
CHARACTERISATION OF CANNABINOID 

RECEPTORS ON IMMUNE CELLS AND CELL 

LINES 

Kenneth Ihenetu 

A thesis submitted in partial fulfilment of the 
requirements of the University of Hertfordshire for 

the degree of Doctor of Philosophy 

The programme of research was carried out in the 
Department of Biosciencesat the University of 

Hertfordshire 

March 2003 

i 



Dedicated to the loving memories of 

Mr C. O Ihenetu Esq (Dad) 

And 

Mr C. N. Ihenetu (brother) 

May your souls rest in peace, Amen 

`Blessed are the meek, for they will inherit the earth" 

Matthew 5: 5 

11 



Acknowledgements 

Firstly, I must thank my supervisory team for their guidance and motivation all 
through this work. Dr C. J. Whelan (Principal Supervisor), Dr A. Molleman and 
Professor M. E. Parsons (Co-Supervisors), your vast knowledge of pharmacology and 
enthusiasm for research was the driving force behind my success. I lack words to 
express my deepest gratitude and appreciation. 

Special thanks to Professor Alan Baird of the University College Dublin, Dr Mike 
Salmon of the University of East London and Dr Anwar Baydoun for your advice and 
the valuable times I spent in your laboratories during the course of this study. To my 
fellow PhD students, technical staff, research staff and the administrative staff of the 
department of Biosciences, I cannot thank you so much for your various contributions 
to the success of this work. 

To my loving wife, Mrs N. Ihenetu, my daughters, Gloria, Stephanie and Marie- 
Marjorie, my brothers, sisters and in-laws, you have endured a lot but success is not 
without hard work. I thank you for your understanding, help and patience despite all 
our problems. Finally to my mum, Mrs M. Ihenetu and uncle, Rev. Fr. E. C. Ihenetu, 
you are always there for us. May the almighty shower his blessings unto you? To my 
friends and colleagues at Lister hospital, Stevenage and anyone who indeed 
contributed directly or indirectly to this work, I thank you very much. 

111 



Abstract 
Cannabinoids may inhibit immune cell function by modulating cytokine/chemokine 

release but the receptors mediating these events are poorly characterised. The aim of 

this thesis is to characterise cannabinoid receptors mediating cytokine/chemokine 

release from immune and inflammatory cells by measuring the effects of cannabinoids 

on cytokine release using ELISA technique. Apoptosis of inflammatory cells was also 

assessed by visual evaluation of cells treated with cannabinoids using a nuclear 

fluorochrome 4'6-diamidino-2 phenyl indole dihydrochloride (DAPI). 

Non-selective cannabinoid receptor agonists CP55,940 (10-6 -10-4 M- 10 'S M), A? - 

THC (10 -10 M) and anandamide (10 M- 10-4 M) inhibited LPS-induced release of 

TNF-a from THP-1 cells, a monocytic cell line. The cannabinoid CB2 receptor 

antagonist SR144528 (10 -6 M) but not the cannabinoid CB1 receptor antagonist 

SR141716A (10 -6 M) antagonised the inhibitory effects of CP55,940 (pA2 = 6.1 t 

0.1, n=6) on THP-1 cells. Similarly, CP55,940 (10-6-104 M -10 'S M), 09-THC (10 

10 M -10 -S M) and anandamide (10 -6 M -10'4 M) inhibited PHA/PMA-induced IL-2 

release from Jurkat cells, a lymphocytic cell line. However in contrast to THP-1 cells, 

neither SR141716A (10 -6 M) nor SR144528 (10 -6 M) antagonised the inhibitory 

effects of CP55,940 on this cell line. In peripheral blood mononuclear cells a non- 

selective cannabinoid receptor agonist WIN55212-2 (10'10 M-10'5 M) and a selective 

cannabinoid CB2 receptor agonist JWH 015 (10 -10 M- 10 -S M) inhibited PHA- 

induced release of IL-2. These effects were antagonised by SR144528 (10-6 M) (pA2 

= 6.3 ± 0.1; 6.5 ± 0.1, n=5 respectively) but not by SR141716A (10 -6 M). CP55,940 

(10 -10 M -10 -5 M) produced a small, non-significant (P> 0.05) inhibitory effect on 

IL-2 release. 09-THC (10 -10 M-10-6 M) and ACEA (10 -'0 M- 10 -6 M) had no 
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significant inhibitory effect on the release of IL-2 from PBMC. CP55,940 (10 M) 

and A9- THC (10 M) antagonised the inhibitory effects of WIN55212-2 (pA2 = 6.1 ± 

0.1; 6.96 ± 0.16, n=5 respectively). In HT-29 cells, CP55,940 (10"10 -10"5 M- 10 

M), A9-THC (10 -10 M -10 -5 M), WIN55212-2 (10"10 M-10-5 M) and JWH 015 (10 -10 

M- 10 -5 M) inhibited IL-8 release. SR141716A (10 -6 M) antagonised the 

inhibitory effects of CP55,940 (pA2 = 8.3 ± 0.2 n=6) but did not antagonise the effects 

of WIN55212-2 and JWH 015. SR144528 (10 -6 M) but not SR141716A (10 -6 M) 

antagonised the inhibitory effects of CP55,940 (pA2 = 8.2 ± 0.8, n=6), WIN55212-2 

(pA2 = 7.1± 0.3, n=6), JWH 015 (pA2 = 7.6 ± 0.4, n=6) respectively. 

A protein the size of cannabinoid CB2 receptors was localised in this cell line by 

Western blotting. CP55,940 and WIN55212-2 inhibited basal and agonist-evoked 

increases in both intracellular cyclic AMP and intracellular calcium at the same 

concentration as that inhibiting TNF-a-induced release of IL-8. Furthermore 

anandamide (>1 µM) but not CP55,940 caused apoptosis in Jurkat and HT-29 cell. 

These data suggest that activation of cannabinoid CB2 receptors in THP-1 cells, 

PBMC and HT-29 cells could lead to inhibition of cytokine/chemokine release. 

Furthermore, cannabinoid-evoked inhibition of basal and agonist stimulated increases 

in HT-29 cells may be related to cannabinoid-evoked inhibition of IL-8 release. Thus 

data presented in this thesis suggest that cannabinoid CB2 receptor agonists with high 

efficacy may have potential clinical utility in the treatment of inflammatory conditions 

such as inflammatory bowel disease (IBD) or chronic obstructive pulmonary disease 

(COPD) and other inflammatory disorders where epithelial cells have a major role. 
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Abbreviation 

[Ca2+ Intracellular free calcium 
AC Adenylyl cyclase 
ACh Acetyl choline 
ADP adenosine diphosphate 
AEA Arachidonoyl ethanolamide 
AIDS Acquired immunodeficiency syndrome 
ANOVA Analysis of variance 
AP-1 Activator protein 1 
AP-2 Activator protein 2 
APC Antigen presenting cells 
ATF Activator transcription factor 
BCA Bicinchoninic acid 
cAMP cyclic adenosine monophosphate 
CD Cluster of differentiation 
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CHO Chinese hamster ovary cells 
CIA Collagen induced arthritis 
CL Confidence limit 
CMI Cell mediated immunity 
COPD Chronic obstructive pulmonary disease 
CREB cAMP responsive binding protein 
CTX Cholera toxin 
DAPI (4'6-diamidino-2 phenyindole dihydrochloride 
DMSO Dimethylsulphoxide 
DNA Deoxyribonucleic acid 
ECiRma,, 1/2 maximum effective concentration 
ECACC European collection of animal cell cultures 
EDTA Ethylene diamine tetra acetic acid 
EGTA Ethylene glycol tetra acetic acid 
ELISA Enzyme linked immunosorbent assay 
ERK Extracellular signal transduction kinase 
FAAH Fatty acid amide hydrolase 
FCS Foetal calf serum 
GABA Gamma amino butyric acid 
GIRK G protein inward rectifying potassium current 
GPCR G protein coupled receptor 
GTP Guanine triphosphate 
HIV Human immunodeficiency virus 
IBD Inflammatory bowel disdease 
IC 1/2 max '/2 maximum inhibitory concentration 
ICAM Intracellular adhesion molecules 
IFN-y Interferon gamma 
IgE Immunglobulin E 
IgG Immunglobulin G 
IL-I Interleukin I 
IL-10 interleukin I beta 
IL-10 Interleukin 10 
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IL-12 Interleukin 12 
IL-2 interleukin 2 
IL-4 Interleukin 4 
IL-8 Interleukin 8 
iNOS inducible nitric oxide synthase 
IP3 inositol triphosphate 
Kb Kilobytes 
KDa kilodaltons 
LPS Lipopolysaccharide 
MAP Mitogen activated protein kinase 
MRNA messenger ribonucleic acid 
MTT (3-[4,5-dimethyl thiazole-2yl]2,5-diphenyl tetrazolium bromide 
NBTS National blood transfusion service 
NF xB Nuclear factor kappa B 
NF IL6 Nuclear factor interleukin 6 
NK Natural Killer cell 
NO Nitric oxide 
PA2 A logarithmic measure of antagonist potency 
PBMC Peripheral blood mononuclear cells 
PBS Phosphate buffered saline 
PGE2 Prostaglandin E2 
PHA Phytohaemagglutinin 
PKA Protein kinase A 
PMA Phorbol 14 myristate 13 acetate 
PMSF Paramethyl sulphonic acid 
PT Paclitaxel 
PTX Pertussis toxin 
PVDF Polyvinyldene difluoride 
SDS-PAGE Sodium dodecyl sulkphate-polyacrylamide gel electrophoresis 
SRBC Sheep red blood cells 
TCR T cell receptor 
Th T helper cell 
TMB Tetramethyl benzidine 
TNBS Trinitrop benzene sulphonic acid 
TNF-a Tumour necrosis factor a 
VR Vanilloid receptor 
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Chapter 1; General Introduction 



1.1 Background 

Cannabinoids, by definition, are a diverse group of compounds that display some or 

all of the pharmacological properties of A9-tetrahydrocannabinol (09-THC), originally 

identified as the main psychotropic constituent of marijuana (Gaoni and Mechuolam, 

1964). Marijuana (cannabis) and its derivatives have been used for over 5000 years 

for both medicinal and recreational purposes (Nahas and Peters, 1999). However, 

their introduction as a therapeutic medicine has been hampered largely because of 

their psychoactive effects up until recently. 

Following the discovery that cannabinoids act through transmembrane receptors, there 

was a surge of scientific interest in cannabinoid pharmacology (Howlett et al, 1986). 

To date, two cannabinoid receptors have been identified and cloned (cannabinoid CB1 

and cannabinoid CB2) receptors respectively (Matsuda et al., 1990; Munro et al., 

1993). Cannabinoid CB1 receptors are localised mainly in the central nervous system 

and some peripheral neurons (Glass et al., 1997). In contrast, cannabinoid CB2 

receptors are localised mainly in the immune system (Munro et al., 1993; Schatz et 

al., 1997). 

For the past twenty years, data from clinical and basic research on the effects of 

cannabinoids now suggest that they may have utility in a wide range of clinical 

indications including analgesia, control of nausea and appetite stimulation (for 

reviews, see Pertwee, 1997). However, only two therapeutic cannabinoids have been 

approved for medicinal use. Nabilone marketed as Cesamet®, is currently used in the 

United Kingdom as an adjunct therapy for suppression of nausea and vomiting 

induced by anti-cancer drugs (Pertwee, 1996) and Marinol ®, an oral preparation of 
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A9"tetrahydrocannabinol, approved by the State of California is used for the treatment 

of cachexia in acquired immune deficiency syndrome (AIDS) patients (Beal, et al., 

1995; Grinspoon et al., 1995). 

Recent evidence from in vivo and in vitro studies show that cannabinoids can either 

increase or decrease immune cell functions but the mechanisms are poorly 

understood. Thus cannabinoids may impair cell-mediated immunity (Nahas et al. 

1976; Klein et al., 1985), humoral immunity (Baczynsky and Zimmermann, 1983) 

and cellular defences against a variety of infectious agents, including inhibition of 

cytokine release from immune cells (Klein et al, 1998; Berdyshev, 2000). The 

reported differences on the effects of cannabinoids in immune cells is now known to 

depend upon experimental factors such as the concentration of drugs used, drug 

delivery time, type of cells and systems studied (Dewey, 1986). Therefore, given the 

ability of cannabinoids to increase or decrease the immune cell function, they are now 

re-classified as "immunomodulators". 

The immunomodulating effects of cannabinoids e. g. A9-THC are observed at a 

relatively high drug concentration (>1 µM or 5 mg/kg), i. e. higher than concentrations 

required to evoking psycho-activity (Klein et al., 1995; Kaminski et al., 1994). 

However, cannabinoid receptors involved in the inhibition of immune cell functions 

are poorly characterised. The aim of this project is to characterise the cannabinoid 

receptors mediating inhibition of cytokine release from immune cells and cell lines in 

vitro with a view to identifying the likely profile of activity required for a cannabinoid 

to have utility as an immunomodulator. 
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1.2 Cannabinoid receptors 

Before the discovery of the cannabinoid receptors, the pharmacological properties of 

the cannabinoids and their lipophilic nature were suggestive of non-receptor mediated 

action (Dewey, 1986). However, some indications that cannabinoids acted through 

receptors came from studies showing that O9-THC displayed enantiometric specificity 

(Howlett et al, 1986). Further evidence supporting this hypothesis came from 

experiments showing that cannabinoids inhibited adenylate cyclase resulting in a 

decrease in intracellular cyclic AMP (Howlett, 1984). Confirmation of specific 

cannabinoid binding sites (receptors) in the brain awaited the discovery of a synthetic 

analogue of O9-THC, CP55,940 (Johnson and Melvin, 1986). This compound was 

more polar in nature than A9-THC and the tritiated compound 3H CP55,940, was 

synthesized in order to identify cannabinoid binding sites in the rat brain (Howlett et 

al., 1986). Consequently, the first cannabinoid receptor (CB1) was identified by 

Devane et al., (1988) and cloned by Matsuda et al. (1990). The second cannabinoid 

receptor (CB2) was identified and cloned by screening a human cDNA library from 

the human promyelocytic cell line HL-60 (Munro et al., 1993). 

1.2.1 Cannabinoid CB, receptors 

The human cannabinoid CB1 receptor was identified and cloned by Matsuda et al. 

(1990). The cDNA encoded 473 amino acid proteins with the features of a G-protein 

coupled receptor (GPCR) (see figure 1.2 a, for the molecular structures of 

cannabinoid CB1 receptors). The cannabinoid CB1 receptors were shown to inhibit 

adenylate cyclase activity in a stereo-selective and dose-dependent manner (Pertwee, 

1997). These receptors are localised in the brain and the spinal cord and in some 

peripheral tissues (Pertwee, 1997). The pattern of distribution of cannabinoid CB1 

receptors within the central nervous system is heterogenous and may account for 
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most, if not all, of their pharmacological properties, such as impairment of cognitive 

reasoning and memory e. t. c. In the peripheral tissues, cannabinoid CB1 receptors are 

localised mainly in neurons residing within the nerve terminals (Tsou et al., 1998), 

and they were shown to play key roles in inhibiting neurotransmitter release (Coutts 

and Pertwee, 1997). Cannabinoid CB, receptors have also been found in leukocytes 

but their role in the immune system has yet to be established (Shen et al., 1996). The 

density of cannabinoid CB, receptors is less in peripheral tissues than in the central 

nervous system (Pertwee, 1997), with higher densities in nerve terminals (Tsou et al., 

1998). Figures 1.2 a and b below show the structural features of cannabinoid CBS and 

CB2 receptors. 
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(a) cat 

(b) CB2 

i3 

Figure 1.2 (a) The structural features of a cannabinoid CB, and (b) CB2 receptors 
based on protein sequences U22948 and X864405 from GenBank sequences 
respectively. Adapted from Klein et al., 1998. 
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1.2.2 Cannabinoid CB2 receptors 

Cannabinoid CB2 receptors were cloned from the human promyelocytic cell line (HL- 

60) by screening a human cDNA library (Munro et al., 1993). Like cannabinoid CB, 

receptors, the primary amino acid sequence of cannabinoid CB2 receptors is consistent 

with that of a transmembrane G-protein coupled receptor (Fig. 1.2 b) (Munro et al., 

1993). Cannabinoid CB2 receptors are found predominantly in the immune system 

where the expression is 10-100 times greater than that of cannabinoid CB1 receptors. 

The amount of mRNA for cannabinoid CB2 receptors in human leucocytes occurs 

with the following rank order: B cell> natural killer cells> monocytes> 

polymorphonuclear neutrophils> T8> T4 cells (Galigue et al., 1995). Some studies 

also suggest that cannabinoid CB2 mRNA can be found in the brain, mainly in the 

cerebellar granule cells and the microglia e. g. (Skaper et al., 1996). Given the fact 

that these cells constitute the main brain immune "scavengers" (Skaper et al., 1996), 

they are now thought to play important roles in the brain immune response. 

1.3 The non CBi/CB2 cannabinoid- receptors 

One of the earliest pieces of evidence suggesting the existence of another cannabinoid 

receptor was the isolation of a spliced variant of cannabinoid CB1 receptors known as 

cannabinoid CBI. receptors from a human lung eDNA library (Shire et al., 1995). 

However, no significant differences in the distribution pattern or pharmacological 

profiles between cannabinoid CB, and CB 1a receptors have yet emerged (Pertwee et 

al, 1997). A similar variant for cannabinoid CB2 receptors has also been proposed 

(Schatz et al. 1997). Similarly, no differences have yet been found and hence these 

variant forms of cannabinoid receptors have received little attention to date. 

However, with the discovery of the endogenous cannabinoids, there is accumulating 
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pharmacological and biochemical evidence to support the existence of non-CBi/non- 

CB2 cannabinoid receptors. 

1.3.1 Cannabinoid CB1-like receptors 

Several examples of cannabinoid CB1 receptor-like mediated responses have been 

described. For example, anandamide was shown to induce vasodilation of rat 

mesenteric arteries, which was attenuated by SR141716A, the CB1 receptor 

antagonist, suggesting an action via cannabinoid CB1 receptors. However, this effect 

was still present in knock out mice lacking the gene for cannabinoid CB1/CB2 

receptors, indicating a target for anandamide on endothelial cells that is distinct from 

existing cannabinoid CB, or CB2 receptors (Jarai et al., 1999). Other studies on 

cannabinoid receptor signal transduction mechanisms have also shown that 

anandamide and WIN55212-2, but not the classical e. g. 09-THC or non-classical 

cannabinoids, e. g. CP55,940 can stimulate [35S] GTPyS binding in the cannabinoid 

CBI knockout mice indicating the presence of another G-protein coupled receptor for 

anandamide and WIN55212-2 that may be different from those activated by other 

cannabinoid agonists (Breivogel et al., 2001). Taken together, these examples could 

be interpreted as indicating a low level of expression of the already characterised CB, 

cannabinoid receptors or an unidentified cannabinoid CB1-like receptors, at which 

some cannabinoid receptor agonists show a low level of efficacy. 

1.3.2 Cannabinoid CB2-like receptors 

In cannabinoid CB2-like receptor-mediated responses, palmitoylethanolamide was 

shown to exhibit a poor affinity for cannabinoid CB1 and CB2 receptors (Devane et 

al., 1992), yet this agonist induced antinociceptive responses in the mouse formalin 

paw test as well as in the mouse abdominal stretch test (Calignano et al., 1998). 

These actions were attenuated by the cannabinoid CB2 receptor antagonist SR144528 
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but not by the cannabinoid CB1 receptor antagonist SR141716A, indicating that these 

effects were mediated by cannabinoid CB2_ receptors (Calignano et al., 1998). In 

contrast, lipopolysaccharide-induced-inducible nitric oxide (iNOS) production in 

RAW 2647 cells was inhibited by palmitoylethanolamide, an effect that could be 

mimicked by other cannabinoid receptor agonists, suggesting that this action was 

mediated via a distinct receptor from the known cannabinoid receptors (Gross, 2000). 

The presence of cannabinoid C132-like receptors has also been demonstrated in 

peripheral nerve terminals in the mouse vas deferens and myenteric longitudinal 

muscle preparations (Griffin et al., 1997). Pharmacological studies suggest that 

sufficient differences have already been established to support the existence of C132- 

like receptors distinct from cannabinoid receptors found in immune tissues (Griffin et 

al., 1997). Other evidence for cannabinoid C132-like receptors includes the finding, 

that anandamide not only binds to cannabinoid CB, receptors and CB2 receptors but 

can also bind to vanilloid type I (VRI) receptors, a ligand-gated, non selective cation 

channel (Zygmunt et al., 1999; Smart et al., 2000). The nature of this binding to 

vanilloid receptors is different from the binding to cannabinoid receptors (Di Marzo et 

al., 2001). While anandamide has been shown to bind to the intracellular domain of 

the cannabinoid CB1 receptors (Di Marzo et al., 2001), it binds to the extracellular 

domain in the vanilloid receptors suggesting that an unidentified transport factor 

might regulate its distribution and its action via these two receptors (Di Marzo et al., 

2001). Taken together, these observations raise the possibility for the existence of 

cannabinoid receptors distinct from the established receptors (CB1 and CB2). 
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1.4 Cannabinoid receptor agonists 

Cannabinoid agonists are classified into four major groups according to their chemical 

structures namely: (a) classical e. g. (-)-A9-6a, IOa-trans-tetrahydro cannabinol ( A9- 

THC), (b) non-classical, e. g. (-)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-[3- 

hydroxy propyl] cyclo hexan-lol (CP55,940), (c) aminoalkylindoles, e. g., (+)-[2,3- 

dihydro-5- methyl -3- [(4-morpholinyl) methyl ]pyrrolo[1,2,3-de] -4-benzoxazin-yl]- 

(1-naphthalenyl) methanone mesylate (WIN55,212-2) and (d) the endogenous 

cannabinoids or eicosanoids e. g. arachidonoyl ethanolamide (anandamide). This 

section describes various cannabinoid receptor ligands including those employed in 

this study. 

1.4.1 The classical cannabinoids 

These are dibenzopyrane derivatives of which A9-THC is a typical example (fig. 1.4 a) 

and are the main psychoactive components of the herbal plant, Cannabis saliva 

(Gaoni and Mechuolam, 1964). Another plant-derived cannabinoid A8-THC is also a 

component of cannabis sativa (Gaoni and Mechuolam, 1964). The synthetic 

analogues belonging to this group are &g-THC-dimethylheptyl (HU *210) and 3-(5'- 

cyano-1', 1'-dimethyl-pentyl)-1(4-N-morpholinobutyryloxy)-Og-THC hydrochloride 

(0-1057). Compound 0-1057 deserves special attention by the virtue of the fact that 

it is a water-soluble cannabinoid. The availability of a water-soluble cannabinoid has 

implications both as a useful tool in laboratory studies and in the clinic, where they 

may be administered as injections or aerosols. 

1.4.2 The non-classical cannabinoids 

The non-classical cannabinoids are bi or tricyclic analogues of A9-THC in which the 

central pyran ring of A9-THC has been removed. A typical example in this group is 

CP55,940, (fig. 1.4 b), a synthetic product from Pfizer (Johnson and Melvin, 1986). 
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CP55,940 shows a high degree of correlation with its classical congener A9-THC in its 

in vivo activity and other pharmacological characteristics typical of A9-THC 

(Compton et al, 1993). 

1.4.3 The aminoalkylindole cannabinoids 

Of all cannabinoid receptor ligands, the aminoalkylindoles are the most structurally 

dissimilar to the classical cannabinoids. A typical example in this group is 

WIN55212-2 (see Fig. 1.4 c) an aminoalkylindole cannabinoid (Pacheco et al., 1991). 

WIN55212-2 inhibited electrically evoked contraction in the mouse vas deferens over 

a wide concentration range (0.1-100 nM) (Compton et al., 1993). WIN55212-2 is 

stereo specific in action with the (+) isomer being more active than the (-) isomer, 

WIN55212-3 (Compton et al., 1993). Developments using indole and pyrolle 

derivatives led to 1-propyl-2-methyl-3-(1-naphthoyl) indole (JWH 015), a compound 

that has a high affinity for the cannabinoid CB2 receptors (Ki= 14 ±5 nM) and a 12- 

fold selectivity for cannabinoid CB2 receptors (see table 1) (Showalter et al., 1996). 

Further structural adjustments on WIN55212-2 involving iodination of C6 on the 

indole ring produced a compound, AM 630, which is an antagonist at cannabinoid 

CB, receptors (Hosohata et al., 1997) 
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Figure 1.4 The chemical structures of cannabinoid receptor agonists 
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1.4.4 The endogenous or eicosanoid cannabinoids 

Endogenous cannabinoids are unsaturated fatty acid derivatives of ethanolamide. 

Arachidonoyl ethanolamide, or anandamide, (fig. 1.4 d), the first endogenous 

cannabinoid identified, was isolated from porcine brain and found to possess 

pharmacological properties typical of a cannabinoid agonist (Devane et al., 1992). 

Like other cannabinoid receptor agonists, anandamide evokes a "tetrad" of 

characteristic pharmacological effects; antinociception, hypothermia, sedation, and 

catalepsy, the combination of which has proved acceptable as a screening procedure 

for cannabimimetic compounds (Mechuolam and Fride, 1995). The effects of 

ananadamide are mediated via G-proteins (Felder et al., 1995), modulation of calcium 

channels and activation of MAP kinases (all of which are properties of a typical 

cannabinoid receptor ligand) (Mackie et al., 1993; Bouaboula et al., 1995). 

Despite the interest in endogenous cannabinoids, little is known about their 

physiological roles. However, recent evidence suggests that anandamide and other 

endogenous cannabinoids transmit neuronal signals and fulfil many criteria for 

atypical classical neurotransmitters including: 

" Synthesis of transmitters and influx of calcium in response to depolarisation: A 

number of recent studies suggest, that anandamide is synthesised and released 

from neurons in response to neurotransmitters or depolarisation and or via 

calcium influx e. g. (Stella and Piomelli. 2001; Wilson and Nicoll, 2001). 

" Mimicry in responses to neuronal stimuli: Neuronal stimulation or exogenous 

addition of endocannabinoids such as anandamide interacts with postsynaptic 

receptors and mimics the effects of the classical cannabinoids as shown by Di 

Marzo et al. (1998). 
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0 Degradation of surplus transmitter: There are a number of studies showing that 

following the synthesis and release of the endocannabinoids from the presynaptic 

neurons, surplus endocannabinoids are rapidly removed from the extracellular 

space by a membrane transport process (Di Marzo, 1999; Di Marzo et al., 1998; 

Hillard and Jarrahian, 2000, Piomelli and Beltramo, 1999; Deutsch and Chin, 

1993). 

" Re-uptake of transmitter or degradation of products: There is also evidence that 

endocannabinoids such as anandamide are biotransformed via a microsomal 

enzyme known as fatty acid amide hydrolase (FAAH) (Di Marzo, 1999; Di Marzo 

et al, 1998). 

Taken together, the endogenous or eicosanoid cannabinoids seem to fulfil the criteria 

for a classical neurotransmitter. Unlike classical neurotransmitters, the endogenous 

cannabinoids can function as "retrograde synaptic messengers". Hence they are 

released from postsynaptic neurons and travel backward across synapses activating 

cannabinoid CB1 receptors on presynaptic axons and suppressing neurotransmitter 

release as shown by Wilson and Nicoll (2001). Endocannabinoid release occurs via a 

calcium-activated mechanism that requires phospholipase D-catalysed hydrolysis of 

the phospholipase D prescursor, N-arachidonoyl-phosphatidylethanolamine (Di 

Marzo et al, 1994). Thus, despite having a rapid onset of action, the duration of action 

of anandamide is relatively short, perhaps because of its rapid hydrolysis by FAAH. 

This amidase activity is sensitive to serine protease inhibitors such as 

phenylmethanesulfonyl fluoride (PMSF) (Deutsch and Chin, 1993; Koutek et al., 

1994). This compound is now frequently employed in studies with endocannabinoids. 
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Some interactions between endogenous cannabinoids e. g. anandamide and other 

receptors such as opioids, vanilloids and GABAB receptors have been reported (Di 

Marzo et al., 1994). The exact significance of these observations is not known but 

may reflect the physiological roles of the endogenous cannabinoid system in the 

inhibition of neurotransmitter release in the brain and the peripheral nervous systems 

(Pertwee, 1997). 

1.4.5 Other endogenous (eicosanoid) cannabinoids and their actions 

Other endogenous cannabinoids such as sn-2-arachidonoyl glycerol (2-AG) and - 

arachidonoylglycerol ether (nolandin ether) have been identified. These compounds 

were isolated from intestinal tissues and both bind to cannabinoid, CB1 and CB2 

receptors (Howlett, 2002). 2-AG has 3 fold greater selectivity for cannabinoid CB1 

receptors over cannabinoid CB2 receptors (refer to Table 1.1) and is present in the 

brain at concentrations about 170 times greater than anandamide (Stella et al., 1997). 

Recent evidence suggests, that endocannabinoids such as 2-AG may display 

"entourage effect". The entourage effect of 2-AG can best be illustrated in a study 

where 2-AG was accompanied by several 2-acyl-glycerol esters e. g. 2-Linoleoyl- 

glycerol (2-Lino-GI) and 2-palmitoyl (2-Palm GI) (Ben-Shabat, et al, 1998). These 

compounds do not on their own bind to cannabinoid receptors nor do they inhibit 

adenylate cyclase activity. However they potentiate the binding of 2-AG and 

contribute to the potentiation of the effects of 2-AG as measured by inhibition of 

adenylate cyclase and the resultant decrease in intracellular cAMP (Ben-Shabat et al., 

1998). The exact physiological significance of this effect remains unclear but may be 

important in the future and during characterisation of the effects of these compounds 

on the cannabinoid receptors. 
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1.5 Cannabinoid receptor antagonists 

1.5.1 Cannabinoid CB1 receptor antagonists 

Studies at Sanofi Recherche led to the development of the first cannabinoid receptor 

antagonist, SR141716A (Fig. 15 a) (Rinaldi-Carmona et al., 1994). This compound 

is a diarylpyrazole and displays nanomolar affinity for the cannabinoid CB1 receptors 

with approximately 60 fold selectivity for cannabinoid CB, receptors over 

cannabinoid CB2 receptors (Rinaldi-Carmona et al., 1994 Table 1.1). SR141716 A, 

antagonises the inhibitory effects of cannabinoid agonists on mouse vas deferens and 

adenylate cyclase activity in rat brain membranes (Rinaldi-Carmona et al., 1994). It 

does not affect cannabinoid CB2 receptor-mediated effects such as inhibition of nitric 

oxide (NO) release from rat peritoneal macrophages (Ross et al., 2000). SR141716 A 

evokes effects opposite to those produced by cannabinoid receptor agonists in some 

bioassays suggesting that this compound may be an inverse agonist (Pertwee et al., 

1997). Additional evidence for the inverse agonist activity of SR141716 A was 

demonstrated in Chinese hamster ovary cells CHO-cells transfected with cannabinoid 

CB1 receptors (Bouaboula et al., 1997). In these cells, guanine nucleotides decreased 

the binding of the cannabinoid agonist CP55,940, an effect usually observed with 

agonists, whereas it enhanced the binding of SR141716 A, a property of an inverse 

agonists. Whilst such "inverse cannabimimetic effects" may be attributed to a direct 

antagonism of responses evoked at cannabinoid CBi receptors by released 

endocannabinoids, there is evidence that this is not the only possible mechanism and 

that SR141716 A is in fact an inverse agonist (Bouaboula et al. 1997, Coutts et al., 

2000). Thus SR141716 A may produce inverse cannabimimetic effects in at least 

some tissues by reducing the activity of endogenous cannabinoids at the CB, 

cannabinoid receptors i. e. (the coupling of CBS receptors to their effector mechanisms 
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that is thought to occur in the absence of an exogenously added or endogenously 

produced CB1 agonists). In addition to SR141716 A, other cannabinoid CBS receptor 

antagonists such as AM 630 and LY-320135 have been developed (Hosohata et al., 

1997). Like SR141716 A, these compounds also display inverse agonist activities at 

cannabinoid CBI receptors in some biological systems (Hosohata et al., 1997). 

1.5.2 Cannabinoid CB2 receptor antagonists. 

The first cannabinoid CB2 receptor antagonist described was a diarylpyrazole, 

SR144528 (Fig. 1.5 b) (Rinaldi-Carmona et al., 1998). SR144528 displays a high 

affinity for cannabinoid CB2 receptors in rat spleen cells or in Chinese hamster ovary 

CHO-cells transfected with human cannabinoid CB2 receptors (Table 1), where it has 

approximately 50 folds greater selectivity for cannabinoid CB, receptors over 

cannabinoid CB1 receptors (Rinaldi-Carmona et al., 1998). Like SR141716A, 

SR144528 also displays inverse agonist activity in CHO cells transfected with 

cannabinoid CB2 (Bouaboula et al., 1999). 
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Figure 1.5 The chemical structures of cannabinoid receptor antagonists 
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1.6 Cannabinoid sub-type selective ligands 

The best characterised cannabinoid agonists e. g. CP55,940 and A9-THC are 

essentially non-discriminatory since they bind to both CB1 and CB2 cannabinoid 

receptors with high affinity (Table 1) (Rinaldi-Carmona et al., 1998). However, 

selective cannabinoid receptor agonists have been developed and these compounds 

have selectivity and affinity for each of the cannabinoid receptor subtypes described 

above. For example, two selective cannabinoid CB, receptor agonists have been 

developed. These are the N-arachidonoylethanolamine analogues namely: 

arachidonoyl cyclopropylamide (ACPA) and arachidonoyl 2-chioroethylamide 

(ACEA) (Hillard et al., 1999). ACPA and ACEA show greater than 300 and 1000 

selectivity respectively, for cannabinoid CBI receptors over cannabinoid CB2 

receptors (refer to Table 1). Other compounds showing some selectivity at 

cannabinoid CB1 receptors include; anandamide and 2-arachidonoyl glycerol 

(Mechoulam et al., 1995; Ben-Shabat et al., 1998). Cannabinol (CBN) was reported 

to have 3.8 folds selectivity for cannabinoid CB2 receptors over cannabinoid CB, 

receptors (Felder et al., 1995). The substitution of an n-propyl group of the 

morpholino side chain of the aminoalkylindole (WIN55212-2) produced 1-propyl-2- 

methyl-3(1-naphthoyl) indole (JWH 015) which has 28 fold selectivity for 

cannabinoid CB2 receptors than for the cannabinoid CB, receptor (Showalter, et al., 

1996; Table 1.1. 
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Table 1.1 Comparison of Ki values of Cannabinoid receptor Ligands 

Receptor subtype CB1 (Ki) CB2 (Ki) Ref 
nM nM 

Classical 
A9-THC 40.7 ± 1.7 36.4 ± 10 Showalter et al., (1996) 
HU-210 0.06 ±0.01 0.52 ± 0.05 Felder (1998) 
Cannabinol 308 ± 40 96.3± 14 Showalter et al., (1996) 
Cannabidiol 4350± 390 5150 ±4190 Showalter et al., (1996) 
Non-Classical 
CP55,940 0.58 ±0.07 0.69 ± 0.02 Showalter et al, (1996) 

Amino-alk lid ndole 
W1N55,212-2 1.89 ±0.09 0.28 ±0.16 Showalter et al, (1996) 
JWH-015 383 ±72 13.8 ±4.6 Showalter et al, (1996) 
JWH-018 9.5 ±4.5 2.94 ±2.65 Showalter et al, (1996) 

Eicosanoids 
Anandamide 89 ± 10 371 ±102 Showalter et al, (1996) 

sn- 
arachidonylglycerol 472 ± 55 1400 ±172 Felder et al, (1998) 
(2-AG) 
arachidonylcyclopro 
pylamide (ACPA) 2.2 ± 0.4 715 ±14 Hillard et al , (1999) 

arachidonyl-2- 
chloroethylamide 
(ACEA) 1.4 ± 0.3 >2000 Hillard et al, (1999) 
Antagonists 
SR141716A 12.3 ± 3.1 702±62 Shire et al., (1996) 
SR144528 33.0 ±5.09 0.67±30 Griffin et al, (1999) 

Ki is defined as the inhibition constant for a drug, and is the concentration of 
competing ligand in a competition assay, which would occupy 50% of receptors if no 
radioligand were present. 
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1.7 Signal transduction mechanisms of cannabinoid receptors 

There are many similarities in the signal transductions of both cannabinoid CB1 and 

CB2 receptors such as coupling to G; /Go GTP proteins and the activation of the MAP 

kinases (Felder et al., 1995). There is also evidence that cannabinoid CB1 but not 

cannabinoid CB2 receptors are coupled to inhibition of N and P/Q-type calcium ion 

channels (Felder et al., 1993; Howlett, 1995), and GS protein (Glass and Felder, 1997). 

This section deals with the current knowledge and evidence in support of the 

proposed signal transduction mechanisms of cannabinoid receptors and therefore 

provides the basis for further studies on this topic as described in chapter 6 of this 

thesis. 

1.7.1 Signal transduction mechanisms for cannabinoid CB, receptors 

1.7.1.1 Inhibition of adenylyl cyclase 

Perhaps one of the best-characterized functional properties of cannabinoid receptors is 

the negative regulation of adenylyl cycase with the resultant decrease in the 

intracellular cAMP (Felder et al., 1995). The decrease in cAMP observed following 

treatment of guinea pig isolated tissues with cannabinoid receptor agonists is 

susceptible to reversal by pertussis toxin, a toxin, which induces ADP-ribosylation of 

G; /Go proteins and the eventual dissociation of its a, ß and y subunits (Pertwee, 1997). 

The concept that cannabinoid CB1 receptors inhibit adenylate cyclase is supported by 

a number of studies employing a range of cannabinoid receptor ligands and cell lines. 

For example, O9-THC and DALN inhibit cAMP production in NI8GT2 cells via the 

pertussis toxin-sensitive G-protein, suggesting a coupling to G; /Go protein (Howlett et 

al., 1986). This effect has been demonstrated with A9-THC, CP55,940, levantradol 

and WIN55212-2 in other systems e. g. rat cultured cerebellar granule cells (Pacheco 

et al., 1993), with CP55,940 in human U373 MG astrocytoma cells (Bouaboula et al., 
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1995), with A9-THC and anandamide in CHO cells transfected with human or rat 

cannabinoid CB, receptors (Felder et al., 1993; Vogel et al., 1993). Cannabinoid- 

induced inhibitions of cAMP production in preparations known to express 

cannabinoid CB1 receptors are susceptible to inhibition by known cannabinoid CB1 

receptor antagonists such as SR141716A (Felder et al., 1995), an effect that has been 

demonstrated in experiments with W1N55212-2 in synaptosomes obtained from rat 

substantia nigra, with CP55,940 in human U373 MG astrocytoma cells, with 

WIN55212-2 and CP55,940 in GH4CI cells, or mouse X rat hybridoma NG108-15 

cells which are transfected with both rat and mouse CBI receptors (Ho and Zhao 

1996) by transfection. The ability of cannabinoids to inhibit adenylate cyclase 

activation correlates with their psychotropic potency and with their affinity for 

cannabinoid CB1 receptors in radioligand binding studies (Felder et al., 1992; 1995; 

Howlett, 1987). The rank order of agonist potency for inhibition of cAMP production 

corresponds to their displacement in radioligand binding studies and for eliciting 

cannabimimetic responses in various functional studies e. g HU 210>CP55,940>A9- 

THC anandamide >cannabinol> cannabidiol (Felder et al., 1992,1995; Howlett, 

1987). However, in some systems, cannabinoid receptor ligands did not always lead 

to inhibition of cAMP production; e. g. anandamide has been shown not to inhibit 

forskolin stimulated increases in cAMP in rat hippocampal membrane preparations 

(Childers et al., 1994). Furthermore, chronic in vivo treatment of mice with CP55,940 

is known to cause a 50 % reduction in the number of [3H] CP55,940 binding sites 

without producing tolerance to the inhibitory effect of CP55,940 on cAMP production 

by cerebellar membranes (Fan et al., 1996), suggesting that the inhibition of cAMP 

signalling system does not account for all of the effects evoked by cannabinoid 

receptor ligands. 
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Ca2+ 
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Figure 1.7. Signal transduction pathways activated by cannabinoid receptor agonists. 

Cannabinoid receptor agonists activate cannabinoid CB1 and or CB2 receptors, both 

coupled to G; /Go proteins. This leads to inhibition of adenylate (AC) and activation of 
extracellular signal-transduction kinase (ERK) cascade. Furthermore, the CB1 
receptor can induce inhibition of N-type and P/Q-type sensitive Ca 2+ channels and 
activate inward rectifying K+ channels. This leads to membrane hyperpolarisation 
and inhibition of activity. 
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1.7.1.2 Modulation of ion channels 

In addition to the negative regulation of adenylate cyclase, cannabinoid receptor 

ligands can also modulate ion channels via cannabinoid CB1 receptors (Pertwee, 

1997). Thus, several cannabinoid receptor agonists show concentration-related 

inhibition of voltage activated inward calcium currents in transfected and non- 

transfected cells (Pertwee, 1997). WIN55212-2 stereo-selectively inhibit calcium 

channels in N18 neuroblastoma cells and this effect is pertussis-toxin sensitive 

suggesting an action on G; /Go protein (Mackie and Hille, 1992; Caulfield and Brown, 

1992). In NG108-15 and N18 neuroblastoma cells, the inhibition of calcium channels 

by O9-THC was blocked by pre-treatment with w- conotoxin GV 1 A, an N-type 

calcium channel blocker, but not by nitrendipine or nifedipine, the L-type calcium 

channel blockers (Mackie and Hille, 1992; Caulfields and Brown, 1992). These 

results suggest that the effect is mediated via N-type calcium channels, which inhibit 

calcium fluxes in these cells (Mackie and Hille, 1992; Caulfields and Brown, 1992). 

Experiments with cultured rat hippocampal neurons showed that WIN55212-2 acted 

mainly via N-type (w-conotoxin GV I A-sensitive) and P/Q-type (w-conotoxin 

MV 1I C-sensitive) calcium channels (Mackie and Hille, 1992). In studies on 

Xenopus oocyte and a transfected tumor cell line (AtT-20 cells), which expressed 

inward rectifying potassium channels, G-protein inward rectifying potassium currents, 

1 (GIRK1) and cannabinoid CB1 receptors, have shown that activation of these 

receptors by cannabinoid receptor ligands leads to inhibition of inward rectifying 

potassium channels (Henry and Chavkin, 1995; Mackie et al., 1995). 

1.7.1.3 Activation of mitogen-activated protein kinase 

Another signalling event activated by cannabinoid CBI receptor stimulation is the 

mitogen-activated protein kinase (MAP) kinase pathway. Experiments in WI-38 
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human foetal lung cells showed that anandamide produced a concentration-related 

increase in the activity of MAP kinases (Pertwee, 1997). In support of this 

observation, CP55,940 also induced activation of MAP kinase phosphorylation in 

CHO cells transfected with human CB1 receptor DNA and this effect was attenuated 

by nanomolar concentrations of SR141716A (Bouaboula et al., 1995). However, 

activation of MAP kinase phosphorylation does not occur in non-transfected cells 

(Bouaboula et al., 1995). The reason for this is still unclear, but it is known that the 

transfection process can alter the protein stoichiometry in cells, which may account 

for the effects described above (Berdyshev, 2000). Additionally, the stimulatory 

effect of CP55,940 on MAP kinase was found to be sensitive to pertussis toxin pre- 

treatment implicating G; /Go proteins in this pathway (Bouaboula et al., 1995; 

Wartmann et al., 1995). The other evidence for MAP kinase activation comes from 

experiments where the administration of CP55,940 into rat striatum stimulates 

expression of the Krox-24 gene, thus suggesting a link between the production of this 

transcription factor and MAP kinase activation (Glass and Dragunow, 1995). 

1.7.2 Signal transduction mechanisms of cannabinoid CB2 receptors 

1.7.2.1 Inhibition of adenylate cyclase 

Like cannabinoid CB1 receptors, cannabinoid CB2 receptors negatively regulate 

adenylate cyclase through a pertussis toxin-sensitive G binding protein (Pertwee, 

1997). Several cannabinoid receptor ligands have been shown to inhibit forskolin- 

stimulated cAMP production from cells naturally expressing cannabinoid CB2 

receptors (Schatz et at., 1997; Koh et al., 1997; Herring et al., 1998). Forskolin- 

stimulated cAMP accumulation in CHO and AtT-20 cells transfected with 

cannabinoid CB2 receptors, an effect that was inhibited by cannabinoid receptor 

ligands (Felder et al., 1995; Rinaldi-Carmona et al., 1998). However \9-THC and 
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anandamide evoked weak inhibitory effects on forskolin-stimulated production of 

cAMP in CHO- cells transfected with cannabinoid CB2 receptors and antagonised the 

effects of other more potent cannabinoid agonists suggesting a weak partial agonist 

activity for these compounds at cannabinoid CB2 receptors (Bayewitch et al., 1995; 

1996; Slipetz et al., 1995). In line with its cannabinoid CB1 receptor antagonist 

activity, SR141716A (Rinaldi-Carmona et al., 1994), did not prevent the inhibition of 

cyclic AMP production mediated by cannabinoid CB2 receptor activation (Slipetz et 

al., 1995) in CHO cells transfected with CB2 receptors. Inhibition of cAMP 

production mediated by cannabinoid CB2 receptors in CHO cells was attenuated by 

pre-treatment with pertussis toxin suggesting a negative coupling to adenylate cyclase 

through G; /Go proteins (Bayewitch et al., 1995; Felder et al., 1995). 

1.7.2.2 Mitogen activated protein kinase 

In addition to negative regulation of adenylate cyclase, cannabinoid CB2 receptors 

stimulate mitogen"activated protein kinase activity (Wartmann et al., 1995; 

Bouaboula et al., 1996). Activation of this mitogenic pathway by cannabinoid CB2 

receptors was linked to the regulation of Krox 24 expression in the human 

promyelocytic cell line HL-60 (Bouaboula et al., 1996). The endogenous 

cannabinoid 2-AG also induced a rapid phosphorylation of p42/44 MAPK in HL-60 

cells and this effect was attenuated by prior treatment with SR144528 suggesting a 

cannabinoid CB2 receptor mediated event (Kobayashi et al., 2001). This response 

was also attenuated by pre-treatment of HL-60 cells with pertussis toxin suggesting 

that cannabinoid CB2 receptors are Gi/Go protein coupled receptors (Kobayashi et al., 

2001). 
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1.8 Effects of cannabinoids on immune cell function 

Many in vivo and in vitro studies have shown that cannabinoids are 

immunosuppressive agents (Cabral and Dove Pettit, 1998; Klein et al., 1998; 

Berdyshev, 2000). One possible explanation for the cannabinoid-induced 

immunosuppression could be due to the alteration/redistribution of leucocyte and 

lymphocyte subsets. Changes on immune cell functions in response to treatment with 

cannabinoids could also account for the observed effects. In this section, the effects 

of cannabinoid receptor ligands on immune cell function are discussed. 

1.8.1 In vivo studies on whole animals 

Most of the in vivo studies linking cannabis use to altered immune cell function have 

utilized rodent models largely because of the well-defined immune system in rats and 

mice and the availability of experimental reagents for use in these animals. To date, 

little in vivo data from man is available, however, in one study, Juel-Jensen (1972) 

documented a greater than normal increase in infection of herpes simplex virus among 

cannabis users. Epidemiologically, a link between the developments of acquired 

immunodeficiency syndrome (AIDS) in human immunodeficiency virus (HIV) 

infected individuals has been made among cannabis users suggesting that this drug 

truely suppresses the immune system (Tindall et al., 1988). Further studies 

suggesting cannabinoid-induced immunosuppression involve an animal study in 

which 200mg/kg of A9-THC was administered to mice over two consecutive days. A 

decreased resistance to Listeria monocytogens and herpes simplex virus infections 

were observed in these animals (Morahan et al., 1979), thereby suggesting that 

cannabinoids decrease immune cell function. Although this study was criticized for 

the high drug concentration used, subsequent workers have replicated and extended 

these findings. Thus, several studies to date, have shown that A9-THC and other 
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cannabinoids inhibit not only host resistance to infection by herpes simplex virus in 

guinea pigs and mice, but can cause a dose dependent down-regulation of immune 

response in these animals thereby suggesting a receptor-mediated mechanism 

(Mishkin and Cabral, 1985). 

1.8.2 In vitro Studies. 

Most in vitro studies using primary cells and cell lines have implicated cannabinoids 

as immunosuppressive agents. To date, unequivocal evidence in vitro is lacking 

primarily because the acquisition of such data have proved difficult. Furthermore, 

factors such as multiple drug use, environmental and ethical issues have rendered 

such studies even more difficult to interpret. In these studies, animal models have 

been used but isolated tissues, human immune cells and cell lines are preferred but 

because of the diverse nature and function of immune cells, such experiments are 

designed to study immune cell function using enriched preparations of specific cell 

populations in vitro. Data from such studies are reviewed below. 

1.8.3 Macrophage/Monocyle 

Macrophages/monocytes, play a major role in the innate and acquired immune 

responses. The innate functions include phagocytosis, ingestion of microbes and 

release of inflammatory mediators such as NO and arachidonic acid metabolites 

(Klein et al., 1998). In acquired immunity, they act as antigen presenting cells 

(APCs) as well as the secretion of some inflammatory cytokines e. g. tumour necrosis 

factor-alpha (TNF-(x) (Zheng and Specter, 1996). Studies with mouse peritoneal 

macrophages have consistently shown that cannabinoids suppressed a variety of 

macrophage functions albeit at micromolar concentrations (Klein et al., 1998). Thus, 

various cannabinoid receptor agonists e. g. O9-THC inhibited macrophage phagocytic 

activity and cell spreading in vitro (Lopez-Cepero et al., 1986), protein expression 
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(Cabral and Mishkin, 1989), cytolysis of sheep red cells (Burnette-Curley, 1993) and 

their antigen presenting capacity (McCoy et al., 1995). Modulations of cytokine 

release from a variety of immune cells in vitro by cannabinoids have also been 

reported (Berdyshev, 2000). The current state of knowledge on the effect of 

cannabinoids on macrophage/monocyte function suggests that cannabinoid receptor 

ligands may suppress many important macrophage functions but the effective drug 

concentration needed to do so is relatively high compared to that seen in the blood of 

cannabis users (<1 µM) under physiological concentrations e. g. (Azorlosa et al., 

1992). Whether this relates to the number of cannabinoid receptor expressed by these 

cells is presently unknown. 

1.8.4 T Lymphocytes. 

T lymphocytes are important in protecting the host against microbes and viruses. 

Early investigators speculated that cannabinoids might suppress immune cell function 

by altering the number and the function of T cells (Cabral and Dove-Pettit, 1998). In 

an in vitro study, mitogen induced-proliferation of T cells was inhibited by 

cannabinoids at concentrations (>1 µM) (Berdyshev, 2000). In other studies, the non- 

psychoactive cannabinoid, cannabidiol was marginally more potent than psychoactive 

cannabinoids such as 09-THC on T-lymphocyte and B-lymphocyte mitogen responses 

(Klein et al., 1985). These observations suggest an immunosuppressive action of the 

cannabinoid and also point to the fact that cannabinoids may be acting via a non 

receptor mechanism. In other studies, mitogen-induced proliferative responses of T 

and B cells were suppressed by A9-THC at concentrations of (10 µM) with the B cell 

appearing more sensitive than the other cell types probably due to increased 

expression of peripheral cannabinoid receptors in these cells (Klein et al., 1998). 

Other studies involving the T cell rosetting capacity of CD4 and CD8 T cell subsets 
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from marijuana users was impaired suggesting that cannabinoids are 

immunosuppressive agents (Klein et al, 1998). In studies on T cell subset numbers, 

the mean ratio CD4JCD8 of cannabis users was 1.95 as opposed to 1.27 in the controls 

(Klein et al., 1998), indicating that cannabinoids can cause a shift in the Th1/Th2 cell 

ratio (Figure 1.9). Interestingly, similar shifts have been reported, in HIV infected 

subjects who eventually developed acquired immune deficiency syndrome. 

1.8.5 B-Lymphocytes. 

The B cells are a class of lymphocytes responsible for making antibodies 

(immunoglobulins), a function that is essential for humoral immunity. Several studies 

on human and animal subjects have examined changes in immunoglobulin levels 

following administration of natural and synthetic cannabinoids. In one study, no 

significant change in serum immunoglobulin levels in marijuana users was seen after 

two months usage when compared with the control group (Klein et al., 1998). In 

another study, mice were given cannabinoid ligand, 09-THC and antibody 

agglutination response to sheep red blood cell (SRBC) was suppressed even when 

injected into whole animals or splenocyte cultures (Baczynsky and Zimmermann, 

1983; Kaminski et at., 1992). When the synthetic cannabinoids HU-210 and HU-211 

were used to assess anti-SRBC antibody response formation in mice, HU-210 

significantly suppressed the haemagglutination titres and reduced the number of 

splenocytes and plaque forming cells (Titishov et al., 1989). The non-psychoactive 

enantiomer, HU-211 only suppressed the plaque forming cell response indicating that 

HU-210 has a much greater cannabimimetic effect than HU-21 1. Whether the 

cellular mechanisms underlying this phase of antibody response are susceptible to 

both the cannabinoid receptor and non-receptor mechanisms is not known. However, 

anandamide, has been found to affect both the proliferative response in mouse 
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haemopoetic cell lines through a receptor independent mechanism (Derocq, et al., 

1995) and inhibit B cell antibody response in a cytokine-dependent cell line via a 

cannabinoid CB2 receptor mechanism (Valk et al., 1997). 

I 'able 1.3. Summar y of effects of C annabinoids on human imm une cells. 
Studies Cell type Function Effect Refs 

Human T cells Proliferation Decrease Nahas et al., 
subjects No effect 1974 

Rossetting Decrease Lau et al., 1975 
CD4: CD8 ratio Increase Nahas et al., 

1974 
Wallace et al., 
1988 

B cells IgE Increase Rachelefsky et 
al., 1976 

IgG Decrease Nahas and 
Osserman 1991 

Macrophages Phagocytosis No effect Lopez-Cepero et 
al., 1986. 

NK cells Cytolysis No effect Specter et al., 
1986 

Human cell T cells Proliferation Decrease Nahas et al., 
culture 1977 

B cells Proliferation Increase Derocq et al., 
1995 

Macrophages Nitric oxide Increase Stefano et al., 
release Decrease 1996 
Tumour Zheng et al., 
necrosis factor- 1992 
a 

Natural Killer Cytolysis Decrease Specter et al., 
cells 1986 

1.8.6 Epithelial cells 

Epithelial cells form boundaries between different environments. For example, 

intestinal epithelial cells form single layer of cells that separates the host from the gut 

luminal environment. In addition to its role as absorptive and physical barriers, the 

intestinal epithelium is now known to play major roles in the gastric immune 

homeostasis (Schuerer-Maly et al., 1994). The intestinal epithelial cells respond to a 
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wide array of agents commonly found in the normal gut, including bacteria products, 

by releasing pro-inflammatory cytokines such as interleukin-8. Human epithelial 

cells from different anatomical sites such as keratinocytes (Ansell et al., 1990), 

bronchial epithelial (Nakamura et al., 1991), and gastric carcinoma epithelial cells 

(Yasumoto et al., 1992, Schuerer-Maly et al., 1994) have all been shown to secrete 

IL-6, tumour necrosis factor-a and IL-8 and other pro-inflammatory markers. 

Some published studies, and anecdotal evidence, suggest that cannabinoids may be 

effective in the treatment of inflammatory bowel disease and diabetic gastroparesis 

(Izzo et al., 2001). mRNA for both the cannabinoid CB1 and CB2 receptors have been 

identified in the human gastrointestinal system (Shire et al., 1995; Buckley et al., 

1998) and guinea pig whole gut (Griffin et al., 1997). The exact cellular origin of this 

mRNA and their corresponding receptors/their physiological functions is presently 

unknown. However, these findings suggest that the cannabinoid system may be 

important in the maintenance of the gastric immune homeostasis. The gut epithelium 

is now considered a major source of IL-8 production, a potent chemoattractant for 

neutrophils and lymphocytes. These cells form the first line of defence in the gut and 

are thus expected to have major impact in the neighbouring intraepithelial and lamina 

propia cells. Thus cannabinoid receptor ligands, which have anti-inflammatory 

properties is now considered a potential clinical treatment for a variety of 

inflammatory disorders of the gut. 
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1.9 Cannabinoids and Cytokine production. 

Cytokines are important in the regulation of host resistance to infection. The 

production of acute phase cytokines such as IL-1, TNF-a and IL-6 from macrophages 

and other cells is important for the natural immune response. Cannabinoid-induced 

changes in the production of these cytokines are thought to account for the reduced 

anti-microbial immunity as reported by Klein et al. (1998). 

1.9.1 The effects of cannabinoids on cytokine production 

It has been shown that t9-THC (10-30 µM) suppressed the release of IL-1 into the 

supernatant from cultured mouse peritoneal cells (Klein and Friedman, 1990) while 

the levels of other cytokines (TNF-a and IL-6) were raised by A9-THC (Klein et al., 

1993). In some studies, levels of TNF-a was reduced in mouse and human 

macrophage cultures, treated with A9-THC. The effect of O9-THC was shown to 

involve mechanisms related to cytokine processing rather than an effect on gene 

transcription or translation as illustrated below (Zheng et al., 1992; Zheng and 

Specter, 1996). Two well-designed mouse models have provided insight into the 

mechanism (s) by which the plant cannabinoid A9-THC might regulate the 

development of acquired immunity (Newton et al., 1994; Klein et al., 2000b; Zhu et 

al., 2000). Newton et al. (1994) treated BALB/c mice with a single intravenous dose 

of O9"THC (4 mg ml's) prior to infection with a sub-lethal inoculation of Legionella 

pneumophila. L. pneumophila is a facultative intracellular bacterium that produces 

pneumonia in susceptible patients and requires the generation of an antigen-specific 

Thl response for effective eradication. When challenged 3-4 weeks later with a sub- 

lethal bacterial load, control mice survived and demonstrated antigen-specific T cell 

proliferation associated with elaboration of IFN-y. In contrast, a high percentage of 

mice pre-treated with A9"THC during immunization phase died following re- 
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challenge, and their T-cell failed to proliferate in response to L. pneumophila antigen 

in vitro. In a similar way, it has been demonstrated that A9-THC enhanced Th2 cell 

responses and elevated production of IL-4 and IL-10 (Massi et al., 1998). In 

summary, it is thought that cannabinoids directs the cytokine network away from cell 

mediated immunity while enhancing the shift towards The cell responses. (Refer to 

figure 1.13 below for the possible effects of cannabinoids on Th, /Th2 shifts). 

Table 1.4. Selected cytokines, their cellular origin and their actions 

C okines Source Site of action Effects References 
Tumor necrosis Macrophages, Tumor cells, Has cytotoxic Klein et al., 
factor a (TNF- mast cells, inflammatory effects, 1998 

CO epithelial cells cells induces 
secretion of 
acute phase 
cytokines 

Interleukin I Monocytes, Th cells, B Promotes Luo et al., 
(IL-la, l) macrophages, cells, NK cells maturation and 1992 

B cells, clonal 
dendritic cells, expansion, 
endothelial induces 
cells expression of 

adhesion 
molecules e. g. 
ICAM 

Interleukin 2 Thl cells Haematopoieti Induces Klein et al., 
(IL-2) c cells, mast proliferation 1995 

cells 
Interleukin 8 Macrophages, Neutrophils, Schuerer-Maly 
(IL-8) endothelial lymphocytes Chemoattactan et al., 1994 

cells, epithelial is to 
cells neutrophils 

and 
leukocytes, 
induces 
adhesion 
molecule 
expression 
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1.10 Cannabinoids, apoptosis and regulation of cell fate 

The regulation of cell growth, survival and death is known to play important roles in 

the pathogenesis and resolution of inflammatory processes. To date, two mechanisms 

by which cells die have been identified namely: necrosis and apoptosis (for reviews, 

see Cohen et al., 1992; Steller, 1995). Necrotic cell death involves loss of membrane 

integrity, which leads to the release of potentially toxic intracellular materials into the 

surrounding environment and promotes inflammation (Cohen et al., 1992; Steller, 

1995). In contrast, apoptosis is a controlled process involving loss of membrane 

phopholipid asymmetry and condensation of nuclear chromatin and the activation of 

the internucleosomal cleavage commonly recognised as DNA ladders in agarose gel 

electrophoresis (Wyllie, 1980). Recent evidence suggests that cannabinoids may 

affect the immune system by regulating immune cell fate, which may involve the 

induction of apoptosis or proliferation of immune cells. 

Recently, attention has focussed on the possible role of the endogenous cannabinoid, 

anandamide and other endocannabinoids in the regulation of cell growth and 

differentiation, which may account for some of the pathophysiological effects of these 

lipids. Anandamide at micromolar concentration was reported to cause inhibition of 

proliferation of human breast cancer cells (De Petrocellis et al., 1998). In contrast, an 

enhancement of cell proliferation by anandamide at sub-micromolar concentration has 

been reported in haematopoietic cells (Derocq et al., 1998). Further preliminary 

evidence suggesting that anandamide might be associated with inhibition of 

lymphocyte proliferation and induction of apoptosis has been reported (Schwartz et 

al., 1994). Anandamide may also have pro-apoptotic activity, both in vitro (Sarker et 

al., 2000) and in vivo (Galve Roperh et al., 2000). Taken together, these observations 
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suggest that cannabinoids can offer promising leads to the development of the future 

anti-inflammatory and anti-cancer drug therapy. 

1.10.1 Mechanisms of cannabinoid-induced regulation of cell fate 

The exact mechanism by which cannabinoids induce apoptosis in immune cells 

remains unclear. Originally, it is believed that cannabinoids may act via two distinct 

mechanisms. Firstly, because of its lipophilic properties, cannabinoids may act 

through intercalation into the cell membrane (Dewey, 1986). However, it was soon 

realised that the activity of cannabinoids was highly stereospecific, suggesting a 

receptor-mediated effect. Some signals activated by cannabinoid receptor agonists 

identified as being relevant to apoptosis are described as follows. 

A9-THC-induced apoptosis of C6 glioma cells and breast cancer cells have been 

shown to cause accumulation of ceramide, a product of sphingomyelin hydrolysis in 

the cell membrane. This response was mediated via cannabinoid CB, and CB2 

receptor dependent pathways (Sanchez, et al., 1998; Galve-Roperh et al., 2000). 

These actions were shown to involve the activation of ERK and RAF I downstream 

signalling pathways (Galve-Roperh et al., 2000). Although, the c2-ceramide, an 

analogue of ceramide activates ERK pathway, it does not induce apoptosis in the 

breast cancer cells or C6 gloma cells, suggesting that the action of ceramide in these 

cells is stereo-specific and a receptor mediated event (Galve-Roperh et al., 2000). 

Anandamide had antiproliferative effects and induced apoptosis in a number of cell 

lines including breast cancer cells, C6 glioma cells and rat phaeochromocytoma cells 

(PC-12) via generation of superoxide anion (Sarker et al., 2000). These effects were 

shown to be inhibited by an anti-oxidant N-acetyl cysteine suggesting that superoxide 
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anion may play an essential role as a signalling molecule in the induction of apoptosis 

(Sarker et al., 2000) 

The two cannabinoid agonists 2-AG and anandamide inhibited hormone-induced 

breast cancer cell proliferation by down-regulation of prolactin receptor (De 

Petrocellis et al., 1998). These two agonists were also shown to reduce nerve growth 

factor (NGF)-induced breast cancer cell proliferation by down regulating the levels of 

trk NGF (Melck et al., 2000). These events were shown to be cannabinoid CB1 

receptor mediated and the downstream signals related to inhibition of cAMPJPKA 

pathways as well as RAF 1 translocation and consequently a stimulation of ERKs 

(Melck et al., 1999). Anandamide was also shown to induce apoptosis in human 

neuroblastoma (CHP 100) and lymphoma (U937) cells (Maccarone et al., 2000). This 

effect occurred via cannabinoid receptors as well as the vanilloid receptors. However, 

in a more recent study, McKallip et al. (2002) truly demonstrated that cannabinoid 

receptor ligands caused a concentration-dependent increase in apoptosis of various 

immune cell lines in vitro via cannabinoid CB2 receptors. In vivo they demonstrated 

that cannabinoids prolonged the survival of cancer bearing rats via cannabinoid CB2 

receptor-dependent mechanism. Collectively, these signals are thought to play 

important roles in the regulation of cell fate. Figure 1.10 below is a schematic 

representation of the signalling pathways that may lead to cannabinoid-induced 

apoptosis. 
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1.11 Aims and objectives 

1.11.1 Aim 

The aim of this study is to characterise cannabinoid receptors modulating cytokine 

and chemokine release from primary human immune cells and cell lines. 

1.11.2 Objectives 

To investigate the effects of cannabinoids on the release of acute phase 

cytokines (tumour necrosis factor-a from a promonocytic cell line THP-1 and 

interleukin-2 release from a prolymphocytic cell line Jurkat E6.1 cells) with a 

view to characterising the receptors involved. 

0 Further studies were performed on the effect of cannabinoids on the release of 

IL-2 from human peripheral blood mononuclear cells (PBMC) and receptors 

mediating this event were characterised. 

" The effects of cannabinoids on the release of interleukin-8 (IL-8) from a cell 

line distinct from immune cells of the lymphoid origin, the colon epithelial 

cell line (HT-29) was also studied. 

" Studies to characterise the signal transduction pathways by the measurement 

of intracellular CAMP and the cytosolic free calcium in response to 

cannabinoids and other ligands were carried out in HT-29 cells. 

9 Cannabinoids induced apoptosis in T- lymphocytic was also studied. 
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Chapter 2; General materials and methods 
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2.1. Drugs and Suppliers 

The cannabinoid receptor ligands used in this thesis are listed in Table 2.1. They were 

purchased from the sources listed below and dissolved in the vehicle as indicated. In 

all experiments the concentration of DMSO or ethanol vehicle in the final solutions 

did not exceed 0.1 % v/v respectively. 

Table 2.1. Shows the alphabetical list of the drugs used in this investigation. Drugs 
dissolved in ethanol or DMSO were stored at -20°C and protected from light. Drugs 
dissolved in distilled water were stored at 4°C 

Drugs Actions Vehicle Source 

09-THC CB agonist Ethanol RBI 

ACEA CB1 agonist Ethanol Tocris 

ACh Muscarinic agonist Distilled water Sigma 

anandamide CB agonist Soya oil/water 

emulsion (1: 4) 

Tocris 

CP55,940 CB agonist Ethanol Gift from 

Pfizer/Tocris 

dexamethasone Glucorcorticoid agonist Ethanol Sigma 

JWH 015 CB2 agonist DMSO Tocris 

SR141716A CBI antagonist Ethanol Sanofi 

SR144528 CB2 antagonist Ethanol Sanofi 

WIN55,212-2 CB agonist DMSO Tocris 

WIN55,212-3 WIN55,212-2 

enantiomer 

DMSO Tocris 
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2.2 Reagents and Supplies 

The following reagents were purchased from the suppliers as shown below. 

Amersham International PLC, Amersham UK 
Biotrack cAMP detection EIA kit 

BDH, UK 
May and Grunwald stain 
Giemsa stain 

European collection of animal cell cultures (ECACC), Salisbury, Wiltshire, UK 
HT-29 (human colonic epithelial adenocarcinoma cell line) 
Jurkat E6.1 (human prolymphocytic cell line) 
THP-1 (human promonocytic cell line) 

Gibco BRL Life Technologies, Paisely, UK 
Foetal calf serum 
L-Glutamine 
Penicillin/streptomycin 
RPMI 1640 
TMB (3,3', 5,5'-tetramethyl benzidine-H202) 

National Blood Transfusion Service, Colindale, London, UK 
Buffy coat blood cells 

Peprotech EC Ltd, London, UK 
TNF-a standard 
IL-2 standard 
IL-8 standard 

BD Pharmingen Plc, Oxford, UK 
TNF-a capture antibody 
TNF-a biotinylated detection antibody 
IL-2 capture antibody 
IL-2 biotinylated detection antibody 
IL-8 capture antibody 
IL-8 biotinylated detection antibody 

Sigma Aldrich Co, Fancy Road, Poole, Dorset, UK 
Cholera toxin 
DAPI (4'6-diamidino 2-phenylindole dihydrochloride) 
Digitonin 
Ethylene glycol-bis (¢-amino ethyl ether) N, N, N, N-tetra acetic acid) EGTA 
Forskolin (7ß-acetoxy-la, 6ß, 9a-trihydroxy-8-13-epoxy-labd-14-en-I I-one) 
HEPES (N-2-hydroxy ethyl piperazine-N'-2-ethane sulphonic acid) 
Histopaque R- 1077 
LPS (lipopolysaccharides) 
McCoys 5A medium 
MTT (3-[4,5-dimethylthiazole-2-yl] 2,5-diphenyl tetrazolium bromide) 
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PBS (Phosphate buffered saline) 
Pertussis toxin 
PHA (phytohaemagglutinin) 
PMA (phorbol- I 4-myristate- 13 -acetate) 
Proteinase K 
RNase 
TRIS/EDTA 

Gift from Dr Ken Mackie (University of Washington, Seattle, WA, USA) 
Cannabinoid CB2 antibody 
Fusion protein for cannabinoid CB2 receptor. 
Peroxidase-conjugated goat anti-rabbit IgG 
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2.3. Cell cultures 

2.3.1 THP-1 cells 

THP-1 cells a human pro-monocytic cell line, were obtained from the European 

collection of animal cell cultures (ECACC) (CAMR, Porton Down, Salisbury, 

Wiltshire, UK). The cells were cultured in RPMI 1640 medium supplemented with 2 

mM glutamine, 10% foetal bovine serum, 50 IU. ml"1 penicillin, 50 µg. ml"' 

streptomycin and 0.5 gg. ml"' amphotericin B. Cells were maintained seeded at a 

density of 1x106 cells. ml" at 95%/5% CO2 atmosphere in a thermostatically 

maintained incubator (37°C) in 75cm2 standard cell culture flasks. Cell cultures were 

split every 2-3 days and the passage number noted. 

2.3.2. Jurkat E6.1 cells 

Jurkat E6.1 cells, a human T pro-lymphocytic cell line, was obtained from the 

European collection of animal cell cultures (ECACC) (CAMR, Porton Down, 

Salisbury, Wiltshire, UK). The cells were cultured in RPMI 1640 medium 

supplemented with 2 mM glutamine, 10% foetal bovine serum, 50 IU. m1'' penicillin, 

50 µg. ml" streptomycin and 0.5 µg. ml" amphotericin B. Cells were seeded at a 

density of Ix 106 cells. ml'' at 95%/5% CO2 atmosphere in a thermostatically 

maintained incubator (37 °C) in a 75 cm2 standard cell culture flasks. Cell cultures 

were split every 2-3 days and the passage number noted. 

2.3.4. HT-29 cells 

The human colon epithelial cell line (HT-29) was obtained from the European 

collection of animal cell cultures (ECACC) (CAMR Salisbury, Wiltshire, United 

Kingdom). The cells were grown at 37 °C in McCoy's 5A medium supplemented 

with 10% foetal calf serum, 2 mM L-glutamine, 50 1 U. ml"' penicillin, 50 µg. ml't 

streptomycin and 0.5 µg. ml'' amphotericin B. Cultures were maintained in 75 cm2 
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culture flasks and were confluent after approximately 3 days. Cultures were 

subdivided every 7 days. Prior to each experiment, the culture medium was discarded 

and cells were washed once with wann (37 °C) sterile phosphate buffered saline (20 

ml; pH 7.4). Monolayers were detached from the flasks with 0.25% trypsin/ethylene 

diamine tetracetic acid (Sigma-Aldrich Co, Poole, Dorset, UK). The flask was then 

incubated at 37 °C for 10 min. Once the cells were detached, the action of trypsin 

was stopped by the addition of 20 ml of McCoy's SA medium supplemented with 

10% foetal calf serum. Detached cells were harvested and resuspended at a density of 

5x 105 cells-ml"' in FCS-free McCoy's 5A medium and 1 ml aliquots placed in the 

wells of a 24 well plate for 2h before experimentation. 

2.3.4. Isolation and culture of PBMC 

Peripheral blood mononuclear cells (PBMC) were isolated from buffy coats 

purchased from the National Blood Transfusion Service (NBTS) (Brentwood, Essex, 

UK). Separation of blood mononuclear cells from erythrocytes was achieved by 

density gradient centrifugation using Histopaque R-1077 (Sigma-Aldrich Co. Dorset, 

Poole, UK), based on the modification of the original method described by Boyum 

(1968). In brief, bully coat cells were diluted (1: 2) in sterile PBS, layered over 

histopaque and PBMC isolated following centrifugation (800 xg for 25 min) in an 

Accuspin tube (Sigma-Aldrich, Dorset, Poole, UK). Cells, recovered from the 

interface between the plasma and Histopaque solution, were washed twice in Ca2+ and 

Mg2+ free PBS (250 xg for 10 min). Peripheral blood mononuclear cells were 

resuspended in RPMI 1640 supplemented with L-glutamine (2 mM), penicillin (50 

U. ml") and streptomycin (50 µg-ml-') and 10 % heat inactivated foetal calf serum. 

Aliquots of the cells was removed for cell counting in a Neubauer counting chamber 

and also assayed for viability by trypan blue dye exclusion method and by the 3-4 
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(4,5-dimethylthiazole-2-yl) 2,5-diphenyl tetrazolium bromide (MTT) assay. Slides of 

the cell suspension were made and stained by Romanowsky stain (May Grunwald- 

Giemsa) and a differential cell count was obtained. 

2.3.5. Isolation and culture of neutrophils 

Human blood neutrophils were isolated from buffy coats purchased from the National 

Blood Transfusion Service (NBTS) (Brentwood, Essex, UK). Separation of human 

blood neutrophils was done by density gradient centrifugation using Histopaque R- 

1077 (Sigma-Aldrich Co, Dorset, Poole, UK), based on the modification of an 

original method described by Boyum (1968). Briefly, human buffy coats were diluted 

l: 2 (v/v) in sterile PBS and neutrophils separated by density gradient centrifugation 

(800 xg for 25 min) in an Accuspin tube (Sigma-Aldrich, Dorset, Poole, UK). 

Following removal of plasma and mononuclear cell layer, neutrophils were isolated 

from the sediment at the bottom of the tube that also contained the red blood cells. 

Red blood cells were removed by lysis in ammonium chloride buffer. The 

ammonium chloride buffer consisted of (NH4C1 155 mM; KCO3 10 mM; Na/EDTA 

100 mM). Neutrophils and erythrocytes were diluted 1: 3 (v/v) with ammonium 

chloride solution, incubated for 5 min at room temperature, and centrifuged for 15 

min at 250 x g. The supernatant was removed and if there were signs of residual red 

blood cells, the lysis procedure was repeated to remove the remaining red blood cells. 

Neutrophils were washed twice in Ca2+ and Mg2+ free PBS by centrifugation at 250 x 

g for 5 min. Cells were resuspended in RPMI 1640 supplemented with 10 % FCS, 2 

mM L-glutamine, 50 1 U. ml"' penicillin and 50 gg. ml"' streptomycin. Neutrophil 

viability was assessed by the trypan blue dye exclusion method as described in section 

2.8.2 and purity by May and Grunwald-Giemsa staining as described in section 2.7.1 

followed by a manual differential leukocyte count in which 500 cells were examined 
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using an Olympus microscope under oil immersion (100 x objective). Neutrophils 

were finally suspended in RPMI 1640 medium at a final concentration of Ix 106 

cells. ml"' in 75 cm2 standard cell culture flask, Falcon, Becton-Dickinson (Oxford, 

UK) 
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2.4. General ELISA Protocols 

2.4.1. Objective 

The aim of this procedure was to use Enzyme linked immunosorbent assays (ELISA) 

to measure the amount of TNF-a, IL-2 or IL-8 released into the cell-free supernatant 

by cell cultures after stimulation with an appropriate mitogen e. g. LPS, PHA or TNF- 

a as the case may be. 

2.4.2. Preparation of reagents 

Coating buffer (0.1M carbonate, pH 9.5): 

NaHCO3 8.40 g 

Na2CO3 3.56g 

The following salts were dissolved in distilled water and adjusted to a final volume of 

1L. The pH was adjusted to 9.5 using a pH meter. (Buffer was stored at 2-8 °C and 

used within 30 days of preparation). 

Capture antibody (Anti-human cytokine monoclonal antibody): 

The capture antibody was supplied as aI mg. ml" solution (Pharmingen, BD UK). 

The required concentration was 2.0 µg. ml'1 and the required volume for 96 wells: 100 

µl x 96 was 9.6 ml. 20 µl of aI mg. ml" solution was removed and diluted to 10 ml 

with coating buffer. 

Wash buffer (0.01 M PBS + 0.05% Tween 20): 

NaC1 0.138M 

KCl 0.0027 M 

Tween 20 0.05 % 

The following salts were dissolved and pH was adjusted to 7.4 at 25 °C and adjusted 

to a final volume of I L. Alternatively, I sachet of PBS + 0.05 % Tween 20 (Sigma- 
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Aldrich Co) was added together and made up to 1L of distilled water and the pH 

adjusted to 7.4 at 25 °C. 

Assay diluents (10% Foetal Bovine serum in PBS) PH 7.0/standards/samples 

This solution was prepared by adding 10 ml of FCS to 90 ml PBS and used within 7 

days. Standards and sample dilutions were prepared in RPMI 1640 medium 

Working detection antibody: 

Antihuman monoclonal biotin antibody was supplied as a5 mg ml'' solution (BD, 

Pharmingen PLC, UK). The required concentration was a1 µg MI-1 solution. 

Therefore, 20 µl of anti-human monoclonal biotin antibody was added to a 10 ml of 

assay diluents. Streptavidin was also supplied as a 1.0 ml. The required working 

concentration of streptavidin was a1 in 1000 dilution of the stock solution. 

Therefore, 10 µl of streptavidin was added to 10 ml of assay diluents 15 min prior to 

use. 

2.4.3. Plate coating 

Micro titre plate wells were coated with 100 µl per well of capture antibody diluted in 

coating buffer. Plates were sealed and incubated overnight at 4 T. Following 

overnight incubation, plates were brought to room temperature before commencement 

of the assay. Wells were aspirated and washed 3 times with 300 pl per well wash 

buffer. After the last wash, plates were inverted and blotted onto absorbent paper to 

remove any residual buffer. 

2.4.4. Plate blocking 

Coated microtitre plates were blocked with 300 µl. well"' of assay diluents 

(PBS/Tween/FCS) and incubated at room temperature for I h. Plates were aspirated 

and washed 3 times with 300 µl per well wash buffer. After the last wash, plates were 

inverted and blotted onto absorbent paper to remove any residual buffer. 
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2.4.5. Addition of standards and samples 

From a standard cytokine solution of (10,000 pg ml"'), a 1000 pg ml'' standard 

solution of cytokine was prepared by diluting the stock in RPMI 1640 (1: 10). A 

further I in 2 dilution of this solution was made in RPMI 1640 medium to yield a 

cytokine standard solution of 500 pg. ml"'. Successive serial dilutions of the standard 

were prepared to correspond to six tubes labelled as 250 pg ml'', 125 pg ml"', 62.5 pg 

ml"', 31.3 pg ml-1,15.6 pg ml" and 7.8 pg ml"' respectively. At each stage the content 

of the tubes were thoroughly mixed with a vortex mixer. The assay buffer or RPMI 

1640 medium served as zero standard (0 pg. ml"'). 100 µ1 of each standard, sample 

standard or control were added into appropriate wells and plates were sealed and 

incubated at room temperature for the indicated period of time. After 2h incubation 

with standards and samples, wells were aspirated and washed 5 times. 

2.4.6. Detection Step. 

100 µ1 of working detector reagent was added to each well plates were sealed and 

incubated for 1h at room temperature. Wells were then aspirated and washed a total 

of 7 times. In the final wash step, the plates were soaked in wash buffer for between 

30 seconds and I min for each wash. 100 µl of substrate solution (tetra methyl 

benzidine ; TMB) was added to each well and incubated (without a plate sealer) for 30 

min at room temperature in the dark. 50 µl of stop solution (1 M H2SO4) was added 

to each well. The absorbance was read at 450 nm within 30 minutes of stopping 

reaction in a labsystems micro titre plate reader. 

2.4.7. TNF-a measurement 

TNF-a release from THP-1 cells was measured by Enzyme linked immunosorbent 

assay (ELISA) as described above. The capture anti-human TNF-a monoclonal 
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antibody (Cat No. 18631 D) was paired with biotinylated anti-human TNF-a 

monoclonal detection antibody (Cat. No. 186420; Pharmingen, B. D., Oxford, UK 

2.4.8. IL-2 measurement 

IL-2 release from Jurkat E6.1 cell line or PBMC was measured by Enzyme linked 

immunosorbent assay (ELISA) as described above. The capture anti-human IL-2 

monoclonal antibody (Cat. No. 555051) was paired with biotinylated anti-human IL-2 

monoclonal detection antibody (Cat No. 555040; Pharmingen, B. D. Oxford, UK). 

Using a one step detection procedure (1.0 µg ml-' biotin/streptavidin) reagent was 

added and incubated at 37°C for 1h 

2.4.9. IL-8 measurement 

IL-8 release from HT-29 cell line was measured by Enzyme linked immunosorbent 

assay (ELISA) as described above. The capture anti-human IL-8 monoclonal 

antibody(Cat. No. 554718 Phanningen, B. D Oxford, UK) was paired with 

biotinylated anti-human IL-8 monoclonal detection antibody (Cat No. 554716) 

2.5. Western Blotting 

2.5.1. Preparation of reagents 

Resolving Gel (10 ml): The resolving gel was prepared with the salts listed below and 

dissolved accordingly. 

Ultra Pure water 4.64 ml 

30% acrylamide/bis acrylamide 2.66 ml 

1.5 M Tris-HCI 2.50 ml 

10% SDS 0.10m1 

10% ammonium persulphate 0.10 ml 

TEMED (BDH, UK) 6.00 µl 
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Stacking Gel (4 ml): The resolving gel was prepared with the salts listed below and 

dissolved accordingly. 

Ultra Pure Water 2.44 ml 

30% acrylamide/bis acrylamide 0.52 ml 

0.5 M Tris-HC1 1.00 ml 

10% SDS 0.04 ml 

10% ammonium persulphate 0.02 ml 

TEMED 4.00 µl 

Transfer buffer (1000 ml): The transfer buffer was prepared with the salts listed below 

and the volume adjusted to (1000 ml). 

39 mM glycine 2.93 g 

48 mM Tris-Base 5.82 g 

0.0375% SDS 0.0375 g 

20% methanol (BDH, UK) 200.00 ml 

Wash Buffer (1000 ml): The wash buffer was prepared with the salts listed below and 

the volume adjusted to 1000 ml 

10 mM Tris-Base 1.21 g 

100mMNaCI 5.84g 

0.1 % Tween 20 1.00M1 

2.5.2. Determination of the protein content of HT-29 cell lysates 

HT-29 cells were cultured in McCoys 5A medium to confluence in a 75-cm2 standard 

culture flask, Falcon, (B. D Oxford, UK) as described above in section 2.3.5. The 

medium was removed and washed twice with ice-cold phosphate buffered saline 
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(PBS). 1 ml of boiling lysis buffer (100°C) was added to the flask and cells were 

removed with a cell scraper. The lysis buffer contained 10% glycerol, 2% SDS and 

76.5 mM Tris. The cell lysate was transferred to an Eppendorf tube and immediately 

heated to 95 C for 5 min. The cell lysate was sonicated for 15 seconds to reduce the 

viscosity of the sample, before being centrifuged for 5 min at 5000 rpm in a Heftich 

EBA12 centrifuge (Hettich Zentrifugen, Germany). To every 100 µl of cell lysate, 2 

µl of 2% bromophenol blue, and 5 µl of ß-mercaptoethanol was added in a fume 

cupboard. Each sample (2 µl) was added, in triplicate, to the inner wells of a 96-well 

plate, followed by 48 µl of ultra pure water (BDH, UK) to keep the volume in the 

wells constant. To the outer wells, 10 µl of a bovine serum albumin (Sigma-Aldrich 

Co, Dorset, Poole, UK) standard (1 to 40 µg/well) was added, again in triplicate. A 

blank was prepared by adding 10 µ1 of ultra pure water (BDH, U. K). Two micro 

litres of lysis buffer and 38 µl of ultra pure water were added to ensure all wells 

contained 50 µl. Finally, 200 t1 of bicinchoninic acid (BCA) reagent (Pierce, UK) 

was added to each well, and incubated for 1h at room temperature. The absorbency 

of the resulting product was measured at 652 nm in a microtitre plate reader and the 

total protein content of each sample calculated using a standard curve derived from 

known concentration of BSA solution treated in the same manner. 

2.5.3. SDS-Page electrophoresis of protein samples 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was used 

to analyse the protein content of the sample lysates using a Mini-Protein 11 gel 

apparatus. The resolving gel was prepared and poured between the glass plates of the 

gel apparatus and a thin film of absolute ethanol (BDH, UK) was applied over the top 

of the gel to prevent the inhibition of polymerisation by air. The gel was left to 

polymerise at room temperature for 60 min. The ethanol was removed and stacking 
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gel poured on top of the resolving gel. Inserting a 0.75 mm comb into the top of the 

stacking gel created loading wells. The stacking gel was allowed to polymerise at 

room temperature for 60 min. 

The sample lysates and molecular marker were heated to 95 °C for 5 min. The 

molecular marker (26 kDa to 180 kDa) was loaded into the first lane, 40 µg of HT-29 

cells lysate in the second, third and fourth lanes. A blank lane was left, followed by 

lysate samples in duplicate. The gel apparatus was filled with tank buffer (0.25 M 

Tris, 0.192 M glycine, 1% SDS), and subjected to elecrophoresis at 200 volts until the 

dye reached the bottom of the resolving gel (-50 min). 

2.5.4. Immunoblotting of protein 

The gel apparatus was dismantled, and the stacking gel separated from the resolving 

gel. The gel was incubated for 10 min in transfer buffer. An immune-Blot 

polyvinylidene diflouride (PVDF) membrane (Amersham, UK) was cut to match the 

size of the gel, dipped briefly in absolute methanol, washed with Ultra pure water 

(BDH, UK) and placed in transfer buffer. 

The base of Trans-Blot Semi-Dry electrophoretic cell was dampened with water, and 

a filter paper was placed in the middle of the cell, followed by PVDF membrane, then 

the gel and finally the second filter paper. Protein was transferred from gel to PVDF 

membrane by electrophoresis at 0.8 mA/cm2 for 2 h. The membrane was removed 

from the transfer cell and immediately placed in blocking buffer (wash buffer 

supplemented with 5% dried milk) and left overnight at room temperature to block 

any non-specific sites. 
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After blocking, the membrane was washed three times for 5 min in wash buffer with 

agitation. The membrane was incubated with either the anti-cannabinoid CB2 

receptor antibody alone, or the anti-cannabinoid CB2 receptor antibody pre-incubated 

with fusion protein (2 µg mr ). The cannabinoid CB2 receptor antibody and fusion 

protein were generous gifts from Dr Ken Mackie (University of Washington, Seattle, 

WA, USA). The antibodies were diluted 1: 1000 in blocking buffer and incubated 

with the membrane for 60 min at room temperature on a rotating plate. This was 

followed by 5 min washes of the membrane with the wash buffer, which was 

performed six times in total. The membrane was then incubated with secondary 

antibody (peroxidase-conjugated goat anti-rabbit IgG) diluted 1: 10 000 in blocking 

buffer, for 60 min at room temperature on a rotating plate. Finally, the membrane was 

washed for 5 min six times with wash buffer. 

2.5.5. Detection of Chemiluminesence and film development 

The membrane was placed onto cling-film, while equal volumes of ECL detection 

solutions A and B (Amersham, UK) were mixed and added to the protein side of the 

membrane. Following incubation for 1 min, excess detection solution was removed 

and membrane wrapped in cling-film, ensuring no air-bubbles were present. The 

membrane was exposed to autoradiography film (Hyperfilm-ECL from Amersham, 

UK) for I to 5 min in the dark, followed by incubation in DEKTOL developer 

(Kodak, UK) and finally UNIFIX fixer (Kodak, U. K) before being washed with 

distilled water. All materials were obtained from Sigma, UK, unless otherwise stated. 

2.6. Isolation of genomic DNA 

2.6.1. Preparation of reagents 

Lysis buffer: The lysis buffer was prepared with the reagents listed below and the 

volume and pH adjusted accordingly 
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TRIS. HCI 20 mM pH 7 

EDTA lo mm 

Triton X-100) 0.2% (v/v) 

TE Buffer: The TrisIEDTA buffer was prepared with the reagents listed below and the 

volume and pH adjusted accordingly 

Tris. HC1 10 mM (pH 8.0) 

EDTA 1 mM (pH 8.0) 

Genomic DNA from neutrophils, Jurkat cells or HT-29 cells were isolated using a 

modification of an original method (Blin and Stafford, 1976). Following drug 

treatment of cells and incubation for the indicated period of time, neutrophils (1 x 106 

cells ml") and Jurkat cells (lx 106 cells ml') or trypsinised HT-29 cells were washed 

in cold PBS by centrifugation at 500 xg for 5 min in Hettich EBA 12 centrifuge 

(Hettich Zentrigen, Germany). Supernatants were discarded and cellular content was 

resuspended in 0.5 ml of lysis buffer in an eppendorf tube and left on ice for 10 min. 

Lysates were centrifuged for 15 min at 12,000 xg to separate fragmented DNA 

(supernatant) from chromatin (pellet). Supernatants were incubated with proteinase K 

(100 µg. ml"l) at 37°C overnight to prevent DNA degradation by proteolytic enzyme 

activity. Supernatants were extracted with a 1: 1 dilution of phenol/chloroform (v/v) 

reagent at 4 °C in a Sigma 2K15 centrifuge for 15 min at 5000 x g. The DNA was 

precipitated at-20 °C for 30 min with 1/5 volume of 5M ammonium acetate and I 

volume of isopropanol. Supernatants were discarded and DNA pellets washed with 

70% ethanol at 4 °C in Sigma 2K15 centrifuge for 15 min at 5000 x g. Supernatants 
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were discarded and pellets were resuspended with 50 µl TE buffer and residual RNA 

was digested with 50 gg ml'' of RNAse A for Ih at 37 T. 

2.6.2. Estimation ofgenomic DNA content 

The purity of DNA sample was estimated spectrophotometrically by measuring the 

absorbance at UV 260 nm /280 nm respectively and ratios greater than 1.75. was 

considered sufficiently pure. Samples with a lower ratio suggested the presence of 

significant amounts of protein and therefore was subjected to a further protein 

extraction by repeating phenolchloroform procedure as described in section 2.6.1 

above. The DNA concentration was calculated from the absorbance using the 

formula of Blin and Stafford (1976). From this formula, a solution with OD 260 of 1 .0 

contains approximately 50 pg. ml"' of DNA. mF"'. 

2.6.3. Agarose gel electrophoresis of genomic DNA 

DNA samples were loaded into 1% agarose gel containing I µg, ml"' ethidium 

bromide and subjected to electrophoresis in TEA buffer at 3 V/cm. The DNA was 

visualised by UV transillumination for photography. AI kb plus ladder (Gibco BRL, 

Paisely, UK) was used for sizing linear double stranded DNA fragments from 100 bp 

to 12 kbp. 

2.7. Apoptosis Assays 

2.7.1. May and Grunwald-Giemsa Staining 

Apoptotic neutrophils were identified morphologically following May and Grunwald- 

Giemsa staining of cytocentrifuge preparations according to the modification of an 

original method (Dacie and Lewis, 1991). Briefly, cytoprep slides of human 

neutrophils were fixed in methanol for 5 min. Slides were then stained with May and 

Grunwald stain 1: 2 dilutions (v/v) in phosphate buffered pH 6.8 for 5 min. Slides 

were stained with Giemsa stain (1: 9 dilution (v/v) in phosphate buffer (pH 6.8) 
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without washing for 15 min. Slides were thoroughly washed with phosphate buffer 

(pH 6.8). For complete differentiation to be achieved, slides were flooded with 

phosphate buffer (pH 6.8) for a further 5 min. Slides were air dried and examined 

under light microscope with oil immersion objective under ax 100 objective. At least 

500 cells per slide were counted from different parts of the slide and the data used to 

assess the percentage of apoptotic cells. Criteria for apoptosis included condensed 

nuclei and cytoplasmic vacuolation (Savill et al., 1989). 

2.7.2. DAPI staining 

Apoptosis of human neutrophils, Jurkat cells and HT-29 cells were assessed by a 

modification of a nuclear staining method with DAPI (Kroning and Lichtenstein, 

1998). Briefly, cytocentrifuge preparations of neutrophils or Jurkat cells were fixed in 

3.7% formaldehyde in PBS at room temperature for 10 min. Following drug 

treatment and incubation for different times, a cytocentrifuge preparation of these 

cells was made onto polylysine coated glass slides. For the adherent cell line HT-29, 

a culture of these cells was made on Lab-Tek chamber slides. Slides were fixed in 

3.7% formaldehyde in PBS at room temperature for 10 min. Slides were thoroughly 

washed in PBS, and then stained with DAPI (1 pg . ml") in PBS at room temperature 

for 15 min in the dark. Stained cells were then washed three times with PBS and 

resuspended in 10: 1 dilution of glycerol/PBS (v/v). Cells were covered with 

coverslip. The slide was examined under 400 x magnification using a fluorescent 

microscope with a 340/380 nm excitation filter and an LP 430 nm barrier filter. At 

least 500 cells per slide were and used to assess the percentage of apoptotic cells. 

Slides were photographed with a Leitz fluorescent microscope using UV excitation 

for DAPI staining (Fig. 2.7 summarises the procedure for apoptotic assays). 
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2.8. Cell Viability assays 

2.8.1. M7'T Assay 

MTT tablets were dissolved in PBS to produce a concentration of 5 mg ml"' and 

filtered to remove any insoluble residue. Cells were cultured with drugs. At the end 

of the incubation period, media were removed and 100 µ1. ml'' of MTT reagent was 

added to all wells and incubated at 37 °C for 2 h. Cells were transferred onto 96 well 

plates and 100 µl. well"' of DMSO was added to each well and thoroughly mixed to 

dissolve the dark crystals. Absorbance was measured at 570 nm wavelength and 

results were expressed as % of the control values. 

2.8.2. Trypan Blue dye exclusion method 

One volume of trypan blue dye (0.4% in PBS) was added to 5 volumes of cells in 

suspension and incubated at room temperature for 5 min. The cell suspension was 

then counted in an improved Neubauer counting chamber. All counts were performed 

in duplicate. Cellular viability was expressed as percentage of cells that excluded the 

dye from the total number of cells counted. 
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2.9. Intracellular free calcium measurement 

2.9.1. Preparation of reagents 

HEPES (N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] buffered saline 

(Prepared as 10 x stock solution): The HEPES buffered saline was prepared by 

dissolving the agents listed below 

NaCl 4.2 g 

KC1 0.19 g 

MgSO4.6 H2O 0.10 g 

HEPES (free acid) 1.19 g 

Distilled water 50 ml 

This solution was mixed with a magnetic stirrer until the contents were dissolved and 

the solution was stored at 4 °C until required) 

Working solution 

D Glucose 180 mg 

stock HEPES buffered saline 10 ml 

50 ml of distilled water was added and pH adjusted to 7.4 with a pH meter (Contents 

were transferred to 100 ml volumetric flask and made up to 100 ml with distilled 

water). Final concentrations were NaCl, 145 mM, KCI, 5 mM, MgSO4.6 H2O, 1 mM, 

HEPES, 10 mM, D-Glucose, 10 mM. 

2.9.2. Fura-2/AM loading of HT-29 cells 

HT-29 cells were cultured as described in section (2.3.5). Adherent HT-29 cells were 

washed with PBS and detached (0.05% trypsin/0.02% EDTA) from the tissue culture 

flask. The action of trypsin was stopped by addition of McCoy's 5A medium 

supplemented with 10% FCS. Before experimentation, cells were incubated in 
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McCoy's 5A medium for at least 2h in a humidified atmosphere of 95% air and 5% 

C02. Prior to loading, cells were resuspended in HEPES buffer pH 7.4 containing (10 

mM Glucose/1 mM CaCl2) and incubated for 10 - 15 min at 37 T. Fura-2/AM was 

added to the cell suspension from a1 mM stock solution to give a final concentration 

of 4 µM. Cells were incubated at 37 °C for 45 min in the dark. After loading, cells 

were washed twice in HEPES containing 10 mM Glucose/1 mM CaC12 by 

centrifugation and resuspended in this buffer at a final density of 2x 107 cells ml-1. 

Cells were stored at room temperature and protected from sunlight. To minimise 

problems associated with Fura 2 leakage from cells, all experiments were performed 

within 2h of Fura-2/AM loading. 

2.9.3. Intracellular Ca2+ measurement 

Intracellular calcium [Ca2+]; flux was measured in response to cannabinoids, TNF-a 

and ACh using a Perkin-Elmer LS5 spectrofluorimeter controlled by a desktop 

computer. Excitation wavelengths alternated between 340 nm and 380 nm every 4 

seconds and fluorescence was monitored at 509 nm. Graphical plots were prepared 

using commercial software (GraphPad Prism Inc. ). Calibration of each individual 

experiment was performed as described by Thomas and Delaville (1991), where the 

maximum fluorescence was measured following cell lysis with digitonin (10 µM) and 

minimum fluorescence by quenching with EGTA (20 mM). The intracellular calcium 

concentration [Ca2+]; (nM) was calculated as described by the equation of 

Grynkiewicz et al., (1985) where [Ca2+]; (nM) =K. d. (R-R min)/(R max-R)}. ((F max, 

340 nM)/F min, 380 nm)}, where is 225, and the remaining parameters are defined as 

in (Fig. 6.4.5 a and b) in chapter 6 respectively. 
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2.9.4. Calibration of ionised Ca' measurement with Fura-2/AM preloaded HT-29 

cells. 

The calibration of ionised intracellular Ca2+ measurement was carried out to obtain 

the maximum and minimum response of the intracellular dye. This maximum Ca2+ 

response was achieved by adding digitonin (10 µM) in the presence of 1 mM 

extracellular calcium to saturate the dye. The minimum response was achieved by 

adding EGTA (20 mM) (Fig. 6.4.5 a and b, chapter 6). Data obtained from these 

experiments were stored as ASCII files post run and were latter retrieved to calculate 

the [Ca2+]; (nM). The response produced on the addition of the agonists employed in 

this study was calculated with reference to data stored in the file. 

2.10 Determination of intracellular cyclic adenosine monophosphate (cAMP) in 

HT-29 cells 

HT-29 cells were cultured as described in section 2.3.5 of this chapter. The 

determination of [cAMP]; was performed as described by the manufacturer 

(Amersham International PLC, Amersham UK). 

The kit is made of the following components 

Microtitre plate 

This plate contains 12 x8 well strips coated with donkey anti-rabbit IgG, ready to use. 

Assay buffer 

Assay buffer concentrate I bottle. On dilution of this bottle, the solution contains 

0.05 M sodium acetate buffer, pH 5.8 containing 0.02 % bovine serum albumin and 

0.01% preservative. 

cAMP standards (for non-acetylation assay) 

cAMP standard for non-acetylation assay in the range 12.5-3200 fmol. well'', 

lyophilised. On reconstitution, this bottle contains 32 p mol cAMP. mr''. 
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Antibody 

Rabbit anti-cAMP was supplied in lyophilised form. 

Peroxidase conjugate 

cAMP-horse radish peroxidase also lyophilised. 

Wash buffer concentrate 

Wash buffer concentrate (1 bottle). On dilution, this reagent contains 0.01 M 

phosphate buffer, pH 7.5 plus 0.05% Tween 20. 

TMB substrate 

TMB is the enzyme substrate containing 3,3', 5,5'-tetramethyl benzidine (TMB)/ 

hydrogen peroxide in 20% (v/v) dimethylformamide, ready for use. 

Acetic anhydride (supplied as ready for use). 

Triethylamine (supplied as ready for use). 

Lysis reagent 1. containing dodecyltrimethylammonium bromide, 2g. 

Lysis reagent 2. Description of this reagent was not given. 

2.10.1 Preparation of working standards. 

Working cAMP standards was prepared by labelling 8 propylene tubes (12 x 75 mm) 

12.5,25,50,100,200,400,800, and 1600 f mol. 500 µl of lysis reagent 1B was 

added into all tubes. Into the 1600 f mol tube, 500 µl of stock non-acetylation (32 p 

mol. ml-') was added and mixed thoroughly. 500 µl was transferred from 1600 fmol 

tube to 800 f mol tube and mixed thoroughly by vortexing. This doubling dilution 

was repeated successively with the remaining tubes and mixed by vortexing after each 

dilution. 

2.10.2 Principle of assay 

The lysis reagent I hydrolyses cell membranes to release intracellular cAMP. Lysis 

reagent 2 sequesters the key component in lysis reagent 1 and ensures cAMP is free 
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for subsequent analysis. The detergent/sequestrant complex does not interfere with 

antigen: antibody binding. Lysis reagent I is simply added to cultured cells, followed 

by 5-10 min incubation before assay (Figure 2.10) below. The antiserum is 

reconstituted with lysis reagent 2. The assay is based on competition between 

competition between unlabelled camp and a fixed quality of peroxidase-labelled 

cAMP, for a limited number of binding sites on a cAMP specific antibody (figure 

2.10). 

CAMP 

Donkey abbit anti- 
Peroxidase 

anti-rabbit MP 
IgG 

CAMP 

Solid phase 

Incubation 

TMB 

Stop reaction and measure 
OD 

Incubation 60 min 

(Figure 2.10 Principles of enzyme immunoassay of cAMP) 
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2.10.3 EIA assay protocol for the measurement of cAMP in HT-29 cells 

HT-29 cells were maintained in culture as described in section 2.3.5 of this chapter. 

For the assay of cAMP, trypsinised HT-29 cells were seeded in a standard 96 well 

microtitre plates (tissue culture grade) with cell density of 106 cells. ml" . The plate 

was incubated overnight at 37 °C (5% C02/95% humidity). 100 µl of the drugs was 

added and incubated for the indicated time period. Excess culture media was 

decanted and 200 µl per well of diluted lysis reagent IB added into the cultures. 

Following the addition of lysis reagent I B, shaking the plate on a micro titre plate 

shaker for 10 min facilitated cell lysis. In order to check whether complete lysis of 

HT-29 cells has taken place, microscopic evaluation using trypan blue dye assay was 

done as described in section 2.8.2. Once cells were lysed, the enzyme immunoassay 

protocol was processed as described by the manufacturers of the cAMP kit 

(Amersham International PLC, Amersham UK). 

Briefly, 100 µl of samples or standards was added to the wells of the pre-coated EIA 

plates supplied in the Biotrak kit. To each well, 50 µl of cAMP-peroxidase conjugate 

was added and incubated at 5 °C for 2 h. The Plate was washed thoroughly with 

PBS/Tween and 150 µl of enzyme substrate (Trimethylbenzidine) was added to all the 

wells and incubated at room temperature for I h. The reaction was stopped by the 

addition of 100 µl of IM H2SO4. Absorbance was measured at 450nm on a 

Labsystems micro titre plate reader. 

73 



Chapter 3; The effect of cannabinoids on the secretion of tumour necrosis factor- 

a (TNF-a) and interleukin 2 (IL-2) from immune cell lines (THP-1 and Jurkat 

E6.1 cells) 
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3.1 Introduction 

There is evidence suggesting that cannabinoids may modulate immune cell functions 

(for reviews, see Specter, et al, 1990). A number of studies have implicated a variety 

of immune cell functions in cannabinoid-induced immunomodulation. For example, 

the proliferative responses of T and B cells to specific mitogens, natural killer (NK) 

cell killing ability and expression of TNF-a by macrophages were all suppressed by 

cannabinoids (Klein et al., 1998). Other immunological responses affected by 

cannabinoids include interleukin 2 (IL-2), production by T cells (Condie et al., 1996). 

In our laboratory, CP55,940 inhibited mitogen-induced release of reactive oxygen 

species generated in rat peritoneal mast cells (Brook's et al., 1999), suggesting that 

cannabinoids may also alter mast cell function. 

The pro-inflammatory cytokine tumour necrosis factor alpha (TNF-a) has been 

shown to be an important component of cellular immune responses (Beutler, 1995). 

Consequently animals treated with anti-TNF-a were found to have an unusual 

susceptibility to infection by listeria monocytogens (Havell, 1989). Furthermore, 

TNF-a was demonstrated to exert a general anti-viral effect on infected cells (Mestan 

et al., 1986; Beutler et al., 1995). TNF-a, primarily a product of activated 

macrophages and monocytes can also be synthesised by other cells of the immune 

system including epithelial cells and endothelial cells (Beutler et al., 1984; Beutler, 

1995). Many in vitro studies have shown that cannabinoids modulate pro- 

inflammatory cytokine release from monocyte cell lines. In particular, A9-THC 

inhibited LPS-induced release of IL-1 ß or TNF-a from the monocyte cell line, THP-1 

(Shivers et al., 1994, Halfpenny et al., 1998) respectively. However, inhibition was 
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observed at relatively high concentrations (>1 µM) and no attempts were made at 

characterising the cannabinoid receptors mediating these effects. 

Another pro-inflammatory cytokine interleukin-2 (IL-2) is responsible for T 

lymphocyte signalling during proliferation. Expression of functional IL-2 receptors is 

another important variable that determines how long the clonal proliferation of T cells 

occurs following antigen stimulation (Smith, 1988). IL-2 receptors are not detectable 

on the majority of freshly isolated T-cells but they appear following polyclonal eg 

(PHA-induced) activation of T cell receptors (TCR). In general, IL-2 can regulate 

both antigen-specific and non-specific proliferation of T-cells. Given the importance 

of IL-2 in T cell signalling, and the role of TNF-a in reactions directed at removing 

intracellular pathogens, the modulation of their release from immune cells would 

present an attractive pharmacological target for treatment of various immune 

conditions. 

3.2 Aims of study 

The aims of the experiments described in this chapter are: 

To investigate the effect of synthetic, classical and endogenous cannabinoids on the 

secretion of IL-2 from the lymphocytic cell line, Jurkat and TNF-a from the 

monocytic cell line THP-1. To assess whether THP-1 and Jurkat cells express 

functional cannabinoid receptors. To characterise the cannabinoid receptor 

responsible for any observed effects. 
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3.3 Experimental Protocols 

Maintenance of THP-1 and Jurkat E6.1 cell lines were carried out as described in 

chapter 2 (sections 2.3.1 and 2.3.2) of this thesis. Cell viability was assessed as 

described in chapter 2 (sections 2.8.1 and 2.8.2). 

3.3.1 Treatment of cells. 

3.3.1.1 THP-1 cells 

THP-1 cells were seeded into 24 well plates at a density of 3x105 cell. ml"' in 1 ml of 

fresh RPMI 1640 medium. For time course experiments, cells were stimulated with 

LPS (3 µg. ml'') and supernatants were harvested hourly, following centrifugation of 

cultures at 250 xg for 5 min. Cell free supernatants were harvested and assayed for 

TNF-a release by ELISA as described in chapter 2 (section 2.4). 

For studies on the effect of ethanol (vehicle) on TNF-a release, cells were incubated 

with graded concentrations of ethanol (0-1%) for 2h prior to stimulation with LPS (3 

µg. ml"1) and the supernatants harvested after incubation for a further 2 h. In 

experiments involving the effects of cannabinoid receptor agonists, cells were 

incubated with CP55,940 (10'6 M -10-4 M), t-THC (10-6 M -10-4 M) or anandamide 

(10l M-10'4 M) for 2h prior to addition of LPS (3 µg. ml") for a further 2h and TNF- 

a release was measured by ELISA. For experiments involving the study of the effects 

of antagonists, the cells were first incubated with the appropriate drug 30 min prior to 

addition of CP55,940. Cells were incubated with CP55940 ± cannabinoid receptor 

antagonists for 2h and stimulated with LPS for a further 2 h. The supernatant 

harvested from cell cultures was assayed for TNF-a by ELISA. In experiments 

involving the study of G-proteins, cells were first treated with pertussis toxin (PTX) 
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(100 ng. ml-) or cholera toxin (CTX) (10 ng. ml'') for 18 h. Cells were washed by 

centrifugation before being dosed with CP55,940 (10-6 M). 

3.3.1.2 Jurkat E6.1 cells 

Jurkat cells were seeded into 24 well plates at a density of 1x 106 cells ml"' in 1 ml of 

fresh RPMI 1640 medium. In experiments where the effect of cannabinoid agonists 

was measured, cells were dosed with CP55,940 0 0"6 M-10"4 M), A9-THC (10-6 M-104 

M) or anandamide (10-6 M-104 M) and incubated for 2h at 37 °C prior to addition of 

PHA (2.5 µg. ml'') and PMA (25 µg. ml') and the incubation continued for a further 

18 h. IL-2 release into the culture supernatant was measured by ELISA. Where the 

effect of cannabinoid receptor antagonists were measured cells were first treated with 

antagonist 30 min prior to treatment with CP55,940. Cells were incubated with 

cannabinoid receptor antagonist and CP55,940 for 2h prior to the addition of PHA 

(2.5 µg. ml"')/PMA (25 µg. ml"') and then incubated for a further 18 h. The cell free 

supernatants were harvested and assayed for IL-2 by ELISA. 

3.4 Data Analysis 

Concentration-response curves were analysed using GraphPAD prism (GraphPAD 

Software Inc., CA, USA). Other results were represented as bar graphs. In 

experiments where a single concentation of stimulant was used, inhibitory effects of 

cannabinoids on the release of TNF-a or IL-2 was normalised and expressed as % 

inhibition from the control (TNF-a or IL-2) treated cells alone. Calculation of EC50 

values was made with GraphPAD Prism statistical software. All values were 

expressed as geometric mean and variability as standard error of the mean or 95% 

confidence limits as appropriate. Statistical significance was determined using a one 

sample t-test or analysis of variance followed by the appropriate Post hoc test. 

Significance was assumed if aP value of <0.05 or less was obtained. 
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3.5 Results 

3.5.1 Time course of TNF-a release from THP-1 cells. 

Non-stimulated THP-1 cells (3 x 105 cell. ml'') secreted small amounts of TNF-a 

(21.46 ± 38.46 pg. ml"1) after 4h incubation in RPMI medium at 37°C. Following 

stimulation with LPS (3 µg. ml"') there was a small rise in TNF-a secretion in the first 

hour followed by a rapid increase in TNF-a by 2h incubation (Figure 3.5.1). TNF- 

a levels in culture supernatants then remained stable for up to 5h after stimulation. 

Cumulative release of TNF-a from THP-1 cells following stimulation with LPS for 5 

h was (9686.2 ± 537.1 pg. ml'', n=6) (Figure 3.5.1). 
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Figure 3.5.1. Time course of TNF-a, release from THP-1 cells. 
THP-1 cells were stimulated with LPS (3 gg ml"') for 1 h, 2 h, 3 h, 4,5 h. Cell free 
supernatants were harvested for TNF-a assay by ELISA as described in chapter 2, 
section 2.4. Data are mean ± SE mean of six separate experiments. 
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3.5.2 The effect of vehicle on LPS-induced release of TNF-a from THP-1 cells. 

The effect of increasing concentrations of ethanol (0-2%) on LPS-induced release of 

TNF-a from THP-1 cells was investigated because this was the vehicle for the 

cannabinoid receptor agonists CP55,940 and A9-THC respectively. Higher 

concentrations of ethanol (0.5-2.0%) inhibited LPS-induced TNF-oc release from 

THP-1 cells whereas lower concentrations of ethanol (0-0.1%) had no significant 

(P<0.05) inhibitory effect on the release of TNF-a (Figure 3.5.2). 
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Figure 3.5.2 Effect of Ethanol on LPS induced release of TNF-a from THP-1 
cells. 
THP-1 cells (3 x 105 cells. ml'') were incubated with or without ethanol for 2h prior 
to stimulation with LPS (3 p. g ml"') for 2 h. Cell free supernatants were harvested for 
TNF-a assay by ELISA as described in chapter 2, section 2.4. Data are mean±SE 
mean of six separate experiments. * Denotes significant difference (P<0.05) from the 
control LPS treated cells (Student's t-test) 
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3.5.3 The effect of CP55,940, A9-THC and anandamide on LPS-induced release of 

TNF-afrom THP-1 cells. 

We examined the effect of the non-selective cannabinoid receptor agonists CP55,940 

(10-6 M-10-4M), O9-THC (10-6 M-10-4 M) and anandamide (10-6 M-10-4 M) on LPS- 

induced secretion of TNF-a from THP-1 cells. All three cannabinoid receptor 

agonists produced a concentration-related inhibition of TNF-a secretion (Figure 

3.5.3) and the following EC50 values were calculated; CP55,940 (4.8 x 10'5 M, 95% 

confidence Limits (C. L. )=2.6 x 10"5 M-8.8 x 10'5 M, n=6), 09-THC (3.1 x 10'5 M, 95 

%C. L. =2.8x 10"5M- 3.5 x 10'5 M, n=6)andanandamide(1.86x 10'5 M, 95% 

C. L. =1.6 x 10"5 M-2.1 x 10'5 M, n= 6). All the cannabinoid agonists employed in 

this study produced approximately the same maximum inhibition of LPS-induced 

release of TNF-a (-100%). Within the concentration-ranges tested, CP55,940 (10-6 

M- 10-4 M), 09-THC (10-6 M- 10-4 M) and anandamide (10-6 M- 10-4 M) 

significantly (P<0.05) inhibited LPS-induced TNF-a release from THP-1 cells (one 

way ANOVA followed by Dunnet's post hoc test, n=6) (Figure 3.5.3).. The rank 

order of agonist potency obtained from our study was as follows; anandamide > A9- 

THC > CP55,940. 
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Fig. 3.5.3 Effect of CP55,940, A9-THC and anandamide on LPS-induced release 
of TNF-a from THP-1 cells. 
THP-1 cells (3 x 105 cell. ml'') were treated with CP55,940 (10-6 M- l0" M), A9- 
THC (10-6 M- 10-4M) and anandamide (10-6 M- 10-4M) for 2h before stimulation 
with LPS (3 µg ml's). Incubation was continued for a further 2 h. Cell free 
supernatants were assayed for TNF-a by ELISA as described in chapter 2, section 
2.4. Data are presented as % inhibition of TNF- a release from control (LPS treated 
cells alone). Error bars represent mean ±SE mean of six separate experiments. 

3.5.4 The effect of cannabinoid receptor antagonists. 

The cannabinoid CB2 receptor antagonist SR144528 (10-6 M), significantly (P<0.05,2 

way ANOVA followed by Bonferroni's post hoc test, n=6) antagonised the inhibitory 

effects of CP55,940 (pA2 = 6.1 ± 0.1, n= 6) on LPS-induced TNF-a release. In 

contrast, the cannabinoid CB1 receptor antagonist SR141716A (10"6 M) did not 

antagonise the effect of CP55,940 (Figure 3.5.4). 
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Figure 3.5.4 Effect of SR144528 and SR141716A on CP55,940 induced inhibition 

of TNF-a release from THP-1 cells. 
THP-1 cells J3 x 105 cell. ml'') were incubated with SR141716A (10-6 M) or 
SR144528 (10 M) for 30 min before treatment with CP55,940 (10-6 M-10 -4 M) for 
2 h. Cells were stimulated for a further 2h with LPS (3 pg. ml''). Supernatants were 
assayed for TNF-a release by ELISA as described in the chapter 2, section 2.4. Bars 

represent mean ± S. E. mean of six separate experiments. 

3.5.5 The effect of serum on CP55,940 induced inhibition of LPS-induced TNF-a 

release from THP-1 cells. 

In order to determine the effect of serum on cannabinoid-induced inhibition of TNF-a 

release from THP-1 cells, cells were treated with CP55,940 (10-6 M- 10-4 M) in the 

presence or absence of 10 % FCS for 2h before stimulation with LPS (3 jig-ml"') for 

a further 2 h. Under the experimental conditions described in this chapter, 10% FCS 

evoked a small but non-significant (P>0.05) shift of CP55,940 concentration-effect 

curves to the left (Figure. 3.5.5). 
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Figure 3.5.5 Effect of 10% FCS on CP55,940 concentration-effect curves. 
THP-1 cells (3 x 105 cells. ml"') were treated with CP55,940 for two hours in RPMI 

medium in the presence or absence of 10% FCS. The cells were stimulated with LPS 
(3 µg. ml "1) for 2h and TNF-a secretion assayed by ELISA as described in chapter 2, 

section 2.4. Data are mean ± SE mean of six separate experiments. 

3.5.6 The effect of PTX and CTX on LPS- induced secretion of TNF-a release from 

THP-1 cells. 

To study the involvement of G-proteins in cannabinoid-induced inhibition of TNF-a 

release, THP-1 cells were incubated with PTX (100 ng. ml"') or CTX (10 ng. ml'1), 

followed by treatment with or without CP55,940 (10-5 M) for 2h and stimulation with 

LPS (3 pg. ml-1) for a further 2 h. Treatment of THP-1 cells with PTX (100 ng. ml'') 

abolished the inhibitory effect of CP55,940 on LPS-induced release of TNF-a. 

Treatment with CTX (10 ng. ml'') or a combination of the two toxins attenuated the 

inhibitory responses of CP55,940 (Figure 3.5.6). PTX (100 ng. ml"') had no effect on 

the release of TNF-a on its own (data not shown). 
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Figure 3.5.6 Effect of PTX and CTX on LPS induced secretion of TNF-a 
fromTHP-1 cells. 
THP-1 cells were treated with PTX (100 ng ml") and or CTX (10 ng ml for 18 h. 
Cells were washed and incubated in the presence or absence of CP55,940 (10"5 M) 
before stimulation with LPS. TNF-a release was measured as described in chapter 2, 
section 2.4. Data are presented as mean ± SEM of 6 independent experiments. * 
Denotes significant difference (P<0.05) from the control LPS treated cells (Student's 
t-test). 

3.5.7 The effect of CP55,940, d9-THC and dexamethasone on the release of TNF-a 

from THP-1 cells. 

To compare the inhibitory effects of cannabinoids and dexamethasone on LPS- 

induced release of TNF-a, THP-1 cells were incubated with CP55,940 (10'7 M- 10"5 

M), A9-THC (10-'M - 10-'M) and dexamethasone (10"7 M- 10'5 M) or vehicle for 2h 

before stimulation with LPS (3 µg. ml") for further 2 h. CP55,940, A9-THC and 

dexamethasone produced concentration-related decreases in TNF-a release from 

THP-1 cells. Dexamethasone evoked significant (P<0.05) concentration-related 
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inhibition of TNF-a release when compared with the LPS treated control at all the 

concentrations tested whereas 04-THC and CP55,940 only produced significant 

(P<0.05) inhibition at 10"5 M, the highest concentration of the drugs used, when 

compared with control (Figure 3.5.7). 
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Figure 3.5.7 . Effect of CP55,940, A9-THC and Dexamethasone on the release of 
TNF-a from THP-1 cells. 
CP55,940 (10'7 M-10'5 M), A9-THC(10-7 M-10'5 M) and dexamethasone (10'7 M- 10'5 
M) were incubated with THP-1 cells for 2h prior to stimulation with LPS (3 µg ml"'). 
Cells were incubated for further 2h and TNF-a secretion was assayed by ELISA as 
described in chapter 2, section 2.4. Error bars represent SE of the mean for six 
independent determinations. * Denotes significant difference (P<0.05) from the 
control LPS treated cells Students t-test 
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3.5.8 Determination of the viability of THP-1 cells with CP55,940 using M7T assay. 

The viability of THP-1 cells, as determined by the ability of cells to reduce MTT to 

formazan was between 77% and 100% following incubation with CP55,940 for 2h 

and stimulation with LPS for a further 2h (see Table. 3.1 below 

Table 3.1 MTT assay on THP-1 cells 

[Drugs] (M)/Control Cell viability % of control 

LPS (3 µg. m1") 100±7.1, SEM, n=6 

Untreated 91.6±1.5, SEM, n=6 

CP55,940 10 M 89.2±12.5, SEM, n=6 

CP55,940 10" M 86.1±4.6, SEM, n=6 

CP55,940 5x10" M 92.7±4.6, SEM, n=6 

CP55,940 7.5x10" M 77.5±2.4, SEM, n=6 

CP55,94010 M 94.8±5.0, SEM, n=6 

Cell viability of THP-1 cells was determined by MTT assay as described in chapter 2, 
section 2.8.2 of this thesis. The data are mean ± SEM of 6 different experiments. 
Significant difference (* P<0.05) from control (untreated cells) 
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3.5.9 Time course for IL-2 release from Jurkat cells. 

Non-stimulated Jurkat cells constitutively released minimal amounts of IL-2 (2.7 ±0.1 

pg. ml"') following 24 h incubation at 37°C. Following stimulation with PHA (2.5 µg 

ml-1) and PMA (25 gg. ml"') a small increase in IL-2 release was observed during the 

first 6 h. This was followed by a rapid increase in IL-2 secretion between 6 and 12 h. 

This was followed by a further, small increase in IL-2 release, which peaked at 18 h. 

There was a small decline in IL-2 release by 24 h. Thus, the maximum release of IL- 

2 occurred at 18 h (220 ± 11.14 pg. ml'') (Figure 3.5.8). 
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Figure 3.5.8 Time course of IL-2 release from Jurkat cells. 
Jurkat cells (1 x 106 cell. ml'') were stimulated with PHA (2.5 µg ml'') and PMA (25 
gg ml"') for 0 h, 3 h, 6 h, 12 h, 18 h and 24 h. Cell free supernatants were harvested 
for IL-2 assay by ELISA as described in chapter 2, section 2.4. Data are the mean and 
SE mean of six separate experiments. 
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3.5.10 The effect of CP55,940, A9-THC and anandamide on PHA-induced release of 

IL-2 from Jurkat cells. 

The effect of the non-selective cannabinoid agonists CP55,940 (10-6M - 10-0 M), A9- 

THC (10-6 M- 10'4M) and anandamide (10-6 M- 10-4M) on PHA/PMA-induced 

secretion of IL-2 from Jurkat cells was examined. All three agonists produced a 

concentration-related inhibition of PHA/PMA-induced IL-2 release and the following 

EC5o values were calculated; CP55,940 (2.3 x 10'5 M, 95% confidence limits 

(C. L. )=1.5 x 10'5 M-3.5 x 10-5 M, n=6), A9-THC (3.2 x 10"5 M, 95 % C. L. = 2.1 x 10' 

5M-4.8 x 10"5 M, n=6) and anandamide (7.1 x 10-' M, 95% C. L. =6.1 x 10"5 M-8.3 

x 10'5 M, n=6). All the carmabinoid agonists employed in this study produced 

approximately the same maximum inhibition of PHA and PMA-induced IL-2 release 

(~100%). Within the concentration ranges tested, CP55,940 (106 M- 10 M), A? - 

THC (10-6 M- 10'4 M) and anandamide (10-6 M- 104 M) significantly (P<0.05) 

inhibited PHA/PMA-induced IL-2 release from Jurkat cells (one way ANOVA 

followed by Dunnet's post hoc test, n=6). The rank order of agonist potency obtained 

from our study was as follows; anandamide> A9-THC>CP55,940 (Figure 3.5.9). 
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Figure 3.5.9 Effect of CP55,940, A9-THC and Anandamide on the release of IL-2 
from Jurkat cell line. 
Jurkat cells (1 x 106 cell. ml") were treated with CP55,940 (10.6 M- 10-4 M), A9-THC 
(101 M- 10'4 M) and anandamide (10-6 M- 10-4 M) for 2h before stimulation with 
PHA (2.5 µg ml")/PMA (25 µg ml-) for a further 18 h. Cell free supernatants were 
assayed for IL-2 by ELISA as described in the chapter 2, section 2.4. Data are 
presented as % inhibition of IL-2 release from control PHA (2.5 µg ml-')IPMA (25 µg 
ml"' ). Error bars represent the mean ±SE mean of six separate experiments. 

3.5.11 The effect of cannabinoid receptor antagonists SR141716A and SR144528 on 

CPSS, 940 induced inhibition of PHA and PMA-induced release of IL-2 from Jurkat 

cells. 

Neither SR141716A (10-6 M) nor SR144528 (10-6 M) antagonised the effect of 

CP55,940 (Figure 3.5.10 a). However SR141716A (10-6 M) and SR144528 (10-6 M) 

evoked significant (P<0.05) inhibition of PHA/PMA induced IL-2 release from Jurkat 

cells (Figure 3.5.10 b). 
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Figure 3.5.10 Effect of SR141716A and SR144528 on CP55,940 induced 
inhibition of IL-2 release from Jurkat cell lines. 

Jurkat cells (1 x 106 celLml'') were incubated with SR141716A (10-6 M) or SR144528 
(10-6 M) for 30 min before treatment with CP55,940 (10"6 M- 10-4 M) for 2 h. Cells 

were stimulated for a further 18 h with PHA (2.5 µg ml")/PMA (25 µg ml'') . 
Supernatants were assayed for IL-2 release by ELISA as described in chapter 2, 

section 2.4. Bars represent mean ± mean of six separate experiments. Figure 3.5.10 a 
shows the effect of SR141716A and SR144528 on CP55,940-induced release of IL-2 
from Jurkat cells. Figure 3.5.10 b shows a concentration-related inhibition of IL-2 
release by SR141716A and SR144528 from Jurkat cells. Error bars indicate S. E 
mean of 6 independent experiments. * Denotes significant difference P< 0.05, from 
the control PHAJPMA stimulated cells (Student's t-test). 
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3.5.12 Determination of the viability of Jurkat cells with CPSS, 940 using M7T assay 

Table 3.2 shows the viability of Jurkat cells following treatment with CP55,940 for 2 

h and stimulation with PHA(PMA for a further 18 h. There was a concentration- 

related reduction in the mitochondria oxidative metabolism of Jurkat cells treated with 

increasing concentration of CP55,940 (10-6 M -10-4 M). 

Table 3.2. MTT assay on Jurkat cells 
[Drugs] M/Control Cell viability % of control 

Control (PHA/PMA) stimulated cells 
alone 

100.25±. 4, SEM, n=6 

CP55,940 10-6M What 94.9±0.8, SEM, n=6 

CP55,940 10"M 95.05±2.3, SEM, n=6 

CP55,940 5xl0' M 71.6±. 5, SEM, n=6 

CP55,940 7.5xl0" M 13.5±1.0, SEM, n=6 

ECP55,940 10 M 7±1.2, SEM, n=6 

Cell viability of Jurkat cells was determined by MTT assay as described in chapter 2, 
section 2.8.2 of this thesis. The data are mean ± SEM of 6 different experiments. * 
Significant difference (* P<0.05) from control (untreated cells). Abbreviations: SEM, 
standard error of the mean, PHA, Phytohemagglutinin, PMA, Phorbol-13- myristate- 
14- acetate. 
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3.6 Discussion. 

3.6.1. The effect of cannabinoids on the release of TNF-a from THP-1 cells 

The present study demonstrates that in vitro treatment of THP-1 cells with 

cannabinoids decreased LPS-induced TNF-a secretion. These events occurred at high 

micromolar concentrations i. e. higher than those reported in binding studies (Rinaldi- 

Carmona et al., 1998), and were attenuated by treatment with pertussis toxin but not 

cholera toxin. The cannabinoid CBI receptor antagonist, SR141716A (10"5 M) 

(Rinaldi-Carmona et al., 1994) was ineffective in antagonising the CP55,940 

responses in this cell line whereas the cannabinoid CB2 receptor antagonist SRI 44528 

(10"5 M) (Rinaldi-Carmona et al., 1998) antagonised the inhibitory effects of 

CP55,940. The rank order of agonist potency for inhibition of LPS-induced TNF-a 

release by cannabinoids was anandamide>A9-THC>CP55,940. These observations 

suggest that the immune suppression of TNF-a release from the monocytes by 

cannabinoids is mediated via cannabinoid CB2-like receptors. 

THP-1 cells have been shown to express cannabinoid CB2 receptors (Shivers et al., 

1994; Halfpenny et al., 1998). To our knowledge, there is no evidence for the 

presence of cannabinoid CBI receptor protein or the mRNA for cannabinoid CB1 

receptors in these cells (Halfpenny et al., 1998). The concentration-dependent 

inhibition of LPS-induced TNF-a release observed in the present study suggests that 

immune responses produced by THP-1 cells can be modulated by classical, non- 

classical and endogenous cannabinoids through an action on cannabinoid CB2 

receptors. 
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Both cannabinoid CB, and CB2 receptors are negatively coupled to adenylate cyclase 

through pertussis toxin-sensitive G; /Go-protein (Felder et al., 1995) and to investigate 

whether the inhibitory actions of cannabinoids observed in the present study were G- 

protein mediated, THP-1 cells were incubated with PTX and CTX respectively for 18 

h before treatment with CP55,940 (10-6 M) followed by stimulation with LPS. In the 

presence of PTX, CP55,940-evoked inhibition of LPS-induced TNF-a release was 

significantly attenuated suggesting the involvement of G; /Go protein coupled 

receptors. In the presence of CTX or a combination of CTX and PTX, CP55,940 (I0"6 

M) evoked inhibition of LPS-induced TNF-a release by CP55,940 was still attenuated 

suggesting that Gs protein may not be involved in cannabinoid-induced inhibition of 

TNF-a release. 

The mechanism of LPS-induced TNF-a release in monocytes is complex however the 

findings reported in this chapter is in agreement with those of Altavilla et al., (1986), 

who demonstrated that LPS-induced TIN-a release in macrophages is a G-protein 

mediated event and with those of Halfpenny et al., (1998), who showed that 

cannabinoid receptor agonists could inhibit LPS-induced TNF-a release from THP-1 

cells albeit at higher concentrations (I µM). However, the scenario is more complex 

and indeed it is difficult to assign a particular receptor subtype to the effects reported 

here. For example, cannabinoids are highly lipid soluble substances (Dewey, 1986) 

and the effects observed in the present study could be interpreted as membrane effects 

although their blockade by a cannabinoid CB2 receptor antagonist but not by a 

cannabinoid CB, receptor antagonist may be suggestive of a cannabinoid CB2 

receptor-mediated event. Alternatively, whether the reported presence of the 

cannabinoid CB2 receptors is found only in differentiated THP-1 cells or is also seen 
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in undifferentiated cells is not known (Halfpenny et al., 1998). If the former is true, a 

situation may arise where the expressed receptors are insufficient to evoke a 

functional response and this may account at least in part to the effects observed in the 

present study. However to asses these possibilities, it may be worth investigating the 

effect of the inactive enatiometer of CP55,940 on LPS induced release of TNF-a from 

THP-1 cells. Regrettably, the inactive enantiomer to CP55,940 was not available at 

the time of these experiments. 

Derocq et al (1995) showed that cannabinoid receptor mediated effects on B cell 

responses were enhanced in medium containing low concentrations of serum. Thus, 

the effect of cannabinoid receptor agonists on the release of TNF-a in THP-1 cells in 

the presence and absence of 10% FCS was studied. An enhanced inhibitory effect of 

cannabinoids in serum free medium was shown. It has been shown that cannabinoid 

receptor ligands bind to serum protein (Dewey, 1986), and this may in part account 

for higher drug concentrations needed to evoke functional responses in the present 

study and other similar in-vitro studies in comparison to receptor binding studies 

employing cannabinoid receptor ligands. (Watzl et al., 1991; Halfpenny et a1., 1998; 

Shivers et al., 1994) 

From the data described above and the finding of others, it can be concluded that 

cannabinoids suppress LPS-induced TNF-a release from activated THP-1 cells. 

These effects occur at high cannabinoid concentration and are attenuated by a 

cannabinoid CB2 receptor antagonist and they are also G; /Go protein sensitive, 

suggesting an effect mediated through cannabinoid CB2 receptors. Given the 

importance of TNF-a in immune responses, the role of macrophage/monocyte in 
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inflammation and modulation of these effects by cannabinoids as demonstrated 

herein, cannabinoids could be considered a potential target for anti-inflammatory drug 

therapy. 

3.6.2 The effects of cannabinoids on the release of IL-2 from Jurkat E6. I cells 

These experiments investigated the possible immunomodulatory effects of 

cannabinoids on Jurkat cells. These cells are a T-helper type-1 human pro- 

lymphocyte cell line capable of secreting IL-2 following stimulation with appropriate 

mitogen (Werge et al., 1994). In the present study, it has been shown that CP55,940, 

A9-THC and anandamide inhibited PHAIPMA-induced secretion of IL-2 release from 

Jurkat cell line. These effects occur in a concentration-dependent fashion and are 

observed at micromolar cannabinoid concentrations. Additionally, higher 

cannabinoid concentrations inhibited the mitochondria oxidative metabolism in these 

cells as assessed by the ability of cells to reduce MTT to formazan. 

Receptor mRNA specific for cannabinoid CB2 receptors but not cannabinoid CB, 

receptors has previously been identified in the Jurkat E6-1 cell line (Schatz, et al., 

1997). Whether the mRNA isolated from this cell line is transcribed to form 

functional cannabinoid CB2 receptor protein has remained a controversial subject. 

This controversy largely stems from the aberrant nature of the cannabinoid CB2 

receptor mRNA isolated from Jurkat cells and partly due to the inactivity of 

cannabinoid receptor ligands to evoke inhibition of forskolin-stimulated cAMP in 

these cells (Schatz et al., 1997). However, in the present study, CP55,940, A9-THC 

and anandamide inhibited PHA/PMA-induced IL-2 release from Jurkat cells albeit at 

higher concentrations than those reported in some other studies (Condie et al., 1996). 

These observations would appear to agree with a previous study, which implicated A? - 
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THC and cannabinol in suppressing IL-2 secretion and inducing a steady state IL-2 

mRNA expression in primary mouse splenocytes and EL4 T-cell line (Condie et al., 

1996) but at odds with the study reported by Schatz et al. (1997). However, these 

groups did not employ cannabinoid receptor antagonists to identify the receptor 

mediating cannabinoid-induced inhibition of IL-2 release from these cells. In the 

present system SR141716A and SR144528 exhibited marked partial agonist activity 

in that these cannnabinoid receptor antagonists evoked responses on their own. Under 

these circumstances, it would be difficult to demonstrate clearly the antagonist 

properties of these compounds on CP55,940-induced action on Jurkat cells since they 

evoke responses on Jurkat cells on their own. The partial and inverse agonist effects 

of these compounds are well documented (Portier et al. 1999). It would be worth 

employing selective agonists such as ACEA, JWH 015 (Hillard et al., 1999) devoid of 

any inverse or partial agonist properties to characterise the receptor mediating the 

effect of cannabinoids in this system, which were not available at the time when these 

experiments were performed. 

Taken together, it is concluded that the pharmacological profile exhibited by 

cannabinoid receptor ligands as inhibitors of PHA and PMA-induced IL-2 release 

from Jurkat cells is inconsistent with the presence of typical functional cannabinoid 

receptors as reported elsewhere (Kaminski et al., 1992). Firstly, the agonist rank 

order of agonist potency; (Anandamide>A9-THC> CP55,940> SR144528> 

SR141716A) is not in agreement with other published work (Pertwee et al , 1999). 

Secondly, the cannabinoid CB1 and CB2 receptor antagonists were unable to attenuate 

the effect of CP55,940 in this system. Whether this profile represents the presence of 

a unique subtype of a variant of a previously described receptor, such as vanilloid 
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receptors, would require further studies. Furthermore, Jurkat cells are apoptosis- 

sensitive cells (Neuzil et al, 1999). The unusual susceptibility of these cells to 

metabolic oxidative damage in response to increasing concentration of CP55,940 may 

suggest an up regulation of apoptotic signals in this system, a topic studied in a 

greater detail in chapter 7 of this thesis. Taken together, these observations point to 

the existence of an alternative immune inhibitory pathway in T cell responses. 

However, further studies such as the effect of cannabinoids on Jurkat cell apoptosis as 

reported in chapter 7 of this thesis is required to confirm our hypothesis. 

In conclusion, the findings described in this chapter show that cannabinoid receptor 

agonists inhibit PHA and PMA-induced IL-2 release from Jurkat cells. These data 

could not conclusively show whether these actions are receptor mediated or simply a 

non-specific membrane effect, hence this study has been extended to peripheral blood 

mononuclear cells (PBMC) as described in chapter 4 of this thesis. Finally, it has 

been demonstrated that Jurkat cells are highly susceptible to mitochondria oxidative 

damage when treated with cannabinoids. 
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Chapter 4; The effect of cannabinoids on the release of interleukin 2 (IL-2) from 

peripheral blood mononuclear cells (PBMC) 
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4.1 Introduction 

In the previous chapter, the effects of cannabinoids on the release of pro- 

inflammatory cytokines, TNF-a and IL-2 from a pro-monocytic cell line, THP-1 and 

from a pro-lymphocytic cell line, Jurkat cells were investigated. These cell lines are 

known to express cannabinoid CB2 receptors (Halfpenny et al., 1998; Schatz et al., 

1997). They are human derived immature white blood cells and therefore the effects 

observed in these systems may not necessarily be representative of the mature human 

blood mononuclear cells. In the present chapter, experiments are described where the 

effects of cannabinoids on the release of IL-2 from human peripheral blood 

mononuclear cells (primary cells) are studied. In a recent study, the effects of 

cannabinoids on the release of TNF-a from human peripheral blood mononuclear 

cells were described (Germain et al., 2002), therefore, no attempt was made at 

replicating this study. 

Interleukin-2 is an important cytokine responsible for T lymphocyte signalling during 

proliferation and macrophage/monocyte activation during inflammatory episodes 

(Herrman et al., 1989). The expression of functional interleukin-2 receptors is 

another variable that determines how long the clonal proliferation of T cells occurs 

after antigen stimulation (Smith, 1988). In general, interleukin-2 regulates both 

antigen-specific and non-antigen specific proliferation of T-cells, natural killer (NK) 

cells and B cells. 

The discovery and cloning of two cannabinoid receptors, CBS and CB2, has begun to 

give new clues as to how these drugs affect the immune system (Matsuda et al., 1990; 

Munro et al, 1993). Cannabinoid receptors are members of the G-protein coupled 
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receptor family (Bayewitch et al., 1995). While cannabinoid CBS receptors are found 

in the brain with low levels of expression in the peripheral tissues, cannabinoid CB2 

receptors are expressed primarily in immune tissues (Bouaboula et al., 1993; Galiegue 

et al., 1995; Kaminski et al., 1992), suggesting that the majority of the 

immunomodulatory properties of cannabinoids may be mediated via cannabinoid CB2 

receptors, although to date, very few studies have been reported to support this 

hypothesis. 

The density of cannabinoid CB2 receptors on immune cells is 10-100 times that of 

cannabinoid CB, receptors, as shown by semi-quantitative reverse transcriptase 

polymerase chain reaction and Northern blotting studies (Galigue et al., 1995). The 

rank order of cannabinoid CB2 receptor expression on human blood leukocytes is B 

cells> NK cells> monocytes> polymorphonuclear neutrophils> T8 cells> T4 cells 

(Parolaro, 1999). Furthermore, it has been shown that cannabinoid receptor 

expression in peripheral blood mononuclear cells is altered upon stimulation with 

phytohaemagglutinin (Daaka et al., 1996), suggesting an active role for the 

cannabinoid system in immune responses. 

Given the pro-inflammatory properties of interleukin-2, modulation of its release via 

cannabinoid receptors would present an attractive pharmacological target for the 

treatment of various inflammatory conditions. 

4.2 Aims of study 

The aims of this chapter are: 

I To investigate the effect of cannabinoid receptor agonists on the secretion of 

IL-2 from peripheral blood mononuclear cells (PBMC). 
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2 To characterise the cannabinoid receptor responsible for any observed effects 

using selective cannabinoid receptor ligands. 

4.3 Experimental Protocol 

Isolation of human peripheral blood mononuclear cells from bully coat was as 

described in chapter 2 (section 2.3.3) of this thesis. Cell viability was assessed as 

described in chapter 2 (section 2.8.1 and 2.8.2. ). 

4.3.1 Treatment of cells 

The isolated human peripheral blood mononuclear cells was adjusted to a density of 1 

x 106 cells. ml'' with RPMI 1640 medium and cultured in 24-well plates (Falcon, 

Becton Dickinson, Pont De Claire, France) in foetal calf serum-free RPMI-1640 

medium, at 37 °C in a humidified atmosphere with 5% CO2. Cells were pre- 

incubated with CP55940 (10"10 M- 10"5 M), WIN55212-2 (10'10 M- 10"5 M), A- 

9Tetrahydrocannabinol (10'10 M- 10-5 M), JWH 015 (10.10 M- 10"5 M) or 

dexamethasone (10"10 M- l0"6 M) for 2h before stimulation with 

phytohaemagglutinin (10 µg ml-1). Supernatants were harvested after 18 h incubation 

and stored at-70 °C until assayed for interleukin-2 by ELISA as described in chapter 2 

(section 2.4.8). In experiments where the effects of antagonists were studied, cells 

were pre-incubated with SR141716A (10-6 M), SR144528 (10-6 M), CP55940 (10-6 

M) or i9-Tetrahydrocannabinol (10-6 M) for 30 min before the addition of the 

cannabinoid agonist or dexamethasone. 

4.4 Data Analysis 

Concentration-effect curves were analysed by Prism (GraphPAD Inc., San Diego, 

U. S. A. ). Other results are shown as bar graphs. In some experiments, the results are 

expressed as percentage inhibition of IL-2 release from PHA treated cells. ICir2m"' 

values were calculated by Prism and pA2 values calculated from single agonist 
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concentration-ratio values by the Schild equation assuming a slope of unity (Kenakin, 

1993). All values are expressed as arithmetic (pA2 values) or geometric mean 

(ICtrzmax values) ± S. E. M (standard error of the mean) or 95 % confidence limit as 

appropriate. Statistical significance was determined using a one sample t-test or 

analysis of variance followed by an appropriate post hoc test. Statistical significance 

was assumed if P value was <_ 0.05 
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4.5 Results 

4.5.1 Purity and viability of human peripheral blood mononuclear cells. 

Under the experimental conditions described in this thesis, the viability of human 

peripheral blood mononuclear cells isolated from buffy coat cells exceeded 95 % on 

all occasions, when determined by trypan blue dye exclusion and by the MTT assay. 

This viability was not significantly (P>0.05) altered by incubation of human 

peripheral blood mononuclear cells for 18 h with phytohaemagglutinin, 

dexamethasone or any of the cannabinoid receptor ligands studied in foetal calf serum 

free RPMI 1640 medium. 

Human peripheral blood mononuclear cell preparations, prepared from buffy coat 

cells, comprised approximately 95% lymphocytes and 5% monocytes as measured by 

differential leukocyte counts. 

4.5.2 The effect of phytohaemagglutinin on interleukin-2 secretion from human 

peripheral blood mononuclear cells. 

Non-stimulated human peripheral blood mononuclear cells constitutively released 

minimal amounts of interleukin-2 (14 ± 10 pg ml'', n= 5) after 18 h incubation at 37 

°C (Figure 4.5.8). Following stimulation with phytohaemagglutinin (10 µg ml's), a 

marked release of interleukin-2 was observed over 18 h (1869 ± 54 pg. m1"1, n=5, 

Figure 4.5.1). Stimulation of human peripheral blood mononuclear cells with 

phytohaemagglutinin (10 µg ml's) evoked a minimal release of interleukin-2 within 

the first 6h and a rise between 12 and 18 h. The peak release of interleukin-2 was 

seen at 18 h (Figure 4.5.1). There was no significant change (P>0.05) in cell numbers 

between phytohaemagglutinin (10 99 ml's) stimulated and non-stimulated cells over 

18 h following incubation at 37 °C in foetal calf serum-free medium (data not shown). 
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Vehicle controls (0.1 % ethanol and 0.1 % DMSO) had no significant (P<0.05) 

inhibitory effect on phytohaemagglutinin-induced release of interleukin-2 from 

human peripheral blood mononuclear cells. 
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Figure 4.5.1 Time course of phytohaemagglutinin -induced interleukin-2 release 
from human peripheral blood mononuclear cells. 

Human peripheral blood mononuclear cells were stimulated with 
phytohaemagglutinin (10 pg. m1'1) for 3,6,12,18 and 24 h. Cell free supernatants 
were harvested for interleukin-2 assay by ELISA as described chapter 2, section 2.4.8. 
Data are means and S. E. of the means of 5 separate experiments. 
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4.5.3 The effect of cannabinoid receptor agonists on phytohaemagglutinin-induced 

release of interleukin-2 from human peripheral blood mononuclear cells. 

The non-selective cannabinoid receptor agonist WIN55212-2 (10"10 M -10"5 M) and a 

selective cannabinoid CB2 receptor agonist JWH 015 (10"10 M- 10"5 M) inhibited 

phytohaemagglutinin-induced release of interleukin-2 from human peripheral blood 

mononuclear cells (Figure 4.5.2). This inhibition was concentration-related and 

significant (P<0.05) over the concentration range 10-6 M- 10"5 M (IC1/2 max, 

WIN55212-2 = 8.8x10'7 M, 95 % C. L. = 2.2x10"7 M-3.5x10-6M, JWH 015 = 

1.8xlO M, 95 % C. L. = 1.2x10-6M - 2.9xle M, n= 5). The non-selective 

cannabinoid receptor agonist CP55,940 (10.10 M- 10-6M), produced a small, non- 

significant (P>0.05), inhibition of interleukin-2 release from human peripheral blood 

mononuclear cells (Figure 4.5.2). The non-selective cannabinoid receptor agonist O9- 

Tetrahydrocannabinol (10"10 M- 10-6 M) and the selective cannabinoid CB1 receptor 

agonist ACEA (10"10 M -10-6 M) also had no significant (P>0.05) inhibitory effect on 

the release of interleukin-2 from human peripheral blood mononuclear cells. As a 

positive control, dexamethasone (10"10 M- 10"6 M) a glucocorticoid, significantly 

(P<0.05) inhibited phytohaemagglutinin-induced interleukin-2 release from human 

peripheral blood mononuclear cells (ICinn, = 1.3 x 10"8 M, C. L. = 5.4 x 10"9 M-3.2 

x 10"8 M, n=5, Figure 4.5.3). The maximum inhibition produced by JWH 015 was 

greater than that produced by WIN55212-2 (Figure 4.5.3). 

106 



  CP55,940 

09 -Tetrahydrocannabinol 
WIN55212-2 

2000 

E 1500 
am a. % O WAW 

N 

1000- 

W 
500 

o 

PHA 

10 µg/ml 

-10 -9 -8 -7 -6 -5 -4 

Log [ligand] (M) 

Figure 4.5.2 The effect of non-selective cannabinoid agonists on 
phytohaemagglutinin -induced release of interleukin -2 from human peripheral 
blood mononuclear cells. 

Human peripheral blood mononuclear cells were treated with CP55,940 (10-1° M- 
10"5 M), i9-Tetrahydrocannabinol (10-10 M- 10"5 M) or WIN55212-2 (100 M- 10-' 
M) for 2h before stimulation with phytohaemagglutinin (10 µg ml-1) for a further 18 
h. Cell free supernatants were harvested and assayed for interleukin-2 by ELISA as 
described in the chapter 2, section 2.4.8. Data are means and S. E. of the means of 5 
separate experiments. *Denotes significant difference (P< 0.05) from the control 
(phytohaemagglutinin treated cells) (Student's t-test). 
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Figure 4.5.3 The effect of selective cannabinoid agonists and dexamethasone on 
phytohaemagglutinin-induced release of interleukin-2 from human peripheral 
blood mononuclear cells. 

Human peripheral blood mononuclear cells were treated with ACEA (10"10 M- 10"5 
M), J WH 015 (10" 0M- 10's M) or dexamethasone (10" 0M 

-10"5 M) for 2h before 

stimulation with phytohaemagglutinin (10 µg. ml"') for a further 18 h. Cell free 

supernatants were harvested and assayed for interleukin-2 by ELISA as described in 
the chapter 2, section 2.4.8. Data are means and S. E. of the means of 5 separate 
experiments. *Denotes significant difference (P< 0.05) from the control 
(phytohaemagglutinin treated cells) (Student's t- test). 
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4.5.4 The effect of SR141716A and SR144528 on W1N55212-2 and JWH 015-induced 

inhibition of interleukin-2 release from human peripheral blood mononuclear cells. 

When incubated with human peripheral blood mononuclear cells for 18 h, neither 

SR141716A (10-6 M) nor SR144528 (10-6 M) had any significant effect on 

phytohaemaggluttinin-induced interleukin-2 release (interleukin-2 release =1530.5 ± 

80.8 pg. ml"1 (n=5) and 1653.4 ± 65.5 pg. ml-' (n=5) respectively) when compared with 

phytohaemagglutinin treated controls (1655.7 ± 52.8 pg. ml" (n=9). SR141716A (10.6 

M) had no significant (P>0.05) effect in attenuating the inhibitory action of 

WIN55212-2 on phytohaemagglutinin-induced release of interleukin-2 (Figure 4.5.4). 

In contrast, SR144528 (10"6 M) significantly (P<0.05,2 way ANOVA followed by 

Bonferroni's post hoc test, n= 5) antagonised the inhibitory effects of WIN55212-2 

on phytohaemagglutinin-induced release of interleukin-2 from human peripheral 

blood mononuclear cells (pA2 = 6.3 ± 0.1, n= 5) (Figure 4.5.4). Similarly, 

SR141716A (10-6 M) had no significant (P>0.05) effect in attenuating the inhibitory 

effect of JWH 015 on phytohaemagglutinin-induced release of interleukin-2. In 

contrast, SR144528 (10"6 M) significantly (P<0.05,2 way ANOVA followed by 

Bonferroni's post hoc test, n= 5) antagonised the inhibitory effects of JWH 015 on 

phytohaemagglutinin-induced release of interleukin-2 from human peripheral blood 

mononuclear cells (pA2 = 6.5 ± 0.1, n=5) (data not shown). 
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Figure 4.5.4 Effect of SR141716A or SR144528 on WIN55212-2-induced 
inhibition of interleukin-2 release from human peripheral blood mononuclear 
cells. 

Human peripheral blood mononuclear cells were pre-incubated with SR141716A (10- 
6 M) or SR144528 (106 M) for 30 min before addition of WIN55212-2 (10'1° M- 10"5 
M) for 2 h. Human peripheral blood mononuclear cells were stimulated with 
phytohaemagglutinin (10 pg. ml"') for further 18 h. Cell free supernatants were 
harvested for interleukin-2 assay by ELISA as described in the chapter 2, section 
2.4.8. Data are means and S. E. of the means of 5 separate experiments. * Denotes 
significant difference from WIN55212-2 treated cells (P<0.05,2 way ANOVA 
followed by Bonferroni's post hoc test, n=5). 

4.5.5 The effect of CPS5,940 and d9-Tetrahydrocannabino! on WIN55212-2-induced 

inhibition of interleukin-2 release from human peripheral blood mononuclear cells. 

CP55,940 (10'6 M) and 09-Tetrahydrocannabinol (10-6 M) significantly (P<0.05,2 

way ANOVA followed by Bonferroni's post hoc test, n= 5) antagonised the 

inhibitory effects of WIN55212-2 on phytohaemagglutinin-induced release of 
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interleukin-2 from human peripheral blood mononuclear cells (Figure 4.5.5 and 

Figure 4.5.6) 
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When pA2 values were calculated from these data, a value of 6.1 ± 0.1, n=5 was 

obtained for CP55940 and a value of 6.96 ± 0.16, n=5 for A9-Tetrahydrocannabinol. 
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Figure 4.5.5 Effect of CP55940 on WIN55212-2 -induced inhibition of 
interleukin-2 release from human peripheral blood mononuclear cells 

Human peripheral blood mononuclear cells were pre-incubated with CP55,940 (10-6 
M) for 30 min before addition of WIN55212-2 (1010 M- 10"5 M) for 2 h. Human 

peripheral blood mononuclear cells were stimulated with phytohaemagglutinin (10 

pg. ml-') for a further 18 h. Cell free supernatants were harvested for interleukin-2 

assay by ELISA as described in the chapter 2, section 2.4.8. Data are means and S. E 

of the means of 5 separate experiments. * Denotes significant difference from 
WIN55212-2 treated cells (P<0.05,2 way ANOVA followed by Bonferroni's post 
hoc test, n=5) 
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Figure 4.5.6 Effect of A9-Tetrahydrocannabinol on WIN55212-2-induced 
inhibition of interleukin-2 release from human peripheral blood mononuclear 
cells. 

Human peripheral blood mononuclear cells were pre-incubated with 09- 
Tetrahydrocannabinol (10-6 M) for 30 min before addition of WIN55212-2 (10-10 M- 
10'5 M) for 2 h. Human peripheral blood mononuclear cells were stimulated with 
phytohaemagglutinin (10 pg. ml") for a further 18 h. Cell free supernatants were 
harvested for interleukin-2 assay by ELISA as described in the chapter 2, section 
2.4.8. Data are means and S. E of the means of 5 separate experiments. * Denotes 
significant difference from WIN55212-2 treated cell (P<0.05,2 way ANOVA 
followed by Bonferroni's post hoc test). 

4.5.6 The effect of CP55,940 on dexamethasone-induced inhibition of interleukin-2 

release from human peripheral blood mononuclear cells. 

CP55,940 (10-6 M) had no significant (P>0.05) effect in antagonising the inhibitory 

actions of dexamethasone on phytohaemagglutinin-induced release of interleukin-2 

from human peripheral blood mononuclear cells (Figure 4.5.7) 
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Figure 4.5.7 Effect of CP55,940 on dexamethasone-induced inhibition of 
interleukin-2 release from human peripheral blood mononuclear cells. 

Human peripheral blood mononuclear cells were pre-incubated with CP55,940 (10-6 
M) for 30 min before addition of dexamathasone (10"10 M- 10"6 M) for 2 h. Human 

peripheral blood mononuclear cells were stimulated with phytohaemagglutinin (10 µg 
ml-1) for a further 18 h. Cell free supernatants were harvested for interleukin-2 assay 
by ELISA as described in chapter 2, section 2.4.8. Data are means and S. E of the 
means of 5 separate experiments 

4.5.7 The effect of CP55,940 on the release of interleukin-2 from non-stimulated 

human peripheral blood mononuclear cells. 

Addition of CP55,940 (10"5 M) to non-stimulated human peripheral blood 

mononuclear cells followed by incubation at 37 °C for 18 h evoked a minimal release 

of interleukin-2 (21.8 ± 6.3 pg ml"', n= 5), which was not significantly (P>0.05) 

different from the basal release (Figure 4.5.8) 
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Figure 4.5.8 Effect of CP55,940 on the secretion of interleukin-2 from human 
peripheral blood mononuclear cells. 

Human peripheral blood mononuclear cells were stimulated with 
phytohaemagglutinin (10 µg ml-1) or CP55,940 (10"5 M) for 18 h. Cell free 
supernatants were harvested for interleukin-2 assay by ELISA as described in chapter 
2, section 2.4.8. Data are means and S. E. of means of 5 separate experiments. 
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4.6 Discussion 

In the present study, it has been shown that a non-selective cannabinoid receptor 

agonist WIN55212-2 (Felder et al., 1995) and a selective cannabinoid CB2 receptor 

agonist JWH 015 (Huffman et al., 1996) evoked a significant concentration-related 

inhibition of phytohaemagglutinin-induced interleukin-2 release from human 

peripheral blood mononuclear cells. The non-selective, synthetic cannabinoid agonist 

CP55,940 (Felder et al, 1995), produced a small, non-significant inhibition of 

interleukin-2 release from human peripheral blood mononuclear cells whereas the 

plant cannabinoid, 09-Tetrahydrocannabinol and the selective cannabinoid CB1 

receptor agonist, ACEA (Hillard et al., 1999), were ineffective in inhibiting 

phytohaemagglutinin-induced release of interleukin-2. The inhibition of 

phytohaemagglutinin-induced release of interleukin-2 evoked by WIN55212-2 was 

not antagonised by pre-treatment of the cells with SR141716A, a cannabinoid CB1 

receptor antagonist (Rinaldi-Carmona et al., 1994). However, SR144528, a 

cannabinoid CB2 receptor antagonist (Rinaldi-Carmona et al., 1998) significantly 

attenuated the inhibitory effects of W1N55212-2. Taken together, these data suggest 

that the observed effects were mediated by a cannabinoid CB2-like receptor. 

Cannabinoid receptor ligands have potential utility as anti-inflammatory drugs for the 

treatment of many disease conditions primarily because of their immunosuppressive 

actions, but their psychoactive effects limit their therapeutic benefits. Emerging 

evidence suggests that cannabinoids produce many of their immunosuppressive 

effects by inhibiting T-cell responses (see Klein et al., 1998; Parolaro, 1999, for 

reviews). A significant proportion of these studies has been conducted on cell lines 

and transfected cells derived from rats or mice (Kaminski et al., 1992; Condie et al., 
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1996; Massi et al., 2000). While these systems provide useful information for the 

understanding of the functional properties of cannabinoid receptors, extrapolating 

these data to man may be hindered by problems of species differences and the 

artificial nature of the cell lines and transfected cells in which receptors are over 

expressed (Kenakin, et al., 1995). Consequently, the effects of a range of cannabinoid 

receptor ligands on phytohaemagglutinin-induced release of interleukin-2 from human 

peripheral blood mononuclear cells, a human immune cell were investigated. 

In the present study, the human periperal blood mononuclear cells suspended in foetal 

calf serum-free medium was cultured. While it is conventional to include foetal calf 

serum in cell culture medium (for example, Corrigan et al., 1995), it was a choice not 

to include it because plasma proteins have been shown to bind cannabinoids and 

reduce their potency (Dewey, 1986) that is this process acts as an agonist 

uptake/removal process. Furthermore, if this binding were saturable, over the 

concentration range studied, then this could influence the data obtained particularly 

when attempting to characterise antagonist activity (Kenakin and Beek, 1981). Thus, 

it was elected to negate the influence of protein binding in our experiments by 

omitting foetal calf serum from the medium. 

In the present study, inhibition of PHA-induced release of interleukin-2 by 

WIN55212-2 and JWHO15 was observed at concentrations greater than those required 

to displace a radio-labelled cannabinoid receptor ligand in receptor binding studies (> 

1 µM) (Felder et al., 1995; Showalter et al., 1996). However, the potency of 

WIN55212-2 in the present study is similar to that reported by others in studies on a 

murine macrophage cell line (RAW264.7) (Ross et al, 2000). It is noteworthy that the 
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Kd values reported from cannabinoid binding studies are usually higher in 

experiments where purified receptors or transfected cells have been used (Howlett et 

al., 1995; Slipetz et al., 1995). This difference has been ascribed to loss of activity of 

lipophilic cannabinoids due to non-specific interactions with cells and serum (Howlett 

et al., 1995; Slipetz et al., 1995). Furthermore, the pA2 value for the cannabinoid CB2 

receptor antagonist SR144528 reported in this study is significantly lower than the 

pK; value reported for this compound on Chinese hamster ovary cells transfected with 

CB2 receptors (Iwamura et al., 2001). It is lower than that previously obtained by us 

in studies on epithelial cells (Ihenetu et al., 2003), although the potency of SR144528 

in the present study is similar to that reported by others in experiments on a murine 

macrophage cell line (Ross et al., 2000). One explanation for this difference may be 

due to the level of cannabinoid CB2 receptor expression in mononuclear cells 

compared to that in other tissues, coupled with the lipophilic nature of these 

compounds reducing the actual concentration of antagonist available at the receptor. 

Clearly further experiments are required to determine why SR144528 is apparently 

less potent as a cannabinoid CB2 receptor antagonist on monocytes compared with 

other tissues. 

In line with the present study, it is noteworthy that few studies to date have reported 

functional effects of cannabinoids via cannabinoid CB2 receptors at concentrations 

below I µM (Ross et al., 2000). Furthermore, in transfected cell lines, the 

stoichiometry of key regulatory proteins may be altered resulting in responses distinct 

from those found in primary cells (Kenakin et al., 1995). Thus, it seems possible that 

our finding that cannabinoid agonists were less potent in human peripheral blood 
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mononuclear cells when compared to data published by others may reflect a low level 

of cannabinoid receptor expression in these cells. 

Other published work suggests that cannabinoids can stimulate cytokine release. In 

contrast to our findings, Derocq et al. (1995) were able to show that low 

concentrations of CP55,940 significantly (P<O. 05), increased DNA synthesis in 

human tonsilar B-cells, a primary cell system that expresses high levels of 

cannabinoid CB2 receptors (Galigue et al., 1995). Other studies showing effects of 

cannabinoids at low concentrations include experiments in which the cannabinoid 

receptor agonists CP55,940 or WIN55212-2 caused increased expression of IL-8 in 

HL-60 cells transfected with cannabinoid CB2 receptors (Jbilo et al., 1999; Derocq et 

al., 2000). However, these cannabinoid CB2 receptor agonists still increased IL-8 

expression when wild type HL-60 cells were used (Derocq et al., 2000; Jbilo et al., 

1999). These findings suggest that HL-60 cells have a higher level of endogenous 

cannabinoid CB2 receptor expression than human peripheral blood mononuclear cell 

since, in the present study, the cannabinoid receptor agonist CP55,940 did not induce 

the release of IL-2 from PBMC even after incubation for 18 h. 

Other published work has also shown that cannabinoids may either increase or 

decrease IL-2 release from immune cells depending on the experimental conditions 

and the cells studied (Pross et al., 1992; Watzl et al., 1991). In the murine 

lymphocyte cell line, EL4. IL-2, A9-Tetrahydrocannabinol and cannabidiol inhibited 

phorbol myristyl acetate/lonophore-induced interleukin-2 mRNA expression and 

interleukin-2 release in a concentration-dependent manner (Condie et al., 1996; Jan et 

al., 2002). In contrast, in phytohaemagglutinin activated human peripheral blood 
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monouclear cells, O9-Tetrahydrocannabinol and cannabidiol did not inhibit 

interleukin-2 release, although these cannabinoid receptor ligands did inhibit the 

release of other cytokines (Watzl et al., 1991), findings that are consistent with those 

reported in the present study. Thus, it appears that the choice of cell and the stimulus 

used to provoke cytokine release may influence the inhibitory activity of cannabinoid 

receptor agonists. Such an effect is not unique to cannabinoid receptor agonists and 

has been noted in studies with other classes of agonists (e. g. Kenakin, 1982; Kenakin 

et al., 1995). The exact reason for the differences between the findings of the present 

study and those described above is still unclear and additional experiments are 

necessary to resolve these discrepancies. 

Previous studies in our laboratory and others have shown that a range of cannabinoid 

ligands including W1N55212-2, CP55,940 and O9-Tetrahydrocannabinol act as 

agonists at the peripheral cannabinoid CB2 receptor to cause inhibition of tumour 

necrosis factor-a-induced release of interleukin-8 in HT-29 cells (Ihenetu et al., 2001) 

and to inhibit adenylate cyclase activity in Chinese hamster ovary cells transfected 

with cannabinoid CB2 receptors (Bayewitch et al., 1995) respectively. However in the 

present study CP55,940 only marginally and non-significantly inhibited 

phytohaemagglutinin-induced release of interleukin-2 from human peripheral blood 

mononuclear cells while 09-Tetrahydrocannabinol had no effect in inhibiting this 

release. Receptor binding studies have demonstrated that these two agonists have 

affinity for cannabinoid CB2 receptors on immune cells (Bouaboula et al., 1993; 

Galiegue et al., 1995; Kaminski et al., 1992). Thus, one explanation for this lack of 

activity could be due to a low level of efficacy combined with a relatively low level of 

cannabinoid CB2 receptor expression. Similar effects have been reported in 
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experiments with partial agonists in other receptor systems (Kenakin and Beek, 1982). 

This hypothesis is supported by the ability of CP55,940 and A9-Tetrahydrocannabinol 

to inhibit the effects of WIN55212-2. In the present study both compounds shifted 

concentration-effect curves for WIN55212-2-induced inhibition of interleukin-2 

release, to the right. In the case of CP55,940, the small inhibitory effect on 

interleukin-2 release adds further weight to the hypothesis that it is acting as a weak 

partial agonist at cannabinoid CB2 receptors relative to the effect observed with 

W1N55212-2. 

Given the apparent potency of CP55,940 at cannabinoid CB2 receptors, reported by 

others (Showalter et al., 1996), it is possible that the lack of inhibitory effect on 

phytohaemagglutinin-induced interleukin-2 release is because the inhibitory effect is 

negated by additional release of interleukin-2 induced by CP55,940. Such an effect 

has been reported by others (Jbilo et al., 1999) and could also explain the apparent 

antagonism of the inhibitory action of W1N55212-2 by CP55,940. However, this is 

clearly not the case since when human peripheral blood mononuclear cells were 

incubated with CP55,940 for 18h, no release of interleukin-2 was seen adding support 

to the hypothesis that in our experiments CP55,940 acts at cannabinoid CB2 receptors 

on human peripheral blood mononuclear cells to antagonise the effects of WIN55212- 

2. 

To test the specificity of CP55,940 in antagonising the effect of WIN55212-2, the 

effect of CP55,940 in antagonising dexamethasone-evoked inhibition of 

phytohaemagglutinin-induced release of interleukin-2 from human peripheral blood 

mononuclear cells was studied. CP55,940 did not antagonise dexamethasone-evoked 
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inhibition of phytohaemagglutinin-induced release of interleukin-2 but marginally 

potentiated its effect. In order to investigate whether high concentration of CP55,940 

evoked the release of interleukin-2 on its own, a point which could account for its 

poor activity in inhibiting phytohaemagglutinin-induced release of interleukin-2 from 

human peripheral blood mononuclear cells, the effect of CP55,940 (10"$ M) on the 

release of interleukin-2 from -human peripheral blood mononuclear cells in the 

absence of phytohaemagglutinin. In these experiments, CP55,940 alone did not 

stimulate the release of interleukin-2 from phytohaemagglutinin. Taken together, 

these results show that CP55,940 appears to be specific in antagonising WIN55212-2- 

mediated inhibition of phytohaemagglutinin-induced interleukin-2 release from 

human peripheral blood mononuclear cells and does not, on its own, evoke the release 

of interleukin-2. A9-Tetrahydrocannabinol exhibited similar profiles (data not 

shown). Previously, other laboratories have demonstrated that A? - 

Tetrahydrocannabinol antagonised HU293a and HU210 (non-selective cannabinoid 

receptor agonists)-induced inhibition of forskolin stimulated adenylyl cyclase in 

Chinese hamster ovary cells transfected with CB2 receptors (Bayewitch et al., 1996). 

To our knowledge, the present study is the first report of CP55,940 acting as a partial 

agonist/antagonist at a cannabinoid CB2 receptor-mediated event in a native system. 

In summary, it has been demonstrated that WIN55212-2 and JWH 015 evoke 

inhibition of interleukin-2 release from human peripheral blood mononuclear cells. 

The selective cannabinoid CB2 receptor antagonist SR144528 antagonised 

WIN55212-2 inhibition of phytohaemagglutinin -induced release of interleukin-2 

from human peripheral blood mononuclear cells whereas the cannabinoid CB, 

receptor antagonist, SR141716A had no effect. Furthermore CP55,940 and A! - 
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Tetrahydrocannabinol behaved as partial agonists/antagonists under our experimental 

conditions indicating that they possess affinity for, but low efficacy at, cannabinoid 

CB2 receptors. Thus, this study adds to and extends the body of knowledge 

suggesting that cannabinoids modulate immune cell function and suggests that some 

ligands have partial agonist activity at cannabinoid CB2 receptors. The structures of 

the cannabinoid receptor ligands utilised in the above study could therefore serve as 

models for the synthesis of novel and more selective cannabinoid compounds for 

therapeutic use. 
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Chapter 5; The effect of cannabinoids on tumour necrosis factor-a (TNF-a)-induced 

release of interleukin 8 (IL-8) from human colonic epithelial cell line HT-29 
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5.1 Introduction 

In the previous chapters, the effect of cannabinoids on the release of pro-inflammatory 

cytokines from a variety of immune cells derived from haematopoietic cells i. e. human 

mononuclear cells were studied. To date, there is little information on the effect of 

cannabinoids from immune cells derived from non- haematopoietic tissues. In this chapter 

therefore, the effect of cannabinoids on the release of IL-8 from human colonic epithelial cell 

line HT-29 was investigated. 

The colonic epithelium is a specialised tissue lining the luminal surface of the intestine. Once 

considered solely as an absorptive and secretory barrier for the luminal contents of the bowel, 

it is now also recognised to exert a major influence in the maintenance of gastro-intestinal 

immune homeostasis (Jordan et al., 1999). Human colon epithelial cells may contribute to 

inflammatory responses in Crohn's disease and ulcerative colitis by secreting chemokines 

such as interleukin-8 (Schuerer-Maly et al., 1994). Given the importance of interleukin-8 in 

neutrophil recruitment and the importance of neutrophils to the pathogenesis of inflammatory 

conditions (Baggiolini et al., 1997), modulation of interleukin-8 expression may provide an 

attractive pharmacological target for the development of novel drug treatments for diseases 

such as ulcerative colitis and chronic bronchitis. 

The immunomodulatory properties of cannabinoids are well established. Many reports 

suggest that cannabinoids have immunosuppressive effects through an action on a variety of 

inflammatory cells (for detailed review, see Berdyshev, 2000). For example, cannabinoids 

have been shown to inhibit lymphocyte proliferation (Luo et al., 1992; Schwartz et al., 1994). 

Cannabinoids inhibit cytokine production in a range of immune cells, including 

macrophage/monocytes, lymphocytes and rodent splenic lymphocytes (Klein et al., 1991). In 
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our laboratory, cannabinoids have been shown to suppress nerve growth factor and substance 

P-induced release of reactive oxygen species from rat peritoneal mast cells (Brooks et al., 

1999). However, in most instances, the concentrations of cannabinoids required to modulate 

immune cell function are greater than those used in cannabinoid receptor binding studies on 

neuronal tissue (Felder, 1998), thereby warranting further characterisation of these receptors. 

Cannabinoid CB1 receptors are localised mainly in the central nervous system (Matsuda et 

at., 1993) but are also present in peripheral tissues such as the spleen and peripheral blood 

leukocytes (Kaminski et al., 1992; Gerard et al., 1991; Bouaboula et al., 1993). Cannabinoid 

CB2 receptors have been identified in a range of immune cells including B and T 

lymphocytes, monocytes/macrophages and rat splenic lymphocytes (Bouaboula et al., 1993; 

Galigue et al., 1995). It is well established that human colonic epithelial cell play major 

immunological functions such as secretion of cytokines/chemokines (Schuerer-Maly et al., 

1994), but to our knowledge, there are no reports of the presence of functional cannabinoid 

receptors reported in these cells to date. The focus of this study is therefore to characterise 

cannabinoid receptors modulating cytokine/chemokine release from human colonic epithelial 

cells HT-29. 

5.2 Aims of study 

The aims of experiments described in this chapter are: 

1. To describe the pharmacological actions of a range of cannabinoid receptor ligands on 

TNF-a-induced interleukin-8 release from HT-29 cells in vitro. 

2. To characterise the functional cannabinoid receptors in the human colonic epithelial cell 

line, HT-29. 
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5.3 Experimental Protocol 

The culture and maintenance of HT-29 cells were carried out as described in chapter 2 

(section 2.3.5). Enzyme linked immunosorbent assay (ELISA) for interleukin-8 (IL-8) was 

carried out as described in chapter 2 (section 2.4 and 2.4.9). Assessment of cell viability was 

also as described in chapter 2 (sections 2.8.1 and 2.8.2). Western immunoblotting for 

cannabinoid CB2 receptors was carried out as described in chapter 2 (section 2.5) 

5.3.1 Treatment of Cells 

To study the effects of TNF-a on interleukin-8 release, HT-29 cells were seeded in 24 well 

plates as described above. TNF-a (0 - 100 ng ml-1) was added to the cells, and incubated for 

24 h at 37 °C in a humidified incubator (5% C02/95% air). At the end of the incubation 

period, medium was removed and placed into 1.5 ml tubes and centrifuged at 250 g for 5 min. 

Cell free supernatants were stored at -70 °C until assayed for interleukin-8 release by ELISA. 

For time course studies, TNF-a (100 ng ml"') was added to cell cultures and supernatants 

harvested for interleukin-8 assay 2,4,6,12 and 24 h after addition of TNF-a. 

To study the effect of cannabinoids on interleukin-8 release, cannabinoid receptor agonists 

(10'10 M- 10-4 M) or vehicle (0.1% ethanol or 0.1% DMSO) were added to cultures and 

incubated for 2h at 37 °C in a humidified atmosphere (5% C02/95% air). At the end of the 

incubation period, cells were stimulated with TNF-a (100 ng ml'') for 24 h. In experiments 

involving the use of cannabinoid receptor antagonists, SR141716A (10`6 M), SR144528 (10-6 

M), or vehicle were added to cultures 30 min prior to addition of the agonist, the culture 

supernatant was harvested and assayed for interleukin-8 as described above in chapter 2 of 

this thesis. 
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5.4 Data analysis 

Concentration-response curves were analysed by Prism (GraphPad Inc., San Diego, CA. 

92121, U. S. A. ). Other results are shown as bar graphs. In some experiments the results were 

expressed as percentage inhibition of interleukin-8 release from TNF-a treated control. EC1rz 

max values were calculated by Prism and pA2 values calculated from single agonist 

concentration-ratio values by the Schild equation assuming a slope of unity (Kenakin, 1993). 

All values are expressed as arithmetic (pA2 values) or geometric mean (ECýi, max values) ± 

S. E. M (standard error of the mean) or 95% confidence limits as appropriates. Statistical 

significance was determined using a one sample t-test or analysis of variance (ANOVA) 

followed by a post hoc test. Statistical significance was assumed if the P value was <_0.05. 
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5.5 Results 

5.5.1 The effect of TNF-a and the kinetics of interleukin-8 secretion in HT-29 cells. 

Figure 5.5.1 b shows the time course of interleukin-8 release from HT-29 cells after 

stimulation with TNF-a (100 ng ml"'). Initially, there was a steep rise in interleukin-8 

release within 4h of stimulation of HT-29 cells with TNF-a (100 ng ml''), followed by a 

slower rise over the next 8h and an even slower increase for the rest of the 24 h 

incubation period. Overall, the cumulative release of interleukin-8 was (4,578 ± 378 pg 

ml"', n= 6) after the 24 h incubation period. HT-29 cells constitutively released low 

levels of interleukin-8 (33.8 ± 3.8 pg ml"', n= 6) after 24 h incubation at 37 °C. 

Following stimulation with TNF-a (0.1- 100 ng ml''), there was a concentration- 

dependent increase in the release of interleukin-8 from HT-29 cells (Figure 5.5.1 a). 

5.5.2 The effect of cannabinoid receptor agonists on TNF-a induced-interleukin-8 

secretion from HT-29 cells. 

The effect of the non-selective cannabinoid receptor agonists CP55,940, O9- 

Tetrahydrocannabinol, WIN55212-2 (10"10 M- 10"4 M) and a selective cannabinoid CB2 

receptor agonist, JWH 015, (10-10 M- 104 M) on TNF-a-induced secretion of 

interleukin-8 from HT-29 cells was examined. All the agonists produced a 

concentration-related inhibition of interleukin-8 secretion and the following EC1n max 

values were calculated; CP55,940 (1.2 x 10"7 M, 95 % confidence limits (C. L. ) = 3.8 x 

10"8 M-3.6x10"7 M, n= 6), A9-Tetrahydrocannabinol (5.3 x 10.8 M, 95 % C. L. = 9.7 x 10- 

9M-2.9 x 10"7 M, n= 6), WIN55212-2 (1.7 x 10-7 M, 95 %C. L. = 1.2 x 10"7 M-2.5 x 10- 

7 M, n= 6) and JWH 015 (9.8 x 10"8 M, 95%C. L. =6.8x10"8M-1.3x10"7 M, n= 6). 

However, the cannabinoid agonists employed in this study produced different maximum 
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effects (W IN55212-2 = 90.3 ± 1%, A9-Tetrahydrocannabinol = 71.2 ± 9%, JWH 015 = 

67.3 ± 4%, CP55,940 = 38.0 ± 10.0%, n= 6). Within the concentration ranges tested, 

CP55,940 (l0-7 M- 10"4 M), 09-Tetrahydrocannabinol (10-8 M- 10-4 M), WIN55212-2 

(10"7 M- 10"4 M) and JWH 015 (10-7 M- 10"4 M) significantly (P<0.05) inhibited TNF- 

a-induced interleukin-8 release from HT-29 cells (one way ANOVA followed by 

Dunnett's post hoc test, n= 6). (Figure 5.5.2). 
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Figure 5.5.1 TNF-a-induced release of interleukin-8 from HT-29 cells in vitro 
(a) Confluent monolayers of HT-29 cells were stimulated with TNF-a (0.1 - 100 
ng ml-') in foetal calf serum free McCoy's 5A medium for 24 h. (b) Confluent 
monolayers of HT-29 cells were stimulated with TNF-a (100 ng ml-) in foetal calf 
serum free McCoy's 5A medium at the indicated time period. Cell free 130 
supernatants were assayed for interleukin-8 release by ELISA as chapter 2 (section 
2.4). Data are means and S. E. means of at least 6 experiments. * Significant 
difference from control P<0.05. 
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Figure 5.5.2. Inhibition of TNF-a-induced interleukin-8 release by 
cannabinoids. 
Confluent monolayers of HT-29 cells were treated with CP55,940 (10 ° M- 
10-4 M), WIN55,212-2 (l0"10 M- 10'4 M), A9-Tetrahydrocannabinol (10'10 M- 
10-4 M) and JWH 015 (10-10 M-10-4M) for 2h before stimulation with TNF-a 
(100 ng ml''). Incubation was continued for 24 h. Supernatants were assayed 
for interleukin-8 release by ELISA as described in chapter 2 (section 2.4). Data 
are presented as percentage inhibition from control (TNF-a treated cells 
alone). Error bars represent S. E. mean of 6 separate experiments. 

5.5.3 The effect of WIN55212-3 andACEA on TNF-a induced interleukin-8 release from 

HT-29 cells. 

The less active enantiomer of WIN55212-2, WIN55212-3 (10"10 M- 10"4 M) and the 

cannabinoid CB1 receptor agonist, ACEA (10'10 M- 10"4 M) had no significant (P > 0.05, 

n= 6), inhibitory effect on TNF-a (100 ng ml"')-induced release of interleukin-8 from 
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HT-29 cells (refer to Figure 5.5.3). Since ACEA is unstable and subject to degradation by 

amidases (Hillard et al., 1999), experiments were carried out in the presence or absence 

of the amidase inhibitor, phenylmethylsulfonyl fluoride (5.0 x 10-5 M). Under these 

conditions, ACEA (10'10 M- 10"4 M) still did not significantly alter interleukin-8 

secretion (data not shown). 
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Figure 5.5.3 The effect of ACEA and WIN55212-3 on the release of 
interleukin-8 from HT-29 cells. 

Confluent monolayers of HT-29 cells were treated with ACEA (10"10 M- 10-4 M) 
or WIN55212-3 (10"10 M- 10-4 M) for 2h before stimulation with TNF-a (100 ng 
ml''). Incubation was continued for 24 h. Supernatants were assayed for 
interleukin-8 release by ELISA as described in chapter 2 (section 2.4). Data are 
presented as percentage inhibition from control (TNF-a treated cells alone). Error 
bars represent S. E. mean of 6 separate experiments. 
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5.5.4. The effect of SR141716A and SR144528 on the inhibitory action of CP55,940, 

WIN55212-2 and JWH 015 on HT-29 cells. 

The cannabinoid CB1 receptor antagonist, SR141716A (10-6 M) significantly (P < 0.05,2 

way ANOVA followed by Bonferroni's post hoc test n=6) antagonised the inhibitory 

effects of CP55,940 (pA2 = 8.3 ± 0.2, n= 6), but did not antagonise the effects of 

WIN55212-2 (pA2 < 6) or JWH 015 (pA2 < 6) (Figure 5.5.4 a, 5.5.5a and 5.5.6 a). In 

contrast, the cannabinoid CB2 receptor antagonist, SR144528 (10-6 M) significantly (P < 

0.05,2 way ANOVA followed by Bonferroni's post hoc test n= 6) antagonised the 

inhibitory effects of CP55,940 (pA2 = 8.2 ± 0.8, n= 6), W IN55212-2 (pA2 = 7.1 ± 0.3, n 

= 6) and JWH 015 (pA2= 7.6 ± 0.4, n= 6) respectively (Figure 5.5.4 b, 5.5.5 b and 5.5.6 

b). 
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Figure 5.5.4 The effect of SR141716A (10' M) and SR144528 (10' M) on 
the inhibition of TNF-a-induced interleukin-8 release by CP55,940. 
Confluent monolayers of HT-29 cells were incubated with SR141716A (10"6 M) 
(a) or SR144528 (10-6 M) (b) for 30 min before treatment with CP55,940 (10"10 
M- 10"4 M) for 2 h. Cells were stimulated for further 24 h with TNF-a (100 ng 133 
mi"). Supernatants were assayed for interleukin-8 by ELISA as described in the 
chapter 2 (section 2.4). Bars represent S. E. mean of 6 separate experiments. 
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Figure 5.5.5 The effect of SR141716A (10-6 M) and SR144528 (10-6 M) on 
the inhibition of TNF-a-induced interleukin-8 release by WIN55212-2. 

Confluent monolayers of HT-29 cells were incubated with SR141716A (10"6 M) 
(a) or SR144528 (10-6 M) (b) for 30 min before treatment with WIN55212-2 
(10"10 M- 10"4 M) for 2 h. Cells were stimulated for further 24 h with TNF-a 
(100 ng ml''). Supernatants were assayed for interleukin-8 release by ELISA as 
decribed in chapter 2, section 2.4. Vertical bars represent S. E mean of 6 separate 
experiments. 
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Figure 5.5.6 The effect of SR141716A (10-6 M) and SR144528 (10-6 M) on 
the inhibition of TNF-a-induced interleukin-8 release by JWH 015. 

Confluent monola2ers of HT-29 cells were incubated with SR141716A (10.6 M) 
or SR144529 (10 M) for 30 min before treatment with JWH 015 (10"10 M- 104 
M) for 2 h. Cells were stimulated for further 24 h with TNF-a (100 ng ml"'). 
Supernatants were assayed for interleukin-8 release by ELISA as described in 
chapter 2. section 2.4. Bars represent S. E. mean of 6 separate experiments. 

5.5.5. Immuno-localization of the cannabinoid receptor in HT-29 cells. 

To confirm the identity of the cannabinoid receptor mediating the functional responses in 

these cells, antibodies raised against the rat cannabinoid CB2 receptor protein were used 

to visualise proteins on immuno-blots obtained from whole cell lysates of HT-29 cells. 

Fusion protein against the cannabinoid CB2 receptor was used as a negative control. The 

results showed clear immuno-reactivity with a molecular weight of 40 kDa, along with 

other minor bands in the HT-29 cells (lanes 1-3, Figure 5.6.7). In the lanes where this 

antibody was pre-incubated with fusion protein, these bands were completely absent 
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(lanes 4-6, Figure 5.5.7). Figure 5.5.7 is a representative blot of 6 separate experiments, 

all of which gave similar results. 

40µg+CB2 antibody 40µg+CB2 antibody+fusion protein 

123456 

40 kDa 'O 

Figure 5.5.7. Western immunoblotting for cannabinoid CB2 receptor 
protein in HT-29 cells. 

Cell lysates (40 µg protein/lane) obtained from HT-29 cells were separated by 
sodium dodecyl sulphate-polyacrylamide gel electrophoresis and probed with 
polyclonal anti-cannabinoid CB2 receptor antibody and anti-cannabinoid CB2 
receptor antibody + fusion protein. A (lanes I- 3) when lysates were incubated 
with anti-cannabinoid CB2 receptor antibody only and B (lanes 4- 6) when anti- 
cannabinoid CB2 receptor antibodies were pre-incubated with fusion protein. 

5.5.6 The effect of Drugs on cell viability. 

The HT-29 cells were tested for viability by the MTT assay. Under the experimental 

conditions described in this thesis, the cell viability exceeded 95% at cannabinoid 

concentrations of 10-5 M and below. CP55,940, WIN55212-2 and A9- 

Tetrahydrocannabinol induced mild cytotoxicity (35% - 40%), at a concentration of 10-4 

M. However, maximum inhibition of interleukin-8 release was seen at 10-5 M (Figure 

5.5.2) a concentration where cell viability was > 95%. 
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5.6. Discussion. 

In the experiments described above, the effects of cannabinoid receptor ligands on the 

secretion of interleukin-8 from the human colon epithelial cell line HT-29 were studied. 

Epithelial cells are increasingly being recognised to play a pivotal role in host defence 

against microganisms in the intestinal lumen, and in inflammatory responses (Panja et al., 

1998). In addition to their functions as preventive and absorptive barriers, epithelial cells 

also express a variety of pro-inflammatory cytokines including interleukin-1, TNF-a and 

interferon-y (Yang et al., 1998). These cytokines in turn induce the release of other 

inflammatory mediators from the epithelium including chemokines, such as interleukin-8 

a key neutrophil chemoattractant (Schuerer-Maly et al., 1994), which are up regulated in 

inflammatory bowel disease (Warhurst et al., 1998). 

In the present study, TNF-a induced release of interleukin-8 from HT-29 cells was 

measured in order to address whether or not cannabinoids altered the release of this 

chemokine. Preliminary experiments established optimal conditions for TNF-a-induced 

interleukin-8 release by these cells. Constitutive release of interleukin-8 from HT-29 

cells was minimal after 24 h incubation whereas treatment with TNF-ct (100 ng ml- ) 

over 24 h evoked a marked increase in interleukin-8 release. 

The cannabinoid agonists employed in this study (CP55,940, i 9-Tetrahydrocannabinot, 

WIN55212-2 and JWH 015) induced concentration-related inhibition of interleukin-8 

release from HT-29 cells. WIN55212-2 was a more effective inhibitor of interleukin-8 

release from these cells than the other compounds since at a maximally effective 
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concentration it evoked greater than 90% inhibition of interleukin-8 release whereas O9- 

Tetrahydrocannabinol, CP55,940 or JWH 015 at maximally effective concentrations (10"5 

M) evoked only 40%-70% inhibition. No further inhibitory effect was seen at higher 

concentrations (10'4 M). Although this higher concentration of some compounds 

(CP55,940) was cytotoxic, the fact that a lower, non-toxic, concentration produced a 

similar effect suggests that the effect was not due to a cytotoxic action on the cells. The 

low maximal effect of compounds such as CP55,940 could indicate that these compounds 

are partial agonists at the cannabinoid CB2 receptor and that HT-29 cells have a low 

number of cannabinoid CB2 receptors compared to other cells. Thus, in common with 

other systems compounds with high affinity, but low efficacy, produce a lower maximal 

effect than compounds with high efficacy (Kenakin, 1993). However, further 

experiments where attempts are made to antagonise WIN55212-2 with CP55940 may be 

necessary to confirm this hypothesis. W IN55212-2 has been reported to be between 2 to 

7 times more potent at cannabinoid CB2 receptors than CP55,940 (Slipetz et al., 1995; 

Felder et al., 1995; Tao and Abood, 1998). In the present study, the potencies of 

WIN55212-2, JWH 015 and CP55,940 were almost identical although the former 

compound showed greater efficacy. However, these effects were still observed at 

concentrations well above their affinity constants as determined in binding studies on 

neuronal tissues (Pertwee et al., 1997). Whether these observations are due to the 

lipophilic nature of these compounds or their interaction with as yet an unidentified target 

is not known. Further experiments would be needed to understand these observed 

effects. 
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In contrast to the present study, Jbilo et al., (1999) showed that CP55,940 stimulated 

interleukin-8 release from HL-60 cells. While the reason for this difference is unclear, 

HL-60 cells are a human promyelocytic cell line (Sham et al., 1996) whereas the cells 

studied by us are a human colonic epithelial cell line and the observed difference could 

suggest that different tissues respond differently to cannabinoid receptor agonists. In 

addition, in non-transfected HL-60 cells, the characteristics of CP55,940-induced 

interleukin-8 release is different from that induced by TNF-a in our experiments. Of 

particular interest is the finding that interleukin-8 mRNA expression induced by 

CP55,940 in HL-60 cells appeared to be short-lived in that there appeared to be less RNA 

in cells 6h after CP55,940 than 3h after CP55,940 (Jbilo et at., 1999). In HT-29 cells, 

interleukin-8 release after 24 h incubation with cannabinoid receptor agonists was not 

observed (data not shown). Thus, it may be of interest to determine whether cannabinoid 

receptor agonists cause a small, transient release of interleukin-8 in epithelial cells. 

However, cannabinoid receptor agonists have been shown to inhibit cytokine release 

from many, but not all, immune cells (Berdyshev et al., 2000), suggesting that the effect 

seen in HL-60 cells may not be representative of the majority of cells. 

It is well established that cannabinoid receptors are linked to G, /Go protein and activation 

leads to inhibition of adenylate cyclase (Felder et al., 1995). In contrast to the idea that 

increases in intracellular cyclic adenosine monophosphate (CAMP) inhibit immune cell 

function (Haraguchi et al., 1995), it is surprising that activation of G; protein would lead 

to inhibition of interleukin-8 release. However recent evidence suggests that a decrease 

in cAMP, as seen with cannabinoids and opioids (Kaminski, 1998; Grimm et al., 1998), 
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may also lead to inhibition of immune cell function suggesting that the role of cAMP in 

immune cells is likely to have been oversimplified (Kaminski et al., 1998). However, 

experiments in which second messenger concentrations are measured will be necessary to 

investigate the pathways mediating inhibition of cytokine release by cannabinoids. This 

fact is considered in chapter 6 of this thesis. 

To examine whether the cannabinoid-mediated inhibition of interleukin-8 release is 

linked to specific receptors, HT-29 cells were exposed to the less active enantiomer of 

WIN55212-2, WIN55212-3. WIN55212-3 produced no significant (P<0.05) inhibitory 

effect on TNF-a-induced release of interleukin-8 from HT-29 cells indicating that 

enantiometric specificity is required for the effect, in turn suggesting activity at specific 

receptors. Also experiments with ACEA, a cannabinoid CB1 receptor selective agonist 

(Hillard, et al., 1999) evoked no significant inhibitory effects on interleukin-8 expression. 

Taken together, these results suggest that the inhibition of stimulated interleukin-8 release 

by non-selective cannabinoid receptor agonists (CP55940, A9-Tetrahydrocannabinol, 

WIN55212-2) and a cannabinoid CB2 receptor selective agonist (JWH 015) (Chin et al., 

1999), may be specifically linked to functional cannabinoid CB2 receptors. 

To confirm the identity of the cannabinoid receptor subtype involved in the inhibition of 

TNF-a-induced interleukin-8 release, the specific cannabinoid receptor antagonists 

SR141716A (CB1) and SR144258 (CB2) were used (Rinaldi-Carmona et al., 1994; 

Rinaldi-Carmona et al., 1998). When HT-29 cells were exposed to SR141716A, there 

was antagonism of the inhibitory effects of CP55,940 but not those of WIN55,212-2 or 
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JWH 015. In contrast, treatment of HT-29 cells with the cannabinoid CB2 receptor 

antagonist SR144528 reduced the inhibitory effects of CP55,940, WIN55212-2 and JWH 

015. The reason for the unusual susceptibility of inhibition of CP55,940 to reversal by 

both classes of cannabinoid antagonists is not known but it may be linked to the lower 

maximum inhibition seen with this compound. Clearly, additional work, such as binding 

studies would be necessary to answer whether or not HT-29 cells contain a small number 

of cannabinoid CB, receptors that contribute to the response to CP55940 but not to other 

more selective compounds. However, the functional observations suggest that 

cannabinoid CB2 receptors mediate inhibition of TNF-a-induced interleukin-8 release 

from HT-29 cells. To confirm the existence of this receptor in HT-29 cells, I employed a 

polyclonal antibody raised against the amino terminus of the cannabinoid CB2 receptor to 

confirm the presence of cannabinoid CB2 receptors on HT-29 cells by Western immuno- 

blotting. An intense band of immunoreactivity at the 40 kDa position was found, which 

corresponds to the size of peripheral cannabinoid CB2 receptor protein as reported by 

others e. g. (Rhee et al., 2000). Furthermore, this band was ablated when the polyclonal 

antibody was pre-incubated for 10 min with fusion protein thus suggesting that this 

protein is the cannabinoid CB2 receptor. 

In summary, the data described in this chapter have shown that cannabinoids exert an 

inhibitory effect on the expression of TNF-a-induced interleukin-8 release from HT-29 

cells. Addition of the less active enantiomer of the cannabinoid receptor agonist, 

WIN55212-2, WIN55212-3 or a cannabinoid CB, receptor selective agonist had no 

inhibitory effect on interleukin-8 release. Cannabinoid-induced inhibition of interleukin- 
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8 release was reversed by a cannabinoid CB2 receptor antagonist, however the 

cannabinoid CB1 receptor antagonist was unable to reverse the effects of more selective 

cannabinoid CB2 receptor agonists (WIN55212-2 and JWH 015) in this system 

suggesting a predominantly cannabinoid CB2 receptor mediated event. Furthermore, 

Western immuno-blotting revealed immuno-reactive protein at a region with a size 

consistent with that of cannabinoid CB2 receptor protein. It was therefore concluded that 

HT-29 cells express functional cannabinoid CB2 receptors and suggest that exploitation 

of this receptor could lead to a novel clinical approach in the treatment of inflammatory 

bowel disease. 
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Chapter 6; The effect of cannabinoid receptor agonists on basal and agonist-evoked 

increases in intracellular cyclic adenosine monophosphate [cAMP]; and intracellular 

free calcium [Ca2+]; in HT-29 cells 
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6.1 Introduction 

Data presented in chapter 5 of this thesis demonstrates that cannabinoids inhibit TNF-a- 

induced IL-8 release via the activation of cannabinoid CB2 receptors. However the 

intracellular mechanisms underlying this event are incompletely understood. The current 

knowledge of cannabinoid signal transduction pathways, suggests that activation of 

cannabinoid receptors (CB1 and CB2) inhibit adenylate cyclase via a pertussis toxin 

sensitive G-protein (Howlett, 1995) and inhibit an N, P/Q-type calcium channel (Mackie 

and Hille, 1992). Like cannabinoid CB1 receptors, cannabinoid CB2 receptors are 

members of the G protein coupled receptor (GPCR) family and activation leads to 

inhibition of adenylyl cyclase and activation of mitogen activated protein (MAP) kinases 

(Felder et al., 1995). Until recently, inhibition of adenylate cyclase, with a resultant 

decrease in intracellular cyclic adenosine monophosphate (AMP), is thought to account 

for most, if not all, of the immunosuppressive effects of cannabinoids (Kaminski et al., 

1994). 

However, several data suggest that not all effects elicited by cannabinoid receptor 

activation are cAMP-dependent. For example, in mouse splenocytes the endogenous 

ligand for cannabinoid receptors, 2-AG, reduced both NF-AT-binding to DNA and 

promoter activity in a concentration-dependent manner but did not influence CAMP 

response element (CRE) binding activity or that of AP-l and its octamer to DNA 

(Ouyang et al., 1998). In another study, repeated in vivo pre-treatment with CP55,940 

caused 50% reduction in the number of [3H]CP55940 binding sites in the cerebellum and 

behavioural tolerance to CP55940 without producing tolerance to the inhibitory effect of 
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this agonist on cAMP production in cerebellar membranes (Fan et al., 1996). These 

studies suggest the existence of another signalling response elicited by cannabinoid 

receptor agonists. As another possible signalling pathway modulated by cannabinoids, 

Yebra et al. (1992), have demonstrated that A9-THC, the plant cannabinoid could inhibit 

agonist-evoked increases in intracellular calcium [Ca2+];, a point investigated in the 

experiments described in this chapter. 

An increase in intracellular free calcium [Ca21;, is one of the earliest changes observed 

after ligand-receptor interaction, which may result from mobilisation of calcium from 

intracellular stores, capacitative calcium entry or depolarisation of the cell membrane 

(Gelfand, 1987). Increases in [Ca21; play key roles in many cellular processes: In 

neurones, rises in [Ca2+]; usually results in neurotransmitter release (Khachaturian, 1994), 

whereas in non-neuronal tissues (e. g. leucocytes), inflammatory mediators such as 

histamine, arachidonic acid metabolites or even cytokines are released (Beavan and 

Baumgartner, 1996). Thus in epithelial cells, TNF-a initiates interleukin-8 synthesis 

through the activation of the transcription factor nuclear factor kappa B (NF-icB) 

(Gerwitz et al., 2000). In many studies, activation of NF-KB has been shown to be 

dependent on increases in intracellular calcium e. g. (Pahl et al., 1996). (see figure 6.5.1 

below). 

In addition to the expression of cannabinoid CB2 receptors in HT-29 cells as shown in 

chapter 5 of this thesis, these cells also express acetylcholine (ACh) muscarinic M3 

receptors (Poronik et al., 1999). Activation of these receptors evokes the liberation of 
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inositol triphosphate (IP3), which mobilises [Ca2+]; from internal stores (Poronik et al., 

1999). Thus, this system offers an interesting model to investigate cannabinoid-induced 

changes in both cytosolic free calcium and agonist-evoked increases in intracellular 

cyclic AMP. 

6.2 Aims of Study 

The aims of the experiments described in this chapter are: 

1. To investigate the effect of cannabinoid receptor agonists on basal and 

agonist-evoked increases in intracellular cyclic AMP. 

2. To investigate the effect of cannabinoid receptor agonists on basal and 

agonist-evoked increases in intracellular Ca2+ in HT-29 cells. 

3. To assess whether cannabinoid-evoked changes in [cAMP]; and [Ca21; may 

be related to cannabinoid-evoked inhibition of TNF-a-induced-release of IL- 

8 from HT-29 cells. 

6.3 Experimental Protocol 

Maintenance of HT-29 cells was carried out as described in chapter 2 (section 2.3.5). 

Assessment of cell viability was as described in chapter 2 (sections 2.8.1 and 2.8.2). 

6.3.1 Treatment of cells and determination of [cAMP]1 

The measurement of [CAMP]; was performed as described in chapter 2 (section 2.10). 

For intracellular cyclic AMP measurements, HT-29 cells were plated in a 96 well culture 

plate at a density of Ix 106 cells ml'' for 24 h at 37 °C (95% air/5% C02). In 

experiments where the effects of cannabinoids on basal [CAMP]; were studied, cells were 

treated with 100 µl of CP55,940 (10.10 M- 10'5 M) or WIN55212-2 (10''0 M- 10'5 M) for 
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30 min. Cell free supernatants were removed and replaced with 200 111 of lysis buffer 

(supplied by the Biotrak kit). In experiments where the effects of cannabinoids on 

forskolin-induced rises in intracellular [cAMP]; were studied, cells were pre-treated with 

CP55,940 (10'10 M- 10'5 M) or WIN55212-2 (10'10 M- 10'5 M) for 30 min followed by 

treatment with forskolin (5 x 10-6 M) for 15 min. Cell-free supernatants were removed 

and replaced with lysis buffer. In experiments where the effect of cannabinoids on 

[CAMP]; in TNF-a treated cells were studied, cells were first treated with CP55,940 (10' 

10 M- 10"5 M) or WIN55212-2 (10"'0 M- 10"5 M) for 2h before stimulation with TNF-a 

for 18 h. Cell-free supernatants were removed and replaced with 200 µl of lysis buffer 

before the determination of [CAMP]; 

6.3.2 Treatment of cells and determination of intracellular Ca 2+ 

The treatment of cells and measurement of intracellular calcium was as described in 

chapter 2 (section 2.9) of this thesis. In experiments where the effect of W IN55212-2 or 

ACh-induced rises in [Ca2+]; were studied, cells were pre-incubated with WIN55212-2 

for 2h before loading with Fura-2/AM. Fura-2/AM loading procedure was as described 

in chapter 2 (section 2.9.2) of this thesis. 

6.4 Data Analysis 

In all experiments, the relative intracellular [Ca2+]; is expressed as the ratio of Fura 2 

fluorescence that is due to excitation at 340 nm relative to that due to excitation at 380 

nm (F 340/F 380) and finally converted to absolute [Ca2+]; in nM. This was done because 

of inherent variability in the measurement of intracellular [Ca2+]; fluorometrically, even 

with the new generation of intracellular Ca2+ indicators e. g. Fura-2/AM (Grynkiewicz et 
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al., 1985). Unless otherwise stated, all experiments were performed with at least two 

different cell passages and at least 5 replicates were obtained. Results for [Ca21; and 

[CAMP]; are presented as the mean ± S. E. mean of the number of observations indicated, 

where necessary, data were tested for significance using an unpaired Student's I-test, 

where a value of P <_ 0.05 was considered significant. Concentration-response curves 

were analysed by Prism (Graph Pad Inc. San Diego, USA). Other results are shown as 

bar graphs or representative traces from at least 5 replicate experiments. 
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6.5 Results 

6.5.1 Effects of cannabinoids on intracellular cyclic AMP 

6.5.1.1 Calibration curve for intracellular cAMP 

A calibration curve was generated using a non-acetylated cAMP standard supplied with 

the Biotrak cAMP detection kit. Generation of the standard curve was carried out 

according to the manufacturer's guidelines as described in chapter 2 (section 2.10) of this 

thesis. A typical standard curve is as shown in figure 6.5.1.1 below. 
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Figure 6.5.1.1. Typical standard curve for intracellular cyclic AMP 
measurement in HT-29 cells. 

The standard curve was generated by plotting percent B/Bo as a function of log c 
AMP concentration, where %B/B0 = (Standard or sample OD-NSB x 100 / zero 
standard OD - (NSB OD). The [cAMP]; (fmol/well) value of sample was read 
directly from graph. Where OD = optical density, NSB = non-specific blank, NSB 
OD = non-specific blank optical density. 
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6.5.1.2. The effect of cannabinoids on [cAMP]1 in HT-29 cells. 

The basal [cAMP]; as measured by enzyme-immunoassay in HT-29 cells was (360 ± 46 

fmol. well"1, n= 8). Incubation of HT-29 cells with CP55,940 (10'7 M- 10'5 M) or 

W1N55212-2 (10"7 M- 10"5 M) for 30 min caused a concentration-related reduction in 

[cAMP1;, from 360 ± 46 fmol. well", (n = 8) to 152.5 ± 32.0; 135.1 ± 12.9; 117.5 ± 9.6 

fmol. well'', (n = 4) and 132.5 ± 12.6; 145.0 ± 20.8; 130 ± 11.5 fmol. well"', (n = 4) 

respectively.. (Figure 6.5.1.2 a and b). 
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Figure 6.5.1.2. Effect of CP55940 and WIN55212-2 on resting [cAMP]i HT-29 
cells 
Cells were treated with CP55940 (10"10 M-10"5 M) (a) or W1N55212-2 (10.10 M-10"5 
M) (b) for 30 min. Supernatants were removed and replaced with lysis buffer. 
Concentration of [cAMP]; was determined by EL1SA. Each value represents mean ± 
SEM of 4 experiments. * denotes statistical significance (P 5 0.05) by unpaired 
student's t-test as compared with control (untreated cells only). 
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6.5.1.3 The effect of W1N55212-2 on forskolin-stimulated increases in [cAMP]1 

Forskolin (5 x 10"6 M) increased the basal [cAMP]; from 360 ± 46 fmol. well"', (n=8) to 

555 ± 51 fmol. well 1, (n=4). Pre-treatment of the cells with WIN55212-2 (10"7 M-10"$ M) 

caused a concentration related decline in [cAMP]; at all concentrations tested 150.0 ± 

14.1; 150.0 ± 8.2; 147.5 ± 5.0 fmol. well"1, (n = 4) respectively (Figure 6.5.1.3). 
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Figure 6.5.1.3. Effect of WIN55212-2 and forskolin on [cAMP]i in HT-29 cells 

Cells were treated with or without WtN55212-2 (10"7 M-10'5 M) for 30 min before 
stimulation for a further 15 min. Supernatants were removed and replaced with 
lysis buffer. Concentration of intracellular cyclic AMP was determined by EL1SA. 
Each value represents mean ± SEM of 4 experiments. * denotes statistical 
significance (P< 0.05) as determined by unpaired Student's t-test comparing data 
with forkolin treated cells only. 
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6.5.1.4 The effect of WIN55212-2 and TNF-a on [cAMP]1 in HT-29 cells. 

TNF-a significantly (P: 50.05) decreased basal [cAMP]; in TNF-a treated cells alone from 

360.0 ± 46.2 fmol. well"', (n = 8) to 125.0 ± 10.0, fmol. well", (n = 4). Similarly, 

WIN55212-2 (10,7M-10"5M) caused significant (P<_0.05) decrease in [cAMP], in TNF-a 

treated cells to 132.5 ± 12.6; 145.0 ± 20.8 and 130.0 ± 11.5 fmol. well'', (n = 4) 

respectively (Figure 6.5.1.4). 
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Figure 6.5.1.4. Effect of WIN55212-2 and TNF-a on intracellular 
cyclic AMP In HT-29 cells. 

Cells were treated with or without WIN55212-2 (10'7 M-10'5 M) for 2h before 
stimulation with TNF-a (100 ng. ml'') for a further 18 h. Supernatants were 
removed and replaced with lysis buffer. Concentration of intracellular cyclic 
AMP was determined by ELISA. Each data represents mean ± SEM of 4 
experiments. * denotes statistical significance (P: 50.05) as determined by 
unpaired student's t-test comparing data with the control (untreated cells). 

152 

Untreated TNF-a 10-7 M 10-6 M 10-5 M 



6.5.2 Determination of intracellular calcium 

6.5.2.1 Calibration of ionized free Ca2+ in HT-29 cells 

Figure 6.5.2.1 is a representative graph showing the calibration of ionized Ca2+ in HT-29 

cells. 
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Fig. 6.5.2.1 Calibration of free Ca2+ measurement with Fura2 loaded HT29 cells. 
Fluoresence at saturating concentrations of Ca2+ was determined after cell lysis with 
digitonin and under conditions where the chelator was essentially Ca2+-free by 
addition of EGTA/Tris pH 8.5. Definitions of parameters required to calculate [Ca2+]1 
(nM) by the equation of Grynkiewitz et al. (1985) are indicated. Further details are 
given in Chapter 2 (section 2.9.3). 
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6.5.2.2 The effect of WIN55212-2 on basal [Ca2+]; in HT-29 cells 

In the presence of an extracellular calcium concentration of 1 mM, the basal [Ca2+]; in 

Fura-2/AM loaded HT-29 cells was (141.4 ± 19.1 nM, n=9). W IN55212-2 (10-5M and 

10' M) resulted in a small, concentration-related decrease in [Ca2+]; (11.6 ± 1.1 nM and 

18.9 ± 3.9 nm respectively, n=5), 120 sec after addition of WIN55212-2. These values 

amounted to a significant (P < 0.05) reduction in basal [Ca21; of 8.2 % and 13 % 

respectively, (Figure 6.5.2.2). Figure 6.5.2.2 a and b are representative traces showing 

the effects of WIN55212-2 (10-6 M and 10"5 M) on basal intracellular [Ca2+]; 

To assess the effect of time on WIN55212-2-induced inhibition of basal [Ca2+];, HT-29 

cells were pre-treated for 2h with WIN55212-2 (10"5 M) before loading cells with Fura- 

2/AM for 2 h. In these experiments, WIN55212-2 (10-5 M) caused an even greater 

decrease in [Ca21; (56.1 ± 11.6 mM, n=5), than in experiments where WIN55212-2 was 

added following Fura-2/AM loading and [Ca2+]; measured for 120 sec. This value 

amounts to 45% reduction of basal [Ca21;, Figure 6.5.2.2 a. 
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Figure 6.5.2.2. Effect of WIN55212-2 on basal [Ca2+]i in HT-29 cells 

90 120 

HT-29 cells in HEPES/CaCl2 (1mM) buffer were pre-loaded with Fura 2 and 
[Ca2+]; monitored over 120 sec with discrete measurement taken every 4 sec 
interval upon addition of WIN55212-2 as described in Chapter 2 (section 2.9.3). 
Fig. (6.5.2.2a) WIN55212-2 (10-6 M) and (6.5.2.2b) WIN55212-2 (10'S M) are 
representative traces. Fig. (6.5.2.2c) Data presented as bar graph and represents 
mean ± SEM of at least 6 independent experiments. 
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Figure 6.5.2.2 d. Effect of WIN55212-2 on basal [Ca2+]i in HT-29 cells after 2 
h incubation. 

Suspension of HT-29 cells was incubated with WIN55212-2 for 2 h. Following a 
wash in HEPES/CaC12 (1 mM) buffer, HT-29 cells were pre-loaded with Fura- 
2/AM and [Ca2+]; monitored over 120 sec with discrete measurements taken every 
4 sec interval as described in Chapter 2 (section 2.9.3). Results are mean ± s. e 
mean of 5 separate experiments. * denotes significant difference from untreated 
cells as determined by Student's unpaired t-test. 
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6.5.2.3 Effect of CP55940 on basal [Ca2 ii, in HT-29 cells 

Figure 6.5.2.3. a and 6.5.2.3 b are representative traces showing the effect of CP55940, 

on basal intracellular [Ca21; in Fura-2/AM preloaded HT-29 cells. 
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Figure 6.5.2.3 Effect of CP55,940 on basal [Ca2+11 in HT-29 cells 

HT-29 cells in HEPES/CaC12 (1 mM) buffer were loaded with Fura-2/AM and [Ca2+]; 
monitored over 120 sec with discrete measurements taken every 4 sec interval 
following addition of CP55,940. Fig (6.5.2.3 a) CP55940 (106 M) and Fig. (6.5.2.3 b) 
CP55940 (10'5 M) are representative traces. Fig. 6.5.2.3 d data presented as bar graph 
and represent mean ± SEM of at least 5 independent experiments. 
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Addition of CP55940 (10"6 M and 10"5 M) to Fura-2/AM preloaded HT-29 cells caused a 

small, concentration-dependent inhibition in basal [Ca2+]; (9.5 ± 2.1 nM and 21.3 ± 2.9 

nM, n=5) respectively, when monitored for 120 sec. These values amounted to 6.7% and 

15.1 % reductions in basal [Ca21; respectively (figure 6.5.2.3 c). 

6.5.2.4 The effect ofACh on [Ca2+J; in HT-29 cells 

In the presence of an extracellular calcium concentration of 1 mM, ACh (10"' M- 10"4 M) 

induced a rapid, concentration-related increase in [CaZjj when monitored over 120 sec 

(Figure 6.5.2.4a). The ECinmax for ACh-induced increases in [Ca2+]; was (1.6 x 10"5 M, 

95 % confidence limits (C. L. ) = 1.1 x 10-5 M- 2.5 x 10"5 M, n= 5). At a maximum 

effective concentration (10-4 M), ACh induced an increase in [Ca2+]; of 221.0 ± 8.2 nM, n 

= 5). 

6.5.2.5 The effect of WIN55212-2 on ACh-induced increases in [Ca2+ J; 

In the presence of an extracellular calcium concentration of 1 mM, pre-incubation of HT- 

29 cells with WIN55212-2 (10"5 M) for 10 min before the addition of ACh (10"' M-l0"4 

M), resulted in a significant (P<0.05) shift of the ACh concentration-effect curve. The 

inhibitory effect of WIN55212-2 on ACh-induced increases in [Ca2+]; appeared to result 

from a decrease in the maximum response (and reduction of baseline), rather than a shift 

to the right of the concentration-effect curve for ACh (Fig 6.5.2.4b). Thus WIN55212-2 

(10"5 M) reduced the response to a maximum effective concentration of ACh (10"4 M) 

from (221.0 ± 8.2 nM, n=5) to (77.4 ± 5.6 nM, n=5) 
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Figure 6.5.2.4. Concentration-dependent increases in [Ca2+li induced by ACh. 
HT-29 cells, suspended in HEPES/CaC12 (1 mM), were pre-loaded with Fura 2 and 
[Ca2+]i monitored over 120 sec with discrete measurements taken every 4 sec 
interval following addition of ACh. (a) A representative trace for increases in [Ca2+]; 
induced by ACh. Arrow indicates point of addition of ACh. (b) Effect of 
WIN55212-2 (10"5 M) on ACh-induced increases in [Ca21;. Results are mean ± 
SEM of 5 separate experiments. * Denotes significant difference from ACh treated 
cells (P< 0.05,2 way ANOVA followed by Bonferroni's post hoc test). 
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6.5.2.6 The effect of TNF-a on [Ca2+J; in Fura 2 preloaded HT-29 cell. 

In the presence of an extracellular calcium concentration of 1 mM, TNF-a (10 - 1000 ng 

ml-') induced slow, significant (P < 0.05), concentration-related increases in [Ca2+]; in 

HT-29 cells (figure 6.5.2.5a). The ECin max for TNF-a-induced increases in [Ca21; was 

(522.8 ng ml-1,95 % C. L. = 297.1 - 920.1 ng ml"') and the maximum concentration of 

TNF-a (1000 ng ml'') studied, induced an increase in [Ca2+]; of (259.6 ± 11.6 nM, n= 5) 

(Figure 6.5.2.6). 

6.5.2.7 The effect of W1N55212-2 on TNF-a-induced increases in [Ca2+1; 

In the presence of an extracellular calcium concentration of 1 mM, pre-incubation of HT- 

29 cells with WIN55212-2 (l0"5 M) for 10 min before the addition of TNF-a (100 ng ml" 

'), resulted in a significant (P<0.05) reduction in TNF-a-induced increases in [Ca2+];. 

WIN55212-2 (10"5 M) reduced the increase in [Ca2+]; induced by TNF-a from 80.9 ± 

15.5 nM to 29.9 ± 3.8 nM (n = 5) (Figure 6.5.2.5 b). 
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Figure. 6.5.2.5. Increases in [Ca2+]i in HT-29 cells induced by TNF-a 
HT-29 cells in suspension were pre-loaded with Fura 2 and [Ca24; was monitored. 
Figure 4 a. representative trace of increase in [Ca2+]; induced by TNF-a 100 ng ml"'. 
Arrow indicates point of addition of TNF-a. Fig. 4b Increases in [Ca2+]; induced by 
TNF-a (10 - 100 ng ml") (open bars). Results are mean ± SEM of 5 separate 
experiments. * denotes significant difference from ACh treated cells (P < 0.05,2 
way ANOVA followed by Bonferroni's post hoc test). Hatched bar shows the 
increase in [Ca24; induced by TNF-a (100 ng ml"') in cells pretreated with 
WIN55212-2 (10'5 M). Results are mean ± SEM of 5 separate experiments. + 
denotes a significant difference from TNF-a (100 ng ml-) treated cells. 
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6.6 Discussion 

6.6.1 The effect of cannabinoids on basal and agonist evoked increases in [cAMPJ; 

In the experiments described in the present chapter, CP55,940 and WIN55212-2 have 

been shown to inhibit basal and forskolin stimulated increases in [CAMP]; over the same 

concentration ranges that inhibited TNF-a-induced release of IL-8 by cannabinoids in 

HT-29 cells (Chapter 5). Furthermore, incubation of HT-29 cells with WIN55212-2 for 2 

h followed by stimulation with TNF-a have also been shown to lead to inhibition of 

[CAMP]; suggesting that a decrease in [cAMP]; may be related to cannabinoid-evoked 

inhibition of TNF-a-induced release of IL-8 in this cell line as reported in chapter 5 of 

this thesis. 

Adenylate cyclase is ubiquitously distributed in the mammalian tissue where it 

synthesizes cAMP from adenosine triphosphate (ATP). The function of this cyclic 

nucleotide is to act as an intracellular second messenger through activation of protein 

kinases. Elevation of intracellular cAMP by addition of cell permeable stable analogues 

eg dibutyryl-cAMP or drugs which increase intracellular cAMP e. g. rolipram have been 

generally associated with inhibition of immune cell function (Haraguchi et al., 1995). 

However emerging evidence suggest that a decrease in intracellular cAMP as seen 

following activation of cannabinoid receptors may also lead to inhibition of immune cell 

function. These observations suggest that the role of the cAMP-signalling cascade in 

immune cell function may have been oversimplified (Kaminski et al., 1998). Thus an 

increase in intracellular cAMP has been shown to bind to and activate protein kinase A 

(PKA), an enzyme that in turn phosphorylates transcription factors, which bind to cAMP 
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response elements (CREBs) in the DNA thereby resulting in the activation or suppression 

of cytokine gene expression (Sassone-Corsi, 1995). 

A direct activation or inhibition of cAMP responsive element in the promoter region of 

the IL-8 gene is probably not involved because, to our knowledge, no such site has been 

identified. However, multiple classes of transcription factors have been implicated in the 

regulation of IL-8 gene expression. The promoter region of IL-8 contains potential 

binding sites for nuclear factors such as AP-l, AP-2, interferon regulatory factor-l, 

hepatocyte nuclear factor-I, glucocorticoid receptor, NF-KB and NF-IL6 (Mukaida et al., 

1990, Kunsch et al., 1995). Since the binding activity of transcription factors such as 

NF-KB, c Fos and Jun B are influenced by CAMP via activation of CREB, they might 

well be targets of cannabinoid receptor activation. In addition, the possibility that the 

effect of cannabinoid receptor activation on cAMP may be secondary to a regulatory 

effect on the expression of other intermediate proteins, e. g. cytokines such as IL-10, 

which have been shown to inhibit IL-8 release in immune cells cannot be excluded 

(Siegmund et al., 1997). 

Opinions are divided on the role of [CAMP]; as the main signal producing cannabinoid- 

induced actions in immune cells (See Berdyshev, 2000). Other intracellular signalling 

events may also be involved. For example, A9-THC has been shown to suppress 

concanavalin A-induced increases in cytosolic free calcium in murine thymocytes (Yebra 

et al. (1992). Given this fact, the alterations in [Ca21; and the inhibition of IL-8 release 

from HT-29 cell line could result from a combined effect of cannabinoid on [cAMP]; and 
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[Ca2+]; as shown below including a multitude of the resulting changes in the signalling 

cascade downstream. 

In summary, CP55,940 and WIN55212-2 have been shown to inhibit basal and forskolin- 

induced increases in [CAMP]; in HT-29 cells. It was also shown that incubation of 

WIN55212-2 for 2h followed by stimulation with TNF-ct could lead to a decrease in 

[CAMP]; . Taken together, these studies demonstrate that cannabinoid-evoked inhibition 

of adenylate cyclase/cAMP signalling pathway may be related to inhibition of TNF-a- 

induced release of IL-8 from this cell line via inhibition of transcription factor binding at 

IL-8 promoter regions necessary for IL-8 transcriptional regulation. The possible site of 

action may be AP-l, AP-2, interferon regulatory factor-l, hepatocyte nuclear factor-l, 

glucocorticoid receptor, NF-icB or NF-IL6 via CREB/fos or CREB/Jun heterodimers 

however, further studies are needed to confirm this hypothesis. Thus these data adds to a 

body of knowledge supporting the negative regulatory effect of the cannabinoids in the 

immune system. 

6.6.2 The effect ofcannabinoids on basal and agonist evoked increases in [Ca2+J; 

The aim of the experiments described in this chapter was to determine whether the 

cannabinoid agonists WIN55212-2 and CP55,940 inhibited tumour necrosis factor-a- 

induced increases in intracellular calcium in HT-29 cells. 

In the present study, spectrofluorimetry and the intracellular calcium indicator molecule 

Fura2/AM were used to measure intracellular calcium in HT-29 cells. Tumour necrosis 
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factor-a induced a slow concentration-dependent increase in intracellular calcium, when 

monitored for 10 min, similar to that reported by others in microglia (McLarnon et aL, 

2001). This slow increase in intracellular calcium, induced by tumour necrosis factor-a, 

appears to result from the release of calcium from intracellular stores since, in studies in 

microglia, this response was not inhibited when experiments were conducted in calcium 

free media nor was the fluorescence quenched by the presence of manganese in the 

extracellular medium (McLarnon et al., 2001). In contrast, Gewirtz et al. (2000) found 

that tumour necrosis factor-a induced activation of NF-KB and synthesis of interleukin-8 

in the epithelial cell line T84 was not calcium dependent. However, the experiments 

described by McLarnon et al. (2001), those previously published by us (Chapter 5; 

Ihenetu et al., 2003) and those described above were all conducted with a concentration 

of tumour necrosis factor-a of 100 ng. ml'' whereas those described by Gewirtz et al. 

(2000) used a lower concentration (10 ng. ml"1). Interestingly in the present study, 10 

ng. ml" of tumour necrosis factor-a did not cause a marked increase in intracellular 

calcium whereas in parallel experiments where interleukin-8 release was measured this 

concentration of tumour necrosis factor-a caused a marked increase in interleukin-8 

release (Chapter 5). Thus the concentration-effect curve for tumour necrosis factor-a- 

induced increases in intracellular calcium appears to be to the right of that for interleukin- 

8 release, suggesting that tumour necrosis factor-a-induced increases in intracellular 

calcium and interleukin-8 release may not be causally related in HT-29 cells. However, it 

was not the aim of the present study to investigate the mechanism of tumour necrosis 

factor-a, -induced cell activation and further experiments are required to determine the 

calcium dependency of responses induced by tumour necrosis factor-a. 
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In contrast to tumour necrosis factor-a, in the present study, ACh induced a rapid, 

concentration-dependent increase in intracellular calcium. These findings are consistent 

with other published data that also show that this rapid increase in intracellular calcium 

results from the release of calcium from intracellular stores (Gerwitz et al., 2000). 

Epithelial cells have been shown to contain muscarinic M3 receptors (Poronnik et al., 

1999) and published data show that increases in intracellular calcium induced by the 

muscarinic receptor agonist carbachol also activates NF-KB and induces interleukin-8 

expression in epithelial cells (Gerwitz et al., 2000). Thus, it appears that in epithelial 

cells, an increase in intracellular calcium results in an increase in NF-KB activation and 

interleukin-8 synthesis. 

In the present study, incubation of WIN55212-2 and CP55,940 for 2 min caused a 

concentration-related reduction of basal intracellular calcium in HT-29 cells. Incubation 

of HT-29 cells with W1N55212-2 for 2h resulted in an even greater reduction in basal 

intracellular calcium suggesting that this decrease was a slow event. Furthermore, when 

HT-29 cells were incubated with W IN55212-2 prior to the addition of either tumour 

necrosis factor-a or acetylcholine, WIN55212-2 inhibited the increase in intracellular 

calcium induced by these agents. WIN55212-2 reduced basal intracellular calcium and 

shifted concentration-effect curves for acetylcholine-induced increases in intracellular 

calcium in a non-parallel fashion with a marked reduction in the response produced by 

the maximum concentration of acetylcholine tested. Similarly, W1N55,212-2 

significantly antagonised increases in intracellular calcium in HT-29 cells induced by 
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tumour necrosis factor-a (100 ng. ml"'), the lowest concentration of tumour necrosis 

factor-a that significantly increased intracellular calcium in the present study and that 

used previously to study the cannabinoid receptors modulating tumour necrosis factor-a- 

induced interleukin-8 release (Ihenetu et al., 2003). Published evidence suggests that 

tumour necrosis factor-a releases calcium from intracellular stores (reviewed above) as 

acetylcholine (Gerwitz et al., 2000). The finding that cannabinoid receptor agonists, such 

as WIN55212-2, reduce intracellular calcium and reduce increases in intracellular 

calcium induced by tumour necrosis factor-a and acetylcholine suggest that cannabinoid 

receptor agonists reduce the availability of calcium within the cell. 

With respect to previous studies, our data with HT-29 cells agree in part with those of 

Yebra et al. (1992), who reported that A9-tetrahydrocannabinol suppressed concanavalin 

A-induced increases in cytosolic free calcium in murine thymocytes but are at odds with 

those of Felder et at., (1995) who demonstrated that activation of cannabinoid CB2 

receptors in CHO cells did not induce changes in intracellular calcium although the latter 

experiments were conducted in transfected cells where the appropriate intracellular 

signalling mechanism may not be present. 

In summary, it has been shown that W IN55212-2 and CP55,940 reduce basal intracellular 

calcium in HT-29 cells. Furthermore, WIN 55212-2 inhibited increases in intracellular 

calcium induced by acetylcholine and tumour necrosis factor-a. These data suggest that 

the immunosuppressive effects of cannabinoids in HT-29 cells may be related to a 

reduction in resting and agonist evoked increases in intracellular calcium. 
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Figure 6.5.1. Possible mechanism of action of WIN55212-2 on HT-29 cells 
following stimulation with TNF-a 

Following signal (TNF-a), IKB complex is activated by NF-KB inducible kinases. 
There is association of p50/p65-IKB a complex with IKB kinase-complex, IKB a is 
phosphorylated, followed by ubiquitination, degradation and release of p50/p65 to 
the nucleus. Once in the nucleus, p50/p65 induces transcription of many genes 
including IL-8. WIN55212-2 acting on cannabinoid CB2 receptors via inhibition of 
adenylate cyclase and [cAMP]; also inhibits [Ca2+];. These events eventually could 
lead to inhibition of IL-8 synthesis and release. 
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Chapter 7; The effect of cannabinoids on induction of apoptosis in immune cell 

lines (Jurkat and HT-29) 
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7.1 Introduction 

In the previous chapters, data were presented showing that cannabinoids inhibit 

cytokine/chemokine release from a variety of immune cells and cell lines. However, 

these effects were often observed at high cannabinoid concentrations (>1 µM) i. e. 

greater than those required in cannabinoid binding studies (Rinaldi-Carmona et al., 

1998). Hence this work was undertaken to further characterise the 

immunosuppressive actions of cannabinoids and to investigate whether cannabinoids 

induce apoptosis in Jurkat cells and HT-29 cells at concentrations that inhibit cytokine 

release. 

Cannabinoids have been shown to induce apoptosis in mononuclear cells 

(macrophages and lymphocytes) (Zhu et al., 1998) and glial cells (Sanchez et al., 

1998) and to activate cell growth in haematopoietic cell lines (Derocq et al., 1998). 

The endogenous cannabinoid, anandamide has also been shown to possess anti- 

proliferative actions in human breast carcinoma cells (De Petrocellis et al., 1998) and 

to induce apoptosis in mononuclear cells (Schwartz et al., 1994). Many other studies 

suggest that anandamide might have a pro-apoptotic activity both in vitro e. g. (Sarker 

et al., 2000) and in vivo e. g. (Galve-Roperh et al., 2000). However, the mechanism of 

cannabinoid-induced apoptosis is still unclear. 

Cannabinoid CB2 receptors are highly expressed in the immune system mainly in the 

cells of lymphoid origin, where they have been studied extensively (Berdyshev, 2000; 

Munro et al., 1993). Whether such levels of expression are present in the cells of 

non-lymphoid origin such as epithelial cells is not yet clear. Activation of 

cannabinoid CB2 receptors present in these cells can lead to the inhibition of 
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adenylate cyclase, mitogen activated protein (MAP) kinases and the induction of an 

immediate-early gene krox 24 (Felder et al., 1995). Although the mechanism of 

cannabinoid-induced apoptosis in immune cells is unclear, recent evidence suggests 

that it may involve both cannabinoid receptor-dependent (Mckallip et al., 2002; De 

Petrocellis et al., 1998) and cannabinoid receptor-independent pathways (Ruiz et al., 

1999; Galve-Roperh et al., 2000). Published evidence, also suggests that 

cannabinoids may induce apoptosis via stress related signals e. g. nerve growth factor 

(NGF) or via the generation of ceramide (Kolesnick and Kronke, 1998; Galve-Roperh 

et al., 1997). These signals have been demonstrated to be pro-apoptotic mediators 

(Kolesnick and Kronke, 1998; Galve-Roperh et al., 1997). Furthermore, ligation of 

the vanilloid receptors by cannabinoid receptor agonists e. g. anandamide has also 

been shown to induce apoptosis (Maccarone et al., 2000). The interactions of these 

pathways to the characterised cannabinoid receptors are not yet clear (refer to figure 

1.10, chapter 1). 

Apoptosis or programmed cell death is a normal physiological process that is essential 

for the maintenance of normal tissue homeostasis (for a review, see Cohen, 1992). 

Hence, the therapeutic induction of apoptosis has become a subject of an increasing 

interest. However, some recent studies suggest that there are unique differences in the 

control of apoptosis of various immune and inflammatory cells. For example, 50- 

70% of neutrophils in culture constitutively become apoptotic over 20 h (Meagher et 

al., 1996; Ward et al., 1999). In contrast, it can take up to 2 days for eosinophils to 

achieve an equivalent degree of apoptosis suggesting that distinct regulatory 

mechanisms control apoptosis in these cells. Thus, the advantage of a cannabinoid 

receptor-mediated apoptosis may depend on the fact that the exploitation of this action 
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of cannabinoids may lead to an anti-inflammatory drug treatment devoid of any 

psycho-activity particularly if this occurs via cannabinoid CB2 receptors. 

7.2 Aims 

The aim of the experiments described in this chapter is: 

" To investigate whether anandamide and other cannabinoid receptor agonists 

can induce apoptosis in Jurkat and HT-29 cells. 

In this study, a nuclear fluorochrome, 4' 6-diamidino-2-phenyl indole (DAPI) was 

employed to identify apoptotic cells (Ruiz et al., 1999). Furthermore, constitutive 

induction of apoptosis in neutrophils and Jurkat cells by aging and exposure to room 

temperature respectively (Meagher et al., 1996; Shimura et al., 1998) was used to 

validate this assay. 

7.3 Experimental protocol 

Isolation of human neutrophils from bully coats and its maintenance in culture has 

been described in chapter 2, section 2.3.5. The culture and maintenance of Jurkat and 

HT-29 cells was also described in chapter 2, section 2.3.2 and 2.3.3 respectively. 

7.3.1 Treatment of cells 

Neutrophils (1 x 106 cells. ml"1) or Jurkat cells (1 x 106 cells. ml") were cultured in 75 

cm2 standard tissue culture flasks, Falcon (Beckton-Dickinson, Oxford, UK), 

supplemented with 10% foetal calf serum, 2 mM L-glutamate, 50 U. ml-' penicillin, 50 

pg. ml-1 streptomycin at 37 °C in a humidified 5% CO2 atmosphere as described 

above. At 0,24,48 and 72 h, aliquots of neutrophils (250 d) were harvested from 

culture and placed onto a polylysine coated glass slides by cytocentrifugation at 250 g 

for 5 min. Jurkat cells were treated with various concentrations of cannabinoids in a 

humidified atmosphere (95% air/5% C02) or incubated at room temperature for the 
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indicated period of time. Cytocentrifuge preparations of duplicate cell samples in 

each experiment were prepared on polylysine coated glass slides in a Heraeus 

Labofuge 400 (Heraeus Instrument Ltd, Brentwood, Essex, UK) at 250 g for 5 min. 

For assessment of apoptosis in neutrophils, slides were fixed in methanol for 5 min 

and stained in May and Grunwald-Giemsa or DAPI stains' whereas in the case of 

Jurkat cells only DAPI staining was performed. 

HT-29 cells were cultured in Lab-Tek chamber slides. Following treatment with 

cannabinoids for different time points, slides were fixed with 3.7% formaldehyde for 

10 min at room temperature before staining with DAPI for 15 min. Isolation of 

genomic DNA and apoptosis assays was described in chapter 2, section 2.6. 

7.4 Data analysis 

All data are expressed as means (± SE mean) of at least four independent 

experiments. Comparisons between groups were calculated using one-way ANOVA 

followed by Dunnett's post hoc test. Significance was assumed if P <_ 0.05. 
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7.5 Results 

7.5.1 Neutrophil apoptosis 

7.5.1.1 Viability of human neutrophils using M7T and trypan blue dye exclusion 

method 

Table 7.1 The Effect of aging on human neutrophil viability as assessed by trypan 
blue dye exclusion method and MTT assay respectively). 

Duration (h) following Trypan blue dye MTT assay 

isolation of exclusion assay. Cell Cell viability % of 

neutrophils viability % of control control 

0 >98 >98 

24 95.2±5.0 55.6±0.5 * 

48 93.9±7.1 35.8±8.1 * 

72 71.5±10.1 * 15.5±. 12.1 

Trypan blue dye exclusion technique and MTT assay were used to determine the 
viability of neutrophils as described in chapter 2, section 2.8.1 and 2.8.2 of this thesis. 
The data are mean ± SEM of 6 different experiments. * Denotes significant 
difference (* P<0.05) from the control (freshly isolated neutrophils). 

In the first set of experiments, human neutrophils were assessed for viability after 

isolation by Histopaque-R gradient centrifugation and following incubation in 

complete RPMI medium for 24 h, 48 h or 72 h respectively. The viability of freshly 

isolated human neutrophils as assessed by the trypan blue dye exclusion technique 

and MTT assay exceeded 98 %. However, following incubation for 24 h, there was a 

small but non-significant (P> 0.05) reduction in viability (95.2 ± 5.0 %, n=6) as 

measured by trypan blue dye exclusion method when compared with the freshly 

isolated cells. In contrast, when the viability was assessed by MTT assay, there was a 

significant (P<0.05) reduction in cell viability (55.6 ± 0.5%, n= 6) after 24 h 
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incubation when compared to freshly isolated cells (> 98%). Incubation of human 

neutrophils for 48 and 72 h showed a small but time-dependent reduction in cell 

viability (93.9 ± 7.1 and 71.5 ± 10.1 %, n= 6) as measured by trypan blue dye 

exclusion assay. In contrast, when viability was assessed by MTT assay, there was an 

increased reduction in the viability of neutrophils following incubation for 24,48 and 

72 h respectively when compared to freshly isolated cells (35.8 ± 8.1; 15.5%, n= 6) 

(data are summarised in table 7.1 above). 

7.5.1.2 May and Grunwald-Giemsa staining of human neutrophils 

Based on our results on cell viability, I investigated whether May and Grunwald- 

Giemsa staining of neutrophils could be used to measure apoptosis. Figure 7.4.2 a 

shows the morphological features of freshly isolated human neutrophils with multiple 

lobes of interconnecting nuclei staining bright red. In contrast, neutrophils cultured 

for 24 h and 72 h respectively (figure 7.4.2 b and c) show the characteristic apoptotic 

features of rounded deep blue staining nuclei with intact cytoplasmic membranes. 

7.5.1.3 DAPI staining of human neutrophils 

As control cells, human neutrophils were assessed for apoptosis by staining with the 

nuclear fluorescent dye DAPI. Figure 7.4.3 shows the features of apoptotic 

neutrophils with condensed chromatin bodies (apoptotic bodies) with brighter 

fluorescent intensity than the non-apoptotic cells. The quantitative analysis of 

apoptotic cells (x 1000 magnification) showed a time-dependent increase in the % of 

neutrophil apoptosis (0 h=0%; 24 h= 15.1 ± 4.6 %; 48 h= 50.2 ± 16.0 %; 72 h =7 

1.0 ± 20.5%) (Figure 7.4.1). 
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Figure 7.4.1. Effect of aging on human polymorphonuclear neutrophil 
apoptosis. 

Neutrophils (1 x 106 cells. ml'') were cultured in complete RPMI 1640 medium as 
described in the materials and methods. Results represent quantitative analysis of 
apoptotic cells (x 1000 magnification) of 6 independent experiments ± SEM. * 
Significant difference (P<0.05) versus control (freshly isolated and stained cells) 
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Figure 7.4.2. Morphological features of age-induced apoptosis in 
human neutrophils (May and Grunwald-Giemsa staining, x 1000 
magnification. 
Untreated peripheral blood neutrophils incubated at 37 °C for (a) 0h (b) 24 h 
and (c) 72 h. Fig. (7.4.2 a) shows normal neutrophil with the characteristic 
lobes and interconnecting filaments. Fig. (7.4.2 b and c) shows apoptotic 
neutrophils with condensed chromatin bodies. Result shown is representative 
of four independent experiments with similar results. Magnification x 1000. 
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Figure 7.4.3. Morphological features of age-induced apoptosis in 
human neutrophils (DAPI staining, x 600 magnification). 

Untreated peripheral blood neutrophils incubated at 37 °C for 0 h, 24 h and 
72 h. Fig. (7.4.3 a) shows DAPI staining of normal neutrophils with no 
apoptotic features. Fig. (7.4.3 b and C) show DAPI staining of apoptotic 
neutrophils with condensed chromatin bodies (arrow) with increased 
fluorescent intensity, suggestive of apoptosis (x 600 magnification). Result 
shown is a representative of four independent experiments with similar 
results. Original magnification x 600 

7.5.1.4 DNA fragmentation assay of human neutrophils 

In order to confirm that neutrophils had undergone apoptotic cell death, genomic 

DNA was isolated and subjected to 2.0 % agarose gel electrophoresis. Figure 7.4.4 
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shows the characteristic "DNA ladders" of human genomic DNA from neutrophils 

after 24 h and 48 h incubation in a humidified atmosphere of (5 % C02/ 95 % 02) 

24 h 48 h 
100 Kb 
marker 

Figure 7.4.4. DNA fragmentation of aged human neutrophils in culture. 
Isolated human neutrophils (1 x 106 cells. ml-1) were cultured in complete RPMI 
1640 medium. DNA were isolated after 24 and 48 h respectively and analysed as 
described in the chapter 2, section 2.6. Lane (a) shows molecular weight marker 
(12 kb -100 bp) (1 kb Plus DNA ladder, GIBco BRL Life Technologies. Cergy 
Pontoise, France). Lanes (b) and (c) show DNA from neutrophils incubated for 
24 and 48 h respectively. DNA fragmentation was visualised as 
oligonucleosome-size fragments stained with ethidium bromide in 2% agarose 
gel and transilluminated with UV light for photography. Result shown is a 
representative of four independent experiments with similar results. 
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7.5.2 Jurkat cell apoptosis 

7.5.2.1. DAPI staining of Jurkat cells 

Following the validation of DAPI staining technique with apoptotic neutrophils 

induced by aging, this method was employed to evaluate apoptosis in Jurkat cells. 

Anandamide was tested for its ability to induce apoptosis in Jurkat cells following 

treatment of these cells (1 x 106 cells. ml-1) with anandamide (10"7 M- 10'4 M) for 24 

h. Figure 7.4.6 shows a concentration-dependent increase in Jurkat cell apoptosis as 

measured by visual evaluation of DAPI stained preparations (Figure 7.4.5). A 

significant (P<0.05) degree of apoptosis was observed following treatment of cells 

with anandamide at 10"5 M (21.5% ± 5.3%, n= 6) for 24 h and 10-4 M (100.0 ± 0.0 %, 

n= 6) for 24 h. Jurkat cells (1 x 106 cells. ml'') exposed to room temperature for 24 h 

were included as positive control. Under these conditions 23.9 ± 10.6 % (n = 6) cells 

showed apoptotic features by visual evaluation of DAPI stained cytopreparations of 

anandamide treated Jurkat cells. The time course for anandamide-induced apoptosis 

in Jurkat cells and following exposure of these cells to room temperature also showed 

time-dependent increase in the apoptotic features by visual evaluation of DAPI 

stained preparations (Figure 7.4.7). The early features of apoptosis e. g. in Jurkat cells 

were seen in anandamide 10"5 M treated cells for up to 6h following treatment (3.2 ± 

2.8 %, n= 6). In contrast early signs of apoptosis were visible in Jurkat cells after 2h 

exposures to room temperature (3.1 ± 1.3%, n= 6). By 24 h, anandamide 10'5 M 

induced more apoptotic features in Jurkats (17.5 ± 4.1%, n= 6) than was seen 

following incubation at room temperature (11.3 ± 1.6%) respectively (figure 7.4.7). 
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Figure 7.4.5. Effect of anandamide on Jurkat apoptosis 

I 

Morphological features of apoptosis induced in Jurkat cells (a) by exposure to room 
temperature (b) incubation with anandamide 10-5 M at 37 °C for 24 h (c) incubation 
with anandamide 10-4 M at 37 °C for 24 h (d) normal control incubated with vehicle 
(0.1 % ethanol) at 37 °C for 24 h. Jurkat cells were fixed in 3.7% formaldehyde and 
stained with DAPI as described in chapter 2 of this thesis. The characteristic features 
include condensed chromatin bodies (arrow) with increased fluorescent intensity, 
suggestive of apoptosis. Result shown is a representative of 4 independent 
experiments. Original magnification x 600. 

To analyse the effect of synthetic cannabinoids, Jurkat cells were treated with 

CP55,940 (10"' M- 10-4 M) for 24 h and the apoptotic features evaluated by DAPI 

staining. In these experiments, anandamide 10-5 M was included as a positive control 

based on its ability to induce apoptosis in this cell line. Apoptotic features were 

observed only in anandamide treated cells whereas CP55,940 did not appear to cause 
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any significant degree of apoptosis at any of the concentrations tested when compared 

to the control (data not shown) 
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Figure 7.4.6. Effect of anandamide on induction of apoptosis in Jurkat 
cells after 24 h treatment. 
Jurkat cells (1 x 106 cells. ml"') cultured in complete RPMI medium at 37 °C) in 
a humidified atmosphere (95% air/ 5% C02) and treated with increasing 
concentration of anandamide. Cytocentrifuge preparation of cells were made 
and stained with DAPI. Results represent quantitative analysis of apoptotic 
cells (x 1000) magnification) of six independent experiments. RT represents 
(room temperature induced apoptosis in Jurkat cells included as positive 
control). Values represent six independent experiments ± SEM. 

7.5.2.2 The Viability of Jurkat cells as assessed by the M7T assay and trypan blue 

dye exclusion method 

Based on the observation that a high concentration of anandamide (>1 µM) was 

required to induce a significant degree of apoptosis in Jurkat cells, it was tested 

whether another cannabinoid receptor ligand (CP55,940) was able to cause apoptosis 
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in Jurkat cells. Jurkat cells (I x 106. ml') were treated with anandamide, CP55,940 or 

exposed to room temperature for 24 h and viability was assessed by the MTT assay. 

Incubation of Jurkat cells with CP55,940 (10 -6 M- 10 -4 M) and anandamide (10-6 

M- 10- 4 M) showed a decrease in viability when compared with untreated cells. 

There was an even greater inhibition of cell viability in cells exposed to room 

temperature for 24 h (data are summarised in table 7.2 below). To test whether this 

reduction in viability was due to necrotic cell death or apoptotic cell death, cells were 

evaluated for their ability to exclude trypan blue dye. In all experiments, there was no 

significant (P> 0.05) reduction in the ability of Jurkat cells to exclude trypan blue 

(data summarised in table 7.2). 
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Figure 7.4.7. Time course of anandamide 10-5 M (open bars) and room 
temperature (closed bars)-induced apoptosis in Jurkat cells. 
Jurkat cells (1 x 106 cell. ml'1) cultured in complete RPMI medium. 
Following exposure to room temperature or incubation with anandamide 
(10'5 M) at 37 °C in a humidified atmosphere of 95 % air/ 5% CO2 

. Cytopreparation of cells were made and stained with DAPI. Results 
represent quantitative analysis of apoptotic cells (x 1000 magnification) of 
six independent experiments. * Significantly different (P< 0.05). 
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Table 7.2. The effect of anandamide, CP55,940 or exposure to room temperature 
on Jurkat cell viability as assessed by trypan blue dye exclusion method and the 
MTT assay respectively). 
Drugs/ Culture Trypan blue dye exclusion assay MTT assay 

conditions j (Cell viability % of control) I (Cell viability % of control) 

37°C 24 h (95% 100±0 

air/5% C02) 

Room temperature 1 93.9±0.3 

24 h 

Room temperature 1 82.7±10.7 * 

48 h 

Anandamide (10' 

M) 37°C for 24 h 

95.1±5.3 

97.1±2.9 

18.3.0.3 * 

8.3±5.0 * 

74.6±6.0 * 

Anandamide (10' 89.8±2.2 53.8±2.7 * 

M) 37°C for 24 h 

CP55,940 (10 M) 97.1±1.1 74.1±1.7 * 

37°C for 24 h 

CP55,940 (10' M) 95.2±3.4 60.5±7.5 * 

37°C for 24 h 

Trypan blue dye exclusion technique and MTT assay were used to determine the 
viability of Jurkat cells as described in chapter 2, section 2.8.1 and 2.8.2 of this thesis. 
The data are mean ± SEM of 6 different experiments. * Denotes significant 
difference (* P<0.05) from the control. 
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Figure 7.4.8 Characteristic apoptotic DNA laddering as shown by 
Jurkat cells on 2% agarose gel 
Jurkat cells (1 x 106cells. ml"') were cultured in complete RPMI 1640 
medium. Apoptosis was induced by exposure to room temperature or by 
treatment with anandamide for the indicated period of time. DNA were 
isolated and analysed as described in chapter 2 section 2.6. Lane (a) shows 
DNA from cultured and untreated Jurkat cells at 37 °C for 24 h. Lane (b) 
shows DNA from Jurkat cells exposed to anandamide (10-5 M) at 37°C for 24 
h. Lane (c) shows DNA from Jurkat cells exposed to room temperature for 24 
h. Lane (d) shows molecular weight marker (12 kb -100 bp) (1 kb Plus DNA 
ladder, GIBco BRL Life Technologies, Cergy Pontoise, France). DNA 
fragmentation was visualised as oligonucleosome-size fragments stained 
with ethidium bromide in 2% agarose gel and transilluminated with UV light 
for photography. Result shown is a representative of four independent 
experiments with similar results. 
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7.5.2.3 DNA fragmentation assay for Jurkat cell 

To confirm whether anandamide treatment or exposure to room temperature induce 

internucleosomal DNA cleavage, a 2.0 % agarose gel electrophoresis was performed 

on the genomic DNA isolated from Jurkat cells following exposure to room 

temperature or treatment with anandamide for 24 h. Figure 7.4.8 shows the 

characteristic DNA fragmentation typical of 180 base pair multiples giving rise to 

"DNA ladders". 

7.5.3 HT-29 cells apoptosis 

7.5.3.1 DAPI staining 

In order to test whether anandamide induced apoptosis in HT-29 cells, a culture of 

HT-29 cells on Lab-Tek slides starved with serum for 24 h to growth arrest cells were 

fixed in formaldehyde and stained for apoptosis with DAPI following treatment with 

or without anandamide. Anandamide induced significant (P<0.05) morphological 

changes consistent with apoptosis that became evident 24 h after treatment. Thus 

following anandamide (10 -6M) treatment a small but significant (P < 0.05) increase 

in apoptosis of 4.2 ± 0.5% (10-5 M=4.3 ± 0.6%, n=6) was seen. Anandamide-treated 

HT-29 cells showed irregular, condensed nuclei with increased fluorescent intensity 

(figure 7.4.11). Nuclear fragmentation, which is characteristically associated with 

apoptosis and clearly identifiable apoptotic bodies were also present. The cytoplasm 

appeared demarcated by an intact plasma membrane. Longer incubation periods 

induced a marked significant (P < 0.05) morphological time-dependent increase in 

characteristic apoptotic changes; 48 h (anandamide 10.6 M= 18.4 ± 1.8%; 10"5 M= 

18.3 ± 2.4%, n= 6) and at 72 h (anandamide 10 M= 59.5 ± 2.1%; 10'5 M= 72.3 ± 

5.0%, n= 6), respectively (figure 7.4.12). As a positive control, cells were also 
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treated with paclitaxel (100 nM) a drug known to induce apoptosis in HT-29 cells 

(Goncalves et al., 2000). Pacliataxel induced an equivalent degree of apoptosis in HT- 

29 cells. Like anandamide, paclitaxel treatment showed a significant (P < 0.05), 

time-dependent increase in apoptosis (figure 7.4.12). To test whether the synthetic 

cannabinoid CP55,940 induced apoptosis in HT-29 cells, cells were treated with 

CP55,940 for 24 h and apoptotic changes evaluated using DAPI staining. Paclitaxel 

(100 nM) was included as a positive control. CP55,940 10-6 M- 10-5 M did not 

induce any significant (P<0.05) degree of apoptotic features in HT-29 cells as 

assessed by visual evaluation using DAPI stain after 24 h incubation (Figure 7.4.13). 

Table 7.3. Cellular viability of HT-29 cells using MTT assay and trypan blue dye 
exclusion method 

Drugs Trypan blue dye exclusion 

assay (Cell viability % of 

control) 

MTT assay 

(Cell viability % of 

control) 

Untreated >98% >98% 

Paclitaxel (10" M) 90.1 ± 5.0 75.5±2.5 

Anandamide 00-5M) 95.0±2.0 80.9±4.2 * 

Anandamide (10 M) 93.4±5.0 84.4±2.1 * 

CP55,940 (10" M) 90.0±1.0 74.3±5.1 * 

CP55,940 (10 M) 88.2±1.0 * 84.1±3.1 

Cell viability of HT-29 cells was determined by trypan blue dye exclusion technique 
and MTT assay as described in chapter 2, section 2.8.1 and 2.8.2 of this thesis. The 
data are mean ± SEM of 6 different experiments. * Significant difference (* P<0.05) 
from control (untreated cells) 
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Figure 7.4.11 Effect of anandamide on induction of apoptosis in HT-29 
cells stained with DAPI and visualised by fluorescent microscopy (x 
1000 magnification). 

HT-29 cells (1 x 106 cells. ml ') were cultured in polylysine-coated slides for 
24 h in McCoy's medium. Cells were fixed in 3.7 % formaldehyde and 
stained with DAPI as described in the chapter 2, section 2.7.2 of this thesis. 
Characteristic apoptotic features (arrows) (a) cells treated with anandamide 
10-4 M for 24 h (b) cells treated with anandamide 10-4 M for 24 h (c) and (d) 
untreated and 0.1% ethanol treated cells respectively with no evidence of 
apoptosis. Original magnification x 600. 
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That these changes were indeed induced by apoptosis and not necrosis was confirmed 

by the MTT assay and trypan blue dye exclusion methods. Treatment of HT-29 cells 

with anandamide (10-6 M- 10-5 M) or CP55,940 (10-6 M- 10"5 M) for 24 h showed a 

concentration-dependent decrease in cellular viability compared to untreated control. 

To test whether this reduction in viability was due to necrosis or apoptotic cell death, 

cells were evaluated based on their ability to exclude trypan blue dye. In all occasions, 

>94% of cells excluded the dye (data are summarised in table 7.3). 

7.5.3.2 DNA fragmentation assay for HT-29 cells 

HT-29 cells treated with anandamide (10'5 M- 10-6 M) for 24h showed no evidence of 

the DNA ladder pattern characteristic of apoptosis following a 2.0 % agarose gel 

electrophoresis of the genomic DNA (data not shown). 
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Figure 7.4.12. Effect of anandamide on induction of apoptosis in HT-29 
cells. 
Cells were incubated in a drug-free medium on a labtek glass slide or 
exposed to anandamide 10-6 M-10-5 M or PT control (Paclitaxel 10-7 M) for 
the indicated period of time. Medium was removed, fixed in 3.7% 
formaldehyde and cells were stained with DAPI. Results represent 
quantitative analysis of apoptotic cells (x 1000 magnification) of six 
independent experiments. * Significantly different (P< 0.05). 
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Figure 7.4.13. Effect of CP55,940 on induction of apoptosis in HT-29 
cells. 
Cells were incubated in a drug-free medium on a labtek glass slide or exposed 
to CP55,940 10'6 M-10'5 M or PT control (Paclitaxel 10-7 M) for 48 h. 
Medium was removed, fixed in 3.7% formaldehyde and cells were stained 
with DAPI. Results represent quantitative analysis of apoptotic cells (x 1000 
magnification) of six independent experiments. * Significantly different (P< 
0.05). 
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7.6 Discussion 

In the experiments described above, the endogenous cannabinoid, anandamide has 

been demonstrated to induces apoptosis and inhibit mitochondrial function in Jurkat 

and HT-29 cells albeit at higher concentrations (> l µM) than in untreated cells. The 

synthetic cannabinoid CP55,940 at higher concentrations also inhibited mitochondria 

oxidative metabolism as shown by MTT assay but in contrast to anandamide did not 

appear to cause apoptosis of either Jurkat or HT-29 cells. Neutrophils and Jurkat 

cells, unlike many other cells, undergo constitutive apoptosis in vitro (Haslett et al., 

1994; Shimura et al, 1998). Thus, the exploitation of the unique properties of these 

two cell types has been used to validate a sensitive assay for cannabinoid-induced 

apoptosis in immune cell lines using a nuclear fluorescent dye, DAPI. 

The anti-inflammatory properties of cannabinoid receptors are well documented 

(Pertwee, 1997). However, the effect of cannabinoid receptor ligands and the 

endogenous cannabinoids in modulating immune cell function are unclear in spite of 

extensive research. Previously, an unusual susceptibility of Jurkat cells to 

mitochondria oxidative damage when exposed to cannabinoid receptor ligands by 

MTT assay has been reported (chapter 2 of this thesis). It was also shown that 

cannabinoids inhibit the release of a pro-inflammatory cytokine IL-8 from HT-29 

cells, reported in chapter 4. Since the pro-lymphocytic cell line Jurkat cells and the 

colon epithelial cell line HT-29 express cannabinoid CB2 receptors (Schatz et al., 

1997; Ihenetu et al., 2001), the findings in the present study together with studies 

from other laboratories showing that cannabinoids may induce apoptosis in vitro in 

immune cells (Zhu et al., 1998; Schwartz et al., 1994; Mckallip et al., 2002) suggests 
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the possible use of cannabinoid receptor agonists as an anti-inflammatory drug 

treatment. 

In the current study, the effects of aging upon the induction of apoptosis of human 

neutrophils during in vitro culture was established, because the development of 

apoptosis is easy to observe in these cells (Meagher et al., 1996). It was shown that 

neutrophils maintained in culture constitutively undergo apoptosis in a time- 

dependent manner as assessed by visual evaluation of their cell morphology when 

stained with May and Grunwald-Giemsa and DAPI stained preparations. Apoptosis 

was confirmed in this cell by "DNA laddering" following the isolation and 

electrophoresis of genomic DNA suggesting an activation of the endogenous 

endonucleases, a hallmark of late events in apoptosis (Fulthorpe et al., 1997). 

Morphological criteria used to assess apoptosis in this study included the following; 

(a) cytoplasmic and nuclear shrinkage (b) chromatin condensation and deep blue 

stained nuclei (c) cytoplasmic blebbing with maintenance of integrity of cell 

membrane (zeiosis) (Cohen, 1992). Comparatively, non-apoptotic neutrophils 

maintained their characteristic interlobular structure with normal azurophilic staining. 

The DAPI staining of apoptotic neutrophils visualised under a fluorescence 

microscopy revealed dense granular nuclear fragments (apoptotic bodies) with a more 

intense fluorescence staining in neutrophils undergoing apoptosis as opposed to non- 

apoptotic neutrophils. 

After the confirmation of the classical features of apoptosis in neutrophils using well- 

established techniques, the effect of cannabinoids on Jurkat and HT-29 cells was then 

studied. It was shown that higher concentration of anandamide induced apoptosis in 
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these two cell lines in a dose and time dependent manner as indicated by the 

characteristic morphological features of DAPI stained preparations. In time course 

studies, more Jurkat cells underwent apoptosis upon treatment with anandamide for 

24 h than HT-29 cells. Furthermore, treatment of Jurkat cells with anandamide or 

exposure to room temperature induced intranucleosomal DNA cleavage when 

subjected to 2% agarose gel electrophoresis as demonstrated by the 

characteristic"DNA ladders". In contrast, no such changes were detected on agarose 

gel electrophoresis of genomic DNA isolated from HT-29 cells after treatment with 

the same concentration of anandamide and incubated at an equivalent duration of 

time. The reason for this discrepancy was not known but taken together these 

observations suggest that staining cells with DAPI may be a more sensitive method 

than the DNA fragmentation assay for the detection of apoptosis in these cells. 

Furthermore, in line with previous studies, our data suggest that the key 

morphological changes as reported in the present experiments precede 

internucleosomal DNA cleavage, a common feature of late apoptotic events 

(Fulthorpe et al., 1997). Additionally, cannabinoids are well known for their effects 

on cytokine network in lymphocytes (Klein et al., 2000a). For example, cannabinoids 

have been shown to inhibit IL-2 release from lymphocytic cell lines via activation of 

cannabinoid CB2 receptors (Schatz et al., 1997; Ihenetu et al., 2003). IL-2 in turn has 

been shown to play essential roles in the induction of lymphocyte apoptosis 

(Leonardo, 1991). Therefore, the inhibition of PHA/PMA-induced IL-2 release from 

the pro-lymphocytic cell line, Jurkat cells as shown in chapter 3 of this thesis may 

partly account for the increased apoptosis of Jurkat cells than the HT-29 cells. Taken 

together, these observations suggest that cannabinoids may inhibit proliferation in the 

pro-lymphocytic cell line Jurkat and induce apoptosis. 
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That these cells were undergoing apoptosis rather than necrosis is supported by 

additional findings. 

I There was a progressive loss of viability in Jurkat and HT-29 cells in the first 

24 h following treatment with anandamide (10-6 M and 10-5 M) as indicated by the 

MTT assay, yet in both occasions less than 10 % of the cells excluded trypan blue 

dye. 

2 At both concentrations (10-6 M and 10"5 M), characteristic morphological 

features of apoptosis were always present. 

Thus, these observations agree in part with previous studies, which demonstrated that 

apoptotic cells possess an ability to exclude vital dyes whereas necrotic cells do not 

(Cohen, 1992; Zhu et al., 1998; Walker and Quirke, 2001). 

To examine whether the synthetic cannabinoid, CP55,940, induced apoptosis in these 

cells, Jurkat or HT-29 were treated with CP55,940 and the morphological features of 

apoptosis evaluated by DAPI staining. Cell viability was also investigated using 

MTT and the trypan blue dye exclusion test. In both cases, CP55,940 (10-6 M_ 10 

4 M) did not induce morphological features consistent with apoptosis, however the 

MTT and trypan blue dye exclusion assays revealed substantial loss of viability 

suggesting that high concentration of CP55,940 may predispose Jurkat and HT-29 

cells to necrosis rather than apoptosis after 24 h of treatment. The reason behind the 

difference between the effects of anandamide and CP55,940 in the present study is not 

known. But these may reflect the differences between the bindings of these 

compounds to cannabinoid receptors in immune cells. Clearly additional studies may 

be necessary to assess the significance of these findings. 
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Whether or not anandamide-induced apoptosis in Jurkat and HT-29 cells is mediated 

via known cannabinoid receptors was not addressed in the present study. 

Interestingly previous studies demonstrating cannabinoid-induced apoptosis in 

immune cells have implicated both cannabinoid receptor dependent-mechanism (Zhu 

et al., 1998; Schwartz et al. 1994) and non-cannabinoid receptor dependent 

mechanisms. It is possible that these actions are cannabinoid receptor dependent but 

clearly, additional studies are needed to elucidate the receptors mediating 

cannabinoid-induced apoptotis in immune cells. 

In summary, anandamide but not CP55,940 have demonstrated to induce cell death in 

Jurkat and HT-29 cells by apoptosis. Higher concentrations of these compounds 

reduced cell viability. Collectively, whatever mechanisms underlie anandamide- 

induced apoptosis in these cell lines, it is important to note that the endogenous 

cannabinoid ligand anandamide may regulate important cellular functions such as 

proliferation and cell death. Hence, the apoptotic effects of endogenous cannabinoid 

as demonstrated in this study may provide the basis for the development of an anti- 

inflammatory drug for the future. 
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Chapter 8; General discussion 
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8.1 General discussion 

In this section, an overview of the preceeding chapters is presented together with 

speculations on the potential clinical utilities of cannabinoid receptor ligands. 

However, it is prudent to state that among the reported cannabinoid receptors, the 

cannabinoid CB1 is more convergent in that the nucleotide sequences in man, rats and 

mice are highly conserved than that in the cannabinoid CB2 receptors (Chakrabarti et 

al., 1995; Gerard et al., 1991; Shire et al., 1996). This may highlight the importance 

of the degree of interspecies differences existing within the cannabinoid CB2 receptors 

in contrast to cannabinoid CB1 receptors and their resultant effects on their binding 

sites, which has not been fully characterised to date (Berglund et al., 1998). The aim 

of this thesis was to characterise the cannabinoid receptors mediating the inhibition of 

cytokine/chemokine release from a variety of immune cell lines and primary immune 

cells. In order to avoid the potential complication of differences between studies 

resulting from interspecies differences, all cells and cell lines studied in this thesis 

were derived from human sources. 

8.2 General summary 

The experimental work described in this thesis initially examined the effects of 

cannabinoid receptor agonists on LPS-induced release of TNF-a from THP-1 cells, a 

human promonocytic cell line. The effect of cannabinoids on PHAIPMA-induced 

release of IL-2 from a human pro-lymphocytic cell line, Jurkat, was also investigated. 

In these studies, CP55,940, A9-THC and anandamide inhibited LPS-induced TNF-a 

secretion from THP-1 cells in a concentration-dependent manner ( see chapter 3 of 

this thesis). This inhibition was antagonised by SR144528, a cannabinoid CB2 

receptor antagonist but not by SR141517A, a cannabinoid CB, receptor antagonist 
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suggesting that these effects were mediated, at least partially, via cannabinoid CB2 

receptors. However, these inhibitory effects of cannabinoids were observed at 

concentrations (>1 µM), greater than those used in cannabinoid binding studies 

(Rinaldi-Carmona et al., 1998), suggesting that THP-1 cells may not express 

sufficient cannabinoid receptors or that the effects observed may be non-cannabinoid 

receptor dependent. CP55,940, Lt9-THC and anandamide also inhibited PHA/PMA- 

induced IL-2 release from Jurkat cells. In contrast to findings in THP-1 cells, neither 

cannabinoid CBI nor CB2 receptor antagonists (SR144528 and SR141716A) 

antagonised the inhibitory effects of cannabinoids in Jurkat cells (chapter 3). 

However, when cell viability was measured using the MTT assay in Jurkat cells, a 

concentration-related loss of cell viability was seen suggesting that cannabinoid- 

evoked inhibition of IL-2 release may be due to a cytotoxic action and independent of 

cannabinoid receptors. 

Having investigated the effects of cannabinoids on monocyte/macrophage and T- 

lymphocyte cell lines (THP-1 and Jurkat cell lines respectively), the focus of our 

studies was shifted to demonstrating these effects on primary cells. However previous 

studies have shown that WIN55212-2, but not CP55,940, inhibited LPS-induced 

release of TNF-a from PBMC, an effect that was antagonised by SR144528 but not 

by SR14617A, suggesting a cannabinoid CB2 receptor-mediated effect (Germain et 

al., 2002). Therefore, the experiments described on PBMC (chapter 4 of this thesis) 

were focussed on the effect of cannabinoids on the secretion of another cytokine, IL-2 

known to play a role in inflammatory responses (Smith et al., 1988). 
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In these experiments, WIN55212-2, a non-selective cannabinoid receptor agonist and 

JWH 015, a selective cannabinoid CB2 receptor agonist inhibited PHA-induced 

release of IL-2 from PBMC in a concentration-dependent manner, an effect 

antagonised by SR144528, but not by SR141716A, suggesting that the inhibition was 

mediated via cannabinoid CB2 receptors. CP55,940, a non-selective cannabinoid 

receptor agonist marginally inhibited PHA-induced IL-2 release from PBMC whereas 

A9-THC had no effect in inhibiting this release. Furthermore, WIN55212-2 evoked 

inhibition of IL-2 was antagonised by CP55,940 and L9-THC. Considering the fact 

that previous studies in our laboratory and others have shown that CP55,940 and A! - 

THC are agonists at cannabinoid receptors (Bayewitch et al., 1996; Ihenetu et al., 

2003; Chapters 4 of this thesis), the antagonist effect of these compounds as seen in 

the present study suggest that these compounds have an affinity for the cannabinoid 

CB2 receptors in PBMC. However, the data described in Chapter 4 also suggests that 

these compounds have a low efficacy at these receptors in that they acted as 

cannabinoid receptor antagonists on PBMC. To our knowledge, this is the first report 

suggesting that CP55,940 may act as a partial agonist at cannabinoid CB2 receptors. 

The effects of cannabinoids were then studied on the epithelial cell line HT-29. HT- 

29 cells are a human colonic epithelial cell capable of secreting the chemokine, IL-8, 

in response to inflammatory cytokines in the same way as a native epithelium 

(Schuerer-Maly, et al., 1994). In these experiments, described in chapter 5, it was 

shown that the cannabinoid receptor agonists CP55,940, A9-THC, WIN55212-2 and 

JWH 015 significantly (P<0.05) inhibited TNF-a-induced release of IL-8 from HT-29 

cells in a concentration-dependent manner. The endogenous cannabinoid agonist, 

anandamide and the cannabinoid CB, receptor agonist, arachidonyl-2- 
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chloroethylamide (ACEA) had no significant inhibitory effects on TNF-a-induced 

release of IL-8. The CB1 receptor antagonist SR141716A (1 µM) antagonised the 

inhibitory effects of CP55,940 but did not antagonise the effects of the more selective 

cannabinoid CB2 receptor agonists, WIN55,212-2 and JWH 015 (Felder et al., 1995; 

Hillard et al., 1999). The CB2 receptor antagonist SR144528 (Rinaldi-Carmona et al., 

1998), antagonised the inhibitory effects of CP55,940, WIN55212-2 and JWH 015. 

Taken together, these results suggest that cannabinoids exert inhibitory effects on 

TNF-a-induced release of IL-8 from HT-29 cells. In support of this hypothesis, 

Western immunoblotting revealed immuno-reactive proteins at a region consistent 

with the size of cannabinoid CB2 receptor proteins. 

In an attempt to identify the intracellular events responsible for cannabinoid-evoked 

inhibition of IL-8 release from the human colonic epithelial cell line HT-29, the effect 

of cannabinoids was studied on basal and agonist evoked increases in two important 

cellular messengers, namely cyclic AMP and cytosolic free calcium. In this series of 

experiments, it was demonstrated that WIN55212-2 and CP55,940 inhibited basal 

[Ca2+]; from HT-29 cells. In contrast, a published work showing that ACh and TNF-a 

induce increases in [Ca2+]; from HT-29 cells (Poronnik et al., 1999) was confirmed 

and it was also shown that WIN55212-2 inhibited these increases. Furthermore, 

WIN55212-2 and CP55,940 inhibited basal and forskolin-induced increases in cAMP. 

Given the fact that cannabinoid-evoked inhibition of basal and agonist-evoked 

increases in [Ca2+]; and [cAMP]; occur at the same concentration ranges as 

cannabinoid-evoked inhibition of TNF-a-induced release of IL-8 from HT-29 cells, it 

could be argued that these events may be causally related. However, further studies 
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are required to identify the relative importance of these second messenger pathways to 

inhibition of IL-8 release (refer to Figure 6.5.1 of this thesis). 

In experiments investigating the effect of cannabinoids on the induction of apoptosis, 

a nuclear sensitive fluorochrome DAPI was employed. In these studies, it was shown 

that anandamide, but not CP55,940, induced cell death in Jurkat and HT-29 cells by 

promoting apoptosis. However, higher concentrations of these compounds also 

reduced cell viability and caused necrosis in both of the cell lines studied suggesting 

that cannabinoid-induced inhibition of cytokine release in these cells may be due, in 

part, to induction of apoptosis. 

8.3 Potential therapeutic utility of cannabinoid receptor ligands 

Cannabinoids have a long history as medicinal preparations, mainly for indications 

such as induction of analgelsia, anti-emesis, ocular hypotension and anti-convulsion 

therapy (reviewed in Mechuolam et al., 1998). Recent research in vitro and in animal 

models has led to increasing evidence that cannabinoids are also important 

modulators of immune system (Klein et al., 1998). Thus, cannabinoid CB2 receptor 

agonists could have a role in the treatment of chronic inflammatory diseases. The aim 

of the present study was to assess the potential anti-inflammatory properties of 

cannabinoid receptor agonists by investigating their effects on the release of pro- 

inflammatory cytokines from immune cells and cell lines. A detailed review of 

cytokine regulation of immune cell function will not be repeated in this section, but 

those aspects investigated in the present study and relevant to cannabinoid-evoked 

modulation of immune cell function and their prospective clinical utility will be 

discussed. 
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Monocytes/macrophages and neutrophils, the phagocytic cells of the immune system, 

are the most important cellular components of the host immune response. An 

important function of the monocytes and neutrophils is to migrate from the blood to 

the site of infection in response to inflammatory mediators such as interleukin-8 (IL- 

8) (refer to figure 1.8; chapter 1 of this thesis). Once at the site of inflammation, 

phagocytic cells eliminate many pathogens by phagocytosis. Lymphocytes of the T 

and B classes regulate subsequent steps in the immunological response by secreting 

cytokines and antibodies, which are crucial in all levels of cellular and humoral 

immune responses (Smith, 1988). In addition to monocytes/macrophages, neutrophils 

and lymphocytes, some studies have identified epithelial cells as the site of origin of 

IL-8 in inflammatory bowel disease lesions (Mazzucchelli et al., 1994). Furthermore, 

IL-8 is up regulated in IBD and tissue expression correlates with the degree of 

inflammation (van Deventer, 1997; Mazzucchelli et al., 1994). IL-8 is an 8 KDa 

member of CXC chemokine family which functions as a potent activator and 

chemoattractant for neutrophils, predominantly by binding to its surface receptors 

CXCRI and CXCR2 (MacDermott et al., 1998; Baggiollini et al., 1997). 

In the present study, general suppressive effects of cannabinoids on 

monocyte/macrophages, T cells and human colonic epithelial cell function have been 

described. Cannabinoid receptor agonists have been shown to impair T cell function 

by inhibiting IL-2 release and monocyte/macrophage function shown by suppressing 

the release of the pro-inflammatory cytokine TNF-a and the chemokine (IL-8) from 

an epithelial cell line. However, these findings differ according to the type of cell 

used, the experimental conditions, the concentration of cannabinoid required to 

produce an inhibitory effect and the type of cannabinoid receptor agonist studied. 
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Thus, given the potency of the aminoalkylindole cannabinoids (WIN55212-2 and 

JWH 015) in suppressing IL-8 release (chapter 5 of this thesis, table 8.1) and IL-2 

release (chapter 4 of this thesis, table 8.1), it is plausible to suggest that these 

compounds may be useful anti-inflammatory and immunosuppressive drugs. They 

may therefore find a clinical utility in the treatment of inflammatory bowel disease 

(IBD) and chronic pulmonary obstructive disease (COPD), where the release of IL-8 

is thought to play a crucial role in the pathogenesis of the disease (Mazzucchelli et al., 

1994). From a clinical standpoint, it is important that given species differences, the 

studies reported in this thesis were performed on human colonic epithelial cells (HT- 

29 cells). To our knowledge, these are the first observations to localise functional 

cannabinoid CB2 receptors on a cell present in human colonic tissue. 

That cannabinoid agonists inhibited TNF-a-induced IL-8 release in the present study 

(chapter 6 of this thesis), coupled with the fact that activation of cannabinoid 

receptors in the enteric neurons was able to suppress peristalsis in animal models via 

inhibition of acetylcholine-induced peristalsis (Tyler et al., 2000; Neinmann et al., 

1999), holds out the promise that exploitation of the cannabinoid receptor system 

could be useful in the treatment of gastrointestinal motor disorders. Interestingly, 

cannabinoid receptor agonists have beneficial effects in the gut in inhibiting diarrhea 

in rodent models (Izzo et al., 1999). Furthermore, cannabinoids have been shown to 

inhibit chloride ion secretion in studies using `Ussing' chambers to measure 

transepithelial ion fluxes (Tyler et al., 2000; Heinmann, et al., 1999; Izzo et al., 

1999). Thus, exploitation of cannabinoid pharmacology may offer a promising new 

therapeutic target for the treatment of chronic inflammatory conditions where the 

secretion of pro-inflammatory chemokines such as IL-8, are known to play a major 
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role. Such conditions may include inflammatory bowel disease IBD (Crohn's disease 

and ulcerative colitis), chronic obstructive pulmonary diseases (COPD) e. t. c. (See 

Table 8.1 for the comparative efficacy of CP55,940 on inhibition of cytokine and 

chemokine on various cells employed in this thesis). 

Table 8.1. A summary of the potencies of various cannabinoid receptor agonists 
on various cells employed in this study 

Cell 
type 

Effect 
measured 

Agonist Potency 95% Confidence limit No of 
observ 
ations 

THP-1 TNF-a 
release 

EC50 
Anandamide=1.86 x 10"5 M 1.6 x 10"5 -8.8 x 10"5 M 6 
CP55,940=4.8 x 10" M 2.6 x 10-5 - 8.8 x 10' M 6 
A-THC=3.1 x 10' M 2.8 x 10-5 - 3.5 x 10' M 6 

Jurkat IL-2 
release 

EC50 
Anandamide=7.1 x 10-6 M 6.1 x 10"5 - 8.3 x 10"5 M 6 
CP55,940=2.3 x 10-'M 1.5 x 10" - 3.5 x 10-5 M 6 
e-THC=3.2 x 10" M 2.1 x 10" - 4.8 x 10" M 6 

PBMC IL-2 
release 

IC1R max 
ACEA=ND ND 5 
CP55,940=ND ND 5 
Dexamethasone=l. 3 x 10" M 5.4 x 10" - 3.2 x 10" M 5 
JWH015=1.8x10 M 1.2x10 -2.9x10 M 5 
A -THC=ND ND 5 
WIN55212-2=8.8 x 10" M 2.2 x 10" - 3.5 x 10 M 5 

..... .n WV n A" 
H1 ýLY 1L r- max 

release ACEA ND ND 6 
CP55,940=1.2 x 10' M 3.8 x 10' - 3.6 x 10" M 6 
D-THC=5.3 x 10-'M 9.7 x 10" -2.9x 10" M 6 
JWH 015=9.8 x 10" M 6.8 x 10' -1.3 x 10" M 6 
W1N55212-2=1.7x10" M 1.2x10' -2.5x10" M 6 
WIN55212-3=ND ND 6 

Abbreviations: ND=not determined, CL= confidence limit, PBMC=peripheral blood 
mononuclear cells, EC50=50% effective concentration, EC1nmax 1/2 effective 
concentration, IC 1/2 m 1/2 inhibitory concentration 
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8.4 Concluding remarks 

An important message from this thesis is that the cannabinoid system is currently a 

promising pharmacological target not only for the treatment of CNS disorders but also 

for future development of immuno-modulating and anti-inflammatory drugs. The 

preferential expression of cannabinoid CB2 receptors in immune cells and peripheral 

tissues holds out the promise for the use of this class of compounds to treat immune 

and inflammatory diseases with selective cannabinoids that are devoid of 

psychotropic effects. The development of "a so-called" non-steroidal steroid such as 

a cannabinoid CB2 receptor agonist as an anti-inflammatory would become a medical 

milestone of the twenty second century taking into account the undesirable effects of 

the glucocorticoids and their congeners. Furthermore, the discovery of endogenous 

ligands to these receptors capable of mimicking the pharmacological actions of A? - 

THC, including an ability to alter immune cell function (Lee et al., 1995) has 

provided additional evidence for the immuno-regulatory roles of endogenous 

cannabinoids. 

8.5 Future Work 

8.5.1 An investigation into the effect of cannabinoids in the inhibition of IL-8 release 

from intact human colonic epithelium. 

Data presented in chapter 6 of this thesis suggests that cannabinoids could inhibit IL-8 

release from HT-29 cells. HT-29 cells employed in this study are human colonic 

epithelial cell line capable of secreting IL-8 (Schuerer- Maly et al., 1994). While cell 

lines offer useful tools to explore pharmacological actions of candidate drugs, one 

should take into account the artificial nature of these cells and take care in 

extrapolating data obtained to native cells. Experience suggests that cell lines, such as 

HT-29 cells, differ in at least one respect from an intact human colonic epithelium. 
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For example, data presented in chapter 6 of this thesis suggest that HT-29 cells evokes 

minimal constitutive release of IL-8 whereas primary human colonic epithelial cells 

release large amounts of IL-8 in the absence of any external stimulus (Ihenetu and 

Baird, unpublished observation). These studies suggest that trauma or a different 

mechanism may also regulate the release of IL-8 from HT-29 cells and intact human 

colonic epithelial cells. 

It would, therefore, be interesting to extend the observations described in this thesis 

(chapter 6), to investigate whether cannabinoid receptor agonists modulate cytokine- 

induced release of IL-8 from intact human primary epithelial cells. Interestingly, 

sections of intact human colon can be obtained from most gastro-intestinal (GI) 

surgery departments post-operatively, after obtaining the consent of an ethical 

committee and the patient. The entire underlying smooth muscle layer could be 

dissected off leaving the intact human epithelial cells (Mazzucchelli et al., 1994). 

These tissues could in turn be sectioned into pieces and incubated in culture plates or 

custom designed manifolds. Following incubation for a chosen period of time, 

chemokine/cytokine release by ELISA could be assessed. Alternatively, tissues could 

be placed in "Ussing chambers" to study the effects of cannabinoids on intestinal 

secretion. 

Another interesting possibility is to employ an in vivo model of rat colitis, such as that 

described by Sykes et al., (1999) to assess the potential efficacy of cannabinoid 

receptor ligands in the treatment of inflammatory bowel disease. In this study, locally 

administered trinitrobenzenesulphonic acid (TNBS) was used to induce colitis in rats 

and to assess the anti-inflammatory actions of the matrix metalloproteinase inhibitor 
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marimastat by measuring cytokine release and assessing histological sections from 

treated and untreated groups. In this context, cannabinoids could be used instead of 

marimastat and its efficacy in alleviating the symptoms of IBD assessed. 

8.5.2 Signalling pathways regulating cannabinoid evoked inhibition of chemokine 

release from the human colonic epithelial cells. 

TNF-R 
_nn, 

CB2-R Win 

Gi/Gof ýCa2+ 
Air 

cAMPY 

Ix kinase complex Ca2+ 
channel IxB-a IxBýc 

Proteosome 

Synthesis of IL-8, IKB etc 

Figure 8.5.2. The schematic representation of events leading to IL-8 gene 
transcription and possible sites of action (red arrow) of cannabinoids. 

Data presented in chapter 6 of this thesis suggests a role for intracellular free calcium 

and intracellular cyclic AMP in mediating cannabinoid - evoked inhibition of IL-8 

release from TNF-a stimulated HT-29 cells. At present, the point at which all these 

intracellular signalling pathways converge to evoke the observed effects is not known. 

However, NF-KB (p65/p50) is known to play key roles in the expression of many 

genes including IL-8 as described elsewhere in this thesis (refer to figure 8.5.2). NF- 

KB exists in the cytoplasm as an inactive dimer bound to an inhibitory protein, IiB. 

A variety of extracellular signals including TNF-a have the ability to phosphorylate 

IKB at specific amino acid termini residues (DiDonato et al., 1997; Mercurio et al., 
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1997). The phosphorylated IKB is selectively ubiquitinated (Yaron et al., 1998; 

Maniatis, 1999). In turn ubiquitinated IKB is degraded by a 26 s proteosome allowing 

NF-icB to translocate to the nucleus, where it binds to its target and initiates 

transcription of IL-8 (Yaron et al., 1998; Maniatis, 1999). 

Inhibition of IL-8 release from HT-29 cells by cannabinoids may result from an action 

at one or more of the multi-enzymic steps involved in this cascade as stated above 

(Figure 8.1). Techniques such as Western immunoblotting or gel shift assays 

(Gerwitz et al., 2000) for any of these transcription factors could be used to localise 

the specific site of action of cannabinoids in this pathway. 

8.5.3 Characterisation of cannabinoid receptors mediating cannabinoid-induced - 

apoptosis in Jurkat and epithelial cell line in vitro 

Data presented in chapter 7 of this thesis suggests that endogenous cannabinoids have 

a unique ability to induce apoptosis in Jurkats and HT-29 cells. However, the 

cannabinoid receptors mediating these events were not studied. It would be 

worthwhile therefore to carry out these experiments in the presence of cannabinoid 

receptor antagonists and selective cannabinoid receptor ligands in order to 

characterise the receptors mediating these events. The identification of cannabinoid 

receptors mediating cannabinoid-induced apoptosis of human immune cells can then 

form the basis of rational drug design aimed at treating chronic inflammatory 

conditions and cancer. 
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Abstract 

We have investigated the effects of cannabinoid agonists and antagonists on tumour necrosis factor-a (TNF-oa)-induced secretion of 
interleukin-8 from the colonic epithelial cell line, IIT-29. The cannabinoid receptor agonists ((-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)- 

phenyl]4-[3-hydroxypropyl]cyclo-hexan-l-ol} (CP55,940); A-9-tetrahydrocannabinol; [R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl) 

methyl] pyrrolo[I, 2,3-de]1,4-benzoxazin-6-yl](I-naphthyl) methanone mesylate} (W1N55,212-2) and I-propyl-2-methyl-3-naphthoyl- 
indole (JWI1 015) inhibited TNF-a induced release of interleukin-8 in a concentration-dependent manner. The less active enantiomer of 
WIN55212-2, [S(-)-[2,3-dihydro-5-methyl-3-[(morpholinyi)methyl]pyrrolo[l, 2,3-de]1,4-benzoxazin-6-yl](1-naphthyl) methanone mesy- 
late (W1N55212-3), and the cannabinoid CB, receptor agonist arachidonoyl-2-chloroethylamide (ACEA) had no significant effect on 
TNF-a-induced release of interteukin-8. The cannabinoid CB, receptor antagonist N-(piperidin-l-yl)-5-(4-chlorophenyl)-1-(2,4- 
dichlorophenyl)-4-methyl-l, 4-pyrazole-3-carboxamide hydrochloride (SR141716A; 10-6 M) antagonised the inhibitory effect of 
CP55,940 (pA2 = 8.3 ± 0.2, n= 6) but did not antagonise the inhibitory effects of WIN55212-2 and JWII 015. The cannabinoid CB2 
receptor antagonist N-( 1, S)-endo l , 3,3-trimethylbicyclo(2,2, I )heptan-2-yl)-5(4-chloro-3-methyl-phenyl)- I -(4-methylbenzyl)-pyrazole-3-car- 
boxamide (SR 144528; 10- 6 M) antagonised the inhibitory effects of CP55,940 (pA2 = 8.2 ± 0.8, n= 6), WIN55212-2 (pA2 = 7.1 ± 0.3, 
n- 6) and JWi 10 15 (pA2 = 7.6 ± 0.3, n= 6) , respectively. Western immunoblotting of 11T 29 cell lysates revealed a protein with a size 
that is consistent with the presence of cannabinoid CB2 receptors. We conclude that in HT 29 cells, TNF-a-induced interleukin-8 release 
is inhibited by cannabinoids through activation of cannabinoid C132 receptors. 
0 2002 Elsevier Science B. V. All rights reserved. 

Keywords: Cannabinoid; Interleukin-8; TNF-a (tumour necrosis factor-a); HT 29 cell; Inflammatory bowel disease 

1. Introduction 

The colonic epithelium is a specialised tissue lining the 
luminal surface of the intestine. Once considered solely as 
an absorptive and secretory barrier for the luminal contents 
of the bowel, it is now also recognised to exert a major 
influence in the maintenance of gastric immune homeostasis 
(Jordan et al., 19191)). Human colon epithelial cells may 
contribute to inflammatory responses in Crohn's disease and 
ulcerative colitis by secreting chemokines such as interleu- 
kin-8(Schucrer-Maly el al.. 1994). Given the importance of 
interleukin-8 in neutrophil recruitment and the importance 
of neutrophils to the pathogenesis of inflammatory condi- 

* Corresponding author. Tel.: +44-1707-285139; fax: +44-1707- 
285046. 

E-mail address: c. j. whelan@hcrts. ac. uk (C. 1. Whelan). 

tions (Baggiolini et al., 1997), modulation of interleukin-8 
expression may provide an attractive pharmacological 
target. 

The immunomodulatory properties of cannabinoids are 
well established. Many reports suggest that cannabinoids 
have immunosuppressive effects through an action on a 
variety of inflammatory cells (for detailed review, see 
l3erdy%hev, 2000). For example, cannabinoids have been 
shown to inhibit lymphocyte proliferation (Luo et al., 1992. 
Schwartz et al., 1994). Cannabinoids inhibit cytokine pro- 
duction in a range of immune cells, including macrophage/ 
monocytes, lymphocytes and rodent splenic lymphocytes 
(Klein et al., 1991). In our laboratory, cannabinoids have 
been shown to suppress nerve growth factor and substance 
P-induced release of reactive oxygen species from rat 
peritoneal mast cells (Brooks et al.. 1999). However, in 
most instances, the concentrations of cannabinoids required 
to modulate immune cell function are greater than those 

0014-2999/0215 - sec front matter 0 2002 Elsevier Science B. V. All rights reserved. Pll: S0014-2999(02)02698-5 
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used in cannabinoid receptor binding studies on neuronal 
tissue (Felder, 1998), thereby warranting further character- 
isation of these receptors. 

To date, two cannabinoid receptors, CBS and CB2 have 
been identified (Matsuda et A. 1990: Munro et al., 1993). 

Cannabinoid CB1 receptors are localised mainly in the 

central nervous system (Matsuda et al.. 1993), but are also 

present in peripheral tissues such as the spleen and periph- 

eral blood leukocytes (Kaminski et al., 1992; Gerard et al., 
1991: Botiaboula et al.. 1993). Cannabinoid CB2 receptors 
have been identified in a range of immune cells including B 

and T lymphocytes, monocytes/macrophages and rat splenic 
lymphocytes (Bouaboula et at., 1993: Galigue et at., 1995). 

Cannabinoid CB1 receptors inhibit adenyl cyclase via a 

pertussis toxin sensitive guanosine triphosphate binding 

protein (Ilowlett and Fleming. 1984) and inhibit N-type 

calcium channels (Mackie and Hille, 1992). Like cannabi- 

noid CBS receptors, cannabinoid CB2 receptors are mem- 
bers of the G-protein coupled receptor family and upon 

activation cause inhibition of adenyl cyclase and activation 

of mitogen-activated protein kinases (Felder et al., 1995). 

However, the cannabinoid receptor modulating cytokine 

release from epithelial cells has yet to be characterised. 
In this study, we explore the pharmacological actions of a 

range of cannabinoid receptor ligands on TNF-a-induced 
interleukin-8 release from HT 29 cells in vitro. Part of this 

study has previously been published in abstract form (Ihe- 

nehn et al., 2001). 

for WIN55212-2 and JWH 015. Vehicle controls were 
included in all assays. All other drugs and chemicals were 
purchased from standard commercial sources. 

2.2. Cell cultures 

The HT 29 colon epithelial cell line was obtained from 
European collection of animal cell cultures (ECACC, Salis- 
bury, Wiltshire, United Kingdom). The cells were grown at 
37 °C in McCoy's 5A medium supplemented with 10% 
foetal calf serum, penicillin/streptomycin (50 U/ml and 50 
µg/ml), respectively and amphotericin B (0.5 µg/ml). Cells 
were grown in 75 cm2 culture flasks and were confluent 
after approximately 3 days. Cultures were subdivided every 
7 days. Prior to each experiment, the culture medium was 
discarded and cells were washed once with warm (37 °C) 
sterile phosphate buffered saline (20 ml; pH 7.4). Mono- 
layers were detached from the flasks with (0.25% trypsin/ 
ethylene diamine tetracetic acid). The flask was then incu- 
bated at 37 °C for 10 min. Once the cells were detached, the 
action of trypsin was stopped by the addition of 20 ml 
McCoy's 5A medium supplemented with 10% foetal calf 
serum. Cells were resuspended at a density of 5x 105 cells/ 
ml in foetal calf serum-free McCoy's 5A medium and I ml 
aliquots placed in the wells of a 24-well plate for 2h before 
experimentation. 

2.3. Enzyme linked immunosorbent assay 

2. Materials and methods 

2.1. Reagents and drugs 

CP55,940 {(-)-3-[2-hydroxy-4-(1, I-dimethyl-heptyl)- 
phenyl]4-[3-hydroxy propyll cyclo-hexan-l-ol} was gener- 
ously donated by Pfizer. SR144528 (N- (1, S)- endol, 3, 
3-trimethylbicyclo(2,2, I)heptan-2-yl)-5(4-chloro-3-methyl- 
phenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide) and 
SR 141716A (N-(piperidin- l -yl)-5-(4-chlorophenyl)- I -(2,4- 
dichlorophenyl)-4-methyl-1,4-pyrazole-3-carboxamide hy- 
drochloride) were gifts from the Chemistry department, Sanofi 
Recherche (Montpellier, France). A9-Tetrahydrocannabinol, 
anandamide (arachidonoyl ethanolamide), WIN55212-2 
mesylate {R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)- 
methyl] pyr olo[1,2,3-de]l, 4-benzoxazin-6-yl](l-naphthyl) 
methanone mesylate}, ACEA (arachidonoyl-2-chloroethyla- 
mide) and JWII 015 (1-propyl-2-methyl-3-naphthoyl-indole) 
were purchased from Tocris Cookson (Bristol, UK). MTT, 3- 
(4,5-dimethylthiazole-2-yI)-2,5-diphenyl tetrazolium bro- 
mide was purchased from Sigma-Aldrich (Dorset, UK). 
Cannabinoid CB2 receptor antibody and fusion protein were 
gifts from Dr K Mackie (University of Washington, Seattle, 
WA, USA). Ethanol was used as the vehicle for CP55,940, 
SR141716A, SR144528, A-9-Tetrahydrocannabinol and 
ACEA whereas dimethyl sulfoxide (DMSO) was the vehicle 

lnterleukin-8 release from HT 29 cells was measured by 
Enzyme linked immunosorbent assay (ELISA) of the culture 
supernatants according to the manufacturer's guidelines. In 
brief, anti-human interleukin-8 monoclonal capture anti- 
body (Cat. No. 554716; Pharmingen BD, Oxford UK) was 
paired with biotinylated anti-human interleukin-8 monoclo- 
nal detection antibody (Cat. No. 554718). Ninety-six-well 
plates Nunc-immunoplates (maxisorp F96, Pharmingen BD) 
were coated with I µg/ml capture antibody at 4 °C for 24 h. 
Following washing, blocking and addition of standards and 
samples, a one-step detection comprising the use of bio- 
tinylated antibody/streptavidin linked peroxidase (0.5 and 
0.5 p. g/ml), respectively was carried out. Tetramethyl- 
ammonium-benzidine was used as a substrate solution and 
reaction was stopped with 2M H2SO4 solution. Absorbance 
was read at a wavelength of 450 nm. 

2.4. Treatment of cells 

To study the effects of TNF-a on interleukin-8 release, 
HT 29 cells were seeded in 24-well plates as described 
above. TNF-a (0-100 ng/ml) was added to the cells, and 
incubated for 24 h at 37 °C in a humidified incubator (5% 
C02/95% air). At the end of the incubation period, medium 
was removed and placed into 1.5 ml tubes and centrifuged at 
250 xg for 5 min. Cell-free supernatants were stored at 
- 70 °C until assayed for interleukin-8 release by ELISA. 
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Fig. I. TNF-a-induced release of interleukin-8 from HT-29 cells in vitro. 
(A) Confluent monolayers of HT-29 cells were stimulated with TNF-u 

(0.1-100 ng/ml) in foetal calf serum-free McCoy's SA medium for 24 h. 

(B) Confluent monolayers of HT-29 cells were stimulated with TNF-a (100 

ng/ml) in foetal calf serum free McCoy's 5A medium at the indicated time 

period. Cell-free supernatants were assayed for interleukin-8 release by 

ELISA as described in Materials and methods. Data are means and S. E. M. 

of at least five experiments. *Significant difference from control P<0.05. 

For time course studies, TNF-a (100 ng/ml) was added to 

cell cultures and supernatants harvested for interleukin-8 

assay 2,4,6,12 and 24 h after addition of TNF-a. 
To study the effect of cannabinoids on interleukin-8 

release, cannabinoid receptor agonists (10 10 10 4 M) 

or vehicle (0.1% ethanol or 0.1% DMSO) were added to 
cultures and incubated for 2h at 37 °C in a humidified 

atmosphere (5% C02/95% air). At the end of the incubation 

period, cells were stimulated with TNF-a (100 ng/ml) for 24 
h. In experiments involving the use of cannabinoid receptor 
antagonists, SR 141716A (10 6 M), SR 144528 (10 6 M), 

or vehicle were added to cultures 30 min prior to addition of 
the agonist, the culture supernatant was harvested and 
assayed for interleukin-8 as described above. 

2.5. Western blotting 

Western immunoblotting was carried out as described 

previously Ma' donn and Morgan, I99£+1 using antibodies 
raised against the amino terminus of the rat cannabinoid 
CB2 receptor to the first transmembrane region using a 
method previously described for the cannabinoid CB1 

receptor ( Isou et al.. 199h). This antibody was a gift from 
Dr K Makie and is now commercially available (Affinity 
Bioreagents, CO, U. S. A). Briefly, cell lysates (40 gg 
protein/lane) were separated by sodium dodecyl sulphate- 
polyacrylamide gel electrophoresis, transferred onto 0.2 µm 

209 

nitrocellulose membranes (Andermann and Co, Kingston 
upon Thames, UK) and blocked for Ih at room temper- 
ature with 100 mM NaCl, 10 mM Tris, 0. I"/o(v/v) Tween 
20 (STT) buffer (pH 7.4) containing 5%(w/v) non-fat dried 

milk. Membranes were then incubated overnight with 
either the anti-cannabinoid CB, receptor antibody alone 
(1: 1000 dilution in STT buffer containing 5"/%(w/v) non-fat 
dried milk) or with antibody pre-incubated with fusion 

protein (2 µg/well). Blots were washed with STT buffer 
(6 x 10 min) and incubated with 1: 10,000 dilution of 
horseradish peroxidase conjugated goat anti-rabbit immu- 
noglobulin G for I h. Following further washing (6 x 10 
min) with STT buffer, immunoreactive bands were visual- 
ised using an enhanced chemiluminescence detection sys- 
tem (Amersham, UK). 

2.6. Cell viability assay 

MTT tablets were dissolved in phosphate buffered saline 
(5 mg/ml) and filtered to remove any insoluble residue. 
Cells were cultured with drugs as described above. At the 
end of the incubation period, MTT reagent (100 µl/well) 
was added to all wells and incubated at 37 °C for 2 h. Cells 
were transferred onto 96-well plates and 100 pl/well DMSO 
was added to each well and mixed thoroughly to dissolve 
the dark crystals. Absorbance was read on a microtitre plate 
reader at a wavelength of 570 nm and results were expressed 
as percentage of the control value. 
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Fig. 2. Inhibition of TNF-a-induced interleukin-9 release by cannabinoids. 
Confluent monolayers of HT-29 cells were treated with ('1155,940 (10 °- 
10 '" M), WIN55,212-2 (10 10- 10 ° M), A"-Tetrahydrocannabinol 
(10 1"- 10 ° M) and JWH 015 (10" 10 10 ° M) for 2h before 

stimulation with TNF-a (100 ng/ml). Incubation was continued for 24 h. 
Supernatants were assayed for interleukin-8 release by F. LISA as described 
in Materials and methods. Data are presented as percentage inhibition from 

control (TNF-a treated cells alone). Error bars represent S. E. M. of six 
separate experiments. 
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assuming a slope of unity (Kennkin, 1993). All values are 
expressed as arithmetic (pA2 values) or geometric mean 
(EC1n max values) ± S. E. M. (standard error of the mean) or 
95% confidence limits as appropriate. Statistical signifi- 
cance was determined using a one sample t-test or analysis 
of variance (ANOVA) followed by a post hoc test. Statistical 

significance was assumed if the P value was S 0.05. 
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Fig. 3. The effect of ACEA and WIN55212-3 on the release of interleukin-8 

from HT 29 cells. Confluent monolayers of HT 29 cells were treated with 
ACEA (10-10-10- 4 M) or W1N55212-3 (10- b0-10" 4 M) for 2h before 

stimulation with TNF-a (100 ng/ml). Incubation was continued for 24 h. 

Supernatants were assayed for interleukin-8 release by ELISA as described 

in Materials and methods. Data are presented as percentage inhibition from 

control (TNF-0r treated cells alone). Error bars represent S. E. M. of six 

separate experiments. 

2.7. Data analysis 

Concentration-response curves were analysed by Prism 
(GraphPad, San Diego, CA, 92121, U. S. A. ). Other results 
are shown as bar graphs. In some experiments, the results 
were expressed as percentage inhibition of interleukin-8 

release from TNF-a treated control. EC�7 max values were 
calculated by Prism and pA2 values calculated from single 
agonist concentration-ratio values by the Schild equation 

3. Results 

3.1. The effect of TNF-a and the kinetics of interleukin-8 

secretion in HT-29 cells 

HT 29 cells constitutively expressed low levels of inter- 
leukin-8 (33.8 ± 3.8 pg/ml, n= 6) after 24 h incubation at 37 
°C. Following stimulation with TNF-a (0.1---100 ng/ml), 
there was a concentration-dependent increase in the release 
of interleukin-8 from HT 29 cells (fig. I A). 

Fig. IB shows the time course of interleukin-8 release 
from HT 29 cells after stimulation with TNF-a (100 ng/ml). 
Initially, there was a steep rise in interleukin-8 release within 
4h of stimulation of HT 29 cells with TNF-a (100 ng/ml), 
followed by a slower rise over the next 8h and an even 
slower increase for the rest of the 24 h incubation period. 
Overall, the cumulative release of interleukin-8 was 
(4578 ± 378 pg/ml, n= 6) after the 24 h incubation period. 

3.2. The effect of cannabinoid receptor agonists on TNF-a 
induced interleukin-8 secretion from HT29 cells 

We examined the effect of the non-selective cannabi- 
noid receptor agonists CP55,940, A9-Tetrahydrocannabinol, 
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Fig. 4. The effect of SR141716A (10- 6 M) and SR144528 (10- (' M) on the inhibition of TNF-a-induced interleukin-8 release by CP55,940. Confluent 

monolayers of HT 29 cells were incubated with SR141716A (10-6 M) (A) or SR144528 (10-(M) (B) for 30 min before treatment with CP55,940 (10" 10- 

10" 4 M) for 2 h. Cells were stimulated for further 24 h with TNF-a (100 ng)ml). Supernatants were assayed for interleukin-8 by ELISA as described in 
Materials and methods. Bars represent S. E. M. of six separate experiments. 
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Fig. 5. The effect of SR141716A (10-6 M) and SR144528 (I0-" M) on the inhibition of TNF-a-induced interleukin-8 release by WIN55212-2. Confluent 

monolayers of HT-29 cells were incubated with SR14I716A (10-6 M) (A) or SR144528 (10-6 M) (8) for 30 min before treatment with WIN55212-2 

(10" 10-10-4 M) for 2 h. Cells were stimulated for further 24 h with TNF-a (100 ng/ml). Supernatants were assayed for interleukin-8 release by ELISA. 

Vertical bars represent S. E. M. of six separate experiments. 

WIN55212-2 (10- t0-10- 4 M) and a selective cannabinoid 
CB2 receptor agonist, JWH 015, (10-10-10- 4 M) on TNF- 

a-induced secretion of interleukin-8 from HT 29 cells. All the 

agonists produced a concentration-related inhibition of inter- 
leukin-8 secretion and the following EC, /2 Tex values were 
calculated; CP55,940 (1.2 x 10-' M, 95% confidence limits 
(C. L. )=3.8 x 10- 8-3.6 x 10-7 M, n=6), A9-Tetrahydro- 

cannabinol (5.3 x 10- g M, 95% C. L. = 9.71 x 10- 9-2.9 x 
10- 7 M, n=6), W1N55212-2 (1.7 X 10- 7 M, 95% 
C. L. =1.2 X 10-7-2.5 x 10-7 M, n=6) and JWH 015 
(9.8 x 10-l' M, 95% C. L. = 6.8 x 10-8-1.3 x 10-' M, 

n= 6). However, the cannabinoid agonists employed in this 
study produced different maximum effects (W1N55212- 
2= 90.3 ± 1%, 09-Tetrahydrocannabinol = 71.2 ± 9%, JWH 
015 = 67.3 ± 4%, CP55,940 = 38.0 ± 10.0%, n= 6). Within 
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4 M), 

WIN55212-2 (10-7 M_10-4 M) and JWH 015 (10-7 
M_10-4 M) significantly (P<0.05) inhibited TNF-a- 
induced interleukin-8 release from HT 29 cells (one-way 
ANOVA followed by Dunnett's post hoc test, n =6). (Fig. 2). 

3.3. The effect of W1N552I2-3 and ACEA and on TNF-a 
induced interleukin-8 release from HT-29 cells 

The less active enantiomer of WIN55212-2, WIN55212- 
3 (10-10-10- 4 M) and the cannabinoid CBS receptor 
agonist, ACEA (10- 10_10-4 M) had no significant 
(P>0.05, n=6), inhibitory effect on TNF-a (100 ng/ml)- 
induced release of interleukin-8 from HT 29 cells (refer to 
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Fig. 6. The effect of SRI41716A (10-6 M) and SR144528 (10-6 M) on the inhibition of TNF-o-induced interleukin-8 release by ! WH 015. Confluent 
monolayers of HT 29 cells were incubated with SR 141716A (10-(M) or SRI 44529 (10-6 M) for 30 min before treatment with J WH 015 (10-10--10- 4 M) 
for 2 h. Cells were stimulated for further 24 h with TNFa (100 ng/ml). Supernatants were assayed for interleukin-8 release by EL1SA. Bars represent S. E. M. Of 
six separate experiments. 
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Fig. 3). Since ACEA is unstable and subject to degradation 
by amidases (Hillard et al., 1999), experiments were carried 
out in the presence or absence of the amidase inhibitor, 

phenylmethylsulfonyl fluoride (5.0 x 10- 5 M). Under these 

conditions, ACEA (10-10_ 10- 4 M) still did not signifi- 
cantly alter interleukin-8 secretion (data not shown). 

3.4. The effect of SR141716A and SR144528 on the 
inhibitory action of CP55,940, W1N55212-2 and JWH 015 

on HT-29 cells 

3.6. Effect of drugs on cell viability 

The HT 29 cells were tested for viability by the MTT 

assay. Under our experimental conditions, the cell viability 
exceeded 95% at cannabinoid concentrations of 10- 5M 

and below. CP55,940, WIN55212-2 and A9-Tetrahydrocan- 

nabinol induced mild cytotoxicity (35-40%), at a concen- 
tration of 10- ° M. However, maximum inhibition of 
interleukin-8 release was seen at 10- 5M (Fig. 2) a 

concentration where cell viability was >95%. 

The cannabinoid CB1 receptor antagonist, SR141716A 
(10-6 M) significantly (P<0.05, two-way ANOVA fol- 
lowed by Bonferroni's post hoc test n=6) antagonised the 
inhibitory effects of CP55,940 (pA2 = 8.3 ± 0.2, n= 6), but 
did not antagonise the effects of WIN55212-2 (pA2 <6) or 
JWH 015 (pA2<6) (Figs. 4A. 5A and 6A). In contrast, the 

cannabinoid CB2 receptor antagonist, SR144528 (10- 6 M) 

significantly (P<0.05, two-way ANOVA followed by 

Bonferroni's post hoc test n= 6) antagonised the inhibitory 

effects of CP55,940 (pA2= 8.2 ± 0.8, n= 6), WIN55212-2 

(pA2 =7.1 ± 0.3, n=6) and JWH 015 (pA2 = 7.6 ± 0.4, 

n=6), respectively (Figs. 413.513 and OB). 

3.5. Immunolocalization of the cannabinoid receptor in HT- 

29 cells 

To confirm the identity of the cannabinoid receptor 
mediating the functional responses in these cells, antibodies 
raised against the rat cannabinoid CB2 receptor protein were 
used to visualise proteins on immunoblots obtained from 

whole cell lysates of HT 29 cells. Fusion protein against the 
cannabinoid CB2 receptor was used as a negative control. 
The results showed clear immunoreactivity with a molecular 
weight of 40 kDa, along with other minor bands in the HT 
29 cells (lanes 1-3, Fig. 7). In the lanes where this antibody 
was pre-incubated with fusion protein, these bands were 
completely absent (lanes 4-6, Fig. 7). Fig. 7 is a represen- 
tative blot of six separate experiments, all of which gave 
similar results. 

4. Discussion 

In the experiments described above, we have studied the 

effects of cannabinoid receptor ligands on the secretion of 
interleukin-8 from the human colon epithelial cell line HT 
29. Epithelial cells are increasingly being recognised to play 
a pivotal role in host defense against microorganisms in the 
intestinal lumen, and in inflammatory responses (Paula et 
al., 1998). In addition to their functions as preventive and 
absorptive barriers, epithelial cells also express a variety of 
pro-inflammatory cytokines including interleukin-1, TNF-a 

and interferon--y (Yang et al.. 1997). These cytokines, in 
turn, induce the release of other inflammatory mediators 
from the epithelium including chemokines, such as inter- 
leukin-8 a key neutrophil chemoattractant (Schuerer-Maly et 
al., I9Q4), which are upregulated in inflammatory bowel 
disease (Warhurst et at.. 1999). 

In the present study, TNF-a induced release of interleu- 
kin-8 from HT 29 cells was measured in order to address 
whether or not cannabinoids altered the release of this 
chemokine. Preliminary experiments established optimal 
conditions for TNF-a-induced interleukin-8 release by these 
cells. Constitutive release of interleukin-8 from HT 29 cells 
was minimal after 24 h incubation whereas treatment with 
TNF-a (100 ng/ml) over 24 h evoked a marked increase in 
interleukin-8 release. 

The cannabinoid agonists employed in this study 
(CP55,940, A9-Tetrahydrocannabinol, WIN55212-2 and 

A anti CB2 antibody 

123 
40 kDa m.. um «mm- vonow 

B anti CB2 antibody 
+ fusion protein 
456 

Fig. 7. Western immunoblotting for cannabinoid CB2 receptor protein in HT-29 cells. Cell lysates (40 µg protein/lane) obtained from HT-29 cells were 
separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and probed with polyclonal anti-cannabinoid CB2 receptor antibody and anti- 
cannabinoid CB2 receptor antibody+fusion protein. A (lanes 1-3) when lysates were incubated with anti-cannabinoid CB2 receptor antibody only and B 
(lanes 4-6) when anti-cannabinoid CBZ receptor antibodies were pre-incubated with fusion protein. 
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JWH 015) induced concentration-related inhibition of inter- 
leukin-8 release from HT 29 cells. WIN55212-2 was a more 
effective inhibitor of interleukin-8 release from these cells 
than the other compounds since at a maximally effective 
concentration it evoked greater than 90% inhibition of 
interleukin-8 release whereas A9-Tetrahydrocannabinol, 
CP55,940 or JWH 015 at maximally effective concentra- 
tions (10- 5 M) evoked only 40-70% inhibition. No further 
inhibitory effect was seen at higher concentrations (10-4 
M). Although this higher concentration of some compounds 
(CP55,940) was cytotoxic, the fact that a lower, non-toxic, 
concentration produced a similar effect suggests that the 
effect was not due to a cytotoxic action on the cells. The low 

maximal effect of compounds such as CP55,940 could 
indicate that these compounds are partial agonists at the 
cannabinoid CB2 receptor and that HT 29 cells have a low 

number of cannabinoid CB2 receptors compared to other 
cells. Thus, in common with other systems, compounds with 
high affinity, but low efficacy, produce a lower maximal 
effect than compounds with high efficacy (Kennkin, 1993). 
However, further experiments where attempts are made to 
antagonise WIN55212-2 with CP55940 may be necessary to 
confirm this hypothesis. WIN55212-2 has been reported to 
be between two and seven times more potent at cannabinoid 
CB2 receptors than CP55,940 (Slipetz et ai., 1995, Felder et 
al., 1995, Tat) and Abood, 1998). In the present study, the 
potencies of WIN55212-2, JWH 015 and CP55,940 were 
almost identical although the former compound showed 
greater efficacy. However, these effects were still observed 
at concentrations well above their affinity constants as 
determined in binding studies on neuronal tissues (Pertwee. 
1997). Whether these observations are due to the lipophilic 
nature of these compounds or their interaction with as yet an 
unidentified target is not known. Further experiments would 
be needed to understand these observed effects. 

In contrast to the present study, Jbilo et al.. (1999) showed 
that CP55,940 stimulated interleukin-8 release from HL-60 
cells. While the reason for this difference is unclear, HL-60 
cells are a human promyelocytic cell line (Sham et al., 1996) 
whereas the cells studied by us are a human colonic epithelial 
cell line and the observed difference could suggest that 
different tissues respond differently to cannabinoid receptor 
agonists. In addition, in non-transfected HL-60 cells, the 
characteristics of CP55,940-induced interleukin-8 release is 
different from that induced by TNF-a in our experiments. Of 
particular interest is the finding that interleukin-8 RNA 
expression induced by CP55,940 in HL-60 cells appeared 
to be short-lived in that there appeared to be less RNA in 
cells 6h after CP55,940 than 3h after CP55,940 (. Jbilo et al.. 
1999). In HT 29 cells we did not measure any interleukin-8 
release after 24-h incubation with cannabinoid receptor 
agonists (data not shown). Thus, it may be of interest to 
determine whether cannabinoid receptor agonists cause a 
small, transient release of interleukin-8 in epithelial cells. 
However, cannabinoid receptor agonists have been shown to 
inhibit cytokine release from many, but not all, immune cells 
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(Berdyshev. 2000), suggesting that the effect seen in HL-60 
cells may not be representative of the majority of cells. 

It is well established that cannabinoid receptors are linked 
to G, /Go protein and activation leads to inhibition of adeny- 
late cyclase (Felder et al., 1995). In contrast to the idea that 
increases in intracellular cyclic adenosine monophosphate 
(cAMP) inhibit immune cell function (Nara nchi ei al., 
1995), it is surprising that activation of Gi protein would 
lead to inhibition of interleukin-8 release, however, recent 
evidence suggests that a decrease in cAMP, as seen with 
cannabinoids and opioids (Kaminski, 1998: (rrirnm et at,. 
I Q(M), may also lead to inhibition of immune cell function 
suggesting that the role of cAMP in immune cells is likely to 
have been oversimplified (Kaminski, 1999). However, 
experiments in which second messenger concentrations are 
measured will be necessary to investigate the pathways 
mediating inhibition of cytokine release by cannabinoids. 

To examine whether the cannabinoid-mediated inhibi- 
tion of interleukin-8 release is linked to specific receptors, 
HT 29 cells were exposed to the less active enantiomer of 
WIN55212-2, WIN55212-3. WIN55212-3 produced no 
significant (P<0.05) inhibitory effect on TNF-a-induced 
release of interleukin-8 from HT 29 cells indicating that 
enantiomeric specificity is required for the effect, in turn, 
suggesting activity at specific receptors. Also experiments 
with ACEA, a cannabinoid CBS receptor selective agonist 
(Hillard et al., 1999) evoked no significant inhibitory 
effects on interleukin-8 expression. Taken together, these 
results suggest that the inhibition of stimulated interleukin- 
8 release by non-selective cannabinoid receptor agonists 
(CP55940, A9-Tetrahydrocannabinol, WIN55212-2) and a 
cannabinoid CB2 receptor selective agonist (JWH 015) 
(Chin et al., 1999), may be specifically linked to functional 
cannabinoid CB2 receptors. 

To confirm the identity of the cannabinoid receptor 
subtype involved in the inhibition of TNF-a-induced inter- 
leukin-8 release, the specific cannabinoid receptor antago- 
nists SR141716A (CB1) and SR144258 (CB2) were used 
(Rinaldi-Cannona et al., 1994, )998). When HT-29 cells 
were exposed to SR141716A, there was antagonism of the 
inhibitory effects of CP55,940 but not those of WIN55,212- 
2 or JWH 015. In contrast, treatment of HT-29 cells with the 
cannabinoid CB2 receptor antagonist SR 144528 reduced the 
inhibitory effects of CP55,940, WIN55212-2 and JWH 015. 
We do not know the reason for the unusual susceptibility of 
inhibition of CP55,940 to reversal by both classes of 
cannabinoid antagonists but it may be linked to the lower 
maximum inhibition seen with this compound. Clearly, 
additional work, such as binding studies would be necessary 
to answer whether or not HT 29 cells contain a small 
number of cannabinoid CB 1 receptors that contribute to 
the response to CP55940 but not to other more selective 
compounds. However, our functional observations suggest 
that cannabinoid CB2 receptors mediate inhibition of TNF- 
a-induced interleukin-8 release from HT 29 cells. To con- 
firm the existence of this receptor in HT 29 cells, we 
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employed a polyclonal antibody raised against the amino 
terminus of the cannabinoid CB2 receptor to confirm the 

presence of cannabinoid CB2 receptors on HT-29 cells by 
Western immunoblotting. We found an intense band of 
immunoreactivity at the 40 kDa position, which corresponds 
to the size of peripheral cannabinoid CB2 receptor protein as 
reported by others, e. g. (ghee et al., 2000). Furthermore, 

this band was ablated when the polyclonal antibody was 
pre-incubated for 10 min with fusion protein thus suggesting 
that this protein is the cannabinoid CB2 receptor. 

In summary, we have shown that cannabinoids exert an 
inhibitory effect on the expression of TNF-a-induced inter- 

leukin-8 release from HT 29 cells. Addition of the less 

active enantiomer of the cannabinoid receptor agonist, 
WIN55212-2, WIN55212-3 or a cannabinoid CB1 receptor 
selective agonist had no inhibitory effect on interleukin-8 

release. Cannabinoid-induced inhibition of interleukin-8 

release was reversed by a cannabinoid CB2 receptor antag- 

onist, however, the cannabinoid CB1 receptor antagonist 
was unable to reverse the effects of more selective canna- 
binoid CB2 receptor agonists (WIN55212-2 and JWH 015) 
in this system suggesting a predominantly cannabinoid CB2 

receptor mediated event. Furthermore, Western immuno- 
blotting revealed immunoreactive protein at a region with 
a size consistent with that of cannabinoid CB2 receptor 
protein. We therefore conclude that HT 29 cells express 
functional cannabinoid CB2 receptors and suggest that 

exploitation of this receptor could lead to a novel clinical 
approach in the treatment of inflammatory bowel disease. 
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Abstract 

The effects of a range of cannabinoid receptor agonists and antagonists on phytohaemagglutinin-induced secretion of interleukin-2 from 
human peripheral blood mononuclear cells were investigated. The nonselective cannabinoid receptor agonist WIN55212-2 ((R)-(+)-[2,3- 
dihydro-5-methyl-3-[4-morpholinylmethyl]pyrrolo[1,2,3-de]1,4-benzoxazin-6-yl](I-naphthyl) methanone mesylate) and the selective 
cannabinoid CB2 receptor agonist JWII 015 ((2-methyl-l-propyl-]H-indol-3-yl)-l-napthalenylmethanone) inhibited phytohaemagglutinin 
(10 µg/ml)-induced release of interleukin-2 in a concentration-dependent manner (IC irzma,,, WIN55212-2 = 8.8 x 10-7 M, 95% confidence 
limits (C. L. )=2.2 x 10-7 -3.5 x 10-6 M; JWII 015= 1.8 x 10- 6 M, 95% C. L. = 1.2 x 10- 6-2.9 x 10- 6 M, n= 5). The nonselective 
cannabinoid receptor agonists CP55,940 ((-)-3-[2-hydroxy-4-(1,1-dimethyl-hepthyl)-phenyl]4-[3-hydroxypropyl]cyclo-hexan-I-ol), 49- 
tetrahydrocannabinol and the selective cannabinoid CBS receptor agonist ACEA (arachidonoyl-2-chloroethylamide) had no significant 
(P>0.05) inhibitory effect on phytohaemagglutinin-induced release of interleukin-2. Dexamethasone significantly (P<0.05) inhibited 
phytohaemagglutinin-induced release of interleukin-2 in a concentration-dependent manner (ICI/2, r,,,, = 1.3 x 10- K M, 95% C. L. _ 
1.4 x 10- 9-3.2 x 10- s M). The cannabinoid CB1 receptor antagonist SR141716A (N-(piperidin-I-yl)-5-(4-chlorophenyl)-1{2,4- 
dichlorophenyl)-4-methyl-I/fpyrazole-3-carboxamide hydrochloride) (10-6 M) did not antagonise the inhibitory effect of WIN55212-2 
whereas the cannabinoid CB2 receptor antagonist SR144528 (N-(l, S)-endo-1,3,3-trimethyl bicyclo(2,2,1)heptan-2-yl)-5-(4-chloro-3- 
methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide) antagonised the inhibitory effect of WIN55212-2 (p42=6.3±0.1, n=5). In 
addition, CP55,940 (10-6 M) and YQ-tetrahydrocannabinol (10- 6 M) also antagonised the inhibitory effects of WIN55212-2 
(pA2 = 6.1 ± 0.1, n=5 and pA2 = 6.9 ± 0.2, n= 5). In summary, WIN55,212-2 and JWII 015 inhibited interleukin-2 release from human 
peripheral blood mononuclear cells via the cannabinoid CB2 receptor. In contrast, CP55,940 and A9-tetrahydrocannabinol behaved as partial 
agonists/antagonists in these cells. 
C 2003 Elsevier Science B. V. All rights reserved. 
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1. Introduction 

Cannabinoids have been shown to downregulate the 
immune system (for reviews, see Cabral and Dove Petlit, 
1998: Berdyshev, 2000). This conclusion is partly based on 
an early in vivo study by Morahan et al. (1979) who 
demonstrated a decreased resistance of mice to Listeria 

monocytogens or Herpes simplex virus infections after treat- 
ment with D9-tetrahydrocannabinol. Consistent with these 
findings are a number of in vitro studies in which cannabi- 
noids have been reported to inhibit T cell mitogenesis and 

" Corresponding author. Tel.: +44-1707-285139; fax: +44-1707- 
285046. 

E-mail address: c. j. Whelan@herts. ac. uk (C. Whelan). 

interleukin-2 production from T lymphocyte cell lines (for 
reviews, see Klein ct at., 1998a, b). 

Interleukin-2 is an important cytokine responsible for T 
lymphocyte signalling during proliferation and macrophage/ 
monocyte activation during inflammatory episodes (Ilen"- 
man et at., I989). The expression of functional interleukin-2 
receptors is another variable that determines how long the 
clonal proliferation of T cells occurs after antigen stimula- 
tion (Smith. 19 99). In general, interleukin-2 regulates both 
antigen-specific and non-antigen-specific proliferation of T 
cells, natural killer cells and B cells. 

The discovery and cloning of two cannabinoid receptors, 
CBS and CB2, has begun to give new clues as to how these 
drugs affect the immune system (Matsuda et at.. 1990; Munro 
et at. 199 ). Cannabinoid receptors are members of the G- 
protein-coupled receptor family (Bayewitch et at.. I995). 

0014-2999/03/S - see front matter ® 2003 Elsevier Science B. V. All rights reserved. 
doi: 10.1016/S0014-2999(03)01379-7 
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While cannabinoid CB1 receptors are found in the brain with 
low levels of expression in the peripheral tissues, cannabinoid 
CB2 receptors are expressed primarily in immune tissues 

(Bouaboula et at., 1993; Galiegue et at., 1995: Kaminski et 
al., 1992), suggesting that the majority of the immunomodu- 
latory properties of cannabinoids may be mediated via 
cannabinoid CB2 receptors, although to date, very few studies 
have been reported to support this hypothesis. 

The density of cannabinoid CB2 receptors on immune 

cells is 10-100 times that of cannabinoid CB1 receptors, as 
shown by semi-quantitative reverse transcription polymer- 

ase chain reaction and Northern blotting studies (C, aliegue et 

at., 1995). The rank order of cannabinoid CB2 receptor 

expression on human blood leukocytes is B cells>NK 

cell s>mon ocytes>polymorphonucl ear neutrophils>T8 

cells>T4 cells (Parolaro, 1999). Furthermore, it has been 

shown that cannabinoid receptor expression in peripheral 
blood mononuclear cells is altered upon stimulation with 

phytohaemagglutinin (Daaka et al., 1996), suggesting an 

active role for the cannabinoid system in immune responses. 
Given the proinflammatory properties of interleukin-2, 

modulation of its release via cannabinoid receptors would 
present an attractive pharmacological target for the treat- 
ment of various inflammatory conditions. In the present 
study, the effects of cannabinoid receptor ligands on phyto- 
haemagglutinin-induced release of interleukin-2 from 
human peripheral blood mononuclear cells have been inves- 
tigated. A preliminary account of part of this report has been 
presented in abstract form to The International Cannabinoid 
Research Society (lhenetu et at., 2002). 

solvents were included in all assays at a final concentration 
of 0.1% as vehicle controls. 

2.2. Preparation of peripheral blood mononuclear cells 

Peripheral blood mononuclear cells were isolated from 
huffy coat cells purchased from the National Blood Trans- 
fusion Service (NBTS) (Brentwood, Essex, UK). Separation 

of peripheral blood mononuclear cells was done by density 
gradient centrifugation using Histopaque R-1077 (Sigma- 
Aldrich), based on the modification of the original method 
described by Boyum (I968). In brief, buffy coat cells were 
diluted (1: 2, v/v) with sterile phosphate-buffered saline and 
human peripheral blood mononuclear cells were isolated by 
density gradient centrifugation (2500 xg for 25 min) in an 
Accuspin tube (Sigma-Aldrich). Cells recovered from the 
interface between the plasma and Histopaque solution were 
washed twice in Ca2 +- and Mg2 4-free phosphate-buffered 
saline (1700 xg for 10 min). Peripheral blood mononuclear 
cells were resuspended in RPM 1-1640 medium supplemented 
with L-glutamine (2 mM), penicillin (50 U/ml) and strepto- 
mycin (50 µg/ml), and 10% heat-inactivated foetal calf 
serum. Aliquots were removed and cells were counted and 
assayed for viability by the trypan blue dye exclusion method 
and the MTT assay. Slides of the cell suspension were made, 
stained with a Romanowsky stain (May Grunwald-Giemsa) 
and a differential cell count obtained by examination of the 
slide under a microscope (magnification 1000 x ). 

2.3. Interleukin-2 secretion 

2. Materials and methods 

2.1. Drugs and reagents 

CP55,940 ((-)-3-[2-hydroxy-4-(1,1-dimethyl-hep- 
thyl)-phenyl]4-[3-hydroxypropyl]cyclo-hexan-l-ol) was a 
generous gift from Pfizer. SR141716A (N-(piperidin-l- 

yl)-5-(4-chlorophenyl)- I -(2,4-dichlorophenyl)-4-methyl- 
IH pyrazole-3-carboxamide hydrochloride) and SRI 44528 
(N (1, S)-endo-l, 3,3-trimethyl bicyclo(2,2, I)heptan-2-yl)-5- 
(4-chloro-3-methylphenyl)- I -(4-methylbenzyl)-pyrazole-3- 
carboxamide) were gifts from Sanofi Recherche (Montpellier, 
France). WIN55212-2 mesylate ((R)-(+)-[2,3-dihydro-5- 

methyl-3-j4-morpholinylmethyl]pyrrolo[1,2,3-de] 1,4-ben- 

zoxazin-6-yl](1-naphthyl) methanone mesylate), ACEA 
(arachidonoyl-2-chloroethylamide) and JWH 015 ((2- 
methyl- I -propyl- I H-indol-3-yl)- I -napthalenylmethanone) 
were purchased from Tocris, Cookson (Bristol, UK). MTT 
(3-[4,5-dimethylthiazole-2-yl]2,5-diphenyl tetrazolium bro- 
mide) was purchased from Sigma-Aldrich (Dorset, UK). 
CP55,940, SR141716A, SR144528 and ACEA were dis- 
solved in ethanol whereas WIN55,212-2 and JWH 015 were 
dissolved in dimethyl sulphoxide (DMSO) and stored at 
- 20 °C at a concentration of 10 mM. Accordingly, these 

Human peripheral blood mononuclear cells were 
adjusted to a density of Ix 106 cells/ml with RPMI-1640 
medium and cultured in 24-well plates (Falcon, Becton 
Dickinson, Pont De Claire, France) in foetal calf serum-free 
RPMI-1640 medium, at 37 °C in a humidified atmosphere 
with 5% CO2. Cells were preincubated with CP55940 
(10-10-10- 5 M), WIN55212-2 (10- 10_10-5 M), A9-tetra- 
hydrocannabinol (10-10-10- 5 M), JWH 015 (10- 10- 
10- 5 M) or dexamethasone (10-' °- 10- 6 M) for 2h before 
stimulation with phytohaemagglutinin (10 µg/ml). Super- 
natants were harvested after 18 h incubation and stored at 
- 70 °C until assayed for interleukin-2 by ELISA. In experi- 
ments where the effects of antagonists were studied, cells 
were preincubated with SR141716A (10- 6 M), SR144528 
(10- 6 M), CP55940 (10- 6 M) or A9-tetrahydrocannabinol 
(10-6 M) for 30 min before the addition of the cannabinoid 
agonist or dexamethasone. 

2.4. Enzyme-linked immunosorbent assay 

Interleukin-2 release was measured by enzyme-linked 
immunosorbent assay (ELISA) of the culture supernatants 
according to the manufacturer's guidelines. In brief, anti- 
human interleukin-2 monoclonal capture antibody (Pharmin- 
gen B. D., Oxford, UK; cat. no. 555051) was paired with 
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biotinylated anti-human interleukin-2 monoclonal detection 
antibody (cat. no. 555040). Ninety-six-well plates (Nunc- 
immunoplates maxisorp F96, Pharmingen B. D. ), were coated 
with l µg/ml capture antibody at 4 °C for 24 h. Following 
washing, blocking and addition of standards (10-2000 pg/ 
ml) and samples (undiluted), a one-step detection comprising 
the use of biotinylated antibody/streptavidin-linked peroxi- 
dase (both 0.5 µg/ml), respectively, was carried out. Tetra- 
methylammonium benzidine was used as a substrate solution 
and reaction was stopped with 2M H2S04 solution. Absorb- 
ance was read at a wavelength of 450 nm. 

2.5. Statistical analysis 

Concentration -effect curves were analysed by Prism 
(GraphPad, San Diego, CA, USA). Other results are shown 
as bar graphs. In some experiments, the results are expressed 
as percentage inhibition of interleukin-2 release from phy- 
tohaemagglutinin-treated cells. ICI/2,,, a,, values were calcu- 
lated by Prism and pA2 values calculated from single agonist 
concentration-ratio values by the Schild equation assuming 
a slope of unity (Kenakin. 1993). All values are expressed as 
arithmetic (pA2 values) or geometric mean (ICI/2max val- 
ues) ± standard error of the mean (S. E. M. ) or 95% con- 
fidence limit (C. L. ) as appropriate. Statistical significance 
was determined using a one-sample t-test or analysis of 
variance followed by an appropriate post hoc test. Statistical 
significance was assumed if P value was 5 0.05. 

3. Results 

3.1. Purity and viability of human peripheral blood 
mononuclear cells 

Human peripheral blood mononuclear cell preparations, 
prepared from buffy coat cells, comprised approximately 
95% lymphocytes and 5% monocytes as measured by 
differential leukocyte counts. Furthermore, after 18 h incu- 
bation in serum-free medium, 99.17% ± 4.99% (n = 4) of 
the lymphocytes were recovered from the medium. 

Under our experimental conditions, the viability of 
human peripheral blood mononuclear cells isolated from 
buffy coat cells exceeded 95% on all occasions, when 
determined by trypan blue dye exclusion and by the MTT 
assay. This viability was not significantly (P>0.05) altered 
by incubation of human peripheral blood mononuclear cells 
for 18 h with phytohaemagglutinin, dexamethasone or any 
of the cannabinoid receptor ligands studied in foetal calf 
serum-free RPMI-1640 medium. 

3.2. The effect of phytohaemagglutinin on interleukin-2 
secretion from human peripheral blood mononuclear cells 

Nonstimulated human peripheral blood mononuclear 
cells constitutively released minimal amounts of interleu- 

209 

kin-2 (14 ± 10 P9/ml, n= 5) after 18 h incubation at 37 
°C (Fig. 8). Following stimulation with phytohaemagglu- 
tinin (10 µg/ml), a marked release of interleukin-2 was 
observed over 18 h (1869±54 pg/mI, n=5, Fig. 1). 
Stimulation of human peripheral blood mononuclear cells 
with phytohaemagglutinin (10 pg/ml) evoked a minimal 
release of interleukin-2 within the first 6h and a rise 
between 12 and 18 h. The peak release of interleukin-2 

was seen at 18 h (Fig. 1). There was no significant 
change (P>0.05) in cell numbers between phytohaemag- 
glutinin (10 µg/ml)-stimulated and nonstimulated cells 
over 18 h following incubation at 37 °C in foetal calf 
serum-free medium (data not shown). Vehicle controls 
(0.1% ethanol and 0.1% DMSO) had no significant 
(P<0.05) inhibitory effect on phytohaemagglutinin- 
induced release of interleukin-2 from human peripheral 
blood mononuclear cells. 

3.3. The effect of cannabinoid receptor agonists on 
phytohaemagglutinin-induced release of interleukin-2 from 
human peripheral blood mononuclear cells 

The nonselective cannabinoid receptor agonist WIN5521 
2-2 (10- 10 

-10- 
5 M) and a selective cannabinoid CB2 

receptor agonist JWH 015 (to-10-m-5 M) inhibited 
phytohaemagglutinin-induced release of interleukin-2 from 
human peripheral blood mononuclear cells (Fig. 2). This 
inhibition was concentration-related and significant 
(P<0.05) over the concentration range 10- 6-10- 5M 
(IC 1/2maxv WIN5521 2-2 = 8.8 x 10-7 M, 95% C. L. _ 

1()-710- JWN 015=1.8 x 10-6 M, 
95% C. L. =1.2 x 10-6 -2.9 x 10-6 M, n= 5). The nonse- 
lective cannabinoid receptor agonist CP55,940 (10-10 
10-6 M) produced a small, nonsignificant (P>0.05) inhib- 
ition of interleukin-2 release from human peripheral blood 
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Fig. 1. Time course of phytohaemagglutinin-induced interlcukin-2 release 
from human peripheral blood mononuclear cells. Human peripheral blood 
mononuclear cells were stimulated with phytohaemagglutinin (10 µg/ml) 
for 3,6,12,18 and 24 h. Cell-free supernatants were harvested for 
interleukin-2 assay by ELISA as described in Materials and methods. Data 
are means and S. E. M. of five separate experiments. 
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Fig. 2. Effect of nonselective cannabinoid agonists on phytohaemaggluti- 
nin-induced release of interleukin-2 from human peripheral blood 

mononuclear cells. Human peripheral blood mononuclear cells were treated 

with CP55.940 (10- 10-10- s M), O9-tetrahydmcannabinol (10- 10- 10- 3 

M) or WIN55212-2 (10-10-10-s M) for 2h before stimulation with 
phytohaemagglutinin (10 µg/ml) for a further 18 h. Cell-free supernatants 
were harvested and assayed for interleukin-2 by ELISA as described in 
Materials and methods. Data are means and S. B. M. of five separate 
experiments. 'Denotes significant difference (P<0.05) from the control 
(phytohaemagglutinin-treated cells) (Student's t-test). 

mononuclear cells (Fig. 2). The nonselective cannabinoid 
receptor agonist A9-tetrahydrocannabinol (10-10-10- 6 M) 
and the selective cannabinoid CB, receptor agonist ACEA 
(10-10-- 10- 6 M) also had no significant (P>0.05) inhib- 
itory effect on the release of interleukin-2 from human 
peripheral blood mononuclear cells. As a positive control, 
dexamethasone (10- 10- 10- 6 M), a glucocorticoid, signifi- 
cantly (P<0.05) inhibited phytohaemagglutinin-induced 
interleukin-2 release from human peripheral blood mono- 
nuclear cells (ICI/2,,.,, = 1.3 X 10- a M, C. L. = 5.4 x 10-- 9- 
3.2 x 10- R M, n=5, Fig. 3). The maximum inhibition 
produced by JWN 015 was greater than that produced by 
WIN55212-2 (Fig. 2). 

3.4. The effect of SR141716A and SR144528 on WIN55212- 
2- and JWII 015-induced inhibition of interleukin-2 from 
human peripheral blood mononuclear cells 

When incubated with human peripheral blood mononu- 
clear cells for 18 h, neither SR 141716A (10- 6 M) nor 
SR144528 (10-6 M) had any significant effect on phyto- 
haemagglutinin-induced interleukin-2 release (interleukin-2 
release = 1530.5 ± 80.8 pg/ml (n = 5) and 1653.4 ± 65.5 pg/ 
ml (n = 5), respectively) when compared with phytohae- 
magglutinin-treated controls (1655.7 ± 52.8 pg/ml (n=9)). 
SR141716A (10 6 M) had no significant (P>0.05) effect in 
attenuating the inhibitory action of WIN55212-2 on phyto- 
haemagglutinin-induced release of interleukin-2 (Fig. 4). In 
contrast, SR144528 (10-6 M) significantly (P<0.05, two- 
way ANOVA followed by Bonferroni's post hoc test, n= 5) 
antagonised the inhibitory effects of WIN55212-2 on phy- 
tohaemagglutinin-induced release of interleukin-2 from 

human peripheral blood mononuclear cells (pA2=6.3 ± 0.1, 

n= 5) (Fig. 4). 
Similarly, SR141716A (10-6 M) had no significant 

(P>0.05)effect in attenuating the inhibitory effect of JWH 
015 on phytohaemagglutinin-induced release of interleukin- 
2. In contrast, SR144528 (10- 6 M) significantly (P<0.05, 
two-way ANOVA followed by Bonferroni's post hoc test, 
n=5) antagonised the inhibitory effects of JWH 015 on 
phytohaemagglutinin-induced release of interleukin-2 from 
human peripheral blood mononuclear cells (pA2 = 6.5 ± 0.1, 
n= 5) (data not shown). 

3.5. The effect of CP55,940 and A9-letrahydrocannabinol 
on W1N55212-2-induced inhibition of interleukin-2 from 
human peripheral blood mononuclear cells 

CP55,940 (10- 6 M) and A9-tetrahydrocannabinol (10-6 
M) significantly (P<0.05, two-way ANOVA followed by 
Bonferroni's post hoc test, n= 5) antagonised the inhibitory 
effects of WIN55212-2 on phytohaemagglutinin-induced 
release of interleukin-2 from human peripheral blood mono- 
nuclear cells (Figs. 5 and b). When pA2 values were 
calculated from these data, a value of 6.1 ± 0.1 (n = 5) 
was obtained for CP55940 and a value of 6.96±0.16 
(n = 5) for 09-tetrahydrocannabinol. 

3.6. Effect of CP53,940 on dexamethasone-induced inhib- 
ition of interleukin-2 from human peripheral blood mono- 
nuclear cells 

CP55,940 (10-6 M) had no significant (P>0.05) 
effect in antagonising the inhibitory actions of dexame- 
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Fig. 3. Effect of selective cannabinoid agonists and dexamethasone on 
phytohaemagglutinin-induced release of interleukin-2 from human periph- 
eral blood mononuclear cells. Human peripheral blood mononuclear cells 
were treated with ACEA (10- 10 10- 5 M), JWH 015 (10-10-10- S M) or 
dexamethasone (10-10-10-5 M) for 2h before stimulation with 
phytohaemagglutinin (10 jig/ml) for a further 18 h. Cell-free supernatants 
were harvested and assayed for interieukin-2 by ELISA as described in 
Materials and methods. Data are means and S. E. M. of five separate 
experiments. 'Denotes significant difference (P<0.05) from the control 
(phytohaemagglutinin-treated cells) (Student's r-test). 
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Fig. 4. Effect of SR141716A or SR144528 on WIN55212-2-induced 

inhibition of interleukin-2 release from human peripheral blood mono- 

nuclear cells. Human peripheral blood mononuclear cells were preincubated 

with SR141716A (10-6 M) or SR144528 (10-6 M) for 30 min before 

addition of W1N55212.2 (10-10-10- s M) for 2 h. Human peripheral 
blood mononuclear cells were stimulated with phytohaemagglutinin (10 µg/ 

ml) for further 18 h. Cell-free supernatants were harvested for interleukin-2 

assay by ELISA as described in Materials and methods. Data are means and 
S. E. M. of five separate experiments. *Denotes significant difference from 

WIN55212-2-treated cells (P<0.05, two-way ANOVA followed by 

Bonferroni's post hoc test, n= 5). 

thasone on phytohaemagglutinin-induced release of inter- 
leukin-2 from human peripheral blood mononuclear cells 
(Fig. 7). 
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Fig. 5. Effect of CPS5940 on WIN55212-2-induced inhibition of in- 
terleukin-2 release from human peripheral blood mononuclear cells. 
Human peripheral blood mononuclear cells were preincubated with CP55, 
940 (10-6 M) for 30 min before addition of WIN55212-2 (10- 10 10- s 
M) for 2 h. Human peripheral blood mononuclear cells were stimulated 
with phytohaemagglutinin (10 µg/ml) for a further 18 h. Cell-free 
supernatants were harvested for interleukin-2 assay by ELISA as described 
in Materials and methods. Data are means and S. E. M. of five separate 
experiments. 'Denotes significant difference from WIN55212-2-treated 
cells (P<0.05, two-way ANOVA followed by Bonferroni's post hoc test, 
n=5). 
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Fig. 6. Effect of e-tetrahydrocannabinol on WINSS212-2-induced 
inhibition of interlcukin-2 release from human peripheral blood mono- 
nuclear cells. Human peripheral blood mononuclear cells were preincubated 
with e-tetrahydrocannabinol (10-6 M) for 30 min before addition of 
WIN55212-2 (10-1(1-10- 5 M) for 2 h. Human peripheral blood 
mononuclear cells were stimulated with phytohaemagglutinin (10 µg/ml) 
for a further 18 h. Cell-free supernatants were harvested for interleukin-2 
assay by ELISA as described in Materials and methods. Data are means and 
S. E. M. of five separate experiments. 'Denotes significant difference from 
WIN55212-2-treated cell (P<0.05, two-way ANOVA followed by 
Bonferroni's post hoc test). 

3.7. Effect of CP55,940 on the release of interleukin-2 from 
nonstimulated human peripheral blood mononuclear cells 

Addition of CP55,940 (10- 5 M) to nonstimulated human 
peripheral blood mononuclear cells followed by incubation 
at 37 °C for 18 h evoked a minimal release of interleukin-2 
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Fig. 7. Effect of CP55,940 on dexamethasone-induced inhibition of 
interleukin-2 release from human peripheral blood mononuclear cells. 
Human peripheral blood mononuclear cells were preincubated with 
CP55,940 (10-6 M) for 30 min before addition of dexamethasone 
(10- 1°-10 6 M) for 2 h. Human peripheral blood mononuclear cells 
were stimulated with phytohaemagglutinin (10 µg/ml) for a further 18 h. 
Cell-free supernatants were harvested for interleukin-2 assay by ELISA as 
described in Materials and methods. Data are means and S. E. M. of five 

separate expenments. 
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Fig. 8. Effect of CP55,940 on the secretion of interleukin-2 from human 

peripheral blood mononuclear cells. Human peripheral blood mononuclear 

cells were stimulated with phytohaemagglutinin (10 pg/ml) or CP55,940 

(10- s M) for 18 h. Cell-free supernatants were harvested for interleukin-2 

assay by ELISA as described in Materials and methods. Data are means and 
S. E. M. of five separate experiments. 

(21.8 ± 6.3 pg/ml, n= 5), which was not significantly 
(P>0.05) different from the basal release (Fig. Kl. 

4. Discussion 

Cannabinoid receptor ligands have potential utility as 
anti-inflammatory drugs for the treatment of many disease 

conditions primarily because of their immunosuppressive 

actions, but their psychoactive effects limit their therapeutic 
benefits. Emerging evidence suggests that cannabinoids 
produce many of their immunosuppressive effects by inhib- 
iting T cell responses (for reviews, see Klein et al.. I999a, b; 
Parolaro, 1999). A significant proportion of these studies 
have been conducted on cell lines and transfected cells 
derived from rats or mice (Kaminski et at., 1992; Condit 

et al., 19%; Massi ei al.. 2000). While these systems 
provide useful information for the understanding of the 
functional properties of cannabinoid receptors, extrapolating 
these data to man may be hindered by problems of species 
differences and the artificial nature of the cell lines and 
transfected cells in which receptors are overexpressed 
(Kenak in ct al., 1995). Consequently, we have investigated 
the effects of a range of cannabinoid receptor ligands on 
phytohaemagglutinin-induced release of interleukin-2 from 
human peripheral blood mononuclear cells, a human 
immune cell. 

In the present study, we have shown that a nonselective 
cannabinoid receptor agonist WIN55212-2 (Felder et al., 
1995) and a selective cannabinoid CB2 receptor agonist 
JWH 015 (Iluttinan et al., 1996) evoked a significant 
concentration-related inhibition of phytohaemagglutinin- 
induced interleukin-2 release from human peripheral blood 
mononuclear cells. The nonselective and synthetic cannabi- 
noid CP55,940 (Felder et al., 1995), produced a small, 
nonsignificant inhibition of interleukin-2 release from 
human peripheral blood mononuclear cells whereas the 
plant cannabinoid, t9-tetrahydrocannabinol and the selec- 

tive cannabinoid CB1 receptor agonist, ACEA Millard et 

at,, 1999), were ineffective in inhibiting phytohaemagglu- 
tinin-induced release of interleukin-2. The inhibition of 
phytohaemagglutinin-induced release of interleukin-2 

evoked by WIN55212-2 was not antagonised by pretreat- 
ment of the cells with SR141716A, a cannabinoid CB1 

receptor antagonist (Rinaldi-Carmona ei al., 1994). How- 

ever, SR144528, a cannabinoid CB2 receptor antagonist 
(Rinak(i-C'arn-iona et al., 1999), significantly attenuated the 
inhibitory effects of WIN55212-2. Taken together, these data 

suggest that the observed effects were mediated by a canna- 
binoid CB2-like receptor. 

Peripheral blood mononuclear cells, used in the present 
study, comprised 95% lymphocytes and 5% monocytes. In 
adult blood, lymphocytes comprise approximately 83% of 
the mononuclear cells (Dien and I entner, 197(1), suggesting 
that the buf'y coat cells used by us contained fewer mono- 
cytes than expected, or that the isolation process results in a 
selective loss of monocytes. The buffy coat cells used by us 
are a by-product of the preparation of plasma for human use, 
and it is possible that the more adherent monocytes are lost 
in the handling of blood to produce plasma and then in the 
preparation of mononuclear cells by us resulting in a 
preparation enriched with nonadherent lymphocytes. 

In the present study, we cultured human peripheral blood 
mononuclear cells in foetal calf serum-free medium. While 
it is conventional to include foetal calf serum in cell culture 
medium (for example, Corrigan et al., 1995), we chose not 
to include it because plasma proteins have been shown to 
bind cannabinoids and reduce their potency (Dewey, 1996), 
that is, this process acts as an agonist uptake/removal 
process. Furthermore, if this binding were saturable, over 
the concentration range studied, then this could influence 
the data obtained particularly when attempting to character- 
ise antagonist activity (Kenakin and [leek, 1991 ). Thus, we 
elected to negate the influence of protein binding in our 
experiments by omitting foetal calf serum from the medium. 
When unstimulated peripheral blood mononuclear cells 
were incubated for 18 h in serum-free medium, no signifi- 
cant change in cell numbers not a change in cell viability 
was observed. This may be unexpected since serum contains 
the growth factors necessary for cell survival and prolifer- 
ation. However, in our experiments, unstimulated lympho- 
cytes released a small, nonsignificant amount of interleukin- 
2. This basal release of interleukin-2 may have been 
sufficient to maintain lymphocytes in a viable, functional 
state but be insufficient to promote cell replication. 

In the present study, inhibition of phytohaemagglutinin- 
induced release of interleukin-2 by WIN55212-2 and JWH 
015 was observed at concentrations greater than those 
required to displace a radiolabelled cannabinoid receptor 
ligand in receptor binding studies (>I µM) (Felder et at.. 
1995; Showalter et at., 1990). However, the potency of 
WIN55212-2 in the present study is similar to that reported 
by others in studies on a murine macrophage cell line 
(RAW264.7) (Ross et al.. 2000). It is noteworthy that the 

PHA cP55,90 urdr. &. d 
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Kd values reported from cannabinoid binding studies are 

usually higher in experiments where purified receptors or 
transfected cells have been used (Howlett, 1995; Slipetz et 
at.. 1995). This difference has been ascribed to loss of 
activity of lipophilic cannabinoids due to nonspecific inter- 

actions with cells and serum (Ilowiett, 1995; Slipetz et al., 
1995). Furthermore, the pA2 value for the cannabinoid CB2 

receptor antagonist SR144528 reported in this study is 

significantly lower than the pK; value reported for this 

compound on Chinese hamster ovary cells transfected with 
CB2 receptors (Iwatnura et al.. 2001). It is lower than that 

previously obtained by us in studies on epithelial cells 
(Ihenetu et al., 2003), although the potency of SR144528 

in the present study is similar to that reported by others in 

experiments on a murine macrophage cell line (Ross et al.. 
2000). One explanation for this difference may be due to the 
level of cannabinoid CB2 receptor expression in mononu- 
clear cells compared to that in other tissues, coupled with 
the lipophilic nature of these compounds reducing the actual 
concentration of antagonist available at the receptor. Clearly, 
further experiments are required to determine why 
SR144528 is apparently less potent as a cannabinoid CB2 

receptor antagonist on monocytes compared with other 
tissues. 

In line with the present study, it is noteworthy that few 
studies to date have reported functional effects of cannabi- 
noids via cannabinoid CB2 receptors at concentrations less 
than I . tM (Ross et al., 2001). Furthermore, in transfected 
cell lines, the stoichiometry of key regulatory proteins may 
be altered resulting in responses distinct from those found in 
primary cells (Kenakin et al.. 1995). Thus, it seems possible 
that our finding that cannabinoid agonists were less potent 
in human peripheral blood mononuclear cells when com- 
pared to data published by others may reflect a low level of 
cannabinoid receptor expression in these cells. 

Other published work suggests that cannabinoids can 
stimulate cytokine release. In contrast to our findings, 
Derocq et al. (1995) were able to show that low concen- 
trations of CP55,940 significantly (P<0.05) increased 
DNA synthesis in human tonsilar B cells, a primary cell 
system that expresses high levels of cannabinoid CB2 

receptors (Galiegue ci al.. 1995). Other studies showing 
effects of cannabinoids at low concentrations include 

experiments in which the cannabinoid receptor agonists 
CP55,940 or WIN55212-2 caused increased expression of 
IL-8 in HL-60 cells transfected with cannabinoid CB2 
receptors (Jbilo et al.. 1999; Derocq et al., 2000). However, 
these cannabinoid CB2 receptor agonists still increased IL-8 
expression when wild type HL-60 cells were used (I)crocq 
et al., 2000; Jbilo et al., 19ttýt). These findings suggest that 
HL-60 cells have a higher level of endogenous cannabinoid 
CB2 receptor expression than human peripheral blood 
mononuclear cell since, in the present study, the cannabi- 
noid receptor agonist CP55,940 did not induce the release of 
interleukin-2 from peripheral blood mononuclear cells, even 
after incubation for 18 h. 
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Other published work has also shown that cannabinoids 
may either increase or decrease interleukin-2 release from 
immune cells depending on the experimental conditions and 
the cells studied (Press et at.. 1992; Watzl et al., IQQ(). In 
the murine lymphocyte cell line, EL4. IL-2, &9-tetrahydro- 

cannabinol and cannabidiol inhibited phorbol myristyl ace- 
tate/ionophore-induced interleukin-2 mRNA expression and 
interleukin-2 release in a concentration-dependent manner 
(Condie et at,. 196; Jan et al.. 2002). In contrast, in 

phytohaemagglutinin-activated human peripheral blood 
mononuclear cells, A9-tetrahydrocannabinol and cannabi- 
diol did not inhibit interleukin-2 release, although these 
cannabinoid receptor ligands did inhibit the release of other 
cytokines (Watzl et al., 1991), findings that are consistent 
with those reported in the present study. Thus, it appears that 
the choice of cell and the stimulus used to provoke cytokine 
release may influence the inhibitory activity of cannabinoid 
receptor agonists. Such an effect is not unique to cannabi- 
noid receptor agonists and has been noted in studies with 
other classes of agonists (e. g. Kenakin, 1982; Kenakin et al., 
1995). The exact reason for the differences between the 
findings of the present study and those described above is 
still unclear and additional experiments are necessary to 
resolve these discrepancies. 

We and others have shown that a range of cannabinoid 
ligands including WIN55212-2, CP55,940 and Y-tetrahy- 
drocannabinol act as agonists at the peripheral cannabinoid 
CB2 receptor to cause inhibition of tumour necrosis factor- 
a-induced release of interleukin-8 in HT 29 cells (lhenetu et 
al., 2001) and to inhibit adenylate cyclase activity in 
Chinese hamster ovary cells transfected with cannabinoid 
CB2 receptors (Baycwitch et at., 1995), respectively. How- 
ever, in the present study, CP55,940 only marginally and 
nonsignificantly inhibited phytohaemagglutinin-induced 
release of interleukin-2 from human peripheral blood mono- 
nuclear cells while A9-tetrahydrocannabinol had no effect in 
inhibiting this release. Receptor binding studies have dem- 
onstrated that these two agonists have affinity for cannabi- 
noid CB2 receptors on immune cells (I3ouaboula et al., 
1993: (raliegue et al.. 1995; Kaminski et al.. 1992). Thus, 
one explanation for this lack of activity could be due to a 
low level of efficacy combined with a relatively low level of 
cannabinoid CB2 receptor expression. Similar effects have 
been reported in experiments with partial agonists in other 
receptor systems (Kennkin and Beek, 1992). This hypoth- 
esis is supported by the ability of CP55,940 and d9-tetrahy- 
drocannabinol to inhibit the effects of WIN55,212-2. In the 
present study, both compounds shifted concentration-effect 
curves for WIN55,212-2-induced inhibition of interleukin-2 
release, to the right. In the case of CP55,940, the small 
inhibitory effect on interleukin-2 release adds further weight 
to the hypothesis that it is acting as a weak partial agonist at 
cannabinoid CB2 receptors relative to the effect observed 
with WIN55212-2. 

Given the apparent potency of CP55,940 at cannabinoid 
CB2 receptors, reported by others (Showalter et al., 1996), it 
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is possible that the lack of inhibitory effect on phytohae- 
magglutinin-induced interleukin-2 release is because the 
inhibitory effect is negated by additional release of inter- 
leukin-2 induced by CP55,940. Such an effect has been 

reported by others (Jbilo el al., 1999) and could also explain 
the apparent antagonism of the inhibitory action of 
WIN55212-2 by CP55,940. However, this is clearly not 
the case since when human peripheral blood mononuclear 
cells were incubated with CP55,940 for 18 h, no release of 
interleukin-2 was seen, adding support to the hypothesis 
that, in our experiments, CP55,940 acts at cannabinoid CB2 

receptors on human peripheral blood mononuclear cells to 

antagonise the effects of W1N55212-2. 
To test the specificity of CP55,940 in antagonising the 

effect of WIN55,212-2, we studied the effect of CP55,940 in 

antagonising dexamethasone-evoked inhibition of phyto- 
haemagglutinin-induced release of interleukin-2 from 

human peripheral blood mononuclear cells. CP55,940 did 

not antagonise dexamethasone-evoked inhibition of phyto- 
haemagglutinin-induced release of interleukin-2 but margin- 

ally potentiated its effect. In order to investigate whether 
high concentration of CP55,940 evoked the release of 
interleukin-2 on its own, a point which could account for 

its poor activity in inhibiting phytohaemagglutinin-induced 
release of interleukin-2 from human peripheral blood mono- 
nuclear cells, we studied the effect of CP55,940 (10- S M) 

on the release of interleukin-2 from human peripheral blood 

mononuclear cells in the absence of phytohaemagglutinin. 
In these experiments, CP55,940 alone did not stimulate the 

release of interleukin-2 from phytohaemagglutinin. Taken 

together, these results show that CP55,940 appears to be 

specific in antagonising W1N55212-2-mediated inhibition 

of phytohaemagglutinin-induced interleukin-2 release from 
human peripheral blood mononuclear cells and does not, on 
its own, evoke the release of interleukin-2. &9-Tetrahydro- 

cannabinol exhibited similar profiles (data not shown). 
Previously, other laboratories have demonstrated that O9- 

tetrahydrocannabinol antagonised HU293a and HU210 
(nonselective cannabinoid receptor agonists) induced inhib- 
ition of forskolin-stimulated adenylyl cyclase in Chinese 
hamster ovary cells transfected with CB2 receptors (Rayc- 
witch et al., 19%). To our knowledge, the present study is 
the first report of CP55,940 acting as a partial agonist/ 
antagonist at a cannabinoid CB2 receptor-mediated event in 
a native system. 

In summary, we have demonstrated that WIN55212-2 
and JWH 015 evoke inhibition of interleukin-2 release from 
human peripheral blood mononuclear cells. The selective 
cannabinoid CB2 receptor antagonist SRI 44528 antagon- 
ised W1N55212-2 inhibition of phytohaemagglutinin- 
induced release of interleukin-2 from human peripheral 
blood mononuclear cells whereas the cannabinoid CB1 
receptor antagonist SRI 41716A had no effect. Furthermore, 
CP55,940 and &9-tetrahydrocannabinol behaved as partial 
agonists/antagonists under our experimental conditions, 
indicating that they possess affinity for, but low efficacy 

at, cannabinoid CB2 receptors. Thus, this study adds to and 
extends the body of knowledge suggesting that cannabi- 
noids modulate immune cell function and suggests that 
some ligands have partial agonist activity at cannabinoid 
CB2 receptors. The structures of the cannabinoid receptor 
ligands utilised in the above study could therefore serve as 
models for the synthesis of novel and more selective 
cannabinoid compounds for therapeutic use. 
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