

parameters before and after focusing. Using these relations, y= F2 . Figs. 2.41: 2.46. 
kgd 

show a comparison of the irradiance profiles, normalised to 1 on axis, for different values 

of kd, of the function Q(a) given in Eq. (2.61) and Qoo(a) in the far-field limit, given by 

the first of Eqs. (2.72). 

1 

J. 8 

). 6 

). 4 

)2 
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-1.5 -1 - 

\ý ). 

. ý 'ý, 
`\ 

ý' 
". 

1. 

\. 

ý. 

0.5 11 

Fig. 2.41. Comparison between Qos(a) (dotted curve) Fig. 2.42. Comparison between Qoo(a) (dotted curve) 

and Q(a) (solid curve) for kd=1. and Q(a) (solid curve) for kd=2. 
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Fig. 2.43. Comparison between Q®(a) (dotted curve) Fig. 2.44. Comparison between Qoo(a) (dotted curve) 

and Q(o) (solid curve) for kd=2.3. and Q(a) (solid curve) for kd 4. 

It can be clearly seen from these figures, that the difference between the two functions 

increases with decreasing kd. Figs. 2.47. -2.52. show a comparison of the irradiance 

profiles, normalised to 1 on axis, for different values of kd, of the function Q(a) given in 

Eq. (2.61) and Qoi(a) in the far-field limit, given by the second of Eqs. (2.72). 

7.8 

78 i\ 

7.4 \ 

7.2 

0 
-1.5 -1 -0.5 0 0.5 1 1.5 

a 

Fig. 2.47. Comparison between Qoi(a) (dotted curve) 

and Q(4) (solid curve) for kd 1. 
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a 

Fig. 2.46. Comparison between Qoo(a) (dotted curve) 

and Q(a) (solid curve) for kd=75. 

a 

Fig. 2.45. Comparison between Qoo(a) (dotted curve) 

and Q(a) (solid curve) for kd=5. 

a 

Fig. 2.48. Comparison between Qo1(a) (dotted curve) 

and Q(a) (solid curve) for kd=2. 
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Fig. 2.49. Comparison between Qoi(a) (dotted curve) 

and Q(a) (solid curve) for kd 2.3. 
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Fig. 2.51. Comparison between Qoi(a) (dotted curve) 

and Q(a) (solid curve) for kd=5. 
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J. 

J 

J. 

J. 

J. 

3. 

Again it can be clearly seen that the difference between the two functions becomes large 

for low kd. However by comparing Figs. 2.41. and 2.47., both for a value of kd=1, it can be 

seen that in the case of Qoo(a) the function does not go to zero at a=t, where in the 

case of Qol(a) the function does. It is mentioned by Ulanowski and Ludlow [5] in the 

discussion of Qoo(a), that "although the agreement between [Q(a) and Q00(a)] is very 

close even for small values of kd, it has to be concluded that the scalar field based on 
0') (x, y, z), does not exactly represent the field of a Gaussian beam focused by an 

aberration free lens that obeys the sine condition, and that it rather could be thought of as 

the complete field of a Gaussian wave that is spherical in the far-field and which is further 

characterised by a boundless angular extent on the surface of a sphere, in the same way as 

a paraxial Gaussian beam has an infinite extent in any transverse plane. " From the 

analysis so far, it is apparent that both Vuoo(x, y, z) and yioI(x, y, z) are reasonably good 

candidates for descriptions of a Gaussian beam focused by an aberration-free lens that 

obeys the sine condition. Though it can be further concluded that yioi(xy, z) fulfils the 

requirement of producing the correct normalised irradiance profile in the far-field limit 
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Fig. 2.50. Comparison between Qoi(a) (dotted curve) 

and Q(a) (solid curve) for kd=4. 

a 

Fig. 2.52. Comparison between Qoi(a) (dotted curve) 

and Q(a) (solid curve) for kd=75. 



Chapter 2 The solution to the scalar Helmholtz equation 

slightly better than yioo(x; y, z) since the irradiance profile goes to zero at a=t, even 

though for values of kd = [2,.., 5], Qoo(a) seems to fit the irradiance profile Q(a) better. 

2.4. The calculations of the beam power based on VaQ(xzv. z) and t (x y. zI 

The last criterion is, that the beam power needs to be finite. In this section the beam power 

of the two lowest order functions yioo(xy, z) and yiol(xy, z) will be discussed. In 

accordance with Eq. (1.74. a) the time averaged beam power P at the beam waist (i. e. z=0) 
can be written as 

1sw: ir P= 2Eä -J f PlImn (x, Y, 0)vI. (x, Y, O)' dPdo 
, (2.73) 

00 

where p= x2 + y2 is the radial and 0 is the azimuthal co-ordinate. In the z=0 plane the 

complex radius given by Eq. (2.39) can be written as 

R==o = P2 -d2 (2.74) 

Thus it can be seen from Eq. (2.74) that, inside the focal circle (p2<d2) the radius is 

complex and outside the focal circle (p2>d2) it is real. This implies that the integration 

needs to be performed in two separate regions, a region inside the focal circle and a region 

outside the focal circle. As the argument of the spherical Bessel functionsjo(kR) and jl(kR) 
is kR it is useful to use the substitution of variables 

u=kRsso=i 
[pp2 

Zo 

v kR==o = -i 
Fz__ 

zo 

; for p2 < zog 

; for p2 >z,, 

au kpp 
ap uzo 
0' kpp 
aP vzo 
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where p=kzo. It is therefore also possible to calculate the time averaged beam power, for 

validation purposes, in the paraxial limit in an easy manner. Since in the integral Eq. (2.74) 

the product pdp is used, it is useful to write 

pdp = 
uzoäu 

; for p2 < zö kp 

and (2.76) 

pdp = 
vzoäv 

; for p2 > zö kp 

where in Eqs. (2.75) and (2.76) the Rayleigh range is denoted by zo, instead of d, in order 

to avoid confusion between d denoting the Rayleigh range and d denoting the derivative. In 

order to validate the beam power due to yioo(x, y, z) and V1oi(xy, z) in the paraxial limit, it is 

useful to normalise the irradiance of these beams to unity at x= -z=O. These normalisation 

constants are given by Eq. (2.58) for Io, oo and Eq. (2.59) for Io, a1. The integral in Eq. (2.73) 

can then be written, integrating the two regions separately as 

P=2 Eö 
lip 
II Wmn (x, Y, O)ýmn (x, Y)ududo +lf V/. (x, Y, O» (x, y)vdvdo] (2.77) ffl P0o 00 

The lower limit of the integration with respect to the radial integral was calculated by 

substituting p=0 into the expression for u. On the focal circle, p2=d'2, the upper limit of 

integration u=0. Since the irradiances due to yioo(xy, z) and yiol(xy, z) are singularity-free, it 

is implied that these functions are continuous across the boundary at p2=d2. Therefore the 

upper limit of the first integral is equal to the lower limit of the second integral. Evaluating 

the integrals given by Eq. (2.77) for the lowest order, yioo(x, y, z) leads to an infinite beam 

power, since the second integral in Eq. (2.77) is equal to infinity. It was Lekner [6] who 

pointed this out. He also stated that the second integral given by Eq. (2.77) is infinite for 

any wavefunction given by yim�(x, y, z), with even m-n, and that the integral is finite for odd 

m-n. The ratio of the beam power due to Vol(x, y, z) and Io, ol is 

P 
-npd 

e-2J(2-4p2)-e-4p(1+2p)-1+2p (2.78) 
10,01 2k e-2P [e-° (1 + p)+ e° (1- p)] 2 
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In order to calculate the normalised beam power in the paraxial limit, again 
P 

has to be 
10,01 

calculated in the limit asp tends to infinity. It is found that 

lim P 
p-ým Io. ol 

k 
(2.79) 

In the case of a Hermite-Gaussian beam, lo at the beam waist, i. e at the origin (x= =z=0), is 

obtained by substituting p0 and wo=w(z) into Eq. (1.73). Thus for a Hemite-Gaussian 

beam lo at the beam waist is given by 

Io =2 Eo 6 (2.80) 
fro 

Dividing the power P for a Hermite-Gaussian beam, given by Eq. (1.74. b) by Io given by 

Eq. (2.80) leads to the following ratio 

P_1 2 
l0 2 mv° (2.81) 

By substituting Eq. (1.77) into Eq. (2.79), it can be seen that these equations are identical. 

Therefore the result presented in Eq. (2.78) is correct, even though Sheppard [9] states that 

yfoo(x, y, z) could be used, if the integral is performed over a finite range for p. However, in 

this research preference is given to yiol(xy, z), since it can be shown without making any 

approximations that yioi(xy, z) has all the required properties for describing a Gaussian 

beam. 
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2.5. Conclusion 

In this chapter a set of solutions to the scalar Helmholtz equation has been derived. This set 

of solutions resembles, as can be seen graphically by comparing Figs. (2.36. -2.39) with 

Figs. 1.8. a) and 1.9. a), the Laguerre-Gaussian functions [5]. The reason for this 

resemblance was described by Landesman [10], even though he only considered the 

incoming wave, due to the fact that the spheroidal-Gaussian mode solutions are circularly 

symmetric. Furthermore it is shown therein that there is an obvious correspondence 

between the Laguerre (0, n) orders and the spheroidal (n, n) orders, and the Laguerre (0,1) 

and (0,2) orders are identical to the Hermite (0,1) and (1,1) orders respectively. The 

lowest order solutions Woo(x, y, z) and y'oj(x, y, z) tend to a paraxial Gaussian beam in the 

paraxial limit. In the far-field limit there is a problem with the irradiance profile of the 

Woo(x, y, z), since the irradiance profile for very small kd does not drop to zero at a=±9 

on the Gaussian reference sphere. For large values of kd, the irradiance profile drops of 

asymptotically to zero, due to the exponential decay. The far-field irradiance profile of 

t'oi(x, y, z) is slightly different than expected, but as will be demonstrated in chapter 4, 

where the vector solutions are considered, it turns out to be acceptable. At the beam waist, 

for small values of kd a standing wave is produced due to the interference of the incoming 

and outgoing wave. Since the scalar wavefunction i/oi(x, y, z) satisfies all the requirements 

for representing a Gaussian beam mathematically, the vector solution based on this 

function will be used in chapter 5 to calculate the forces exerted on a micro particle. 
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Chapter 3 The solution to the vector Helmholtz equation 
3. The solutions to the vector Helmholtz equation 

3.1. Introduction 

In the last chapter, an exact scalar solution to the scalar Helmholtz equation was derived. 

However, it is known from chapter 1, that the electric field intensity E(r, t), the magnetic 

field intensity H(r, t) and the Poynting vector S(r, t) are vector quantities and thus a solution 

to the scalar Helmholtz equation is not sufficient in order to describe the E. M. field of a 
Gaussian beam. Additionally any E. M. field has a state of polarisation. In order to 

incorporate the polarisation property and to accurately calculate the forces exerted on a 

micro particle by a focused laser beam, it is necessary to derive a vector description of the 

E. M. field. For this E. M. field to be physical, the four Maxwell's equations and the wave 

equation need to be satisfied. For reasons of simplicity, as in the scalar case, a time 

harmonic dependence e''" is assumed. It is therefore possible to consider the time 

independent part of the wave equation, i. e. the Helmholtz equation first. The aim of this 

and the next chapter is to seek vector solutions, based on the scalar solutions presented in 

chapter 2, which 

a) describe a Gaussian beam. 

b) are exact solutions to the vector wave equation. 

c) satisfy the four Maxwell's equations. 
d) propagate along the positive z axis. 

e) have the correct behaviour in the paraxial limit. 

f) have the correct far-field behaviour. 

g) have finite beam power. 

3.1.1. The vector Helmholtz equation 

The vector Helmholtz equation has the same form as the scalar Helmholtz equation. The 

only difference is, that in the vector case the operator (V2 +kZ) operates on a vector, 

where in the scalar case it operated on a scalar. Therefore the vector Helmholtz equation is 

given by [1] 

V2F(r, t)+k2F(r, t)= V(V 9 F(r, t))-Ox (ox F(r, t))+k2F(r, t)= 0. (3.1) 
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The vector solution F(r, t) of this equation can always be separated into a longitudinal and a 

transverse part. Furthermore, in the non-relativistic case, the following five equations, 

F(r, t)= F, (r, t) + F, (r, t) 
F, (r, t) =V (r, t) 
F, (r, t)_VxA(r, t) (3.2) 

VxF, (r, t) =0 
V. F, (r, t)=0 

hold, where I (r, t) is the scalar potential and A(r, t) is the vector potential. These 

potentials were already briefly discussed in section 1.11.1.. Even though the vector 

potential A(r, t) has a longitudinal part Ai(r, t) and transverse part, A1(r, t), only the 

transverse part of A(r, t) has a physical meaning, since by taking the curl of A(r, t) in order 

to obtain F(r, t) the longitudinal part A! (r, t) is eliminated. It is therefore legitimate to state 

that F(r, t) has zero divergence, since V" (o x A) = 0. 

3.2. The vector solution 

The solution of the vector Helmholtz equation, which will be derived in this chapter, is 

based on the superposition of the incoming and outgoing beam, i. e. yrmn(x, y, z), which, as 
has been demonstrated in chapter 2, is a solution to the scalar Helmholtz equation. 

3.2.1. How to construct a vector function from a scalar function 

There are various ways in which a vector solution can be constructed from a scalar 

solution. One of these ways was demonstrated in section 1.11.1.1.. Another approach, 

which is based on Whittaker potentials, was recently used in a similar context by Volyar 

[2]. However, in this research a slightly different approach has been chosen. Again, like in 

the other two derivations, a constant guiding vector (polarisation vector) is selected, but 

this time, the constant guiding vector is multiplied with the scalar function yrmn(z, y, z), in 

order to polarise this function. Then the curl of this product is computed and the result 

multiplied by 
k, where k=w suo , to give a dimensionless vector function Mmn(r, t). The 

curl of Mmn(r, t) is calculated and the result multiplied by 
k 

in order to obtain a second 
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dimensionless vector function Nmn(r, t). However, by using this approach, the obtained 

vector functions cannot be directly identified as the electric and magnetic field vectors. 

Nevertheless this derivation leads to two vector functions, which are related to the electric 

and magnetic field vectors. The E. M. field vectors are then written as a linear superposition 

of the Mm�(r, t) and N, ��(r, t) functions. The motivation to use this approach is that the E. M. 

field can be constructed in such a way as to meet all the criteria, such as for example the 

E. M. field being correctly polarised in the far-field, imposed in this particular problem. 

The mathematical background of this method is described for example in Bohren and 
Huffman [3]. 

The physical realisable time-harmonic E. M. field in a linear, isotropic, homogeneous 

medium, must satisfy the wave equation (Eq. (1.12) and Eq. (1.13)) 

and be divergence free in accordance with Eqs. (1.5) and (1.6). It can also be seen from 

Eqs. (1.7) and (1.8) that there exists the following interdependence between E(r, t) and 
H(r, t): 

Vx E(r, t) = iw, u0H(r, t), 
(3.3) 

Vx H(r, t) = -i o eE(r, t). 

According to Bohren and Huffman [3] the Mmn(r, t) function can be constructed from any 

scalar function yrm�(x, y, z), which satisfies the scalar Helmholtz equation, and an arbitrary 

constant vector c. It has been demonstrated in section 1.11.1.1. that it is convenient to 

polarise the scalar function Yf, nn(xy, z) along the x or the y axis. However in order to 

increase the amount of choice, three different Mm�(r, t) functions are constructed, by using 

three constant guiding vectors. According to Ludlow [4] (see Appendix) the constant 

guiding vector is given by 

C =CI+c, J+Csk (3.4) 

A natural choice is to polarise the scalar function along the x, y and z axis. Thus the first 

constant guiding vector is obtained by substituting c, =l and cy-cj=0 into Eq. (3.4). Thus 
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1 

CI= 0 

0 11 

(3.5) 

The second constant guiding vector is obtained by substituting cy-1 and cx cZ 0 into Eq. 

(3.4). Thus 

0 
c2 =1 

0 
(3.6) 

The third constant guiding vector is obtained by substituting c. . =l and cx cy 0 into Eq. 

(3.4). Thus 

0 

c3 =0 
1 

(3.7) 

Theoretically it would have been possible to use other values for cx, cy and cZ, but it is 

unnecessary because any other constant guiding vector can be represented as a linear 

superposition of the vectors given in Eqs. (3.5)-(3.7). In accordance with Bohren and 

Huffman [3] M', 
n(r, t), where 7=1,2,3, can be written at time t=O as 

MMR(x, Y, Z)= 
vx c'yrk(x, Y, z (3.8. a) 

vx CZv(X Z) 
M 

, 
(z, Y, z)= k' Y' (3.8. b) 

and 

M, 
n(x, y, Z)= 

Vx c'yrk(x, y, z) 
9 

(3.8. c) 

It is useful at this point to remember that 

vxý y, Z)= av( y, Z) av( v, Z) ay(Y, Z) av(xv, z) . aV( , Z) av(xy, Z) (3.9) 
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where V(x1y, z) is an arbitrary vector in Cartesian coordinates. Since the scalar function 

V/,, n(x, y, z) given by Eq. (2.42) contains the spherical Bessel functions and the associated 

Legendre functions, it is useful to be aware of their recurrence relations and derivatives. 

The differentiation formulae for the spherical Bessel functions are [5] 

1d '[x"+i 
j» (x)] = x"-º+1 i. 

-, 
(x) 

x dx lJ1d 

)'[I (x) ýX-J 
x" 

(n = O, t1, f2.... ) 
(1=1,2,3,... ) 

with the recurrence relations 

(2n + 1) 
. 1-(x) + >ý+(x) =x J� (x) 

njR-, (x) - (n + 1)j. � (x) = (2n + 1) 
dj (x) 

n+1 i. (x) +! n 
(x) 

= Jý 1(x) x dx 

n 
x 

je 
(x) 

dJ )= 
i', 

', lx) 

(n = O, fl, t2,... ) 

(3.10) 

(3.11) 

Thus in order to calculate the derivatives of the spherical Bessel function, which are 

needed in order to calculate the curl of the product of the constant vector and the scalar 

function, it is sensible to rearrange the 3 rd and 4`" recurrence relation to read 

dj�(x) n+l j 
ý= 

jý-(x) 
xý 

(x) 

dj. (x) 
_n dx x 

i. (x) - J. 
+1 

(x) 

Similarly the differentiation formula for the associated Legendre functions is [5]: 

(3.12) 
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dP'"(s) 
_ 

nsPýM(s)-(m+n)P,, , 
(s) 

ds s2 -1 

or using the recurrence relation (n 
-m+ 1)P'*, (s) = (2n + i)sP: (s)- (n + m)P", (s) 

dPM(s) (n+1)sPg(s)-(n-m+1)P", (s) 
(3.13) 

ds 1-s2 

(n = O, tl, t2,... ) 
(m =1,2,3,... ) 

In order to get a deeper insight into the relationships between the various orders of the 

spherical Bessel functions and their derivatives it is convenient to consider the formulae 

for the spherical Bessel functions (Table (2.1)) and the following derivatives of the 

spherical Bessel functions for orders n=0,1,2. 

n djn (x) 

dx 

0 djo (x) 
= -j, (x) 

dx 

1 dJ x) 
=_ j2 (X)+ ýý xx) 

= j0 (x) -2 . 
l, (x) 

2 dj2 x) 
_ 

1(-3 
jz (x) + jo (x) - cos x) = j1 (x) 

-3 j2 (x) = . 
12 (x) 

- j3 (x) 
2 

x 

taufe 3. I. ine aenvanves for orders n==u, t, t of ine spnencat nessei functions 

Similarly, it is convenient to consider the formulae for the associated Legendre functions 

(Table (2.2)) and the following derivatives of the associated Legendre functions for orders 

n=0,1,2. and m=0,1. 
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0 1 

0 dp°(s) 
-0 

- 
ds 

1 dP, ° (s) -S 
ds ds 1-s2 

2 dpas s) 
= 3s dP s) 

=3 1- s2 1- - 
s 
s Cl as 

auic. ). c. I nc ucnvauvcs tor urucrs n=v, 1,4 anu mý, i oc inc assuciaceu Lcgenure cuncuons. 

From the three 1%1'. (r, t) functions (Eqs. (3.8. a), (3.8. b) and (3.8. c)) it is now possible in 

accordance with Bohren and Huffman [3] to write another three vector function N�, 
n(r, t). 

These functions can be written at time t=0 as 

Nron\x,, y, Z)= 
OXMmn(x, y, Z) 

k 

Nmitlx, y, Z) 
VxMmit(x, Y, Z) 

k 

and 

N' (x, y, z) =VxM 
mk(x, y, z) 

(3.14. a) 

(3.14. b) 

(3.14. c) 

In order to calculate the N' (x, y, z) functions explicitly, it is necessary to be aware of the 

formulae for the second derivatives of the spherical Bessel functions 

d2j. x) 
=_ 

n(n-1) 2n+1 
2 x2 

j. (x)` 
x 

J�+, (x)+. l�z(x) i3.15) 

and the associated Legendre functions 

d2J (s 
_ns'(n-1)-1 ds2 

or 

-(m+n)[s(2n-3 
(s2 

-1V 
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d2i mýsý 
_ 

(n+1)[1+(n+2)s2 

ds2 

The solution to the vector Helmholtz equation 

-(n-m+lX2n+5)sP';, 
(s)+(n-m+lXn-m+2)F 

2(s) (1-s2)2 

(3.16) 

The solutions of Eq. (3.15) for orders n=0,1,2 are given in table 3.3.. 

n dzjn(x) 
dxz 

0 dzjo(x) j, (x)+i2(X)= 2il(x)-i0(x) 
dx2 xx 

1 dzji(x) 
-3 jz (x) + j3 (x) - x dXZ 

d2jz(x) 2 5 )+ ( ( ) 

2 
= (x) - x x j3 j4 

2 xz 
jz 

x 

Table 3.3. The second derivatives for orders n=0,1,2 of the spherical Besse] functions 

The solutions of Eq. (3.16) for orders n=0,1,2. and m=0,1 are given in table 3.4.. 

m 

n 0 1 

0 d2P°(s) 0 - 
ds2 

1 d2P, °(s) 
_0 

d2P, '(s) 1-s2 
ds2 ds2 (S7-., T2 

2 d 'Po (s) 
-3 

d ZP' (s) 341 - s2 2s2 -3 
dsZ - ds' s2 -1 

Table 3.4. The second derivatives for orders n=0,1,2 and m=U, l of the associated Legendre functions. 

Since the divergence of the curl of a vector is zero, it follows that the divergences of 

MY (r, t) and NY. (r, t) are zero. It is further mentioned by Bohren and Huffman [3] that 

Vx Nnm(r, t)= kM: 
m(r, t) 

or 
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Chapter 3 The solution to the vector Helmholtz equation 

VxNnm(r, t)-kMn, �(r, t)=0. (3.17) 

The derived Mm,, (r, t) and Ný, 
ý(r, t) vector functions have all the required properties of an 

E. M. field. However, it has to be noted that M', 
n(r, t) and Nm�(r, t) are not equivalent to 

E(r, t) and H(r, t), but are related to them. The E(r, t) and H(r, t) vectors can be 

constructed, as mentioned earlier, by a linear superposition of the Mmn(r, t) and Nmjr, t) 

vectors, since 

0"(A+B)=O"A+0"B 

and 
Vx(A+B)=VxA+VxB, 

where here A and B are both arbitrary differentiable vector functions. 

,,,, (x, v. z) and N �,,, (x, y. z) functions due to 1'i (x, y, z) 3.2.2. Constructing the MI 

In this section, the vector Mm, (x, y, z) and Nmn(x, y, z) functions, in Cartesian coordinates, 

based on the scalar function y'oo(xy, z), Vuol(xy, z) and yrlt(xy, z) are derived. 

3.2.2.1. Example 1: Constructing the M. o(x, v, z) and Nrgj (x, yz) functions due to 

Y-QqQl. z 

With the help from tables (2.1. ) and (2.2. ) Eq. (2.43) can be written as 

woo(X, Y, Z) = e-'w j0(kR) (3.18) 

From the derivations given in section 3.2.1. it follows that by multiplying Eq. (3.18) with 

Eqs. (3.5), (3.6) and (3.7) respectively that 
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e-jo(kR) 

yi (x, Y, zk' =0 (3.19. a) 
0 

10 

0 

VVjx, Y, zk' =e` jo(kR) (3.19. b) 
0 

and 

0 

W. (x, Y, z)C' =0 (3.19. c) 
-kd jo(kR) 

By taking the curl of the vector function given by Eqs. (3.19. a), it can be seen in 

accordance with Eq. (3.9), that the only non-zero terms obtained from Eq. (3.9) are: 

aV, (X, Y, Z)ý 
aZ 

and-aV 
( 

aX'y 
Y'Zýk 

10 
(3.20) 

where here Vx(x, y, z)=e"jo(kR). So from Eq. (3.12) it can be seen that 

0VX(x, Y, z) 
= e" `d JkR)k 

dR 
_ 

-ke'(z-id) J, (kR) 
öz dR °( dz R (3.21) 

ayý (x, Y, z) 
ed kdR_ 

ke_Y 
= cY dy 

lo(kR) 
dY R J. ( ) 

since from table (3.1. ) 
dj°kR) 

_ -j (M). 

d(kR) 
=k 

dR d(kR) 
-k 

dR 
and 

d(kR) 
=k 

dR 
Additionally, as k is a constant dz dz dy dy dx dx 

Thus taking the curl of Eq. (3.19. a) and multiplying the result by k leads to 

0 
M00(x, Y, z)= e R(kR) 

-(z-id) (3.22. a) 
Y 
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Similarly by taking the curl of Eqs. (3.19. b) and (3.19. c) and multiplying the results by 

I leads to 
k 

_M () 
(z - id) 

Mý(x, y, z) 
eR kR 

0 (3.22. b) 

x 

and 

-kd 

M3 (x, Y, z)= e R(kR) x (3.22. c) 
0 

By taking the curl of Eq. (3.22. a), it can be seen from Eq. (3.9), that since the first 

component of the vector function in Eq. (3.22. a) is zero, only four partial derivatives of the 

curl of M. (x, y, z) are non zero. With the help of Eq. (3.20) these non zero partial 

derivatives can be written as 

am'. (x, 
y, z1 

--oZ 
ys (x, 

y, Z) " 
am'. (x, 

y, Z 
)y 

1"--VZ 
yx 

\x, y, Z) 

ay ' aye `' aZ az i' 
M'. (x, y, Z)= ._ al y (x, Y, Z) 

äx ax ay i' 

am'. (x, Y, Z), k` aýVxýx, Y"zýk 

ax axaz 

Thus taking the curl of Eq. (3.22. a) and multiplying the result by 
k 

leads to 

2R j, 
(kR) 

-(R2 -x2) 
e-k`'j2 (kR) kj2 (kR) 

N'. (x, Y, zj- R2 xy (3.23. a) 
x(z -id) 

Similarly by taking the curl of Eqs. (3.22. b) and (3.22. c) and multiplying the results by k 

the following functions 
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xy 

N'(x, y, z)= e j(kR) 2R II(kRý 
_ 

(R2 
_ y: ) (3.23. b) 

R2 kj2(kR) 
y(z - id) 

and 

) 

Ný(x, Y, z)= 
e R\kR) 

x'((z 
z- 

id 

-id) (3.23. c) 
2R j1(R) 

_ x2 +A kj2(kR) 

are obtained. As the E. M. wave is propagating along the z-axis in Cartesian coordinates, it 

can be assumed, that a sensible superposition for the E(r, t) and H(r, t) fields will only 
involve the transverse M'�, 

�(r, t), 
Mm�(r, t), N, 

n�(r, t)and Ný,,, (r, t) functions, i. e. the 

M�(r, t) and N', 
�(r, t) 

functions based on the c' and c2 guiding vectors, nevertheless for 

completeness the M. 
�(r, t) and Nm�(r, t) functions based on the c3 guiding vector are given 

as well. An additional indication that the M'. (r, t) and Noo(r, t) functions are not likely 

candidates for making up the E. M. field is that all the three components of the M. (r, t) 

function are zero at the origin (see Eq. (3.22. c)). 

3.2.2.2. Example 2: Constructing the M''gj(x. vz) and N''n, (x, vz) functions due to 

ma Lý"- l 

The same derivation can now be applied to Vlot(xy, z). With the help from tables (2.1. ) and 
(2.2. ) Eq. (2.44) can be written as 

VV� (x, Y, z)=e-' . 
1, (kRý z Rid)9 (3.24) 

leading to the following MQ, (x, y, z) functions: 

-kd 
M,,, (x, Y, z) =e 

j2 (kR) Rj, (kR) 
_ 

(z 
- id)' , (3.25. a) R2 kJ: (kR) 

Y(Z_id) 
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-RJ'(k)+(z-id)2 
e`ý(k) 

klz(kR) 
M 

o, 
(x, y, z) =j 

I2 
0 (3.25. b) 

-x(z-id) 

and 

y 
Mo. (x, y, z)= 

e f2(RXz_'id) 
x (3.25. c) 

By taking the curl of the M o, 
(x, y, z), M o, (x, y, z) and M ö, (x, y, zj functions given by 

Eqs. (3.25. a), (3.25. b) and (3.25. c) and multiplying the results by k, 
the following 

Nö, (x, y, z) functions 

(-(R2 -x2 5-kRj, 
(kR) 

jz(kR) 
kRjN, 

'� (x, y, Z) = 
e_ý, 

kR` 

() 
xy(z - id 5- (3.26. a) 

j2 (kR) 
) 

kR ' (kR) 
R2 -(z-id)2 5- 

j2(ß) 

01 

xy(z - id 5- 
kRj, (kR) 

j2 (kR) 

Nöý(x, Y, zý= 
(kR) 

(z 
- id 4R'-(R 2 _y2 5_kRj1(kR) (3.26. b) (kR) 

) 

-y R=-(z-id)2 5-kRj, 
(kRý 

jz (kR) 

and 

- 
4R2-(z-id)2 

5-kRj, 
(kRý 

I, (kR) 

Nä1(X, y, z)=e 
(kR) 

-y R2-(z-id)2 5-kR2'ý (3.26. c) 
j, (kR 

(z - id 2R' - 
(x2 y: 5_ 

kRj, (kR) 
l J2(kR) 
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are obtained. Again it can be seen that theMö, (r, t) and NO, (r, t) functions are not likely 

candidates for making up the E. M. field, since all the three components of the Mö, (r, t) 

function are zero at the origin (see Eq. (3.25. c)). 

3.2.2.3. Example 3: Constructing the fl (x, y. z) and NI i Lx. vz) functions due to 

,xz 

The same derivation can now be applied to yr11(x, y, z). With the help from tables (2.1. ) and 
(2.2. ) and substituting n=m=1 into Eq. (2.42), yrjI(xy, z) can be written as 

e-'e`o 
VV,, (x, Y, Z) =R x2+Y2J1(kR) 

where = arctanl J , leading to the following M;, (x, y, z) functions: 

(kRýe_kei4 
0 

Mýl(x, y, z) = 
jz 

-(z-idXxz + z) 
RY 

xz +Yz _ 
Rj_(kR_+_) 

kjz (kR) 

2- JJkR)-, e, o 
M(x, Y, Z)- 

R2 x2 + y2 

and 

(z-idXx2+y2) 

0 

-x(x2 +y2)+ 
Rj, (kRXx-iy) 

1 kj2 (kR) 

_ y(x 
2+y 2) + 

Rj, (kR)(Y + ix) 
1 kj kR) 

Mýl(xY, z)= 
JZ(kRý ße'4 

x(x2 + y2)- 
Rfý(kR x-iy) 

RZ x2+y2 
1 kj2(kR) 

0 

(3.27) 

(3.28. a) 

(3.28. b) 

(3.28. c) 
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By taking the curl of the M ,, 

(x, y, z), M ,, (x, y, z) and M,, (x, y, z) functions given by 

Eqs. (3.28. a), (3.28. b) and (3.28. c), and multiplying the results by 
1, 

the following 

N;, (x, y, z) functions 

I2R2(x2+i+2y2)_(R2_x2Xx2+y25_ 
xyj2'( 

» 

Jz 
w" 

x2 +y2 5_ N:, (x, Y, z)= 
J2 kRý e 

-R2 
(ix2 +2xy-iy2)+X kR° x2 +y2 kRý 

kR (kRý 
R2(z-idX-x+iy)+x(z-idXx2 +y2 5- 

JZ(kR) 

-R2(ix2 +2xy_iy2)+xytx2 +y2 5- 

Y, 

(kR) 

j2(kRý 

Niý(xz)= 
ji kR e 2R: (2x 2 _i +y2)_(R2 _ y2Xx2 +y2 5-kRJ1(kR) 
kR4 7x+7 ll j2 (kR) 

) 
R2(z-idX-ix-y)+y(z-id)(x2 +y2 5- 

j2(kR) kR 

and 

I (z-id 
-R2(x-ýy)+x(x2+y2 5_kRj, 

(kR) 

J: (kR) 
'4 

Ný, (x, y, z)=J' 
kR 

Z 
eZ (z-id 

-R2(Y+ix)+y(x2+y2 5-kRf(kR) 
kR x +7 12 (1) 

4R2(x2 + y2)_ (x2 +y2)2 
) 

, (3.29. a) 

(3.29. b) 

(3.29. c) 

are obtained. In the next section it is demonstrated, that these M m� (x, y, z) and N ý, 
� 
(x, y, z) 

functions can be easily obtained for any scalar function yrmn(xy, z). 

3.2.3. Constructing the vector function of arbitrary order mit 

In the previous section, the M" 
,ý 
(x, y, z) and N ý,, (x, y, z) functions were calculated for 

specific values of m and n. By performing these calculations it was pointed out that 
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Chapter 3 The solution to the vector Helmholtz equation 

the M(x, y, z) and N', 
� 
(x, y, z) consist of a product of spherical Bessel functions and 

associated Legendre functions and two exponential functions. As the procedure of taking 

the curl of a vector involves differentiation, it is important to consider Eqs. (3.12), (3.13), 

(3.15) and (3.16) as well as tables (3.1. ), (3.2. ), (3.3. ) and (3.4. ) carefully. From inspection 

of the M M� (x, y, z) and N ", 
� 
(x, y, z) functions in the previous sections it becomes clear that 

it is possible to find a closed form description for the vector M, 
� 
(x, y, z) and N',.. (x, y, z) 

functions of general order. In order to calculate the M; 
, 
(x, y, z) function the scalar 

function given by Eq. (2.42) is multiplied with the guiding vector c'. This vector function 

can then be written as 

e-k'J, (kR)Pm (s)e, m# 

v. (x, y, zý, =0 (3.30) 
0 

Next the curl of Eq. is taken and the result multiplied b1 (3.30) iyk , remembering that from 

avý (x, y, Z) av(x, y, Z)s equation (3.20) the only non-zero terms of Eq. (3.9) are az 
j and -k, 

C_Y 

where here VV (x, y, z) = e-M j� (kR)f m (s)eem. Hence 

M (x, 
J, Z) = 

0 
_n(z-id)R 

(m+n)R2P°, (s) är n_ (kR) öR 

+ y2 
+ 

ir(sx xl +, y2 &+ kR jj(kR) ei 

n(z-id)R-(m+n)RZP", (s) dr n- jý�(kR) äR- imx 

+ yZ P'"(sý + cry kR jý(kR) öy 2+ y2 

(3.31) 

where nq^ (S) = Pfi(Z R 
`d) as stated earlier. All the derivatives of R, s and e'0 are given in 

tables 3.5. -3.8. at the end of this section. 

Since the first component of the Mmit (x, y, z) vector in Eq. (3.31) is zero, only the 
following four partial derivatives of the curl ofM;. (z, y, z) are non zero: 
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aM l,, (x, y, Z), - a2 yx (x, y, Z) . aM 
ý 
(x, y, Z)y a2 yv (x, y, z) 

äy 
1 

äy 2 
1' 

az 
1 

az 2 
1, 

M- (a Y, Z), -. aZ 
a(x, 

Y, Z) ý 
äM. (x, Y, Z), k_a2 Vx (X, Y, Z) k 

ex axaz 

Thus the N; 
�� 

(x, y, z) function can be written as 

N' 
-kd 

N'� : e P^m (s)>R (kR)eým' 
N (x, Y, z) .k2y 
N; 

where: 

1 ö2 
_ 

(s) a2 
_ 

(s) 
+1 

a2 jp (kR) 
+ 

a2 j. (kR) 
+1 

öle` O 
P" (S) ý1'' + 

&2 jM (kR) ßj'2 äz2 eü"4 ,z+ 

N, _2 
(ýIm(s) äj,, (kR) 

+ 
OP, (s) of,, (kR) 2 10P'" (s) äe'"ß 

+ x P, " (s)j,, (kR) ay ay ai 8z P- (s)e1mt aY a1' 

2 aj,, (kR) &"0 
J,, (kR)e"o of, of, 

1 ö21 �" (s) 
+1 

ö2e`"O 
+1 

ö2J� (kI 01 

p" (s) e`"d cam' j. (kR ' 
1 7I. " (s) e. (kR aP�' (s) Q`,, (kR) 

Art =+ P"(s)j. (kR) öy cv c-x öy 

1 ap"(s) & eP�'(s) ai'm' 1 (9, '� (kR) ae'ý' e� (ký &`»` 

(3.32) 

1 aZ _ (s) +1 
1a2jý 1_ (s) aýý (ký +a' (s) ýý (+ 

j» (kR) && P"' (s), a (kR) ai c'x äßc ai 

1 __ (kR) _r 1 a_m (s) &, n4 

jp (kR)e" c'lr P'" (s)e'mo cýz c 
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Using the same technique as above, the M',, (x, y, z), N. ' (x, y, z), M, (x, y, z) and 

Nm� (x, y, z) functions can be computed. They are 

z-id R+(m+n)RZP"' 
(s) 

&+ 
-j 4 

(kR) 
öR 

ý+ yz ý+ yz 
(s) cý kR j kR cä 

MmnýxýYý Zý _- 
e_ýeiýjn (ký f'n (s) 

0 
k [n(z 

- id 
)R 

- 

(m 
+ n)R2P° 

(s) (kR) 
öR imy 
-5; 

X2 X+ y2 X+ y2 
(s) jý 

++ 

z-id R-(m+n)i r" 
i(s) n 

-_ +i(_) dR imx 

xý+y2 xý+ 
^ 

ýs) e kR j 'ý `y+FX2+y2) 

-kr! im3j ý 

-(m+n)RZP" 

(s 
cä e n(kg S) n 

(kR) 
dR im y z-id R 

�_ý _ +t Y 

+yý xý +>y 
(s) är kR j kR är (+) 

NZ 
e-rý Pm(s)j (kR)eim X2 

Nm(x, Y, z = k2 
NY 

NZ 

where: 

1 

__ 

(S) 

+1 

1o. 
%n(k1 

+1 

ýe 

ý 
[än (S)Lýn(^'iY+(än 

()ýnl^aY 

} 
Z (S) j (k'Y 

eP 
(s)j�(kR (' & 

(lG 
ÖJ1 

All, = 
1 ap"m(S) W'O 

____ 
s) W,. 0 

+1 
iyn (k4 W»0 c (klý 2ý 

ýF�"(S)d'OU äy c"C & oy jn(kR e&& öy 
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i a2''(s) + a2I(s) +1 
a2e1m 1 a2 jn(k) 

+ 
a2jn(kR) 

+ aL2 
ýn (s) ý2 &2 eZj (kR 

N22apm 
(s) aJn(kR)+al n" (s) äjn(kR)2 ap", (s) &i o+ 

P�n(s)j�(kR) az ai car ax P�'(s)e'm# äC cýz 
2 On 

(KR) (. eimO 

j,, 
(kR)eimm 

1 cýP"(s) +1 
(kg 

_ 
8f "(s) cýR(klý+a1 (s) c'ý(klý + 

J. (kg(S)ln(klý cý öy Gy 

1&»0 (i; �& 1 es) Ww 

and 

where 

/ 
N3 

s e_ pmrsl%(kR)e"0 s 

`J J3 Nmn (x, y, z= k2 
Ny 

Nä 

01 1 1'"1 (s) 
+1 

72 jn (kR) 
+1 1ai"(s) e (kR) 

+ 
äP'(s) äjß (kR) 

+ 
(s) äxrh j� (kR) &&z (s) jn (kR) äz äx äx äz 

1 e�(kR) &im# 1 8P�" (s) aei. 0 

jn (kR)er'"o CZ &+ P�" (s)e""ý ?i äx 

1 aZ (s) 1 Io2j1+ 1 air(s) of (kR) aP(s) ý(kR) 

_ 
(s) a! 'ý J,, (kR) p" (s)j (kR) az ay + ay ai + 

NY 
1 al�" (s) aeim 

+1 
(kR) äe1 m4 

ý�" (s)e�"m ay Jý (kR)e''"4 ai ay 

121 



Chapter 3 The solution to the vector Helmholtz equation 

1 &P�"(s) 1O e' ö2S 1 c' jj(k1 ci (11 

2 a� (s) i'n(kg 
+? ý'"(s) 

EJ (kg 2+ 
ý7 -)- I� (s) j� (k1 c c'ir öy äy P"'(s)ý"ý är & ay c'ý' 

J�(kl "0 & c" ay 4' 

The various derivatives which are used in the M.. (x, y, z), M., (x, y, z), M,,,, (x, y, z), 

Nm� (x, y, z), N', 
� 
(x, y, z) and Ný, 

� 
(x, y, z) functions can be seen from tables 3.5. -3.8. below. 

aR x a2R -x2 I 
ax R axe ;R 

öR y ö2R -y2 1 
öy R' aye R3 R 

öR (z-id) . 2R -(z-id)2 1 
äz R' öz2 R3 

+R 

as 
_ -x(z-id) a2 s 3x2(2-id) (z - id) 

ax R3 ' öx2 R5 R3 
as y(z - id) OZS 3y2(z-id) (z - id) 
ay R3 ' W _ R5 R3 

as I (z - id)2 ä2s 3(z - id)3 3(z - id) 
öz R R3 ' 0z2 R5 R3 

a2R 
-_xy 

a2R x(z-id) a2R 
-_y(z-id) axay R3 ' axaz R3 ' ayaz R3 

a2s 3xy(z - id) als x 3x(z - id)2 als 
_=__y 

3y(z- 
axay R5 axaz R3 

+ 
R5 R1+ RS 

Table 3.5. The derivatives of s and R 
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aP'n(s) RZP'"(s) n(z-id) (m+n)P'"_1(s) as 
_ ax x2+y2 

( 
+ 

R Pm(s) 

) 

ax 

aZP"'(s) a2P'"(s) as z aFm(s) als 

axe as2 aý as axe 
aP'n(s) RZPm(s) (m+n)P'"_Js) n(z-id) as 

- ay x2 +y2 

( 
+ 

R Pm(s) ay 

aZP'"(s) aZP'"(s) as 2 aP'"(s) aZs 
äyZ - as2 

+ 
(aY) 

as aye 

aPnt(s) RnZPm(s) n(z-id) (m+n)Pn'"_ý(s) as 
- az x2 +yZ 

_ + 
R Pm(s) az 

a2Pm(s) a2Pm(s) as 2 aPm(s) als 
az2 

= 
as2 

( 

+ a) as 
aal 

32pm(s) a2Pm(s) as as aPm(s) als 

aXay _ as 2 ay ax 
+ 

as axay 

a2Pm(s) 3ZP� (s) as as ) ) als 
axaz = aS2 

(3z 

ax) 
+ + 

as axaz 

a2Pm(s) a2Pm(s) as as 3Pm(s) azs 

ayaz _ as2 h öy as ayaz 

Table 3.6. Some derivatives of the associate Legendre functions 
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k2 
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a2R 

axöy a(kR)2 ay ax J a(kR) axaj 
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Table 3.7. Some derivatives of the spherical Sessel functions 
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myeim 2i 
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2iy2 
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+y x +y / 

32dm nadMO (2i y+mX) 
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ö2elm 0 = 2 ÖZ 
ö2el O 
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= 
2i 2m 

+ 
+ 

y 

axÖy x2 y2 x2 y2 x: 
2 

a2etm j a2el O 

exöz öyöz 

Table 3.8. Some derivatives of the azimuthal function 
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Chapter 3 The solution to the vector Helmholtz equation 

The Mmn(x, y, z) and N' (x, y, z) functions given in this section satisfy the vector wave 

equation. 

3.3. Conclusion 

In this chapter, a method has been presented by which it is possible to construct solutions 

to the vector Helmholtz equation based on solutions to the scalar Helmholtz equation. The 

presented vector solutions do not directly represent the electric and magnetic fields, but are 

related to them. It is the aim of the next chapter to investigate these vector solutions and 

then to form a linear superposition of these vector solutions in order to derive the E. M. 

field. Since a solution is required which represents a Gaussian beam, it can also be 

concluded that the M. (r, t), Mo, (r, t), N'(r, t) and N', (r, t) are not likely to be present in 

the superposition of the E. M. field, since all the components of M'(r, t) andMo, (r, t) are 

zero at the origin. 
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Chapter 4 

4. The Electromagnetic Field 

4.1. Introduction 

The Electromagnetic Field 

In the previous chapter exact solutions to the vector Helmholtz equation have been 

presented. The aim of this chapter is to derive an E. M. field, which satisfies the criteria 

outlined at the beginning of chapter 3. As indicated in the previous chapter, the E. M. field 

will be constructed as a linear superposition of the M. (x, y, z) and N, (x, y, z) functions 

for the lowest order 00 and as a linear superposition of M ö, (x, y, z) and N ö, (x, y, z) for 

order 01. The first task is to investigate the properties of these functions based on the scalar 

functions of orders 00 and 01, since only these two orders have a Gaussian irradiance 

profile. It is known, assuming an e"ice` time dependence, from Eqs. (3.3), (3.8. a-3.8. c) and 

(3.14. a-3.14. c) that the E. M. field will have the following form: 

E(r, t) = Eo 
rJ 

(ar M mit (r, t) + , ßr N mit (r, t)) (4.1. a) 

F 
H(r, t)=-iEo Z(ct Nm�(r, t)+ßrM7n(r, t)), (4.1. b) 

duo Y'' 

where ay and fly are complex constants. Thus in order to derive the correct E. M. field, the 

constants ay and fly need to be determined with the help of the criteria a)-g) mentioned in 

section 3.1. From criterion a) it is known that m=0 and n=0 or 1. However the only 

criterion which gives a clear indication of the values for ay and Sri is criterion f). Since in 

the far-field limit the wavefronts of the Gaussian beam are plane wavefronts, it is implied 

that the polarisation pattern in the far-field limit of a Gaussian beam is identical to the 

polarisation pattern in the far-field limit, produced by focusing a plane wave with an 

aberration-free sine condition lens, as derived by Richards and Wolf [1]. Thus the next task 

is, to find values for ay and fay which lead to the same polarisation pattern as the one given 

in Richards and Wolf [1]. However the irradiance distribution of the Gaussian beam will 

be different from the irradiance distribution of the plane wave, as has been demonstrated in 

chapter 2. 
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Chapter 4 

4.2. The far-field 

The Electromagnetic Field 

Applying the formulae derived by Richards and Wolf [1] for the electric and magnetic field 

components in the far field, it is possible to write these components on the reference sphere 

that represents the principal surface of an aberration-free lens that obeys the sine condition 

and is illuminated by a plane wave in Cartesian coordinates as [I]: 

EF a cosB+sin' o(1-cos B) 

Ey oc (cosO-1)cososin0 

Er a-sin9cosq$ (4.2) 
H., a (Cos 9-1)cos0sin0 

Hy al - sin' 0(1-cos9) 
Hs a- sin 0 sin 0 

In order to test if the superposition of the M1. (r, 1) andN"(r, 1)functions and the M-, (r, t) 

and Na, (r, t) functions respectively, which form the E. M. fields satisfies the Richards and 

Wolf far-field boundary conditions, it is legitimate to consider, as in the scalar case, only 

the M ., (r, t) and N ', (r, t) functions based on the outward travelling wave, defined as 

MMR (r, t) andN'(')(r, t). These functions are transformed into spherical polar coordinates 

in order to find expressions for them in the limit of infinite radius of the reference sphere. 

These expressions are then transformed back into Cartesian coordinates and compared with 

Eq. (4.2). 

4.2.1. The transformation matrix 

The transformation matrix required in order to transform the M (')(r, t) andN ; (')(r, t) 

functions from Cartesian coordinates into spherical polar coordinates can be derived in the 

following manner: According to Morse and Feshbach [2] the direction cosines for the u� 

axis with respect to the x, y, z axis can be written in terms of the derivatives relating x, y, z 

and the u's in either of two ways: 
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i ax ap 
ap _hp aup 

hp 
ax 

b1 
ey 

=h 
aup 

p hp ap p 

1 az aup 

-p hp aup 
=hp aZ 

The Electromagnetic Field 

(4.3) 

where p=1,2,3, depending on whether x, y, z are given in terms of the u's or the u's in 

terms of x, y, z. Hence the transformation matrix, which transforms a vector V(r, 0,0) in 

spherical polar coordinates into a vector V(x, y, z) in Cartesian coordinates can be written 

as 

I ax 1 ax 1 öx 

V h, Tr h2 aB h3 ao v 

v y 
1 a' 1 a' I ß' 

. (4.4) vB 

V 
hi & h2 aO h3 CIO V4 = iaa iaz iaZ 
hl ar h2 TO h3 aO 

Eq. (4.4) can be written with the help of Eqs. (2.6) and substituting the scale factors given 
in section (2.2.1. ) as 

Vx sinOcosO cosOcosO -sin V, 

Vy = 

J 

sin ü sin o cos O sin O Cos o VB (4.5) 
Vs cosB -sin0 0 VO 

The matrix which transforms a vector V(x, y, z) in Cartesian coordinates into a vector 

V(r, 0, q in spherical polar coordinates is the transpose [3] of the matrix in Eq. (4.5) 

Vr sin0cosO sin0sinO cos0 Vx 
VB = cos 0 cos q cos B sin qS -sin O Vy (4.6) 
V4 -sin o cos 00 V, 

By substituting Eqs. (4.2) into Eq. (4.6), it is found that the Richards and Wolf far-field 

conditions [1] can be written in spherical polar coordinates as 
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E, (r, 0,0)=0 
EB(r, 0,0)occos0 
Eo (r, 0,0) oc - sin O 

H, (r, 0,0)=0 
HB (r, 9,0) oc sin 0 
H, (r, 0,0) oc cos 0 

4.2.2. The derivation of the E. M. field as a superposition of the M and N functions 

(4.7) 

All the derivations in this section will be made at time t=0. It has been mentioned in 

chapter 3, that the M MR (x, y, z) ,M . 
'n (x, y, z) , N' (x, y, z) and N; 

p, 
(x, y, z) are the most Offn 

likely vector functions to be used for the construction of the E. M. field. Thus in this section 

these four functions are considered. The vector functions, based on the outward travelling 

wave, M'(' (x, y, z) , Mm(�)(x, y, z), N'(')(x, y, z) and N ')(x, y, z) are transformed into 
Ma MIN 

spherical polar coordinates, by expressing x, y, z in terms of r, 0, O, using the relations 

given by Eqs. (2.6) and then substituting them into the right hand side of Eq. (4.6). 
2(1) 1 (r, 9,0), NW (r, 9, O)and NW '()(r, 0,0) Performing these calculations, the M0'(0') (r, M00 

functions can be written in spherical polar coordinates as 

ý ()(kR ) id sinOsino 
_h 

Mi( ) 
0 

(r, 0,0)= eR 
sin¢(idcos0-r) (4.8 

'° 
lcosO(id 

-rcos9) 

_h (1) (kR ) -id sin9coso 
Mý'ý(r, 0,0)= e sP coso(r-idcos9) (4.9) 

R, 
sinO(id-rcos0) 
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sin B cos 
2Rsph, ')(kR, )+ 

ikdh; ')(kR3 k cos B+ kd 2h2')(kR, 
p 

hZ') kR,, 
2R, 

Ph; 
')(kR, 

P 
)+ ikdh 

Z')(kR, P 
}r 

cos 9+ 

(1, r 
cos Bcos 

kd 2h(l)(kR )- kr2h{s')(kR )+ ikdrh2 

Nl(')(r, e, o)- - 
e` h= lkRfi 2 ,Pm Cos0 

Sp 

sin 02R, 
h, ')(kR, 

v)k 
(kR 

s, 
)+ 

- 2ikdh2'°(kR, 
P 
ý cos 0+ kd 2hZ)(kR, 

p 
h(') kR 2 SP 

and 

sin B sin 
2R, 

ph; 
)(kR, 

p)+ 
ikdh 2'0(kR k cos 9+ kd 2h2')(kRap 

h2'ß kR, 
p [2R$Ph0(kRsP)+ikdh()(kR, 

pý cos9+ 
cos 0 sin 

'h (') Z (')ikdrh 
(')(kRp 

kdh; ý(kR, 
p) 

kd (kR, 
p 
)- kr h (kRap ý+ 

cos B 
00 kR2 h2') kR 

SP 

cos 02R, ph, 
'"(kR, 

p 
)- kr 2h2')(kRS )+ 

2ikdh, (')(kR, 
p 
). cos 0+ kd 2h2')(kR, 

p 
h(') kR 2 ap 

where the Hankel functions of the first kind are given explicitly as 

- 
e'" hog) ýkR, 

n 1 ikR, 
n 

sn 1 
h, kRsn = 

e" (') ( 
kRsn ikR, 

n 
-1 

e'`ý'n 33 (')()_ hz kR, 
n kRsn ik2R 

P 
-SP +i 

with RSp being the complex radius in spherical polar coordinates, given by 

(4.10) 

(4.11) 

(4.12) 
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R, 
o =r2- 2ird cos 6-d2 (4.13) 

Following this same procedure, the M '(')(r, 0,0), M' 1)(r, ß, 6), N ')(r, 8, q)and 
01 01 01 

0,0) functions can be written as 

R h; °(kR 
sin Bsin + id 

ý 
(rcosO-id)h, ° kRR 

)hý'ý(kR) R h(°(kR) 
cosO+id rsin' B, 

(4.14) 
M e"ý(rcos9-id 

sin 0 cos ö; )(r, B, 0)= ('i -r - R 

0(k(rcose-id 

kR. 

R, h, ý'ý(kR l 
cos rcosO+id 

ýk(rcoso-idý7')kR 

J 

RQh; °(kRW) 
sinBcos k(rcos9-id)h, 'ý kR+ +id 

e" (rcosO-id)h(')(kR) 
ý( 

R h, °)(kRj 
M ; ')(rAß)= 

R2' 
'ý cos cos9 k rcosO-id h; ') kR., rcos9+id rsin'9 

VlJ 
R h(°(kR 

sin - ,, +rcosO-id k(rcos8-id)h; ) kR, 
ý 

e "d(rcosO-id)h"'(kR, 
Nýýýoy) (r, e, 0)= 

kR° 

4R2 -(rcos9-id ý2 
(5_ kRh, ')(kR, ) 

'` h=TkR, 
sin6cos 

- 

R2 kRh, (') 

,r cos -(rcos9-id 5- 
r cot id h(') kR, 

j 
ICOS&(4R2 

-(rcosB-id)2 S- 
kRh=ýýýh(')(kR'' 

+ 

cos 
(kR. ) 

) 

Rý kRh, (') () 
rsin -(r cos9-id 5- 

rcos8-id 

-sin 4R 2 -r2 
sin2 0+ kR h(')(kR 

- (rcosB-id)2 5 
h; 'ý kR, 

(4.16) 

and 
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, /l 
e'"(rcos9-id)h; ')(kR, 

p) N2od') (r, 0,0) 
kR4 

sp 

The Electromagnetic Field 

kR kR 
4R, ', -(rcosB-id)' 5- (kR,, T - 

sinBsin 
R2 

h(') ( 
P 

kR h(') (kR 
rcos 'P - 

(rcosO-id 5- ,', 
rcosO-id h(')kR. T 

ý jcos4Rs 

-(r cosO-id)2 
kR h () h (kRSP 

+ 5- 
hu 

.ý sin 
R= kR hý'ý(kR 

rsin2 'p -(rcosO-id 5°'_ 
rcosO-id h(') kRý 

r2 sin' B+ kl, h(')(kR 
cos 4k' - 5- P '' 

°P (rcos9-id)2 h21ß kRs, 

(4.17) 

The next step is to investigate these functions for order 00 in the far-field limit. Like in the 

scalar case, these functions are normalised on axis, i. e. 0=0 is substituted into the 

normalisation constant. In order to proceed with the analysis, it is convenient to rewrite 
Eqs. (4.8) - (4.11) as 

id sin 0 sin q5 

N(')(r, 0,0)=B. (r, 0) 
00 

M. (r, 0, q5) = A. (r, 0 sin O(id cos 0- r) , (4.18) 

cos q$(id -r cos 0) 

-id sinOcosO 
M2(') (r, B, q)=A. (r, O cos¢(r-idcosO) , (4.19) 

sin O(id -r cos0) 

sin0coso(2R,, h')(kA, )+ikd ')(kk cosO+kd'kO(kiý )) 

/Z kßp 

21ýnh, ý'ýýk1jpý+ikdlý'ýýkljpýrcosB+kcýh2'ýýkR,, ý-lcýhz'l ýkýý+ikdrf 
(kgPýcoso 

-sin 
(2R %? 

iýý(k"! n)-k 'ý)\^')p)+2ikdff 
(kA,, ýCOS9+kd2le(kA,, )) 

(4.20) 
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and 

Ný'ý(r, B, O)=Bý(r, B 

The Electromagnetic Field 

sin0si42R,,, , 
'º(k, g,, )+ikd4'º(k, g,, YcosO+J' d 'º(k)ý)) 

ý'ºk}v 

2R,, k'º(kl )+ikd4'º(k1,, 
oYcosB+kdzlrinýk 

ý (kl. )A ikdr/') (k 

coso 

(4.21) 

where 

and 

A, o 
(r, B) e-'h(') (kR 

= R, 
P 

e"k°h2')(ki c 
kR2 

SP 

(4.22) 

(4.23) 

Since the limit of the product of two functions is equal to the product of the limit of these 

functions, it is possible to first evaluate the time averaged amplitude factors Aoo(r, O and 

Boo(r, 0). Furthermore since the Poynting vector is based on the cross product of E(r, t) and 

H*(r, t) it is necessary to additionally check the products Aoo(r, o B0oo(r, O) and 

A*oo(r, B)Boo(r, O). Using the same method as in chapter 2, it is found that 

r'9 
= li 

ýo(r, )4(r, 0) 
_ li 

r'9 ZOD 

'-ý°° Aý (r, O)A. (r, 0ý r- A4. (r, 0)B. ý r, 0) 

li 
ýo ýr, O)Bý ýr, 0) 

=1i =1i =e zwc-ý. eý =e 
"-°° Aý (r, 0)B. (r, O) r- A. (r, O) r-ý BB (r, Oý 

(4.24) 

It can be seen by comparing Eqs. (4.24) with the first equation of Eqs. (2.72) that Eqs. 
(4.24) are equal to the square root of the first equation of Eqs. (2.72). Thus a clear 
relationship between the far-field limit of the scalar and vector functions is established. It 
is important to mention, that since Aoo(r, $ and Boo(r, 0), which are multiplied with their 
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complex conjugates, these products are real and any information regarding the signs of 
Aoo(r, 9j and Boo(r, « is lost. The same is true for all the other calculations of Eq. (4.24). It 

is now possible, since the amplitude factors Aoo(r, O) and Boo(r, O) are known in the far- 

field limit, to multiply the vectors M')(r, O, qS) and M2(')(r, 0,0) by () 
and 00 r, B 

N*')(r, B, q$)and N'00 '°(r, 6, O)by 1 Thus a new set of vector functions m')(r, 0,0), 
B®(r, o) 00 

m. ') (r, 0,0) , n'0(0') (r, 0,0) and noo')(r, 0,0) can be defined as 

id sin 6 sin 0 
0,0) = sin o(id cos 0- r) 

cosO(id-rcos6) 

-idsinOcosO 
(r, O, q)= cosq5(r-idcosO) 

sinO(id - rcos0) 

nl(1) (r, 0,0) 

sinocosý2R, h, ')(kP,, )+ikd1 '°(kl 
, 
)rcosO+kdZhz'°(kR,, )) 

ý')k 
P 

cosOcosý2R, ')(kgP)+ikd4'°(kRjrcosO+kdzý')(k1 )-kr2h2')(kPQ+ 

-sin 
ý+2ikd4')(kJ%,, }rcosü+kd ')(klRp)) 

(4.27) 

and 

n2(1) (r, 8,0)= 

sinOsing2R, h, "(kR, 
P)+ikdl 

')(kR )rcosO+kd=h4')(kR3 )) 

h''kR 

+P(1, \kRj + ikd/', 
(kRs )r 

cosB +kd'ý')(kR2P) - kr. '2 
2g)(kR,, ) 

+ 
i/dr1')(k 

2R. 
cosO 

cosO 

(4.25) 

(4.26) 

(kI 
coscb(2R, ph, 

(') (kRsp)- k . 2; (') (kRS)+ 2ikd1 ') (kRsp)-cosO + kdZhz')(kRsp)) 

sp 

(4.28) 
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In order to evaluate these vector components in the far-field limit, it is necessary to 

normalise these vectors. The normalisation constants are chosen to be 

NKR, (1)(r, 0,0)= Jmo('(r, 0,0)m'»(r, 0,0)+ mo((1) (r, 0,0)o(oýä(r, 0,0)+m'ä(r, 0, O)mo(o'>(r, 0,0) 
,r 00. r 18 

z(i) z(i} (r z(i) ( 2(»( M2(I) ( 2»(r 0 NK()(r, 0, O)= mýr(r, 0, O)m, 0, O) +m00ýr, 0, O00ýr, 0, ý) +m00ýr, 0, O)m00ý,, c) 
00 

NKR,, ) r, 0,0)= ný, ýr, 0, ý ý, r, 0, ß +nýa r, 0, ß 
Wýýr, 0, ý +nw4 r, 0, ß 

ýý r, 0, ý 

and 

z(q zp} 2(1) zp} p) z(ý} NK2(, ) r, 0,0 = n2(, (r, 0, o )ný, (r, 0, ß)+nos(r, 0, }nýý(r, 0,0)+n (')(r, 0, O)nýý(r, 0,0). (4.29) 00,0 

00 

Additionally, 0=0 is substituted into the normalisation constants, since the functions are 

normalised on the 0=0 axis as mentioned earlier. Performing now the calculation of the 

limit of the normalised functions leads to 

I_m(r, 9, ý) 0 
_ sin (4.30) 

ý-ý NK ')(r, 0,0) 
cosOcoso ,' 00 

m2(''(r, 0,0) 
_o li cos 0 (4.31) 

" ý°° NK (r'Q' 0) 
Moo - cos 0 sin 

nlö°(r, O, 0) 
0 

1i =i cos B cos O (4.32) 
gym NK. ý) 

(r, 0,0) 
- sin 

and 

Z(l) 
0 

lim noo r, 0,0) 
=i cososino (4.33) 

'ý°° NKp2(, )(r, 0, o) 
cosh 

Repeating this procedure for order 01 leads to 
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=1i 
Bo, ýr, 0ýBo, ýr, 0) 0ýB, Bý 

(r, O)1 
o 

(r, O) ýý Bo, 
1rý01Bo, \rýQJ rýýlBotlr, O) 

ý ýý eý 
zta(t c° _ -kd(hcos° , 

(, (r, O)B,, (r, e) 
' b, \rý 

Bý 
01 li ( =1i d =1i = cost ý- -cosh 

r 

r, O) .ý4, (r, O)Bo, (r, O) 41(r, O) 
01( 

where 

and 

and 

e-Mh2')(kR, ý 
)rcos6 

-id) 
R2 

B, e-`ßh2')(kR)rcos0-id 
01(r 

0) - 
kR 

SP 

I_m(r, G, ý) 
0 

sin 0 
. NK I(, )(r, o, ci) 
lim °' - 1cosocosý) 

'"°I 

m( ') 
0 

(r8O) 
li - cos 
. -'°° NK Z(, ) 

(r, 0,0) 
m01 - cos O sin o 

n'('l(re0) lim °' =i cosocos¢ 
. ýý NKoý 

ýý> 
(r, 0,0) 

-sin 0 

nör, e0) 
0 

li ' =i cosOsin0 
"- NK 2(1(r, 0, oý 

no' ) cos 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

where the normalisation constantsNKmöS, #, 0, O), NKM2(1)(r, 0,0), NKp)S)(r, 0,0)and 

NK 2(1)(r, 0, O) were calculated in accordance with Eqs. (4.29). Again like in the case of 
01 

order 00, it can be seen by comparing Eq. (4.34) with the second equation of Eqs. (2.72) 

that Eq. (4.34) is equal to the square root of the second equation of Eqs. (2.72). Thus a 
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clear relationship between the far-field limit of the scalar and vector functions is 

established. It can be seen by comparing Eqs. (4.30) - (4.33) with Eqs. (4.35) - (4.38) that 

the vector components of order 00 and order 01 are identical in the far-field limit. 

Furthermore, as expected, the radial components in Eqs. (4.30)-(4.33) and Eqs. (4.35)- 

(4.38) are all zero. Figs 4.1. show field plots of the Mä')(9, q$)and iNö; )(O, O)functions 

respectively on the surface of a Gaussian reference hemisphere mapped onto a circle of 

radius -'Tin the far-field limit. 
2 

M 
0 

1ý 1 , 

Fig 4.1. Field plots of the M 
Ol l (B, 0) and ;r 

(2r (0,0) functions on the surface of a Gaussian reference hemisphere mapped onto a 

9 
circle of radius - in the far-field limit. 

2 

It can be seen from Figs. 4.1. or by inspecting Eqs. (4.7), Eqs. (4.30) - (4.33) and Eqs. 

(4.35) - (4.38) that a suitable trial superposition for the electric field is 

E 
mý 

(r, B, ý) = Eo (M '? 
(r, 

6, O) + iN (2) (r, 6, O» , (4.39) 

since this electric field for m=0 and n=0 or 1 has the same polarisation pattern as the one 

given by Eq. (4.7). The magnetic field can be written in accordance with Eq. (4.1. b) as 

Hm,, (r, 0,0)=-iE0 (iM(2)(r, 8,0)+Ný (r, e, qS)) . (4.40) 
fro o 
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It can also be seen from Eqs. (4.39) and (4.40) that, as expected, the vector functions 

derived form the polarisation with the constant guiding vector c3 are not needed to form the 

E. M. field. The next step is to compare the superposition of the m'(;, )(x, y, z) , mm('ý(x, y, z) , 

(x, y, z) and n', (')(x, y, z) functions of both orders with Eqs. (4.2). It is to note at this nmý;, ) 

point that any signs in front of these vectors, as mentioned earlier, are meaningless, since 

the signs of the amplitude functions Aoo(r, 6), Boo(r, O), Aol(r, C) and Bol(r, 9j can not be 

determined. It is thus necessary to compute the far-field limit of the electric and magnetic 

fields given by Eqs. (4.39) and (4.40). Again it is possible to factorise these functions into 

ooý 
ýý= 

oAoo(l(')( 
0) ih2'>(ikRsrý 

n21 ( 0ý =E0Aoo(r, 0)E f.. 
(r, 0,0) E r, 0, E r, Bm 00 r, 

6, + 
R- 

,ýh, 
kR�, r, B, ) 00 

(4.41) 

and 

(r, 0,0)=-i , «P 
F-ZEA. 

(rO)H " (r, 0, ß) _-i ý(r, 0,0). 
f-fA. 

(rO(in4)(r, 0,0)+ kýPyýc>> kr 

(4.42) 

for the 00 order. In order to calculate the far-field limit of the electric and magnetic vector, 

only the sum inside the brackets, i. e. Efoo(r, 9,0) and Hfoo(r, B, 0) needs to be considered, 

since the time averaged amplitude Aoo(r, ® in the far-field limit will not change, and is thus 

given by Eq. (4.24). The normalisation constants here are given by 

NKEf, o(r, O, 0) = 0)+E100,0(r, O, q$)Ef. oo. a(r, O, 0)+Ef, 
mo(r, O, q)Ef... e(r, o, 0) 

and 

NKH,. (r, 0, O)= 4H1. 
oa. 

(r, O, O) f. oo, 
(r, 4, q5)+Hf. oae(r, 4, O) f. ooe(r, O, O)+Hf. oae(r, 4, O) f. oo, a(r, O, o) , 

with 0ý=0 substituted. Performing now the calculation of the limit of the normalised 
functions leads to 

lim 
Ef0o(r, B, 0) 

__1(1+cosg sinn (4.43) k0 
cos 

and 

139 



Chapter 4 The Electromagnetic Field 

0 

li 
Hf'°°(r'9'0) 

=1 (l+cos6 cos0 . 
(4.44) 

"-'°° NKH f, 0 
(r, 0,0) 2 

-sin 0 

Repeating this procedure for order 01 with 

E' 01(r, G, qi)= E0A0ý(r, e m (r, 0,0)+ 
kR2 n0 1)(r, 0, VSý = E041(r, 0)Ef. o, 

(r, 0, ý) (4.45) 
. rp 

and 

(r, e, q5)=-iF I 
F-z-c 

ti(r, 9 i, r,, 'I(r, 0, q5)+k ný, '(r, 0,0) =_i 
f-Z--4. 

(r"e)11,. 
o, 
(r, 0,0). (4.46) 

P 

leads to 

lim 
Ef01(r'0'0) 

=1 

0 
(1+cos9 sind (4.47) 

, '°° NKE j °, 
(r, o, 0) 2 

cos 4 

and 

li 
H f'°'(r'B'0) = 

1(l 
0 

+cos6 cos0 . (4.48) 
- NKH f. o1 

(r, O, o) 2- 
sin 

It can be clearly seen by comparing Eqs. (4.43) and (4.44) with Eqs. (4.47) and (4.48) that 

in the far-field limit the electric and magnetic fields for order 00 and order 01 differ only in 

their time averaged amplitude functions. Field plots of the electric and magnetic field 

respectively on the surface of a Gaussian reference hemisphere mapped onto a circle of 

radius 2 
in the far-field limit are shown in Figs. 4.2. and Figs. 4.3. respectively for values 

of kd=1,10. 
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E 

Fig. 4.2. E field obtained for kd -I and kd =10 from Eq. (4.47), plotted as in Fig. 4.1. 

H 

Fig. 4.3.11 field obtained for kd-l and kd=10 from Eq. (4.48), plotted as in Fig. 4.1. 

The Electromagnetic Field 

E 

X 

Since these functions are expressed in spherical polar coordinates and the functions in Eqs. 

(4.2) are expressed in Cartesian coordinates, it is necessary to transform them back into 

Cartesian coordinates. This transformation is achieved by using the transformation matrix 

given in Eq. (4.5). Performing this calculation it is found that the normalised on-axis, time- 

averaged electric and magnetic fields of order 00 are given by 

"(cos O- 1)cos O sin o" 
E00(x, y, z)=-2Eoe-'(''cos9)(1+cosO 1-sin2q5(1-cosB) (4.49) 

- sin 0 sin 0 

and 
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cosO+sin2 O(1-cosO) 

Hý(x, y, z)= 
2Ea 'e ýý''`ýBý(l+cos6 (cos9-1)cososino (4.50) 

ý° 
-sin 8 cos o 

where 0 and 0 are given by Eqs. (2.7). Similarly it is found that the normalised on-axis, 

time-averaged electric and magnetic fields of order 01 are given by 

(cos 9-1)cos0sin0 
E0 (x, y, z) =-2 Eoe- cos B(1 + cos B 1- sin 2 0(1- cos 9) (4.51) 

-sinOsino 

and 

cos 9+ sin' ¢(1- cos 6) 
6 k- Ho, (x, y, z)= 

ýEo 
e-'(' cae)cos0(1+cos0 (cosü-1)cosOsino (4.52) 

'T° -sin 6 cos O 

By comparing Eqs. (4.49), (4.50), (4.51) and (4.52) with Eqs. (4.2) it is found that they are 

identical with respect to their polarisation patterns. Since the fact that the electric field in 

Eqs. (4.2) is proportional to the magnetic field given in Eqs. (4.50) and (4.52) respectively 

and the magnetic field in Eqs. (4.2) is proportional to the electric field given in Eqs. (4.49) 

and (4.51) respectively is of no significance, as this only implies that the fields are rotated 

with respect to each other. Hence this section can be concluded by stating that indeed the 

superposition chosen leads to an E. M. field which satisfies Maxwell's equations and in the 

far-field limit satisfies the Richards and Wolf [1] polarisation conditions. Additionally the 

problem which was present in the scalar case that Qoo(a) did not go to zero at a=±- is 

still present in the vector case, (see Eqs. (4.49) and (4.50), replacing a with 0). It can be 

seen, like in the scalar case, from Eqs. (4.51) and (4.52), that the E. M. field of order 01 

goes to zero at 0=±X. However, the common factor in the order 00 case, (see Eqs. (4.49) 

and (4.50)), 

e `0'-`°'° 0+ cos 0) (4.53) 

and the common factor in the order 01 case, (see Eqs. (4.51) and (4.52)), 

e'`('-`°'B) cos 0(1 + cos 9) (4.54) 
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are not identical to the ones of Richards and Wolf [1]. Sheppard and Saghafi [5] have 

pointed out, that the factor (1+cos6) corresponds to the E. M. field amplitude of an electric 

and magnetic mixed dipole pair. Additionally it is mentioned in [5] that the Gaussian 

function e"se is of the form produced by focusing by a system satisfying the Herschel 

condition. The combination of these factors is rather interesting, since according to 

Sheppard and Gu [6] the Abbe sine and Herschel condition cannot hold simultaneously. 

However the common factors in Eqs. (4.53) and (4.54) are for a Gaussian beam which 

satisfies Maxwell's equations. Thus it is expected that the far-field amplitude profile is 

slightly different from the one produced by focusing of a plane wave with an aberration 
free lens satisfying the Abbe sine or the Herschel condition. The amplitude profile given 
by Eq. (4.54) corresponds to a hemisphere of incoming radiation, as expected, where the 

amplitude profile given by Eq. (4.53) corresponds to an entire sphere of incoming 

radiation. However, as mentioned in chapter 2, there was concern with reference to the 

order 00 case, as the amplitude does not go to zero at 0=±2. Sheppard and Saghafi [5] 

have introduced an additional common factor for this case in their scalar treatment, namely 

l+cos9 
2 

By introducing this factor, their solution is not an exact solution to the Helmholtz equation 

any more, even though, as they pointed out, the function still has the correct form in the 

paraxial limit. However, if Sheppard and Saghafi [5] would have considered the vector 

case instead, they would have found that this factor is not needed, as can be seen from Eq. 

(4.53). 

4.2.3. The derived E. M. field 

By substituting al=1, a2=a3=0, ß2=i Pl=/33=0, m=0 and n=0,1 in Eqs. (4.1. a) and (4.1. b) it 

can be seen from Eqs. (4.49) - (4.52) that the criteria b), c) and f) are satisfied. Thus the 
E. M. field due to order 00 can be written in Cartesian coordinates as 

ixyj2 (kR) 

E. (x, Y, z)= 
ER, 

-R(z-id)1, 
() +JZ(kR 2J() _R2 + y2 (4.55) T777--\ 

y(Rj, (kR)+i(z-id)j2(kR» 
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and 
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iR(z - id)j, (kR) + j2(kR 2Rý'(ký-RZ +x2 k1(kR) 
Hoo (X, y, z)= R2 -- xyj2(kR) (4.56) 

'ý° x(-iRj, (kR)+(z-id)j2(kR)) 

and the E. M. field due to order 01 as 

J: (kR) 
) -kd 

5- 

Eo, (x, Y, z)=E°(z-i 
» f2(kR) 

kR2 
zRidkR)kR -(z-id) +i 4R2 _(R2 _y: 5_ 

(L kR)) 
kR' 

2 
kR2 

ZRid-(z-id 
5-ý 

J2( ) 

(4.57) 

and 

-iklý 
RJR (kA 

-(z-idý +4R= -(R2 -x2 5 
kR ('"ýi (9Z-42 

(k14 1: (' l 

y, z)=-tEe 
fz(k*z-idi c 45 kRj(kI 
kR 

RZ 4-M 
-ikR +(z-i5 

J (o z-id 

(4.58) 

From the scalar treatment of the orders 00 and 01, it is expected that criteria a) and e) are 
satisfied by the electromagnetic field of both orders, however it is expected that criterion g) 
is only satisfied by the electromagnetic field of order 01. Thus in the remainder of this 

chapter, it will be investigated as if the remaining criteria are satisfied. 
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4.3. The polarisation 

The Electromagnetic Field 

It is customary in discussion of polarisation to focus attention on the electric field E(r, t). It 

will be explained in detail in chapter 5 that the operational principle of laser tweezers is 

based on the reflectance and transmittance of the E. M. radiation by the trapped object. It 

will also be demonstrated in chapter 5 that the reflectance and transmittance of the incident 

E. M. radiation is polarisation dependent. It is therefore appropriate to investigate the 

polarisation property of the E, ��(xy, z) fields given in Eqs. (4.55) and (4.57) for order 00 

and order 01 next. An E. M. wave can be either linearly, circularly (left and right handed) 

or elliptically (left and right handed) polarised. Lekner [7) has described the different types 

of polarisation by determining the degree of linear and circular polarisation respectively. 
Since at any fixed plane in space, the tip of the electric vector describes an ellipse within 

one period of the field (i. e. in the time 2x [7]), it is possible to rewrite Eqs. (1.27) as 

ER (r, 0) + jE, (r, 0) = (E, (r, 0) + iE2 (r, 0))e'° , (4.59) 

where 

E, (r, 0) = ER (r, O)cos a+E, (r, O)sin a 

and 

E2 (r, 0) = -ER 
(r, 0)sin a+E, (r, O)cos a. 

The advantage of Eq. (4.59) is that a can be chosen so that the real vectors E1(r, t) and 
E2(r, t) are perpendicular. Thus the value of o is given by 

tan 2a = 
2ER (r'0) 9 E' (r'0) 

(4.60) 
ER (r, 0) - E, (r, 0) 

In the plane of (ER(r, 0), Er(r, 0)) or (E1(r, 0), E2(r, O)) the electric field 

E(r, t)=Re«(E, (r, 0)+iEZ(r, O))c'("))=E, (r, O)cos(c t-a)+E2(r, 0)sin(cot-a) 
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has orthogonal components E1(r, 0) and E2(r, O) provided a satisfies Eq. (4.60) with 

magnitudes given by 

E, 2 (r, 0) _l 
[ER (r, 0) + E, (r, 0) + (ER (r, 0) - E, (r, 0)) + 4(E, ß 

(r, 0) 9 E, (r, 0)y 

and 

E, (r, 0)=1[ER(r, O)+E, (r, 0)- (ER(r, 0) -E, (r, 0)y +4(ER(r, 0) "E, (r, 0)ý'1, (4.61) 

where the lengths of the semi-axes of the vibration ellipse can be identified with El(r, 0) 

and E2(r, O). The E. M. wave is linearly polarised if E2(r, O) =0, which requires ER(r, 0) and 

EXr, 0) to be collinear, or in mathematical terms 

ER (r, 0)E; (r, 0) - (ER (r, 0) " E, (r, 0))ß =0 (4.62) 

The E. M. wave is circularly polarised if E, (r, 0) = E2 (r, 0) , thus it is required that ER(r, O) 

and Ej(r, 0) are perpendicular to each other and have equal magnitude. In mathematical 

terms this condition can be written as 

E1e (r, 0) 9 E, (r, 0) =0 and E1e (r, 0) = E, (r, 0) (4.63) 

The degree of linear polarisation, A(r, O), of a coherent monochromatic electric wave is 

A(r, ,%_ 
(ER (r, 0) - E; (r, 0)y + 4(ER (r, 0) " E, (r, 0))2 

- 
E2 

ER (r, 0)+E, (r, 0) 

(r, 0 
(4.64) 

(E(r, 0)2 

A(r, 0)=1 implies that the electric field is linearly polarised, if A(r, O)=O, then the electric 

field is circularly polarised. 
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4.3.1. The polarisation of the electric field at the beam waist 

In order to determine the polarisation of the electric field of order 00 and order 01 at the 

beam waist, it is necessary to first investigate the spherical Bessel functions of order 0,1 

and 2 at the beam waist. Again the region inside the focal circle is considered first. In this 

region the complex radius given by Eq. (2.39) can be rewritten as 

Rip, = id z_p: (4.65) 

It is found that in this region the spherical Bessel functions of order 0 and 2 are purely real 

and the spherical Bessel function of order 1 and the complex radius are purely imaginary. 

In the region outside the focal circle the complex radius given by Eq. (2.39) can be 

rewritten as 

Roar = P2 -d2 (4.66) 

It is found that in this region, the complex radius and the spherical Bessel functions of 

order 0,1,2 are real. From Eq. (4.39) it can be seen that in order to determine the 

polarisation of the electric field, it is easiest to evaluate the real and imaginary parts of 

the M; 
ý. 

(x, y, z) and N .,, (x, y, z) functions first. At the beam waist, these functions for 

order 00 can be written, using Eqs. (3.22. a) and (3.23. b), as 

M 1, (x, y, o) = e-kd j1(kR) 1d (4.67) R 
v 

and 

xy 

N', (x, y, O)= 
2R 

2R 
kjJý2 

( 
(kRkR)) -x2 +d2 (4.68) 

- iyd 
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It then follows that inside the focal circle the real and imaginary parts of (x, y, 0) 

are given by 

Re [M,, (x, Y, O)] = 
Rý (kR,. 0 

(4.69) 

and 

Im M'ýade(x, Y, O) =e 
"I, (kRM) 

d (4.70) 
Ra 

0 

The real and imaginary parts of (x, y, O) inside the focal circle are given by 

Re[N2 . id, 
(x, Y, 0)] =e 

dJ2(kRIfl) 
2R -x2 +d2 (4.71) 

00 Re, 
ý 

p 

xy 

kjz (kR 

0 

and 

0 
Im[N OO,,,. 

ýaý 
(x, Y, O)j =e' 

RýkR, ý 0 (4.72) 
Rin 

_ dy 

Thus at the beam waist, inside the focal circle, the real and imaginary part of the electric 

field of order 00 are given, using Eq. (4.39) and Eqs. (4.69) - (4.72), by 

ReIE x, y, 0 I= Eo e-kd J, (kRr,, )0+ e-kdf2 (kR, 
e) 0 (4.73) Re[ E 

ýJ 

R R: 

lff y '" dY 

and 
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01 11 0', XY 

ImLE (x, Y, 0)1 =E 
e- j_ (kR�, ) 

d+ e- jZ (kR1) 
2R 

J1 (kR, ) 
- x2 +d2. (4.74) 

oo. ýý, ýdý uR R2 k () 
in In 

J2 
\ 

00 

It can be seen form Eq. (4.73) and Eq. (4.74) that the real and imaginary parts are not 

collinear. Additionally 

Re[E. 1.. 1 
(x, Y, O)] 9 Im[E. �. � e 

(x, y, O)] =0 and IRe[EOOJMIde (x, y, 0)1 #Ilm[EOOJnsi,. (x, Y, O)] . 

Thus using the definitions for polarisation given in section 4.3. it can be concluded that the 

electric field at the beam waist inside the focal circle is elliptically polarised. 

Outside the focal circle the real and imaginary parts of M ý, 
Mwde 

(x, y, 0) are given by 

and 

0 
e-'J' (kR 

Re [M öo, 
o�ts, ee 

(x, y, 0)] =ý ou, 0 (4.75) 
Roy, 

Y 

e-J''(kR C (y, )}= . ou, 
0 

(4.76) Im M x, 0d 
R0 

0 

The real and imaginary parts outside the focal circle of N'00,,,,,,, (x, y, 0) are given by 

Re[N öo 
R. o��, 

(xý Y, 0)] =e 
Ji (kRo�, ) 

[2R 

o 
I. 

Y 

-x 2 +d' (4.77) 
Z 
out 

xY 

kj2 (kRout 
0 

and 
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-kd 
0 

' In'[N ýoWU. (x, Y, O)] =eR 2(kR°" 
0 (4.78) 

°, - 

Thus the real and imaginary part of the electric field outside the focal circle of order 00 at 

the beam waist, using Eq. (4.39) and Eqs. (4.75) - (4.78), are given by 

Re[Eoo. 
ouütde 

(x. y, 0)1�2 Eo e'1, (kRouý) 
0+ e_ . 

12 ýkR°" 
0 (4.79) 

Row 
Y 

Row 
dY 

and 

ImCE. 
aw«, d, 

(x, Y, O)J =Ea 
e it(kR0, ) d +e-TMJ: 

(kR0W) 
2R . 

/l( )-x2+d2 
. (4.80) 

Rom R2� w kj2 (kR 
00 

It can be seen form Eq. (4.79) and Eq. (4.80) that the real and imaginary parts are not 

collinear. Additionally 

Re[Eoo. 
��ide(x, Y, O)]' Im{ OO ou,, iae(x, Y, O)] =0 and IRe[Eoo,. 

�, 
(x, Y, 0)1 # llm[ 

oo... rd. 
(x, Y, 0)1 

Thus using the definitions for polarisation given in section 4.3. it can be concluded that the 

electric field at the beam waist outside the focal circle is also elliptically polarised. Hence 

at the beam waist the electric field of order 00 is everywhere elliptically polarised. The 

same process can now be repeated for order 01. It is found, using Eqs. (3.25. a) and 

(3.26. b) that the M ö, (x, y, z) and N ö, (x, y, z) functions at the beam waist can be written as 

0 

M, x, y, 0 _ 
e-ýJ2(kR) RJ, (kR)+d2 

(4.81) 
R2 kJ: (kR 

- iyd 11 

and 
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- idxy 5- 
kRj, (kR) 

j2 (kR) 

N2, (x, y, O)= e j2(kR) 
L id 4R2 -(x2 -d25 -J (4.82) 

kR4 J2( 

R 

-y R2 +d2 5- 
kRj, (kR) 

. 
lz(kR) 

It then follows that inside the focal circle the real and imaginary parts of M ö,.,, 
u; de 

(x)y, 0) 

are given by 

0 

Re[M'��., d, 
(x, Y, O)j =e 

'ý RýkR�) ,, 
n 
il kR, 

n) +d2 
in kj, MJ 

0 

and 

Im 
(M' o)J =e 

"JZ (kR, 
�) 

0 
L oi. i, side 

(x$ 
yQ ýz R; 

» - yd 

The real and imaginary parts of Nö, (x, y, 0) inside the focal circle are given by 

Re[N2 (x 0)]= e 
A: R4 In 

[. 

_Y[RI 

and 

0 
0 

+d2 5-kR,,, 
j1(k i 

. 
I2 Win 

(4.83) 

(4.84) 

(4.85) 
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-dxy S-ý"'IýkRu) 

I[Nöi. I�, ide 
(x, Y, O)] =eM 

fR kRi�) 
-d 4R2 - 

(x2 
-d' 5- 

1(Mý 
. 
(4.86) 

J: ( .) 
0 

Thus the real and imaginary parts of the electric field inside the focal circle of order 01 at 

the beam waist, using Eq. (4.39) and Eqs. (4.83) - (4.86), are given by 

Re [E0,. 
iMide 

(x, y, O)] = E0 

0 
e-kd j2 (kRfn Rinj, (kR,. 

+d2 + R1 kj 2 
(kR, 

N 0 

dxy 5- 
kRu jj2(kR 

e-k' ýR kR 
in) d4R2- (x2 

-d' _d25_ i2(k) 
0 

(4.87) 

and 

e j2 (kR, 
n 

0 )0+ 

R; 
- yd 

Im[Eo1. 
lrukle 

(xf 
yfo), - 

E0 

0 

_/ e J2 kR1 ) 

11 

0 

kR 
-y R; +d2 5-kR, ýlº(, ýý 

j2 (kR, 
» 

(4.88) 

It can be seen form Eq. (4.87) and Eq. (4.88) that the real and imaginary parts are not 

collinear. Additionally 
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Re[Eo, 1,, id, 
(x, Y, O)]' Im[EOlJ,, Je(x, Y, O)]= 0 and IRe[EoIjurde(x)Y, 0)] # IIm[EoIr 

ide(x, Y, 0)] 

Thus using the definitions for polarisation given in section 4.3. it can be concluded that the 

electric field at the beam waist inside the focal circle is elliptically polarised. 

The real and imaginary parts of M ö, 
,us; de 

(x, y, 0) outside the focal circle are given by 

01 o 
Re[M ö1. 

o�rid, Y, Oýý =e 
-kd f2 (kR0, ) R0 J, (kRou, ) 

+ d' 
R 

ü, 
kj2 (kRout0 

and 

e wJ: (kRou, ) 
0 

im[Mä1. 
outside(x, Y, O)= 0 

Rö 
- yd 

The real and imaginary parts of N'01,0, de 
(x, y, 0) outside the focal circle are given by 

e'ý' J(kR 
Re[Nö1. 

o,. ia, 
(x, y, 0ýý =24 our kRouf 

0 
0 

-y Rö, +d2 5- 
kR 

ii, 
(kRou, ý 

j2(ii 
. 

(4.89) 

(4.90) 

(4.91) 

and 

-dxy 5-kR�, ji( out) 
j2 (kRout ) 

,. awut�(x, Y, 0)] =e 
kdý kRou, ) 

-d 4R 
out - 

(x2 
-d' 5- 

kR, 
MJýkRout Iº[N2 

out 
J2\ 

out / 

0 

(4.92) 
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Thus the real and imaginary parts of the electric field outside the focal circle of order 01 at 
the beam waist, using Eq. (4.39) and Eqs. (4.89) - (4.92), are given by 

Re [E', 
outside 

(x, y, 0)] = E0 

0 
e- j2 (kRou, R.., jº (kL 

+d' + Rkj, (kR., 
0 

dry 5_ kR 
out jº (kR 

d 
j2 (kR. 

e-kdj2 kRou, ý 
d 4Rý� - 

(x'-d' 5- 
kR., j, (kR. 

4 
asd j: ( 

p. 0 

(4.93) 

and 

Fej2(kR)j 0 
0+ 2 R, 

W - yd 

I [EO,. 
outside 

(x, Y, O)] = Eo 

e j2 (kRow, ) 00 

kR4 
out kRow j, (kR0 

-y R2 +d Z5- 
out j2 (kRc� 

(4.94) 

It can be seen form Eq. (4.93) and Eq. (4.94) that the real and imaginary parts are not 

collinear. Additionally 

Re[Eon,, 
uu, de(x, Y, O)]' [EOI. 

ouaide(X, Y, O)J =0 and IRe[Eol,,,, (x, y, O)] # lIm[Eo,,,, 
*(xýY, O)1. 

Thus using the definitions for polarisation given in section 4.3. it can be concluded that the 

electric field at the beam waist outside the focal circle is elliptically polarised. Hence at the 
beam waist the electric field of order 01 is, like of order 00, everywhere elliptically 
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polarised. Another interesting aspect worth considering is the polarisation of the electric 

fields of order 00 and 01 at the beam waist in the paraxial limit. In order to determine the 

polarisation at the beam waist in the paraxial limit, it is necessary to normalise the electric 

field at the beam waist. The normalisation constant for order 00 and order 01, Eo, 00 and 

Eo, ol respectively are calculated using the formulae 

Eo,. = Ems, (0,0,0)EE, (0,0,0) + Ems.,, (0,0,0)Ec. 
y 
(0,0,0) + Eoo,, (0,0,0)EE,, (0,0,0) 

. (4.95. a) 

Eoo, = Eo, (0,0,0)Eo*,, (0,0,0)+E01, (0,0,0)Eo, 
y(0,0,0)+E01, 

(0,0,0)Eö, 
=(4.95. 

b) 

It is found that in the paraxial limit 

k x2+y2 

lim Eooýxý 
e 2d l (4.96) 

�, o0 0 

and 

!c x2+y2 

lim e 2d 1 (4.97) 
kdý 

Thus 

k x2+y2 
0 

E. (x, y, 0) = E�,. e 2d i (4.98) 
0 

and 

k x2+y2 
0 

Eoi (x, y, 0) = Eo. o1e 2d 1 (4.99) 
0 

It can be seen from Eq. (4.98) that in the paraxial limit the electric field of order 00 is 

purely imaginary. Thus according to the definitions given in section 4.3. it can be 

concluded that this field is linearly polarised in the y direction. The electric field of order 

01 in the paraxial limit is according to Eq. (4.99) purely real, and thus also linearly 

polarised in the y direction. According to Lekner [7], the polarisation properties of the 

electric field are identical to the polarisation properties of the magnetic field in the case of 

a plane E. M. wave propagating in vacuum. It is therefore convenient to determine the 
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magnetic field at the beam waist in the paraxial limit in order to test if the superposition 

chosen in Eqs. (4.39) and (4.40) satisfy the criteria a), d), e). By performing the same 

calculations as for the electric field, it is found that the magnetic fields at the beam waist, 

in the paraxial limit are given by 

k(s2+y2 
1 

H, (x, y, 0) = -iE0,. 
FZ£, 

e- 
l 

2d 0 (4.100) 
0 

and 

k(x2+y2 -1 

11�, (x, Y, O) = -iEo, oý 

FZC 

e 2d 0 (4.101) 
0 

By substituting Eqs. (4.98) and (4.100) into Eq. (1.34) it is found that the time averaged 

pointing vector in the paraxial limit at the beam waist for order 00 is 

1e k(X2+y2 01sL. 
Y 

(S, (r)) Ea 0oe d0 -Eo oo ' (4.102) 
2 fro 12 fro 

Similarly by substituting Eqs. (4.99) and (4.101) into Eq. (1.34) it is found that the time 

averaged pointing vector in the paraxial limit at the beam waist for order 01 is 

x2+y2) 
04 

; 
2+y2 

Eo2, OIe dJ0=1E Eöoie d (4.103) 
2 fro 12 fro 

By comparing Eqs. (4.102) and (4.103) with Eqs. (2.60), it can be seen that Eqs. (4.102) 

and (4.103) have the same irradiance at the beam waist in the paraxial limit as a paraxial 

Gaussian beam. Furthermore the irradiance is along the positive z axis. Therefore it has 

been established that the solutions given by Eqs. (4.55) - (4.58) satisfies the criteria a), d), 

e). Finally in the literature, for example Sheppard and Saghafi [8], the electric field of 

order 00 is in general referred to as an almost linearly polarised field. The reason for this 

can be understood by investigating the degree of linear polarisation, using Eq. (4.64) for 

different values of kd at a given point in space. It can be seen from Fig. 4.4. that at the 

point x=2, y=3 and z=0, the curve representing the degree of linear polarisation of the 

electric field Eoo(r, 0) approaches I rapidly, even for small values of kd. 
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kd 
Fig. 4.4. Degree of linear polarisation of the electric field Eoo(r, O) for different values of kd. A(r, O)=l implies linearly 

polarisation and A(r0)=O implies circular polarisation. 

At the same point in space also the electric field Eol(r, 0) approaches 1 rapidly, even for 

small values of kd as can be seen from Fig. 4.5. The main difference between Fig. 4.4. and 

Fig. 4.5. is that in Fig. 4.5. the curve is smooth and does not drop to almost 0 for kdd2 like 

it is seen in Fig. 4.4. 

A 

hi w 
Fig. 4.5. Degree of linear polarisation of the electric field Eoi(r, 0) for different values of M. A(r, O)=l implies linearly 

polarisation and A(r, O)=O implies circular polarisation. 

Another way of demonstrating that at the beam waist the electric fields Eoo(r, 0) and 
E01(r, O) are almost linearly polarised is to plot the field components separately. However, 

if the standard definition of the degree of linear polarisation would have been used, which 

only takes the transverse components of the E. M. field into account, the E. M. field would 
be linearly polarised for all values of M. These components are plotted directly form Eqs. 

(4.55) and (4.57) in order to determine the relative strengths of the cross components. The 

electric field components of Eoo(r, 0) can be seen from Figs. 4.6. and the ones of Eot(r, 0) 

from Figs. 4.7. 
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Pig. 4.7. Variation in the three components of the electric field strength at the beam waist for Eoi(r, O) with /u1=2: (a) Ex, (b) E, (c) iE, 

It can be seen from Fig. 4.6. that the z axial component of the electric field Eoo(r, 0) is 

approximately a factor of 2.5 smaller than the y component and that the x component is a 
factor of 10 smaller than the y component. Thus it can be concluded that the electric field 

E0o(r, 0) is almost linearly polarised in the y direction, even for a strongly focused beam. 

From Fig. 4.7. it can be seen that the z component of the electric field Eol(r, 0) is 

approximately a factor of 4 smaller than the y component and that the x component is a 
factor of 20 smaller than the y component. Thus it can be concluded that the electric field 

E01(r, 0) is almost linearly polarised in they direction, even for a strongly focused beam. 

For both fields, these cross components become rapidly smaller as kd increases, as was 

predicted by Eq. (4.98) and Eq. (4.99) respectively. The absolute value of the z component 
in both cases exhibits twofold rotational symmetry and is zero for t'=0. The x component in 

both cases exhibits fourfold symmetry and is zero for x=0 ory=0. 
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4.3.2. The polarisation of the electric field in the far-field limit 

From Eq. (4.49) in the case of order 00 and from Eq. (4.51) in the case of order 01 it can be 

seen that the electric fields of both orders are purely real in the far-field limit. Thus 

according to the discussion presented in section 4.3. it can be concluded that in the far-field 

limit the electric fields of order 00 and order 01 are linearly polarised, and thus criterion f) 

is satisfied. Further, these fields would have been very similar to the field of a paraxial 

Gaussian beam focused through a lens satisfying Abbe's sine condition. The only 

difference is the time averaged amplitude function. For a paraxial Gaussian beam the time 

averaged amplitude function would be given by the square root of Eq. (2.61) and not by the 

square root of the first of Eqs. (2.72) in the case of Woo(r, O and the square root of the 

second of Eqs. (2.72) in the case of yioi(r, 9). 

4.3.3. The polarisation of the magnetic field in the paraxial limit and in the far-field 

It can be seen by analogy with the polarisation of the electric field from Eq. (4.50) in the 

case of order 00 and from Eq. (4.52) in the case of order 01, that the magnetic fields in the 

far-field limit are linearly polarised. At the beam waist, it can be seen from Eqs. (4.100) 

and (4.101) respectively, that the magnetic fields of order 00 and order 01 are linearly 

polarised in the x direction in the paraxial limit. Otherwise the magnetic fields, like the 

electric fields, are elliptically polarised at the beam waist. 

4.4. The Guoyphase shift 

It is well known that when an optical (or microwave) beam passes through a focal region, 

the phase of the beam is shifted. This phase shift is referred to as the Guoy phase shift and 

needs to be included in the present discussion in order to complete the analysis of the 

behaviour of the electric field at the beam waist. The Gouy phase shift along the beam axis 

is obtained by substituting xß=0 into Eqs. (4.55) and (4.57). Thus 

E 0,0,4 =E '- z-id))+2J'ý 
z-td))U 

z-id)) 4.104 .ý) oe Jýý 4z-id) 2ý ) 

0 

and 
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0 
E01(0,0, z) =Eoe'd 

j, («z-id))-j2(4z-id))+i i2ý z-idý) 
-l+4z-id)J1(«z-id)) ) 4.105 4z-id) 4z-id) j2(4z-id)) 

0 

Then the real and imaginary parts of Eq. (4.104) and Eq. (4.105) respectively are 

calculated and hence the phases for the two fields 

Im[E . 
(0,0, z)] (4.106 ý= arctan ) 

Re[E,, (0,0, z)] 

and 

001 = arctan 
Im Eon (0,0, z)] (4.107) 
Re[Eo1 (0,0, z)] 

are obtained. Sheppard and Saghafi [6] have calculated the phase shift for Eoo(O, O, z) along 
the beam axis for x=0, y=0. Their result, with a phase kz suppressed, can be seen from Fig. 

4.8.. 
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Fig. 4.8. Axial variation in phase for Eoo(O, O, z) for values of kd=O, 1,2, S, 10. 

Showing the Gouy phase anomaly, which is greatest for lull and smallest 
For kd-10. 

The Gouy phase shift for Eoi(0,0, z), with a phase kz suppressed, can be seen from Fig. 4.9.. 
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By comparing Figs. 4.8. and 4.9. it can be seen that the Gouy phase shifts of Eoo(O, O, z) 

and Eol(O, O, z) are similar, especially for large kd. 

4.5. The approach of Sheppard and Saghafi 

Sheppard's and Saghafi's approach [8] to calculate the E. M. field of a strongly focused 

Gaussian laser beam is based on the theory of a complex point source and sink. Cullen and 

Yu [9] extended the complex source point method introduced in section 1.11.3. for the 

lowest order mode to the E. M. case. They have shown that an almost plane polarised beam 

is produced by crossed electric and magnetic dipoles positioned at an imaginary distance. 

However this derivation suffers from the problem of singularities. Sheppard and Saghafi 

[ 10] introduced a modified theory, in which the source is accompanied by a sink. This can 

be recognised as a description of the Huygen's principle: The external focused radiation 

excites the source, which then reradiates. In this theory the singularities are replaced by 

phase singularities, which are according to Nye and Berry [11] physically realisable. The 

important distinction of the complex source-sink solution developed by Sheppard and 

Saghafi [8] is that it is a rigorous solution of Maxwell's equations in all space. Sheppard 

and Saghafi [8] further demonstrate that the combined incoming and outgoing wave is 

given by Eq. (2.43). The E. M. field presented by Sheppard and Saghafi [8] can be re- 

expressed in terms of the M0'0(x, y, z), M , (x, y, z), N'00(x, y, z) and NOD(x, y, z) functions 

as 
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E00(x, Y, z)= 
3 

E0(IMöo(x, Y, z)+N' (x, Y, z)) 2e 

3 
(4.108) 

-00(x, Y, z)-iM'. (x, Y, z)) Hoo(x, Y, Z)= 2e-' 
E,, 

To o 

which implies that this field is identical to the field given in Eqs. (4.55) and (4,56). Thus 

the far-field limits of Eqs. (4.108) are proportional to Eqs. (4.49) and (4.50). Another 

approach in order to derive an E. M. field for a strongly focused Gaussian laser beam was 

used by Volyar et al. [12]. 

4.6. The approach of Volyar et al. 

Volyar et al. [12] obtained vector solutions to the vector Helmholtz equation, based on the 

Whittaker potentials. Volyar et al. obtained transverse and longitudinal beams, which are 

denoted as el and h, for the transverse components of the electric and magnetic field 

respectively and eZ and h2 denote the longitudinal components of the electric and magnetic 

field respectively. The notation LP(ex), LP(ey), LP(hx) and LP(hy) indicates the 

homogeneous linear polarization of the electric and magnetic field respectively along a 

preset direction (LP stands for linearly polarized). Furthermore these four modes exhibit 

no phase singularity on the transverse component on the optical axis (x=y=0) and convert 

for kd -goo into a paraxial Gaussian beam. The other two modes TE and TM exhibit a 

polarization declination on the axis. For the axially symmetric beams, the fields LP(ex) and 

LP(hx) can be obtained from LP(ey) and LP(hy) through a rotation by 2 
and, hence, are 

degenerate. However any small deformation of the beam cross section would lift the 

degeneracy. It can be seen from table 4.1., that it is possible to represent the six beam 

modes presented by Volyar [12] in terms of the M., (x, y, z), 

M, O (x, y, z), A1' (x, y, z), N. (x, y, z), N00 (x, y, z) and Ný (x, y, z) functions of order 00 00 

derived in this work. 
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Mode e, ez hr 
fe-lo- 

hs 
fAco- 

LP(ey) -im'. 
(x, y, z) -iM'. 

(x, y, z) N, (x, y, z) N�(x, y, z) 

LP(ex) -iM00(x, y, z) -im, ' N;. x, y, z) x, y, z) N. ' 

LP(hy) Ný(x, y, z) N. (x, y, z) iMo'. (x, y, z) im1, (x, y, z 

LP(hx) N', (x, y, z) N00(x, y, z) iM20(x, y, z) iM20(x, y, z) 

TE -im, 
(x, y, z) 00 -im, 

(x, y, z) 00 N , (x, y, z) N' x, y, z) 

TM N.. (x, y, z) N'�(x, y, z) iM"(x, y, z iM. (x, y, z) 

Table 4.1. Volyar's functions expressed in terms of the M00(x, y, z), Mýýx, y, z), MOO(x, y, z), Ný(x, y, z), N2(x, y, z) 

and N00 
(x, 

y, z) functions, derived in this work. 

Volyar et al. [12] state, that a symmetry in representation of the electric and magnetic 
fields of a non-paraxial beam can be obtained by taking the superposition of modes 

LP(eh)y LP(ey)± LP(hy) 

LP(eh)z LP(ez)± LP(hx), 

or in terms of our own MO'0 (x, y, z), M j(x, y, z), M0'0 (x, y, z), N. (x, y, z), NOO (x, y, z)and 

Ný(x, y, z)as 

E. (x, y, z) oc E0 ( iM . (x, y, z) ± N. (x, y, z)) (4.109) 

Hý(x, y, z)xEo 
F( No(x, y, z)(x, y, z)), (4.110) 
fro 

By comparing Eqs. (4.109) and (4.110) with Eqs. (4.39) and (4.40) it can be clearly seen 

that the E. M. field derived by Volyar does not satisfy the Richards and Wolf boundary 

conditions [1] in the far-field limit. 
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4.7. The irradiance 

The Electromagnetic Field 

It was mentioned in chapter 1 that in optics the irradiance at a particular location is of 

interest. Thus the next step is to give an expression for the time averaged Poynting vector 

of the solution for order 00 (Eqs. (4.55) and (4.56)). In accordance with Eq. (1.34) the time 

averaged Poynting vector for order 00 can be written as 

_Zý 
Js 

(S®(x, Y, z)) =2 E0 (RR. )2 Re Sy , (4.111) 
Fro S= 

where 

Sx =x 
-iRj, 

(kRXz-id)- j=(kR 2RJ 
kj2 

1 
(kR) -R2 + y2 (iR* j, (kR')+(z+id)j2(kR*))- 

Ly2j2 (kR' XiRj, (kR) 
- j2 (kRXz 

- id )] 

kR ('Rj, (kR)- j2(kRXz-idý iR'j, (kR'Xz+id)+ j2(kR' 2Roj, 
(, )-R'2 

+x2 + sy =y kj2 k 
[X2j2 (kR)[1R' j, (kR') + j2 (kR' Xz + id)] 

Ss =- iRj, (kRXz - id) - j=(kR 2 
Rj 
kj2 (kR) -R2 +y2) x 

iR'j, (kR'Xz+id)-J: (kR* 2R*j, 
( *)-R. 2 +x2 

kj2. 

with 

R= x2+y2+(z-idr 

R' = x2+y2+(z+id)Z 

In accordance with Eq. (1.34) the irradiance is given by the modulus of Eq. (4.111). Figs. 

(4.10. ) show the irradiance normalised to 1 at (x--y--z=0) of the solution for order 00, at the 

beam waist (z=0, plane) (Fig. 4.10. a), in the z=1 plane (Fig. 4.10. b), in the z=2.3 plane 

(Fig. 4.10. c) and in the z=100 plane (Fig. 4.10. d) for k=1, d=2.3. 
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Fig, 4.10. a. Irradiance profile of order 00, normalised to I at , 
Fig. 4.10. b. Irradiance profile of order 00 nonrmlised to I at 

(x=y=z=0) at the beam waist z=0, for k=l, d=2.3. (x=y=z 0) in the z-I plane, for A- 1, d-2.3. 
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Fig, 4.10. c. Irradiance profile of order 00, normalised to I at, 

(x=y=r-0) in the z=2.3 plane, for k--I, d=2.3. 
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Fig. 4.10. d. Irradiance profile of order 00 normalised to I at 
(x=)-z=0) in the 2100 plane, for k=1. d-2.3. 

Similarly, in accordance with Eq. (1.34) the time averaged Poynting vector for order 01 

(Eqs. (4.57) and (4.58)) can be written as 

S 
e2 e-2'ý j, (kR)j, (kR' Xz2 +d 2) (Soy (x, Y, Z» =2o Eo (kRR' )' Re Sy 

, 
(4.112) 

S= 

where 

(R 2_yz(5_kRj, 
(kR)l 

(z+idJ5-kR'j, kR' 1 

iRj, (kR) l 
J_(kR) /I ik -+ 

j2 kRJ 

[[Z_dI2kR_ikZ_iC1_4ý 

) R2 + id R' 

Sr =x 

i 1-(z-id 
5- ) LkRj, 

(kR)l rS 
- 

kR'j, kR' 
yz tR 2k- 

z- id ) j2(kR) j2 kR' 
(RR* 
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(z rd 5- 
kRj (kR) (R. 2 

-xz 5- 
kR'Ji kR* 

1- J1ýkR) l iR*Ji kR* 
' _-t5- 

Jz kR* 

) 

ik+ tk(z+id)+4- 2+ -id R (z+id)jz kR R' 
s, =v 

kRj, (kRý r1f kR' j, kR' 1 
x'(5 - jz(kR) 

IR2. 
k- 

z+id)+(z+id1115- jZ kR, J 
(RR* Y 

(R2 
- yZ5 - 

kRj, (kR) 

(kR) iRj jz(kR) J S" , x +ik(z-id)+4 2 (z-i(l)j_(kR) R 

(R' 2- 
x' 

f5- kR ̀ j, 
'kR' ' ' kR iR j, AR J 
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In accordance with Eq. (1.34) the irradiance is given by the modulus of Eq. (4.112). Figs. 

(4.11. ) show the irradiance normalised to I at (xy=z=0) of the solution for order 01, at the 

beam waist (z=0, plane) (Fig. 4.11. a), in the z=1 plane (Fig. 4.11. b), in the z=2.3 plane 

(Fig. 4.11. c) and in the z=100 plane (Fig. 4.11. d) for k=1, d=2.3. 

I(r) 1(r) 

Fig, 4.1 I. a. Irradiance profile of order 01, normalised to I at , Fig. 4.1 I. b. Irradiance profile of order 01 normalised to I at 

(x=y=. -0) at the beam waist r-0, for k=1, d=2.3. (x=y=r-0) in the z=1 plane, for k=1, d=2.3. 
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Fig, 4.11. c. Irradiance profile of order 01, normalised to I at , 
Fig. 4.1 I 

. 
d. Irradiance profile of order 01 normalised to I at 

(x= =r-0) in the z--2 3 plane, for k=1, d=2.3. (x-=z 0) in the 2-100 plane, for k-I, d-2.3. 

4.8. The beam power 

The last criterion which the solution of order 00 given by Eqs. (4.55) and (4.56) and the 

solution of order 01 given by Eqs. (4.57) and (4.58) have to satisfy is criterion g), which 

requires the beam power to be finite. In order to calculate the power of this Gaussian beam, 

the Poynting vector given by Eq. (1.34) needs to be calculated first. The power at the beam 

waist is dependent on the flux through the z=0 plane and thus is calculated by considering 

the z component of the Poynting vector. Thus the beam power is given by 

P=2 Joni, Re(E., (r, 1) xH )P'l, !d (4.113) 

As it has been demonstrated in the scalar case, the beam power of order 00 is infinite. 

Evaluating Eq. (4.113) for order 01, i. e. integrating the z component of Eq. (4.112) over an 

infinite radius circular area, leads to 

2 2p 

P= 
1 6k 

° 
Pýe 

(e2p(8p4 
-12p3 +13p2 -9p+3)+e-2p(p2 +3[p+1])-2(p2 +3[1-p])), (4.114) 

fro 

where p= kd. 

However, Barton [13] used an expression for the beam power P to the 5`h order 

approximated Gaussian beam, which is based on the irradiance normalised to unity at 

(x=y=z=O). It will prove to be advantages in chapter 5 if this is done here for the beam 

power given in Eq. (4.114). Thus the normalised beam power is written as 
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r 

Poren 
-14p2 -18* 

(4.115) 

The square of the electric field amplitude at the focal point of the beam (x y=z=0) can be 

related to the normalised beam power P�o�� by 

Z_ 
4P., '. c0 e2° ' -4p' +9p` -13p' +49p' -30p+9 +e ýP(p2 +3[2p+3])+4 ' +p2 +6 -14p2 -18 E° 

ýý p' e° 8p` -12p3 +13p2 -9p+3 +e 2P 2 +3[p+1 -2+ 1-p 

(4.116) 

A simple way to test if Eq. (4.116) is correct is to calculate Eö in the paraxial limit. It is 

found that 

1 mýEö = 
2I 

0, 
k 

, uo 
PýV 

Substituting Eq. (1.77) and remembering that in a dielectric medium E=s,. a n= ýý and 

c=1 leads to the following well known expression for Eö : 
Eoýo 

2_ 4Po, 
, E° 

soncnwö 

Thus it is confirmed that Eq. (4.116) is correct, and indeed criterion g) is satisfied. 

The Electromagnetic Field 

(4.117) 
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4.9. Conclusion 

In this chapter it has been demonstrated that the E. M. fields 

Emn(r, t) = E0(M(', (r, t)+iN(')(r, t)) 

(r, t) = -iE0 
i (iMO2ý(r, t)+Ný, (r, t)) 

The Electromagnetic Field 

have the correct form in the paraxial limit for order 00 and 01 and also satisfies the far- 

field boundary conditions derived by Richards and Wolf [1] with respect to their 

polarisation pattern. It has been demonstrated, that due to a difference in the amplitude 

function, neither the radiation pattern due to (uoo(xy, z) nor the one due to yj (xy, z) is 

exactly identical to the one produced by a paraxial Gaussian beam focused by a lens 

satisfying Abbe's sine condition [1]. It is interesting to note that the only difference 

between the M'(') xz MZ(') xz N*) xz N2(')x z and the M*) xz 00 00 00 00 01 
Mö; ') (x, y, z), N ')(x, y, z) andNä; ')(x, y, z) functions in the far-field limit, is in their time 01 
averaged amplitude functions. These time averaged amplitude functions of the individual 

vector functions in the far-field limit are identical to the square root of their corresponding 

Qoo(a) and Qol(a) function in the far-field limit due to their scalar functions. The derived 

E. M. field for order 00 and order 01 is in general elliptically polarised at the beam waist, 

but in the paraxial limit, these fields are linearly polarised. These fields have the correct 

far-field behaviour and they are linearly polarised in the far-field limit. It has additionally 

been demonstrated that yioi (x, y, z) is a physically realizable solution to the scalar 

Helmholtz equation, since this function has a finite beam power, whereby yioo(x, y, z) is 

physically not a possible solution, since this function has an infinite beam power, as 

pointed out already in the scalar treatment. Further it has been shown that the complex 

source point model of Sheppard and Saghafi [8] and the model based on Whittaker 

potentials [12] lead to the same, M. (x, y, z), M, (x, y, z), M. (x, y, z), N. (x, y, z), 

N' (x, y, z) and N. (x, y, z) functions for order 00. 

In the next chapter the E. M. field of order 01, given explicitly by Eqs. (4.57) and (4.58), 

which satisfies all the criteria (a-g), will be used in order to calculate the optical trapping 

forces exerted on a spherical microparticle. 
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Chapter 5 

5. Laser Tweezers 

5.1. Introduction 

Laser Tweezers 

Up to now, the discussions presented in this work were focused on the laser beam itself, 

but not on any applications for such a beam. In this chapter one application for a strongly 

focused beam, namely the laser tweezers, will be discussed. In 1873 Maxwell theoretically 

established that waves do indeed exert pressure. He wrote [1]: "In a medium in which 

waves are propagated there is a pressure in the direction normal to the waves, and 

numerically equal to the energy in a unit of volume. " In E. M. theory this pressure is 

referred to as radiation pressure. The same phenomena can be understood from the 

quantum mechanical view point, from which it is known that each photon carries 

momentum along the direction of propagation of the beam, which gives rise to radiation 

pressure as a result of photon collision with an object. The operational principle of laser 

tweezers is based on this radiation pressure, which pushes the to be trapped particle along 

the propagation direction of the beam. However due to refraction at the interface between 

the particle and the surounding medium the light rays are bent, giving rise to the so called 

gradient force. Pioneering work on laser tweezers started in 1970 by Ashkin [2], who 

succeeded in trapping and consequently moving micron-sized particles in liquids and gases 

by focused laser beams. Historically the main problem when studying radiation pressure in 

the laboratory was the obscuring effects of thermal forces, usually referred to as 

radiometric forces. These forces are caused by temperature gradients in the medium 

surrounding the object to be trapped. When the temperature gradients are caused by light 

and the particle moves, the effect is called photophoresis. These thermal forces are 

generally, even with lasers, orders of magnitude larger than the radiation pressure. Another 

well-known problem, which occurs when trapping living organisms, is damage induced to 

the organic object due to the absorption of the laser radiation by the organism, or in the 

worst case, the killing of the organism (optocution). Sterba and Sheetz [3] found that in 

order to trap biological materials the laser wavelength should be between 780 and 1100nm, 

since in general biological material is more transparent in the infrared spectrum at longer 

wavelength, and water is more transparent at shorter wavelengths. Ashkin [2,4] avoided 

radiometric effects by suspending relatively transparent particles in relatively transparent 

media and by using a near infrared laser (Nd: YAG, A=1064nm), whose wavelength was 

such that it was not absorbed by the organism, since heating of the organism is caused by 

absorption of the radiation. Due to Ashkin's discovery it became possible to trap a variety 
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of different particles, including living cells [5], organelles within cells [6] and even larger 

objects like giant amoeba [7]. There are various types of laser tweezers in use, including 

the single beam laser tweezers and the multi beam laser tweezers. It is the aim of this 

chapter to present a theoretical model of a single beam laser tweezers, which has been 

derived from the model presented in Barton et al. [8] and not to discuss all the different 

types of laser tweezers and their applications. Since the model presented in [8] is based on 

the E. M. field derived from the 5th order Gaussian beam approximation [9], the accuracy of 

the results obtained using this model is compromised. Hence in order to improve the 

accuracy of the results, the 5`h order approximation is replaced by the E. M. fields derived 

in chapter 4. Very recently another model has been presented by Mazolli et al. [10], which 

is based on the Debye-type integral representation of the laser beam as a superposition of 

plane E. M. waves. The main difference is that Mazolli et al. take truncations of the beam 

by the focusing lens into account. This is not the case in Barton et al. [8] and the model 

presented here. Since Ashkin [11] has demonstrated that it is possible to explain the 

functional principle of laser tweezers using geometrical optics arguments, this approach 

will also be used here in order to discuss the results obtained from the E. M. theory 

treatment. Hence in the next section, the geometrical optics approach will be presented, 

and the important parameters for optical trapping determined. 

5.2. The important parameters 

Since optical trapping is dependent on the radiation pressure, it is implied that the beam 

power is important. Additionally the more the beam is focused, the smaller the area 

illuminated and thus the higher the radiation pressure at the focus. On the other hand 

optical trapping is also dependent on the physical properties and dimensions of the particle 

to be trapped. In order for a particle to be optically trappable, the particle must in general 

be transparent, even though it has been reported in [12,13,14] that metallic particles can 

also be trapped. If radiation is absorbed by the particle, then it will heat up, which is not 

desirable, as this can have destructive effects on the particle. These physical properties of 

the particle are determined by its refractive index. However it is known from Snell's law 

that the bending of the light rays at the interface between two media is dependent on the 

refractive index of both media. When referring to laser tweezers, the important parameter 

is called the complex relative index of refraction W, defined as the ratio of the complex 

refractive index of the particle to the complex refractive index of the surrounding medium 
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[15]. In this work only the trapping of spherical, non-absorbing particles is considered. 

Thus the relative refractive index is real. The important parameter regarding the dimension 

of the particle is the so-called size parameter 8=ka, a being the radius of the spherical 

particle and k=n with nj the refractive index of the surrounding medium and 4 the 

0 

vacuum wavelength of the laser. A distinction has to be made between the two types of 

scattering, Mie scattering (, 6*>1), where the particle size is much larger than the laser 

wavelength and Rayleigh scattering (ß«1), where the particle size is approximately equal 

to or less than the laser wavelength. However this distinction is made for historical reasons. 

It has been demonstrated by Born and Wolf [16] that in the limit of small particle radius, 

Mie theory leads to the same result as Rayleigh theory. For values of ; 7>1, the spherical 

particle acts as a convex (focusing) lens. Ashkin [11] shows that a relative refractive index 

in the range ; F= 1.05 to 7F: 
---1.5, which covers the regime of interest for most biological 

applications, leads to a good performance of the laser tweezers. At higher values of ; T, the 

performance is reduced due to the increasing scattering force relative to the maximum 

gradient force. At values of ; 7<1, the spherical particle acts as a concave lens and hence 

the particle is pushed out of the beam. Finally the irradiance profile of the beam is 

important too, as the dielectric particle is pulled towards the region of higher light 

intensity. In the following sections, these parameters will be discussed in detail. 

5.2.1. The refractive index 

When light or any other E. M. wave travels through vacuum, it has a phase speed given by 

1 
vo = =c. 

7oJuo (5.1) 

The net effect of introducing a homogeneous, isotropic, dielectric, non magnetic medium 

into a region of free space is to change co into c in Maxwell's equations. Hence the phase 

speed in the medium becomes 

1 
v= 

iµ0. 
(5.2) 

The absolute refractive index n is defined as the ratio of the speed of the E. M. wave in 

vacuum to the one in matter. I. e. 

C 
n=-- Er f V 

(5.3) 
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where c, =8-. 
co 

Laser Tweezers 

However if the E. M. waves are propagating through conductive materials, then the 

refractive index is complex, and a certain amount of energy is absorbed by the particle in 

the form of heat. 

5.2.2. The Fresnel reflection and transmission coefficients 

At the interface between two media with different refractive indices, the E. M. wave, which 

travels from the first medium into the second medium will be partially transmitted into the 

second medium and partially reflected back into the first medium. The Fresnel refraction 

and transmission coefficients for a plane E. M. wave whose polarisation is perpendicular to 

the plane of incidence are given by Hecht [l) in the following form: 

sin(0, - 0, 
rl=- 

sin(B, + 9, 

and 

(5.4) 

t_ 
2sin0, cos0,5.5 

1 sin(0, +0, ) 
ý 

where 6; is the incident angle and 0, is the transmitted angle. The Fresnel refraction and 

transmission coefficients for an E. M. wave whose polarisation is parallel to the plane of 
incidence are 

_ 
tan(9, - 9, ) 

rý tan(0, +B, ) 

and 

(5.6) 

_ 
2sinO, cosh, 

sin(B, + O)cos(6, - B, ) 
5.7 

A graphical representation of the magnitude of these coefficients can be seen from Figs. 

(5.1. ) and (5.2. ), where the first figure represents an argon laser beam (A=514.5nm) 

traversing the interface between air (n, =1) and water (n1=1.334) and the second represents 

the same beam traversing the interface between water (n, ==1.334) and polystyrene (n, =1.6). 
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Fig. 5.1. The amplitude coefficients of reflection and transmission as a function of incident angle 61 at an interface 

between air and water. The Brewster angle is 53.14°. 
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Fig. 5.2. The amplitude coefficients of reflection and transmission as a function of incident angle tj at an interface 

between water and polystyrene . The Brewster angle is 50.18°. 

It can also be seen from Figs. (5.1. ) and (5.2. ) that N starts off positive, then goes through 

zero and becomes negative. The incident angle O at which e=0 is the angle for which 

(0, + 0, )=90°, is known as the Brewster angle or the angle of polarisation O. 

Mathematically 6p = arctanl n, I. At Bp all the incident light, which is polarised parallel to 
lnrJ 

the incident plane is transmitted. In the case of a light beam traversing the interface 

between air and water, O 53.14° and for a light beam traversing the interface between 
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water and polystyrene, 9p 50.180. So far only the cases where n; <n, have been considered. 

The next step is to discuss the cases where n, <n;. This situation occurs when laser tweezers 

(A =514.5nm) are used to trap a spherical water droplet in benzene (C6H6) (n, =1.50). A 

graphical representation of the magnitudes of the reflection coefficients for this laser 

tweezers set up can be seen from Fig. (5.3. ). 
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Fig. 5.3. The amplitude coefficients of reflection as a function of incident angle 0, at an interface 

between benzene and water. The critical angle is 62.79° and the Brewster angle is 41.65°. 

It can be seen from Fig. (5.3. ) that r,, starts of negative, then goes through zero and 

becomes positive. The Brewster angle in this case is Op=41.650 and the critical angle 9, 

defined as 9, = arcsin 'is 62.79° [1]. Thus at the critical angle all the light is internally 
ni 

reflected into the benzene. 

5.2.3. The beam power 

From Eq. (4.113) the relationship between the beam power and the E. M. field is known. 

Quantum theory considers the energy in an E. M. field to exist in discrete light quanta, 

referred to as photons. The relativistic relationship between total Energy E and momentum 

q of a particle of rest mass mo is given by 

E2 =c2g2 +möc4. (5.8) 
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Since the photon's rest mass is zero, Eq. (5.8) reduces to 

E=cq 

Thus each photon of energy E carries momentum 

E tiw 
q =-=-. 

cc 
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(5.9) 

(5.10) 

If the energy in a wave is considered to be carried by photons, it can be seen that a plane 

wave incident on a metallic surface and reflected off it will exert a pressure on the surface. 

If the time averaged Poynting vector of the wave is (S(r)), then the average momentum 

crossing unit area per second, assuming the wave is propagating in vacuum, is in 

accordance with Eq. (5.10) 
ýS(O) 

[17]. If a plane incident wave is totally reflected at the 
c 

surface of a perfect reflector, then the total change in momentum per unit area per second 

2S r is and this is the pressure that the wave exerts on the reflecting surface. Thus the 
c 

total force exerted by the beam on a perfectly reflecting infinite surface is given by 

2P 

c 
(5.11) 

assuming that the reflecting surface is perpendicular to the propagation axis of the beam. 

Thus for a general reflecting surface and a beam propagating in a medium with refractive 

index nex: 

F` 
Pnext 

c 
(5.12) 

Where P in Eqs. (5.11) and (5.12) is the beam power. Thus radiation pressure is linked to 

the beam power and hence the beam power is an important parameter for optical trapping. 

In the previous section the Fresnel refraction and transmission coefficients were stated. 

These may now be linked to the reflectance and transmittance, which in turn are relevant 
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for optical trapping. The reflectance is defined as the ratio of the reflected amount of the 

radiant flux Eör over the incident amount of radiant flux E, ',. The transmittance is defined 

as the ratio of the transmitted amount of flux Eö over the incident amount of flux. 

The reflectance of a plane E. M. wave is given by Hecht [1J as 

z 

R= 
Eýr 

= 1"2 
Eol 

where r2 is either rl or r, 

and the transmittance of a plane E. M. is given as 

(5.13) 

T_n cos O lEot 2_n, cos 9, 
t2 (5.14) 

n; cos 9; Eo; n, cos 9; 

where t2 is either rl or t. 

Due to conservation of energy 

E' 2 
1_ 

EOr 
+ 

nt cos 8t E2 
_ +T 

E2. n; cos9; E2 01 oi 

A graphical representation of the magnitude of these coefficients can be seen from 

Figs. (5.4. ) and (5.5. ), where the first figure represents a beam traversing the interface 

between air and water and the second figure represents a beam traversing the interface 

between water and polystyrene. 
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Fig. (5.4. ) The reflectance and transmission as a function of incident angle 9, at an interface between air and water. The Brewster angle is 

53.140. 
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Fig. (5.5. ) The reflectance and transmission as a function of incident angle B, at an interface between water 

and polystyrene . The Brewster angle is 50.18°. 

It can be seen from Figs. (5.4. ) and (5.5. ) that at Bp, all the incident light, which is polarised 

parallel to the incident plane is transmitted. In the case of nt<nt Fig. (5.6. ) clearly shows 

that at the critical angle 0, all the incident light is reflected. 
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Fig. (5.6. ) The reflectance and transmission as a function of incident angle 8 at an interface between benzene 

and water. The critical angle is 62.79° and the Brewster angle is 41.65°. 

5.3. The geometrical optics representation 

Laser Tweezers 

The geometrical optics description of the single beam laser tweezers, was first presented by 

Ashkin [2]. He states that in the geometrical optics representation: "The total light beam is 

decomposed into individual rays, each with appropriate intensity, direction and state of 

polarisation, which propagate in straight lines in media of uniform refractive index. Each 

ray has the characteristic of a plane wave of zero wavelength that can change directions 

when it reflects, refracts and changes polarisation at dielectric interfaces according to the 

Fresnel formulae ". Ashkin pointed out that simple ray optics can only be used successfully 

for dielectric spheres which are large compared to the wavelength of the incident light in 

order to derive the radiation pressure force due to the scattering of the incident light 

momentum. For particles in the Rayleigh regime in which the size is much less than the 

wavelength of the incident light, the particle acts as a simple dipole. The force which acts 

on the dipole can be divided into two components, a scattering component which points in 

the direction of the incident light and the gradient component which points in the direction 

of the intensity gradient of the light beam. The same terminology is also used when 

discussing trapping forces in the geometrical optics regime. The stability of the optical trap 

results from the dominance of the gradient force pulling the particle in the direction of 

higher intensity, i. e. towards the focus, over the scattering force, which is trying to push the 

particle away from the focus in the propagation direction of the incident light. In order to 

get a good insight into the operational principle of single beam laser tweezers, it is useful 

to consider three locations of the spherical particle to be trapped. It is assumed that the 

182 

0 10 20 30 40 50 60 70 80 90 



Chapter 5 Laser Tweezers 

irradiance profile of the focused laser beam is Gaussian, and that the beam is propagating 

vertically downwards, i. e. along the positive z axis. The action of the trap on a dielectric 

sphere is described in terms of the total force due to a typical pair of rays A and B of the 

converging beam. Ashkin [2] made the simplifying assumption that the forces FA and FB 

are entirely due to refraction and are shown to point in the direction of the momentum 

change. The effect on the forces FA and Fe due to the reflection of the rays at the surface of 

the dielectric sphere is not taken into account. For arbitrary displacements of the origin of 

the sphere 0 from the focal point u the vector sum of FA and FB gives the net restoring 

force Fres, in the direction towards the focus. The ray optics figures are obtained by using 

the law of reflection and Snell's law, where n in the following figures is the normal vector 

to the interface between the sphere and the surrounding medium, at the point where the 

rays A and B respectively reflect and refract. The refractive index of the dielectric sphere is 

assumed to be higher than the refractive index of the surrounding medium. Additionally 

these indices are assumed to be real, since the dielectric sphere and the surrounding 

medium are assumed to be non-absorbent. The first location to be considered is, the one 

where the centre of the spherical particle 0 is located on the z axis, after the focal point u. 

The geometrical illustration of this case is given in Fig. (5.7. a. ). 

AB 

Z 

Fig. (5.7. a. ) Geometrical optics representation of the trapping of a dielectric sphere, with its centre 0 located on the z axis after the focus. 

The refraction of a typical pair of rays A and B of the trapping beam gives forces FA and Fa whose vector sum F.. is a restoring 

force directed towards the focal point u. 
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In Fig. (5.7. a. ) it is implied that the photon travelling along A and the photon travelling 

along B carry the same momentum, since the origin of the dielectric sphere is located on 

the z axis, and the beam has a Gaussian irradiance profile, with its maximum on the axis. 

Thus the resultant trapping force has no transverse component due to conservation of 

momentum. Hence the resultant force is pulling the dielectric sphere towards the focal 

point u. 

The second location to be considered is, the one where the centre of the spherical particle 
0 is located on the z axis, before the focal point u. The geometrical illustration of this case 
is given in Fig. (5.7. b. ). 

Fig. (5.7. b. ) Geometrical optics representation of the trapping of a dielectric sphere, with its centre 0 located on the z axis before the 

focus. The refraction of a typical pair of rays A and B of the trapping beam gives forces FA and FB whose vector sum F,. is a restoring 

force directed towards the focal point u. 

Again like in Fig. (5.7. a. ) the resultant trapping force in Fig. (5.7. b. ) has now transverse 

component, since the origin of the dielectric sphere is on the z axis and the resultant 

trapping force pushes the dielectric sphere towards the focal point u. 
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third location to be considered is the one where the centre of the spherical particle 0 is 

ted off the -7 axis, before the focal point u. The geometrical illustration of this case is 

n in Fig. (5.7. c. ). 

k 

7 

Fig. (5.7. c. ) Geometrical optics representation of the trapping of a dielectric sphere, with its centre 0 located off the z axis before the 

focus. The refraction of a typical pair of rays A and B of the trapping beam gives forces FA and FB whose vector sum F,,, is a 

restoring force directed towards the focal point u. 

It can be seen from Fig. (5.7. c. ) that the left half of the dielectric sphere is hit by a higher 

number of photons than the number of photons hitting the right half of the dielectric 

sphere. Thus the resultant trapping force has a longitudinal and a transverse component, 

pushing the dielectric sphere towards the focal point u. By considering a dielectric sphere 

whose refractive index is assumed to be lower than the refractive index of the surrounding 

medium, as is the case when laser tweezers are used to trap a water droplet in benzene, it 

can be seen from Fig. (5.7. d. ), that in analogy with Fig. (5.7. c. ) lateral trapping is not 

possible. The water droplet is pushed to the left out of the beam. 
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Fig. 5.7. d. Ray tracing for a water droplet being trapped in benzene. It can be seen that lateral trapping is not possible and that the 

particle will be pushed to the left out of the beam. 

Roosen and Imbert [ 18] have presented a model based on geometrical optics, with which 

they calculate the optical trapping forces. However Barton et al. [8] have pointed out that 

for optical levitation arrangements the beam waist radius and the radius of the spherical 

particle are of the same order and thus the plane wave assumption is inappropriate. Barton 

et al. [8] have presented a treatment which is based on Mie's theory in order to calculate 

the trapping forces of a TEMoo laser beam. Kim and Lee [19] have also presented a 

treatment which is based on Mie theory. The E. M. field used by Kim and Lee is a complete 

rigorous solution to Maxwell's equations, which is based on the complex source point 

method. However it has been demonstrated in chapter 2 that the complex source point 

method gives rise to a circular singularity of radius d in the beam waist plane and has a 

discontinuity occurring on the focal disk circumscribed by the singularity. Thus the 

treatment of Kim and Lee [19] cannot be physically realisable. The complex source in the 

Kim and Lee [19] treatment would have to be accompanied by a complex sink. Thus the 

new Kim and Lee E. M. field would be similar to the E. M. field due to order 00 as 

presented in chapter 4, however not identical since Kim and Lee [19] have defined their 

electric field as 

E(x, y, z) =c1 yJI)oo(xy, z), 

which is not identical to Eq. (4.55). In this research preference has been given to the Barton 

et a!. [8] treatment for calculating the radiation force, since their treatment is valid for an 

arbitrary incident beam. 

ß"sr 
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5.4. The Barton treatment 

5.4.1. The theory 

Laser Tweezers 

The Barton treatment is based on the light scattering theory derived by Lorenz [20] and 
Mie [21]. They formulated a theory with which the E. M. fields inside and outside a sphere 

can be calculated, when a plane incident wave is scattered by the sphere. Barton et al. [8] 

have used this theory, however generalised it for an arbitrary incident field and found that 

the time averaged trapping forces can be written as 
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where ems, is the permittivity of the surrounding material, 6 is the particle size parameter 
and a is the radius of the spherical dielectric particle as defined in section 5.2. The Mie 

scattering coefficients an, � and bnm are 

and 

(ii*'(Q)(nß)V1M(ß) 
A (5.18) 
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bnm _n 
(8) y/,, (iF, 6 Vn(, 6) 

B (5.19) 
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where 

A°m = n(n+ ý(! ý)! 
öRJ0 sin6E; (a, e, 5)Y,, (e, 0)dýo (5.20) 

and 

B""' 
n(n+ i(Aj"* 

f, sinOH, (a, 0,0)Y, (0,0)dOdo. (5.21) 

The function (') (ß) = yr� (ß)-ixe (ß), where here W�() and x�() are the Riccati-Bessel 

functions, defined as 

wn(F'l-/'i (fp (5.22) 

and 

x (J)-f'yn0) 
' 

(5.23) 

where j�(ß) and y�(, 6) are given by Eqs. (2.11 
. a) (exchanging x with 6). Y�m(9, q) is the 

spherical harmonic function defined as [22] 

= 
2n +1 (n-m7 (_ IYPm cosOý , m* Ynm (ef 0) 

47r (n + m) 

where the normalisation is chosen such that 

fOAJ0'nm(8, (e, 

Y')sin6d&1O- j0A J'1 fl"(e, ) (9, (ä+ß$e O' ýýýýý, 

PM (cos 9) is given by Eq. (2.14), where n=0, t 1, ±2,... and m: 5 Inj . 

(5.24) 

. (5.25) 
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Ulanowski and Jones [23] have modelled the work of Barton et al. [8] and thus have 

calculated the radial part of the electric and magnetic fields, based on the 5tß' order 
Gaussian beam approximation given by Eqs. (1.136), as follows 

E,. =ExsinBcoso+EysinOsino+EZcosB 
(5.26) 

H,. = H., sin 0 cos 0+ Hy sin 0 sin 0+ HZ cos 0 

where the following substitutions were made 

x=asinOcoso +x0 

y=a sin 9 sin q5 + yo 

z=acosO+zo 

(5.27) 

With xO, yo and zo representing the offsets from the focal point from the origin, which is at 
the centre of the sphere of radius a. The laser beam is assumed to propagate along the 

positive z axis direction, i. e. vertically upwards. 

The radial parts of the electric and magnetic field components in Eqs. (5.26) are substituted 

into Eqs. (5.20) and (5.21) respectively and thus the Mie scattering coefficients calculated. 

However Ulanowski and Jones [23] have written the computer program for real relative 

refractive indices only, which is adequate for calculating the trapping forces for a water 

droplet being trapped in air and a polystyrene sphere being trapped in water, which are the 

particles considered here. The code developed by Ulanowski and Jones [23] is modified by 

replacing the electric and magnetic field given by Eqs. (1.136) with the electric and 

magnetic fields given by Eqs. (4.57) and (4.58) respectively and by replacing EO given by 

Eq. (1.137) with Eý given by Eq. (4.116). This modification leads to more accurate results 

of the trapping forces, since the E. M. field is an exact solution to Maxwell's equations and 

not a to 5`h order approximate solution. This new treatment is referred to as the "GBO1" 

treatment and is used to calculate the trapping forces exerted by a focused order 01 laser 

beam on a spherical dielectric particle. In the next section the important parameters are 

determined. 
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5.4.2. The methodology 

In general when designing an optical tweezers set up, the diameter of the focusing lens (D) 

and the beam diameter (2w) need to be chosen carefully in order to reduce FZ, which 

pushes the particle along the axis of propagation of the beam. Siegman [24] defines the 

speed (f-number) of the lens as 

. 
f#=D, (5.28) 

where f is the focal length of the lens. However, in the field of optical tweezers, the 

numerical aperture of a lens is normally considered. Hecht [1] defines the numerical 

aperture 

NA= 1 (5.29) 
2f# ' 

It was further mentioned in chapter 2 that 

2f 2 
-kW°2 =d. (530) 

A2 2. 

Hence 

(5.31) f=w 
X2 

. 

Wright et al. [25] have chosen for their laser tweezers set up, a beam waist radius 

wo=0.39, um, a lens with NA=1.3 and a laser wavelength 2=1.06 
, um. Thus using Eqs. 

(5.30) and (5.31) it is found that d=0.4508pm and kd=2.67. From Eq. (5.29) it follows that 
I= 0.3846 and thus using Eqs. (5.28) and (5.31) it is found that Wright et al. [25] have 

chosen a lens diameterD = 3w. Using the formula for the transmitted power (Eq. (1.76)) it 

is found that 98.9% of the power is transmitted. However in the calculations 100% power 

transmission was assumed. Using the same lens diameter it is found that Barton et al. 's [8] 

calculations with a beam waist radius of 1 pm and a wavelength of A0=514.5nm lead to a 

numerical aperture of the focusing lens of NA=0.246, or kd=74.6. In the next section, the 
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results obtained by Barton et al. [8], based on the 5`' order Gaussian beam approximation, 

are compared with the results based on the GBO1 treatment. 

5.5. The GBOI treatment versus the 5`h order Gaussian beam approximation 

In this section, the restoring accelerations exerted by a focused laser beam with kd=74.6, a 

beam power of 3.5mW, a beam waist radius of 1 pm and a wavelength of A0=514.5nm, on 

a spherical water droplet (n=1.334 [8]) of radius 2.48, um and mass mw 6.39x 10'14 kg 

suspended in air are calculated using the 5`h order Gaussian beam approximation and the 

GBO1 treatment. Fig. (5.8. ) compares the restoring acceleration a= = 
F' 

for sphere 
m, 

positions along the axis of propagation. However, the restoring acceleration is expressed in 

relation to the acceleration due to gravity g. Thus [aZ/g] is calculated using both methods. 

The offset along the x and y axis is zero (xo=yo=0, um). 

4 

3 

4,2 

1 

0 

Acceleration (kd =74.6) 

"'ý + 5th order 

-ý- GB01 
`; 

ý -- - equilibrium 

------- -------"-----------"---------------------- --- 

-60 -40 -20 0 20 40 60 
Zo[um] 

Fig. 5.8. Comparison of the restoring acceleration based on the 5'" order Gaussian beam approximation (doted curve) and the GBOI 

treatment (solid curve), along the propagation axis for optical levitation of a water droplet in air, using a focused order 01 

linearly polarised laser beam. (xa yo=0, n=1.334 , diameter of water droplet = 4.96 pm, if = 1.334, wavelength Ao - 0.5145 pm , 

wo=1 arm, kd 74.6 and a beam power of 3.5 mW. ) 

It can be seen that both curves cross the line, which represents the equilibrium, twice. Thus 

the next task is to establish if these equilibria are stable or unstable. By definition an 

equilibrium is stable in the z direction according to Ohanian [26] if 

d ýaz gý <0 dz 
(5.32) 
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and unstable if 

d(a. I g) >0 dz 
(5.33) 

Hence the equilibrium position near zo=-50 um is unstable and the equilibrium position 

near zo=50 pm is stable. In table (5.1. ) the numerical values for the restoring acceleration 

along the axis of propagation are given. The RMS error is calculated as follows: 

RMS error in %= 
(5 ̀" order - GB01)Z *100. (5.34) (GBO1)2 

zo(pm) a, lg (5'h order) aýg (GB01) RMS error in % 

-60 0.7898 0.8085 2.32 

-55 0.9233 0.9447 2.26 

-50 1.0910 1.1154 2.19 

-45 1.3043 1.3321 2.09 

-40 1.5779 1.6094 1.95 

-35 1.9301 1.9647 1.76 

-30 2.3774 2.4134 1.49 

-25 2.9151 2.9470 1.08 

-20 3.4500 3.4665 0.47 

-15 3.6460 3.6326 0.37 

-10 2.9456 2.9183 0.94 

-5 1.8327 1.8305 0.12 
0 1.2801 1.2934 1.03 
5 1.3198 1.3308 0.83 

10 1.9837 1.9781 0.28 

15 2.6929 2.6883 0.17 
20 2.7370 2.7519 0.54 
25 2.4214 2.4487 1.12 
30 2.0371 2.0683 1.51 
35 1.6909 1.7215 1.77 
40 1.4056 1.4337 1.96 
45 1.1770 1.2021 2.09 
50 0.9948 1.0170 2.19 

55 0.8489 0.8686 2.27 
60 0.7313 0.7487 2.32 

average RMS error 1.41 

Table 5.1. The numerical values of the restoring acceleration along the axis of propagation aig calculated using the GB01 treatment and 

the 5"order Gaussian beam approximation model, for optical levitation of a water droplet in air, using a focused order 01 mode 

linearly polarised laser beam. (xo=yo=0, n=1.334, diameter of spherical particle = 4.96 pm, wavelength do - 0.5145 pm, wd-Ipm , 
kd=74.6 and a beam power of 3.5 mW. ) 

It can be seen from Fig. (5.8. ) and table (5.1. ) that a good agreement is present with the 

results presented by Barton et al. [8]. The average RMS error is 1.41%. Since these 

Laser Tweezers 

restoring acceleration values are for an almost paraxial Gaussian beam (kd=74.6), they are 
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very useful to benchmark the restoring acceleration values based on the GBO1 treatment. In 

the case where the restoring acceleration is calculated along the x axis in the 5'h order 

Gaussian beam approximation (along the direction of polarisation), it has to be compared 

with the restoring acceleration along the y axis in the GBO1 treatment, since the y axis is 

the direction of polarisation for this case (Eq. 4.99). Barton et al. [8] chose the stable 

equilibrium position z0=501um above the focal point. The beam diameter is, in accordance 

with Eq. (1.80), 2w-16.5 um at this point, which is greater than the droplet diameter. In 

order to calculate the restoring accelerations along the x axis, yo=0 pm. In the GBO1 

treatment, as the direction of polarisation is they axis, the restoring acceleration along this 

axes is calculated with xo=0 pm. Fig. (5.9. ) compares the restoring acceleration for sphere 

positions along the direction of polarisation [as] and [ay] respectively, calculated using both 

methods. 

Acceleration (kd=74.6) 

0.20 

-0.15 

CO 0 0.10 

`0 0.05 

0.00 

""- "- - 5th order 

05 10 15 

x0, y0 (fpm] 

Fig. 5.9. Comparison of the restoring acceleration based on the 5'' order Gaussian beam approximation (doted curve) and the G1301 

treatment (solid curve), along the polarisation axis versus displacement along the polarisation axis for optical levitation of a water 
droplet in air, using a focused order 01 mode linearly polarised laser beam at a droplet propagation axis position of zo = 50 pm above 

the focal point. (xo, yo=OMn, zo=50Em n=1.334, diameter of spherical particle = 4.96 pm, wavelength Ao = 0.5145 pm, wolum, 

kd=74.6 and a beam power of 3.5 mW. ) 

In table (5.2. ) the numerical values for the restoring acceleration along the axis of 

polarisation are given. 
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"(pill) -a, lg (5"' order) -n, 1g (GBOI) RMS error in % 

0 0.0000 0.0000 0.00 
1 0.0595 0.0630 5.46 
2 0.1092 0.1153 5.27 
3 0.1419 0.1493 4.96 
4 0.1548 0.1621 4.52 
5 0.1496 0.1558 3.96 
6 0.1313 0.1357 3.26 
7 0.1061 0.1087 2.43 
8 0.0795 0.0807 1.47 
9 0.0557 0.0559 0.37 

10 0.0366 0.0363 0.86 
11 0.0226 0.0221 2.19 
12 0.0132 0.0127 3.58 
13 0.0073 0.0069 4.94 
14 0.0038 0.0036 6.13 
15 0.0019 0.0018 7.01 

average RMS error 3.53 

Laser Tweezers 

Table 5.2. The numerical values of the restoring acceleration along the axis of polarisation a., /g and a, /g respectively calculated using the 
Gf301 treatment and the 5"' order Gaussian beam approximation model, for optical levitation of a water droplet in air, using a focused 

order 01 mode linearly polarised laser beam. (xo, yo=Oum, zo=50fmt, n=1.334 , diameter of spherical particle = 4.96 pm, 

wavelength Flo = 0.5145 pm, wo= I pm, kd=74.6 and a beam power of 3.5 mW. ) 

Fig. (5.10. ) compares the restoring acceleration for sphere positions along the axis 

perpendicular to the direction of polarisation [ay, ] and [ar] respectively, calculated using 
both models. 

Acceleration (kd =74.6) 
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Fig. 5.10. Comparison of the restoring acceleration based on the 5"' order Gaussian beam approximation (doted curve) and the GBO I 

treatment (solid curve), along the axis perpendicular to the direction of polarisation versus displacement along the axis perpendicular to 

the direction of polarisation axis for optical levitation of a water droplet in air, using a focused order 01 mode linearly polarised 
laser beam. (xo, yo=0pm, zo=50, um, n=1.334, diameter of spherical particle = 4.96 pm, wavelength AO= 0.5145 um, wo=lfrm, 

kd=74.6 and a beam power of 3.5 mW. ) 
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By comparing Figs. (5.9. ) and (5.10. ) it can be seen, as expected, that the restoring 

acceleration along the polarisation axis of the beam is greater than the restoring 

acceleration along the axis perpendicular to the direction of polarisation. This is due to the 

fact that the Fresnel reflectance and transmittance coefficients are different for an incident 

E. M. wave being polarised parallel to the incident plane and perpendicular to the incident 

plane. It can be seen from Fig. (5.4. ) that if the E. M. field is polarised parallel to the 
incident plane, more radiation is transmitted, than when the E. M. field is polarised 

perpendicular to the incident plane. It can thus be said, that even though the Fresnel 

coefficients are given for plane E. M. waves, they can be used for the E. M. fields of 
focused Gaussian beams, like the ones used here. Since optical trapping is dependent on 

the amount of radiation refracted, the trapping forces are larger for particle displacements 

parallel to the direction of polarisation of the E. M. field, compared to particle 
displacements perpendicular to the direction of polarisation of the E. M. field. It can also be 

seen from Figs. (5.9. ) and (5.10. ) that, in analogy with Eq. (5.32), the particle is in a stable 

equilibrium at xoyo=0, and in analogy with Eq. (5.33) in an unstable equilibrium at 

xo Yo-- 15. 

In table (5.3. ) the numerical values for the restoring acceleration along the axis 

perpendicular to the direction of polarisation are given. 

xo(pm), yo(Nm) -afg (5' order) -a, /g (GBOI) RMS error in % 

0 0.0000 0.0000 0.00 
1 0.0466 0.0494 5.7 
2 0.0853 0.0903 5.51 
3 0.1104 0.1164 5.19 
4 0.1198 0.1258 4.74 
5 0.1151 0.1201 4.17 
6 0.1002 0.1038 3.46 
7 0.0802 0.0823 2.62 
8 0.0594 0.0604 1.64 
9 0.0411 0.0413 0.53 

10 0.0266 0.0264 0.71 
11 0.0162 0.0159 2.06 
12 0.0093 0.0090 3.44 

13 0.0050 0.0048 4.71 
14 , 0.0026 0.0024 5.63 
15 0.0012 0.0012 0.00 

average RMS error 3.13 

Table 5.3. The numerical values of the restoring acceleration along the axis perpendicular to the direction of polarisation alg and alg 

respectively calculated using the GBOI treatment and the 5th order Gaussian beam approximation model, for optical levitation of a 

water droplet in air, using a focused order 01 mode linearly polarised laser beam. (xo, yo-Opn, ze-50fum, n=1.334, diameter of 

spherical particle = 4.96 um, wavelength . 1o" 0.5145 pm, wo=1µm, kd=74.6 and a beam power of 3.5 mW. ) 
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It can be seen from table (5.1. ) that the average RMS error of the 25 data points is 1.41%. 

From table (5.2. ) it can be seen that the average RMS error of the 16 data points is 3.53% 

and from table (5.3. ) it can be seen that the average RMS of the 16 data points is 3.13%. 

As these RMS errors are small, this section can be concluded by stating that there is a very 

good agreement between the two models for almost paraxial Gaussian beams. The likely 

reason why the average RMS errors in the transverse directions are larger than in the 

longitudinal direction is, that transverse forces are polarization dependent and the beam 

used in the 5`h order Gaussian beam approximation is linearly polarised everywhere and the 

beam used in the GB01 treatment is only linearly polarised in the beam waist in the 

paraxial limit and in the far-field. Otherwise the beam is elliptically polarised as discussed 

in chapter 4. The good agreement between the 5`h order Gaussian beam approximation and 

the GBO I treatment can also be seen from Fig. (5.11. ), which represents a comparison of 

the normalised at the origin irradiance profile of the two beams. 

-4 kx 
Fig. 5.11. Normalised irradiance profile at the beam waist for kd =74.6. GBOI treatment 
(solid curve) versus 5'" order Gaussian beam approximation (doted curve). 

However in a standard laser tweezers set up, the numerical aperture of the focusing lens is 

typically NA>1. As next the restoring acceleration exerted on a spherical water droplet of 

radius l, um along the axis of propagation is calculated for an order 01 beam of wavelength 

(1t=0.5145, um) focused by NAzz1 lens, which corresponds to a value of kd=4. The beam 

spot size in this case is wo=0.231 pm and the beam power is 3.5mW. The offset along the x 

and y axis is zero (xo yo=0, um). As Barton et al. [8] have not presented these results, the 

results for the 5`h order Gaussian beam approximation are calculated using the code of 

Ulanowski and Jones [23]. Fig. (5.12. ) compares the restoring acceleration for sphere 

positions along the axis of propagation [aZ/g]. 
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Acceleration (kd=4) 
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Fig. 5.12. Comparison of the restoring acceleration based on the 5°' order Gaussian beam approximation (doted curve) and the GBOI 

treatment (solid curve), along the propagation axis for optical levitation of a water droplet in air, using a focused order 01 mode 

linearly polarised laser beam. (xo=yo=0, n=1,334, diameter of spherical particle = 2.0 
, um, wavelength Ao = 0.5145 um , wo=0.231 pm, 

kd=4and a beam power of 3.5 mW. ) 

It can be seen from Fig. (5.12. ) that the results calculated using the 5`h order Gaussian 

beam approximation (doted curve), are highly inaccurate in the range from 

zo=[-1.25.. 0.75]. This is a clear indication that the 5`h order Gaussian beam approximation 
breaks down for strongly focused beams, as was predicted in chapter 1. Figs. (5.13. ) and 
(5.14. ) show a comparison of the normalised at the origin irradiance profiles of the GBOI 

treatment versus the 5`h order Gaussian beam approximation for kd=4 at the beam waist 

and at zo=0.75, um respectively. The breakdown of the 5`h order Gaussian beam 

approximation for kd=4 can be clearly seen from the difference in the irradiance profiles of 

the two beams at zo=0.75 jmt. Since the sphere has a diameter of 2, um it is apparent that 

even though the irradiance profiles are almost identical at the beam waist, the contributions 

from the differences at zo=0.75 pm will have an effect on the trapping forces at zo=0, um. 

kx 

Fig. 5.14. Normalised irradiance profile at zo=0.75Nm for kd=4. 

GBOI treatment (solid curve) versus 51h order Gaussian beam 

approximation (doted curve). 

197 

Fig. 5.13. Normalised irradiance profile at the beam 

waist for kd=4. GBOI treatment (solid curve) versus 
5' order Gaussian approximation (doted curve) 



Chapter 5 Laser Tweezers 

Additionally it can be seen from Fig. (5.12. ) that the restoring acceleration [ap/g] is always 

greater than 1. Thus it can be concluded that no trapping occurs in this laser tweezers set 

up. 

In table (5.4. ) the numerical values for the restoring acceleration along the axis of 

propagation are given. 

zo(µm) aig (5`h order) aig (GBO l) RMS error in % zo(om) adg (5i° order) aig (GBOI) RMS error in % 

-20.00 1.7550 2.8283 37.95 0.25 29.2702 31.6064 7.39 

-19.00 1.9465 3.1351 37.91 0.50 44.3552 23.1551 91.56 

-18.00 2.1711 3.4944 37.87 0.75 95.3040 14.6690 549.70 

-17.00 2.4367 3.9187 37.82 1.00 11.5482 9.1491 26.22 

-16.00 2.7540 4.4246 37.76 1.25 12.9192 9.3679 37.91 

-15.00 3.1370 5.0341 37.68 1.50 16.5997 16.3750 1.37 

-14.00 3.6054 5.7773 37.59 1.75 26.8588 26.6225 0.89 

-13.00 4.1860 6.6959 37.48 2.00 34.6757 35.7523 3.01 

-12.00 4.9177 7.8486 37.34 2.25 38.2040 41.9660 8.96 

-11.00 5.8570 9.3209 37.16 2.50 38.7950 45.2797 14.32 

-10.00 7.0894 11.2396 36.92 2.75 37.7406 46.3527 18.58 

-9.00 8.7484 13.7991 36.60 3.00 35.8561 45.8965 21.88 

-8.00 11.0512 17.3075 36.15 3.25 33.6127 44.4830 24.44 

-7.00 14.3678 22.2693 35.48 3.50 31.2737 42.5204 26.45 
-6.00 19.3633 29.5371 34.44 3.75 28.9810 40.2830 28.06 

-5.00 27.3026 40.5654 32.69 4.00 26.8072 37.9470 29.36 

-4.00 40.6998 57.6383 29.39 5.00 19.6785 29.2312 32.68 

-3.75 45.4009 63.1394 28.09 6.00 14.7813 22.5447 34.44 

-3.50 50.8270 69.1488 26.50 7.00 11.4157 17.6923 35.48 

-3.25 57.0760 75.5890 24.49 8.00 9.0439 14.1632 36.14 

-3.00 64.2197 82.2673 21.94 9.00 7.3242 11.5523 36.60 

-2.75 72.2474 88.7943 18.64 10.00 6.0436 9.5813 36.92 

-2.50 80.9352 94.4653 14.32 11.00 5.0670 8.0635 37.16 

-2.25 89.5475 98.1216 8.74 12.00 4.3067 6.8734 37.34 

-2.00 96.2100 98.0970 1.92 13.00 3.7039 5.9247 37.48 
-1.75 97.3779 92.5996 5.16 14.00 3.2184 5.1572 37.59 

-1.50 95.1967 81.2363 17.19 15.00 2.8218 4.5281 37.68 

-1.25 129.8709 67.4848 92.44 16.00 2.4938 4.0065 37.76 

-1.00 59.7932 56.0694 6.64 17.00 2.2195 3.5693 37.82 

-0.75 105.3801 48.7961 115.96 18.00 1.9879 3.1995 37.87 

-0.50 139.3050 45.2362 207.95 19.00 1.7906 2.8839 37.91 
-0.25 74.6525 42.5315 75.52 20.00 1.6212 2.6126 37.95 
0.00 -7.1725 38.1456 118.80 average RMS error 44.33 

Table 5.4. The numerical values of the restoring acceleration along the axis of propagation ajg calculated using the GBOI treatment 

and the 5s' order Gaussian beam approximation model, for optical levitation of a water droplet in air, using a focused order 01 mode 
linearly polarised laser beam, (xo=y -0, if = 1.334, diameter of spherical particle - 2.0 Mn, wavelength A, - 0.5145 fan, wo'0.231pm, 

kd=4 and a beam power of 3.5 mW. ) 

It can be seen from table (5.4. ) that the average RMS error of the 65 data points is 44.33%. 

The largest RMS error is for a sphere location at zo=0.75, where the RMS error is 549.7%. 
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Next, the restoring acceleration exerted on a spherical water droplet of radius l, um along 

the axis of propagation is calculated for an order 01 beam of wavelength A, =0.5145, um 
focused by NAz1.5 lens, which corresponds to a value of kd=2. It has to be mentioned at 

this point that generally lenses with a NA X1.3 are used for optical tweezers. The reason 
for using such a high NA here is to test if the theoretical treatment of GBO1 produces 

acceptable results for such an extreme case of focusing. The beam spot size in this case is 

wo=0.164, um and the beam power is 3.5mW. The offset along the x and y axis is zero 
(xoy=0, um). As Barton et a!. [8] have not presented these results, the results for the 5`h 

order Gaussian beam approximation are calculated using the code of Ulanowski and Jones 

[23]. Fig. (5.15. ) compares the restoring acceleration for sphere positions along the axis of 

propagation [az/g]. 

Acceleration (kd=2 ) 

1000 

500 

CO 

0 
0 

-500 

t 

-5 0 

Zo [um] 

--+ 5th order 
-}- GBO1 

"- --- - equilibrium 

5 

Fig. 5.15. Comparison of the restoring acceleration based on the 5th order Gaussian beam approximation (doted curve) and the G©01 

treatment (solid curve), along the propagation axis for optical levitation of a water droplet in air, using a focused order 01 mode 
linearly polarised laser beam. (xo=yo=0, n=1.334, diameter of spherical particle = 2.0 pm, wavelength A o= 0.5 145 fan , wo=0.164, um, 
kd=2 and a beam power of 3.5 mW. ) 

It can clearly be seen form Fig. (5.15. ) that for this laser tweezers set up the 5`h order 
Gaussian beam approximations breaks down. Fig (5.16) shows a comparison of the 

normalised at the origin irradiance profiles of the GBOI treatment versus the 5`h order 

Gaussian beam approximation for kd=2 at zo=0.751um. It can be seen that in the case of the 

5`h order Gaussian beam approximation, the irradiance profile is not Gaussian for kd=2, 

where the irradiance profile is Gaussian for the GBOI treatment, as expected. 
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Fig. 5.16. Normalised irradiance profile at zo=0.75frm for kd =2. GBOI 

treatment (solid curve) versus 5d' order Gaussian beam approximation (doted curve). 

Since according to Figs. (5.15) and (5.16) the 5`h order Gaussian beam approximation 

breaks down for strongly focused beams, only the GBO1 treatment is used to investigate 

the restoring acceleration [aZ/g] along the axis of propagation. From Fig. (5.17. ) it can be 

seen that there are two equilibrium positions, one between z=0.75 and 1, and the other one 

between z=1 and 1.25. In accordance with Eq. (5.32) the equilibrium at the position 

between z=0.75 and 1 is a stable equilibrium and in accordance with Eq. (5.33) the 

equilibrium at the position between z=1 and 1.25 is an unstable equilibrium. 
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Fig. 5.17. Restoring acceleration based on the GBOI treatment (solid curve), along the propagation axis for optical levitation of a 

water droplet in air, using a focused order 01 mode linearly polarised laser beam. (xo=yo=0, n=1.334 , diameter of spherical 

particle = 2.0 tm, wavelength do = 0.5145 frm , wo=0.164,, m, kd=2 and a beam power of 3.5 mW. ) 

In table (5.5. ) the numerical values for the restoring acceleration along the axis of 

propagation are given. 
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zo(am) a.. lg (GBOI) zo(pm) alg (GBOI) zo({m) azig (GBOI ) 

-10.00 7.602 -1.25 82.228 3.00 38.136 

-9.00 9.380 -1.00 65.877 3.25 35.824 

-8.00 11.849 -0.75 54.069 3.50 33.380 

-7.00 15.403 -0.50 48.231 3.75 30.966 

-6.00 20.755 -0.25 44.015 4.00 28.665 

-5.00 29.249 0.00 37.504 5.00 21.074 

-4.00 43.533 0.25 28.635 6.00 15.839 

-3.75 48.527 0.50 17.110 7.00 12.237 

-3.50 54.276 0.75 5.625 8.00 9.696 

-3.25 60.874 1.00 -0.162 9.00 7.853 

-3.00 68.384 1.25 3.528 10.00 6.480 

-2.75 76.776 1.50 15.887 

-2.50 85.806 1.75 28.864 

-2.25 94.770 2.00 36.783 

-2.00 102.087 2.25 40.336 

-1.75 104.827 2.50 41.027 

-1.50 99.099 2.75 40.032 

Table 5.5. The numerical values of the restoring acceleration along the axis of propagation a)g calculated using the GBOI treatment, for 

optical levitation of a water droplet in air, using a focused order 01 mode linearly polarised laser beam. 

(xo=yo=0, n=1.334, diameter of spherical particle = 2.0 um, wavelength Ao= 0.5145 um, wo=0. l64, wn, kd=2 and a beam power of 3.5 

mW. ) 

In order to calculate the transverse restoring acceleration, the position zo=l, um above the 

focal point is chosen, since at this point the acceleration along the axis of propagation 

[a2/g] has a minimum. The beam diameter at zo=l, um is, in accordance with Eq. (1.80), 

2w; z: ý2, um, which is equal to the droplet diameter. Fig. (5.18. ) shows the acceleration for 

sphere positions along the axes of polarisation [ay. ]. 
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Fig. 5.18. The restoring acceleration based on the GBOI treatment, along the polarisation axis versus displacement along the 

polarisation axis for optical levitation of a water droplet in air, using a focused order 01 mode linearly polarised laser beam. 

(xo=0, an, zo= l arm, n= L334, diameter of spherical particle =2 , um, wavelength AD= 0.5145 pm, wo=0.164pm, kd=2 and a beam power 

of 3.5 mW. ) 

201 



Chapter 5 Laser Tweezers 

In table (5.6. ) the numerical values for the restoring acceleration along the direction of 

polarisation are given. 
ý o(ttm) -a, �g (GBOI ) 

-2.00 -0.379 

-1.75 -3.225 

-1.50 -12.674 

-1.25 -34.887 

-1.00 -81.077 

-0.75 -104.354 

-0.50 -78.135 

-0.25 -37.630 
0.00 0.000 

0.25 37.630 

0.50 78.135 

0.75 104.354 

1.00 81.077 

1.25 34.887 

1.50 12.674 

1.75 3.225 

2.00 0.379 

Table 5.6. The numerical values of the restoring acceleration along the direction of polarisation a)Jg calculated using the GBOI 

treatment, for optical levitation of a water droplet in air, using a focused order 01 mode linearly polarised laser beam. (xo=0, 

n=1.334 
, zo=l Eim, diameter of spherical particle = 2.0 km, wavelength A. = 0.5145 um, wa=0. I64im, kd=2 and a 

beam power of 3.5 mW. ) 

Fig. (5.19) shows the restoring acceleration for sphere positions along the axis 
perpendicular to the direction of polarisation [aX]. 
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Fig. 5.19. The restoring acceleration based on the GBO I treatment, along the axis perpendicular to the direction of polarisation versus 

displacement along the axis perpendicular to the direction of polarisation for optical levitation of a water droplet in air, using a 

focused order 01 mode linearly polarised laser beam. (yo=Oum, zo=lurm, n=1.334, diameter of spherical particle =2 pm, 

wavelength .l=0.5145 pm. wo=0. I64, um, kd=2 and a beam power of 3.5 mW. ) 
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In table (5.7. ), the numerical values for the restoring acceleration along the axis 

perpendicular to the direction of polarisation are given. 
zo (Pm) -a, /g (GBOI ) 

-2.00 1.439 

-1.75 -0.304 

-1.50 -7.924 

-1.25 -25.942 

-1.00 -75.666 

-0.75 -95.996 

-0.50 -74.083 

-0.25 -36.910 
0.00 0.000 

0.25 36.910 

0.50 74.083 

0.75 95.996 

1.00 75.666 

1.25 25.942 

1.50 7.924 

1.75 0.304 

2.00 -1.439 

Table 5.7. The numerical values of the restoring acceleration along the axis perpendicular to the direction of polarisation a., /g 

calculated using the GBOI treatment, for optical levitation of a water droplet in air, using a focused order 01 mode linearly polarised 

laser beam. (Yo-0, n=1.334, zo=lpm, diameter of spherical particle = 2.0 Aim, wavelength Ad= 0.5145 , um, wo=0.164pm, kd=2 and a 

beam power of 3.5 mW. ) 

By comparing Figs. (5.18. ) and (5.19. ) it can be seen, as expected, that the restoring 

acceleration along the polarisation axis of the beam is greater than the restoring 

acceleration along the axis perpendicular to the direction of polarisation. It can also be seen 
from Figs. (5.18. ) and (5.19. ) that, in analogy with Eq. (5.32), the particle is in a stable 

equilibrium at xo=yo=O, and in analogy with Eq. (5.33) in an unstable equilibrium near 

xo Yo±2" 

In order to trap biological material it has proven useful [27] to use polystyrene spheres as 

"handles", since they can be more refractile than the biological substance, thus supplying 

extra trapping forces. Furthermore the shape and the uniform size facilitates the calibration 

of the laser tweezers. For this reason, the restoring acceleration induced onto a polystyrene 

(n=1.6 [11]) sphere of radius 1 pm suspended in water is calculated for kd=4, a beam power 

of 3.5mW, a beam waist radius of 0.231pm and a wavelength of Ao=514.5nm. Polystyrene 
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has a density p=1.05x 103 kgm-3 [28], thus the mass of the polystyrene sphere considered is 

nn,, =4.4x 10-15 kg. Fig. (5.20. ) compares the restoring acceleration for sphere positions 

along the axis of propagation [a2/g] calculated using the GBOI treatment and the 5`h order 

Gaussian beam approximation model of Ulanowski and Jones [23]. The offset along the x 

and y axis is zero (xo yo=0, urn). 
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Fig. 5.20. Comparison of the restoring acceleration based on the 5"' order Gaussian beam approximation (doted curve) and the GB01 

treatment (solid curve), along the propagation axis for optical trapping of a polystyrene sphere in water, using a focused order 01 

mode linearly polarised laser beam. 

(xo=), o=0, Ti = 1.199 , diameter of spherical particle = 2.0 pm, wavelength do = 0.5145 Aim , wo=0.231 pm, kd=4 and a beam 

power of 3.5 mW. ) 

In table (5.8. ) the numerical values for the restoring acceleration along the axis of 

propagation are given. 
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o ý 5`h order) ) GBO1 
S error in 

/o o ailg 5`b order a) GBO1 
S error in 

/o 

-20.00 1.96 2.579 23.78 0.25 18.143 14.751 22.99 

-19.00 2.182 2.861 23.74 0.50 9.01 9.61 6.27 

-18.00 2.43 3.192 23.69 0.75 -1.531 4.732 132.35 

-17.00 2.737 3.583 23.63 1.00 -8.63 0.752 1247.89 

-16.00 3.09 4.05 23.57 1.25 -8.704 -1.76 392.08 

-15.00 3.53 4.613 23.48 1.50 -2.06 -1.653 25.1 

-14.00 4.061 5.300 23.38 1.75 1.67 -1.441 215.82 

-13.00 4.71 6.149 23.26 2.00 6.575 6.29 4.5 

-12.00 5.549 7.215 23.1 2.25 11.58 11.36 1.94 

-11.00 6.613 8.57 22.89 2.50 15.48 15.68 1.28 

-10.00 8.007 10.348 60.76 2.75 18.075 18.923 4.48 

-9.00 9.87 12.705 22.26 3.00 19.549 21.08 7.29 

-8.00 12.458 15.92 21.75 3.25 20.19 22.344 9.64 

-7.00 16.13 20.42 21 3.50 20.248 22.89 11.58 

-6.00 21.573 26.914 19.85 3.75 19.918 22.941 13.17 

-5.00 29.91 36.436 17.91 4.00 19.341 22.620 1 14.5 

-4.00 42.963 50.14 14.32 5.00 16.123 19.65 17.99 

-3.75 47.195 54.214 12.95 6.00 13.002 16.228 19.88 

-3.50 51.825 58.405 11.27 7.00 10.49 13.29 21.03 

-3.25 56.788 62.538 9.19 8.00 8.573 10.958 21.77 

-3.00 61.91 66.304 6.61 9.00 7.095 9.128 22.27 

-2.75 66.87 69.218 3.38 10.00 5.95 7.691 22.63 

-2.50 71.027 70.573 0.64 11.00 5.052 6.552 22.9 

-2.25 73.301 69.458 5.53 12.00 4.33 5.64 23.1 

-2.00 72.149 64.968 11.05 13.00 3.76( 4.90 23.26 

-1.75 66.201 56.813 16.52 14.00 3.28 4.293 23.38 

-1.50 56.423 46.291 21.89 15.00 2.90( 3.79 23.49 

-1.25 47.473 36.44 30.26 16.00 2.575 3.36 23.57 

-1.00 42.90 29.50 45.4 17.00 2.301 3.01 23.64 

-0.75 33.273 25.198 32.04 18.00 2.06 2.711 23.69 

-0.50 19.368 22.812 15.1 19.00 1.86 2.451 23.74 

-0.25 25.10 21.268 18.05 20.00 1.69 2.22 23.78 
0.00 20.921 18.83 11.07 1 1 average RMS error 48.22 

Table 5.8. The numerical values of the restoring acceleration along the axis of propagation ajg calculated using the GBOI treatment and 

the 5'" order Gaussian beam approximation model, for optical trapping of a polystyrene sphere in water, using a focused order 01 mode 

linearly polarised laser beam. (xo=yo=0, if = 1.199 , diameter of spherical particle = 2.0 
, um, wavelength 2-0.5145 µm, wo'0.231pm, 

kd=4 and a beam power of 3.5mW. ) 

It can be seen from table (5.8. ) that the average RMS error of the 65 data points is 48.22%. 

The largest RMS error is for a sphere location at zo=1.0, where the RMS error is 1247.89%. 
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It can be seen from Fig. (5.20) that in the case of trapping a polystyrene sphere suspended 

in water, the difference between the two models is not as big as in the case of water droplet 

suspended in air. It can further be seen by comparing Fig. (5.20) with Fig. (5.12), that a 

polystyrene sphere suspended in water is subjected to a smaller restoring acceleration, than 

a water droplet suspended in air. It can be seen from table (5.8. ) that the polystyrene sphere 

in water is subjected to a maximum acceleration a/g--71 at a sphere location xo=yo=0 um 

and zo=-2.5pm. From table (5.4) it can be seen that the water droplet in air is subjected to a 

maximum acceleration aZ/g--98 at a sphere location xo=yo=O pm and zo=-2.25pm. Thus the 

polystyrene sphere in water is accelerated 1.4 times less than the water droplet in air. The 

reason for this can be understood from geometrical optics. The relative refractive index for 

the air water interface is n=1.334 and the relative refractive index of the polystyrene 

water interface is if =1.199. Thus the relative refractive index for the polystyrene water 

interface is lower than the relative refractive index for the air water interface. Thus a 

polystyrene sphere in water reflects less radiation than a water droplet in air, thus the 

magnitude of the forward directed force relative to the backward directed force is lower for 

a polystyrene sphere in water than for a water droplet in air. It can be seen from Fig. (5.21), 

which represents a comparison between the refracted angle B, at the air-water interface and 

the refracted angle at the water-polystyrene interface respectively versus the incident angle 

9;, that light rays are bent more strongly at the air-water interface then at the water- 

polystyrene interface. 
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Fig. 5.21. Comparison between the refracted angle of the air-water interface and the refracted angle of the water-polystyrene interface 

versus incident angle 63, 
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This implies that the restoring acceleration is higher for the spherical water droplet being 

trapped in air, then for a polystyrene sphere being trapped in water. In general optical 

trapping experiments, the dimensionless trapping efficiency defined by Ashkin [I I] as 

Fc 
Pn ' (5.35) 

is calculated, where in Eq. (5.35) F is the force, c=299792458ms-1 is the vacuum speed of 
light [26], P is the beam power and n, 1 is the refractive index of the surrounding medium. 

The trapping efficiency is thus a measure of how much of the incident beam power is 

converted into trapping forces and what proportion of the beam does not reach the trapping 

particle. If all the radiation from the beam is reflected by the trapping particle than in 

accordance with Eq. (5.11) Q=2. If all the radiation is absorbed by the trapping particle 

then Q=1. If all the radiation is transmitted by the trapping particle then Q=O. However in 

general only a small proportion of the beam reaches the trapping particle and is reflected 

and refracted. Additionally as mentioned earlier, the two media are chosen in such a way 

as to reduce the relative refractive index, so less radiation is reflected. It can be clearly seen 

from Figs. (5.22. ) and (5.23. ), as expected, that the trapping efficiency is lower for a 

polystyrene sphere suspended in water than for a water droplet suspended in air. From Eqs. 

(5.16), (5.17) and (5.35) is can be seen that the mass of the trapped particle does not enter 

any of the formulae. Additionally it can be seen by substituting Eq. (5.12) into Eq. (5.35) 

that the trapping efficiency is independent of the beam power. In other words the trapping 

efficiency is a measure of how much of the incident momentum is converted into trapping 

forces. It can also be seen from Fig. (5.20. ) that in accordance with Eq. (5.32) the 

polystyrene sphere is in a stable equilibrium position at zo; l and in accordance with Eq. 

(5.33) in an unstable equilibrium at zo; 1.75. The minimum value of the acceleration along 

the axis of propagation [a, /g] is according to Fig. (5.20. ) at zo=1.25. At this point, the beam 

diameter is, in accordance with Eq. (1.80) 2w--1.77, um, which is less than the droplet 

diameter. 

Fig. (5.22. ) shows the trapping efficiency along the axis of propagation of the beam for a 

spherical water droplet of radius fpm suspended in air by a beam of spot radius 

wo=0.231 pm, a beam power of 3.5mW and a beam wavelength of 0.5145 , um, calculated 

using the 5`h order Gaussian beam approximation and the GBO1 treatment. Fig. (5.23) 

represents the trapping efficiency along the axis of propagation of the beam for a 
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polystyrene sphere of radius l, um suspended in water by a beam of spot radius 

i1()=0.231 , can, a beam power of 3.5mW and a beam wavelength of 0.5145, um, calculated 

using the 5 ̀h order Gaussian beam approximation and the GBO1 treatment. 

Trapping Efficiency (kd=4) 

0.5 

0.4 

0.3 
N 

0 0 

0.2 

0.1 

0.0 

zo [tim] 

Fig. 5.22. Comparison of the trapping efficiency based on the 5`" order Gaussian beam approximation (doted curve) and the GBOI 

treatment (solid curve), along the propagation axis for optical levitation of a water droplet in air, using a focused order 01 mode 

linearly polarised laser beam. (xo=)'o=0, if = 1.334 , 
diameter of spherical particle = 2.0 pm, wavelength Ao = 0.5145 Prn , wo=0.231, um, 

kd=4 and a beam power of 3.5 mW. ) 
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Fig. 5.23. Comparison of the trapping efficiency based on the 5"' order Gaussian beam approximation (doted curve) and the Gß01 

treatment (solid curve), along the propagation axis for optical trapping of a polystyrene sphere in water, using a focused order 01 

mode linearly polarised laser beam. 

(xo=yo=0, n=1.199, diameter of spherical particle = 2.0 , um, wavelength 20 = 0.5 145 pm , wo=0.231 fan, kd=4 and a beam 

power of 3.5 mW. ) 

By comparing Fig. (5.22) and (5.23) it can be seen that a polystyrene sphere can be much 

easier trap in water than a water droplet in air. The reason for this is that the reduction in 

relative refractive index assists the trapping process, as discussed earlier. It can also be 

seen from these figures, that the larger relative refractive index leads to a breakdown of the 

5`h order Gaussian beam approximation for kd=4. It can also be seen from Fig. (5.22) that 

the trapping efficiency is always positive in the GBO1 treatment, which implies that the 

scattering force is always greater than the gradient force. This is not the case when trapping 

a polystyrene sphere in water. The polystyrene sphere is stabily trapped at zo=l, um. In the 

rest of this chapter, the trapping efficiencies will be calculated for various trapping 

conditions. Next, the trapping efficiency along the axis of polarisation, yo=O , um is 

calculated using the 5`h order Gaussian beam approximation. In the GBO1 treatment, as the 

direction of polarisation is the y axis, the trapping efficiency along this axis is calculated 

with xO=0 , um. Fig. (5.24. ) compares the trapping efficiency for sphere positions along the 

direction of polarisation [Qj] and [Qy] respectively, calculated using both methods. The 

vertical position of the polystyrene sphere above the focus is zo=1.25, since at this point the 

trapping efficiency along the axis of propagation [QZ] has a minimum. 
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Fig. 5.24. comparison of the trapping efficiency based on the 5`" order Gaussian beam approximation (doted curve) and the GBOI 

treatment (solid curve), along the polarisation axis versus displacement along the polarisation axis for optical trapping of a polystyrene 

sphere in water, using a focused order 01 mode linearly polarised laser beam. 

(xo. vo=0jrm, zo=I. 25jim, if = 1.199, diameter of spherical particle = 2.0 um, wavelength do = 0.5145 pm, wo=0.231pm, kd=4 and a 

beam power of' 3.5 mW. ) 

In table (5.9. ) the numerical values for the trapping efficiency along the direction of 

polarisation are given. 

xo, y� (nn) r (5th order) (GBO 1 S error in % 

-2.00 5.455E-03 4.600E-03 18.60 

-1.75 2.212E-02 1.665E-02 32.83 

-1.50 5.588E-02 5.527E-02 1.09 

-1.25 1.367E-01 1.492E-01 8.38 

-1.00 2,557E-01 2.800E-01 8.68 

-0.75 3.207E-01 3.204E-01 0.10 

-0.50 2.243E-01 2.245E-01 0.09 

-0.25 9.522E-02 1.022E-01 6.87 
0.00 2.831E-17 9.383E-17 69.83 
0.25 -9.522E-02 -1.022E-01 6.87 
0.50 -2.243E-01 -2.245E-01 0.09 
0.75 -3.207E-01 -3.204E-01 0.10 
1.00 -2.557E-01 -2.800E-01 8.68 
1.25 -1.367E-01 -1.492E-01 8.38 
1.50 -5.588E-02 -5.527E-02 1.09 
1.75 -2.212E-02 -1.665E-02 32.83 
2.00 -5.455E-03 -4.600E-03 18.60 

I average RMS error 13.12 

Table 5.9. The numerical values of the trapping efficiency along the direction of polarisation Q., and Q, respectively calculated using the 

GB01 treatment and the 5th order Gaussian beam approximation model, for optical trapping of a polystyrene sphere in water, using a 

focused order 01 mode linearly polarised laser beam. 

(xoyo=0frtn, zo=l. 25f, m, IT = 1.199, diameter of spherical particle = 2.0 um, wavelength . to = 0.5145 fnn, wo=0.231pm, kd=4 and a 

beam power of 3.5 mW. ) 
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Fig. (5.25. ) compares the trapping efficiency for sphere positions along the axis 

perpendicular to the direction of polarisation [Qy] and [Q] respectively, calculated using 
both methods. 

Trapping Efficiency (kd=4) 
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0.4 - 

5th order 0.3 
-- 
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0.1 

mo 
c9 r 0.0 --T v 
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-0.3 
-0.4 
-0.5 

xo[Nm], Y0[um1 

Fig. 5.25. Comparison of the trapping efficiency based on the 5°' order Gaussian beam approximation (doted curve) and the GB01 

treatment (solid curve), along the axis perpendicular to the direction of polarisation versus displacement along the axis perpendicular 

to the polarisation axis for optical trapping of a polystyrene sphere in water, using a focused order 01 mode linearly polarised laser 

beam. 

(x(, )'o=Opm, zo=1.25{ßm, if = 1.199 , diameter of spherical particle = 2.0 pm, wavelength Ao = 0.5145 um, wo=0.231 pm, kd=4 and a 

beam power of 3.5 mW. ) 

In table (5.10. ) the numerical values for the trapping efficiency along the axis 

perpendicular to the direction of polarisation are given. 
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o> 0 5`h order x 
GBO1 

S error in 
/o 

-2.00 3.284E-03 2.859E-03 14.85 

-1.75 1.753E-02 1.149E-02 52.57 

-1.50 4.402E-02 4.128E-02 6.65 

-1.25 1.080E-01 1.187E-01 8.96 

-1.00 2.073E-01 2.348E-01 11.68 

-0.75 2.486E-01 2.827E-01 12.08 

-0.50 1.950E-01 2.098E-01 7.05 

-0.25 1-003E-01 1.003E-01 0.07 

0.00 -1.325E-17 -6.794E-18 95.07 

0.25 -1.003E-01 -1.003E-01 0.07 

0.50 -1.950E-01 -2.098E-01 7.05 
0.75 -2.486E-01 -2.827E-01 12.08 
1.00 -2.073E-01 -2.348E-01 11.68 
1.25 -1.080E-01 -1.187E-01 8.96 
1.50 -4.402E-02 -4.128E-02 6.65 
1.75 -1.753E-02 -1.149E-02 52.57 
2.00 -3.284E-03 -2.859E-03 14.85 

average RMS error, 18.99 

Table 5.10. The numerical values of the trapping efficiency along the axis perpendicular to the direction of polarisation Q, and Qy 

respectively, calculated using the GBOI treatment and the 5'" order Gaussain beam approximation model, for optical trapping 

of a polystyrene sphere in water, using a focused order 01 mode linearly polarised laser beam. 

(xo, yo=Opm, zo=1,25{ßm, n=1.199, diameter of spherical particle = 2.0 pm, wavelength A o= 0.5145. um, wo-0.231pm, kd--4 

and a beam power of 3.5 mW. ) 

It can be seen from table (5.9. ) that the average RMS error of the 17 data points is 13.12%. 

From table (5.10. ) it can be seen that the average RMS error of the 17 data points is 

18.99%. Again it can be seen by comparison of Fig. (5.24. ) and Fig. (5.25. ) that the 

trapping efficiency along the direction of polarisation is higher than the trapping efficiency 

along the axis perpendicular to the direction of polarisation. It can also be seen from Figs. 

(5.24) and (5.25), that in analogy with Eq. (5.32) the polystyrene sphere is in a stable 

equilibrium xo yo=0 and in analogy with Eq. (5.33) in an unstable equilibrium at xo=yo=f2. 

Next the trapping efficiency of a polystyrene sphere of radius 11um positioned at various 

locations along the axis of propagation is calculated for an order 01 beam of wavelength 

Ao=0.5145; um focused by NA;: 4-1.5 lens, which corresponds to a value of kd=2. The beam 

spot size in this case is wo=0.164 pm and the beam power is 3.5mW. The offset along the x 

and y axis is zero (xo=yo=0, um). Fig. (5.26. ) compares the trapping efficiency for sphere 

positions along the axis of propagation [QZ] calculated using the 51h order Gaussian beam 

approximation and the GBOI treatment. 
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Fig. 5.26. Comparison of the trapping efficiency of the 5"order Gaussian beam approximation (doted curve) and the GBOI treatment 

(solid curve), along the propagation axis for optical trapping of a polystyrene sphere in water, using a focused order 01 mode 

linearly polarised laser beam. 

(xo=yo=0, n=1.199 , 
diameter of spherical particle = 2.0 

, um, wavelength 20 = 0.5145 pm , wo= 0.1638 pm, kd=2 

and a beam power of 3.5 mW. ) 

It is apparent from Fig. (5.26), that for a value of kd=2, as expected, the 5th order Gaussian 

beam approximations breaks down. In order to get accurate results for the trapping 

efficiency along the axis of propagation [Qz], it is necessary to only plot the trapping 

efficiency values obtained from the GBOI treatment. Fig. (5.27) shows the trapping 

efficiency along the axis of propagation based on the GBO1 treatment. 

Trapping Efficiency (kd=2) 
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Fig. 5.27. Trapping efficiency based on the Gß01 treatment, along the propagation axis for optical trapping of a polystyrene sphere in 

water, using a focused order 01 mode linearly polarised laser beam. 

(xo=yo=0, n=1.199 , diameter of spherical particle = 2.0 , um, wavelength AO=0.5145 um, wo= 0.1638, um, kd=2 and a beam 

power of 3.5 mW. ) 

It can be seen from Fig. (5.27) that the polystyrene sphere is in accordance with Eq. (5.32) 

in a stable equilibrium position at zo; tO. 75 and in accordance with Eq. (5.33) in an unstable 
213 

., r; 



Chapter 5 Laser Tweezers 

equilibrium at zo 1.75. The minimum value of the trapping efficiency along the axis of 

propagation [Q7] is according to Fig. (5.27) at zo=1.25. At this point, the beam diameter is, 

in accordance with Eq. (1.80) 2w; ze2.5, um, which is bigger than the sphere diameter. In 

table (5.11. ) the numerical values for the trapping efficiency along the axis of propagation 

are given. 

o Q. GBO1 o Z GBO1 0 GBOI 

-10.00 1.784E-02 -1.75 2.130E-01 2.00 1.766E-02 

-9.00 2.209E-02 -1.50 1.885E-01 2.25 3.231E-02 

-8.00 2.800E-02 -1.25 1.461E-01 2.50 4.194E-02 

-7.00 3.652E-02 -1.00 1.085E-01 2.75 4.747E-02 

-6.00 4.937E-02 -0.75 8.455E-02 3.00 5.004E-02 

-5.00 6.967E-02 -0.50 7.167E-02 3.25 5.061E-02 

-4.00 1.033E-01 -0.25 6.550E-02 3.50 4.990E-02 

-3.75 1.148E-01 0.00 5.514E-02 3.75 4.841E-02 

-3.50 1.279E-01 0.25 3.712E-02 4.00 4.646E-02 

-3.25 1.426E-01 0.50 1.419E-02 5.00 3.754E-02 

-3.00 1.588E-01 0.75 -6.321E-03 6.00 2.974E-02 

-2.75 1.761 E-01 1.00 -2.244E-02 7.00 2.376E-02 

-2.50 1.935E-01 1.25 -2.952E-02 8.00 1.926E-02 

-2.25 2.086E-01 1.50 -2.067E-02 9.00 1.587E-02 

-2.00 2.173E-01 1.75 -1.504E-03 10.00 1.326E-02 

Table 5.11. The numerical values of the trapping efficiency along the axis of propagation QQ calculated using the GBOI treatment for 

optical trapping of a polystyrene sphere in water, using a focused order 01 mode linearly polarised laser beam. (xa=yq-O, 

n=1.199 , diameter of spherical particle = 2.0 fan, wavelength Ae = 0.5145 pm, wo=0.164pm, kd=2 and a beam power of 3.5 mW. ) 

Since the direction of polarisation in the GBO1 treatment is the y axis, the trapping 

efficiency along this axis is calculated with xo=0 pm. Fig. (5.28. ) shows the trapping 

efficiency for sphere positions along the direction of polarisation [Q, ], calculated using the 
GBO1 treatment. The vertical position of the polystyrene sphere above the focus is zo=1.25, 

since at this point the trapping efficiency along the axis of propagation [QZ] has a 

minimum. 
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Fig. 5.28. The trapping efficiency based on the GBOI treatment, along the polarisation axis versus displacement along the polarisation 

axis for optical trapping of a polystyrene sphere in water, using a focused order 01 mode linearly polarised laser beam. 

(xo=O, um, zel. 25pn, n=1.199, diameter of spherical particle -2 um, wavelength Ao = 0.5145 pm, wo=0.164pm, kd=2 and a beam 

power of 3.5 mW. ) 

In table (5.12. ) the numerical values for the trapping efficiency along the direction of 

polarisation are given. 

yo(um) Qr (GBOI ) 

-2.00 8.762E-03 

-1.75 2.286E-02 

-1.50 5.697E-02 

-1.25 1.267E-01 

-1.00 2.254E-01 

-0.75 2.803E-01 

-0.50 2.245E-01 

-0.25 1.096E-01 
0.00 -2.640E-16 
0.25 -1.096E-01 
0.50 -2.245E-01 
0.75 -2.803E-01 
1.00 -2.254E-01 
1.25 -1.267E-01 
1.50 -5.697E-02 
1.75 -2.286E-02 
2.00 -8.762E-03 

Table 5.12. The numerical values of the trapping efficiency along the direction of polarisation Q. calculated using the GBOI treatment 

for optical trapping of a polystyrene sphere in water, using a focused order 01 mode linearly polarised laser beam. (xo, yd-0µm, 

zo=1.25Emt, if = 1.199 , diameter of spherical particle - 2.0 {nn, wavelength A-0.5145 {m, wo=0.164. um, kd=2 and a beam power of 

3.5 mW. ) 

Fig. (5.29. ) shows the trapping efficiency for sphere positions along the axis perpendicular 

to the direction of polarisation [Q,, ], calculated using the GBOI treatment. 
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Fig. 5.29. The trapping efficiency based on the GBOI treatment, along the axis perpendicular to the polarisation axis versus 
displacement along the axis perpendicular to the polarisation axis for optical trapping of a polystyrene sphere in water, using a 
focused order 01 mode linearly polarised laser beam. (xoý=0um, zo=1.25µm, n=1.199, diameter of spherical particle = 2µm, 

wavelength 1a = 0.5145 pm, wo=0. I64pm, kr1=2 and a beam power of 3.5 mW. ) 

In table (5.13. ) the numerical values for the trapping efficiency along the axis 

perpendicular to the direction of polarisation are given. 

xo(, m) Q, r (GBO1) 

-2.00 5.511 E-03 

-1.75 1.600E-02 

-1.50 4.313E-02 

-1.25 1.022E-01 

-1.00 1.920E-01 

-0.75 2.503E-01 

-0.50 2.103E-01 

-0.25 1.068E-01 

0.00 2.497E-17 
0.25 
0.50 

-1.068E-01 
-2.103E-01 

0.75 
1.00 
1.25 
1.50 
1.75 
2.00 

-2.503E-01 
-1.920E-01 
-1.022E-01 
-4.313E-02 
-1.600E-02 
-5.511 E-03 

Table 5.13. The numerical values of the trapping efficiency along the axis perpendicular to the axis 
of polarisation Qy calculated using the GB01 treatment for optical trapping of a polystyrene sphere 
in water, using a focused order 01 mode linearly polarised laser beam. 

(xo, yo°0{rm, zo=1.25{ßm, n=1.199, diameter of spherical particle = 2.0 pm, wavelength Ao = 0.5145 um, wo'0. I64pm, kd=2 and a 

beam power of 3.5 mW. ) 

216 



Chapter 5 Laser Tweezers 

It can also be seen from Figs. (5.29) and (5.30), that in analogy with Eq. (5.32) the 

polystyrene sphere is in a stable equilibrium xo=yo=O and in analogy with Eq. (5.33) in an 

unstable equilibrium at xo=y ±2. 

5.6. Discussion 

It has been demonstrated that for large values of kd, i. e. nearly paraxial Gaussian beams, 

the 5`h order Gaussian beam approximation and the GBO1 treatment are in good agreement. 

However, for small values of kd the 5th order Gaussian beam produces unreliable results. 

The relationship between the magnitude of the restoring acceleration, the beam diameter w 

and the radius of the spherical dielectric particle can be understood qualitatively from 

geometrical optics. Even though the Fresnel reflection and transmission coefficients were 

derived for plane incident waves, it has become apparent that these coefficients are also 

valid for strongly focused Gaussian beams such as the to 5`h order approximated Gaussian 

beam and GBO1. It can be seen by comparing Figs. (5.12. ) and (5.17. ) both representing 

the vertical restoring acceleration exerted by a focused beam on a water droplet of radius 

l, um that no trapping is observed in the case of kd=4 and trapping is observed in the case 

of kd=2. Thus it can be concluded that the stronger the beam is focused, the stronger are 

the trapping forces. In the case of kd=4, the minimum vertical restoring acceleration 

[aZ/g]=9.15 (see table 5.4. ) is observed at zo=lpm, at this point the beam diameter 

2w=1.42ym, which is less than the diameter of the water droplet. Even though all the rays 

of the beam hit the hemispherical part of the droplet which faces the beam, only very few 

rays hit it at large incident angles, thus the resultant force in the vertical direction is 

reduced. In the case of kd=2, the minimum vertical restoring acceleration [a/g]=-0.16 (see 

table 5.5. ) is observed at zo=lpm, at this point the beam diameter 2wv=2.0, um, which is 

equal to the diameter of the water droplet. Also in this case all the rays of the beam hit the 

hemispherical part of the droplet which faces the beam, but here enough rays hit it at larger 

incident angles, so that the resultant force in the vertical direction is increased and hence 

trapping is observed. The same observation can be made for the trapping of a polystyrene 

sphere of radius I Ean suspended in water by comparing Figs. (5.20. ), (5.23. ) and (5.27. ) In 

the case of kd=4 a minimum vertical restoring acceleration [a, 1g]=-8.7 (see table 5.8. ) is 

observed at zo=1.25Ean, which corresponds to a trapping efficiency of QQ=-0.005. At this 

point the beam diameter 2w=1.77, tmi, which is less than the diameter of the polystyrene 

sphere. However since the relative refractive index is lower for a polystyrene sphere 

suspended in water than for a water droplet in air, trapping was observed. However the 
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trapping efficiency is much lower for kd=4 than for kd=2. In the case of kd=2 the minimum 

vertical trapping efficiency Q, =-0.03 (see table 5.11. ) is observed again at zo=1.25 pm. At 

this point the beam diameter is 2w=2.5, um, i. e. greater than the diameter of the polystyrene 

sphere. It has to be mentioned that in this case not all the rays hit the hemispherical part of 

the polystyrene sphere which faces the beam. This does not have a big effect on the 

trapping of the sphere, since the photon density at the centre of the beam is much higher 

than on the outside of the beam and the number of photons which hit the hemisphere at 
large angles is higher than in the case of the water droplet suspended in air. The maximum 

vertical restoring acceleration in the case of a polystyrene sphere being trapped in water, 

using a value of kd=4 is [a/g]=70.6 (see table 5.8. ), where the maximum vertical restoring 

acceleration for the same kd in the case of a water droplet being trapped in air is 

[a2/g]=98.1 (see table 5.4. ). Thus even though a polystyrene sphere can be trapped in water 

using a value of kd=4, where a water droplet in air could not be trapped using kd=4, the 

maximum vertical acceleration is lower in the case of the polystyrene sphere being trapped 

in water, then for the water droplet being trapped in air, due to the larger mass of the 

polystyrene sphere and due to the fact that the relative refractive index is lower for the 

polystyrene / water interface than for the air / water interface. Thus the scattering force is 

reduced. The trapping efficiencies along the horizontal directions, i. e. [Q., ] and [Q,, ], are the 
highest when the beam diameter is slightly smaller than the diameter of the polystyrene 

sphere as is the case for a value of kd=4. This can be seen from Figs. (5.24. ) and (5.25. ), 

where zo=1.25pm and hence 2w--1.77, um, with a polystyrene sphere diameter of 2pm. The 

maximum values of the horizontal trapping efficiencies [QX] and [Qy] in this case are ±0.28 

and ±0.32 at xoyo=f0.75, um respectively (see table 5.10. and 5.9. respectively). It is 

interesting to note, that even though the vertical trapping efficiencies are the highest for a 
value of kd=2, the horizontal trapping efficiencies are lower. This can be seen from Figs. 

(5.28) and (5.29), where zo=1.25, um and hence 2w; %z2.5 pm. The horizontal trapping 

efficiencies [QX] and [Q, ] in this case are ±0.25 and ±0.28 at xoyo±0.75, um respectively 
(see table 5.13. and 5.12. respectively). For a value of kd=2, the beam diameter is equal to 

the diameter of the water droplet, i. e. 2w--2.0, um at a vertical location zo=l/cm. In the 

considered case the maximum horizontal restoring accelerations [-ax/g] and [-ay/g] are ±96 

and ±104.35 at xo yo=±0.75 respectively (see table 5.7. and 5.6. respectively). Nevertheless 

it can be concluded that the highest optical trap efficiencies occur when trapping a 

polystyrene sphere of radius l yin suspended in water, with a laser beam of wavelength 

A0=0.5145 pm, with a beam waist radius of 0.164pm. However this case will rarely be 

examined experimentally, since it would require a lens with NA=1.5. It has also been 

218 



Chapter 5 Laser Tweezers 

demonstrated, that it is easier to trap a polystyrene sphere in water, than a water droplet in 

air. 

5.7. Conclusion 

This piece of research can be concluded by stating that a set of solutions to Maxwell's 

equations has been found that describe strongly focused laser beams of arbitrary order mn, 

where mit are the orders of the associated Legendre functions, describing the polar angular 

dependence of the beam mode. The radial dependence of the beam mode is given by the 

spherical Bessel functions of order n and the azimuthal dependence is given additionally 

by a factor e=`` It has further been demonstrated that the order 00 beam mode does not 

exist, as this beam mode has infinite energy, nor does any other order mit beam mode with 

even n-m. The order 01 beam mode has a Gaussian irradiance profile like the Hermite- 

Gaussian beam mode TEM00 or a Laguerre-Gaussian beam mode TEM*oo. It satisfies the 

paraxial wave equation in the paraxial limit. In this limit, the E. M. field is linearly 

polarised. In the far-field limit the irradiance profile is slightly different from the one 

produced by focusing a Gaussian beam with an aberration free sine condition lens. The 

E. M. field in this limit is also linearly polarised. If the order 01 beam mode is focused by a 

high numerical aperture lens, i. e. the dimensionless beam parameter 1<kd<5, then a 

standing wave is produced at the beam waist, which oscillates at right angle to the direction 

of propagation of the beam. Thus the physically realisable order 01 beam mode needs to be 

considered when referring to a Gaussian beam. The physically realisable order 12 beam 

mode has a similar irradiance profile to the one of the Lagurre-Gaussian beam mode 

TEM`OI. Optical trapping forces have been calculated using the method presented by 

Barton et al. [8], which is valid for arbitrary E. M. fields. These calculations were 

performed for the E. M. field based on the 5`h order Gaussian beam approximation and for 

the E. M. field of the order 01 beam mode. It has been demonstrated that the trapping forces 

calculated using the 5`h order Gaussian beam approximation, presented by Barton et al. [8] 

are accurate for almost paraxial Gaussian beams (kd=74.6) when compared to the 

treatment based on the E. M. field of the order 01 beam mode. However for strongly 

focused beams like kd=4 or kd=2, the model presented by Barton et al. [8] is highly 

inaccurate and breaks down. It has been established that by focusing a Gaussian laser beam 

of wavelength . i4=0.5145 fan and a beam power of 3.5mW with a NA=1.5 lens, which 

corresponds to a value of kd=2, a polystyrene sphere of radius 2 
, um suspended in water 

can be strongly trapped. The location of the sphere along the axis of propagation at which 
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the highest restoring trapping efficiency was observed is zo=1.25 pm above the focal point. 

At this point the beam diameter is 2w--2.5 pm. However, in general the laser beams are 

focused by lenses with NA=1.3 and not NA=1.5. Additionally it has been demonstrated, 

that in order to trap a spherical dielectric particle such as a polystyrene sphere, it is 

advantageous to trap the sphere in a liquid, in order to reduce the relative refractive index. 

Further it has been highlighted that a laser beam propagating in the direction opposite to 

the direction of the force of gravity is necessary in order to achieve good levitation. The 

calculated trapping forces are in agreement with the predictions based on geometrical 

optics. It has been established in this research, that it is vital to have a description for a 
focused laser beam which satisfies Maxwell's equations, since in order to trap a particle 

most effectively the laser beam needs to be strongly focused (NA>! ). Gaussian beam 

approximation models fail to predict the trapping efficiencies for very highly focused 

beams. 

5.8. Future work 

As first it would be interesting to compare the results produced by the GBO1 treatment 

with the results presented by Kim and Lee [19]. This comparison will give a good insight 

in how important it is to introduce a complex sink in the complex source point method. It 

would also be interesting to calculate the optical trapping forces exerted on absorbing 

spheres and to compare the obtained results with the results presented by Huisken and 
Stelzer [14]. In order to perform these calculations, it will be necessary to use a complex 

refractive index. It would also be of interest to explore the oscillatory behaviour of the 

trapping forces as a function of the size parameter 8 as was shown by Mazolli et al. [10]. 

So far only trapping forces exerted on spherical dielectric particles have been calculated. In 

general metallic particles are trapped by a TEM`o1 Laguerre Gaussian beam. It would thus 
be interesting to calculate the trapping forces using the E. M. field based on order 12. 
However before these calculations can be performed it is necessary to test the polarisation 

properties of the E. M. field based on order 12. It might turn out to be necessary to derive a 

new E. M. field using a different linear super position of the M and N functions, since the 

donut mode has a minimum on axis and is in general thought to be a superposition of the 

Hermite Gaussian beam modes TEM1o and TEMol. As there is great interest in Bessel 

Gaussian beams, which are a solution to the paraxial wave equation and not an exact 

solution to the wave equation, it would be interesting to investigate if Bessel Gaussian 

beams can be represented as a superposition of the beam modes derived in this research. 
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Having a description of a focused Gaussian beam which is an exact solution to Maxwell's 

equations should lead to new innovations in areas like biology, medicine, 

telecommunication and entertainment electronics. Overall it can be said that having such a 

description of a focused Gaussian beam opens potential opportunities for much research in 

many different areas of applications. 
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Appendix 

Exact Soiutionc of the Vector Wave Equation 

For waves of a single frequency, the scalar and vector wave equations can be reduced to the 

scalar and vector Helmholtz equations : 

V" Vfm. (r)+k2fmg, (r) =0 

V"V C.. (r)+k2G.. (r) =0 

(A. 1) 

(A. 2) 

by factoring out the time dependent function C". The analysis will therefore investigate how 

the vector functions G,,,, (r) can be generated from known solutions of the scalar functions f, ". 
(r) . But before proceeding, it should be pointed out that the scalar functions can be extended 

into a more general form by a change of the argument r -- r'= r +c, where c is a constant 

translation vector. This is possible due to the translational invariance of Eq. (A. 1) which allows 

the origin of the co-ordinate system to be chosen arbitrarily. A displacement of particular 
interest is c= (arid) . 

Solutions of Eq. (A. 2) are a longitudinal vector : 

L 
r(r) aVf, Mn(r) 

(A. 3) 

and two transverse vectors : 

5 1. .(r)=Vx 
(A(r)h,,, (r)] (A. 4) 

(A. 5) 
N, ýý(r)= k 

ox At, ýh(r) 
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where A (r) is an unknown vector function with the units of length so that M,,. (r) is 

dimensionless. The three types of vectors form a complete set over the vector space and hence 

are mutually orthogonal: 

f L'mn(r)"M'mn(r)dfl=0 (A. 6) 

fm'.. (r) " N'mn (r)df 2=0 (A. 7) 

JLmn (r) " N*mn (r)d)t =0 
(A. 8) 

in which the integral is over the solid angle SZ. 

Also, 

V [V sL mit 
(r)] _ -k 

2L 
mit 

(r) (A. 9) 

VxVxMmn(r)=k2Mmn(r) (A. 1O) 

VxVxNmn(r)=k2Nmn(r) (A. 11) 

From Eqs. (A. 4) and (A. 10), it follows that: 

VxM 
mit (r) =k2 A(r)fmn (r) +V U (A. 12) 

or VxVx A(r)fmn (r) =k2 A(r)fmn (r) +VU (A. 13) 

An informed trial expression for U is 

U= ý' ýA(r) fmn (r)]- 2a(r)fmn (r) (A. 14) 

where a(r) is an unknown scalar function. The expansion of the l. h. s. of Eq. (A. 13) by using 

the vector identity: 

VxVx_=_0(0"_)-0"p_ 

and the substitution of U then leads to : 
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-V"V(A(r)f , (r))=k2, t(r)f, (r)-2V[a(r)f , (r)} 
(A. lS) 

However, 

-V" V(A(r)f, (r)) _ -V. 
[Fm, (r)A(r)+fm, (r)VA(r)1 (A. 16) 

= -[Q " Fam. Cr)Yý(r)-2F. ý, (r)"ýA(r)-fm, (r)0 " VA(r) 

where 

Fý. (ý)=QI (ý) (A. 17) 

But by Eq. (A. 1) 

V. F1 , (r)"-. E2f., (r) (A. 18) 

and so Eq. (A. 15) reduces to 

2Fm�(r)" VA(r) + f_, (r)V"VA(r)" 2F . (r)a(r)+2f,,,,,, (r)Va(r) (A. 19) 

QA(r)   3a(r) (A. 20) 

ca(r)"0 (A. 21) 

in which 3 is the unity dyadic or idcmfactor. l lcncc a(r) is just a constant 

a(r). a 

and Eq. (A. 20) can be written in artesian co-ordinates as 
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3 
As = a, 

I 
Ay = a, 

- 
AZ = a. 

(A. 22) 

The solutions of the last set of equations are: 

As =ax+b1, Ay =ay+by, As =az+b, 

or 

A(r) = ar +b 

It should be noted that VxA=0 and V"A= 3a from which 

M 
mit 

(r) _ ýfmn (r) x A(r) 

and 

(A. 23) 

(A. 24) 

N 
mit 

(r) = kA(r)fmn (r) +kV [afmn (r) + A(r) e Vf.,, (r)] 
(A. 25) 

can be obtained. These are completely general expressions. 

Two particular solutions are: 
(a) A=b, a=0 

Mmý(r)=Ofýn(r)xb (A. 26) 

N 
mit 

fir) = kbimn fir) +kV [b . Vf.,, (r)] 
(A. 27) 

An Example for A= -a,,, a=O, b=k -ax: k 
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Mmit(r)=kVfmn(r)xax 

Nmit(r)=axýmn(r)+k2 OI fmn(r)J 

and(b)A=r, a=1, b=0 

M 
mit 

ýr) - ýfmn (r) xr (A. 28) 

Nmn(r)=lnfmn(r)+kOVmit(r)+r"Ofmn(r)ý (A. 29) 

_ kfm, (r) +k OI 
I 

(rfmn (r))] 
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