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Abstract,

The applicability of computational fluid dynamics (CFD) modelling schemes to
turbulent wall-bounded flows is a matter of concern. In the near-wall region of bounded
flows, the standard high Reynolds number k-€ model is not valid and requires the use of
empirical wall models to mimic the behaviour of this region.

A theoretical study of the physics of prevalent wall modelling techniques showed
that the velocity distribution took no account of the pressure gradient. To determine the
effect of this shortcoming, a typical transient three-dimensional flow was analysed using
current CED methods and the results compared with experimental flow measurements.
Consideration of these results showed that the 'traditional' wall model was unable to
replicate observed flow features in the near-wall region: further analysis of the
computational results confirmed that these poor flow predictions arose from the inability
of the model to consider local pressure gradient effects.

Consequently, a strong case was made for a more robust wall model for use in
conjunction with the standard high Reynolds number k-€ model. A number of boundary
layer analyses were reviewed and Coles' law of the wake (1956) presented as a viable
candidate for the development of a new wall modelling scheme. In theory, Coles' law
(1956) provides a description of bounded flows under arbitrary pressure gradients up to
the point of near-separation and may be extended to the study of reversed flows.

A generic algorithm for Coles' law was prepared and used to study the fundamental

test cases of U-bend and backward facing step flows. In a comparison between
documented experimentation, 'conventional' CFD modelling and Coles' law models of
these flows, the Coles' law model was shown to provide a viable alternative to
'traditional' schemes. Consequently, the Coles' law model of the near-wall region, being

valid for pressure-driven flows, offers an extension to the range of flows for which the

standard high Reynolds number k-€ model may be used.
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1. Introduction,

A wide range of practical problems in engineering relate to fluid flow; typically,
fluid movement is constrained within a bounded channel or a solid body is moving
through a fluid continuum. In either event the interaction of the fluid medium with the
solid surface, relative to which it is moving, is a matter of interest.

Many practical situations occur as transient, or time-dependent, flow with the
geometry of that flow complicating analysis further. The development of new or
improved designs for fluid conduits or of articles that operate within a fluid environment
i1s then demanding. The traditional engineering approach of preparing production
prototypes, both as scaled models and for full scale evaluation is costly. The manufacture
of scaled models for study in wind-tunnels is a specialist field in itself. In conducting
such tests, the measurement techniques used must be considered carefully as the
introduction of metering devices will often distort the very flow that they were intended to
observe. As such, use of practical experimentation as the sole method of optimizing a
design 1s expensive, both in terms of time and expertise, with the end results often being
limited in scope.

Computational fluid dynamics (CFD) offers a scheme for the numerical simulation
of fluid flows that occur in real engineering problems. General CFD modelling techniques
have been validated and improved upon by comparison with experimental studies for a
range of idealised and fundamental flows. However, the assumptions upon which these
models are based may not be obvious to the user and the limited experimental data
available for comparison of more complex flows may lead to the use of a mathematical
model beyond the range of those assumptions upon which it was based. Where the flow
is driven by a pressure gradient, for example, pressure-related effects may not necessarily
be accounted for.

At the heart of all CFD codes lie the equations of conservation of momentum and of
continuity. The accuracy with which they are operated is central to the success of the
model. At present, the storage limitations of current computers require discretisation of
the fluid continuum on a scale larger than that of the finest scales *of fluid motion. For
turbulent flow, where the velocity of fluid particles has both mean afld fluctuating
components, practical solutions to these equations then co;ﬁrﬁént on the time-averaged

behaviour of the flow; this is usually sufficient for most engineering practice.



Modelling schemes then operate a time-averaged approximation to the discretised or
non-continuous flow field, with the turbulent field being predicted by semi-empirical
relationships. Within the core of the flow, such approaches are successful but atthe -
interface between the fluid medium and the solid surface further problems arise. In the
near-wall region, the viscosity of the fluid becomes significant. The local velocity
gradients become increasingly sheer on approach to the wall and to capture this behaviour
would require a great increase in the density of the computational mesh. As the number of
points in the mathematical model increases, so do the computational storage needs and the
solution time. The necessary mesh density, within a finite computational environment will
then limit the range of flow geometries that can be simulated, often requiring mesh over-
simplification.

To this end, the computational modelling of turbulent bounded flows has
traditionally made use of wall models; the dense mesh of the near-wall region 1s replaced
by an empirical model of the boundary layer, accounting for local viscous effects. The
wall model then interfaces with the core model of the freestream at a suitable point beyond
which viscosity may be neglected. In practice, many currently used wall models are based
on relationships prepared for very simple flow situations. The widely used model of
Spalding (1961), for example, is not valid for pressure-driven flows or where there is any
departure from turbulent equilibrium in the flow field. The use of such models beyond the
range of conditions for which they were prepared leads to a reduced quality of numerical
prediction. Where such matters have been taken into account, the conditions for which
these models were validated again limit their use in differing flow conditions (Patel, Rodi
and Scheurer, 1985).

The use of wall modelling as a practical tool offers many advantages in extending
the use of cost-effective schemes to bounded flows, with the inherent saving in the near-
wall mesh density allowing more complex environments to be analysed numerically.
Whilst models for ‘core' flow appear to be very successful, analyses of wall-bounded
flows are still based on empirical methods which may not always be applicable. Thus,
where the use of a wall model is required, it should be generic in nature, being
appropriate across the full range of possible flow conditions. To this end, the

improvement of such schemes is required to cater for the pressure and viscous effects

observed experimentally both in transient flows and in those having complex geometries.
This would increase the range of applicability of wall modelling techniques and provide

greater confidence in computational results.
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The aims of the present work were thus

1) to study the results of a typical engineering problem with laboratory experimental
methods,
i1) to study the transient results of CFD modelling of this engineering problem and

111) to compare these results and, if necessary, propose and develop a more robust

model of the near-wall region.



Theoreti Backeround and Developmen

» Equations of Motion for hree-dimensional, Isothermgal Flyid'

Flow,

The equations of motion governing three-dimensional fluid flow may be constructed
from consideration of the principles of conservation of mass and of momentum. For
isothermal conditions, where there is no significant transfer of heat to or from the fluid,
flow is described by the Navier-Stokes equations, which are an application of Newton's
second law.

In most cases, the only significant body forces acting on the element will be those
arising from the fluid pressure, p, and the gravitational force per unit mass, g.

Furthermore, for cases where pressure only is to be considered, the sum of forces acting

%
on the system in the x-direction, say, 1s ap Further restricting study to the case of a
X

Newtonian fluid (considered to be perfectly elastic, in that stress is held proportional to

strain in the fluid body), then the general equations of motion for a Newtonian fluid with

varying density and viscosity and neglecting gravitational effects are
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The equation of continuity, describing conservation of mass, may then be written as

_8_9__:_ -a—pvx+-§—pvy+ipvz (2.2)

ot ox dy 0z

These equations of motion, known as the Navier-Stokes equations, in conjunction
with the equation of continuity, the density dependence of viscosity and the boundary and
initial flow conditions completely determine the pressure, density and velocity
distributions in a flowing isothermal fluid.

Turbulence may be described as a spatially varying mean flow with superimposed
three-dimensional random fluctuations, which are self-sustaining and enhance mixing,
diffusion, entrainment and dissipation (White, 1991). In the free stream, the flow will
display homogeneous and isotropic behaviour but near to solid boundaries, the effects of
viscosity become important and homogeneity is not present (Tennekes and Lumley,
1972). The flow contains a large number of three-dimensional, entangled vortices, or
eddies, of varying sizes. As such, diffusion of heat, mass and momentum is far greater in
turbulent flow than in laminar, where diffusion results from molecular interaction. The

nature of turbulence is so complicated that a complete analysis and quantification is not
foreseen (White, 1991).

With regard to bounded turbulent flows, a minimal flow analysis should provide

1) velocity profiles and
11) wall friction data.

Even setting the above limited aims for an analysis, the modelling of the simplest
flows involves recourse to a series of empiricisms. Because of the range of flow scales
comprising turbulent flow, a complete study of a fluid continuum by direct numerical

simulation of the Navier-Stokes equations 1s impractical. Emmons (1970) demonstrated
that to reproduce the fine details of turbulent flow in a pipe at Re = 107 would require
1022 numerical operations: even for an optimal computational speed of 1ns per operation,
such a study would take several thousand years. Consequently, direct numerical
simulation is typically limited to low Reynolds number analysis on supercomputers and to
modelling sub-regions of the fluid continuum for specific reasons, such as gaining clearer

insight into the nature of turbulence near a solid boundary (Spalart, 1988).



With regard to practical flow studies, two main approaches have evolved as:

1) statistical analysis, as typified by Tennekes and Lumley (1972) and '\

11) study of turbulent mean flow.

For the majority of engineering applications, sufficient data is yielded by the latter
method as mean velocity and temperature profiles, heat exchange, surface friction and
shear layer thickness data (White, 1991).

Study of turbulent flow may then proceed by considering the fluctuating nature of

the flow variables. A given property of the flow field, such as velocity or pressure, will

fluctuate wildly with time about a mean value. For the generic flow variable, ¢, the

instantaneous value at a point may be written as
b= +¢ (2.3)

where E is the mean and ¢’ is the fluctuating component of the instantaneous value, ¢.

For a fluid continuum described by Cartesian co-ordinates, with x as the streamwise
co-ordinate, y as the normal direction and z representing the cross-flow, the mean velocity
components, Vx, Vy and Vz, have their fluctuating counterparts as Vx, v"y and v,. These
fluctuating components may be significant in comparison with their mean counterparts:
for the turbulent boundary layer on a flat plate, these fluctuations may be locally
equivalent to 11% of the freestream velocity. The solution of the Navier-Stokes equations
for turbulent flow typically makes use of ime-averaging techniques to comment on the
mean values of flow variables (as would be measured by a Pitot-static tube or a pressure
gauge). This process of obtaining time-smoothed forms of the equations of motion and
continuity is known as Reynolds averaging. The time-smoothed equations of continuity
and motion are then gained by substitution of equation 2.3, expressed for velocity and for

pressure, into equations 2.2 and 2.1 respectively. The time-smoothed equation of

continuity 1s then
_8_p_=_(§_y‘_1_'+__§+§_§) (2.4)

and the x-component of the time-smoothed equation of motion 1s

6
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with similar expressions for the y- and z-components of the equation of motion.
The time-averaged equations may be compared with their instantaneous
counterparts, from which it will be seen that the net effect of time-averaging 1s to

substitute V for v and p for p into the relevant equations. Note, however, the presence of

Jd

new terms of the form 5—— PV, Vy, Which arise from the fluctuations in the velocity field of
X

the turbulent flow. These turbulent momentum fluxes arise from the product of terms of

oV

the form v — and are strictly acceleration terms. The turbulent shear, vxvy is not

ox

negligible and 1its analytical form is not known a priori (White, 1991); it is not only

related to the physical properties of the fluid but also to local flow conditions, including
velocity, geometry, surface roughness and the upstream flow history. As no further
physical laws are available to model the turbulent shear directly, this inevitably leads to a
closure problem.

However, the time-averaged conservation of momentum equation may be
rearranged to show the turbulent inertia terms in a form where they behave mathematically
as stresses. On a historical basis, many analytical methods achieve closure by modelling
these terms as 'turbulent or Reynolds stresses’, using an eddy viscosity concept after
Boussinesq (1877). Whilst attempts have been made to construct turbulent conservation

equations, these too lead to extra unknowns that cannot be evaluated readily from first

principles.



Modellin

Time-averaging of the equations of motion for isothermal fluid flow then yields six
Reynolds stress components that can only be defined by knowledge of the detailed
turbulent structure (White, 1991) and thus offers a closure problem, in that there are
more unknowns than equations to solve them. Turbulence modelling may be described as
the attempt to model equations for the spatial and temporal development of these turbulent
fluxes. Such equations can then be used in conjunction with the mean flow equations to
solve for the mean flow field. It should be noted though, that in providing approximate or
empirical equations to model the Reynolds stresses, that the solution becomes
approximate as well.

~ In seeking to describe the k-€ turbulence model, it is then useful to consider the
principles of eddy viscosity modelling upon which it is based. All eddy viscosity models
are based on a common hypothesis; by analogy with the molecular flux of momentum, the
turbulent flux of momentum is held to be proportional to the gradients of the mean tlow
field. In a laminar, Newtonian fluid, the molecular fluxes of momentum are given by

Stokes' law of viscosity as

OV, avy) (2.6)
dy Ox

Txy = u(

The eddy viscosity model assumes that the turbulent fluxes of momentum can be

approximated to by analogous expressions of the form

_ pV;V;, - u{a_v;f_ + .a_v__i.) - ..2.. pksxy (2.7)

In the above expression, W, is the eddy viscosity, but, unlike the laminar viscosity,
1L, it is not dependent upon fluid properties but is determined by the state of turbulence.

The eddy viscosity often varies significantly across a given flow field and from one field
to another and, as such, no universal value may be ascribed to it. k, in the above

expression, represents the kinetic energy of turbulence and may be written as



V.V, +V.Vo + V.V,
o= XX zzy 2vz (2.8)

which is half the sum of the variances of the velocity fluctuations per unit mass.

So the Reynolds stresses may then be expressed in terms of one unknown, that
being the eddy viscosity, M., and this provides a basis for turbulence modelling. Most
models for eddy viscosity relate it to the large scale, energy carrying eddies in the flow

field by an expression of the form

e & pViO] (2.9)

where 9; and v; are the length and velocity scales respectively of the largest eddies. This is
a physically tangible relationship, in that these characteristic scales can be prescribed
across the flow field with greater ease than for the eddy viscosity, H;.

The most widespread, and hence most documented, approach is the k-& model.
Furthermore, the k-€ model offers the advantage of being able to mimic the effects of
advection. The derivation of the transport equations for the k-€ model for isothermal flow
is discussed by Launder and Spalding (1974). By dimensional reasoning, the following

arguments are made as
vi o Yk (2.10)
3/2
and 5 o 1% (2.11)

These statements are more 'universal’ than the use of Prandtl's mixing length theory
(1925) upon which simpler zero- and one-equation turbulence models are based. Since
the characteristic scales for turbulence are now directly linked to the local turbulent
quantities of kinetic energy, k, and dissipation, €, these quantities may be said to
characterize the local state of turbulence.

Substituting for equations 2.10 and 2.11 into equation 2.9, then

He = Cup]—g- (2.12)



where C; 1s an empirical constant, constant over a wide range of strong-strain flows
(Rodi, 1975).

Values for k and € are then obtained from the semi-empirical transport equations,’,
which, neglecting bouyancy effects, state

pll:i(y—’-.-a-lf-)+—§—(gi.§-}i)+i(ﬁi.§—l-{-)+pG-pe (2.13)

pm=i(&.§§)+-a—(&.2§)+-§- E—‘-.g—e- +C.»;1I1’13"G-C,.;2pf3 (2.14)
dz \% oz k k
Note that the above equations are derived from manipulation of the instantaneous
flow equations. In equation 2.13, for turbulent kinetic energy, G represents shear
generation - the production of turbulent kinetic energy from interactions between the mean

and the turbulent fields - and is modelled as

3v—x(3if"£ ?’_\7{)+BV£ (av; av;)

—_— s o e
dy \dy oJx] 9dz\dz Ix

pG=L1: +E(E+E)+E(E+E (2.15)
ox \dx dy/ dz \dz 9y
dx \0x 0z OJy \dy 0z

Equation 2.14, for turbulent dissipation, models the effects of dissipation largely by
intuition and dimensional reasoning (Launder, 1984). The term Cg;p f G denotes shear

generation, C,;;;gpek3 viscous dissipation and Ce¢; and Cgy are empirical model constants.
The model constants oy and O are the turbulent Prandtl/Schmidt numbers fork and €
respectively.

In both equations, the turbulent diffusion of k and €, due to the turbulent
fluctuations of velocity and pressure, is modelled using the eddy viscosity concept. The
transport equations have modelled terms for diffusion and for sources and sinks and
hence model the local processes of turbulent generation and destruction. As such, solution
of these equations provides the spatial and temporal evolution of the characteristic length
and velocity scales, since these are governed by mean advection and diffusion and also by
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loc:al processes of turbulent generation and destruction.

The additional computational cost of solving two more transport equations must be
considered as the complexity of the overall mathematical model is significantly increased.
The model is highly non-linear and shows strong coupling between various of the
transport equations - these factors tend to destabilise the convergence of the numerical
solution. Furthermore, the standard k-€ model, as presented, is only valid for high
Reynolds numbers. For bounded flows then, wall functions are required to connect the

fully turbulent region of flow with the conditions prevalent at the wall.

The equations of motion for isothermal fluid flow, as considered so far, provide a
continuous description of the time-averaged mean field of flow, in as much as their
solution, if possible, would yield information pertaining to an infinite number of degrees
of freedom. Whilst it is believed that the solution of these equations can be used to
describe three-dimensional flows completely, current supercomputers are neither fast
enough nor have sufficient storage to solve the equations directly for the relevant time and
length scales of general engineering problems. Turbulent motion contains scales
significantly smaller than the extent of the flow domain, typically in the region of 10*3
times smaller. As such, resolution of such fine scales using a numerical procedure would

require spatial discretisation far beyond current computational capabilities. Therefore, a
solution is sought by making use of a discrete or discontinuous model of the flow; the

finite element method (FEM) approach to this problem will now be considered.

ini lement Mocd

The purpose of FEM is to reduce the continuous problem, having an infinite
number of degrees of freedom, to a discrete problem, with a finite number of degrees of
freedom, described by a system of algebraic equations.

As such, the continuum region is divided into a number of simply shaped regions,
known as elements. By dint of having used an Eulerian description of fluid motion in the
analysis to date, these elements are held to be fixed in space. Inside each finite element
then, the flow variables are interpolated spatially in terms of values to be determined at a
set of nodal points. The partial differential equations covering the flow region as a whole
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are replaced by ordinary differential or algebraic equations within each element, for each
nodal point described. The system of equations thus provided may then be solved by a
suitable numerical technique to yield values of v, p, k and € at discrete points throughout
the region.

For 1sothermal fluid flow, the governing equations of motion are seen as the
" equations of continuity and of conservation of momentum, given by equations 2.4 and
2.5 respectively, on a time-averaged basis. Within each element, the velocity and pressure

fields are approximated by functions of the form
vi(x,t) = V(1) (2.16a)
P(x,t) = yP(t) (2.16b)

where V; and P are column vectors of element nodal point unknowns and @ and y are
column vectors of interpolation functions.
These approximations may then be substituted into the field equations and boundary

conditions to provide equations of the form
f1(o, ¥, Vi, P) =Ry (2.17a)
f2(p, Vi) =Rz (2.17b)

where R1 1s a residual, or error, resulting from the use of these approximations for the
momentum equation of 2.17a. Likewise, R2 is the corrcsponciin g residual in the
conservation of mass relationship, given as equation 2.17b. The Galerkin form of the
method of weighted residuals (FIDAP Theory Manual, 1994) then seeks to reduce these
errors to zero and hence provide a solution to the flow problem considered.

These matrix equations are used to provide an overall model of the flow region,
consisting of an assemblage of elements with interelement continuity of the flow variables
being enforced by appropriate summation of equations common to adjacent elements.
This approach, known as the direct stiffness approach, gives a global system of matrix

equations spanning the entire region of flow.,
Principal advantages of the FEM may then be listed as
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1) inherent flexibility in treating arbitrarily complex flow geometries and boundary
conditions,

ii) use of unstructured grids, such that areas of interest can be studied 1n greater 3
detail without the need for excessive numbers of nodal points throughout the entire
computational gnid representing the flow domain,

iii) natural and correct imposition of boundary conditions on curved boundarnies
and

iv) the mathematical formulation used allows for derivation of comprehensive error
estimates; hence the determination of accurate solutions may be performed to

user-presribed tolerances.
2.3.2, OSolution Procedures,

The solution procedures used to implement the FEM will now be considered in
conjunction with the particular computational package used in this project, namely
FIDAP, which is a proprietary package, produced by Fluid Dynamics International, for
use both as a commercial and a research tool.

In keeping with many current, commercial codes, analysis of the flow regime 1s
subdivided into a number of tasks as

1) generation of a mesh of nodal points pertinent to the problem geometry and
specification of boundary and initial conditions,

i1) specification of the class of problem and necessary equations to be

solved, the solution procedure, fluid and material properties and integration with the
relevant boundary and initial conditions and element data to create a solution input

file and
iii) post-processing facilities, allowing for computation and graphical display of

derived variables and quantities.

The main solution types may be subdivided into two main categories as

i) steady-state flows and

ii) transient or time-dependent flows.

13



For steady-state flows, or for transient analyses using an implicit time integrator, a
non-linear matrix system of equations requires to be solved - once for steady-state and at
each time step for transient analysis. A

This solution is the most time-consuming stage of the analysis, typically accounting
for up to 80% of computational resources used. Consequently, the choice of solution
algorithm can govern and ultimately limit the practical size of the problem considered.

Two distinct approaches to the solution of the matrix system of equations may be seen as

i) fully coupled solutions and

i1) sequential, or segregated, solutions.

The fully coupled approach solves all the equations simultaneously whereas the
segregated approach decomposes the matrices and solves for each variable in a sequential
fashion. Practical experience shows the fully coupled approach to be the best for all but
the largest of two-dimensional problems, whilst the segregated solver is most practical
for very large two-dimensional and the majority of three-dimensional problems, where the
cost and availability of computer resources (in terms of storage of the global systems
matrix and CPU time) become of critical interest.

Although the segregated solver has guaranteed substantially reduced disc storage
requirements in comparison with the fully coupled solver, its segregated and uncoupled
nature requires more iterations to converge on a solution. However, as the size of the
mesh of nodes for the problem rises, the cost of each full segregated iteration is
increasingly less than for fully coupled iterations. As such, a 'trade-off is observed
between performing a larger number of less expensive iterations or fewer, more

expensive ones with the fully coupled solver.

When modelling a bounded flow, the local conditions in the region of the wall must
be considered. In the freestream, the turbulent fluctuations are largely isotropic in nature
but near to the wall, the presence of a solid boundary will limit fluctuations perpendicular
to the main flow direction. In considering the fluctuating velocity components, the
component vy has the greatest magnitude, being unimpeded by the wall and being
reinforced by the freestream whereas vy is the smallest of the fluctuating components. Vy
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has an intermediate value, even for two-dimensional flow (although it has no direct effect
on two-dimensional mean flow). Figure 2.1 shows this phenomenon for turbulent flow

through a smooth pipe, with r and z representing the radial and axial flow directions

respectively.

¢

Figure 2.1. Showing turbulent fluctuations in velocity for flow along a pipe.

The fluctuations in the direction of flow are seen to be greater than those
perpendicular to the flow. Whilst there is a tendency to isotropy near the centreline of the
pipe, there is a marked difference between the two fluctuations as the wall is approached.

The laminar and virtual stresses across the pipe cross-section are shown as Figure
2.2 below.

Figure 2.2. Showing the variation of stresses across the flow in a pipe.
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On inspecting Figure 2.2, the relative importance of the viscous (laminar) and
Reynolds stresses may be compared, with regard to the variation in momentum flux over

the cross-section of the flow. Given that T,, is a summation of the viscous and Reynolds

stresses, then the rapid decrease towards zero in the Reynolds stress, pvxvz, on
approaching the wall implies that the major component of the term Ty, which is still
significant in this region, is the viscous stress. The decline in the Reynolds stress close to
the wall arises from the presence of the wall itself, which acts to damp out the Reynolds

stress on final approach to the wall (van Driest, 1956). As such, in the near-wall region,
any proposed mathematical model of the flow must be able to model the effects of

viscosity in order to be of service. The shear stress, vxVy, has a smaller value than any of
the fluctuating components but is of fundamental importance as it lies at the root of
analytical problems. For an impermeable boundary, a no-slip condition for velocity will
prevail, such that the local velocity is zero at the solid surface. However, the fluctuating

velocities are resistant to wall damping and are still significant at y/0 = 0.0001 (where 0 is
the thickness of the boundary layer). As such, to capture the velocity profile close to the
wall computationally would require a very fine computational mesh.

This deviation from isotropic or homogeneous turbulence near the wall and the
importance of viscous effects near the wall limits the validity of the k-€ model in this
region: the k-€ model requires isotropic flow at high Reynolds numbers and also cannot
make allowance for viscous effects. Further practical drawbacks to the use of the k-¢

model in the near wall region are presented by Figure 2.3.
]

Pressure gradients

a strong favourable
b flat plate

¢ mild adverse

d strong adverse

Y_
Ve, e very strong adverse
f separating flow
0
0 Y l
o

Figure 2.3. Typical turbulent boundary layer velocity profiles for various pressure
gradients, after White (1991). '
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In the above diagram, v, denotes the freestream velocity, y denotes the normal

distance from the wall and & the thickness of the boundary layer. On inspecting the
velocity profiles in Figure 2.3, it will be seen that as the pressure gradient becomes
progressively more adverse, the general form of the profiles develops an increasing dip
below the convex form of profile ‘a'. This departure from the response to a favourable

pressure gradient begins at about -g- = (0.2 and corresponds to the onset of a wake-like

behaviour in the outer, fully turbulent region of the boundary layer. The velocity profiles

appear to ‘collide’ with the solid boundary at g”- = 0. Actually, the profiles will all drop

linearly to zero within a thickness too small to be seen here. This presents a modelling
problem; such sharp velocity gradients would necessitate use of an extremely fine mesh in
the vicinity of the wall, leading to excessive computational requirements, both in terms of

memory space and solution time.

]
1€ blisnment oI Yy¢ 2 VY ) N10d¢€ ne bounds?

Given the inability of the k-€ model to predict the effects of viscosity and coupled
with the excessive computational demands that would arise from attempting to mimic the
sharply varying velocity gradients in the near-wall region, it would seem practical to
model the boundary layer with methods other than the k-€ model. This is typically done
by use of so-called wall laws, where the boundary layer is modelled by use of semi-

empirical equations that predict variation of the flow properties from the solid boundary
out into the flow to such a point as the k-€ model becomes practical and valid.

With regard to these boundary layer profiles, Prandtl and von Karman proposed
that they consist of a number of layers as

i) an inner layer, dominated by viscous, or molecular, shear,
ii) an outer layer, dominated by turbulent (eddy) shearing and
iii) an overlap layer, where both types of shear are important.

Prandtl (1933) suggested that the velocity profile for the inner layer is dependent

upon the wall shear stress, To, on various fluid properties and upon the distance from the
wall, y, but not on the freestream parameters. Therefore, an inner law would be a
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function of the form

V=1{to, p, 1, y) (2.18)
von Karman (1930) proposed an outer law, where the presence of the wall acted as
a source of retardation to the flowing fluid, such that /{y) { v... He suggested that the
outer law would be independent of viscosity but that it would be related to the wall shear

dp..
stress, the boundary layer thickness, 8, and to the freestream pressure gradient, '?df;_c_
Therefore, an outer law would be a function of the form
v g( S p-. (2.19
Voo V= 81T s Mo Yo Uy 77 .
Vv 0s Py Y Ix )

Note that this outer law is expressed as a velocity defect, v,.- V.

For the overlap layer, at some finite, intermediate point, a smooth merging is then

required between the inner and outer layers as

Vinner = Vouter (2.20)

Practical forms of the above laws may be derived from experiment after the use of
dimensional analysis, which provides the following insight:

Y —— &.) . . p——
Inner law -VY; t{ ” : A / %Q- (2.21)
V_ - V dp-
o X : — -5- e
Outer law = g(a. §) E 0 (2.22)

Equation 2.22 is presented as a velocity defect law - the defect in velocity arising

from retardation of the flow due to wall effects. At a given position, x, along the flow

then, the defect shape, g%). will depend on the local pressure gradient parameter, E.

Note also the use of the wall friction velocity, v°, used to present the wall laws in a
non-dimensional form. The wall friction velocity may be considered to be a measure of
the turbulent eddying or, alternatively, to be a correlation between the fluctuating velocity

components (Schlichting, 1979).
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Inspecting equations 2.21 and 2.22, the overlap law may be written again as

B =

V

Here the function f contains a multiplicative constant, whilst the function g has an
additive constant. As such, equation 2.23 can only be true if both f and g are logarithmic
constants, yielding for the overlap layer

Inner variables Y-=J11nZ¥ + B (2.24)
v X \%
.. /= V
Outer vanables =.1l In A + A (2.25)
A K §

X, the von Karman constant, and B are held to be near-universal constants for
turbulent flow past smooth, impermeable walls, where xk=0.41 and B=5.0 (Coles and
Hirst, 1968). The constant A, however, is seen to vary with the pressure gradient
parameter, &, the consequences of which will be seen later.

The velocity profiles presented in Figure 2.3 may be usefully redrawn, making use

of the following dimensionless variables

u'l' — .x‘. (2-26)
\4
and y* = Y: (2.27)

It is interesting to note that the normalised distance from the wall, y*, may also be
viewed as a local Reynolds number, hence being useful in describing the nature of the

boundary layer {low.
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Figure 2.4. Dimensionless velocity profiles for a turbulent boundary layer, after White
(1991).

Straight away, it can be seen that, excepting the case of near-separating flow, all the

curves for the various pressure gradients condense to one logarithmic relationship in the

overlap region, for 35 < y* < 350 . Beyond this point, however, the experimental curves
either turn upwards into the outer, wakelike layer or downwards, into the inner (viscous)

layer.
For the case of a near-separating flow, as v* tends to zero, ut becomes large and y*

very small, Hence, near a point of separation, scaling in terms of g is not useful; the
outer law is still of merit, but the corresponding inner and overlap layers become

vanishingly small.
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Whilst Figure 2.4 validates the inner and overlap laws, in that all the experimental
data collapse onto one curve, the outer law is less easy to defend by a similar process.

Figure 2.5 demonstrates this by replotting the curves of Figure 2.3 using outer variables

¥

as

Pressure gradients

a strong adverse

b mild adverse

¢ flat plate

d strong favourable

0.0 0.2 0.4 y 0.6 0.8 1.0

o
Figure 2.5. Turbulent boundary layer velocity profiles, expressed in terms of outer law

variables, after White (1991).

Each velocity profile shown has a different pressure gradient parameter, &, and
hence a different value for the constant, A. No collapse onto a universal curve is seen but,

for a given value of &, an unique profile would be obtained.

From Figure 2.4, it can be seen that the inner law rises from the no slip boundary
condition at the wall to merge smoothly, at approximately y+ = 30, with the overlap log-
law, as expressed by equation 2.24. Very close to the wall, over a region too small to be
shown in the diagram, the presence of the wall ‘damps out' the effects of turbulence and
the boundary layer is thus dominated by viscous shear, As such, for very small values of

y, the velocity profile is linear as

y*r<ssS 1= -'fl-yz or ut=y*t (2.28)
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This very thin region near the wall is known as the viscous (laminar) sub-layer and,

by general agreement, has a thickness Ogp = 5—1’-, where J*L 1s often referred to as the
Y Y

viscous length scale of the boundary layer.

In the region 5 < y* < 30, the buffer layer, the velocity profile is neither linear nor
logarithmic but 1s seen to merge smoothly between the two.

As such, separate equations are used to study the sub-layer, buffer layer and log-
layer, using the identity y* to select the appropriate set of equations. However, various
attempts have been made to provide a combined or universal form of these equations for
general use.

Reichardt (1951) proposed that

ut = -i—-ln( 1+ 0.4y*)+ 7.8{1-e(-y*/11)- i’—;—e(' 0-33)’*)} (2.29)
This equation corresponds extremely well with experimental data from the wall up

to y* = 300 and beyond. However, when first proposed, this equation was awkward to

implement under the computational conditions then prevalent and so a later and simpler

model, proposed by Spalding (1961), has seen widescale usage as

y+ = ut + e xBiexut. 1. Ku+-(Ku2_"')2 - .(KUT-'-P (2.30)

Spalding's equation provides a very good fit to inner law data, from the wall all the

way to a point (around y* ) 100) where the outer layer begins to rise above the logarithmic

curve. Lindgren (1965) showed experimental results for fully developed pipe flow with a
favourable pressure gradient (at § = -2) that gave values for V in good agreement with
Spalding's work, from very close to the wall up to y* ) 300, at which point a slight wake
was evident in the outer layer.

However, it must be noted that neither Reichardt's nor Spalding's models are
designed to cater for the effects of advection. As such, in regions where the effects of
advection are significant, any results gained must be viewed with suspicion.

As mentioned in Section 2.4.1., the validity of the outer law has proven less easy to
verify. The outer region of a turbulent boundary layer displays a complex, nonlinear
memory related to upstream events - this means that velocity distributions are dependent

upon upstream, as well as local, conditions (Schofield, 1981). Clauser (1954,1956) set
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out to address this problem by considering certain boundary layers with adverse pressure
gradients. Clauser limited this study to cases where the boundary layer was subject to a

constant force history and thus could be described in terms of local parameters alone.

The external forces on a boundary layer may be seen as the pressure gradient, ?1%’
and the shear stress at the wall, tg. Thus, for a boundary layer with a constant force

history, which Clauser termed an 'equilibrium boundary layer', a non-dimensional ratio

of forces may be written as
* d
=8 P
3 o X (2.31)

where & is the displacement thickness of the boundary layer, defined as

* j (PosVee - PVMy

S = o (2.32)

PecVes

The displacement thickness is more rigorously defined than the boundary layer
thickness, 0, and may be viewed as the thickness through which the freestream density

and velocity would have to act in order to provide the same mass flow deficit as the

boundary layer.

Clauser expected that for the equilibrium layer, with constant B3, the mean and

fluctuating velocity fields would be dynamically similar at all stations (provided fine scale

eddies are neglected). Clauser then considered the only documented equilibrium boundary
layer then known - the case of zero pressure gradient, for which it is well established that

- - r(-’i) (2.33)
v S
Such a velocity defect law will predict behaviour from the freestream almost down

to the wall. Clauser reasoned that a defect law of the same form as equation 2.33 should
be valid for equilibrium layers in flows with a pressure gradient. Clauser then
demonstrated experimentally that a boundary layer with varying pressure, p.,(x), but with
constant equilibrium pressure gradient parameter, B, is in turbulent equilibrium in as
much as all the gross properties of the boundary layer can be scaled by a single parameter.

Clauser saw the most relevant scaling parameter for equilibrium turbulent flows as the
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defect thickness, A, where

-V-V »
=] — = . A= 34) -
R L S e 2 @34 .

where A is a measure of the local skin friction, Cy.

Velocity profiles can then be scaled with L anda shape factor, G, which would
A

remain constant throughout the equilibrium layer as

-v“-VZ
Gs=.1_f ( - )dy (2.35)
A \'
In fact, it can be shown that for various, discrete values of the equilibrium
Vo= V
parameter, 3, that the data do collapse beautifully onto one curve for > VSs. g-, as
seen in Figure 2.6.
y
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Figure 2.6. Equilibrium defect profiles, as correlated by Clauser's equilibrium pressure

gradient parameter, 3, after White (1991).

24



Clauser's work was a significant step forward in modelling the outer region of
certain boundary layers but a number of shortcomings were experienced as

i) non-equilibrium flows deviate in shape from the similiarity profiles of Clauser:

ii) the equilibrium shapes have no simple analytical form for use in an engineering

theory and

iii) for the case of near-separating flow, v* approaches zero and so is no longer

suitable as a scaling parameter.

As the adverse pressure gradient increases, v* tends to zero and 3 to infinity.
Furthermore, the logarithmic layer thins and ultimately vanishes and wall co-ordinates

become 1nappropriate (see Figure 2.4); as such, a more appropriate velocity scale 1s

required.

In modelling the boundary layer, a single, universal equation for the velocity
profile, also catering for the effects of advection, would be highly desirable. In reviewing
the approaches to boundary layer modelling considered so far, each of these techniques
appears to be valid for a limited range of conditions only. Reichardt's and Spalding's

models of the inner and overlap layers cannot account for advective effects, given that

they are based upon zero pressure gradient flows, and Clauser's model of the outer layer

is only valid for equilibrium flows in the absence of separation.

Another approach with much wider potential use was proposed by Coles (1956).
Coles studied a considerable range of reported experimental results and observed that
deviations, in the form of excess velocity, of the outer layer above the predictions of the
logarithmic law (see Figure 2.4) take a 'wake-like' shape when viewed from the
freestream.

Coles then reappraised the description of the mean velocity profile for two-

dimensional flow near the wall, given by equation 2.21 as

-
v* \/
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and that for the overlap layer, given by equation 2.24 as

and proposed that the mean velocity profile for a turbulent shear flow would be of the

form

i‘—-’- = f‘y\‘:*) + h(x,y) (2.36)

Coles found that for certain common, special cases, such as uniform pipe flow or

the boundary layer over a flat plate, that the above expression may be rewritten as

% _ f(y:* ) e (H%) (2.37)

where I1 is a parameter independent of both x and y.
Now, outside the viscous sub-layer, the logarithmic variation of the function f in
equation 2.37 led to

llv—;i =F (H,-g-) (2.38)

where V=vyaty = d.

The above velocity defect law implies that loss of momentum is independent of
viscosity of the fluid. This is consistent with the idea that turbulent rather than viscous
transport mechanisms are predominent outside the viscous sub-layer. This also agrees
with experimental observations that the momentum defect is sensitive to the turbulence
intensity outside the boundary layer but not to surface roughness at the solid boundary
(FIDAP Theory Manual, 1994).

Coles then studied the function h(x,y) in the general mean velocity equation,
equation 2.36, in conjunction with a wide range of experimental data at large Reynolds
number. Coles found that various mean velocity profiles were quite systematic, in that

they had a common form, once expressed in the co-ordinates (ut,yt). Indeed, for a

number of such profiles with the same defect law (common IT), despite displaying

marked differences in environment, the same form was observed for each, as seen below

in Figure 2.7 overleaf.
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Figure 2.7. Displaying the similarity in velccity profiles having a common wake

parameter, I, but differing wake function, w, and streamwise force histories, after Coles
(1956).

This suggested to Coles that the solution to the defect law lay not in the study of the
function F in equation 2.38 but in the original function g in equation 2.37, which gives
the departure of the mean velocity profile from the logarithmic law.

Figure 2.8 below shows data from three equilibrium flows ( Clauser series I and 11
and from Wieghardt(1943)).

yV
0.001 001 °V1 o4 1.0
0
10
o
v*
20
30

Figure 2.8. A comparison of the flow profiles of three documented experimental
equilibrium flows, after Coles (1956).
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These results show striking resemblance to one another, each displaying marked
‘antisymmetry' about the midpoint. At this stage in the analysis, Coles then plotted an
arbitrary profile taken from a non-equilibrium flow and found the same behaviour there.

This allowed Coles to rewrite equation 2.36 as
__ ¥

The introduction of a second universal function to the mean velocity profile, used to
describe the departure from the logarithmic law, is then Coles' wake hypothesis, the
function w (-;-) being the law of the wake. Coles' law of the wake then provides a

complete and fairly accurate description of flows, whether in equilibrium or not (Das,
1088).

Coles argued that if IT were independent of x then the functions g ‘H%) and I1w (g‘)

would be functions of }é- alone. This argument corresponded with Clauser's definition of

an equilibrium flow. However, Coles' work is felt to be more far reaching than that of
Clauser; although equation 2.39 is a restricted form of equation 2.37 (in turn a special

case of equation 2.36) it is considered to apply to non-equilibrium flow.
To test the validity of the wake hypothesis, Coles required to define the boundary

layer thickness, 0, and to prescribe a normalizing factor for the function w. The

. - *
displacement thickness, 6 , may be computed from equation 2.32 and used in conjunction

with the mean velocity profile of equation 2.39 to provide

5 = 8_‘—’_—:(-1- +1 f de) (2.40)

Viik K S

where w 1s set to be the maximum value of w.

As such, a convenient first normalizing condition is

wi
f Ydw = 1 (2.41)
0
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and a second condition is suggested by the nearly antisymmetric form of the observed

curves. The maximum value of w occurs very near to =1 provided that

0

=w(l)=2 (2.42)

The parameter I1 was then found to be related to the local friction coefficient,

Cf = 2V*2/V— 2 > by

Vi -llc-ln(ﬁ-‘i +B+211 (2.43)

and to the displacement thickness by

KSB_‘“’}: 1 +11 (2.44)
Vv

By hypothesis, w (}é-) is an universal function so that 9 is uniquely defined in terms

*
of 6 by the normalizing conditions of equations 2.41 and 2.42. When considered with
equations 2.43 and 2.44, plus the identity

(8 V1

(ir) (ﬁL) (2.45)

¥

all five dimensionless parameters ‘—’l %— dv* O —VL and Il or 8—1- are determined. A
ov*
complete analytic description of the mean velocity field is then provided, which implies

.<

complete knowledge (at least within the boundary layer approximation) of streamline
pattern, shearing stress field and the local rate of transfer of energy from the mean flow to
the turbulent flow field.

Practical usage of Coles' law of the wake is discussed by White(1991), who notes

that a curve fit may be provided for the function w as

W(B)— smz(E-n) 3n?-2n° * (2.46)

where n = <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>