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The applicability of computational fluid dynamics (CFD) modelling schemes to 
' 

turbulent wall-bounded flows is a matter of concern. In the near-wall region of boundeil 

flows, the standard high Reynolds number k-e model is not valid and requires the use of 

empirical wall models to mimic the behaviour of this region. 
A theoretical study of the physics of prevalent wall modelling techniques showed 

that the velocity distribution took no account of the pressure gradient. To determine the 

effect of this shortcoming, a typical transient three-dimensional flow was analysed using 

current CFD methods and the results compared with experimental flow measurements. 
Consideration of these results showed that the 'traditional' wall model was unable to 

replicate observed flow features in the near-wall region: further analysis of the 

computational results confirmed that these poor flow predictions arose from the inability 

of the model to consider local pressure gradient effects. 
Consequently, a strong case was made for a more robust wall model for use in 

conjunction with the standard high Reynolds number k-e model. A number of boundary 

layer analyses were reviewed and Coles'law of the wake (1956) presented as a viable 

candidate for the development of a new wall modelling scheme. In theory, Coles'law 

(1956) provides a description of bounded flows under arbitrary pressure gradients up to 

the point of near-separation and may be extended to the study of reversed flows. 

A generic algorithm for Coles' law was prepared and used to study the fundamental 

test cases of U-bend and backward facing step flows. In a comparison between 

documented experimentation, 'conventional' CFD modelling and Coles'law models of 

these flows, the Coles' law model was shown to provide a viable alternative to 
'traditional' schemes. Consequently, the Coles' law model of the near-wall region, being 

valid for pressure-driven flows, offers an extension to the range of flows for which the 

standard high Reynolds number k-e model may be used. 
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A wide range of practical problems in engineering relate to fluid flow-, typically, 
fluid movement is constrained within a bounded channel or a solid body is moving 
through a fluid continuum. In either event the interaction of the fluid medium with the 

solid surface, relative to which it is moving, is a matter of interest. 

Many practical situations occur as transient, or time-dependent, flow with the 

geometry of that flow complicating analysis further. The development of new or 
improved designs for fluid conduits or of articles that operate within a fluid environment 
is then demanding. The traditional engineering approach of preparing production 
prototypes, both as scaled models and for full scale evaluation is costly. The manufacture 
of scaled models for study in wind-tunnels is a specialist field in itself. In conducting 
such tests, the measurement techniques used must be considered carefully as the 
introduction of metering devices will often distort the very flow that they were intended to 

observe. As such, use of practical experimentation as the sole method of optimizing a 
design is expensive, both in terms of time and expertise, with the end results often being 

limited in scope. 
Computational fluid dynamics (CFD) offers a scheme for the numerical simulation 

of fluid flows that occur in real engineering problems. General CFD modelling techniques 
have been validated and improved upon by comparison with experimental studies for a 
range of idealised and fundamental flows. However, the assumptions upon which these 
models are based may not be obvious to the user and the limited experimental data 

available for comparison of more complex flows may lead to the use of a mathematical 
model beyond the range of those assumptions upon which it was based. Where the flow 
is driven by a pressure gradient, for example, pressure-related effects may not necessarily 
be accounted for. 

At the heart of all CFD codes lie the equations of conservation of momentum and of 

continuity. The accuracy with which they are operated is central to the success of the 

model. At present, the storage limitations of current computers require disciretisation of 

the fluid continuum on a scale larger than that of the finest scales of fluid motion. For 

turbulent flow, where the velocity of fluid particles has both mean and fluctuating 

components, practical solutions to these equations then comment on the time-averaged 
behaviour of the flow; this is usually sufficient for most engineering practice. 



Modelling schemes then operate a time-averaged approximation to the discretised or 

non-continuous flow field, with the turbulent field being predicted by semi-empirical 

relationships. Within the core of the flow, such approaches are successful but at the 
interface between the fluid medium and the solid surface further problems arise. In the 

near-wall region, the viscosity of the fluid becomes significant. The local velocity 

gradients become increasingly sheer on approach to the wall and to capture this behaviour 

would require a great increase in the density of the computational mesh. As the number of 

points in the mathematical model increases, so do the computational storage needs and the 

solution time. The necessary mesh density, within a finite computational environment will 

then limit the range of flow geometries that can be simulated, often requiring mesh over- 

simplification. 
To this end, the computational modelling of turbulent bounded flows has 

traditionally made use of wall models; the dense mesh of the near-wall region is replaced 
by an empirical model of the boundary layer, accounting for local viscous effects. The 

wall model then interfaces with the core model of the freestream at a suitable point beyond 

which viscosity may be neglected. In practice, many currently used wall models are based 

on relationships prepared for very simple flow situations. 'Me widely used model of 
Spalding (1961), for example, is not valid for pressure-driven flows or where there is any 
departure from turbulent equilibrium in the flow field. The use of such models beyond the 

range of conditions for which they were prepared leads to a reduced quality of numerical 
prediction. Where such matters have been taken into account, the conditions for which 
these models were validated again limit their use in differing flow conditions (Patel, Rodi 

and Scheurer, 1985). 

The use of wall modelling as a practical tool offers many advantages in extending 
the use of cost-effective schemes to bounded flows, with the inherent saving in the near- 

wall mesh density allowing more complex environments to be analysed numerically. 
Whilst models for'core'flow appear to be very successful, analyses of wall-bounded 
flows are still based on empirical methods which may not always be applicable. Thus, 

where the use of a wall model is required, it should be generic in nature, being 

appropriate across the full range of possible flow conditions. To this end, the 

improvement of such schemes is required to cater for the pressure and viscous effects 

observed experimentally both in transient flows and in those having complex geometries. 

This would increase the range of applicability of wall modelling techniques and provide 

greater confidence in computational results. 
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The aims of the present work were thus 

i) to study the results of a typical engineering problem with laboratory experimental 

methods, 
ii) to study the transient results of CFD modelling of this engineering problem and 
iii) to compare these results and, if necessary, propose and develop a more robust 

model of the near-wall region. 
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2. Theoretical Background and Development. 

2.1 The Eguations or Motion for a Tbree-dimensional. Isotbermal Fluid' 

Flom 

The equations of motion governing three-dimensional fluid flow may be constructed 
from consideration of the principles of conservation of mass and of momentum. For 

isothermal conditions, where there is no significant transfer of heat to or from the fluid, 

flow is described by the Navier-Stokes equations, which are an application of Newton's 

second law. 

In most cases, the only significant body forces acting on the element will Le those 

arising from the fluid pressure, p, and the gravitational force per unit mass, g. 
Furthermore, for cases where pressure only is to be considered, the sum of forces acting 

on the system in the x-direction, say, is 
Lp 

. Further restricting study to the case of a 
ax 

Newtonian fluid (considered to be perfectly elastic, in that stress is held proportional to 

strain in the fluid body), then the general equations of motion for a Newtonian fluid with 

varying density and viscosity and neglecting gravitational effects are 

p 
Dv� 

=a 2g 
2V-x vx+, vY+ qav, 

ýz 
+vv+ 

qývyx 
ii- i)x DX 3 

2a 
-x ay 

ý 
ax Dy 

Dz ax az ax 
+, 

Ivz 

+ lvx lp 
Dvy 

=D 
av, av,, )l a 

2g 
avy v+ LV, 

+ 

DV711 

ax ax -, ay Dy ay 39 
ýav-xll 

Dy T-z 

a fdav, av 
+-ý ,+- Y11 

ap 

az ay az )I ay 

D Lvz 
=D 

tavz 
+ 

av., ýl 

Dt Tx ý TX T" II+ Ty 
( ýav-, z + 

ýD-V-, 

ýy 
a 

2.2-vz + 31 , 
ýV-x 

+ 
ýV-y 

+ 
Lvz Dp 

xz a Dy az az 
+ 5-z az a, 

1 

(2.1 b) 

1 
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The equation of continuity, describing conservation of mass, may then be written as 

DP=- a pvx 
+a Pv 

+a pv at ax Dy az 
(2.2) 

These equations of motion, known as the Navier-Stokes equations, in conjunction 

with the equation of continuity, the density dependence of viscosity and the boundary and 
initial flow conditions completely determine the pressure, density and velocity 
distributions in a flowing isothermal fluid. 

Turbulence may be described as a spatially varying mean flow with superimposed 
three-dimensional random fluctuations, which are self-sustaining and enhance mixing, 
diffusion, entrainment and dissipation (White, 1991). In the free stream, the flow will 
display homogeneous and isotropic behaviour but near to solid boundaries, the effects of 

viscosity become important and homogeneity is not present (Tennekes and Lumley, 

1972). The flow contains a large number of three-dimensional, entangled vortices, or 

eddies, of varying sizes. As such, diffusion of heat, mass and momentum is far greater in 

turbulent flow than in laminar, where diffusion results from molecular interaction. The 

nature of turbulence is so complicated that a complete analysis and quantification is not 
foreseen (White, 1991). 

With regard to bounded turbulent flows, a minimal flow analysis should provide 

i) velocity profiles and 
ii) wall friction data. 

Even setting the above limited aims for an analysis, the modelling of the simplest 
flows involves recourse to a series of empiricisms. Because of the range of flow scales 

comprising turbulent flow, a complete study of a fluid continuum by direct numerical 

simulation of the Navier-Stokes equations is impractical. Emmons (1970) demonstrated 

that to reproduce the fine details of turbulent flow in a pipe at Re - 10ý would require 
1022 numerical operations: even for an optimal computational speed of 1 ns per operation, 

such a study would take several thousand years. Consequently, direct numerical 

simulation is typically limited to low Reynolds number analysis on supercomputers and to 

modelling sub-regions of the fluid continuum for specific reasons, such as gaining clearer 
insight into the nature of turbulence near a solid boundary, (Spalart, 198 8). 
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With regard to practical flow studies, two main approaches have evolved as: 

i) statistical analysis, as typified by Tennekes and Lumley (1972) and '. 1 
ii) study of turbulent mean flow. 

For the majority of engineering applications, sufficient data is yielded by the latter 

method as mean velocity and temperature profiles, heat exchange, surface friction and 

shear layer thickness data (White, 199 1). 

Study of turbulent flow may then proceed by considering the fluctuating nature of 

the flow variables. A given property of the flow field, such as velocity or pressure, will 

fluctuate wildly with time about a mean value. For the generic flow variable, ý, the 
instantaneous value at a point may be written as 

(2.3) 

where is the mean and V is the fluctuating component of the instantaneous value, 
For a fluid continuum described by Cartesian co-ordinates, with x as the streamwise 

co-ordinate, y as the normal direction and z representing the cross-flow, the mean velocity 

components, Tx-, Vy- and V, -, have their fluctuating counterparts as vx, vý and vý. These 

fluctuating components may be significant in comparison with their mean counterparts: 
for the turbulent boundary layer on a flat plate, these fluctuations may be locally 

equivalent to 11% of the freestrearn velocity. The solution of the Navier-Stokes equations 
for turbulent flow typically makes use of time-averaging techniques to comment on the 

mean values of flow variables (as would be measured by a Pitot-static tube or a pressure 

gauge). This process of obtaining time-smoothed forms of the equations of motion and 

continuity is known as Reynolds averaging. The time-smoothed equations of continuity 

and motion are then gained by substitution of equation 2.3, expressed for velocity and for 

pressure, into equations 2.2 and 2.1 respectively. The time-smoothed equation of 

continuity is then 

ap a -V. 
+ 

a-vy 
+ 

2ývzi 
(2.4) 

at ax Dy az 

and the x-component of the time-smoothed equation of motion is 
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PTX- 

pv-x vx- + pvy- v-x + pwz VX- at Dy az 

7-T 
2. 

ýKx 
+ 2- ýV'x' 

+ 
ývy 

+ 
ax ax 3 ax DY T. 

+a 
2ý1 

+ 
2EX 

+ 
21' 

+ -`-x ay ax ay az ax az 
(2.5) 

a 
p-, + Vý + Pvývx PvXx 

ax x Dy az Z Xf 

with similar expressions for the y- and z-components of the equation of motion. 
The time-averaged equations may be compared with their instantaneous 

counterparts, from which it will be seen that the net effect of time-averaging is to 

substitute V for v and F for p into the relevant equations. Note, however, the presence of 

new terms of the form 
a 

výv', which arise from the fluctuations in the velocity field of 
ax 

PX 

the turbulent flow. These turbulent momentum fluxes arise from the product of terms of 

the form v 
av 

and are strictly acceleration terms. The turbulent shear, vývý is not 
ax 

negligible and its analytical form is not known a prior! (White, 199 1); it is not only 
related to the physical properties of the fluid but also to local flow conditions, including 

velocity, geometry, surface roughness and the upstream flow history. As no further 

physical laws are available to model the turbulent shear directly, this inevitably leads to a 

closure problem. 
However, the time-averaged conservation of momentum equation may be 

rearranged to show the turbulent inertia terms in aform. where they behave mathematically 

as stresses. On a historical basis, many analytical methods achieve closure by modelling 

these terms as 'turbulent or Reynolds stresses', using an eddy viscosity concept after 
Boussinesq (1877). Whilst attempts have been made to construct turbulent conservation 

equations, these too lead to extra unknowns that cannot be evaluated readily from first 

principles. 
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2.2. Turbulence Modelling Technigues. 

Time-averaging of the equations of motion for isothermal fluid flow then yields sýx 
Reynolds stress components that can only be defined by knowledge of the detailed 

turbulent structure (White, 199 1) and thus offers a closure problem, in that there are 

more unknowns than equations to solve them. Turbulence modelling may be described as 

the attempt to model equations for the spatial and temporal development of these turbulent 

fluxes. Such equations can then be used in conjunction with the mean flow equations to 

solve for the mean flow field. It should be noted though, that in providing approximate or 
empirical equations to model the Reynolds stresses, that the solution becomes 

approximate as well. 
In seeking to describe the k-e turbulence model, it is then useful to consider the 

principles of eddy viscosity modelling upon which it is based. All eddy viscosity models 

are based on a common hypothesis; by analogy with the molecular flux of momentum, the 

turbulent flux of momentum is held to be proportional to the gradients of the mean flow 

field. In a laminar, Newtonian fluid, the molecular fluxes of momentum are given by 

Stokes'law of viscosity as 

0EXY vx + av, ý 
ay ax, ) (2.6) 

The eddy viscosity model assumes that the turbulent fluxes of momentum can be 

approximated to by analogous expressions of the form 

PV X+ pk8., y XVY 
2iý 2ýýYi 

-3 ay ax 
(2.7) 

In the above expression, gt is the eddy viscosity, but, unlike the laminar viscosity, 

g, it is not dependent upon fluid properties but is determined by the state of turbulence. 

The eddy viscosity often varies significantly across a given flow field and from one field 

to another and, as such, no universal value may be ascribed to it. k, in the above 4 
expression, represents the kinetic energy of turbulence and may be written as 
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vv +Vyvy + vzvz 
2 

(2.8) 

which is half the sum of the variances of the velocity fluctuations per unit mass. 
So the Reynolds stresses may then be expressed in terms of one unknown, that 

being the eddy viscosity, gt, and this provides a basis for turbulence modelling. Most 

models for eddy viscosity relate it to the large scale, energy carrying eddies in the flow 
field by an expression of the form 

gt Oc Pvisi (2.9) 

where 51 and vj are the length and velocity scales respectively of the largest eddies. I'his is 

a physically tangible relationship, in that these characteristic scales can be prescribed 

across the flow field with greater ease than for the eddy viscosity, gt. 
The most widespread, and hence most documented, approach is the k-e model. 

Furthermore, the k-e model offers the advantage of being able to mimic the effects of 

advection. The derivation of the transport equations for the k-e model for isothermal flow 
is discussed by Launder and Spalding (1974). By dimensional reasoning, the following 

arguments are made as 

V, cc fz (2.10) 

and 81 jx k3/2 

e 

These statements are more 'universal' than the use of Prandtl's mixing length theory 
(1925) upon which simpler zero- and one-equation turbulence models are based. Since 

the characteristic scales for turbulence are now directly linked to the local turbulent 

quantities of kinetic energy, k, and dissipation, e, these quantities may be said to 

characterize the local state of turbulence. 
Substituting for equations 2.10 and 2.11 into equation 2.9, then 

p 
k2 
c 

(2.12) 
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where Cý is an empirical constant, constant over a wide range of strong-sn-ain flows 

(Rodi, 1975). 

Values for k and e are then obtained from the semi-empirical transport equations, -, 

which, neglecting bouyancy effects, state 

11 Dk Dk D Lk gt 
- Dt j 

x)+ 
jy pD-k= 

a--7+ 
pG - pe t'- Ilt 

y), 

ct 
az) ax Tx Dy k 

(kk 

Dz 

+ (2.14) ++ CelP f- G- Q2Pd 
VZ 

Dt ax Dy y Dz Zkk 
p 

jr-- -7 
Note that the above equations are derived from manipulation of the instantaneous 

flow equations. In equation 2.13, for turbulent kinetic energy, G represents shear 
generation - the production of turbulent kinetic energy from interactions between the mean 
and the turbulent fields - and is modelled as 

Z), -VX av -x + 1ý ý- +a -Vx ( a -Vx + 22, ay ay ax az az ax 
pG = pt + 

avy (a---v, 
' + -aVx + -a- 

Iv (a 
vy + -aVz) ax ax ý Dy az k az cly 

vz- 2: výz av -x a -Vz - 2ýz ý 
- ax 

(ax 
+- 

az 
+ 

ay - 
( 

ay 
+ 

az 

Equation 2.14, for turbulent dissipation, models the effects of dissipation largely by 
intuition and dimensional reasoning (Launder, 1984). 17he term p F- G denotes shear k 
generation, CE2pO- viscous dissipation and Q1 and CC2 are empirical model constants. k 
The model constants crk and ac are the turbulent Prandtl/Schn-Mt numbers for k and e 

respecdvely. 
In both equations, the turbulent diffusion of k and c, due to the turbulent 

fluctuations of velocity and pressure, is modelled using the eddy viscosity concept. The 

transport equations have modelled terms for diffusion and for sources and sinks and 
hcnce model the local ýrocesses of turbulent generation and destruction. As such, solution 
of these equations provides the spatial and temporal evolution of the characteristic length 

and velocity scales, since these are governed by mean advection and diffusion and also by 
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local processes of turbulent generation and destruction. 

The additional computational cost of solving two more transport equations must be 

considered as the complexity of the overall mathematical model is significantly increasýd. 

The model is highly non-linear and shows strong coupling between various of the 

transport equations - these factors tend to destabilise the convergence of the numerical 

solution. Furthermore, the standard k-e model, as presented, is only valid for high 

Reynolds numbers. For bounded flows then, wall functions are required to connect the 

fully turbulent region of flow with the conditions prevalent at the wall. 

The equations of motion for isothermal fluid flow, as considered so far, provide a 

continuous description of the time-averaged mean field of flow, in as much as their 

solution, if possible, would yield information pertaining to an infinite number of degrees 

of freedom. Whilst it is believed that the solution of these equations can be used to 
describe three-dimensional flows completely, current supercomputers are neither fast 

enough nor have sufficient storage to solve the equations directly for the relevant time and 
length scales of general engineering problems. Turbulent motion contains scales 

significantly smaller than the extent of the flow domain, typically in the region of 10+3 

times smaller. As such, resolution of such fine scales using a numerical procedure would 
require spatial discretisation far beyond current computational capabilities. Therefore, a 
solution is sought by making use of a discrete or discontinuous model of the flow-, the 
finite element method (FEM) approach to this problem will now be considered. 

2.3.1. F*nite Element AlodellenZ, 

The purpose of FEM is to reduce the continuous problem, having an infinite 

number of degrees of freedom, to a discrete problem, with a finite number of degrees of 
freedom described by a system of algebraic equations. 

As such, the continuum region is divided into a number of simply shaped regions, 
known as elements. By dint of having used an Eulerian description of fluid motion in the 

analysis to date, these elements = held to be fixed in space. Inside each finite clement 

then, the flow variables are interpolated spatially in terms of values to be determined at a 

set of nodal points. 'Me partial differential equations covering the flow region as a whole 
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are replaced by ordinary differential or algebraic equations within each element, for each 

nodal point described. The system of equations thus provided may then be solved by a 

suitable numerical technique to yield values of v, p, k and e at discrete points throughout 

the region. 
For isothermal fluid flow, the governing equations of motion are seen as the 

equations of continuity and of conservation of momentum, given by equations 2.4 and 
2.5 respectively, on a time-averaged basis. Within each element, the velocity and pressure 
fields are approximated by functions of the form 

vi(x, t) = qvi(t) (2.16a) 

P(X, t) = vp(t) (2.16b) 

where Vi and P are column vectors of element nodal point unknowns and (p and V are 
column vectors of interpolation functions. 

Ilese approximations may then be substituted into the field equations and boundary 

conditions to provide equations of the form 

fl((p, V, Vi, P) = RI (2.17a) 

f2(y, Vi) = R2 (2.17b) 

where RI is a residual, or error, resulting from the use of these approximations for the 

momentum equation of 2.17a. Likewise, R2 is the corresponding residual in the 

conservation of mass relationship, given as equation 2.17b. 7be Galerkin form of the 

method of weighted residuals (FIDAP Ileory Manual, 1994) then seeks to reduce these 

errors to zero and hence provide a solution to the flow problem considered. 
These matrix equations are used to provide an overall model of the flow region, 

consisting of an assemblage of elements with interelement continuity of the flow variables 
being enforced by appropriate summation of equations common to adjacent elements. 
This approach, known as the direct stiffness approach, gives a global system of matrix 

equations spanning the entire region of flow. 

Principal advantages of the FEM may then be listed as 
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i) inherent flexibility in treating arbitrarily complex flow geometries and boundary 

conditions, 
ii) use of unstructured grids, such that areas of interest can be studied in greater 
detail without the need for excessive numbers of nodal points throughout the entire 

computational grid representing the flow domain, 

iii) natural and correct imposition of boundary conditions on curved boundaries 

and 
iv) the mathematical formulation used allows for derivation of comprehensive error 

estimates; hence the determination of accurate solutions may be performed to 

user-presribed tolerances. 

The solution procedures used to implement the FEM will now be considered in 

conjunction with the particular computational package used in this project, namely 
FIDAP, which is a proprietary package, produced by Fluid Dynamics International, for 

use both as a commercial and a research tool. 
In keeping with many current, commercial codes, analysis of the flow regime is 

subdivided into a number of tasks as 

i) generation of a mesh of nodal points pertinent to the problem geometry and 

specification of boundary and initial conditions, 
ii) specification of the class of problem and necessary equations to be 

solved, the solution procedure, fluid and material properties and integration with the 

relevant boundary and initial conditions and element data to create a solution input 

file and 
iii) post-processing facilities, allowing for computation and graphical display of 
derived variables and quantities. 

The main solution types may be subdivided into two main categories as 

i) steady-state flows and 
ii) transient or time-dependent flows. 
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For steady-state flows, or for transient analyses using an implicit time integrator, a 

non-linear matrix system of equations requires to be solved - once for steady-state and at 

each time step for transient analysis. 
This solution is the most time-consuming stage of the analysis, typically accounting 

for up to 80% of computational resources used. Consequently, the choice of solution 

algorithm can govern and ultimately limit the practical size of the problem considered. 
Two distinct approaches to the solution of the matrix system of equations may be seen as 

i) fully coupled solutions and 
ii) sequential, or segregated, solutions. 

The fully coupled approach solves all the equations simultaneously whereas the 

segregated approach decomposes the matrices and solves for each variable in a sequential 
fashion. Practical experience shows the fully coupled approach to be the best for all but 

the largest of two-dimensional problems, whilst the segregated solver is most practical 
for very large two-dimensional and the majority of three-dimensional problems, where the 

cost and availability of computer resources (in terms of storage of the global systems 

matrix and CPU time) become of critical interest 

Although the segregated solver has guaranteed substantially reduced disc storage 

requirements in comparison with the fully coupled solver, its segregated and uncoupled 

nature requires more iterations to converge on a solution. However, as the size of the 

mesh of nodes for the problem rises, the cost of each full segregated iteration is 
increasingly less than for fully coupled iterations. As such, a 'trade-off is observed 
between performing a larger number of less expensive iterations or fewer, more 

expensive ones with the fully coupled solver. 

When modelling a bounded flow, the local conditions in the region of the wall must 
be considered. In the freestream, the turbulent fluctuations are largely isotropic in nature 
but near to the wall, the presence of a solid boundary will limit fluctuations perpendicular 

to the main flow direction. In considering the fluctuating velocity components, the 

component výx has the greatest magnitude, being unimpeded by the wall and being 

reinforcedb the freestrearn whereas Vy is the smal lest of the fluctuating components. v' , y 
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has an intermediate value, even for two-dimensional flow (although it has no direct effect 

on two-dimensional mean flow). Figure 2.1 shows this phenomenon for turbulent flow 

through a smooth pipe, with r and z representing the radial and axial flow directions 

respectively. 

t 
Figure 2.1. Showing turbulent fluctuations in velocity for flow along a pipe. 

7be fluctuations in the direction of flow are seen to be greater than those 

perpendicular to the flow. Whilst there is a tendency to isotropy near the centreline of the 

pipe, there is a marked difference between the two fluctuations as the wall is approached. 
The Ian-dnar and virtual stresses across the pipe cross-section are shown as Figure 

2.2 below. 

t 

Figure 2.2. Showing the variation of stresses across the flow in a pipe. 
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On inspecting Figure 2.2, the relative importarice of the viscous (laminar) and 
Reynolds stresses may be compared, with regard to the variation in momentum flux over 
the cross-section of the flow. Given thatr,,, is a summation of the viscous and Reynolds 

stresses, then the rapid decrease towards zero in the Reynolds stress, pV., V,, on 

approaching the wall implies that the major component of the term r,,, ,, which is still 

significant in this region, is the viscous stress. The decline in the Reynolds stress close to 

the wall arises from the presence of the wall itself, which acts to damp out the Reynolds 

stress on final approach to the wall (van Driest, 1956). As such, in the near-wall region, 
any proposed mathematical model of the flow must be able to model the effects of 

viscosity in order to be of service. The shear stress, V,, vý, has a smaller value than any of 

the fluctuating components but is of fundamental importance as it lies at the Toot of 

analytical problems. For an impermeable boundary, a no-sUp condition for velocity will 

prevail, such that the local velocity is zero at the solid surface. However, the fluctuating 

velocities are resistant to wall damping and are still significant at y/S = 0.000 1 (where 5 is 

the thickness of the boundary layer). As such, to capture the velocity prorde close to the 

wall computationally would require a very fine computational mesh. 
This deviation from isotropic or homogeneous turbulence near the wall and the 

importance of viscous effects near the wall limits the validity of the k-C model in this 

region: the k-c model requires isotropic flow at high Reynolds numbers and also cannot 

make allowance for viscous effects. Further practical drawbacks to the use of the k-C 

model in the near wall region are presented by Figure 2.3. 

Pressure gradients 

v 
V_ 

0 

6 

a strong favourable 
b flat plate 
c mild adverse 
d strong adverse 
e very strong adverse 
f separating flow 

Figure 2.3. Typical turbulent boundary layer velocity profiles for various pressure 

gradients, after White (1991). 
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In the above diagram, v. denotes the freestream velocity, y denotes the normal 

distance from the wall and 8 the thickness of the boundary layer. On inspecting the 

velocity profiles in Figure 2.3, it will be seen that as the pressure gradient becomes 

progressively more adverse, the general form of the profiles develops an increasing dip 

below the convex form of profile 'a. This departure from the response to a favourable 

pressure gradient begins at about 0.2 and corresponds to the onset of a wake-like 

behaviour in the outer, fully turbulent region of the boundary layer. The velocity profiles 

appear to 'collide' with the solid boundary at 0. Actually. the profiles will all drop 

linearly to zero within a thickness too small to be seen here. This presents a modelling 

problem; such sharp velocity gradients would necessitate use of an extremely fine mesh in 

the vicinity of the wall, leading to excessive computational requirements, both in terms of 

memory space and solution time. 

Given the inability of the k-e model to predict the effects of viscosity and coupled 

with the excessive computational demands that would arise from attempting to mirnic the 

sharply varying velocity gradients in the near-wall region, it would seem practical to 

model the boundary layer with methods other than the k-e model. 7bis is typically done 

by use of so-called wall laws, where the boundary layer is modelled by use of semi- 

empirical equations that predict variation of the flow properties from the solid boundary 

out into the flow to such a point as the k-e model becomes practical and valid. 
With regard to these boundary layer prordes, Prandtl and von Kannan proposed 

that they consist of a number of layers as 

i) an inner layer, dominated by viscous, or molecular, shear, 
ii) an outer layer, dominated by turbulent (eddy) shearing and 
iii) an overlap layer, where both types of shear are important. 

Prandd (1933) suggested that the velocity profile for the inner layer is dependent 

upon the wall shear stress,, ro, on various fluid properties and upon the distance from the 

wall, y, but not on the freestrearn parameters. Miercfore, an inner law would be a 
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function of the form 

V= 4ro, P. g, A (2.18) 

von Karman (1930) proposed an outer law, where the presence of the wall acted as 
a source of retardation to the flowing fluid, such that V(y) ( v.. He suggested that the 
outer law would be independent of viscosity but that it would be related to the wall shear 

stress, the boundary layer thickness, 5, and to the freestrearn pressure gradient, 
dp. 
dx 

Therefore, an outer law would be a function of the form 

T09ptyl5t 
dp") tx 

Note that this outer law is expressed as a velocity defect, v. ý- V. 
For the overlap layer, at some finite, intermediate point, a smooth merging is then 

required between the inner and outer layers as 

Vinner ý Vouter (2.20) 

Practical forms of the above laws may be derived from experiment after the use of 
dimensional analysis, which provides the following insight: 

Inner law Jy- 
V*) V* , 

riý 
(2.21) 

V* 

4ý 

vp 

Outer law Vý-v Y-, 4.1- dp.. 
V., 8 ro * dx (2.22) 

Equation 2.22 is presented as a velocity defect law - the defect in velocity arising 
from retardation of the flow due to wall effects. At a given position, x, along the flow 

Y- then, the defect shape, qsý will depend on the local pressure gradient parameter, 

Note also the use of the wall friction velocity, v*, used to present the wall laws in a 
non-dimensional form. 7bc wall friction velocity may be considered to be a measure of 
the turbulent eddying or. alternatively. to be a correlation between the fluctuating velocity 
components (Schlichting, 1979). 
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Inspecting equations 2.21 and 2.22, the overlap law may be written again as 

Vý 

- 
qiy) 

v 
(2.23) 

Here the function f contains a multiplicative constant, whilst the function g has an 

additive constant. As such, equation 2.23 can only be true if both f and g are logarithmic 

constants, yielding for the overlap layer 

Inner variables ý= JLIn Yv *+B 
(2.24) 

v ic V 

".. -V Outer variables -=- 
JLlnX +A (2.25) 

V* x8 

ic, the von Karman constant, and B are held to be near-universal constants for 

turbulent flow past smooth, impermeable walls, where ic=0.41 and B=5.0 (Coles and 
Hirst, 1968). Ile constant A, however, is seen to vary with the pressure gradient 

parameter, 4, the consequences of which will be seen later. 

Ile velocity profiles presented in Figure 2.3 may be usefully redrawn, making use 

of the following dimensionless variables 

U+ S. (2.26) 
V* 

and Y+ v 
(2.27) 

It is interesting to note that the normalised distance from the wall. y+, may also be 

viewed as a local Reynolds number, hence being useful in describing the nature of the 
boundary layer flow. 
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Figure 2.4. Dimensionless velocity profiles for a turbulent boundary layer, after White 

(1991). 

Straight away, it can be seen that, excepting the case of near-separating flow, all the 

curves for the various pressure gradients condense to one logarithmic relationship in the 

overlap region, for 35: 5 y+: 5 350. Beyond this point, however, the experimental curves 

either turn upwards into the outer, wakelike layer or downwards, into the inner (viscous) 

layer. 

For the case of a near-separating flow, as v* tends to zero, u+ becomes large and y+ 

very small. Hence, near a point of separation, scaling in terms of -to is not useful; the 

outer law is still of merit, but the corresponding inner and overlap layers become 

vanishingly small. 
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Whilst Figure 2.4 validates the inner and overlap laws, in that all the experimental 
data collapse onto one curve, the outer law is less easy to defend by a similar process. 
Figure 2.5 demonstrates this by replotting the curves of Figure 2.3 using outer variables 
as 

30 

20 

10 

0 

Pressure gradients 

a strong adverse 
b mild adverse 
c flat plate 
d strong favourable 

Figure 2.5. Turbulent boundary layer velocity profiles, expressed in terms of outer law 

variables, after White (199 1). 

Each velocity profile shown has a different pressure gradient parameter, 4, and 
hence a different value for the constant, A. No collapse onto a universal curve is seen bu4 

for a given value of 4, an unique profile would be obtained. 

From Figure 2.4, it can be seen that the inner law rises from the no slip boundary 

condition at the wall to merge smoothly, at approximately y+ = 30, with the overlap log- 

law, as expressed by equation 2.24. Very close to the wall, over a region too small to be 

shown in the diagram, the presence of the wall 'damps out' the effects of turbulence and 
the boundary layer is thus dominated by viscous shear. As such, for very small values of 

y, the velocity prorile is linear as 

y+: g 5 'ro = 
AV 

or U+ = Y+ T (2.28) 
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This very thin region near the wall is known as the viscous (laminar) sub-layer and, 
b general agreement, has a thickness 5sub -` 

5y*- where -y- is often referred to as the yv 
V* 

viscous length scale of the boundary layer. 

In the region 5: 5 y+: 5 30, the buffer layer, the velocity profile is neither linear nor 
logarithmic but is seen to merge smoothly between the two. 

As such, separate equations are used to study the sub-layer, buffer layer and log- 
layer, using the identity y+ to select the appropriate set of equations. However, various 

attempts have been made to provide a combined or universal form of these equations for 

general use. 
Reichardt (1951) proposed that 

-1 
1 

-+ U+ =K- In(I + 0.4y+) + 7.81 1- e(- Y+11 1) -11 e(- 0.33y+)l (2.29) 

This equation corresponds extremely well with experimental data from the wall up 

to Y+ = 300 and beyond. However, when first proposed, this equation was awkward to 
implement under the computational conditions then prevalent and so a later and simpler 

model, proposed by Spalding (1961), has seen widescale usage as 

y+ = u+ + e-K+-Ku+ -1- icu+ -261 (2.30) 

Spalding's equation provides a very good fit to inner law data, from the wall all the 

way to a point (around y+ ) 100) where the outer layer begins to rise above the logarithmic 

curve. Lindgren (1965) showed experimental results for fully developed pipe flow with a 
favourable pressure gradient (at 4= -2) that gave values for V in good agreement with 
Spalding's work, from very close to the wall up to y+ ) 300, at which point a slight wake 
was evident in the outer layer. 

However, it must be noted that neither Reichardt's nor Spalding's models are 
designed to cater for the effects of advection. As such, in regions where the effects of 

advection are significant, any results gained must be viewed with suspicion. 
As mentioned in Section 2.4. L, the validity of the outer law has proven less easy to 

verify. The outer region of a turbulent boundary layer displays a complex, nonlinear 

memory related to upstream events - this means that velocity distributions are dependent 

upon upstream, as well as local, conditions (Schofield, 1981). Clauser (1954,1956) set 
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out to address this problem by considering certain boundary layers with adverse pressure 

gradients. Clauser limited this study to cases where the boundary layer was subject to a 

constant force history and thus could be described in terms of local parameters alone. 

The external forces on a boundary layer may be seen as the pressure gradient, 
do 
dx' 

and the shear stress at the wall, ro. Thus, for a boundary layer with a constant force 

history, which Clauser termed an'equilibrium boundary layer', a non-dimensional ratio 

of forces may be written as 

d 
'ro * dx 

where S* is the displacement thickness of the boundary layer, defined as 

(P. V. - pvyy 
(2.32) 

P. V. 

The displacement thickness is more rigorously defined than the boundary layer 

thickness, 5, and may be viewed as the thickness thmugh which the freestrearn density 

and velocity would have to act in order to provide the same mass flow deficit as the 
boundary layer. 

Clauser expected that for the equilibrium layer, with constant 0, the mean and 
fluctuating velocity fields would be dynamically similar at all stations (provided fine scale 

eddies are neglected). Clauser then considered the only documented equilibrium boundary 

layer then known - the case of zero pressure gradient, for which it is well established that 

ve, v 

v 
qy) (2.33) 

8 
Such a velocity defect law will predict behaviour from the freestrearn almost down 

to the wall. Clauser reasoned that a defect law of the same form as equation 2.33 should 

be valid for equilibrium layers in flows with a pressure gradient. Clauser then 

demonstrated experimentally that a boundary layer with varying pressure, p. (x), but with 

constant equilibrium pressure gradient parameter, p, is in turbulent equilibrium in as 

much as all the gross properties of the boundary layer can be scaled by a single parameter. 

Clauser saw the most relevant scaling parameter for equilibrium turbulent flows as the 
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defect thickness, A, where 

V.. V 
(2.34) A -77- dy =8XX f- 

vV lCfý 
where X is a measure of the local skin friction, Cf. 

Velocity profiles can then be scaled with L and a shape factor, G, which would 
A 

remain constant throughout the equilibrium layer as 

Gs 
f Jý*' - Vrdy 

v. V. 0 

(2.35) 

In fact, it can be shown that for various, discrete values of the equilibrium 
v' v 

parameter, 0, that the data do collapse beautifully onto one curve for vs. Y. as 
v8 

V--v 

v 

20- 

30,11) 

a 
0 

Theory 

1.8 

8.0 

Figure 2.6. Equilibrium defect profiles, as correlated by Clauser's equilibrium pressure 

gradient parameter, 0, after White (199 1). 
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Clauser's work was a significant step forward in modelling the outer region of 

certain boundary layers but a number of shortcomings were experienced as 

i) non-equilibrium flows deviate in shape from the similiarity profiles of Clauser, 

ii) the equilibrium shapes have no simple analytical form for use in an engineering 

theory and 
iii) for the case of near-separating flow, v* approaches zero and so is no longer 

suitable as a scaling parameter. 

As the adverse pressure gradient increases, v* tends to zero and P to infinity. 

Furthermore, the logarithmic layer thins and ultimately vanishes and wall co-ordinates 
become inappropriate (see Figure 2.4); as such, a more appropriate velocity scale is 

required. 

2.4.3. Coles' Law of the Wake. 

In modelling the boundary layer, a single, universal equation for the velocity 

profile, also catering for the effects of advection, would be highly desirable. In reviewing 
the approaches to boundary layer modelling considered so far, each of these techniques 

appears to be valid for a limited range of conditions only. Reichardt's and Spalding's 

models of the inner and overlap layers cannot account for advective effects, given that 
they are based upon zero pressure gradient flows, and Clauser's model of the outer layer 
is only valid for equilibrium flows in the absence of separation. 

Another approach with much wider potential use was proposed by Coles (1956). 

Coles studied a considerable range of reported experimental results and observed that 
deviations, in the form of excess velocity, of the outer layer above the predictions of the 
logarithmic law (see Figure 2.4) take a'wake-like' shape when viewed from the 

freestream. 
Coles then reappraised the description of the mean velocity profile for two- 

dimensional flow near the wall, given by equation 2.21 as 

V 
-f 

yv (V*) 
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and that for the overlap layer, given by equation 2.24 as 

ýL. = -Llny+ +B 
v ic 

and proposed that the mean velocity profile for a turbulent shear flow would be of the 
form 

E -- f 
ýyv*ý 

,h (x, y) 
v*v 

(2.36) 

Coles found that for certain common, special cases, such as uniform pipe flow or 
the boundary layer over a flat plate, that the above expression may be rewritten as 

3L 
-f 

yv (IIx (2.37) 
V* 

ýv 

where 11 is a parameter independent of both x and y. 
Now, outside the viscous sub-layer, the logarithmic variation of the function f in 

equation 2.37 led to 

n: 
-l =F rl, y) 

where V= 71- at y=S. 

(2.38) 

The above velocity defect law implies that loss of momentum is independent of 
viscosity of the fluid. This is consistent with the idea that turbulent rather than viscous 
transport mechanisms are predominent outside the viscous sub-layer. This also agrees 

with experimental observations that the momentum defect is sensitive to the turbulence 
intensity outside the boundary layer but not to surface roughness at the solid boundary 

(FIDAP Theory Manual, 1994). 

Coles then studied the function h(x, y) in the general mean velocity equation, 

equation 2.36, in conjunction with a wide range of experimental data at large Reynolds 

number. Coles found that various mean velocity profiles were quite systematic, in that 

they had a common form, once expressed in the co-ordinates (u+, y+). Indeed, for a 

number of such profiles with the same defect law (common rI), despite displaying 

marked differences in environment, the same form was observed for each, as seen below 

in Figure 2.7 overleaf. 
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Figure 2.7. Displaying the similarity in velocity profiles having a common wake 

parameter, II, but differing wake function, w, and strearnwise force histories, after Coles 

(1956). 

This suggested to Coles that the solution to the defect law lay not in the study of the 
function F in equation 2.38 but in the original function g in equation 2.37, which gives 

the departure of the mean velocity profile from the logarithmic law. 

Figure 2.8 below shows data from three equilibrium flows ( Clauser series I and H 

and from Wieghardt(1943)). 

0 
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20 

30 

Figure 2.8. A comparison of the flow profiles of diree documented experimental 

equilibrium flows, after Coles (1956). 
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These results show striking resemblance to one another, each displaying marked 
lantisymmetry' about the midpoint. At this stage in the analysis, Coles then plotted an 

arbitrary profile taken from a non-equilibrium flow and found the same behaviour therý. 
This allowed Coles to rewrite equation 2.36 as 

f YVI , a, ly) 
v Ic 181 

(2.39) 

The introduction of a second universal function to the mean velocity profile, used to 
describe the departure from the logarithmic law, is then Coles'wake hypothesis, the 
function w being the law of the wake. Coles'law of the wake then provides a 

complete and fairly accurate description of flows, whether in equilibrium or not (Das, 

1988). 

Coles argued that if II were independent of x then the functions g (rj, l I and I Iw (iy) 
88 

would be functions of alone. This argument corresponded with Clauser's definition of 

an equilibrium flow. However, Coles' work is felt to be more far reaching than that of 
Clauser, although equation 2.39 is a restricted form of equation 2.37 (in turn a special 
case of equation 2.36) it is considered to apply to non-equilibrium flow. 

To test the validity of the wake hypothesis, Coles required to define the boundary 
layer thickness, 8, and to prescribe a nomializing factor for the function w. The 

displacement thickness, 8 may be computed from equation 2.32 and used in conjunction 
with the mean velocity profile of equation 2.39 to provide 

I 

-L +a ýýdw (2.40) 
V1 Ic ic 

fow 

8 

where wl is set to be the maximum value of w. 
As such, a convenient first normalizing condition is 

fI 
ýdw =1 (2.41) 

ow 8 
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and a second condition is suggested by the nearly antisymmetric: form of the observed 

curves. The maximum value of w occurs very near to I provided that 

wi = w(l) =2 (2.42) 

The parameter 171 was then found to be related to the local friction coefficient, 
Cf = 2v*2/v-12 , 

by 

Yl = 
lln B+ 21-1 (2.43) 

(, 
V*) + 

v ic v Ic 

and to the displacement thickness by 

1+H (2.44) 
sv* 

By hypothesis, w 
(Fit) is an universal function so that 5 is uniquely defined in terms 

of 8 by the normalizing conditions of equations 2.41 and 2.42. When considered with 
equations 2.43 and 2.44, plus the identity 

Wvil rv 
v 

(2.45) 

*-8*v 

all five dimensionless parameters v La 
are determined. A 

v*9 9VIV and rl or 
5v* 

complete analytic description of the mean velocity field is then provided, which implies 

complete knowledge (at least within the boundary layer approximation) of strean-dine 

pattern, shearing stress field and the local rate of transfer of energy from the mean flow to 

the turbulent flow field. 

Practical usage of Coles' law of the wake is discussed by White(1991), who notes 
that a curve fit may be provided for the function w as 

w(y) = sinjIlil) = 3112 - 2113 (2.46) i2 

where il =y 8 
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Typical results of this operation may be seen as Figure 2.9 below 

It+ 

rl= 15 

10 

5 

2.5 
1 
0 

Figure 2.9. Turbulent velocity profiles computed from Coles'law of the wake, after 

White(1991). 

Note that the curve rl =0 corresponds to the pure law of the wall. The above curves 

compare well with observed results, as noted by Coles, and are easy to compute; if 

normalized to and replotted, they give results very similar to Figure 2.4. 

The usefulness of the wake component of equation 3.39 may be demonstrated by 

considering the case where v* tends to zero, when co --- ) 0, as separation is approached. 

After expressing rI in terms of 8,5 Tj- and v* using equation 2.44, then 

ýWfy I 
vi 2 181 

This result does not include the terms ic or v and implies that the flow at a point of 

separation or reattachment is locally a pure wake flow. 
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For an adverse pressure gradient, as separation is approached, the scale v* tends to 

zero and the terms in Clauser's and Coles'equations that account for pressure gradient 

tend to infinity. As the logarithmic layer thins and ultimately vanishes, use of wall co- 

ordinates and hence of v* becomes futile. The work of Perry and Schofield (1973) and of 
/2 Schofield (1981) then proposed an experimental profile correlation based upon yl 9 

supported by the work of Mellor and Gibson (1966). The Schofield-Perry law gives a 

good description of flows with strong adverse pressure gradient, where the maximum 

shear in the boundary layer is Tmax ; -> 1.5 ro. 
White (1991) compared Coles'and Schofield-Perry's laws with two experimental 

non-equilibrium flows. Coles'law gave fair agreement, with those discrepancies 

observed being attributed to uncertainty in prescribing 8, the boundary layer thickness. 

Ile Schofield-Perry distribution also performed well, provided an appropriate scaling 

velocity vst was selected. 
The preceding similarity laws, describing the boundary layer have been successfully 

used in a range of momentum integral analyses to study the nature of bounded turbulent 

flows. However, where knowledge of the entire fluid continuum is desired or where 

more detailed boundary layer data is required, such as turbulent shear stress, r. m. s. 

turbulent fluctuations or complete velocity profiles, then recourse is sought to turbulence 

modelling. 

For a two-dimensional turbulent boundary layer, the only unknown is the turbulent 

,, 
Vy. The traditional modelling assumption of Boussinesq (1877) draws an shear, -pV 

analogy to molecular shear, where the turbulent shear is equated with an eddy viscosity, 

gt. Prandtl's mixing length theory (1925) relates gt to the local velocity gradient and to a 

characteristic length scale, IMI Experimental evidence suggests that for the outer layer, 

gt >> g, the larninar viscosity. So a turbulent shear layer has high apparent viscosity in 

the outer layer, rapidly decreasing across the inner layer. As such, turbulent velocity 

profiles are very steep close to the wall, notionally requiring mathematical models to 

concentrate computational effort in the vicinity of the wall. van Driest (1956) provided an 

eddy viscosity model for the inner and overlap layers that incorporated a damping factor 

31 



to cater for the decreasing influence of molecular viscosity moving away from the wall. 
Again, the presence of a pressure gradient complicates the analysis as the modelling 

assumption that the total shear stress near the wall is constant no longer holds true. 
A number of different approaches to turbulence modelling can be seen to use the' 

eddy viscosity concept (White, 199 1) as 

i) zero equation models, using a simple mixing length model, 
ii) one equation models, using a transport equation for turbulent Idnetic 

energy and 
iii) two equation models, using transport equations for both turbulent Idnetic 

energy and turbulent rate of dissipation 

and more complex methods, modelling the turbulent stresses directly may be seen as 

i) Reynolds stress models, providing either transport equations or algebraic 

approximations to the turbulent fluctuations and 
ii) direct numerical simulation. 

In seeking to model a bounded turbulent flow numerically, a compromise must 

necessarily be drawn between accuracy of results, in comparison with experimental data, 

and computational expense. Where computational techniques capture boundary layer 
behaviour by use of dense computational meshes, the storage requirements may outweigh 
the advantages of increased accuracy and even preclude analysis of the full continuum. 

With regard to two-equation eddy viscosity modelling, the k-e model provides a 
balance between model sophisfication and computational economy (Haroutunian and 
Engelman, 199 1). However, as it does not cater for the effects of molecular viscosity, to 

model a bounded flow, it requires either to be reformulated in a low Reynolds number 
form or to be used in conjunction with a wall law model. 

The standard k-e model, proposed by Jones and Launder (1972) offers transport 

equations for turbulent Idnetic energy, k, and the turbulent rate of dissipation, F_ 'Me 

model contains five empirical constants, determined from experimental data and numerical 

tuning. As molecular viscosity and sub-layer damping effects are neglected, the model is 

only valid from the overlap layer outwards into the freestream (White, 199 1). 

Low Reynolds number versions of the k-e model typically introduce larninar 
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viscosity functions into the model equations, as well as viscosity-dependent adjustments 
to the standard model constants. 

Rodi (199 1) compared the behaviour of the standard k-e model with that of a low 

Reynolds number and a two-layer eddy viscosity model. For two-dimensional thin sheýr 
layers, where flow is predominantly in the x-direction, no separation occurs and 
strearnwise turbulent transport is negligible. The turbulent model only has to cater for 

výVy and the close alignment of the streamlines precludes numerical diffusion. As such, 
where poor predictions arise, they are typically due to inaccurate initial conditions or poor 
coding of the turbulence model. 

For wall-bounded flows, the effects of viscosity and turbulence are concentrated in 

the near-wall region, although the outer inviscid layer is still of interest as flow losses and 
possible separati(,, n in the boundary layer will affect the whole flow regime. For the 

simplest such flow, being zero pressure gradient flow over an infinite flat plate, with low 

freestrearn turbulence and smooth, impermeable walls, Rodi noted that all the models 

gave good predictions. However, in the instance of significant strearnwise curvature, the 
k-e model predicted too slow a pressure recovery after the bend. Further, whilst surface 

roughness could be incorporated into the wall model used, where a pressure gradient was 

present, the k-e model predicted rising skin friction with increase in pressure gradient. 
This was attributed to the dissipation equation where too steep a rise in length scale near 
the wall was observed in comparison with experimental data, suggesting that the length 

scale should be largely independent of pressure gradient. As such, this problem might be 
better analysed with a two-layer model, using a one-equation model with prrscribed 
length scale to simulate the near-wall region. 

With regard to accelerating flow, where relaminarisation may arise, the k-e model 
offers better results than two-layer models with analytical length scales but as viscous 

effects are important over a large part of the boundary layer, low Reynolds number 

models might be better than wall functions. 

For separating flows, wall functions have been used historically despite the 

predominant models of Spalding (1961) and Reichardt (1951) not being strictly valid near 

separation. For the case of flow over a backward facing step, Rodi noted that the standard 
k-e model underpredicted. the length of the recirculating zone by some 20%. Whilst the 

two-layer model gave better results, the necessity for a large number of computational 

points within the boundary layer limited its range of application. 
Having noted that traditional wall law models, in not catering for the effects of 
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pressure gradient, tend to give poor results for accelerating or decelerating flows, the 

alternative within a k-e model framework is the use of a low Reynolds number k-e model, 

where the model in modified form is valid right down to the wall. 
The standard, high Reynolds number k-e model, using wall functions, relates the 

surface boundary conditions to a point in the continuum beyond the viscous sub-layer, 
hence avoiding the direct modelling of viscosity, and so is restricted to where Reynolds 

number is high enough for viscous effects to be unimportant. The van Driest damping 

function for mixing length is an alternative to this approach but in extending the validity of 
the k-e model down to the wall, an increase in computational effort arises from the 

necessary increase in local mesh density. 

Low Reynolds number models use a mixture of damping effects and direct 

molecular viscosity effects on the empirical constants and functions in the parent high 

Reynolds number k-e model. Owing to a dearth of reliable near-wall data for low 

Reynolds number, these models are often prepared and honed by numerical experiments. 
Patel, Rodi and Scheurer (1985) reviewed eight recent low Reynolds number k-e models, 
first discussing the modelling assumptions and modifications to the parent model and then 

testing each model for a range of cases, including low Reynolds number boundary layers, 

high Reynolds number flow and equilibrium flows in adverse pressure gradients. 
Patel et al (1985) considered the available near-wall and low Reynolds number 

turbulent data to provide a basis upon which to assess the modelling assumptions. They 

noted that such data was limited, mainly because of probe interference effects near the 

wall and also problems in measuringro, necessary for scaling the flow parameters. 'Me 

available data, mostly for flat plate boundary layers, was important in that all the low 

Reynolds number models considered attempt to reproduce such near-wall effects. 
In brief, the dimensionless kinetic energy, k+, for a flat plate boundary layer, peaks 

at about y+ = 15, providing a maximum production of approximately k+ = 4.5. Beyond 

this, in the range 60 < y+ < 150, k+ is almost constant at k+ = 3.3. 

The non-dimensional shear stress, -ýTvl, in the log-law region is distributed as 
3 

-U-v+ =I- (1/ky+) but very close to the wall varies as y+ 
With regard to the turbulent dissipation rate, e, the transport equation in the k-C 

model is only truly valid for homogeneous turbulence. In the log-law region, say for 

40 < y+ < 100, F, = k, but in the immediate vicinity of the wall, e=a+ by+ and so e is 

finite at the wall. 
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The low Reynolds number k-e models considered by Patel et al included viscous 
diffusion terms and functions to modify the five constants of the standard model and also 

extra terms, D and E, to mimic near-wall behaviour. The models were all observed to 

suffer from a number of the following shortcomings 

i) use of the e transport equation may be avoided by setting e=e -D such that D 

provides e=0 at the wall. As such, D should be assymptotic to the non-zero value 

of e at the wall, so as to balance the k equation at that point. Whilst all the models 
did this, beyond y+ = 60, e should equal e for vanishing D. Not all models gave 
this result. 
ii) the standard model has five constants as Cý, Q1, C, cyk and q& The low i2 

Reynolds number models all employ multipliers of the first three constants as fg, f, 

and f2, all tending to unity for high Reynolds number, at which point the low 

Reynolds number models operate on their coded values of Cg, Q, and CE2, which 

were not necessarily equal to those of the parent model. As the k-e model is very 

sensitive to the precise values of Qj and Q2, this approach results in a reduction in 

general validity, implying that such models should only be used in the near-wall 

region. Furthermore, the e equation for zero pressure gradient relates Q1, Q2, cc 

and Cg to one another and this relationship was not satisfied by all the models. 

iii) the function fA acts on the eddy viscosity relationship to mimic the effect of 

molecular viscosity on shear stress but shear stress is also depressed by fluctuations 
in the pressure field due to the pressure-strain correlation which is independent of 

viscosity and hence not dependent on Re or y+. This function then acts to reproduce 
two effects that are hard to separate, yielding a numerical distribution different to 

that gained experimentally. Also, beyond y+ = 60, fg should tend to unity but some 

models did not provide this, giving viscous damping too far out into the 
flow. 

iv) the function f2 modifies the destruction of turbulent dissipation at low Reynolds 

number. Experiments on the decay of isotropic turbulence suggest that ka X-n, for 

which n=1.25 at high Reynolds number, tending to 2.5 in the last stages of 
decay. Some of the models gave lower decay rates near the wall. However, as f2 

tends to unity beyond Re - 15, this effect is limited to the viscous sub-layer. 

v) the functions f, and E in the e equation provide quadratic growth in F_ with 

distance from the wall. However, some models yield a decrease in e as Y in the 
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logarithmic region, disappearing in the viscous sub-layer. This leads to a peak in the 

buffer zone and this causes a lower peak in the corresponding k value. 

As such, Patel et al (1985) concluded that the eight models surveyed lacked a sound 

physical basis, being at best limited to specific flow regimes for low Reynolds number, 
from which they were derived. 

In practically evaluating model performance, the models were expected to duplicate 

the behaviour of the high Reynolds number parent model in the freestream and for 

bounded flows, to mimic low Reynolds number behaviour observed experimentally. The 

tests included a flat plate with an equilibrium pressure gradient and one with a strong 
favourable pressure gradient. These flow regimes were not successfully modelled by all 

of the schemes tested. Patel et al (1985) concluded that for such models to be of general 

use, the damping function, e, should be matched to experimental studies, that the 

functions fl and f2 should be adjusted for mathematical consistency and that all the 

models reviewed required fine tuning to allow for the prediction of basic features of wall- 
bounded flows under pressure gradients. 

Another approach to the resolution of velocity profiles within turbulent boundary 

layers is the application of second moment closure methods (Launder and Shima, 1989). 

Here the turbulent stresses are modelled directly by preparation of suitable transport 

equations or algebraic approximations. With regard to the problem of closure, an exact, 

closed set of transport equations can be derived from the instantaneous form of equations 

of motion (Hinze 1975) (where each Reynolds stress component is defined in terms of 

turbulent generation, viscous dissipation, destruction and redistribution due to pressure 
fluctuations and turbulent diffusion) but such equations require knowledge of further 

unknowns. These new unknown quantities may be clarified by preparation of a further set 

of transport equations, which, in turn, yield more unknowns. This spiralling process is a 

classic closure problem and demonstrates why so much attention has been paid to 

approximations to the Reynolds stresses. Again, as for the low Reynolds number 

methods, wall functions are dispensed with and the turbulence model is operated right 
down to the wall. In a paper by Leschziner (1989), the algebraic stress method was used 

to reproduce the experimental results of Driver and Seegmiller (1985) who studied a range 

of flows over backward facing steps. Leschziner's results showed better predictions than 

similar studies using the standard k-e model. However, the computational effort required 

is highlighted by a similar study by Launder and Shima (1989). Effective modelling of the 
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boundary layer required some seventy nodes distributed across the boundary layer, many 

of which were sited in the viscous sub-layer. 
Summing up the various approaches to bounded flows considered so far, it can be 

seen that the standard k-e model, in conjunction with traditional wall laws, is unable to' 

replicate the effects of pressure-driven flows, whilst the use of two-layer models, low 

Reynolds number models and second moment models typically result in excessive 

computational effort. However, a number of wall laws for pressure gradient analysis have 

also been considered that might be of merit in enhancing the basic high Reynolds number 
k-e model. 

For a wall model, offering a velocity profile for the viscosity-affected region of the 

boundary layer to be of general use, it must be able to cope with the effects of pressure 

gradients and hence with separation effects. 
Schofield (1986) presented a discussion of the nature of separating flows and 

detailed an extension to the Schofield-Perry power law (1981). Schofield noted that no 

single closure hypothesis was available for both developing attached boundary layers in 

adverse pressure gradients and for detaching and fully detached shear layers and that 

analysis hinged upon the use of zonal models. 
With regard to the use of similarity profiles for separating layers, Schofield 

suggested that whilst Coles'law (1956) was very robust for attached boundary layers, it 

was only valid up to the point of separation. Turbulent boundary layer separation is a 

process and not an event (Kline, Bardina and Strawn, 1983). Flow near the wall spends 

an increasing proportion of time in backflow as an observer moves downstream through 

the detachment zone. The region is intermittent in nature as three-dimensional elements of 
backflow appear and disappear in a random manner near the wall. The appearance, 

growth rate and lateral position of these elements is unpredictable, leading to multiple 
instantaneous detachment lines. As the separation bubble develops downstream, the 

magnitude and duration of flow reversal elements rises and the flow becomes increasingly 

three-dimensional. With negligible production of Idnetic energy in the backflow, classical 

wall laws fail as they depend upon a local balance between k and e. Traditional wall laws 

then become inappropriate as the flow now scales on different variables. Flow reversals 

first occur near the wall and then, as detachment develops with downstream distance, they 
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increase in frequency and extend out from the wall. As such, the deviation from the 
logarithmic law begins at the wall and extends up through the boundary layer with 
distance downstream. 

To get an accurate value of ro from an experimental velocity profile, the method 
must account for reversed flow contamination effects on the measured mean velocity. As 

such, any recording technique used to this end must be able to capture both the magnitude 
and direction of the local flow, whilst offering as little disturbance as possible to that 
flow. In consequence, the quality and quantity of near-wall data for separating flow is 
limited (Schofield, 1986), which poses a problem when seeking to validate any proposed 
'universal'wall model. Whilst turbulence measurements suggest the low values ofro in a 
detached region have little effect on mean flow development, any analytical approach 
which scales on v* will then fail in a region with intermittent flow reversal as To will have 

a mean value of zero near separation. 
As already noted, Schofield (198 1) proposed such a flow to be governed by -zm. 

and gathered experimental evidence to show that boundary layers under adverse pressure 
gradient and near detachment are dominated by large scale turbulent structures in the outer 
layer which scale with vsq directly related to rm,,,. Schofield's model, for moderate to 

strong adverse pressure gradients, including attached flow immediately preceding 
separation, holds forrm... ý: I To, on the assumption thatrm,,,, is unaffected by 2 
intermittent or mean flow reversals near the wall. 

Now the law of the wall is unlikely to cease abruptly at separation but should still 
hold for the outer portion of the boundary layer, where a large scale coherent turbulent 
structure still exists, and hence be able to determine part of the mean flow profile. After 

separation then, the law of the wall should still describe the forward flowing outer portion 
of the boundary layer, riding over the mean reversed flow. As such, some portion of the 

separation bubble should be excluded from analysis by positioning the origin for 
Schofield's defect law away from the wall, the natural choice being the mean dividing 

streamline, providing continuity between Schofield's analysis and the upstream attached 
flow. This fits with experimental observations of the outer layer structure being little 

affected by detachment and of its dominating the flow from the outer edge of the 
boundary layer down to the dividing streamline. 

Hence Schofield provided a power defect law to complement the shrinking law-of- 

the-wall-zone for all the forward flowing segment of the separation bubble. The analysis 

still excludes the backflow region, for which little data of common intermittency was 
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available to Schofield although it was postulated that scaling might be affected by 

reference to the maximum reversed velocity. 
Dengel and Femholz (1990) investigated a range of pressure gradient flows such 

that -To was finite but close to zero over a section of the test boundary. Their data 

suggested that not only was Coles' law unsuited to separating flows but that Schofield's 

analysis was limited to the immediate vicinity of separation. Their work suggested that 

intermittent backflow begins well upstream of the mean separation point and that the first 

portions of reversed flow occur at the point where the log-law vanishes. Dengel and 
Femholz then noted that the boundary layer shape changes continuously under adverse 

pressure gradient and that a universal profile such as that of Schofield is hence unlikely to 

arise. However, for flow in the immediate vicinity of separation, they presented a seventh- 

order polynomial profile. 
In a slightly different approach, Haroutunian and Engelman (1991) presented a 

special wall model element for finite element analysis, using van Driest's approach for 

modelling near-wall viscosity. In order to overcome the problem of excessively fine near- 

wall meshing, the elements operate a form of Reichardfs law to model the viscous sub- 

layer and buffer zones up to y+ Zt 30. As such, the standard k-e model is run right down 

to the outer edge of this layer of special elements lining the model wall. 
Reichardes law is formulated as shape functions matched to the element by the 

dimensionless element height, which they related to Y+. However, these shape functions 

are not scaled on v* but by k112 taken at the outer edge of the elemenL Whilst this offers a 

more fundamental velocity scale, the wall law is no longer strictly related to near-wall 

parameters. 
As the k-e model is not solved in the viscosity-affected area, the eddy viscosity is 

modelled within the elements using the van Driest model, with the length scale related to 

y+ in terms of kl/2 away from the wall. As the k-e model operates over a truncated 

domain, boundary conditions for k and e are required at the model interface, being given 

as Neumann conditions for k and with e set as an analytical function of k. 

For the approach to work, the element must fully contain both the viscous sub-layer 

and the buffer zone lest the k-e model be applied in a low Reynolds number region. The 

shape functions resolve the sharply varying flow profile across one elemental layer, hence 

providing a method with the benefits of van Driest but without the need for a very fine 

mesh. However, it will be remembered that Reichardt's law was not prepared for 

pressure-gradient-driven flows. 
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Whilst Schofield's work is restricted to medium to strong pressure gradients, a 

number of attempts have been made to extend the more general Coles' law to describe 

separating flows. The basic problem with Coles' law under such conditions is the use of 

V* as a scaling factor since at separation, ro = 0. 
Kline, Bardina and Strawn (1983) noted that as the skin friction approaches zero at 

the separation point, so does ro. However, beyond this point, ro becomes negative. As 

such, either side of the separation point, a viable v* value denoting the sense of flow may 
be offered by using the modulus of ro to calculate v*, which is then given the same sign 

as, co. Kline et al then reformulated Coles'law in terms of a wake amplitude and a 
dimensionless shear velocity. In comparison with experimental test data, the method 

appears to work well for both attached and detached flow over impermeable surfaces, 

such as the data of Kim (1978) for the backward facing step. 
Das (1987,1988) presented an integral method for studying two-dimensional 

incompressible boundary layers under arbitrary pressure gradients, based on Coles' law. 
The wall-wake velocity profile and the equations of continuity and conservation of 
momentum were integrated across the boundary layer in terms of u+ and y+ to yield a 
simple relationship in terms of the shear velocity. This could then be used to calculate the 

skiriffiction, boundary layer thickness and shear stress at the wall. Das (1987,1988) 

considered experimental data from a range of flows including near-separating, separating, 
reattaching and six favourable pressure gradient flows, from which an empirical 
relationship between Coles'wake parameter and Clauser's equilibrium pressure gradient 
was prepared. Since the equilibrium pressure gradient can be determined simply from 
knowledge of the shear stress at the wall, the displacement thickness and the streamwise 
pressure gradient, then this empirical relationship simplifies the application of Coles' law 

to arbitrary pressure gradient flows. Das's model, relating Coles' wake parameter to the 

pressure gradient, was also used by Wahls, Burriwell and DeJamette (1989) in their study 
of compressible turbulent boundary layers. 

Das then extended the method by inverting it such that the displacement thickness 

profile was used as input to the solution, with the intention of calculating the velocity 
profile for separating flows. The basic problem of Coles' law failing as To (and hence v*) 
tends to zero at separation was then addressed by re-expressing the wake parameter in 

terms of a wake velocity which remains flnite across the zone of separation, varying 

smoothly from the attached to the detached flow region. This modified form of Coles'law 

was then compared with test data for flow separation under strong positive pressure 

, 
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gradient, in a diffusing passage and for flow around an aerofoil-like body. Das thus 
demonstrated that this method gave good results for skin friction, the development of 
displacement thickness and for the velocity distribution within the separating zone. 

Having reviewed a range of wall laws for use under a range of diverse flow 

conditions, Coles' law is felt to provide the widest scope for analysing a variety of flows 

under arbitrary pressure gradients. To date, Coles' work, subject to various modifications 

necessary to extend its range of application, has typically been confined to momentum 
integral analyses. However, as its profile is relatively simple to compute, it is to be 

forwarded here as a possible tool for use in the construction of an enhanced wall law to 

complement the standard, high Reynolds number k-e model. 

2.7. The Case for an Improved Wall Law for Use With the Standard LPE 

Prior to setting down the projected aims of this study, it is of use to take an 

overview of the previous work that has been considered in this chapter. 
In reviewing the major techniques currently available for analysis of fluid continua, 

no one method has been found to be universally applicable. In the approach of direct 

numerical simulation, where an exact solution to the Navier-Stokes equations is sought, 
the computational effort required in resolving the finest scales of turbulent decay 

precludes its application to general flow problems; analysis is confined to low Reynolds 

number flows and even then is regarded as a tool limited to the study of the nature of 
turbulence. Second moment techniques are similarly computationally expensive - by 

avoiding the use of empirical approximations to the Reynolds stresses, the increased 

number of transport equations needing to be solved again limits the complexity of the 
flow regime that can be modelled on a given computer system. 

In turning to the use of eddy viscosity models, the range of approaches, each with 
their own limitations, presents no obvious general candidate. The Reynolds stresses are 

modelled by analogy to the viscous stress of the fluid, with models being classified by the 

number of transport equations used to that end. The two-equation k-e model has enjoyed 
widespread use but, whilst it is considered to offer a balance between accuracy of results 

and computational expense, in the near-wall region, the assumptions upon which it is 

based break down. Extensions to this scheme, such as low Reynolds numbers 
adaptations and two-layer models again have drawbacks. In the former case, the physics 
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of the model are dubious and in the latter, the necessary spatial discretization of the near- 

wall layer (operating a one-equation turbulence model) limits the range of geometries to 

which it can be applied usefully. 
The end goal of CFD within an engineering environment is to provide a practical 

and robust tool for the simulation of as wide a range of real flows and geometries as 

possible. As such, use of the k-e turbulence model within a finite element framework is 

expected to prevail for some time to come. Some technique is then required to account for 

the effects of viscosity in the near-wall region, and hence the sharply varying local 

velocity gradients, without recourse to an excessively fine computational mesh. Practical 

engineering problems will typically display complex geometries and transience of flow. 

As such, any near-wall model must be able to predict the effects of separation and 

recirculation, thus considering the influence of the local pressure gradient. 
Whilst law of the wall models have been used in conjunction with the k-e model for 

some time, beyond the specific instances for which they were prepared, their more 
general applicability has not been greatly questioned. Thetraditional' expressions of the 
law of the wall, in the works of Reichardt (1951) and of Spalding (1961) make no 
allowance for pressure gradient and hence should be limited to the simplest of geometries. 
Furthermore, extensions to this approach, such as that of Haroutunian and Engelman 
(199 1) compound this oversight by calculating the scale for u+ and y+ in terms of 
parameters away from the solid boundary, contrary to the work of Prandtl (1933). Even 

where the behaviour of recirculating flow has been considered, as with Schofield (198 1, 
1986), the resulting model is limited to very specific flow regimes. 

Of the studies reviewed, it is only in the work of Coles (1956) that a wide-ranging 
wall law is seen. Coles'law of the wake encompasses the traditional law of the wall and 
further seeks to cater for the local pressure gradient. The more recent work of Das (19 87, 
1988) makes the use of Coles'law much more approachable, whilst that of Kline, 
Bardina and Strawn (1983) seeks to take Coles'law beyond the point of separation. 
Coles'law then appears to display those characteristics which, in union with the standard 
high Reynolds number k-F, turbulence model, would provide a general flow modelling 
technique without the need for superfine spatial discretisation. 

With regard to the abandon with which traditional wall laws are erroneously 

applied, reference may be made to two recent papers. Takland (1993) discussed the use of 
CFD codes in conjunction with turbulence and combustion models for the purpose of 

simulating three-dimensional gas flow and combustion in "real and complicated" 
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geometries. Test cases were cited as the three-dimensional inlet ports and inlet manifold to 

an internal combustion engine, having been identified as instances of highly complex and 
transient flow. Analysis was then performed using the k-e model with a basic logarithmic 

wall law. For steady flow through an idealized, axi-symmetric inlet port, recirculation 

effects were systematically underpredicted in comparison with the results of laser doppler 

anemometry experimentation. (This is in keeping with Rodi (1991), who notes the 

tendency of this type of modelling combination to curtail recirculation processes. ) Takland 

went on to model the 'true' geometry of the inlet ports but the resulting very small 

elements restricted solution to a laminar simulation. Finally, an entire inlet manifold was 
modelled, first for steady flow (having only one inlet port open) and then for the transient 

case, with the cycle of inlet port events being reproduced through time. 
Takland presented no experimental data against which to gauge the efficacy of the 

manifold simulations, merely noting that further progress in turbulence modelling 
techniques was necessary. Whilst this comment is no doubt true, no allusion was made to 

the effect of the demonstrated rapidly varying pressure distribution upon the wall 

modelling assumptions used. Where there is a marked pressure gradient, changing in both 

space and time, the traditional wall law is clearly deficient. 

Baxendale (1993) similarly used the k-e - law-of-the-wall combination to model the 

three-dimensional, non-reacting flow field within various types of catalytic converters, 
being an instance where gas flow distribution and efficiency of heat exchange are of great 
interest. Given the fine scales of geometry within such devices, the flow channels were 
modelled by porous media elements, with the need for fine meshing thus confined to the 

vicinity of the housing walls. Despite these simplifications, Baxendale was still only able 
to perform steady-state modelling of the flow, arguing that this at least offered some 
basis for comparison between different catalytic converter designs. Again, the limitations 

of the wall modelling technique used were not considered. More significantly, Baxendale 

stressed the need foruser-friendly' simulation tools, where the user need not be minutely 

conversant with the mathematics or physics of that tool. If this requirement is to be met, 

then it is inappropriate to offer up a modelling technique for general use that is so 

restricted in its range of valid application. 
To date, no paper has been encountered that discusses the variation in y+ under a 

pressure-gradient-driven flow, let alone for the case where that flow is transient in nature. 
That the established wall laws are zonal in veracity with regard to the ambient pressure 

gradient is clear: that their usefulness is dependent upon the local y+ value falling within 
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prescribed bands has been less clearly commented upon. In a flow with varying pressure 

gradient, the shear stress at the wall, and hence y+, will be a function of time. As such, 

the wall model used must not only account for local pressure gradient but also be valid 

across the widest possible range of y+ values encountered. For instance, the model of 
Haroutunian and Engelman (199 1) collapses when y+ falls below thirty and that of 

Spalding (1961) has only been verified up to y 300. 

From the preceding discussion of Section 2.7, the aims of the current work may be 

summarized as 

i) consideration of the effectiveness of currently used wall laws through a 
comparison between experimental work and CFD simulations, 
ii) demonstration of the need for an improved wall model, based upon an 
investigation of the variation in y+ and pressure gradient for transient flow 

and 
iii) development of a robust wall law for use within the framework of the 

standard, high Reynolds number k-e turbulence model, hence taking 
advantage of the near-wall saving in spatial discretisation that such schemes 
offer. 

As such, the scope of the work may be seen to include 

i) investigation of a pertinent transient flow, using basic laboratory 

experimentation and contemporaneous computational techniques, 
ii) consideration of the observed variation in y+ and pressure gradient under 

such conditions, hence commenting on the validity of current methods for 

transient and/or geometrically involved flows, 

iii) development of an enhanced wall model based upon the work of Coles, 

iv) identification of test cases suitable to appraise the workings of such a 

model and 

v) demonstration of the behaviour of the Coles' law model and comparison 

with the response of established techniques for those test cases. 
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The validity of 'traditional' wall modelling techniques used to support the standard, 
high Reynolds number k-e turbulence model was questioned in the previous chapter. 
Traditional wall models make no allowance for the influence of pressure gradients on the 
turbulent boundary layer profile. In that many common engineering flows are transient in 

nature, then the pressure gradient and y+ itself would be functions of time, hence 

compounding the deficiencies in the modelling approach used. In Section 2.8, it was 
proposed that the need for a more robust wall model might be demonstrated by comparing 
the computational results of a traditional modelling scheme with experimental velocity 
profiles taken under laboratory conditions. 

In seeking to compare current CFD analysis with practical flow observations, the 

inlet manifold of an internal combustion engine was selected as a typical engineering 

problem. Such devices typically possess complex geometries where flow separation 
might be expected. Furthermore, the time-dependent behaviour of such a flow would lead 

to variation of pressure gradients and recirculation events in both space and time. The 

works of Baxendale (1993) and Takland (1993) both proposed that CFD was a useful 
design tool for automotive components. Whilst both papers studied a real transient flow 

problem of complex geometry, the methods used were suspect in that traditional wall laws 

were used, with no discussion being given of their suitability in such circumstances. As 

such, in studying the three-dimensional flow through the inlet manifold of an internal 

combustion engine here, it is intended to focus on the behaviour of a traditional wall law 

under unfavourable conditions, hence highlighting any shortcomings in traditional 

modelling schemes when compared with experimental data. 

In desiring to compare experimental and computational analyses of the transient 
flow through an inlet manifold, the task may be subdivided as below 

measurement and analysis of the practical flow using straightforward, commercial 
laboratory practice, 
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ii) development of a suitable computational mesh, 
iii) obtaining a steady-state, turbulent solution to the problem, in order to study 

mesh sensitivity and the solution methods pertinent to three-dimensional, turbulent 

analysis, 
iv) operation of a time-dependent, conventional, turbulent model of flow through 

the model and 

v) comparison of experimental and computational results. 

In order to provide a basis for comparison with computational results, a number of 

experimental velocity profiles were taken at discrete points within the inlet manifold. Flow 

simulation was then performed at the same nominal Reynolds number as these practical 

experiments, allowing for comparison of the actual, time-averaged flow with the 

computational models which use Reichardt's law to simulate the near-wall region. 
In using conventional techniques to analyse the flow regime, having first validated 

the computational mesh, it was then useful to gain a steady-state, turbulent solution prior 
to time-dependent modelling. 'Ibis provided experience in selecting suitable solution 

procedures for use in three-dimensional turbulent modelling, such as the solution 

algorithm used and what level of solution damping was required - if any - to achieve 

convergence. The steady-state, turbulent solution also gave a first approximation to flow 

behaviour in the manifold, indicating likely areas of interest in the flow. Furthermore, this 

solution would then provide the initial conditions required at the onset of a time- 
dependent, conventional, turbulent analysis. 

The final stage of modelling, being a transient, turbulent model of flow through the 
inlet manifold, should then provide insight into the time-dependent nature of y+ and of the 
local pressure gradient. Such data is expected to illustrate the limitations of established 

wall laws under such conditions, hence supporting the argument that a more robust wall 

model is needed for use in conjunction with the standard, high Reynolds number k-e 

turbulence model. 

3.2. Experimental Analysis of Flow Through the Inlet Manifold. 

For the purpose of practical experimentation and in order to provide a basis for 

computational meshing of a realistic inlet manifold, a suitable engine was made available 
for study in the Therrnodynan-dcs Laboratories of the University of Hertfordshire. Ilie 
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engine was a Perkins T4.236 direct injection diesel engine, the inlet manifold of which 

will now be described. 

The inlet manifold is depicted in Figures 3.1 and 3.2, providing an approximately 
isometric view of the front and rear elevations of the manifold respectively. 

- 

______ 
1s_ 

Figure 3.1. Front elevation of the inlet manifold. 
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Figure 3.2. Rear elevation of the inlet manifold. 

Initial inspection of the above plates shows the manifold to consist of a rectangular 

cross-section duct with rounded comers, having the inlet to the flow channel at one end of 

the main channel. The inlet to the channel takes the form of a rectangle with one comer 
'snipped off at a shallow angle, providing a five-sided duct at entrance. The main 

channel then connects with three side branches, in turn connecting to the four engine inlet 

ports. Each of these side branches is essentially wedge shaped, terminating in a bend of 

oval cross-section. 
In situ, the inlet manifold is mounted on the engine adjacent to the exhaust 

manifold, as shown in Figure 3.3 below. 
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Figure 3.3. Showing the layout of the inlet and exhaust manifolds in situ. 

Inspecting Figure 3.3, it can be seen that the complex curvature of the side branches 

of the inlet manifold partly arises from the need to fit both manifolds into a limited space. 
Furthermore, the positioning of the turbo-charger unit leads to the air intake to the inlet 

manifold being placed at one end of this duct, rather than being sited centrally with respect 

to the engine inlet ports, which might be expected to provide even aspiration of air into the 

engine cylinders. The inlet manifold layout then presents problems in terms of physical 

access to the flow for practical experimentation and also to computational meshing for 

C. F. D. analysis. 

In designing and performing physical experiments to study flow through the inlet 

manifold, with a view to providing some basis for comparison with computational 

experimentation, a range of desirable data may be considered as knowledge of 

i) inlet conditions to the manifold and 
ii) velocity distributions within the manifold. 
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Regarding boundary conditions, where the fluid flow is confined by an impervious 

duct, as is the case here, then at the solid surface a'no-slip' velocity condition will 

necessarily prevail. Beyond this, knowledge is then required of the distributions of 

velocity, kinetic energy of turbulence and rate of turbulent dissipation within the boundary 

layer. The very nature of flow within the boundary layer, with its attendant rapidly 

changing variable distributions, makes the practical measurement of such flows difficult. 

The presence of any probe used may well alter the flow distribution that it was intended to 

measure. 
At inlet to the flow, the distributions of v, k and e are likewise of great interest. A 

general velocity distribution might be obtained by use of some form of velocity probe but 

for kinetic energy and dissipation, more sophisticated techniques would be required. In 

fact, kinetic energy and dissipation rate data can be provided by methods such as hot-wire 

anernornetry but guch analyses are both complicated and specialised. Inspecting Figure 

3.3, showing the physical layout of the inlet and exhaust manifolds and the turbocharger 

unit in situ, it can be seen that the flow at entrance to the inlet manifold will by no means 
be fully developed: the close proximity of the turbocharger to the inlet manifold (and the 

two right angle bends in the duct connecting these two units) suggest that a homogeneous 

or'uniform' flow is likely to prevail at entrance to the inlet manifold. Access to this 

entrance, as depicted by Figure 3.3, is somewhat limited and, coupled with the 

specialised nature of hot-wire techniques, it was decided that such analysis was beyond 

the scope of this work. 
Regarding the study of general velocity distributions within the inlet manifold, 

however, there are a number of points along its length where there is sufficient room 

externally to allow the use of a velocity probe. Figure 3.4 below shows two such 

stations, at 0.165 and 0.345m downstream of inlet respectively. 
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Figure 3.4. Showing the siting of test stations for a velocity probe. 

Whilst it would be highly desirable to study the flow in the side branches of the 

manifold, connecting its main duct with the engine inlet ports, this was precluded by the 
lack of access to these regions. A velocity probe, such as a pitch probe or a yaw meter, in 

measuring the local pressures incident upon it, will yield spurious results for the reverse 
flow found in zones of recirculation. As such zones were predicted in these parts of the 

manifold by preliminary computational modelling and coupled with the desire not to 

extend the work to more complex studies involving, say, three-dimensional hot-wire 

anemometry, experimentation was ultimately limited to taking velocity samples in the 

main duct of the inlet manifold, at the stations depicted above in Figure 3.4. 
Practical experimentation was then limited in scope to provide qualitative insight 

into the nature of the manifold flow. The results of these simple experiments were 
intended to act as a basis for comparison with the computational experiments. The design 

and calibration of suitable metering equipment, in the form of a combined pitch and yaw 

probe, and the method by which results were processed are described in Appendix Al. 

3.2.3. 
-Test 

Results and Discussion-for Practical Experimentation. 

The experimental velocity profiles will now be discussed in turn. For each station, 

the results show the variations in the components of the total flow velocity, vx, vy and 

vz, for two mutually perpendicular lines drawn through the duct cross-section (and are 
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given in tabular form in Appendix A 1). As such, they should provide some insight into 

the nature of the flow through the plane of either test station. However, it must be 

remembered that to either side of the traversing lines the flow was not measured and so 

care should be exercised in predicting the nature of the flow across the entire plane. 
In order to provide a direct comparison between experimental and computational 

results, each set of results was normalized to its maximum recorded velocity. Where 

differences existed in the maximum recorded velocity between experimental and 

computational results, this then allowed for a qualitative comparison of results to be 

drawn. Figure 3.5 below shows the normalized velocity components for the vertical 

traverse of the duct at station I. 
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Figure 3.5. 'Me vertical variation of v,,, vy and vý across the manifold at station I. 

From the above graph, the major flow direction is seen to be in the x-direction, 

along the main length of the manifold. The velocity components vy and vz are less than 

40% of vx. Station I is sited just before the side branch leading to ports 2 and 3 and after 

the downturn in the main duct after side branch 1. The profile for vX suggests a rapid rise 
in velocity away fi-om the wall, with the normalized velocity being near unity in the upper 
half of the duct. This implies that mass flow through station I is greater in the upper half 

of the duct. The vy profile, being negative in the lower half of the duct and positive in the 

upper half, predicts an anti-clockwise swirl in the flow when moving towards side branch 

2/3. The vz distribution is positive across the duct, being greatest over the bottom third of 

the duct. 
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Figure 3.6. The horizontal variation of v,,, vy and vz across the manifold at station 

I. 

Figure 3.6 shows the horizontal velocity distribution at station I. As with the 

vertical distribution of Figure 3.5, the predominant flow direction is along the x-axis, 
with vy and vz being less than 20% of vx here. The vy profile predicts a slight deflection 

in the flow towards the front face of the manifold, with vz again suggesting movement 

towards the upper half of the duct. 
Whilst the horizontal and vertical distributions of Figures 3.5 and 3.6 suggest that 

flow is predominantly in the x-direction, the combined results for vy and vz suggest that 

after accelerating around the bend downstream of side branch 1, the flow is concentrated 
in the upper half of the duct section and that there is a tendency in the flow towards the 

rear, upper comer of the duct. Side branch 2/3 is just downstream of station I and given 

that ports 2 and 3 should account for one half of the mass flow through the manifold, then 

a deflection in the flow towards this side branch is plausible. 
Figure 3.7 then shows the vertical velocity distribution at station II. 
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Figure 3.7. ne vertical variation of v.,, vy and vz across the manifold at station 11. 

For the vertical section at station H, the flow is mainly in the x-direction, towards 

port 4. Whilst vx rises rapidly towards unity away from the upper duct surface, the 
increase in vx away from the base of the duct is more gradual. Whilst vy and vz are 

typically less than 20% of vx, the result for vz near the base of the duct, being some 50% 

of vx is suspect. Such a result arises from a large flow angle, 0, implying locally strong 

shearing of the flow, for which the flow angle meter, as described in Appendix A I, is 

unsuitable. Generally, the vy profile, being slightly negative, predicts minor movement 

towards the rear face of the duct, with the vz profile suggesting a flow movement towards 

the upper reaches of the duct. 
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Figure 3.8. The horizontal variation of v,,, vy and vý for the manifold at station II. 
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The horizontal section at station II shows a near-uniform distribution in vx across 
the duct, rising rapidly from zero at the walls. The distribution for vyl being some 20% of 

vx, suggests a tendency in the flow towards the rear wall of the duct, whilst the vz; 

pmfile, being about 5% of vx, shows slight motion towards the upper reaches of the 
duct. Considering the distributions of Figures 3.7 and 3.8 together, the results imply that 

the main direction of flow in the x-direction is augmented by a slight movement of the 
flow towards the rear, upper section of the duct. In that station 11 is just upstream of the 

entrance to side branch 4, then a tendency in the flow towards the upper section of the 
duct, before accelerating around the inlet bend to side bmnch 4, seems reasonable. 

In reviewing these results, their somewhat scattered nature is thought to arise from 

the combined effects of engine speed and recording technique. Experience showed that in 

moving from one reading point to the next across the duct, the readings took some five 

minutes to fully stabilize. Given that the engine speed could only be held approximately 

constant, typically varying by ± 30rev/min over an half hour period, it cannot truly be 

claimed that all results for a given traverse were taken at the same engine speed and hence 

for the same mass flow rate. Given that flow velocity is proportional in the first instance 

to engine speed, then for the nominal speed of 1220 rpm at which tests were conducted, 
this fluctuation in engine speed would correspond to a variation of up to 3% in flow 

velocity during the traversing of any given test station. 

In seeking to model the inlet manifold, the computational mesh for such work had 

to be generated from scratch. The development of the computational model of the 

manifold centred on the provision of high mesh resolution in the near-wall region, 

suitable for the intended study of the response of 'traditional' wall modelling 

philosophies; the preparation of this model is laid out in Appendix A2. 

The final version of the manifold model, listed as input file barf. FDREAD in 

Appendix A2, was operated as a steady-state model. To enable the inlet port faces, being 

the outlets of the manifold model, to be opened and closed in accordance with the timing 

sequence of the actual engine, the inlet port faces were declared as 'plof elements. Whilst 

plot elements are'principally offered in FIDAP to allow for fluid properties, such as 

pressure, to be studied across a fluid boundary to the modelled continuum during post- 

processing of results, they present no restriction to the flow at that boundary. In this 
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instance, the plot elements were used for a different purpose: by placing plot elements at 
the manifold outlets, individual outlets could then be'closed'by use of suitable boundary 

condition commands. 
The cycle of events describing the opening and closing of the inlet port faces was' 

equated to a number of separate runs of the model, which collectively simulated the 

transient flow through the manifold. For the Perkins T4.236 diesel engine studied by 

practical experimentation in Section 3.2, the firing sequence of the cylinders was 
1-3-4-2, where the inlet valves opened 18" before top dead centre and closed 42" after 
bottom dead centre. For the nominal engine speed of 1220rpm at which the practical tests 
were conducted, a portion of the complete cycle of events is given as Table 3.1 below. 

Model run Manifold Crank angle Time 
number event at start at end at start at end 

of run of run of run of run 
(degrees) (degrees) (S) (S) 

1 open port 3 162 222 0.0 0.008334 
2 close port 1 222 342 0.008334 0.025002 
3 open port 4 342 402 0.025002 

1 
0.033360 

Table 3.1. Listing of part of the sequence of inlet manifold events. 

The initial conditions from which transient modelling commenced were provided by 

a steady-state solution for the inlet manifold with only port 1 open. Transient run no. 1 

then simulated the flow in the manifold from l6r, at which crank angle port 3 opened, 

up to 222, when port I closed. Thus at the start of transient run no. 1, boundary 

condition commands were set to define ports 2 and 4 as 'closed' and the initial conditions 
for the turbulence and velocity fields were taken from their corresponding fields for the 

solution to the steady-state problen-L Likewise, transient run no. 2 took its initial 

conditions as those prevailing at the end of transient run no. 1, with the change in flow 

conditions being the closure of port 1. Transient run no. 3, being the last in this series of 

experiments, saw the opening of port 4. The modifications to the manifold model, 
barf. FDREAD, that executed these transient flow experiments are listed in Appendix A2. 

It will be realised that to simulate the complete catalogue of events involved in the 
four-stroke cycle of the engine would require several further transient model runs beyond 

those listed above. To offer such a description of the flow, it would be advisable to run 
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the model through one complete cycle of events, prior to collecting any data for analysis, 

to ensure independence of results from the steady-state initial conditions used at the onset 

of transient modelling. However, for the study in hand, the principal interest lay in a 

qualitative comparison of flow tendencies shown by experimental and computional reSU'Its 

and in the behaviour of y+ and the pressure gradients within the flow under transient 

conditions. As such, the results from the transient runs listed above should suffice. 

Throughout these transient runs then, a fixed time step, At = 0.00 1042s, was used, 

such that transient run no. s 1 and 3 were subdivided into eight time steps and transient 

run no. 2 into sixteen. The results of each time step, were they to be saved, would occupy 

the same amount of computer memory as a steady-state run for the same computational 

mesh. Consequently, it was necessary to limit the number of time steps saved from each 

transient run to three within the solution procedure. 
To allow the variation in y+ across the solid boundaries of the manifold duct to be 

inspected as post-processed results, the finite elements prescribing the boundary layer 

model were reconfigured. The single 'wall' element grouping, combining all such 

elements together, was replaced by a number of similar sub-groups, each accounting for a 
distinct portion of those solid boundaries modelled. 

These results will now be considered with regard. to 

i) the general suitability of the model, in comparison with the experimental 

studies of Section 3.2 and 
ii) the variation of y+ and pressure gradient with time. 

Comparison Between Computational and Experimental Results. 

Figure 3.9 below shows a longitudinal section of the steady-state solution to the 

manifold mesh, with all four ports open. 

57 



manifold model - steady-state case VELOCITY 
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Figure 3.9. A longitudinal section of the steady-state solution to the inlet manifold 
now. 

In the velocity vector plot of the above figure, the flow distribution observed is a 
simplified approximation to the practical experimentation of Section 3.2, since all four 

ports were assumed open. Whilst in the practical experiments the inlet ports were opening 
and closing through time, they did so on a time scale much less than the response time of 
the metering equipment. Consequently both the practical experiments and the numerical 

experiment shown above should provide a time-averaged estimate of the real flow 

process. Be that as it may, inspection of Figure 3.9 should provide an initial insight into 
flow patterns within the manifold, prior to studying the time-dependent results. 

A uniform velocity of 9.7n-x/s was specified at inlet to the manifold (see calculation 
of theoretical inlet velocity in Appendix A I). For the section of the manifold shown, the 

velocity distribution normal to the length of the main duct is of a similar magnitude to that 

at inlet, up to that part of the main duct beneath ports 2 and 3. - Downstream of the duct 

inlet, the flow divides at the upper wall of the main duct below side branch 1. Part of the 

flow is diverted into side branch 1, running up the downstream y-z face of that side 
branch (Face 2). The upstream face, nominally in the y-z plane, of side branch 1, being 

Face 1, is abutted by an area of recirculation, which commences at the base of that side 
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branch. The bulk of the flow, however, runs along the main duct towards side branch 

2/3. 

As the flow runs beneath the central side branch, it largely turns up towards port 3 

and so the main flow direction is again split between that entering side branch 2/3 and that 
heading towards port 4. This upturn. in the flow impacts on the duct wall at the base of 
Face 4, the wall in the y-z plane on the downstream side of side branch 2/3. The bulk of 

the flow is then directed towards port 3. At the foot of Face 3, the upstream y-z plane of 

side branch 213, the flow is still mainly parallel to the x-axis, turning up towards port 3 

beneath the mid-point of the side branch. Consequently, there is a second recirculating 

region of fluid adjacent to Face 3. 

That lesser portion of the flow turning back down towards the main duct at the base 

of Face 4 runs along beneath the upper su. -face of the main duct towards port 4. In the 
lower regions of this last segment of the main duct, the low fluid velocity is comparable to 

that within the recirculating pockets of fluid already noted. There is then an acceleration in 

the flow as it turns to enter the final bend in the x-z plane on approach to port 4. 

As Figure 3.9 shows velocity vectors for a vertical section taken through the 

manifold model, its results may be compared with the experimental vertical velocity 
distributions at stations I and II, namely Figures 3.5 and 3.7 respectively. Inspecting 

Figure 3.9 in the vicinity of stations I and II, in either case, the velocity in the upper half 

of the duct is greater than that near the base of the duct, in keeping with experimental 

observation. Downstream of station 1, Figure 3.9 shows a general tendency in the flow 

towards the entrance to side branch 2/3, as predicted by experimental Figures 3.5 and 
3.6. Likewise, downstream of station II, there is a tendency in the flow towards the upper 

portion of the duct, as it begins to accelerate around the bend leading into side branch 4, 

as suggested by experimental Figures 3.7 and 3.8. 

Taking an overview of Figure 3.9 then, the upstream y-z faces of side branches 1 

and 2/3, being Faces 1 and 3 respectively, provoke initial interest in that the fluid adjacent 

to them has undergone separation and is recirculating. It is now appropriate to consider 

corresponding velocity profiles taken from the transient models. In each case, the velocity 

profiles will be presented along the x-z plane central to the major axis of the model (as 

was the case for Figure 3.9). 
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Figure 3.10. Velocity distribution for the final time step of transient run no. 1. 

Figure 3.10 shows the velocity distribution eight time steps after the opening of port 
3. The predominant flow is still towards the open port 1. Where the flow bifurcates at the 

base of Face 2, there is a local acceleration in the flow. At the lower edge of Face 1, being 

the upstream face of side branch 1, the flow separates and is seen to reattach 
approximately halfway up that face, so the length of the recirculating zone is. less than in 

the steady-state case. 
On the upstream side of side branch 2/3, there is the seed of a recirculating region at 

the bottom of Face 3, where the flow having accelerated around the filleted root of the 

side branch then impacts on the wall. Running up Face 3, the flow is seen to waver in 

direction between strildrig the wall there and moving towards port 3. Across the greater 

cross-section of side branch 2/3, the flow tends towards port 3. 
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Figure 3.11. Velocity distribution for the final time step of transient run no. 2. 

Figure 3.11 shows the velocity distribution sixteen time steps after the closure of 

port 1. At the point of division in the flow against the upper wall of the main duct beneath 

Face 2, the acceleration of the flow towards ports 2 and 3 is more marked and there is an 

attendant increase in velocity across the section of the duct at station I, just before side 
branch 2/3. The velocities within the recirculating region next to Face 1 are greater after 

the closure of port 1. Furthermore, as the flow turns increasingly towards port 3 in side 
branch 2/3, the nascent recirculation covering Face 3 has gown in size. 
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manifold model - transient run no. 3 VELOCITY 
VECTOR PLOT 

SCALE FACTOR 
. 1200E+03 

REFER. VECTOR 
-. 5801E+01 

MAX. VEC. PLOrD 
. 1693E+02 

AT NODE 0 

TIME -333E-01 
----- - PLANE COEFRS 

A . 000E+00 
8 1100E+011 
C OODE+00 
D 275E-01 
VIEW EXRECTION 
VX DODE+00 
VY . 100E+01 
VZ JDOOE+00 

z ANG OODE+00 
FIDAP 7.06 

11 Jon 95 
U 14,3437 

Figure 3.12. Velocity distribution for the final time step of transient run no. 3. 

Finally, in Figure 3.12, showing the flow some eight time steps after opening port 
4, the general trends of Figure 3.11 are seen to continue. The observed recirculations 

continue to become more prominent. As the closure of port I is registered by the flow, a 
greater portion of the flow turns away from side branch 1 and into the main duct. At the 
base of Face 4, there are now some early signs of the fluid dividing itself between ports 3 

and 4, rather than heading in the main towards port 3. 

The velocity profiles at stations I and H, as predicted by both steady-state and 

transient modelling, will now be considered. 
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Figure 3.13. The steady-state distribution of velocity components for the vertical 

traverse of station I. 

Figure 3.13 shows the steady-state velocity distribution for the vertical section of 

station I. As with experimental Figure 3.5, the predominant flow direction is in the x- 
direction but in this instance the velocity components vy and vz are trivial compared with 

vx. The steady-state distribution for yx is similar to that of Figure 3.5 in the centre of the 

duct but in the upper and lower quarters of the duct, the velocity falls steadily to zero, 

counter to experimental observation. 
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Figure 3.14. The distribution of velocity components for the vertical traverse of 

station I at the end of transient run no. 1. 
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Figure 3.14 shows the velocities for the vertical section of station I at the end of 

transient run no. 1, after the opening of port 3. The distribution for vx is near-uniform 

across the duct, with vy and vz showing a slight swirl in the flow similar to Figure 3.5. 

Whilst there is a more marked increase in vx when moving away from the wall in the 

near-wall region, when compared with the steady-state results of Figure 3.13, the 

normalized magnitude of vx is lower than the experimental results of Figure 3.5. 
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Figure 3.15. The distribution of velocity components for the vertical traverse of 

station I at the end of transient run no. 2. 

Figure 3.15 details events for the end of transient run no. 2 after the closure of port 
1. The profile for vx shows it to be greater in the upper half of the duct in comparison 

with that in the lower portion. In that port I has just closed, from inspection of Figure 

3.11, this results in the flow beneath side branch 1 turning away from the base of Face 2 

to run along the upper surface of the main duct. Whilst the greater magnitude of vx in the 

upper half of the duct, compared with that in the lower half, corresponds with 

experimental trends seen in Figure 3.5, quantitatively vx is underestimated across the 
lower three-quarters of the duct. Again, the rise from zero velocity at the wall towards the 
freestream value occurs more gradually than in the experimental case. 
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I Figure 3.16. The distribution of velocity components for the vertical traverse of 

station I at the end of transient run no. 3. 

In Figure 3.16, velocities across the vertical section are shown after opening port 4, 

for transient run no. 3. The general distribution of vx is similar to Figure 3.15 but the 

magnitude of vx in the region of the upper wall is reduced. However, that part of the flow 

where vx is almost unity is broader. This suggests that as both port 3 and port 4 are now 

open, that the velocity in the core of the duct is rising as fluid is drawn towards port 4, 

beneath that being swept into port 3. In comparison with the experimental results of 
Figure 3.5, Figure 3.16 shows a deficit in vx across much of the duct and too slow a rise 

towards the freestrearn velocity in the near-wall region, as was the case for Figure 3.15, 

depicting similar results for transient run no. 2. 
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Figure 3.17. The distribution of velocity components for the vertical traverse of 

station I for the average of transient runs. 

Figure 3.17 shows the average of the results shown in Figures 3.14 to 3.16. Whilst 

the combination of the transient runs performed does not comprise the complete cycle of 
induction events, it does give a limited, time-averaged description of the manifold flow. 

The averaged vx profile is similar to that of Figure 3.5, with the maximum velocity 

recorded across the bulk of the upper portion of the duct, with lower velocity in the 
bottom half of the duct. However, the increase in velocity away from the near-wall region 
is more gradual for these averaged results. This suggests that the wall model is 

underestimating the local velocity, as may also be inferred from the steady-state results of 
Figure 3.13. The wall model of Haroutunian and Engelman (1991) uses Reichardt's law 

to determine velocity as a function of y+. A low estimate of velocity would arise where 

the model was operated within the transitional sub-layer, for y+ < 30. 

Despite the generally low estimate for vx of the averaged transient results of Figure 

3.17, they bear closer resemblance to the experimental results of Figure 3.5 than either the 

steady-state results or those of individual time steps from the transient runs. 
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Figure 3.18. The steady-state distribution of velocity components for the horizontal 

traverse of station I. 

Figure 3.18 shows the steady-state velocity distributions for the horizontal section 

at station I. Whilst experimental Figure 3.6 showed near uniform velocity across the duct, 
Figure 3.18 shows a reduction in vx over a wide region on approach to the walls. 

1.0 

0.8 

O. r. 

0.4 

0.2 

0.0 

-0.2 -f- 
0.0 

-a- vx 

vy 

VZ 

0.2 0.4 0.6 0.8 1.0 
Nonnalized position in duct 

Figure 3.19. The distribution of velocity components for the horizontal traverse of 

station I for the average of the transient runs. 

However, in Figure 3.19, showing the average of the transient results, the profile 
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for vx is nearer to that of experiment, showing a normalized velocity near unity across the 

whole duct, as well as the slight reduction in vx near the centre of the duct. 
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Figure 3.20. The steady-state distribution of velocity components for the vertical 

traverse of station 11. 

At station H, the velocities across the vertical section are shown for the steady-state 
model in Figure 3.20. Here there is a marked discepancy between results, with the 
computational prediction for vx varying almost linearly from zero to unity towards the 

upper boundary of the duct. In the steady-state model, only one quarter of the mass flow 

will enter port 4 but the experimental results correspond to a system where all of the mass 

flow passes through port 4 for a quarter of the time. Whilst the experimental Figure 3.7 

also shows a'low'velocity across the lower quarter of the duct, in the upper portion of 

the ductý vx is approximately uniform. As such, the steady-state model does not provide a 

good representation of the practical flow. 
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Figure 3.21. The distribution of velocity components for the vertical traverse of 

station II at the end of transient run no. 1. 

Figure 3.21 shows events for the vertical section of station II at the end of transient 

run no. 1. Here, all three velocity components are of similar magnitude. At this time, port 
4 is closed and from Figure 3.10, virtually no fluid is directed towards side branch 4. As 

such, these velocity distributions correspond to the movement of near-stagnating fluid. 

Similar results were gained for transient run no. 2 and hence are not shown here. 
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Figure 3.22. The distribution of velocity components for the vertical traverse of 

station 11 at the end of transient run no. 3. 
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Figure 3.22 describes the corresponding velocity profiles for transient run no. 3, 

after the opening of port 4. Whilst the distribution for vx shows some similarity to 

experimental Figure 3.7, with near-uniforin velocity across the majority of the duct, in the 

near-wall region the computational model deviates from observed trends. 
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Figure 3.23. The distribution of velocity components for the vertical traverse of 

station II for the average of the transient runs. 

The average of the transient results, as Figure 3.23, agrees less favourably with 

experimental results than previous averaged transient results although the reported main 
direction of flow is still the x-direction. In that the first two transient runs show near-zero 

values of vx, the favourable reported results for the third transient run are somewhat 

diluted. 
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Figure 3.24. The steady-state distribution of velocity components for the horizontal 

traverse of station H. 

The horizontal steady-state results at station II are shown in Figure 3.24 with some 

similarity in the vx profile to the experimental results of Figure 3.8. However, where the 

experimental results showed vX to be greatest in the rear quarter of the duct, the steady- 

state results predict the largest values of vX near the front duct wall, with a slight, steady 

reduction in vX towards the rear reaches of the duct. 
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Figure 3.25. The distribution of velocity components for the horizontal traverse of 

station Il for the average of the transient runs. 
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The average of the transient results, as Figure 3.25, shows some correspondance 

with Figure 3.8 but as with Figure 3.23, the effect of near-zero velocity for the first two 

transient runs reduces the average reported value of vx. .1 

3.3.2. The Transient Behaviour of I+- and Pressure Gradient. 

Consider now the pressure distributions corresponding to Figures 3.10 to 3.12. In 

the following discussion, all pressures will be presented in non-dimensionalised form, 
having been divided by I pv2 (where v is the uniform velocity, prescribed at inlet to the 2 
manifold model). Figure 3.26 shows the pressure distribution some eight time steps after 
the opening of port 3. 

manifold model - transient run no. 1 PRESSURE 
CONTOUR PLOT 

LEGEND 
A-- 3F+02 
0--. 5894E+02 
C--. 31 05E+02 
D--. 3154E+01 
E- . 2474E+02 
IF - -5263E+02 *- IMME+02 
*- .1 084E+03 
I- . 1363E+W 
J- . 1642E+03 

MINIMUM 
-. 10078E+03 

MA)UMUM 
. 17814E+03 

G TIME . &33E-02 
PLANE COEFF. S 
A JDODE+00 
B IOOE+01 
C OOOE+00 
D 275E-01 
VIEW DIRECTK)N 
VX JDOOE+00 
VY IOOE+01 
VZ DOOE+00 
ANG OOOE+00 

z FIDAP 7.06 '06 Li 
11 Jan 95 
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13-. 06: 36L_ 

Figure 3.26. Pressure distribution for the final time step of transient run no. 1. 

Inspecting the pressure distribution shown above for the end of transient run no. 1, 

there is a favourable pressure gradient before the inlet to side branch 1, with the pressure 
dropping from 1.47 to -0.06. The pressure then recovers up the surface of Face 1, 

regaining a value of 1.47 two-thirds of the way up that face, hence giving an adverse 

pressure gradient in the area where recirculation was observed in Figure 3.10. The 

contour at entrance to the final bend in the y-z plane of side branch 1 (and leading to port 
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1) indicates a pressure of 1.84. 

manifold model - transient run no. 2 PRESSURE 
CONTOUR PLOT 

LEGEN 
A. -2113E+03 8-, 1806E+03 
C--. 1500E+03 
D-.. 1193E+03 
E--. 8870E+02 
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G--. 2741E+02 
H- . 3234E+01 
I- -1, WE+02 
J- . 6452E+02 

MINIMUM 
-. 22659E+03 

MAXIMUM 
. 7W2E+02 

TIME . 25DE-01 
PLANE COEFF. S 
A . 000E+00 
8 100E+01 
C DWE+00 
D . 275E. 01 
VIEW DIRECTION 
VX JDODE+00 
VY . 10DE+01 
VZ ODOE+00 
ANG ODOE+00 

FIDAP 7.06 
11 Jan 95 
14,02'31 

Figure 3.27. Pressure distribution for the final time step of transient run no. 2. 

Figure 3.27 gives the pressure distribution at the end of transient run no. 2, at the 

start of which port 1 was closed. Whilst there is still a favourable pressure gradient at the 

upstream face of the inlet to side branch 1, the pressure now drops from -0.55 to -1.84. 
This implies that the pressure at the wall just before the foot of Face 1 has changed sign, 

even though a favourable pressure gradient has been maintained just upstream of the zone 

of recirculation. The pressure recovery on Face 1 occurs more rapidly here, with pressure 

reattaining the value prior to the branch inlet very soon after the fillet radius of Face 1. 

The contour at entrance to the bend of port 1 indicates a pressure of -0.55. In comparison 

with Figure 3.26, these results then indicate a dramatic change in local pressures, both in 

terms of magnitude and sign. 
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manifold model - transient run no. 3 PRESSURE 
CONTOUR PLOT 

LEGEND 
A- . 2444E+03 
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Figure 3.28. Pressure distribution for the final time step of transient run no. 3. 

The trends observed in comparing Figures 3.26 and 3.27 are continued in Figure 

3.28. The pressure just upstream of Face 1 has now dropped to -0.92, with the region of 
favourable pressure gradient at the base of Face I now greatly reduced in size and the 

corresponding pressure recovery taking place across a smaller area of Face 1. The 

pressure contour at entrance to the bend leading to port I is now reduced to 

-0.92 also. 
TaIdng the pressure distribution across Face 1 as an example, it can then be seen 

that the local pressures vary widely with time and at a given point, such as the leading 

edge of Face 1, the pressure was seen to go from a positive to a negative value in some 
0.025s, indicating a marked variation in local pressure gradient at that point. Given that 

the pressure gradient is varying greatly in both space and time, there is then a clear need to 

account for this behaviour in the provision of a suitable wall law. 

Figures 3.29 to 3.31 below detail the variation of y+ across Face 1 over this time 

span. 
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manifold model - transient run no. 1 MOMENTUM Y+ 
CONTOUR PLOT 

LEGEND 
A. . 1474E+02 
13. . 4421E+02 
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Figure 3.29. y+ distribution across Face I at the end of transient run no. 1. 

manifold model -transient run no. 2 MOMENTUM Y+ 
CONTOUR PLOT 
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A- . 1504E+02 
8- A513E+02 
C- . 7521 E+02 

"` 
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J- . 2858E+03 
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VX . 100E+01 
VY J000E+00 
VZ DODE+00 
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Figure 3.30. y+ distribution across Face I at the end of transient run no. 2. 
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manifold model - transient run no. 3 MOMENTUM Y+ 
CONTOUR PLOT 

LEGEN 
A- . 1501E+02 
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VIEW DIRECTION 
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lz 
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Figure 3.31. y+ distribution across Face I at the end of transient run no. 3. 

At the end of transient run no. 1, y+ - 15 along the edges of Face 1 that join with 

the front and back faces of side branch 1. Such a value of y+ falls below the minimum 

value at which the wall model of Haroutunian and Engelman (1991) is claimed to be 

valid. From the boundary representing the inlet port almost down to the lower, angled 

segment of Face 1, the bulk of Face 1, away from the periphery, has y+ - 73, with 

values over the angled segment varying as y+ - 103 - 180. Close to the inner radius of 
the final bend approaching port 1, there is a local peak in y+ as y+ 103. 

At the end of transient run no. 2, conditions for y+, as shown in Figure 3.30, are 
similar to that at the end of transient run no. 1. However, the centre of the local peak on 

the inner radius of the bend before port 1 has now risen to y+ - 165, with Y+ > 100 over 

the lower half of port 1. Likewise, Figure 3.31 shows a continuation of these trends. 
The following figures detail the variation in y+ across Face 3, being the upstream 

face of side branch 2/3 in the y-z plane, remembering that a recirculation zone was 

observed to develop with time next to this face. 
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manifold model - transient run no. 1 MOMENTUM Y+ 
CONTOUR PLOT 

LEGEN 
A- A712E+01 

. 1414E+02 " \\ C : . 2356E+02 \ 
9-ý- I 

D- 
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Figure 3.32. y+ distribution across Face 3 at the end of transient run no. 1. 

manifold model - transient run no. 2 MOMENTUM Y+ 
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LEGEND 
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Figure 3.33. y+ distribution across Face 3 at the end of transient run no. 2. 
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manifold model - transient run no. 3 MOMENTUM Y+ 
CONTOUR PLOT 

LEGEN 
A- . 1029E+02 
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Figure 3.34. y+ distribution across Face 3 at the end of transient run no. 3. 

In Figure 3.32, at the end of transient run no. 1, during which port 3 was opened, 

y+ - 23 across the upper two-thirds of Face 3, with a local peak of y+ - 61 where the 
inner radius of the bend before port 2 meets the outlet boundary. In the lower portion of 

Face 3, y+ > 40, with maximum values of y+ - 80 across the lowest, angled segment of 
Face 3 (where it connects to the upper surface of the main duct). 

At the end of transient run no. 2, y+ > 100 across the lower portion of Face 3, with 

maximum values of y+ - 200 in the lowest, angled reaches. Across the upper two-thirds 

of Face 3, y+ > 50 away from the peripheries, suggesting that the wall model is now 

valid in this region (pressure gradient arguments aside). The local peak at the base of the 

boundary representing port 2 now has the slightly greater value of Y+ - 73. At the end of 

transient run no. 3, as shown in Figure 3.34, the general distribution of y+ is similar to 

that of Figure 3.33. 

A final comment on the problems with the model of Haroutunian and Engelman 

(199 1) in regions of low velocity is made by consideration of Face 5, corresponding to 

the upstream boundary in the y-z plane of port 4. 
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manifold model -transient run no. I MOMENTUM Y+- 
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Figure 3.35. y+ distribution across Face 5 at the end of transient run no. I. 

At the end of transient run no. 1, during which port 4 is closed, the y+ values 

shown in Figure 3.35 are less than unity across the entirety of Face 5. Whilst this is 

consistent with the effective stagnation of the fluid under such conditions, at the end of 
transient run no. 3, y+ is still less than 10 over Face 5 after opening port 4, as shown in 

Figure 3.36. 
manifold model - transient run no. 3 MOMENTUM Y+ 

CONTOUR PLOT 
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Figure 3.36. y+ distribution across Face 5 at the end of transient run no. 3. 
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3.4. Discussion-of 3-d ComUtitational Modellillg, 

When comparing the results of CFD modelling using 'traditional' wall models with 

experimental results, significant differences were observed. In the first instance, it had 

been suggested that a steady-state model of the manifold would bear some resemblance to 

the experimental results in that both gave a time-averaged description of the flow. 

However, examination of the steady-state results showed them to be deficient in the near- 

wall region. For example, at station 1, the steady-state model results for the vertical 

traverse of the duct, Figure 3.13, deviated from the experimental Figure 3.5 both in 

magnitude acmss the freestream, and in the predicted near-wall profile. 
Likewise, the velocity profiles arising from individual time steps taken from 

transient runs showed marked differences in comparison with experimental results. 
Considering the vertical section at station I, Figure 3.14 for transient run no. I differed in 

the magnitude of the freestream velocity from experimental Figure 3.5. After the closure 

of port 1 during transient run no. 2, Figure 3.15 gave a poor description of the observed 

near-wall behaviour and significantly underpredicted freestream velocity across the greater 

part of the duct. Similar trends were also seen at the end of transient run no. 3, in Figure 

3.16. Such discrepancies appeared to be heightened in those instances where the general 
flow velocity was lowest. At station 111, where local velocities were considerably lower 

than at station I even after the opening of port 4 at the start of transient run no. 3, the 

computational results of Figures 3.20 to 3.23 related poorly to experimental Figure 3.7, 

especially in the near-wall region. 
Comparing the steady-state and individual transient results, the separation bubbles 

observed in the steady case of Figure 3.9 were seen to move in both time and space 
during transient modelling under the influence of local, varying pressure gradients (see 

Figures 3.10 to 3.12). Given that the modelling method did not account for the pressure 

gradient and that the computational near-wall velocity profiles differed from experimental 

results, then these transient separation predictions must be viewed cautiously. 
The closest correspondance with the experimental observations was provided by 

taking an average of the complete set of transient results at a given point. However, as the 

individual components of these averaged results deviated from those gained in practical 

experimentation, the averaged results were also poor in the near-wall region. For 

example, whilst Figure 3.17, showing the average of the transient vertical profiles at 

station I, bore greater resemblance to experimental Figure 3.5 than any of its constituent 
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profiles (being Figures 3.14 to 3.16), its near-wall predictions still did not meet with 

practical observations. Consequently, the CFD model was seen to be unable to replicate 

the results of simple laboratory experimentation. Whilst comparison with averaged 

transient results was shown to be more appropriate than with individual time steps, the 

lack of corTespondance in the near-wall region showed the general modelling approach to 

be inadequate. Furthermore, since transient flow behaviour is a common feature of 

engineering problems, such shortcomings clearly require to be remedied. 
The computational analysis of y+ values and pressure gradients within the manifold 

then provided insight into the discrepancies between experimental and computational 

results. In Section 3.3.2, the results of transient modelling showed huge variations in 

local pressures, and hence in local pressure gradients, with time. 71bis is shown clearly in 

the comparison of Figures 3.26 to 3.28, where the pressure gradients at the 'upstream' 

edges of the recirculation zones were seen to vary widely with time: the movement in the 

separation points was seen to correspond to these pressure changes. 
Similarly, the y+ values across the solid surfaces of the ducting were shown to be 

time-dependent. At Face I of side branch 1, Figures 3.29 to 3.31 showed marked 

variations in y+, with significant regions of the modelled surface displaying y+ values 

outside the operating range of the model of Haroutunian and Engelman (199 1). Likewise, 

Figures 3.32 - 3.34 for Face 3 and Figures 3.35 and 3.36 for Face 5 showed problems in 

the observed range of y+ values. For the model of Haroutunian and Engelman (199 1), 

whilst they suggested coarsening of the mesh upon the occurence of extremely low values 

of y+, for complex, time-dependent models to be conducted effectively, this would not be 

an appropriate solution having recognized y+ itself to be a function of time. The 

experience of Section 2.4.2 was that a variety of 'traditional' wall laws were valid only 

for limited ranges of y+; use of another of the commonly applied wall laws would not 

obviate this problem. 
Taking an overview of the transient modelling results, they have been shown to 

offer poor correspondance with simple laboratory experimentation. The inability to 

reproduce even basic transient experimental data may be directly attributed to inadequacies 

in modelling of the near-wall region. Consequently, the need for an enhanced wall model, 

catering for pressure gradient effects and applicable over a wide range of y+ values, has 

been demonstrated here experimentally, as well as having been argued from consideration 

of theory in Chapter 2. 
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3.5. Conclusions 
-Arising 

from 3-d Coml2titational Modelline. 

The following conclusions may be drawn from the 'conventional' modelling of the 

inlet manifold: 

i) The selection of appropriate CFD results is critical in seeking to draw a meaningful 

comparison with experimental data. 

ii) Ile results from current CFD methods do not provide an adequate model of the near- 

wall region. 

iii) Transient CFD results from 'conventional'models show marked variations in local 

pressure gradients and y+ values with respect to both time and space; 'conventional' wall 

models take no account of such variations. 

iv) The analysis of 'conventional' CFD model results for the inlet manifold supports the 

theoretical case of Section 2.7 for the development of a more robust wall model. 
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4. Comptitational-Development. 

The case proposing the theoretical need for a more robust wall model was laid oue in 

Section 2.7 and the discussion of Section 3.4 demonstrated such a model to be necessary 
by comparison of experimental flow results with those provided by CFD. Of the 
boundary layer models of the wall law type reviewed, Coles' law of the wake appears to 
have the widest range of application, being valid from the outer edge of the viscous sub- 
layer to the freestrearn for a wide range of pressure gradients, including those that lead to 

separation. Notionally then, Coles'law should be a viable alternative to the widely used 
Reichardt's law as the influence of the local pressure gradient can be taken into account. 
Furthermore, if the flow variables close to the wall can be modelled more accurately by 

the proposed method, then a local reduction in mesh density might be afforded, in turning 

allowing larger flow systems to be modelled on a given computer system. 
In setting out to use Coles'law in a computational environment, a number of 

practical points are of interest as 

i) providing valid boundary conditions to the model, 
ii) ensuring that the model is relevant locally, 

iii) relating the computational points to their position within the simulated boundary 

layer and 
iv) prescribing a link between Coles'wake parameter and the streamwise pressure 

gradient. 

To develop such a Coles' law model, it is first necessary to determine suitable test 

cases by which its effectiveness may be gauged and then to describe those computational 
facilities deemed pertinent to its preparation as a result of preliminary investigations. 

4.1. Proposed Test Cases. 

In evaluating the effectiveness of C. F. D. codes and new modelling approaches, 

recourse is typically sought to a number of standard, or benchmark, tests. The flow 

characteristics of simple shear flows in two- and three-dimensional cases are readily 

replicated by most C. F. D. codes and so one of the criteria by which new methods are 
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judged is their ability to predict flow separation occurring in a variety of standard cases 

that have been rigorously studied in practical experiments. 

With regard to demonstrating the usefulness of improved wall modelling 
N 

techniques, in the guise of Coles'law, it is proposed to use two classic two-dimensiona 

benchmark tests to assess the efficacy of the method. The pertinent two-dimensional 

cases are then thought to be 

i) flow through an U-bend of tight curvature and 
ii) flow over a backward facing step. 

Whilst both cases are significant in their own right, being flow regimes that 

demonstrate marked separation experimentally, they may also be considered as basic 

geometric identities, common to a wide range of more complex flow domains. The inlet 

manifold test case considered in Cbapter 3, for example, may be subdivided into a 

number of consecutive regions, some of which bear strong resemblance to these two- 
dimensional domains. As such, for a new model of the wall region to be of use in 

simulating complex flow geometries, its effectiveness should first be demonstrated with 
regard to fundamental flow configurations. 

In both of the above examples, flow behaviour is governed by strong adverse 

pressure gradients, resulting in areas of recirculation that have been closely documented. 

As such, since the empirical basis of Coles' law takes account of the local pressure 

gradient and hence is valid up to the point of separation (Schofield, 199 1), unlike the 

more traditional wall laws (such as Reichardes law) which were prepared for boundary 
layers with zero pressure gradient, the Coles'law approach is expected to display a 

modelling advantage, in terms of computational demands and accuracy of results, over the 

more established methods. These benchmark tests will now be described, briefly, in turn. 

4.1.1. The U-bend. 

The first benchmark test to be considered is that of an U-bend of tight curvature. 
Here, whilst separation is generally considered to be undesirable in its leading to 

increased pressure losses, it may be advantageous where enhanced heat/mass and 

momentum transfer are required. 
Separation in a turning channel typically depends upon the turn angle and the radius 
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of the bend, other factors being Reynolds number, turbulence intensity, length scales 

upstream of the bend and boundary layer thickness prior to the bend. 

With regard to bends with large turn angles, strong separation downstream of the 
bend typically arises, due to the strong adverse pressure gradient arising from large *' 

curvature of the flow. For sharply turning flows, the system is thought to be governed by 

inviscid mechanisms and so simple models for viscosity and turbulence should provide 

good results. However, for bends with larger radius, the resulting pressure gradient will 
be more moderate and so separation will also depend upon turbulent and viscous transport 

mechanisms in the near-wall area. A balance of such mechanisms will determine whether 

separation occurs or not and so a more sophisticated turbulence model is generally 

required. 
The benchmark test for a turning channel is then held to be the 1800 U-bend, 

documented by the work of Sharma and Ostermier (1987) or that of Sandborn and Shin 

(1988). Such a problem is of practical interest, in being analogous to the internal passages 

of the Space Shuttle main engine. The geometry of this example is shown below as 
Figure 4.1. 

II 

d=1.0 ' 

Figure 4.1. Cross-section of the U-bend of tight curvature. 

The cross-section of the curved annular channel shown above has a duct width of 
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1.0, with the duct length upstream and downstream of the bend being 7.0. Tle radius of 

the inner wall of the bend is r=0.5, with the ratio of outer to inner radii being 3.0. Flow 

enters the lower arm of the duct with an uniform inlet velocity of unity. No restrictions are 

placed on the outlet profile and all other boundaries are prescribed the 'no-slip' condition 
for velocity. By virtue of the symmetry of the flow domain, modelling may be reduced to 

an axi-symmetric study of the cross-section given as Figure 4.1. 

The backward facing step test case describes the two-dimensional, steady, 

turbulent, incompressible flow of fluid across a sudden expansion, as depicted in Figure 
4.2 below. 

T- 
H=2.0 

h 1.0 

Figure 4.2. The geometry of the backward facing step. 

The problem geometry details a duct of cross-section 3.0, reduced to a cross-section 

of height, H=2.0, at the inflow boundary, where an uniform velocity distribution 

(VX = 1.0, vy=0.0) is imposed; this provides an abrupt step of height, h=1.0. The 

inflow boundary is located six step heights upstream of the abrupt step, on the 

assumption that this distance allows for fully developed flow before the step is reached. 
Likewise, the outflow boundary is located some twenty-four step heights downstream of 

the step, to allow for re-establishment of fully developed flow after the recirculation zone, 
formed immediately in the wake of the step. No restrictions are imposed on the outflow 
boundary, whilst all other boundaries are set to the standard no-slip condition 
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(vX =vy= 0). 
Extensive experimental data is available for this problem (Kim, 1978); at low 

Reynolds number, an unique relationship exists between Reynolds number, the 

expansion ratio at the step and the normalized length of the recirculation zone, xr/h, whilst 
for high Reynolds number, xr is uniquely determined by the expansion ratio alone 
(Kaiktis et al., 199 1). 

The flow exists as a thin boundary layer at the entrance to the system, with low 

turbulence intensity in the main stream, hence presenting a challenge to the modelling 
technique to be used. In evaluating the numerical results, the length of the recirculation 

zone, xr, is of principal interest. Experimentally, it is found that xr = (7.0±0.5)h (Kim, 

1978). 

4.2. Analytical Technigues. 

The computational framework within which work was carried out was the FIDAP 

package. It is not intended to detail the mesh generation and solution techniques available 
in FIDAP (which are described exhaustively in the FIMESH manual (1994) and the 
FIPREP manual (1994) respectively). However, as this study hinges upon the 

prescription of an 'improved' wall model, the standard, high Reynolds number k-e model 
and certain user-prescribed solution subroutines are of direct interest in developing a 
Coles'law model for computational use. 

In using a k-e model to simulate bounded turbulent flows, in the regions close to the 

solid boundary, two main problems are encountered as 

i) the resolution of sharply varying flow variables requiring the use of a 
disproportionately large number of mesh points, in turn leading to excessive 

computational expense and 
ii) the very nature of the turbulence model used to describe the effects of 

viscosity on the turbulent field in the viscous sub-layer or, in other words, the 

effect of low Reynolds number on turbulence. Typically, k-C models are only valid 
for high Reynolds number (as is the case with FIDAP) and so are inappropriate for 

87 



use in near-wall modelling. 

On an historical basis, two approaches have been made to these difficulties as 

i) a law of the wall technique, where wall functions are used to implement 

pertinent boundary conditions at the edges of the computational domain. However, 

this method becomes less relevant where there is pronounced departure from local 

one-dimensionality of flow (such as points of reattachment, separation and 

stagnation or where there are strong acceleration, retardation or body forces 

present) and 
ii) less common but more sophisticated techniques, dispensing with the law of 
the wall concept and modelling the turbulent and mean flow fields all the way 
down to the wall. Variation of turbulent viscosity within the viscous sub-layer 
then requires to be modelled by some method such as 

a) van Driest's mixing length model, with transition to the use of the 
standard k-e model beyond the viscous sub-layer, or 
b) use of a low Reynolds number variant of the k-e model. 

In either case, the technique will be both more universal and accurate than the 

prevalent law of the wall models but, in requiring very fine meshes to capture the 

sharply varying behaviour of the near-wall region, will again lead to excessive 

computational cost. 

The FIDAP package uses an amalgam of these two main techniques to combine "the 

accuracy and universality of the latter with the cost-effectiveness of the former" 

(Haroutunian and Engelman, 1991). The computational domain is extended to the 

physical boundary and the full set of mean flow equations evaluated all the way to the 

wall. A single layer of 'special' elements is then used to model the near-wall region 
between the physical boundary and the fully turbulent freestrearn. These special elements 

use shape functions, based on universal near-wall flow profiles, to accurately predict the 

sharp variations in the mean flow variables across the near-wall region, where viscosity is 

important. The shape functions themselves are related to the characteristic Reynolds 

number of the locality and are adjusted automatically as simulation proceeds. Whilst the 
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standard k-e model is used up to the outer edge of these special elements, the usual 
transport equations for k and e (equations 2.13 to 2.15) are not valid beyond this point 
but are modelled by reference to the van Driest mixing length model instead. 

This approach is transparent to the user, being invoked by assigning the special wall 

elements to the necessary boundaries and then specifying the correct boundary conditions 
(such as 'no slip' for impervious, stationary walls). FIDAP will then search all continuum 

elements within the computational domain for any element faces corresponding to the 

requested solid boundaries and then apply these special elements automatically. 
These universal near-wall profiles, used to construct the shape functions of the 

special elements, result from consideration of the mean flow equations and from some 

simplifying assumptions, most notably that near-wall flow is predon-driantly parallel to the 

wall and is in local equilibrium and hence no transpiration or body forces need be 

considered. Under these conditions, both shear stress and mass flux across the sub-layer 

are very nearly constant and may be equated to their respective values at the wall. This 

assumption should be valid for most of the near-wall region, excepting points of 

reattachment, separation and stagnation or where there are strong non-equilibrium forces 

due to rapid variation in flow variables along the flow direction. 

These assumptions then allow the mean flow equations to be manipulated to yield 
dimensionless velocity as a function of non-dimensionalised distance normal to the wall 

as 

U+= v- vw = f(y+) and Y+ = 
pv*8 

V* 9 

FIDAP then uses Reichardt's law (equation 2.29) to model this relationship within the 

special elements. 
Since the equations for k and e may not be solved within the special element layer, a 

modelling scheme is required to simulate the variation of turbulent viscosity in this region. 
FIDAP uses a mixing length approach after Prandtl (1925) as 

_ 
LVy Vx 2 

laxy axx axy 
gt = p12 

[(ýLx 
+ (4.1) 
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where the mixing length, Ims for the case of smooth walls is taken from van Driest (1956) 

as 

1,,, = lc5(l-exp(y+/A)) (4.2) 

where A is an empirical constant, roughly equal to 26 for smooth walls with equilibrium 

near-wall flow, and y+ is the dimensionless distance normal to the wall, expressed in 

terms of the kinetic energy at the edge furthest from the wall of the special wall element, 
kt, as 

1/2 1/2 k) y (4.3) 

The exponential term in van Driest's expression is then a viscous damping term, 

progressively suppressing the mixing length as y+ tends to zero. 
As k and e, in the turbulence model, are only evaluated up to the outer border of the 

special elements, boundary conditions are required for kinetic energy and turbulent 
dissipation at this interface as 

Dk 
=0 (4.4) 

Dn 

and 

F, = 
(Cgl/2ky 12 

(4.5) 

Again, local equilibrium is assumed and where k is constant, the turbulence length 
31 

scale, k-a. will vary linearly with normal distance from the wall, n. This 'Neumann' 
e 

boundary condition for k is important: at the end of each iteration, the value of k is used to 

evaluate the characteristic turbulence velocity scale for the near-wall region as 012. In 

turn, this will yield the local element Reynolds number, which is then used to control the 
form of the special shape functions. 

From a practical point of view, the method is only valid if the viscous and 
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transitional sub-layers are fully contained by the special elements. If the sub-layer 

expands into the normal elements, then k and C will be evaluated by the general, or 
freestream, technique in the low Reynolds number area. As such, where local element 
Reynolds number is markedly less than thirty, a coarser computational mesh should beý 

employed adjacent to the wall. 

In seeking to model the near-wall region of a flow regime using Coles'law, then 

the wall model of Haroutunian and Engelman (1991) is to be dispensed with. It will then 
be necessary to supply a Coles'law model as a boundary condition to the simulated flow, 

between the solid surface and the freestream, as governed by the k-e model. An effective 
Coles'law model will require a range of information; at a given point where Coles'law is 

to be evaluated, knowledge of the local geometry of the computational mesh and of local 

pressure and velocity gradients is necessary. Furthermore, such a model will need to 
interact with the solution as it proceeds and so a number of relevant subroutines, available 

within FIDAP may be seen as 

i) subroutine USRINI, the variable derivative control subroutine, which requests 

that the solution procedure calulate the derivatives of selected solution variables, 
ii) subroutine USRSKE, the source subroutine, which has access to the derivatives 

of solution variables and to geometric data describing the mesh and 
iii) subroutine USRBCN, the boundary condition subroutine, which evaluates 

user-prescribed boundary conditions. 

Since no one subroutine available within the solution procedure has access to all the 
information necessary to operate Coles' law, then a number of subroutines, each 

providing a portion of the required data, will be required to operate in unison to provide a 

viable Coles' law model. Once a given subroutine has accessed pertinent data, it should 
be possible to pass it to other subroutines involved in the Coles' law model by use of 
COMMONBLOCK statements, coded into the Fortran subroutines. The above mentioned 

subroutines will now be described in turn. (It should be noted that the following 

discussions relate to how the subroutines actually operate and not to those explanations 

provided by the FIDAP user manuals. ) 
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Certain solution procedure subroutines, such as the source subroutine, have access 

to the arrays VARI and DVARI, which contain the solution variable values and their 
derivatives respectively. In order to keep computational time to a minimum, however, 

only those derivatives of the solution variables that are specifically requested by the user 

are evaluated. The solution variable derivatives that are required to be calculated may be 

defined by use of the variable derivative control subroutine. 
A number of pointers exist for the possible degrees of freedom for the problem as 

shown in Table 4.1. below. 

Degree of freedom Pointer 

VX kdu 

VY kdv 

vz kdw 

k kdk 

We 

IpI 
kdp 

I 

Table 4.1. Showing the pointers denoting various degrees of freedom. 

Tle variable derivative control subroutine then takes the form 

subroutine USRINI(inivar) 

include'IMPLCT. COM' 

include 'PARUSR. COM' 

dimension inivar(*) 

body of subroutine 

return 
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The INCLUDE statements listed invoke COMMON files within the main body of 
FIDAP; these files declare the use of implicit double precision and define the pointers 

shown in Table 4.1. as PARAMETERs. 

To request the calculation of the derivatives of a solution variable, then the 

appropriate entry in the INIVAR array is simply set to unity within the body of the 

subroutine. For example, should the user require the derivatives of the x-component of 

velocity to be calculated, then the body of the subroutine should contain 

inivar(kdu) =I 

The notional purpose of the source subroutine is to specify the presence of a source 

term in the transport equations for kinetic energy and turbulent dissipation. As the source 

term is evaluated on a volumetric basis, the region to which it is to be applied must be a 

surface in 2-d or a volume in 3-d problems. The source subroutine then takes the form 

subroutine USRSKE(nelt, ne, ng, sorce, vari, dvarindfcd, ldofu, shp, 

c dsdx, xyzl, pmp, time, npts, ndp, mndp, ierriopt, 

C visct, viscl, den, mdvsc) 
include'IMPLCT. COM' 

include 'PARUSR. COM' 

dimension sorce(npts), visct(npts), viscl(9, npts), den(npts) 

dimension shp(mndp, npts), dsdx(mndp, npts, nffcd), xyzl(npts, ndfcd) 
dimension prop(*), vari(npts, *), dvari(npts, ndfcd, *), Idofu(*) 

iopt=n 

do 10 i=1, npts 

body of subroutine 

sorce(i) =v 
10 confinue 

zrO = O. DO 

return 
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Amongst the dummy arguments to the subroutine, those of principal interest are 
DVARI, IOPT, LDOFU, NDFCD, NELT, NPTS and VARI. (Tbe statement given as 

zrO = ODO relates to FIDAP's error tracing system and must be included in the 

subroutine. ) 

Whilst the subroutine call in the solution procedure specifies whether a kinetic or a 
dissipation source is to be evaluated, the source type has to be defined within the 
subroutine as well; by setting IOPT to zero, the'source type is understood to be kinetic 

energy, whilst a value of unity requests a dissipation source. 
The subroutine evaluates the source term in the relevant transport equation for each 

individual element within the overall region to which the subroutine is applied. The 

argument NELT takes the name of the element currently under analysis as the subroutine 
sweeps through the region being studied. To be specific, the source term is calculated for 

each of the integration points present within each element considered. The number and 
distribution of integration points within an element is denoted by NPTS. For example, a 
linear, 2-d element will have four integration points as shown in Figure 4.3 below. 

npts =2 npts =4 

npts =I npts 3 
1 

0. 

Figure 4.3. The distribution of integration points in a linear, 2-d element. 

A simple flowchart for the operation of the subroutine may be seen as Figure 4.4 

below. 

94 



Has source term been evaluated 
for all NPTS integration points 
of the current element? 

Have the M elements in 
the calling region all 
been scanned? 

Figure 4.4. Simple flowchart for the source subroutine. 

Note that the routine by which all elements contained within the calling region are 

accessed is invisible to the user and does not have to be overtly coded into the subroutine. 
The subroutine must return a calculated value for the source term at each of the 

integration points for each element within the calling region as sorce(i) = v. Since the 

purpose of calling this subroutine, with regard to the implementation of Coles'law, is not 
to incorporate a source term into the model but to gain access to information available 
within the subroutine, then the source term should be set to zero uniformly as 

sorce(i) = 0.0 
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The data which can be extracted from the source subroutine will now be considered. 
The array XYZL contains the geometric co-ordinates of the integration points of 

each of the elements within the mesh. However, as the subroutine only analyses those 

elements contained within the calling region, care should be exercised when invoking this 

subroutine to ensure that all those elements of interest will be considered. The geometric 

co-ordinates are stored within the array as 

xyzl ( npts, ndfcd ) 

where the first dimension, NPTS, denotes the integration point and the second 
dimension, NDFCD, specifies the co-ordinate type. NDFCD =1 corresponds to the x co- 

ordinate, 2 to the y co-ordinate and 3 to the z co-ordinate. For example, the y co-ordinate 

at integration point I of an element is stored as 

xyzl( 1,2) 

All co-ordinates thus accessed will be related to the global Cartesian co-ordinate 

system used for problem solution. 
LDOFU is a variable index array and is used as a pointer to specify the degree of 

freedom to be accessed within the VARI and DVARI arrays. The possible values of 
LDOFU are given in Table 4.1. So, for example, the x-component of velocity may be 

pointed to as 

Idofu ( kdu ) 

The VARI array contains the values of solution variables at each integration point 

within each element of the entire mesh as 

vari ( npts ,*) 

where the second dimension, *, is a floating argument corresponding to the total number 
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of active degrees of freedom in the problem. Thus, to access, say, the value of the x- 

component of velocity at integration point 1 of an element 

vari (1, Idofu ( kdu )) 

Care must be taken not to request values from VARI equating to degrees of freedom 

not active for the current problem. 
Ile DVARI array contains the values of the solution variable derivatives at each 

integration point within the entire mesh as 

dvari ( npts , ndfcd ,*) 

where the first dimension denotes the integration point, the second the derivative co- 

ordinate and the third is a floating argument corresponding to the total number of active 
degrees of freedom in the problem. For example, the derivative of the x-component of 

velocity with respect to y, namely 
±v-x 

at integration point 1 of an element could be dy' 
accessed by 

dvari (12, Idofu (kdu )) 

Again, caution should be exercised to ensure that only those solution variable 
derivatives that have been prepared by the use of the variable derivative control subroutine 

are requested. 
Finally, the interactive subroutine for the evaluation of boundary conditions will be 

described. The boundary condition subroutine template then has the form 

subroutine USRBCN(val, node, idftime, sol, ndofnumnp, ldofu, 

c constr) 
include'IMPLCT. COM' 

include 'PARUSR. COM' 

dimension sol(*), id(numnp, ndof), constr(*), Idofu(*) 
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body of subroutine 

val=v 
zrO = O. DO 

return 
end 

The subroutine is required to return a value for a specified degree of freedom for 

each node within the calling region. As such, the nature of the boundary condition 
subroutine is different to that of the source subroutine, in that its internal operation is by 

node and not by element. Thus a simple flowchart for the subroutine may be seen as 
Figure 4.5 below. 

Start 

i=i+l 

Calculate boundary condition 
for the ith node 

val =v 

Has a boundary condition been 
i=N? 

> 
calculated for all N nodes in 
the calling region? 

Yes 

End 

Figure 4.5. Simple flowchart for the boundary condition subroutine. 

Note that the routine by which all nodes contained by the calling region are accessed 
is invisible to the user and does not have to be overtly coded into the subroutine. 

Amongst the dummy arguments to the subroutine, those of principal interest are ID, 
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IDF, LDOFU, NDOF, NODE, NUMNP and SOL. The argument LDOFU functions as in 

the source subroutine. The argument NODE takes the name of the node currently under 

analysis as the subroutine sweeps through the region being studied. IDF is a pointer, 
defming the type of boundary condition to be calculated; its possible values are tabulated 

below. 

Degree of freedom IDF 

vx I 

VY 2 

vz 3 

k 4 

c 5 

p 6 

Table 4.2. Showing the possible values of the pointer, IDF. 

Unlike the pointer IOPT in the source subroutine, IDF is set automatically by the 

command calling the subroutine. This is important - as FIDAP will only suffer the use of 

one subroutine of each possible type for a given problem, then IDF may be used as a 
discriminator to allow the one boundary condition subroutine supported by the problem to 

solve for more than one type of boundary condition. 
SOL is the FIDAP solution vector, containing the values of currently active solution 

variables for each node within the entire mesh (unlike VARI in the source subroutine, 

which stores such information based upon integration points). ID is a degree of freedom 

connection array, storing infonnation as 

id ( numnp , ndof ) 

where NUMNP is the total number of nodes in the mesh and NDOF the total 

number of active degrees of freedom. ID can be used to access solution information 

stored in SOL. For example, to access the current value of the x-component of velocity at 
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node 5 in the mesh 

ieq =id (5, Idofu (kdu)) 

valx = sol ( ieq ) 
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5. Development of Models for Wall- Effects in 2-d. 

In Section 4.1 the proposed test cases for the development of a Coles' law model 

were the U-bend with tight curvature and the backward facing step. These two flow 

domains constitute fundamental flow geometries, common to more complex domains 

such as the inlet manifold of Chapter 3. As such, in applying Coles' law to the U-bend 

and the backward facing step, its effectiveness in replicating basic flow features may be 

gauged, hence commenting on its potential use with regard to more elaborate flows. In 

either case, at the interface between the Coles' model and the k-e turbulence model, used 
in the freestream, it is necessary to prescribe values for velocity, kinetic energy of 

turbulgnce and rate of turbulent dissipation of energy, namely to provide v, k and e. 

A successful model must not only offer these boundary conditions to the freestream 

but also test the local validity of Coles'law of the wake, as 

Vf [yv*) 
+ 211 W (Y) 

V* Iv ic 8 
(5.1) 

The function f in the above equation is expressed in terms of inner wall variables by 

equation 2.24 as 

f 
(-Yv*ý=-L 

I. y++ B With Y+ = 
yv* 

kv Ic v 

At each point where Coles'law is to be applied, the model will only be significant 

provided that y+ > 5. In other words, the model should not be used to describe behaviour 

within the viscous sub-layer, in which a description of the flow is provided by equation 
2.28 as 

U+ = Y+ or V= YV 
v* 

Ic 

The wake function, w, in equation 5.1 must then be considered. w, in providing a 

model for the excess velocity over and above that predicted by the simple log law equation 

of equation 2.24, relates the the boundary layer thickness, 8, to the point under 
consideration, at a distance, y, normal to the local solid boundary. This wake function is 
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given by equation 2.46 as 

sin2 
(ff- il) = 3112 - 2113 with 2 

Finally, in order to fully evaluate equation 5.1, it is necessary to describe the link 

between the wake parameter, rl, and the strearnwise pressure gradient, 
dp 

, at the edge of dx 
the boundary layer (i. e. at y=8 

To evaluate Coles'law, as described by equation 5.1 above, the model must first 

determine the location of the point of application in relation to the wall, then describe the 

local velocity gradient, 
dvx 

, in order to provide the wall friction velocity, v*, and finally 
dy 

calculate the required properties, v, k and e, to link with the freestrearn model. As FIDAP 

can only support one boundary condition subroutine within the solution procedure, this 

subroutine must be capable of calculating v, k or e, subject to relevant subroutine calls 
from the main programme. A prototype algorithm for the operation of Coles'law is 

shown below. 
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Start 

Get y, the normal distance from the 
point of evaluation to the wall 

C9culate -dy, the loca velocirl gm&ent I 
dy 

I 

I Calculate the wall friction velocity, v* I 

to the wall, y4' 

Is 
Evaluate 8, the Yes 

/- 
valu'e" 

boundary layer of v to be 
thickness calculated 

IN? ý/ 

Evaluate w, the no 

wake function Is Is 
a value a value no no 

of k to be of e to be Return 
Evaluate 11, the d 

calculated ted 
wake parameter r ? ? 

yes yes 
Operate Cole 
equation 

I 

lEvaluate kI 

- 

Evaluate e 

rRe' 
turn 

rRe 
tum Return 

Figure 5.1. A basic algorithm for a 2-d Coles'law model, capable of calculating 

values for v, k and e. 

After considering the algorithm outlined above and on inspecting the geometries of 

the two test cases, as given by Figures 4.1 and 4.2, it is then proposed to apply the 

algorithm to the U-bend test case first: the U-bend, taken as an axi-symmetric model, 

consists of two non-intersecting solid surfaces, separated by a channel of constant width 

whereas the backward facing step has four sections of solid boundary, some of which 
intersect. At the point where these solid boundaries meet, some method was required to 

determine to which wall the point of intersection might be said to belong. As such, the 

simpler case of the U-bend was approached first in order to gain experience in 

manipulating Coles' law and in the practical use of those subroutines available for its 
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implementation. 

5.1.1. Modelling-ls_and_e Within the-Coles'Law Model. 

For the Coles'law model to successfully mate with the freestream, in the form of 

the k-e turbulence model, it is necessary to predict values of k and e at this interface. 'Me 

method by which this is done in FIDAP, when using the 'standard'wall elements of 
Haroutunian and Engelman (1991) which operate Reichardt's law, is given in Section 

4.2.1. A simpler method is initially proposed here, using empirical distributions for k and 

e that are commonly used to predict values at inlet to a bounded flow (FIDAP7 I'heory 

Manual, 1994). 

A value of the kinetic energy of turbulence may be taken as 

CVit2 
1, 

m 
dvx 2 
dy 

ý 
(5.2) 

where Cý is a modelling constant, equal to 0.09 for isothermal flow with no mass transfer 
(Rodi, 1975), and Im is a mixing length. 

The rate of turbulent dissipation is then given by 

In 
1 dv� CIk2ý13 
dy (5.3) 

A simple model for the mixing length, IM v appearing in the above two equations, is 

gained by recourse to Prandtl's mixing length theory (1925) as 

Im = JCY (5.4) 

It will then be seen that in operating this method, values of k for a point must be 

calculated prior to those required for e as local values of e are dependent upon their 

corresponding values of k. 

5.1.2. Evaluation of the Boundary Layer Tbickness. 

In a discussion of Coles' work by Warsi (1993), a link between the local skin 
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friction, Cf, Reynolds number at the edge of the boundary layer, R8 , and the boundary 

layer thickness, 8, is proposed. First consider the Reynolds number at the edge of the 

boundary layer, which Warsi (1993) gave as 

RS = 
VýBp (5.5) 

9 

where v.. is the freestream velocity. 
Then for a boundary layer, with or without a pressure gradient, the local skin 

friction coefficient may be written as 

Cf = 
2V*2 (5.6) 
vi 

Finally, to link Cf and Rs, Warsi (1993) noted that 

Re.. c 
=3.78 ! =L-25.0(A) (5.7) 

RS 'F2 2 

for the case of zero pressure gradient flow over a flat plate at high Reynolds number. 
Whilst this will not be truly valid for the U-bend, where a pressure gradient is present and 
the solid boundaries, in part, are curved, it does provide a useful first approximation in 

order to test the model's behaviour, remembering that for sharply turning flows, the flow 

regime is expected to be governed largely by inviscid mechanisms and thus that wall 

effects may be of limited importance. 

After calculating Cf from equation 5.6 and substituting it into equation 5.7, then R8 

may be used in a reformulation of equation 5.5 to yield an estimate of 8. 

Bearing in mind the reservations already voiced about the method, the choice of 
freestrearn velocity in equations 5.6 and 5.7 must also be considered. A sketch of the 

flow, predicted through the U-bend by the standard FIDAP model, is given below as 
Figure 5.2. 
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Duct centreline 

Flow 

'S 
�S 

/\ 
1-1 

Outer wall 

Possible streamline 
corresponding v. 

Cross-section containing 
1ýint at which Colee law 

0 be evaluated 

Figure 5.2. A sketch of the flow through a section of the U-bend. 

For any given section, downstream of inlet, where Coles' law is to be evaluated, 

the freestream velocity, v.., will not necessarily correspond with the geometric centreline 

of the model. From inspection of the results of the standard FIIDAP model however, the 

centreline velocity was typically found to be within 10% of the freestream value. 
Furthermore, the inclination of the centreline velocity to a tangent drawn through the 

centreline was typically less than 15". Therefore, by taking v.. to equal the component of 

the centreline velocity tangential to the centreline, this would give a value of v.. to within 
15% of the true value. Whilst this method was then adopted for use with the proposal for 

8 outlined above, it was not generic but problem specific. 

5.2. The U-bend Model. 

The 'standard' FIDAP model of the U-bend, provided by the FIDAP library of 

examples and listed in Appendix A3 as ex29. FDREAD, was run both to establish a basis 

for comparison of results and to gain knowledge of the distribution of element and node 

numbers throughout the computational mesh, which are given by the logical space 
diagram as Figure 5.3 below. 
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j 

+ Ae, + An, 
II 

e+ Aeh n --b", + Anh 

I 
-a -d 

inner Coles'line I 

centreline 

L Ii 

node 

c element number 

n node number 

For a mesh with N nodes acmss 
the duct width, 

b=a -(hly- 
2) =c +(Hy- 2, ) 

d =a +Anh 

Figure 5.3. Showing the general layout of element and node numbers and of 
Coles' lines throughout the model. 

Inspecting Figure 5.3, then moving horizontally across the logical mesh, a nodal 

increment of Anh is seen between successive nodes and between successive elements, an 
increment of Aeh is observed. Likewise, when traversing the Iogical mesh vertically, the 

corresponding nodal and elemental increments are An, and Ae, respectively. For 

simplicity, the lines along which Coles'law is to be applied, at the border of the k-e 

model, will be referred to from now on as "Coles' lines". 
Certain important nodes and elements are highlighted in Figure 5.4 below, which 

will be of use in detailing the workings of the U-bend model. 

outer Coles' line 
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(Z) 
(zý 
GD 

nl 

III 

n6,,, ný, inner Coles' line n 
rT 

centreline 

n2l 
I 

n3l outer Col 

entrance to behd centre of bend exit from bend 

n4 

Ka 
0 node elemem with number 

n node number 
Figure 5.4. Logical diagram of the U-bend, showing certain important nodes and 

elements. 

From consideration of the above diagrams, the nodal regions across which the 
Coles' law model operated may be listed in order below as Table 5.1. 
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Property to be 
calculated 

Location in mesh Defining nodes 

vx entire inner Coles' line n5 - n8 

vy curved portion of n6 - n7 
inner Coles' line 

k entire inner Coles' line n5 - n8 

E entire inner Coles' line n5 - n8 

VX entire outer Coles' line nI - n4 

VY curved portion of n2 - n3 
outer Coles' line 

k entire outer Coles' line n1 - n4 

e entire outer Coles' line nI - n4 

Table 5.1. Specification of the mesh regions invoking a Coles' law model of the 

U-bend. 

The input file for this model, peeg. FDREAD, is listed in Appendix A3. 

5.2.1. An AleorithM for a Coles' Law Model of the U-bend. 

Some information required by the boundary condition subroutine, such as 

geometric data and derivatives of solution variables, was only available within the source 

subroutine. Since the source subroutine orders data in terms of element and integration 

point numbers whilst the boundary condition subroutine operates on node numbers, the 

relationship between element and node numbering (shown in Figure 5.3) was of 
importance in model construction. 

A generic algorithm for the implementation of Coles' law was given as Figure 5.1 

but the differing nature by which the boundary condition and source subroutines operate, 

coupled with the form of analysis adopted, required the model to be largely 'hard-wired' 

to the problem in hand. The analysis of the U-bend with regard to Coles'law can then be 
broken down into a number of parts as 

i) find the elemental thickness, separating the Coles' line from the solid boundary, 

ii) evaluate the inclination of the sector of the mesh under consideration to the 
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horizontal, 

iii) find the local velocity, tangential to the solid surface and hence the local velocity 

gradient, 
iv) evaluate the shear stress at the wall, the wall friction velocity and yt 

v) calculate values of v, k or e as required and 

vi) where a value for v is required, evaluate the wake function and wake parameter, 

gain v from Coles'law and return its value in global co-ordinates. 

Inspecting the logical representation of the U-bend, as Figure 5.3, it would be easy 
to forget the real geometry of the problem and to oversimplify the problem. Coles' 

equation should yield the velocity at a point in the boundary layer parallel to the solid 

boundary. Where that boundary is curved, then the computed value will require to be 

converted to the global co-ordinate system, in which the solution procedure requires 
boundary conditions to be provided. 

The analysis then hinges upon the correct determination of the velocity gradient at 

the given point where Coleslaw is to be applied. The location of the Coles'line was 
defined as the outer edge of the first elemental layer abutting the solid boundary, giving 

the Coles' model the same depth as the wall model of Haroutunian and Engelman (1991) 

(where the first layer of elements into the flow are special wall elements). Figure 5.5 

below outlines the method by which the local velocity gradient was assessed. 
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Global 
horizon 

solid boundary 

Coles'line 

node n, on Coles' 
line, at normal distance 
y to the wall 

0 node n- lAn,,, at 
nonnal distance yH 
to the wall 

Vt 

VX 

Figure 5.5. Calculation of the local velocity gradient. 

Figure 5.5 shows a node on a Coles' line, at a distance, y, nortnal to the solid 
boundary. At this point in the mesh, the solid boundary (and hence the Coles' line) is 

inclined to the horizontal at an angle, 0. Extending the normal line from the wall through 
the node on the Coles' line out to the next elemental layer from the surface, a node is 
found at a normal distance, yII, from the wall. At this node, the global velocity 
components, vx and vy , provide a resultant velocity, vr , at an angle, ý, to the horizontal. 

By taldng the component of the resultant velocity tangential to the solid boundary, vt , 
then an approximation to the local velocity gradient is given by 

dv 
= vt 

dy yH 
(5.8) 

This assumes that the velocity gradient varies approximately linearly within the 
near-wall region, which might be reasonable where yII is small. That the velocity gradient 
was taken as the first node out into the mesh beyond the Coles' line was a result of the 

need to allow the Colesmodel to integrate with the k-c model; an earlier model taking the 

velocity gradient at the node on the Coles' line itself by a similar method, lead to the 
Coles' model being largely self-referencing and isolated from the continuum that it 
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bordered. 

In order to obtain the distance yll then, in the source subroutine, the Cartesian co- 

ordinates were considered for each integration point for each element within the first three 

elemental layers adjacent to either solid boundary. For the instance of the inner wall, for' 

example, this information was stored in arrays, xi and yi, as 

x co-ordinates 

xi ( element no., integration point no. )= xyxl ( coordinate pointer, integration point no. ) 

co-ordinates 

yi ( element no., integration point no. )= xyx1 ( coordinate pointer, integration point no. ) 

where xyzI is the original array of geometric co-ordinates within the source subroutine. 
These arrays of geometric co-ordinates were then made available to the boundary 

condition subroutine by use of the COMMONBLOCKdistancei'. 

Now, as the element thickness normal to the wall was invariant throughout the 

mesh, then the normal distances y and yII were evaluated once at the mesh inlet and then 

assumed constant for all nodes downstream, as shown in Figure 5.6 below. 

Yll 

Ka 

solid boundary 

Coles' line 

integration point, 
with number 

GD 
element number 

Figure 5.6. Calculation of elemental thicknesses at inlet to the model inner wall. 

At inlet to the U-bend, the location of the inner wall was known to be (xi, yi) and so 
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the perpendicular distance from the inner Coles' line to the solid boundary, y, was 

y ý-- Yl - 
yi(e2,2) + yi(el, l) 

2 

and similarly, y1I was given by 

YII = yj - 
yi(e2,1) + yi(e3,2) 

2 

Now the calculation of the local velocity gradient, dz, may be illustrated by 
dy 

considering a node, n, on the inner Coles'line, at a point where the Coles'line is inclined 

to the horizontal at an angle, 0, as shown in Figure 5.7 below. 

Global 
horizon 

Ka 
- solid boundary 

ý Coles'line 

40 node n, on Coles' 
line, at normal distance 
y to the wall 

node n- lAn.,. at normal 
distance yll to the wall 

element number 

up- 4 
(EEý 

- 
DAC4 

'Y 
----- vr 

Vt 

VX 
integration point, with 4 
number Y 

EX 

Figure 5.7. Extraction of the local velocity gradient from the computational mesh. 
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Inspecting the above diagram, then the local inclination of the mesh to the horizontal 

at node n is given by 

0= tan- 
'y (5.9) 11 
dx 

where dy= ( yi(e, 1)+yi(e - Ae,, 2)) -( yi(e - Aeh, 3)+yi(e - Ae,. - Aeh, 4)) 

and dx=fxi(e, l)+xi(e - Ae,, 2))-fxi(e - Aeh, 3)+xi(e - Ae,, - Aeh, 4)) 

The velocity component, vt, used to evaluate the local velocity gradient is taken 
from the next node out into the mesh normal to the Colas' line, being node, n- I An, (see 
Figure 5.3). 

At node n- I An,, in Figure 5.7, have 

vx = sol ( n-1, Idofu(kdu) 

and vy = sol ( n-1, Idofu(kdv) 

Thus, the resultant velocity, vr , is given by 

Vr = ",, Fv3x + V; y 

and the angle of flow, ý, is 

tan-11 vvy 
x 

Then the required tangential velocity component, v, , is given by 

Vt=v, Cos (0 - fl 

The local velocity gradient is then yielded as 

dv = vt 
dy ylll 
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However, for the above procedure to work throughout the model, the values of 0 

and ý were required to be given as global values as 

0: 5 0: 5 Ic 
0: 5 ý: 5 2n 

remembering that the Fortran language requires angles to be given in radians. 

Since the equations 5.9 and 5.11, providing 0 and ý respectively, returned values 
between 0 and ff- they had to be transformed to global angles, as detailed in Table 5.2 

2' 
below. . 

dx dy 0 

>o 0 0 

>o >o 0 

0 >o IL 
2 

<0 >0 IC-0 

<0 0 x 

VX VY e 

>0 0 0 

>o >o e 

0 >o ik 2 

<0 >0 

<0 0 

<0 <0 

0 <0 

>0 
1 

<0 
1 

21r -e 
1 

Table 5.2. Setting global values of 0 and 0. 

A similar process was used to gain d-y- for the outer wall and also to capture the dy 
'centreline' velocity, v., 

Having gained a value for ! Ll- the shear stress at the wall was then given by 
dy' 

. To dv 
dy 

where g is the dynamic viscosity of the fluid. 
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The wall friction velocity is then 

- Ero: D7 
p 

In comparison with equation 2.21, the equation for v* above takes the modulus of 

, ro (Rashid, 1993). The shear stress at the wall, in practice, has both magnitude and 
direction -a positive value of co would arise when the flow was in the direction of 
decreasing x (towards the x origin). 

Y+ may then be calculated, using equation 2.27 as 

Y+ = YV* 
v 

As such, the modulus of To is required not just to validate the square root in 

equation 5.14 but also to provide a meaningful value for y+ -a negative value of y+ 

would imply that the boundary layer was penetrating the solid boundary, which is clearly 
facile. 

A first approximation to the wake parameter, IL was taken from Warsi (1993). 

Once the centreline velocity, v.., has been evaluated, then the Reynolds number of the 
freestrearn is given by 

Re = 
v.. dp 

(5.15) 
9 

where d is taken as the diameter of the channel. 
Then for the case of a boundary layer over a flat plate, for Re < 5000 

H=0.55 1- exp( -0.243 
-Z0.298( Re 

- 1)) 11 14: 
2F - 425 

and where Re > 5000 then 

l'I = 0.55 (5.17) 

As with the initial method of evaluating 5, given in Section 5.1.2, this method was 
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chosen to provide a simple first estimate of H, sufficient to validate the general structure 

of the model. Clearly, later models would require to take account of the local pressure 

gradient, 
ýP-, 

when predicting 11. 
dx 

In fact, the method taken from Warsi to calculate the boundary layer thickness, 5, 

did not work. The approach consistently gave values for 8 that were two orders of 

magnitude greater than the channel width. This was considered to result from the use of 

equation 5.7, which, on closer inspection, was only valid for the boundary layer on a flat 

plate with zero pressure gradient -a flow regime too far removed from the one in hand to 
be of benefit. 

Thus another simplification to the problem was made so as to set 8=y in the wake 
function of equation 2.46. Whilst allowing the general running of preliminary models to 

be assessed, this is clearly an arrogant assumption. In saying 8=y uniformly throughout 
the model, boundary layer growth is suppressed. 

Coles'law may now be operated at the node, the result being a velocity tangential to 
the Coles' line at the node considered in Figure 5.7. However, as the solution procedure 
requires boundary conditions to be provided within a Cartesian framework, then 
depending on whether values of yx or vy were required, one of the following 

transformations was performed 

VX ý- VColes COS 0 (5.18) 

vy= vc., ý, sin 0 (5.19) 

where vc. l,, was the result provided by the Coles'law equation, repeated below as 

v= V* 
( In y+ +B+ -2a Ic ic 

) 

Note that the wake function has been omitted here, being reduced to unity by the 

assumption that 8=y. 

Now the above equation will always yield a positive value for v since v* and y+ are 

always positive by definition. Hence, in order to provide values of vx and vy that indicate 

the direction of flow within the channel, the sign of the local velocity gradient was 
inspected, as depicted by Figure 5.8 below. 
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Figure 5.8. Comparing the result of Coles'equation with the local velocity 

gradient. 

As such, the model was subdivided into a number of zones in order to decide on the 

sign of the result of Coles' equation, as shown in Figure 5.9 below. 

vx -ve VX +VC V. -vel 

outlet 

+ve 
NO 

+ve 
+ve 

inlet 

velocity gradient, with sign 

vx , vy velocity component from Coles' law, 
with correct sign 

Figure 5.9. Valid prescription of the signs of vx and vYI based upon the sign of 

the local velocitY gradient. 
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5.2.2. Initialization of the U-bend Model. 

Finally, the prescription of initial conditions to the model will be considered briefly. 
I\ 

When preparing the model input file for solution, the Coles'model subroutines are 
invoked when scanning the initial condition statements of the input file. Ibis 
implementation of the Coles' model prior to the onset of the solution process results in the 
internal arrays of the model subroutines being filled with invalid data, hence corrupting 
the subsequent solution. To prevent this problem, a counter was used to monitor the 

number of times that the subroutines were accessed. This counter could then be used to 
prevent operation of the Coles'law model before the proper solution process got 

underway. Inspecting Table 5.1, then, say for the inner Coles' line, this counter should 
be caused to increment by 

i) the current node number being n= n5, denoting the first node at inlet to the model 

and 
ii) the current node number being n= n6, denofing the first node at entrance to the 

bend proper. 

In the former case, this would correspond to the calculation of vx ,k and e along 
the entire inner Coles' line, whilst the latter case would arise from the calculation of vy for 

the inner curved section of the U-bend. The value of this counter, called'start', is 

tabulated below as Table 5.3. 

Iteration number M i=2 i=n 

Value of onset of iteration 
I 

i+42 i+42+14(i- 1) i+42+14(n-1) 

"start" at end of iteration I i+42+9i I i+42+14(i-l)+9(i-1) I i+42+23(n-1) 

Table 5.3. Values of the counter'start' for successive iterations. 

The initial conditions to the solution are shown below in Figure 5.10 in logical 

format. 
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.1 

UX = UY = U, K=U. UUI , F, = U. UUUY 

ux= I 

uy=O Flow 
k=0.001 

= 0.0009 

Ii ux=uy=O, k=0.001, e=0.0009 

Figure 5.10. Initial conditions for analysis of the U-bend. 

The initial conditions at boundary to the model were set within the model input file. 

In addition to these initial conditions, the initial conditions along the Coles' lines were 
also set within the boundary condition subroutine. By forcing 

vx = vy = 0, k=0.00 1 and e=0.0009 along both Coles' lines for the first six iterations 

(until start ý: 127), then the k-e model of the freestream was initiated before the Coles' 

model began to operate, hence providing meaningful values of dt, the local velocity dy 
gradient, to the Coles' model. 

The set of subroutines forming the Coles'law model of the U-bend are listed as 
template 'blammo. f in Appendix A3, which also contains an algorithm flowchart of this 

subroutine template. 

5.3. The Backward Facing- SteI2 Model. 

As with the analysis of the U-bend, outlined in Section 5.2, study of flow over the 

backward facing step, described in Section 4.1.2, is based upon the generic algorithm of 
Figure 5.1. However, as with the U-bend model, that for the backward facing step was 

necessarily dedicated to the flow regime in hand. 

In approaching the simpler case of the U-bend first, where the Coles' lines did not 
intersect, a number of valuable lessons were leamt with regard to the calculation of the 

wake parameter, H, the artificial fixing of the boundary layer thickness as 8=y, the use 

of the local velocity gradient in determining the flow direction at the Coles'line and also 
in the prescription of initial conditions within the subroutine. 

Modelling of the backward facing step was then proposed in two distinct phases as 
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i) a simple model, following the guidelines drawn from the experience gained from 

the U-bend and introducing the idea of relaminarisation where y+ is less than five at 

the Coles'line and 
ii) an improved model, with more rigorous treatment of the wake function and wýke 

parameter, based upon consideration of the boundary layer thickness and the local 

pressure gradient. 

5.3.1. Descripflon of the Computational Mesh fbr the Backward F 

Stela. 

The computational mesh describing the backward facing step was that of the 

standard FIDAP example (listed in Appendix A3 as input file 'ex 19. FDREAD'), hence 

allowing for direct comparison of the results from the Coles' model with those provided 

by the standard model. 
In attempting to apply those techniques already developed to the backward facing 

step, it was discovered that whilst the boundary condition commands in the model input 

file required the use of 'extemal'node numbers, as observed in the post-processed 

results, when in the boundary condition subroutine, nodes must be referenced by 

'internal'node numbers. These internal node numbers are those used by the solution 

procedure to prosecute the flow solution and may be related to their external counterparts 

on inspection of the output files relating to the solution. The difference in node naming 

arises from the solution procedure renaming nodes to optimise the bandwidth of the 

matrices used in the solution. Whilst for the U-bend model its internal and external node 

numbers were identical, this was not the case for the backward facing step model. The 

distribution of element and internal and external node numbers throughout the mesh is 

shown as Figure 5.11 below. 
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Figure 5.11. General overview of element and node numbering within the 
backward facing step model. 

Inspecting Figure 5.11, it will be seen that there is a discontinuity in both element 

and node numbering across the face of the mesh. With regard to element numbering, in 

element section A, the horizontal and vertical increments in element number are seen as 
AehA and AeA respectively, with AehB and AevB being the corresponding increments in 

element section B. 
The internal node numbers throughout the mesh, being those of principal interest in 

seeking to construct a viable computational model within the various subroutine 

templates, are also shown in Figure 5.11. For node section A, the horizontal and vertical 

increments in internal node number are AnhA and AnvAs with Anh]3 and An, 13 being the 

corresponding increments in node section B. Each of these nodal increments for the 

internal numbering scheme has a corresponding increment in the external scheme, denoted 

by the extra suffix 'E' in the relevant portion of Figure 5.11 above. 

Figure 5.12 below sketches the Coles' lines for the mesh, showing the points at 

which they intersect for the lower surfaces. Nodes and elements of interest in delineating 

the behaviour of the computational model are also shown. For the purpose of calculating 
v. , the centreline velocity used in the estimation of the wake parameter was held to be the 
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horizontal line bisecting the inlet section of the model (again a similar argument to that in 

Figure 5.2 might be made as to the choice of centreline). 

ez"*% I 
ng . n9- I-nlo n1l 

(ý) 
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II 
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Lnl n2. n3 M 

T Back, upper reach 

Step face 

n5 n6 

II Front, lower reach 

node with internal number 
Coles'line, with name 
discontinuity in internal node numbering 
element with number 

Figure 5.12. Coles' lines, elements and nodes of interest for the backward facing 

step model. 

After inspecting Figures 5.11 and 5.12, the necessary groups of nodes analysed by 

Coles' law model within the boundary condition subroutine are given in Table 5.4 below. 
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Coles' line name Properties to Internal node numbers 
be calculated for use in the boundary 

condition subroutine template 

top v.. k and e n8 - n9 in increments of AnhA 

then 

n 10 -n 11 in increments of &nhB 

then 

n12 

back upper reach vx, k and E nl - n2 in increments of AnhA 

then 

n3 - n4 in increments of Aniz 

step face vy, k and E n5 - n4 in increments of An,, n 

front lower reach 

I 

v., k and e n5 - n6 in increments of AnhB 

Table 5.4. The operating regions of the backward facing step model. 

All subsequent references to node numbers will be understood to be for internal 

node numbers unless otherwise specified. The backward facing step models will now be 

described in turn. 

5.3.2. A Basic Coles' Law Model of the Backward Facing SteI2. 

In essence, the basic Coles'law model for the backward facing step was akin to that 

of the U-bend; where those techniques had to be modified, a description will now be 

given. 
As will be remembered from Section 5.2.1, the Coles' lines were placed at a depth 

of one element into the flow, as prompted by the practice of the wall element model of 
Haroutunian and Engelman (1991), used in 'standard' FIDAP models. As such, for any 

given Coles'line, the normal distance from the Coles'line to its attendant solid boundary, 

namely y, was invariant along the length of that Coles' line. Consequently, where values 

of y for each Coles' line were established in the source subroutine, they needed to be 

calculated only at the start of a given line. The overall model then possessed four different 
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y values corresponding to the four Coles' lines. These y values were then used, as 
before, in computing y+ at each node and would also be of potential use in a better model 
for the wake function, w. 

With regard to the calculation of the local velocity gradient, however, the whole 
basis by which dx was gained was now reviewed. On consideration of the general dy 
subroutine capabilities as discussed in Section 4.2.2, it was seen that Idy- could be 

dy 
provided by FIDAP itself. The source subroutine makes available all derivatives of the 

active degrees of freedom for the solution, provided that a request for their calculation is 

made within the variable derivative control subroutine. 

This method may be illustrated by considering the accessing of 
dvx 

along the top dy 
Coles' line, as shown in Figure 5.13. 

y 

* 

(Z) 

*1 

solution 
procedure 

KCY 
"inlet" 

element number 

integration point, 
with number 

Coles'line 

0; 333= solid boundary 

*1 

4* 

*1 

"outlet 

Figure 5.13. Access to 
4VI for the top Coles' line. 
dy 

Calculation of 
d-v& 

within the source subroutine was then requested by the dy 
following statement within the variable derivative control subroutine as 

inivar ( kdu )=1 
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Values of 
dvx 

were then computed at all integration points throughout the mesh. dy 
With regard to the top Coles' line, those values of interest lay within the region bounded 

by elements el to e4, being the elements on either side of that Coles' line. These valueý 

were then stored in arrays slopet I, for the elements above the Coles' line, and slopet2, for 

those below. Initially, it was attempted to access velocity gradients from the current 
iteration, remembering that the solution procedure invokes the subroutines at the end of 

the current iteration, in order to prepare boundary conditions for the next iteration. This, 

however, did not provide a stable solution and so a storage system was developed 

whereby the velocity gradients from the current iteration were put into a dummy array for 

use by the next iteration: as such, a given iteration always used values for dv" from the 
previous iteration as 

dy 

sloped ( nelt ,i)= storett ( nelt ,i) 
storetl ( nelt ,i)= dvari (i, 2, Idofu ( kdu )) 

for the ith integration point of the element nelt abutting the top Coles' line. 
The arrays of gradients available for current use, as slopetl and slopet2, were then 

transferred to the boundary condition subroutine by the COMMONB LOCK 'tlayer. 

The boundary condition subroutine then had access to velocity gradients on either 

side of the Coles'line, stored in arrays with the dimensions of element number and 
integration point. To convert these results to the velocity gradient at a given node, the 

average of the values of the velocity gradient at the integration points surrounding that 

node was taken. In order to perform this conversion, the relationship between element 

and node numbering along the Coles'line was studied, offering a generic algorithm. In 

the case of the top Coles' line, away from the nodes at inlet and outlet, then the method is 

shown by Figure 5.14. 
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Figure 5.14. Calculation of 
dv-A- 

at a node on the top Coles' line. dy 

dv From the above diagram, "x at the node on the Coles' line is given by dy 

dvx 
= slopetl(geltl, l) + slopetl(geltl-1,3) + slopet2(gelt2,2) + slopet2(gelt2-1,4) 

dy 4 

and so the task was then reduced to one of relating the element numbers, geltl and gelt2, 

to the node number, n. On inspecting Figures 5.11 and 5.12 and excepting nodes n8 and 

n12 at the extremities, then for nodes (n8 + lAnW to n9 (along which section the nodal 

increment is AnhA), then a relationship appears as 

imp= n+1 +1 
AnhA 

with geltl = e2 + imp 

and gelt2 = el + imp 

and for the balance of the top Coles' line, from node n 10 to node nII (between which 
there is a nodal increment of AnhB), then the relationship becomes 

imp =n- nIO 
AnhB 

with geltl = (e2 + 1OAehA) + iMP 
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and gelt2 = (el +I OAehA) + iMP 

A similar process is used at the extremities of the Coles'line, bearing in mind thqt 
for an end node, there will be only two adjacent integration points. This procedure was 

adopted in calculating 
LI 

along all Coles' lines (n. b. in the case of the 'step face' line, dy 

the required velocity gradient was 
dv, 

, gained in a like fashion). dx 
A tactical problem arose at node n4, where the Coles'lines for the back upper reach 

and for the step face intersect, and at node n5, where the Coles' line for the step face 

crosses that for the front lower reach. In both instances, one node serves two Coles' lines 

and, depending upon which Coles' line is currently active, either 
dvx 

must be selected dy 

for an horizontal Coles'line or 
dvy 

for a vertical one. dx 
This selection was governed by consideration of the variable pointer, idf, and the 

use of two pointers, called 'flag' and 'npole', the operation of which is shown in the truth 

table below. 

Coles' Property idf Value of "npole" at Velocity Value of "flag" at Velocity 
line to be gradient radient g 
name calculated start of end of atnode start of end of at node 

subroutine subroutine n4 subroutine subroutine n5 
call call call call 

top vx 1 0 0 dvx/dy 0 0 dvx/dy 
k 4 0 0 dvx/dy 0 0 dvx/dy 
e 5 0 0 dvx/dy 0 0 dvx/dy 

back vx 1 0 1 dvx/dy 0 0 dvx/dy 
upper k 4 1 2 dvx/dy 0 0 dvx/dy 
reach e 51 2 3 dvx/dy 0 0 dvx/dy 

step vy 1 3 3 dvy/dx 0 1 dvy/dx 
face k 4 3 3 dvy/dx 1 2 dvy/dx 

e 5 3 0 dvy/dx 2 3 dvy/dx 

front vx 1 0 0 dvx/dy 3 3 dvx/dy 
lower k 4 0 0 dvx/dy 3 3 dvx/dy 

I 
reach 

I 
e1 51 01 0 dvx/dy 3 0 dvx/dy 

Table 5.5. Selection of local velocity gradients. 

For example, for node n5, if flag=3 at the start of the present subroutine call, then 
dv,, is used, as the subroutine is currently being called by the front lower reach Coles' dy 
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line. At the end of the third consecutive subroutine call for the front lower reach, flag is 

reset to zero upon the condition idf =5 being satisfied. When node n5 is next activated, 

when the subroutine is analyzing the step face, 
dvy 

is selected since flag is less than three dx % 
at the start of all subroutine calls pertinent to this Coles' line (for v, k and E). 

Having obtained the velocity gradient, thenro, v* and y+ were calculated as before. 

The centreline velocity, v.., corresponding to a given node was obtained by a similar 

process to that used for the U-bend model. In retrieving v.. for the nodes along the step 
face, the definition of 'centrelineor'freestreariY became much more arbitrary as the 
boundary layer incumbent upon the step face was normal to all the other boundary layers 

lying along the other solid boundaries. Given that the step face was expected to bound the 

recirculating pocket of fluid, then no obvious choice for v.. lay in a plane parallel to the 

step. v. was used in the simple Coles' model for the estimation of the wake parameter in 

order to validate the general structure of the model for the backward facing step - 

subsequent models were to evaluate the wake parameter formally upon consideration of 

the local pressure gradient. As such, for the purposes of the simple Coles' model, it was 

proposed that along the entire step face Coles' line, that v. be taken as the velocity at that 

node on the 'major' centreline, vertically above the step face Coles' line. 

Initially then, for v.. along the step face, vX at node n7 was taken (see Figure 5.12. ) 

but this lead to a rapidly diverging solution. This arose by virtue of the comparitive 

magnitudes of vx at node 0 and the values of vy to be returned by the subroutine along 
the step face. Along the centreline, vx is significantly greater than both vy at the centreline 

and the typical vy values near to the step face in the standard FIDAP model. This was 

remedied by taking v.. as the value of vy at node n7 for this Coles' line. 

Where the subroutines were called to compute k and e, the procedure was as for the 
U-bend, being based upon the method outlined in Section 5.1.1. In the event of the 

subroutines being called to evaluate vx (for the top, back upper reach and front lower 

reach Coles' lines) or vy (for the step face), then the wake parameter was derived from 

the method of Section 5.2.1. 

In returning velocities to the main program, the fact that the Coles' equation is 

essentially positive, and hence does not indicate the direction of flow, again required to be 

considered. Notionally, the sign of the local velocity gradient may be imposed on the 

result of Coles' equation at a node as 

dvl 
v= sign 

(v 
c'o 1 e- sI ay-) (5.20) 
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but in the instance of the top Coles' line, this approach had to be modified by taking the 

opposite sign to that of the local velocity gradient; for the top Coles' line, dK is seen to dy 
increase in the direction of diminishing y co-ordinate. 

An improvement over the U-bend model was the slightly more precise use of Coles' 
law, which should not be used within the viscous sub-layer, where y+ is less than five. 
Before returning a nodal velocity to the main program, the model inspected the value of 
Y+ at that node, given that y+ has the form of Reynolds number. Should y+ be less than 
five, then instead of calculating the velocity using Coles' law, it was gained from a 
rearrangement of equation 2.28 as 

yV*2 
v 

(5.21) 

5.3.3. Initialization of the Basic Model of the Backward-Facing SteR. 

The initial conditions for the solution are shown in Figure 5.15 below. 

ux = uy = 0, k=0.003, c=0.00364 

ux= I 

UY = 

k=0.003 10 Flow 

0.00364 

ux = uy = 0, k=0.003,0.00364 

x 

Figure 5.15. Prescription of initial conditions for the backward facing step. 

As with the U-bend model, the backward facing step model did not begin operation 

at solution iteration number one but was delayed until the second iteration to ensure that it 

had a favourable environment to commence within. In this case, the 'start' counter was 

triggered by one specified node within each Coles'line (such as node nI for the back 

upper reach), providing a sequence of counter events as Table 5.6. below. 
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Iteration number i=l i=2 i=n 

Value of onset of iteration i+37 i+37+12(i-1) i+37+12(n-lý 

"start" at end of iteration i+37+lli i+37+12(i-l)+Il( i+37+21 (n- 1) 

Table 5.6. Detailing the values of the counter 'start' for successive iterations. 

Within the subroutine then, until the second iteration, when start = 49, the 

subroutine returned vx =vy=0, k=0.003 and c=0.00364 throughout the Coles' 

model. 
Appendix A3 then contains the following inforrnation pertaining to the basic Coles' 

law model of the backward facing step: the input fifle, tat2. FDREAD: the subroutine 

template, erasure. f. an algorithm flowchart of erasure. f. 

To date, all models discussed have had very simple descriptions of the wake 

parameter, I'l, and the wake function, w. Whilst rl was based upon an empirical 
relationship with the freestream, Reynolds number for a flat plate with zero pressure 

gradient, w was forced to unity by the blanket prescription of 5=y. 

In a discussion of the practical use of Coles' law, White (199 1) notes an empirical 

relationship between H and Clauser's equilibrium parameter, 0, developed by Das (1987, 

1988). After studying a range of flows with both favourable and adverse pressure 

gradients, Das observed that the following empirical relationship provided a good 

approximation to the variation of 0 with H as 

0=-0.4 + 0.76 rl + 0.42 rlý 

Recalling equation 2.31 as 

8* dpý 

To dx 

(5.22) 
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then a direct link is established between the wake parameter and the streamwise pressure 
P. 

gradient at the edge of the boundary layer, 
L-. 

Given that the pressure gradient can be 
dx 

dy- 
accessed by use of the DVARI array in the source subroutine (much as dy was gaine 

then the problem is reduced to finding 5% the displacement thickness of the boundary 

layer. 

The displacement thickness, described by the general equation 2.32, may be 

rewritten for a fluid of constant density as 

dy (5.23) 

where 8 is the boundary layer thickness and v.. the fi-eestream velocity at the edge of the 

boundary layer. For use to be made of this relationship, the boundary layer thickness has 

to be evaluated properly. A sketch of the boundary layer at a point in the mesh is then 

shown as Figure 5.16 below. 

node at which 
Coles'law is to X) 
be operated 

edge of boundary 
layer node at the 

edge of the 
boundary layer 

y node within the 
boundary layer 

solid boundary 

Figure 5.16. Nodes within the boundary layer. 

Now at the edge of the boundary layer, 

V= V00 

and so 
dv,, 

=0 dy 
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As such, if the velocity gradient were inspected at successive nodes out into the 
flow until a node satisfying equation 5.24 was reached, then the geometric location of that 

node would yield the boundary layer thickness, 5. 

Returning to equation 5.23 and Figure 5.16, knowing 8 and the spatial separation 

of the nodes within the boundary layer, then the integral in equation 5.23 could be 

replaced by a summation process to yield 8 

An algorithm for the prediction of the wake parameter and the wake function would 
then take the following form as 

i) inspecting successive nodes out from the Coles' line, test for dv& 
= 0, 

dy 
ii) set 8 to the y co-ordinate of the node satisfying (i) above, 
iii) operate equation 5.23 in a modified form as a summation across the boundary 

layer to give 8, 

iv) for the node at y=5, gain 
dp" 

from information provided by the source dx 
subroutine, 

v) calculate P from equation 2.3 1, 

vi) calculate H from equation 5.22 and 

vii) set the wake function, using equation 2.46. 

5.3.5. Development of a Model to Evaltlate the Wake Function and Wake 

Parameter. 

The modelling of the wake function, w, and the wake parameter, rI, can be seen to 

depend upon establishing the thickness of the boundary layer, 8. Once 8 has been 

established, the displacement thickness and the desired wake properties may be 

determined. The proposed method for estimating 5 requires the inspection of a number of 
flow variables along a line of nodes normal to the solid boundary and passing through the 

node at which Coles' law is to be operated, as depicted by Figure 5.16. Upon closer 
inspection of Figure 5.16, in conjunction with Figure 5.11, a general relationship 
between the node on the Coles' line and the elements on either side of the line of 
inspection can be seen as Figure 5.17 below. 
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Figure 5.17. Showing a column of elements about a node on a Coles'line. 

I 

For a given portion of a Coles'line, there will be a regular increase in element 

number, when moving away from the wall in a normal direction, from one element to the 

next. Furthermore, the names of the elements to either side of a given node on a Coles' 

line can be rigorously defined for that node, such relationships having been already made 

use of in the algorithm for determining the local velocity gradient at a node, as shown by 

Figure 5.14. The location of each of the elements within the column of Figure 5.17 can 

then be calculated, once the names of the basal elements are known. 

For example, comparing Figure 5.17 with Figure 5.14, for the top Coles'line, for 

nodes (n8 + lAnhA) to n9 (along which section the nodal increment is AnhA) then 

ell = geltl-1 = e2 + imp -1 
and e12 = geltl =el +imp 

Then inspecting Figure 5.11, the increment in element number, m, when moving 
from element to element, away from the wall is 

AevA 
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Similar relationships can be mooted for the balance of the top Coles' line and also 

for its end points. 
Thus, the analysis of the column of elements in order to determine the boundary.. 

layer thickness can proceed by considering the various geometric co-ordinates and flow 

variables at the integration points of those elements and hence, by implication, at the 
nodes along the line of inspection. Figure 5.6 demonstrated how nodal locations might be 
calculated and Figure 5.14 detailed how the local velocity gradient might be determined 
for a node upon studying its surrounding integration points. After inspecting the 
converged solution for the standard FIDAP model of the backward facing step, it was 
observed that the boundary layer typically lay within the first eight layers of elements 
adjacent to a given solid boundary. Ilius, within the source subroutine, the normal 
distance from the wall to each of the nodes in the first eight elemental layers was 
calculated and stored in arrays, such as yt(i) for ith node on the top line of inspection. 

yt(l) was then the y co-ordinate of the node on the Coles' line (and hence the value of y 
used for computing y+) and y(8) the location of the furthest node away from the wall to 
be inspected. 

To simplify the transfer of this data from the source subroutine to the boundary 

condition subroutine, when specifying values for ell, e12 and rn for a node, a unique 
pointer, 'line', was set to identify which Coles' line was currently under analysis. 'line' 

values are given in Table 5.7 below. 

Nameof 

Coles'line 

Value of pointer 

"line" 

back upper reach 1 

front lower reach 2 

step face 3 

top 4 

Table 5.7. Prescription of 'line' values. 
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The value of line'for a node on the Coles'line was then used to transfer the 

relevant array of node co-ordinates from the source subroutine into a local array in the 

boundary condition subroutine. For example, for a node on the top Coles' line, line -- 4 

and so the local array y(i) of the boundary condition subroutine is given the values 
contained by the yt(i) array of the source subroutine. (At this juncture it was realised that 

the pointer 'line' could have been used to select the correct local velocity gradient for use 
at nodes n4 and n5, where two Coles'lines intersect. This would offer a more elegant 
discriminant than the pointers 'flag' and 'npole', already in use. ) 

Having detemined the nodal locations of those nodes along the line of inspection, 

the search for the boundary layer thickness then proceeded by consideration of the flow 

properties at successive nodes along the line of inspection. Výhilst it was suggested that 

the local velocity gradient be inspected at successive nodes, saying that edge of the 
boundary had been reached once the local velocity gradient fell below an arbitrary 
tolerance, this caused problems in the comparison of two very small numbers. It was 
found to be much simpler to compare the values of the velocity in the boundary layer at 
successive nodes to one another, as shown by Figure 5.18. 

V.. V"" 

KM 

s node on Coles'line 7---- 
0 node within 

boundary layer 

v 

line of inspection 

solid boundary 

Figure 5.18. Variation of velocity within typical boundary layer profiles. 

The velocities at each node on the line of inspection may be stored as an array, 

vo(i). Then for a given node, i, the velocity at that node, vo(i), may be compared with the 

next node, vo(i+l). If vo(i+l) has a different sign or is smaller in magnitude than vo(i), 

then the edge of the boundary layer is said to have been reached, such that 8= y(i). A 
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further condition was added to this method of testing for 8, by allowing 8 to be set if vo(i) 

was equal to or greater than 90% of vo(i+l). This avoided the possible problem of 

comparing two small and almost equal numbers. 

Having established 5, then equation 5.23 for 8* 

be rewritten as a summation as 

J=j 

-I VOW 11 
ýý f-vo(-j)jj(yo)-yo-1)) 
j=l 

(5.25) 

where i is the pointer to the node at the edge of the boundary layer, vo(i) is the freestrearn 

velocity and (yQ) - ya-1)) the thickness of an elemental strip, as shown in Figure 5.19 

below. 

edge of boundary 
layer 

vo(i) ---------- 

node at which 
Coles'law is to 
be operated 

V00) node at the 
YO) - YO-1) 

0 edge of the 

VOO-1) 0---- 
boundary layer 

node within the 
boundary layer 

solid boundary 

Figure 5.19. Nomenclature of equation 5.25. 

By taking the modulus of the nodal velocities in equation 5.25, the model was able 

to take account of reversing flow. However, should the boundary layer thickness 

correspond to the first node out from the wall (i. e. to the Coles' line) then the model 

collapsed as when j=i=1, the summation gave 8 =0. 

This problem was overcome by interpolating between each node in the column to 

gain values of velocity and distance normal to the wall at the midpoints between 

, the displacement thickness, may 
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successive nodes. The expanded velocity array, ve(i), and the expanded location array, 
ye(i), were used in equation 5.25. Since by linear interpolation 

ve(i) = 
vo(l) + vo(O) with vo(o) = 0, the slip velocity 2 

then 5 cannot equal zero because vo(l) will always have a real value, such that 

0: 5jve(1)j: 5jve(2)j. 

Having calculated 8, then the wake function, w, could be computed from equation 

2.46 but to evaluate the wake parameter, 11, from equation 5.22, then Clauser's 

equilibrium constant, P, had to be gained first as equation 2.3 1. This required knowledge 

of both S* and the strearnwise pressure gradien 
dp.. 
dx 

dp.. 
Notionally, jý- can be accessed from the DVARI array in the source subroutine 

but as this facility had not yet been coded into the latest release of FIDAP, it had to be 

calculated 'manually' by considering the pressure values at the integration points, 

available in the VARI array. In order to access the pressures at the integration points, 
however, the solution had to be run with pressure as a degree of freedom, necessitating 
the use of a slower solution procedure. To ensure consistency between the results from 

different models, all computational experiments for the backward facing step were then 

solved for pressure as an active degree of freedom. As such, the streamwise pressure 

gradient was evaluated at the node i, deemed to be at the edge of the boundary layer, as 

shown in Figure 5.20. 
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dp.. 
Figure 5.20. Showing the evaluation of jj- at y 

From Figure 5.20 then 

dp = 
pl + P2 P3 + P4 

22 

and dx=xl -x4 or dx " x2 - 13 

where p, is the pressure at integration point 1, x, is the x co-ordinate of integration point 
1 and so on. 

dp. 
Finally then, knowing 5 and dx , the wake parameter, 11, was evaluated using 

equation 5.22. In practice, the basic Coles' law model of Section 5.3.2 was run for 

iterations 2 to 29, after which the full model as described was implemented. This allowed 
the pressure field to stabilise somewhat before the onset of the improved model. Even 

allowing for this, the local pressure gradients in the immediate vicinity of the upper and 
lower extremities of the step face were so large as to predict excessive values of 0 and 

hence of II. This resulted in the predicted velocities at this point on the step face Coles' 

line being several orders of magnitude greater than at any of the surrounding nodes. As 

this caused the solution to diverge, an arbitrary upper limit on P was imposed on the step 
face, to obviate this problem. 
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Furthermore, when inspecting the initial results of the improved model, it was 

observed that yl< 5 for considerable portions of the Coles' lines - as this would result in 

the local velocity being calculated from u+ = y+, then in order to force the evaluation of 

Coles' law, the input file was rewritten to offer a coarser computational mesh. 
The input file, andy. FDREAD, is listed in Appendix A3, as is the subroutine 

template for the model, circus. f, and its accompanying algorithm flowchart. 
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6. Results and Discussion of Two-dimensional ModellinLy. 

6.1. Basic Results of U-bend Modelling. 

The experimental work of Sandborn and Shin (1988) is taken as the reference by 

which to assess the results of U-bend modelling by the standard FIDAP method (using 

the wall model of Haroutunian and Engelman (1991)) and the simple Coleslaw model, 

described in Section 5.2. 

6.1.1. Principal Features of Flow on the U-bend, 

Sandborn and Shin (1988) conducted an experimental study of water flow in an 
1801 turnaround rectangular duct for Re 70,000 - 500,000. Their work identified a 

number of main features for two-dimensional flow in a turnaround duct which may be 

summarized as 

i) a separation bubble on the inner wall from 150' around the bend, extending 
to one duct width beyond the bend exit and with a maximum radial extent of 0.2 

duct widths, 
ii) large acceleration of the flow along the inner wall from the bend entrance 

up to a point 90* around the bend, 

iii) an adverse pressure gradient along the outer wall in the early part of the bend, 

only causing separation for low Reynolds number, with pressure at the outer wall 

approximately constant from 50 - 130* around the bend, 
iv) the development of a thin boundary layer on the outer wall downstream of the 
bend exit and 
v) equalisation of pressure across the duct some two duct widths downstream of the 
bend exit, with overall pressure distribution largely independent of Reynolds 

number. 

The key features of the separating flow for the U-bend are shown overleaf as 

Figure 6.1 
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Bend exit Separation bubble I 

Bend entrance 

Figure 6.1. Principal features of flow in the U-bend, after Sandbom and Shin (1988). 

The computational mesh used for both the standard FIDAP model and the simple 
Coles' law model of the U-bend is shown as Figure 6.2 below. 
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Figure 6.2. Computational mesh used for analysis of the U-bend. 

On inspecting Figure 6.2, it will be seen that the mesh is graduated across the width 

of the duct to provide finer meshing towards the solid boundaries. Finer meshing is also 

used for the turning section of the duct, particularly around the inner surface of the bend 

where separation is expected to commence. Whilst mesh-dependent 'improvements' in the 

flow predictions of a given modelling scheme may arise from adjustments to local mesh 
density, all computational models of the U-bend used the mesh shown as Figure 6.2 

above. As such, any difference in results between the models may be attributed to the wall 

model used and not to mesh density effects. (Likewise, one common mesh was used for 

all backward facing step models. ) 

The flow has a nominal Reynolds number of 100,000 based upon an uniform inlet 

velocity of 1.0 m/s; uniform distributions of k=0.001 and P_ = 0.0009 are used for 

kinetic energy and turbulent rate of dissipation respectively and a no-slip velocity 

condition is prescribed for the solid boundaries. The segregated solver, as described in 

Section 2.3.2, was used to implement the solution for all U-bend models. The main 
features of the flow through the U-bend may be shown by considering the results of the 

standard FIDAP model. 
Figure 6.3 below is a velocity vector plot for flow through the U-bend. 
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Figure 6.3. Velocity vectors for flow through the U-bend, as predicted by the 

standard FIDAP model. 

Inspecting Figure 6.3, it can be seen that the standard FIDAP model predicts a 

separation bubble. The separation point is just before the exit of the bend, on the inner 

wall, and the separation bubble extends downstream of the bend exit for approximately 

two duct widths. 
The uniform velocity profile at inlet tends towards fully developed flow as flow 

proceeds downstream, with an accompanying growth of turbulent boundary layers on 
both inner and outer walls. The rapid turning of the flow at inlet to the bend wipes the 

turbulent boundary layer off the inner surface. The large acceleration in the flow on the 

inner surface, almost up to 900 around the bend, leads to the flow effectively turning 

away from the outer wall at the start of the bend. As such, for the first half of the bend, a 
favourable pressure gradient is predicted on the inner wall whilst an adverse pressure 

gradient will be present on the outer wall. This situation is reversed in the second half of 

the bend where the flow along the inner wall is decelerating and that along the outer wall 

accelerates. 
Whilst the adverse pressure gradient on the outer wall in the first half of the bend 

does not lead to separation, that along the inner wall towards the bend exit does result in 

separation. On the outer wall, the turbulent boundary layer is thin downstream of the bend 
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in comparison with that on lead up to the bend entrance. Downstream of the separation 
bubble, the flow begins to develop again towards the duct outlet but is not fully developed 

at outlet, rather being skewed towards the outer wall. 
As such, the results of the standard FIDAP model compare favourably with those of 

Sandborn and Shin (1988) and so closer inspection of the separation bubble is warranted. 

u-bend - standard FIDAP model STREAMUINE 
CONTOUR PLOT 
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Figure 6.4. Streamline contour plot for flow flow through the U-bend, as predicted 
by the standard FIDAP model. 

The streamline contour plot of Figure 6.4 shows the separation bubble to begin 

before the bend exit and to extend some two duct widths downstream of the bend exit, 
having a maximum radial extent of roughly 0.25 duct widths. This is shown in greater 
detail by Figure 6.5, showing a magnified detail of Figure 6.3. 
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Figure 6.5. Showing magnified velocity vectors in the region of the latter half of the 

bend, as predicted by the standard FIDAP model. 

By defining the extent of the separation bubble as that portion of the flow where 

velocity vectors adjacent to the wall run counter to the prevalent, or core, flow, then from 

Figure 6.5, the separation bubble commences at 155* around the bend and ends 2.1 duct 

widths downstream of the bend exit. At its thickest point, the separation bubble has a 

maximum radial extent of 0.23 duct widths. 
Whereas the flow was turned away from the outer wall on inlet to the bend, at exit 

from the bend, the core flow, in passing over the top of the separation bubble, is diverted 

away from the inner wall and impacts upon the outer wall. At this point on the outer wall, 
just downstream of the bend exit, the outer wall turbulent boundary layer is just beginning 

to develop and, as noted earlier, is uncommonly thin. 
A simple definition for the point of separation is that point on the solid boundary 

where the shear stress is zero, i. e. whereco = 0. Figure 6.6 presents a stress boundary 

plot for the inner wall of the U-bend. 
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Figure 6.6. A stress boundary plot for the inner wall of the U-bend, as predicted by 

the standard FIDAP model. 

Inspecting Figure 6.6, then observe thatro =0 at 1520, which shows fair 

agreement with the corresponding estimate taken from Figure 6.5. 

From the results so far considered for the U-bend, the standard FIDAP model 
appears to compare well with the work of Sandbom. and Shin (1988). Given that the flow 
is thought to be governed by inviscid mechanisms, then these favourable results might 
arise from the FIDAP code providing a good model of the core flow (via the k-e 

turbulence model) rather than from any benefits accruing fi-om the wall model of 
Haroutunian and Engelman (1991), used in the standard FIDAP model. (Note that it is 

not intended to infer that the FIDAP turbulence model is valid right down to the wall but 

merely to question how limited an effect the presence of solid boundaries has in this 

case. ) 

6.1.3. U-bend Results in the Absence of Any Prescrobed Wall Law. 

To assess the influence of boundary layer modelling on the general flow 

characteristics of the U-bend, the standard FIDAP model was modified such that no wall 

model was used. The simple boundary conditions k=e=0 were prescribed along the 
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solid walls, replacing the boundary layer model of Haroutunian and Engelman (199 1). 

Whilst this model is an over-simplification of the physics of the flow, it should 
demonstrate the necessity of providing a wall law for use with the standard high Reynolds 

number k-e model. The result of this experiment is shown as Figure 6.7 below. 

U-bend model without wall law STREAMLINE 
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Figure 6.7. Showing the streamline distribution for the U-bend, predicted by 

operating FIDAP without any wall law model at the bounds of the flow. 

Whilst the magnitude and distribution of streamlines in Figure 6.7 are notionally 

similar to that of Figure 6.4, where special wall elements were used, this model without a 

wall law does not predict any separation. Consequently, whilst the general flow may be 

momentum-driven, wall effects are still important: to what degree they influence the flow 

may be shown by considering the results arising from the application of Coles' law to the 

U-bend. 

6.1-4. U-bend Results for the S*mple Coles' Law Model. 

The following results were provided by the final version of the simple Coles' law 

model of the U-bend, as described in Section 5.2.1. An overview of the results of the 

simple Coles'law model may be gained from Figure 6.8 below. 
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Figure 6.8. A velocity vector distribution for flow through the U-bend, as provided 

by the simple Coles'law model. 

On first inspection, Figure 6.8 shows strong resemblance to Figure 6.3, the 

corresponding results from the standard FIDAP model. However, in detail, there are a 

number of important differences, which will now be outlined. 
From the duct inlet, downstream towards the bend entrance, the flow tends towards 

full development but with a thicker boundary layer than the standard FIDAP model. 

Again, upon entering the bend, the flow is turned away from the outer surface and the 

acceleration of the flow around the inner surface of the bend leads to the onset of 

separation in the latter half of the bend, although this separation conunences earlier than 

for the standard case. 
After the bend exit, the duration of the separation bubble is shorter than before and 

on the outer surface, the developing boundary layer, whilst initially thin in comparison 

with that before the bend inlet, becomes established sooner than in the standard FIDAP 

model. Downstream of the separation bubble, the redeveloping now is more uniformly 

distributed across the duct cross-section towards the duct outlet and shows less skewing 

towards the outer surface. 

The separation bubble predicted by the simple Coles'law model may be seen better 

in Figure 6.9 below. 
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Figure 6.9. Showing magnified velocity vectors in the region of the exit to the 

bend, as predicted by the simple Coles' law model. 

From the above figure, the separation bubble is seen to begin at 140" around the 
inner surface of the bend and to extend 1.4 duct widths downstream of the bend exit, 
having a maximum radial extent of 0.24 duct widths. Whilst the extent of the separation 
bubble beyond the bend exit is closer to Sandborn and Shin's prediction (1988), the onset 

of separation occurs some 10" earlier than expected. 
In comparison with the standard FIDAP model results of Figure 6.5, the velocity 

vectors immediately adjacent to the solid boundaries are up to 80% lower on the approach 

to the inner bend entrance, 40% lower on exit from the bend along the outer wall and 

approximately 50% lower between the separation bubble and the inner wall. It can also be 

seen that as the flow is turned away from the inner wall on approach to the bend exit, that 
it does not collide so markedly with the outer wall near the bend exit. This also 

corresponds to a more rapid re-establishment of the turbulent boundary layer on the outer 

wall beyond the bend exit, for the case of the simple Coles'law model. 
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Figure 6.10. Showing a stress boundary plot for the inner wall of the U-bend, 

predicted by the simple Coleslaw model. 

The point of separation may also be gauged from Figure 6.10, showing the stress 
distribution along the inner surface of the duct. From this figure, it can be seen thavro =0 

at 141", which compares well with the prediction taken from Figure 6.9. Note that whilst 

the tangential stress distribution is similar in form to that of Figure 6.6 for the standard 
FIDAP model, the tangential stress is approximately an order of magnitude less for the 

case of the simple Coles'law model. 
As was noted earlier, the turbulent boundary layer developing between the duct inlet 

and the bend entrance on both inner and outer walls was noticeably thicker for the simple 
Coles'law model than for that predicted by the standard FIDAP model. To compare the 

boundary layers of the two computational models, the first ten mesh cross-sections 
downstream of the duct inlet were considered; beyond this point the turning of the flow 

away from the outer wall, arising from the presence of the bend, became significant. 8 

was taken to be that point at which the local nodal velocity was 90% or more of the 

estimated freestream velocity. The results of this comparison are shown as Table 6.1 

below. 
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Length along 
duct, L (m) 

8 from standard 
FIDAP model (m) 

5 from simple 
Coles'model (m) 

1.07 0.04 0.08 
2.02 0.07 0.10 
2.83 0.08 0.14 
3.54 0.08 0.16 
4.16 0.10 0.18 

4.71 0.11 0.18 
5.20 0.13 0.18 
5.60 0.13 0.18 
5.96 0.13 0.19 
6.28 0.14 0.21 

Table 6.1. Comparing boundary layer thicknesses downstream of the duct inlet, 

along the outer wall, for 8 observed from the standard FIDAP and simple Coles' 

law models. 

Whilst such a comparison must be made with reservation, since the graphical 

estimate of 8 from the computational results is necessarily open to interpretation, at 

successive mesh cross-sections downstream of the duct inlet, the boundary layer of the 

simple Coles'law model is some 40-80% greater than that seen for the standard FIDAP 

model. 

6.2. Analysis of the Behaviour of the Somple Coles' Law Model. as 
A1112lied to the U-bend. 

Whilst it has been shown in Section 6.1 that the simple Coles'law model replicates 
the significant features of the flow through the U-bend, as documented by Sandbom and 
Shin (1988), the implementation of this model will now be discussed more closely. 

6.2.1. Comparison of Boundary Layer Profiles. 

Coles'law, in a simplified form, was stated in Section 5.2.1 as 

V=V . 
[Iny+ 

+B+ 21-1 
ic ic 

I 
(6.1) 
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after assuming that the wake function, w, could be set to unity. Notionally then, Coles' 

law should predict a larger local velocity than that from Reichardt's law since some 

account is made of the local pressure gradient, even in this simplified form. Consider 

Reichardt's law below (Haroutunian and Engleman, 199 1) as equation 2.29 as 

y+ + In(1 + 0.4y+) + 7.8 1- ex 
)- 4,. 

-0.33y+)ý 

This is an experimental fit to the law of the wall which, expressed in inner variables 
as equation 2.24, may be shown as 

u+ = -ýL = -1 Iny+ +B 
V* IC 

Comparing equations 6.1 and 2.24, the pressure gradient term, 11, being additive ic 
to the basic law of the wall, should predict an enhanced estimate of local velocity, 

provided a local pressure gradient exists. As this was not seen to be the case in comparing 

the results of the standard FIDAP and simple Coles'law models, then the principal 
variables of the above equations, namely u+ and y+, should be considered afresh, as given 

by equations 2.26 and 2.27 respectively as 

uý = 

v* 

and Y+ =y 
V* 
v 

Further, v* in equation 2.26 was expressed as equation 5.14 for computational 

purposes as 

ý7 

Given that y, p and v are common to both models in calculating v* and hence in 

gaining u+ and y+, then the difference in the estimates of the local velocity immediately 

adjacent to the solid boundaries must be attributed to the determination of v*. 
In that v* is dependent on the variation of shear stress at the wall, consider again 
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Figures 6.6 and 6.10 showing the stress distribution for the standard FIDAP and simple 
Coles'law models in turn for the inner wall. From these figures, it will be remembered 
that the tangential stress at the boundary was an order of magnitude lower for the case of 

the simple Coles'law model, although the form of the stress distribution was similar. ibe 

values yielded by the simple Coleslaw model are lower than those from the standard 
FIDAP model: at the bend entrance the Coles'law stress estimate is some 7% of that 

given by the standard FIDAP model, rising to 10% at bend exit. As such, the wall friction 

velocity predicted by Reichardes law in the wall model of Haroutunian and Engelman 
(1991) would be necessarily larger than that for the simple Coles'law model. 

The simple Coles'law model calculated v* from the shear stress at the wall and in 

turn from the velocity gmdient near the wall as 

dK = vt 
dy yH 

(5.8) 

whence r. = dv (5.13) 
dy 

So the velocity predicted by the simplified Coles'law model as equation 6.1 is 
dependent upon the local velocity gradient (equation 5.8), in turn related back to the 

velocity in the elemental layer adjacent to the Coles'law model. From comparisons noted 
earlier, in Section 6.1, between Figures 6.5 and 6.9, the velocity adjacent to the wall, as 
predicted by Coles'law, is from 40-80% lower than that of the standard FIDAP model. 
The substitution of this lower velocity into equation 5.8 for dv would lead to the Coles' 

dy 
law prediction of v* being 63-89% lower than that for the standard FIDAP model, when 

, ro was used to calculate v* from equation 5.14. Consequently, as v* acts as a 

multiplicative constant to the right hand side of both equations 6.1 and 2.29 then this 

would account for the low velocity predicted by the Coles' law model, subject to further 

consideration of the other principal variable in these equations, namely y+. 
Values for y+ along the inner duct wall are presented for both models as Figures 

6.11 and 6.12 below. 
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Figure 6.11. The y+ distribution along the inner wall of the U-bend, predicted by 

the standard FIDAP model. 
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Figure 6.12. The y+ distribution along the inner wall of the U-bend, predicted by 

the simple Coles'law model. 

The y+ values along the inner wall for the standard FIDAP model, as Figure 6.11, 

are typically y+ < 5, excepting the latter part of the duct after the bend exit. This suggests 
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that the k-e turbulence model was being operated close to or inside the viscous sublayer, 
for which its use is unsuitable and hence a coarser mesh should strictly be used in the 

near-wall region. This may be considered to be a shortcoming of this model solution, 

presented as it is as an example of good modelling in the FIDAP7 Examples manual 
(1994). Be this as it may, the two minima in the y+ curve of Figure 6.11 represent the 

points of separation and reattachment of the separation bubble to the inner wall. Whilst it 

is expected that y+ =0 at such a point since co =0 at a point of singularity, this would 

only be observed in the results if, say, a separation point were to coincide exactly with a 

geometric mesh point; where separation occurs close to a mesh point, values of ro, v* and 
hence y+ will necessarily be small but finite at that mesh point. 

This idea is bourne out by Figure 6.12, where the second point of rnýinimum y+ 

occur 3 at an earlier point along the length of the wall for the Coles' law model than for the 

standard model, corresponding with the shorter separation bubble observed in this case. 
Note also that outside the region representing the separation bubble, y+ is typically three 

times greater for the simple Coles'law model than for the Haroutunian and Engelman 

model (1991), despite the Coles'law model having lower implied values of v*. 
For the inner wall, outside the separation bubble, if y+ =5 is taken as a 

representative value for the standard FIDAP model, then substituting y+ =5 into 

Reichardt' s law, equation 2.29, and taking ic = 0.41 then gain v=8.83v*. Likewise, by 

taking y+ = 15 as representative along the inner wall of the simple Coles' law model, then 

with B=5.0 and II estimated as 0.55 (since Re > 5000 by observation along the entire 

centreline of the duct for the simple Coles' law model) then from equation 6.1, gain 

v= 14.29v*. However, taking a notional value Of V*std =I for the standard FIDAP model, 
then the effective value of v* for the simple Coles'law model is 70% lower than this as 
0.3v, *td and so the simple model really yields v=4.29v, *td and thus the estimate of nodal 

velocity provided by Coles'law is approximately 50% of that from the standard model. 
The influence of v* in equation 6.1 may be further illustrated by considering the effect that 

a doubling in the value of v* has on the predicted velocity. Taking y=0.015m and 
V= 1XIO-5M2/S, then by setdngv* =2 in equation 6.1, the calculated velocity increases std 

by 113%. Consequently, the marked effect that v* has on the velocity prediction shows 

that the corTect determination of v* is critical to the operation of Coles' law. 

In the event that v* is lower when calculated by the Coles'law model, then the 

greater value of y+ for this model, in comparison with the standard FIDAP model, is 

initially surprising. However, whilst y+ is calculated directly from v*, via equation 2.27, 
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for the simple Coles' law model, this was not the case for the standard FIDAP model 

where y+ was taken as 

Y+ = 
ýCýPkt)112 

v 
(4.3) 

where kt is the kinetic energy of turbulence at the edge of the special wall element 
furthest from the wall i. e. at a distance y from the solid boundary. Consequently, y+ for 

the standard FIDAP model is not related explicitly to wall conditions; the expression of 
Haroutunian and Engelman (199 1) for y+ builds upon a number of implicit assumptions 

regarding boundary layer behaviour and the relationship between the wall friction velocity 

and the turbulent field. 

Turning to the apparent thickness of boundary layers as predicted by the simple 
Coles' law model, this model was used to enforce the nodal velocity at the first node in 

the fluid continuum away from the solid boundary by implimenting Coles'law as a 
boundary condition at the edge of the fluid continuum. Whilst this model interacted with 

the freestrearn (the k-e turbulence model) since the velocity gradient was evaluated in 

terms of the velocity at the second layer of nodes within the continuum away from the 

wall, the enforced boundary condition still gave underestimates of velocity at the edge of 

the freestream, when compared with the results of the standard FIDAP model. 
Consequently, as the velocity along the innermost portion of the boundary layer was 
'low', then the velocity of the outer boundary layer where local velocity matches the 

freestrearn velocity, at y=5, would only be achieved at a greater distance from the solid 
boundary. 

6.2.2. 
-The 

Effect of Incorrect Prescril2tion of Boundary Conditions, 

Further light may be shed on the general behaviour of the simple Coles'law model 
by considering some of the early and 'unsuccessful' versions of this model. In Figure 

5.9, the valid prescription of the nodal velocity to be returned by the boundary condition 

subroutine, as Cartesian components vx and vy, is detailed. Dependent upon the location 

of the current node being examined by the subroutine within the overall mesh, there is a 

clear relationship between the sign of the velocity component and the sign of the velocity 

gradient, IL In an earlier and incorrect approximation to this relationship, the velocity dy* 
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arising from the operation of Coles'law was simply given the sign of the velocity 

gradient, without accounting for the location of the node within the computational mesh. 
'Me behaviour of this primitive model is shown in Figure 6.13 below. 
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Figure 6.13. A magnified view of velocity vectors in the region of the bend exit for 

the U-bend, as predicted by a simple Coles'law model with inappropriate velocity 

sign conventions. 

As can be seen from Figure 6.13, many of the desired features of flow through the 

U-bend are still replicated by this model. However, whilst recirculation is demonstrated, 

the model has a number of shortcomings: the sense of velocity between the separation 
bubble and the inner wall of the duct is wrong in that it runs counter to the bulk of the 

separation bubble: this counter-running stream beneath the separation bubble results in a 

considerable lengthening of the bubble, well beyond that length which might be 

reasonably expected: around the outer wall of the bend, the resultant velocity adjacent to 

the wall is colliding with the wall, rather than running along it tangentially. Despite these 

serious departures from the work of Sandborn and Shin (1988), separation is still 

predicted, thus suggesting that the major influence on the flow distribution around the 

duct is the momentum of that flow and that the wall effects have a secondary role. All the 

same, on remembering Figure 6.7, where no separation was predicted as a result of 

ignoring wall effects, the fine details of the flow must then be determined by accurate 
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description of the viscous effects in the near-wall region. 
Again substituting for y+ = 15 into equation 6.1, then the weighting of each of the 

terms in the simple Coleslaw model may be seen as 

v=v 
ýIny+ 

+B+ 21: 1 = v*(6.61 + 5.00 + 2.68) 
Ic ic 

) 

Now the second right hand term, B, is constant, whilst the first and third terms 

should vary with velocity and pressure gradients respectively. Given that the third term, 
2171, returning a value of 2.68 in this working, is a generous estimate of the pressure term 
X 

since y<8 from the experience of Figures 6.3 and 6.8, then the variation of IT here is 

important. In that the simple model of the pressure term relates rI to the Reynolds number 

of the freestream, via equations 5.15-5.17, then from the method used, IT will only 

deviate from 0.55 (and hence 2JU from 2.68) when the centreline Reynolds number drops 
1C 

below 5000. Inspection of Figure 6.8 shows this not to occur anywhere in the model and, 

consequently, the third term in equation 6.1 is essentially static. 
As such, variation in the nodal velocity predicted by this simple model is dependent 

purely on the first term in equation 6.1 and ultimately upon the method by which the local 

velocity gradient is calculated. The model, as it stands, computes the velocity gradient via 

equation 5.8, taking it to be a linear distribution from the solid boundary out to a node in 

the continuum at a normal distance yH, where the local velocity is vt. In that yII is the 

separation of the second nodal layer from the wall then this linear distribution is held to 

extend some distance out into the flow, probably well beyond the viscous sub-layer. An 

earlier model had attempted to set 

dv = Ycoles 
dy y 

where y is the normal distance from the Coles'line to the wall and vColes is the local 

velocity at the node on the Coles' line, thus claiming a linear velocity gradient over a 

smaller portion of the boundary layer. However, this method failed in that the solution 

persistently diverged, this being attributed to the velocity gradient and the velocity at a 

given node being effectively expressed in terms of each other - the solution became 

incestuous and did respond to development of the flow in the core of the duct. 
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Nevertheless, whilst the method employed for calculating LLY- in the final simple dy 
Coles' model lead to moderately successful results for the U-bend, this part of the model 

was clearly both influential and, to some degree, deficient. 

Prior to considering the results of modelling of the backward facing step, the 

effectiveness of the Coles' law model of the U-bend may be gauged by comparison with a 

number of reported U-bend models using a variety of modelling schemes. 'Me importance 

of implementing a good model of the near-wall region was highlighted by a series of 

papers presented at the WUA-CFD Second World Conference in Applied Computational 

Fluid Dynamics, Basel, 1994. One of the test cases, set by the conference asbenchmark 

problem no. V, bears similarity to the U-bend situation analysed here as a round inlet pipe 

feeding into an annular section which tums through 1800. At inlet to this benchmark 

problem, experimental values of Reynolds number, the turbulence intensity and the mean 

velocity profile were specified, with results given as pressure coefficients for the inner 

and outer surfaces of the duct. The flow was considered to be isothermal, incompressible, 

fully turbulent and steady and all models submitted were axi-symmetric. As with the U- 

bend analysed in this work, since separation was expected after the bend, choice of 

turbulence modelling methods for the benchmark problem was important. Of the several 

worked solutions submitted to conference, each used a different modelling code - whilst 

most made use of Some form of the k-e turbulence model, not all predicted flow 

separation. Once more, this suggests that model implimentation can have significant 
bearing on computational results. 

Jones and Hope (1994) analysed the benchmark problem using three differing 

techniques as the standard k-e model, the RNG k-e model and a Reynolds stress model. 
Their standard k-e model gave no recirculation, merely showing that such models cannot 

mimic near-wall behaviour (as was expected and shown by Figure 6.7 here). Whilst the 

RNG k-e and Reynolds stress models predicted separation, the size and position of the 

separation bubble varied widely. They reported no results for pressure coefficients in their 

paper. I 
Ginter, Heitele and Ruprecht (1994) also used three'different modelling approaches, 

in this case being a low Reynolds number, laminar approximation to the given problem, a 
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standard k-e model utilizing the standard law of the wall and finally a two-layer turbulence 

model. Ibis latter model used the k-e model for the high Reynolds number freestream, 

with an one-equation k model and analytically prescribed e (from a length scale fonnulý) 

for the near-wall region. Whilst the model least close to the problem specification, being 

for laminar flow, showed recirculating flow, the two turbulent models failed to do so. 
Both predicted high values of kinetic energy in the curvature region but also gave high 

turbulent rates of dissipation, which they cited as suppressing any tendency to separation. 

Notionally, a two-layer model of this type should perform well, possibly better than the 

more common k-e and law of the wall combination, provided close attention is paid to 

mesh density and switching between model layers in the near-wall region. 
Deb, Diner and Ray (1994) used the standard k-e model in conjunction with an 

adaptive grid to interactively concentrate the mesh in 'trouble' areas upon inspection of 
local solution error estimates during the course of the solution. Their results showed a 

very small pocket of recirculating fluid after the bend, suggesting that the common law of 

the wall wedded to a fine computational mesh was inappropriate. This was also seen fi-om 

the results of Glihner (1994), whose adaptive mesh gave a separation bubble excessively 

far downstream of the bend outlet. 
Finally, Engelman (1994) applied the standard FIDAP wall methodology 

(Haroutunian and Engelman (1991)), as used for one of the U-bend models in this study, 

to the benchmark problem provided by the conference. Recirculation was predicted at and 

after the bend outlet, with good comparison between results for pressure coefficients on 

the outer bend and those experimental values quoted. On the inner surface of the bend, 

however, there was significant discrepancy in the results for pressure coefficient at the 

apex of the bend. 
In general, all of the models summarised above used different inlet conditions for k 

and e, each having interpreted the prescribed turbulence intensity at inlet differently. More 

significantly though, across a wide range of wall modelling techniques there was little 

concensus in the results, many of which had trouble reproducing the desired flow 

behaviour. This strengthens the argument alluded to earlier that the implementation of a 

modelling concept is as important as the physics of the model itself. That the simple 
Coles'law model gave a fair account of the U-bend in this work suggests that the basic 

framework of this model is sound, even though some reservations as to its fine details 

have been expressed. As such, in the early analysis of the backward facing step, this 

simple Coles'law model was first applied as a basis upon which to extend modelling to 
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account more fully for pressure and velocity gradient effects. 

TaIdng an overview of the results arising from study of the U-bend, the principal 

observations may be summarized as: 

i) In the absence of a wall model, the standard high Reynolds number k-e model does not 

predict separation. 

ii) Both the standard FIDAP and the simple Coleslaw models of the U-bend offer good 

general flow predictions in comparison with the benchmark work of Sandbom and Shin 

(1988). However, the predictions of thickness of the separation bubble and its extent 
downstream of the bend exit for the simple Coles' law model are closer to the 

experimental results of Sandborn and Shin (1988) than the corresponding standard 
FIDAP results. 

iii) The velocity in the near-wall region predicted by the simple Coles'model is lower than 
the corresponding standard FIDAP results. 

iv) The wake parameter in the simple Coles' law model is essentially constant. Therefore, 

the principal variables in the Coleslaw model are v* and y+ and, ultimately, ro, the shear 

stress at the wall. 

v) The lower values of r, the post-processed shear stress at the wall, for the simple Coles' 

law model do not fully account for the deficit in near-wall velocity. 

vi) The greater y+ values of the simple Coles' law model do not correlate with its lower 

values of v* in comparison with the inferred values of v* from the standard FIDAP 

model. This discrepancy arises from the different methods by which the two models 

evaluate Y+. 

vii) Consideration of U-bend models with incorrectly assigned boundary conditions 
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shows the momentum of the core flow to have a significant effect on recirculation events. 

viii) A review of other recent U-bend modelling approaches showed that modelling restkIts 
are dependent upon model implementation. Consequently, the valid encoding of a 

particular modelling scheme is as influential as the physics of that model. 

ix) The simple Coleslaw model of the U-bend, in having given a good description of the 

flow, offers a viable framework from which to develop a full model of Coles' law of the 

wake. 

The results arising from the three backward facing step models presented in Section 

5.3 will now be considered; a standard model of the backward facing step was created, 

along with a basic Coles'law model, described in Section 5.3.2 and analogous to the 

simple Coles'law model of the U-bend, and also an enhanced Coles'law model of the 
backward facing step, detailed in Section 5.3.4. 

6.3.1. Description-of Princil2al Flow Features for the Backward Facing 

Step. I 

The efficacy of the computational models of the backward facing step may be 

judged in comparison with the experimental work of Kim (1978), the salient points of 

which will now be described. The wind-tunnel test section of Kim had similar dimensions 

to the backward facing step of Figure 4.2, upon which the mesh for computational 

modelling was based. 
Kim determined that the size of the separated zone "depends on a balance between 

backward flow and flow 'entrained' by the free shear layer and pulled forward". The 

non-dimensionalized recirculation length, xr , was seen to be independent of the ratio of 

step height to overall duct width. The pressure distribution up to reattachment was 

independent of step height but beyond this point was determined by duct width. 

The key regions of the separation-reattachment process according to Kim are 

identified in Figure 6.14 below. 
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Figure 6.14. Key features of flow over a backward facing step, after Kim (1978). 

Only a small part of the separation bubble was seen to be steady, equal to about one 

step height, halfway along the length of the bubble. Most of the region was unstable, 

especially near reattachment, where the recirculation length was seen to vary continuously 

about a mean value as xr = (7±1)h, where h is the height of the step. The large unsteady 
fluctuations near reattachment suggested that large eddies in the approaching shear layer 

moved alternately back and forth, causing the instantaneous reattachment point to move 

around within the fluctuating band, rather than splitting in two at the reattachment zone. 

Furthermore, the instantaneous value Of xr did not correspond to a straight line across the 

span of the test section, although it was a straight line in the mean. Kim tentatively 

suggested a three-dimensional spanwise structure to the flow near reattachment but did 

not investigate this feature closely. 
For a number of ratios of step height to duct width, Kim found the general flow 

characteristics to be both invariant and largely independent of Reynolds number, stating 

that xr ý-- (7±1)h was universally valid, provided that flow was either turbulent at the point 

of separation or that the transition to turbulent now occurred close to that point. Kim 

favoured the term 'reattachment zone'rather than 'reattachment point', suggesting that 

entrainment in the mixing layer did not occur at an uniform rate but rather fluctuated as xr 

164 



seemed directly related to entrainment rate: as entrainment rose, xr became shorter (hence 

for laminar flow, xr would be significantly longer than for turbulent flow). 

The fluid inside the recirculation is rather unsteady and turbulent. Fluid entrained, in 

the recirculation zone then carries turbulent energy into the adjacent mixing layer and so 

the shear stress in the separated shear layer is higher than for a plane mixing layer. 

The static pressure decreases beyond the step to a point X/h = 4, then rapidly 
increases throught the reattachment zone, with the final pressure depending upon the 

boundary geometry. The pressure decrease near the step before its rising through the 

reattachment zone is consistent with the observation of reseparation of the reversed flow, 

remembering that an adverse pressure gradient is necessary for flow separation. 
In the region beyond reattachment, where the pressure rises, the velocity profile 

becomes flatter. As there is less momentum flux for a given mass flux, then the pressure 

must rise to balance the momentum loss, assuming thatro is not significant in this region. 
Within the separation bubble, the reversed velocities are seen to be 10-20% of the 

freestream. value, with a maximum value of 25% of y.. and a sharp velocity gradient near 
the surface. After reattachment, the velocity profile tends to that of an ordinary turbulent 
boundary layer. However, whilst the inner part of the flow adjusts quickly, the outer 
portion of the new boundary layer develops less quickly; at x/h =16, the profile below 

y15: 5 0.05, where v/v,.. = 0.65, is the same as the boundary layer before separation but 

the balance of the boundary layer has a wake-like form. Kim suggested that the outer 
boundary layer here was more strongly influenced by large turbulent eddies having longer 
life than the small eddies near the surface. As these large eddies carry 'memory' of the 
free shear layer, the outer zone of the new boundary layer takes longer to attain the 

structure of an ordinary boundary layer. The profile of the middle of the boundary layer 
deviates below the 'universal' wall law, unlike that of the 'no-step' wall which follows 

the log-law. 
Kim observed that scaling by v* on the 'step-side' wall was inappropriate as the 

velocity profile only adjusted rapidly to changes in v*, such as those at reattachment, 
close to; the wall. The mixing length after reattachment was also larger than expected - as 

part of the separated shear layer (having a larger value of mixing length than usual near a 

solid boundary) is brought close to the surface through reattachment, the turbulent length 

scale can be very large close to the surface, decreasing rapidly to zero at the surface, 
leading to a low velocity gradient near the surface and hence the dip in the velocity profile 
below the log-law. This deficit is not seen immediately downstream of reattachment but 
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develops later; coupled with a value of v* close to zero in the region, then scaling by v* is 

poor, with no overlap layer being observed in the developing boundary layer. 

Finally, Kim noted that whilst the common law of the wall did not describe the flow 

adequately, that a version of Coles' law adapted for flow reversal provided a good 

description of the boundary layer, except in the immediate vicinity of the step. 

The geometry of the backward facing step was shown in Figure 4.2 and the 

resulting computational mesh is given as FigL re 6.15 below. 

Figure 6.15. The computational mesh used for modelling the backward facing step. 

The mesh is graded to provide finer meshing in the near-wall region and is a 

modified form of the original mesh provided as a FIDAP example. The original mesh 

gave y+ -< 
5 along most of the walls in the Coles' law solution and hence the boundary 

velocity was solved by equation 5.21, setting u+ = y+, rather than using Coles' law. In 

order to force the widespread solution of Coles' law along the Coles' lines, the original 

mesh was coarsened slightly to increase the calculated value of y+. This mesh was then 
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used for all modelling conducted in order to provide compatibility of results. 
The original FIDAP example was run using the Successive Substitution solver but in 

wanting to access pressure information at the element integration points, the segregated 

solver had to be used for tile enhanced Coles' law model in order to provide pressure as a 

degree of freedom in tile solution procedure. Again desiring compatibility, where 

possible, between the different models, it was decided to use the segregated solver in each 

case. To see whether this would affect tile quality of results, the standard FIDAP model 

was run with both solvers and the results compared; as no discernible difference was 

noted, then the segregated solver was used for all subsequent models. 

Uniforrri distributions at inlet were specified as vx =I m/s, vy= Orn/s, k=0.003 

and F- = 0.00364, hence giving a nominal Reynolds number of Re = 45000, 

corresponding to the value of Reynolds number at which the practical experiments (, f Kim 

(1978) were conducted. The basic modelling results will now be viewed in turn, 

commencing with the standard FIDAP model. 
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Figure 6.16. A velocity vector distribution for flow over the backward facing 

step, predicted by the standard FIDAP model. 

Inspecting the above figure, the general flow features observed by Kim are seen; the 

flow possesses an inviscid, tapering core downstream of inlet, with a separation bubble 

forming behind the step face. Between the inviscid core and the separation bubble, there 
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exists a free shear layer which springs off the apex of the step. A turbulent boundary layer 

is seen to develop along the top surface of the duct, with a slight boundary layer 

beginning to develop on the front lower reach of the duct after reattachment. At outlet, Ihe 

flow is not seen to be fully developed. 7be nature of the separation bubble is seen more 

clearly in Figure 6.17 below. 

bfs - standard FIDAP model VELOCITY 
VECTOR PLOT 

SCALE FACTOR 
2000E+03 

REFER. VECTOR EH: -- 2830E+00 
!!, f ! Ir mAxvEcpLoro 

1 132E+01 . AT NODE 308 

ZZ 

SCREEN LIWTS 
XMIN -, w5E*01 
MAX . 104E+02 
YMIN -. 199E+01 
YMAX MBE+01 

Lx FIDAP 7.06 
ISJon95 
15,0139 

Figure 6.17. A magnified view of velocity vectors in the region of the 

separation bubble of the backward facing step, as predicted by the standard 
FIDAP model. 

Taking the recirculation length, xr as the distance ftom the base of the step to that 

mesh cross-section normal to the front lower reach wall where all velocity vectors run in 

the same direction as those in the freestrearn core, then the non-dimensionalised 

recirculation length is xr = 5.4. Note that this value is some 23% lower than Kim's 

observations but is in keeping with the general tendency of k-C turbulence models to 

underestimate xr (Rodi, 199 1). The velocity immediately adjacent to the wall is low in 

comparison with that in the subsequent two or three elemental layers running parallel to 

the lower front reach wall. Midway along the base of the separation bubble then, between 

the wall and the centre of the bubble there is the semblance of a developing velocity 

profile, which is not noted between the centre of the bubble and the free shear layer that 
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lies above it. As the reversed flow approaches the step face, the flow turns upwards 

towards the apex of the step, close to which it turns abruptly to run beneath the free shear 
layer. As such, the velocities observed at the base of the step are very small in comparison 

with those elsewhere in the separation bubble. Furthermore, no secondary separation of 
the flow is seen at the base of the step, thus showing a marked deviation in results from 

those of Kim. 
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Figure 6.18. A streamline distribution for flow over the backward facing 

step, predicted by the standard FIDAP example. 

The streamline distribution, taken from the standard FIDAP example, reaffmns the 

location of the separation bubble behind the step whilst showing that no reseparation of 

the reversed flow occurs at the base of the step. 

6.3.3. Backward Facing Stela Results Arising from the Simple Coles' Law 

The simple Coleslaw model will be inspected now, firstly by observing the 

general velocity vector distribution throughout the duct. 
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Figure 6.19. Velocity vector distribution over the backward facing step, as 

predicted by the simple Coles'law model. 

The general velocity distribution arising from the simple Coles'law model is very 

similar to that of Figure 6.16, for the standard FIDAP model. Along the back upper reach 

and top walls, however, the resultant velocity along the Coles'line is seen to have 

alternately positive and negative y components at successive nodes, suggesting some 
form of numerical oscillation in the solution, remembering that along the Coles'lines, 

whilst the tangential velocity component was evaluated by Coles'law, the normal velocity 

component was set by the general FIDAP model. As with Figure 6.16, the boundary 

layer along the top wall appears to thicken temporarily in the region corresponding to the 

reattachment zone on the front lower reach wall. Again the flow at outlet is not fully 
developed but shows skewing towards the free shear layer. The boundary layers in 

general also seem somewhat thicker than for the standard FIDAP model. 
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Figure 6.20. A magnified view of velocity vectors in the region of the 

separation bubble of the backward facing step, predicted by the simple Coles' 

law model. 

The simple Coles'law model predicts xr = 5.5, slightly in excess of the standard 
FIDAP model. The velocity beneath the separation bubble is lower than for the standard 

case, as is also true along the step face. Note the oscillation in the direction of the resultant 
'velocity along the step face, as is also shown clearly along the top wall. Again the velocity 
Profile at the mid-section of the separation bubble shows increasing velocity away from 

the front lower reach wall although at a more gradual rate. Once more, the presence of 
reseparation of the reversed flow is not predicted at the base of the step. 
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Enhanced Coles' Law Model. 
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Figure 6.21. Velocity distribution over the backward facing step, predicted by 

the enhanced Coles' law model. 

The velocity distribution for the enhanced Coles' law model bears great resemblance 
to that for the simple Coles'law model of Figure 6.19, showing all the general flow 

features of the standard model as Figure 6.16. However, the outlet velocity profile is less 

developed than for the simple model, showing increased skewing towards the free shear 

layer. Also, the oscillation in the y-component of the resultant velocities along the back 

upper reach and top walls is again observed. 
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Figure 6.22. A magnified view of velocity vectors in the region of the 

separation bubble of the backward facing step, predicted by the enhanced 
Coles'law model. 

The enhanced Coles' law model predicts xr = 5.4, identical to the standard FIDAP 

model. As with the simple Coles'law model, the direction of the velocity up the step face 

is seen to oscillate to and fro. In that the distribution and magnitude of streamlines for the 
two Coles'law models are so similar to that shown in Figure 6.18, they will not be 

presented here. 

6.3.5. Coml2arison of Results from the Standard FIDAP and the SimUle 

and Enhanced Coles' Law Models. 

The velocities predicted by the Coles'law models along the Coles'lines may now 
be considered and compared with those of the standard model at corresponding stations. 
Interest here is concentrated on the response along the front lower reach, where the 

reattachment zone exists. The following three figures detail the velocities predicted 

adjacent to the front lower reach. 
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Figure 6.23. The x-component of velocity along the front lower reach, 

predicted by the standard FIDAP model. 
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Figure 6.24. The x-component of velocity along the front lower reach, 

predicted by the simple Coles'law model. 
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Figure 6.25. The x-component of velocity along the fi-ont lower reach, 

predicted by the enhanced Coles'law model. 

In each case, the form of the velocity distribution along the front lower reach is 

similar, the negative velocity up to x- 5m beyond the base of the step corresponds to the 

region of reversed flow, with the maximum reversed velocity occuring at the midpoint of 

the separation bubble. There is a rapid rise in velocity across the reattachment zone, 
leading to an approximately constant velocity downstream towards the duct exit. 

For the standard FIDAP model, Figure 6.23, the maximum reversed velocity on the 
Coles'line is about 12% of the freestrearn velocity and so from Figure 6.17, the 

maximum reversed velocity in the separation bubble as a whole is roughly 25% v., 

corresponding to Kim's findings. 

For the simple Coles'law model, the reported velocities are lower, amounting to 
8% v. at the midpoint of the separation bubble and hence 33% lower than the standard 

model. At the duct outlet, the velocity is 36% lower than the standard FIDAP model. 
As already intimated, the velocities returned by the enhanced Coles'law model are 

lower still - the maximum reversed velocity on the Coles'line is only 6% v.., with the 

velocity at exit to the duct being 52% less than for the standard FIDAP model. 
Having observed that both Coles'law models return lower velocities as boundary 

conditions to the fluid continuum in comparison with the standard FIDAP model, then the 

175 



principal equations of each model may be reviewed to determine the possible reasons for 

this deficit. 

For the standard FIDAP model of Haroutunian and Engelman (199 1), the velocity 

at the outer edge of the speciaf wall elements is evaluated by Reichardt's law (equation ." 

2.29) as 

v= v*(-L ln(l + 0.4y+) + 7.41 - ex4- jý) 
- 

Y+ (-0.33y+)]l 
ic 11 11 

and for the simple Coles'law model, the velocity on the Coles'line is equation 6.1 as 

V=V . 
(Iny+ 

+B+Za 
Ic Ic 

I 

whereas the enhanced Coles' law model, in accounting for boundary layer thickness and 
pressure gradient effects more fully, is seen as 

v- v*l-lny+ +B+ 211 w(l ic Ic 
(6.2) 

with 3112- 2113 11 =Y (2.46) 

Notionally, an expression of Coles' law would be expected to predict higher 

velocity than Reichardes law in those instances where there was a local pressure gradient. 
As Reichardt's law is an experimental fit to Pranda's law of the wall (equation 2.24) 

expressed in inner variables, then it does not account for the local pressure gradient. 
Having shown that contrary to expectations, the Coles'law models predict lower 

velocities, then upon inspection of the above equations, it is again necessary to consider 

the behaviour of the wall friction velocity, v*. In each of the principal equations, v* acts 
to multiply the whole right hand side of the equations shown. 

From the investigation of the behaviour of the simple Coles' law model as applied 

to the U-bend, it is known that the term 11 will be essentially constant and further that the 

assumption that w equals unity is an overestimate of the effect of boundary layer 

thickness. Laying aside, at present, any thought of the variation in rI for the enhanced 
Coles' law model, then the function w in equation 6.2, as evaluated by equation 2.46, is 

likely to be less than unity, hence giving the third right hand term of the Coles' law model 
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a lower value in the enhanced case, remembering that the enhanced model gave lower 

velocities than the simple model. However, before considering the trade off between TI 

and w for the two Coles'law models, the principal variables v* and y+ should first be 

inspected. 

From equation 5.14, v* was shown to be proportional to the root of the shear stress 

at the wall and for y+, in the instance of the Coles'-law-type models, to be directly 

proportional to v*. The tangential stress along the front lower reach boundary may then be 

used to study v*. 
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Figure 6.26. The boundary stress disribution along the front lower reach of the 
backward facing step, predicted by the standard FIDAP model. 
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Figure 6.27. The boundary stress disribution along the front lower reach of the 
bacward facing step, predicted by the simple Coles'law model. 
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Figure 6.28. The boundary stress distribution along the front lower reach of the 
backward facing step, predicted by the enhanced Coles' law model. 
The tangential stress distribution of the standard model has similar form, but 

opposite sign to its corresponding velocity distribution for vx as Figure 6.23, with the 
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peak in positive stress coinciding with the maximum reversed velocity at the edge of the 

separation bubble. The difference in sign between the distributions of the two variables is 

accounted for by the tangential stress acting to oppose the fluid motion. I'lie similar peak 
in tangential stress for the simple Coles'law model, as Figure 6.27, is 30% lower than' 

the standard model, which would predict a 55% deficit in v* from equation 5.14. 

Likewise, the enhanced Coles'law model of Figure 6.28 shows a maximum tangential 

stress 45% lower than the standard case, which would yield a 70% deficit in v*. 
Given that v* is 55% lower for the simple Coles' law model and up to 70% less for 

the enhanced model compared with the standard case, then the fact that the velocity 

predictions via Coles' law are between 40-60% lower on average than those of 
Reichardt's law is only partially accounted for. The other'main' variable in equations 
2.29,6.1 and 6.2 is y+, being shown below for the front lower reach of ea-. h model in 

tum. 
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Figure 6.29. The y+ distribution along the fi-ont lower reach of the backward facing 

step, predicted by the standard FIDAP model. 
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Figure 6.30. The y+ distribution along the front lower reach of the backward facing 

step, predicted by the simple Coles'law model. 
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The standard FIDAP model, Figure 6.29, gives values of y+ <5 along the entire 
front lower reach wall, suggesting that even with the coarsened mesh, Reichardt's law is 
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being operated too close to the vicous sub-layer. The y+ values for the Coles'law models 

are approximately seven times greater than for the standard model, thus demonstrating 

that in coarsening the mesh, these models were forced to operate Coles' law across most 

of the region shown rather than u+ = y+ where y+:! ý 5, as would have been the case 

otherwise. Both Coles'law models show a local minimum in y+ corresponding to the 

point in the relevant tangential stress distribution wherer -0 at the wall. 
The low values of y-1- in comparison with the Coles'law methodology is again 

attributed to the difference in methods by which y+ is evaluated. Whilst the Coles'law 

models take y+ as a function of v* and hence relate it to conditions at the wall, the 
Haroutunian and Engelman model (1991) relates y+ to the kinetic energy of turbulence at 
the top of the special wall elements. 

In order to see the effect that the low values of v* coupled with higher y+ values 

common to the Coles' law models (in comparison with the method of Haroutunian and 
Engelman (199 1)) has on the predicted velocity, consider the fi-ont lower reach. 

Taking the point of maximum reversed velocity along the front lower reach Coles' 

line, then for the standard FIDAP model, y+ = 2.2 from Figure 6.29. Substituting for y+ 
into equation 2.29, then v=3.97v*. For the simple Coles' law model at a similar point, 

y+ = 10 from Figure 6.30. As with the simple Coles'law model of the U-bend, rl was 

constant throughout the model as rl = 0.55 and so from equation 6.1 gain 

v'[! Mý +B+ 2-rl V*(5-61 + 5.00 + 2.68) = 13.29v* 
Ic Ic 

To evaluate equation 6.2 in a like fashion for the enhanced Coles'law model, 

knowledge of both 11 and w is required. Appendix A4 lists a range of variables, 

calculated within the circus subroutine, for the front lower reach Coles' line. From 

Appendix A4, for the point of maximum reversed velocity along the front lower reach 

Coles' line, observe Y+ = 9.5, H 0.13 e-7 and y8=0.74e- 1m whence 

v= v*ýlny"' +B+ 2-rl- ý! -8) = 10.49v* 
ic Ic v*(5.49 + 5.00 + 6.34e 

Taking a notional value of v* =1 for the standard FIDAP model, then the effective std 

value of v* for the simple Coleslaw model is 55% lower as 0.45v*std and so the simple 
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model yields v=5.98v*, td. This result suggests that the simple Coles'model should 

predict a velocity in this region some 50% greater than that of the standard model; 

however, the simple model actually underpredicted the local velocity by 28%, when 

comparing the relevant Figures 6.24 and 6.23. Likewise, the 70% deficit predicted in 

for the enhanced Coles'model leads to a s=dardized velocity as v=3.14vs*td. As such, 
the enhanced Coles'model should predict velocities in this region that are some 20% 
lower than the standard FIDAP model. Ibis runs counter to the experience of Figure 6.25 

where the enhanced model actually predicted velocities approximately 54% lower than the 

standard case of Figure 6.23. 
To account for this discrepancy between the observed velocity deficits and those 

estimated by consideration of variations in v* and y+ between the models, the wall model 

of Haroutunian and Engelman (1991) must be assessed once more. 
The standard FIDAP model sets 

Y+ = 

&y2kt)'12 
(4.3) 

v 

whereas the Coles'models employ 

Y+ = YV* (2.27) 
v 

Haroutunian and Engelman claim that (CgI/2kt)1/2 may be used to replace v* as it 

provides "a more fundamental (and hence more universal) turbulent velocity scale of k 1/2 

.... which has been found to hold in the fully turbulent near-wall region under conditions 

where the turbulent field is in local equilibrium". However, the physical assumptions 

necessary for this substitution are only implicitly detailed in the paper of Haroutunian and 

Engelman (199 1). That this relationship is only offered for regions in local equilibrium 

suggests that it may become inappropriate under adverse flow conditions, where 

strearnwise variations in pressure gradient, for example, distort that local equilibrium. 
Again, it is worth reitterating the weakness in using Reichardt's law - although it is an 

excellent fit to experimental velocity profiles for the viscous sub-layer, the transitional 

sub-layer and the fully turbulent outer layer, it too is only valid where local equilibrium in 

the flow exists. 
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Inspection of the y+ values for the various models discussed here, in conjunction 

with equations 2.27 and 4.3 seems to imply that 

&ý2kt)l /2 
., c YV* 

vv 

and hence that v* > (Cy2kt)1/2 

However, from the argument developed earlier, this does not appear to be the case, 

with the inferred values of v* for the standard model being significantly greater than those 

predicted by consideration of shear stress plots at the wall for the Coles' models. 
TaIdng the example of the front lower reach, Figure 6.32 presents the distribution 

of kinetic energy of turbulence along the top of the special wall elements for the standard 

model, being kt in equation 4.3. 
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Figure 6.32. Distribution of kinetic energy of turbulence along the lower front reach 
for the standard FIDAP model. 

From the above figure, the peak value in kinetic energy occurs beneath the 

separation bubble as k=0.013963 and taking CýL = 0.09 then (CI, /2kt)l /2 
= 0.0647. At a 

similar point in Figure 6.29, 
-the 

standard model then gives y+ = 2.18. The corresponding 

results from the enhanced Coles'law model (listed in the table of Appendix A4) show that 
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v* = 0.0039 with Y+ = 6.1. As such, (CgI/2kt)1 /2 is greater than v*, even though the 

reported values of y+ suggest otherwise. 
On close inspection of Haroutunian and Engelman's explanation of equation 4.3; jt 

emerges that y is taken to be the "average height of the element above the wall" and so the 

value of y used in equation 4.3 will be approximately half that used in equation 2.27. 

Whilst this may account for the low reported values of y+ for the standard model, the 

greater nodal velocity resulting from Reichardt's law is still unresolved. Ile final answer 
is thought to lie in the actual implementation of Reichardes law. Ibis relationship, shown 

as equation 2.29, is actually modified within the wall elements by the local value of 
Reynolds number. Reichardt's law is operated by a scheme of shape functions which are 

governed by the number of nodes within the element and weighted with regard to 

Reynolds number. 
With regard to the claim that v* = (Cy2kt)l /2 

* it is difficult to test this relationship 
further. In that the Coleslaw models evaluate k along the Coles'lines in a different 

manner to the standard FIDAP method of Haroutunian and Engelman (199 1) (see 

Sections 5.1.1 and 4.2.1 respectively), the Coles' models cannot be used at present to 

compare v* calculated in terms of the shear stress at the wall with that based upon kt, 

6.4. Analysis of the Behaviour of the Coles' Law Model. as Applied to 

In adapting the simple Coles'law model to the task of analysing the backward 

facing step, the principal adjustment lay in the method by which the velocity gradient was 

evaluated. Having identified shortcomings in the simple technique for calculating the 

velocity gradient and having shown that data could be successfully transferred from the 

source subroutine to the boundary condition subroutine, it was realised that use could be 

made of the local velocity gradients calculated by the general solution procedure and 

available within the source subroutine. As such, the simple Coles' law model of the 
backward facing step transferred the velocity gradients at the integration points of all the 

elements available within the source subroutine to the boundary condition subroutine 

where they were to be used. At a given node then, the nodal velocity gradient was taken 
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as the average of those values recorded at the surrounding integration points. Whilst it 

was thought that this method would more closely capture the nature of the sharply varying 

velocity gradients in the near-wall region, evidence presented earlier regarding the values 

of v*, which depend upon the local velocity gradients, would suggest that this did not 

yield values of v* any closer to those of the standard FIDAP model. 
The new method for evaluating the local velocity gradient used the same assumption 

as that for the U-bend model - the velocity gradient was taken to vary linearly with 
distance from the wall out to that point in the flow where it was evaluated, at the relevant 
Coles' line. By taking the velocity gradient as the average of those values at the 
integration points on either side of the Coles' line, the method took some account of the 

variation in velocity at the edge of the region governed by the k-e model as well as that 

within the area controlled by the Coles'model. Experience of the early workings of the 

U-bend model showed this to be important as the first model for dvx failed where no dy 

allowance was made for variations in the velocity on the freestrearn side of the Coles' line 

affecting that on the wall side. 
All the same, whilst this encouraged the use of a velocity gradient model operating 

at an average distance y from the wall, in hindsight this could have been used to provide 

an estimate of the velocity gradient nearer to the wall. If the velocity gradient were 

assumed to decrease assymptotically on approach to the wall, then a weighted estimate 
V could be provided for Lx 

using the value recorded at the Coles' line to comment on that dy' 

closer to the wall. In thus returning an elevated estimate of the velocity gradient, the 

ensuing values of v*, y+ and ultimately v would be increased. However, without further 

study of the experimental variation of 
dvx in the near-wall region, this would be, at best, 
dy 

a numerical tuning exercise, seeking to boost the predictions for shear stress at the wall, 

which are an order of magnitude lower than those arising from the standard FIDAP model 

at present. 
The other main difference in the operation of the simple Coles'model, when 

comparing the backward facing step and U-bend applications, lay in the region over 

which Coles' law was operated. Coles' law is not strictly valid within the viscous sub- 
layer and so the Coles' models of the backward facing step inspected the calculated value 

of y+, operating equation 5.21 wherever y+: 5 5. 
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6.4.2. The Effect of Tneorrect Prescription of Boundary Condotions. 

Before turning to those extensions to the Coles' law model provided to cater for the 
incorporation of pressure gradient effects into the scheme, it is worth considering someý 

early, faulty models of the backward facing step. 
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Figure 6.33. Early model of the backward facing step with no allowance for the 

sign of the velocity gradient. 

As noted in the discussion of Figure 6.13 for the U-bend, since Coles'law 

provides the magnitude of the velocity in the boundary layer but does not comment 
directly on its direction, the plain application of Coles' law can predict flow in a direction 

counter to practical observation. In Figure 6.33, this early model of the backward facing 

step made no allowance for the sign of the local velocity gradient. As such, the nodal 

velocity returned by the erasure subroutine was systematically positive in relation to the 

global, Cartesian co-ordinate set. The flow along the underside of the separation bubble 

therefore ran against that prevailing in the bulk of the recirculating pocket. Notionally, this 

could be corrected by allocating to the velocity prediction the sign of the velocity gradient 

at that point, as was done for Figure 6.34 below. 
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b. f. s. - wrong sense of velocity along top VELOCITY 
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Figure 6.34. Coles'model taking the sign of the Coles'line velocity as that of the 

local velocity gradient. 

Whilst the sense of the velocity beneath the separation bubble is now in keeping 

with experimental evidence, along the top Coles'line, there is local reversal of flow. This 

arose from the method by which the solution procedure expresses velocity gradients in 

terms of the global co-ordinate set. For the top wall, the velocity gradient forpositive' 

flow (in the direction of increasing x-co-ordinate) will increase when moving away from 

the wall, in the direction of diminishing y-co-ordinate. Whilst dv& is positive in local 
dy 

terms, on a global basis, it will be negative since dy is negative when moving away from 

the top wall out into the fluid continuum. As such, the subroutine required to specify the 

sign of the nodal velocity along the top Coles' line as opposite to that of the local velocity 

gradient. Whilst this final Modification to the simple Colesmodel of the backward facing 

step provided a plausible velocity field, it meant that as with the U-bend model, the 
interpretation of Coles' law was zonal in its method, with the model application having to 
be dedicated to the geometry considered. 

With regard to the general flow predictions of the above two models, Figure 6.33 

gave xr = 4.9 and Figure 6.34 xr 4.5. The predictions for recirculation length here are 

not very good, being 32% lower on average than the findings of Kim. Now in the 

absence of any wall model; the k-e will not predict separation, 'as was shown in Figure 
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6.7 for the U-bend model. Consequently, the presence of a separation bubble in these two 

models, however poor, can but be attributed to the operation of the wall model. I'lie k-e 

model cannot account for near-wall viscous effects but, beyond the viscous and transitJon 

sub-layers, becomes increasingly appropriate with rising Reynolds number. As such, 

where some form of provision is made for the viscosity adjacent to the wall, beyond this 

region, the response of the Treestrearre model is to predict recirculation in response to the 

adverse pressure gradient behind the step expansion. 
The quality of the predicted recirculation is still dependent upon a sensible boundary 

model. Note that the poorest estimate of xr is given by the model where the flow direction 

is incorrect above the core flow, along the top Coles'line, and not when flow is reversed 
beneath the separation bubble. Comparing the velocities along the top and front lower 

reach Coles' lines of Figures 6.33 and 6.34, AV (the difference in reported velocity at a 

given node) is greatest along the top Coles'line. 7bis suggests that the length of the 

recirculation zone is affected by the momentum of the core flow: indeed Kim observed xr 

to be inversely proportional to the entrainment rate between the separation bubble and the 

free shear layer above it. In Figure 6.34, the flow reversal in the boundary layer along the 

top wall provides a thicker boundary layer, skewing the flow away from the upper wall of 

the duct towards the separation bubble. As the Velocity across the free shear layer is then 

increased, so the separation bubble is shortened. This then implies that the momentum of 

the core flow is an important factor in determining the length of recirculation, with the 

influence of the wall being less significant than previously supposed. 

6.4.3. Modelling of the Lýw of the Wake. 

The lower velocities in the near-wall region, when comparing the Coles' law 

models to the standard FIDAP example, necessarily imply that the momentum flux across 

the boundary layer is less for the Coles'law models. As with the U-bend model, this is 

observed in the increased thickness of the boundary layer, when comparing Figures 6.21 

and 6.16 for the enhanced Coles'and standard FIDAP models. 
This 'artificial' thickening of the boundary layer will compromise the evaluation of 

Coles' wake function, w. In equation 2.46 for the enhanced Coles' model, the wake 

function is related to the ratio of y to B. The simplifyinýg assumption that y=8 in the 

simple model was known to be false. Leaving aside the variation of rl, the wake 
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parameter, for the moment, the setting 8=y infers that the node currently being evaluated 
lies at the very edge of the boundary layer, giving the largest possible value to w. 

However, in the enhanced model, where an attempt was made to formally evaluate 5, the 
:1 

uncommonly thick boundary layer would result in an underestimate of the wake function 

since y/8 would be low. 

The method for obtaining the boundary layer thickness was illustrated in Figures 

5.17 to 5.19 of Section 5.3.5. Whilst at the edge of the boundary layer, dy &=0 as dy 
equation 5.24, this valid relationship was abandoned in favour of the simpler comparison 

of nodal velocities at successive nodes normal to the wall at the given point on the Coles' 

line. In searching for the result, 
dvII 

= 0, it would have been necessary in Fortran to use 

the result 
I dv,, I 

dy 

dy < tol to identify the edge of the boundary layer where tol was an arbitrary 

tolerance, of small but finite value. At the edge of the boundary layer then, this would 
have lead to the comparison of two very small and almost equal numbers and hence have 

been dependent upon the precision with which such small numbers, close in magnitude to 

zero, are held as binary figures within computer memory. Desiring to avoid the potential 
discrepancies attendant upon such practice, the local velocities were inspected instead. 

At any node within the boundary layer, the modulus of the nodal velocity will be 

greater than that of its accompanying velocity gradient and so a comparison of successive 

nodal velocities, in considering larger numbers, should be more robust. In actuality, the 
form of the velocity profiles in the near-wall region presented a problem. Inspecting 

Figure 6.21 say, for the enhanced Coles' model, the profile rises rapidly from zero at the 

wall across the first two or three elemental layers but then continues to rise steadily almost 

to the centre of the duct. The specification of the freestrearn velocity under these 

conditions is not immediately obvious and the decision to set 8 at that location where the 

nodal velocity was greater than 90% of that at the previous node is, at best, arbitrary. 
Arguably, a finer tolerance could be used but this would again result in the comparison of 
two almost equal numbers. 

Within the separation bubble, the selection of v. central to this method is likewise 

obscure. Whilst v.. might be defined hqre as the velocity of the free shear layer above the 

separation bubble, in terms of the general structure of the Coles' model at present, use of 

such a maxim would be tenuous. Given the current dependence of the model on the 

geometry of the problem, no generic algorithm for the selection of the free shear velocity 
(or the freestrearn velocity for that matter) is immediately obvious. 
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The variation of calculated boundary layer thickness along the front lower reach is 

presented as Figure 6.35. 
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Figure 6.35. The variation of 8 along the front lower reach of the enhanced Coles' 

law model. 

Inspecting the above figure, the result of the method used to estimate 8 is clearly 

crude. At the extremities of the separation bubble, where the velocity at the Coles' line is 

very small (see Figure 6.22), the greatest values of 8 are seen. At these points, the 

increase in velocity between successive nodes, when moving away from the wall, 

suggests a linear velocity profile. Elsewhere along the Coles' line, where the nodal 

velocity is greater, the shape of the boundary layer profile is more rounded, hence 

satisfying the test for 8 closer to the surface. Excepting these local peaks in 8, the 

predictions for boundary layer thickness, instead of showing growth in boundary layer 

thickness, as is observed experimentally and also partly seen in Figure 6.21, demonstrate 

8 to be largely constant across the face of the front lower reach. In that this result is 

nonsensical, the present method for evaluating 8 is clearly deficient. With regard to the 

predicted values of 8 shown, in comparison with the y value for the front lower reach, the 

resulting ratio y/8 suggests that Coles' law is being operated here for the inner region of 

the boundary layer. 
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The largely constant value for 8 will then provide a near constant value of 
displacement thickness along the lower front reach. Now the displacement thickness is 

used in calculating 0, via equation 2.3 1, in turn used to evaluate the wake parameter, 11, 

by the method of Das (1987,1988) as equation 5.22; these expressions are repeated 
below as 

S* dp, ý 
, ro dx 

(2.31) 

and 0= -0.4 + 0.7611 + OAHIý (5.22) 

As access to local pressure gradients within the DVARI array of the source 

subroutine is not available at present within FIDAP, the local pressure gradient at the 

estimated edge of the boundary layer was calculated by the method of Figure 5.20. The 

variation in pressure gradient for the edge of the boundary layer adjacent to the lower 

front reach Coles'line is shown in Figure 6.36 below. 
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Figure 6.36. Pressure gradient distribution along the front lower reach Coles' line 

of the enhanced Coles'law model. 

The above figure, detailing the local pressure gradient at the estimated edge of the 
boundary layer is in accord with the velocity distribution (Figure 6.21) for the same 
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model. There is a positive (adverse) pressure gradient across the major part of the Coles' 

line beneath the separation bubble - in the immediate vicinity of the step face though, the 

pressure gradient is negative. However, this local negative gradient cannot be considered 
favourable since the flow is reversed in that region and so the gradient must be deemed' 

adverse. Whilst this agrees with the observations of Kim, this 'adverse' gradient does not 
lead to reseparation of the reversing flow, although there is near-stagnation locally on 

approach to the very base of the step. After reattachment at x=5.5m or so, there is a very 

mild negative (favourable) pressure gradient towards the duct exit, as the boundary layer 

of the reattached flow develops in that direction. 

Whilst the pressure gradients of Figure 6.36 appear correct qualitatively, they may 
be questioned quantitatively. From the point of reattachment to the duct exit, a steady 
decrease in pressure is implied but the gradients of the above figure are surprisingly 

small. From Figure 5.20, the pressure gradient is taken as the change in pressure divided 

by the change in co-ordinate for the integration points lying to either side of the node 
identified as nearest to the supposed edge of the boundary layer. Within any one element, 
the solution method used provides a constant pressure at each integration point throughout 

that element. Thus for the very fine mesh of the backward facing step, both dp and dx 

will be small quantities and so the result appears to be a low estimate for Lp 
dx* 

Now from equation 2.3 1, Clauser's equilibrium parameter can be seen to be a 
I 

balance between the displacement thickness multiplied by the pressure gradient and the 

shear stress at the wall. Figure 6.37 details the calculated value of 0 along the front lower 

reach. 
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Figure 6.37. The variation of Clauser's equilibrium parameter along the front lower 

reach of the enhanced Coles'law model. 

Excepting the extremities of the separation bubble, 0 has the value 0= -0.4. For the 

H correlation of Das, equation 5.22, in the limit as 171 tends to zero under an 
increasingly favourable pressure gradient, then tends to -0.4. As such, since a negative 

value of rI has no meaning here, -0.4 denotes the most negative value that Clauser's 

equilibrium parameter can assume under a favourable pressure gradient. Along the section 

of the Coles' line experiencing forward flow, where the pressure gradient is mildly 

negative, 0 is forced to -0.4 by this requirement that II cannot become negative. 
However, within the separation bubble, the fact that -0.4 runs counter to 

expectations. As the pressure gradient here is positive, should likewise be positive. 

-ý This discrepancy may be explained by studying the values for shear stress at the 

wall, -ro, internal to the circus subroutine, as Figure 6.38 below. 
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Figure 6.38. Shear stress at the wall for the front lower reach Coles' line of the 

enhanced Coles'model, as calculated within the model subroutines. 

Up to x=5.5m, in the region corresponding to the separation bubble, the value of 

, ro calculated within, and used by, the model subroutine is negative. The post-processed 

results for stress at this boundary, Figure 6.28, show r as positive in this region. 7le 

results of Figure 6.28 are coherent in that the wall shear stress should have opposite sign 
to the local velocity. This error in the model can be traced to the definition of ro - 
equation 5.13 does not account for the shear stress acting so as to oppose prevalent fluid 

motion. 
In the simple Coles' model, equation 5.13 caused no problem as its only use was in 

determining the wall friction velocity, v*, for which the modulus of the wall shear stress 

was required. As such, in preparing that part of the model, the sign of ro was never 
considered and when seeking to use co to determine 0, this aspect of the relationship 

between, ro and 
dv2L 

was overlooked. The outcome of this error is plain: P was forced to dy 

accept an inappropriate and negative value throughout much of the model, hence giving a 

value of II close to zero. 
For the example considered here, only in the immediate vicinity of the step base, 

where 
LP (as calculated) was significantly negative, did 0 deviate markedly from -0.4 dx, 
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(and I-I by implication from virtually zero). At the base of the step, a comparatively large 

value of 5 was seen, as already discussed. For the very low velocity in this region, the 

shear stress at the wall, as calculated within the model subroutine, was two orders of 

magnitude lower than anywhere else on the front lower reach, excepting those values 

corresponding to the zone of reattachment (see tabulated values in Appendix M). Ile end 

result of this combination of factors was an estimate for 0 of over 100,000 and hence an 

excessive value for M Despite the tendency of the typically low y/8 ratio to suppress 

wake effects in the enhanced model, the prediction for rI here was sufficiently great to 

distort the solution process. As mentioned in Section 5.3.5, this lead to a local peak in 

velocity at the Coles'line which destabilised the solution process. During model 

development, this was circumvented by arbitrary prescription of an upper limit on 0, on 

the erroneous assumption that the problem arose from extremely high pressure gradients 

at the extremities of the step face, observed during the early stages of the work. 

Consequently, the real cause of the problem was not realised during model development. 

As has already been mentioned, the enhanced Coles'law model systematically 

predicted velocities at the Coles! line lower than those for the simple Coles'law model. It 

is now apparent that this was caused by deficiencies in the methods by which w and rl 

were evaluated. w was largely invariant as a result of the crudity of the test used to detect 

the edge of the boundary layer, whilst rI was almost universally set to virtually zero 

because of a fundamental error in the definition ofro. As with the simple Coles' law 

model, the enhanced model effectively ran a law-of-die-wall scheme but in this instance 

without the benefit of any supplementary law-of-the-wake, accommodating the local 

pressure gradient. 
Notionally, this error in the model could be corrected by modifying equation 5.13 to 

provide the correct direction for the shear stress as 

To =- Lidv 5--dy 

Incorporating this correction into the enhanced Coles' law model, the velocity field 

in the region of the step can be seen as Figure 6.39 below. 
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Figure 6.39. Magnified view of velocity vectors in the region of the separation 

bubble, predicted by the enhanced Coles'law model with corrected shear stress 

evaluation. 

Inspecting the above figure, the prediction for recirculation length is now xr = 5.5, 

which seems to be a slight improvement over the original enhanced model result of 

xr = 5.4. Beyond the point of reattachment and along the top Coles' line, the predicted 

velocities appear to be marginally lower than before (in comparison with Figure 6.22). 

However, excepting the extremities of the separation bubble, the Coles' line velocity 

within the bubble is much reduced, as shown by Figure 6.40. 
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Figure 6.40. Distribution of vx along the front lower reach Coles' line for the 

corrected enhanced Coles' law model. 

Comparing the above figure with the original results for the enhanced model of 
Figure 6.25, the corrected prediction for velocity is 6% lower at the extremities of the 
bubble, rising to an almost 90% deficit mid-way along the base of the separation bubble. 

Note also that there is no longer a graduated variation in velocity along the length of 
the Coles' line beneath the separation bubble, with velocity oscillating between estimates 

close to zero and near those of the original enhanced model. Beyond the point of 

reattachment, the predicted velocities are some 18% lower than before. Remembering the 

marked influence thatr. has on both v* and y+, the boundary stress distribution for the 
'corrected' model is shown below. 

197 



Ws - corrected shear model STRESS 
BOUNDARY PLOT 

. 16179 0- TANG. STR 

TOTALFORCES 
=253 - 

NORMALFORCE 
STRESS -. 130225E+01 

(XIO-2) 
TANGEN. FORCE 

D=7 - -3Q799E-01 

NORMAL PRESSUR 
%130225E+01 

-. 07599 - 

15526 - 

-23452 - 

. 01220 . 47512 swos 1.40098 1116390 2 32683 Fl 7.06 
. lGD*c94 

ARCLENGTH (Xio+ 1) 11: 44.53 

Figure 6.41. Boundary stress plot for the lower front reach of the corrected 
enhanced Colesmodel. 

Comparing Figure 6.41 with the original stress distribution of Figure 6.28, outside 

the separation bubble,, r is some 15% lower than before. As such, v* and y+ will be 

correspondingly reduced, leading to the observed small reduction in velocity. 
Within the region of reversed flow however, there is a scatter in the results for -r 

which corresponds to the oscillations in velocity seen in Figure 6.40. The very small 

values of r midway along the base of the separation bubble will lead to very low values of 

v* and y+ and hence almost negligible velocity. The cause of this local reduction inr must 
lie in the corrections made to the calculation of r. in the model subroutine and thus on the 

operation of 0 and 11. 

From Figure 6.39, the reversed 'boundary' layer for the separation bubble has a 

similar form to that of the original enhanced model (Figure 6.22). In consequence, the 

predictions for 8, and thus 5 will'be similar. Along the lower front reach, 8 will be 

largely constant, providing a low estimate of w and an approximately constant value of 

In equation 2.31, for Clauser's equilibrium parameter, with little change in 8 and 
dp 

between the two enhanced models, any variation in 0 between the two models is then iý 
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detem-iined by T.. For the original model, since -r. incorrectly had the wrong sign, the 

signs of 
dp 

andr. were opposite along the entire Coles' line, forcing P to a negative, dx. 
favourable value everywhere and hence 11 tended to zero. 

Having arnmended the shear stress equation, then within the separation bubble,, r. 

and 
LP 

will have the same sign and so P becomes positive for reversing flow and I-I will dx 
increase above zero, as required by theory. 'Mis should manifest itself in an increased 

estimate of local velocity for the corrected model. Inspecting Figures 6.39 and 6.40, no 

such improvement was observed. Since 5 will be roughly equal for the two models, then 

any rise in II above zero here is not being masked by a corresponding decrease in the 

wake function. 

As with the original enhanced model, an arbitrary upper limit for P had to be 

enforced. At the extremities of the separation bubble, where 
dp 

was locally large andr. dx 
small, an excessive estimate for 0 provided a value for rI that distorted the local velocity 
field and lead to failure of the solution process. Consequently, the method for evaluating 

II appears to be sensitive to the precise balance between the pressure gradient and the 

shear stress at the wall. 
Away from the extremities of the separation bubble, where -r. varies widely from 

node to node within the reversed flow, so does the reported velocity. 'Me gradual 

reduction in the magnitude of the pressure gradient and corresponding general rise in -z 

moving away from the step means that P falls and thus rI is not great enough to cause the 

solution to fail. However, the scatter in nodal velocities here will arise from this balance 

between 
LP 

andr., suggesting that equation 2.31 for 0 is very sensitive to local changes dx 
in flow conditions. 

Comparing, ro internal to the model subroutine (Figure 6.38) with the corresponding 

post-processed results of Figure 6.28, not only was the sign wrong, it was also some 

three orders of magnitude lower. Assuming this trend to continue for the corrected model, 

then the very small values forc seen in the reversed flow region of Figure 6.41 will 

correspond to values of r. within the subroutine approximating to zero, hence 

suppressing local velocity, regardless of the increase in the wake parameter. Tle mutual 

sensitivity of the wake parameter model and that for shear stress at the wall is unresolved 

to date and clearly requires further attention. 
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The provisions for k and e at the interface between the Coles'model and the main 

fluid continuum will now be discussed. In Figure 6.32, the distribution for k along the, 

front lower reach Coles' line was presented for the standard FIDAP model. The 

corresponding results for the enhanced Coles' law model are shown below as Figure 

6.42. 
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Figure 6.42. Distibution of Idnetic energy of turbulence along the lower front reach 

of the enhanced Coles'law model. 

From a comparison of Figures 6.32 and 6.42, the form of the distribution for k in 

the enhanced Coles'model is unlike that of the standard FIDAP model of Haroutunian 

and Engelman (1991), as well as being roughly two orders of magnitude lower. Given 

that the corresponding values for e in either model are dependent on the value of k at any 

point in the wall models, then the distributions for e are likewise dissimilar, as shown 

below. 
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Figure 6.43. Distribution of turbulent rate of dissipation along the lower front Teach 
for the standard FIDAP model. 
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Figure 6.44. Distribution of turbulent rate of dissipation along the lower front reach 

for the enhanced Coles'model. 

In the standard FIDAP model of Haroutunian and Engelman (1991) of these 
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boundary conditions, as detailed in Section 4.2.1, the modelling assumption for k is taken 

as zero gradient in k across the span of the special element normal to the wall, equation 
4.4. By implication then, k is constant across the element and the boundary acts like a 

mirror at the edge of the continuum. This value of k at the wall is then used as the 

turbulence length scale of equation 4.5 to predict e at that point. 
By contrast, the boundary conditions for k and e in the Coles'models, as described 

in Section 5.1.1, use simple empirical relationships that were originally prepared to 

comment on the turbulent field at inlet to a bounded flow. k is expressed in terms of the 

local velocity gradient and a mixing length, as equation 5.2. e is then a function of the 

estimate of k at that point, the mixing length and the velocity gradient. 
These boundary values of k and e for the Coles' models, whilst known to be; a 

simplification, were originally used for the simple Coles'model of the U-bend as a flirst 

approximation to k and e, allowing the general structure of the Coles' law model to be 

validated. Setting aside the oversight of equation 5.4, where the mixing length used in 

equations 5.2 and 5.3 is invariant with y+ (counter to the observations of Prandtl and von 
Karman (White, 1991)), the basic limitation of the method is that no account of the 

turbulent field near the wall is made. The k-e boundary conditions at the Coles' I ine do 

not consider the levels of k and e in the adjacent freestrearn model. 
For the Coles' law model of the backward facing step, it was sought to remedy this 

shortcoming by applying boundary conditions for k and e using the method employed in 

the FIDAP wall elements of Haroutunian and Engelman (1991). As such, instead of 

prescribing k and e (based on the local velocity gradient) at the Coles' line, the freestream 

turbulence model was operated at that point. 'Me Coles' model then calculated k and e at 
the wall, based upon the corresponding value of k at the Coles' line. Whilst this 
duplicated the approach of the special wall elements in principal, in practice it provided 
facile solutions to the flow. Figures 6.45 and 6.46 below show the velocity field for this 

experiment at solution iterations just before and just after the implementation of this 
'improved' boundary model for k and e. 
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Figure 6.45. Velocity field for the Coles'law model using the FIDAP turbulence 

model at the wall, just prior to its implementation. 
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Figure 6.46. Velocity field for the Coles' law model using the FIDAP turbulence 

model at the wall, just after to its implementation. 

The above figures represent the state of the velocity field for two iterations early in 
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the overall solution process. At the onset of the solution process, early experience of 

subroutine usage had lead to the use of counters to govern the actual iteration at which the 
Coles'model commenced useful operation. These counters prevented the Coles'model 

accessing the contents of the solution arrays VARI, DVARI and SOL before they'04 

with data pertinent to the genuine flow solution. Remembering this, the new boundary 

conditions for k and F- did not come into effect for several iterations, before which their 

values were uniformly set across all boundaries to the initial conditions provided for the 

onset of solution. 
In that the model converged on a spurious solution very rapidly after that iteration at 

which the new model for k and e was first activated, it is likely that the failure of the 

model was caused by the abrupt change in the levels of k and e occuring at that iteration. 

The step change in k and e at the boundary to the continuum was a necessary outcome of 

the method by which the Coles'law model commenced. As such, whilst the original 
boundary conditions for k and e were considered deficient, they were used for all of the 

other Coles' model experiments discussed earlier. 

In seelcing to compare the results of Coles'law models directly with those arising 

from the model of Haroutunian and Engelman (1991), the computational meshes used 
throughout this study were the standard 'example' meshes, available within the FIDAP 

library of examples. Consequently, no comment was then offered on the sensitivity of the 
Coles'law approach with respect to computational mesh density in the near-wall region. 
In discussing the behaviour of the simple and enhanced Coles'law models of the 
backward facing step, it was shown that both schemes effectively operated a modified law 

of the wall model: in the former case, the simple Coles! law model of equation 6.1 had a 

constant wake component, whilst in the latter instance, the enhanced model of equation 
6.2, wake effects were depressed by errors in the wake parameter model, using equations 
2.31 and 5.22. Nevertheless, mesh dependency of the solution is still a matter of interest 

and may be considered by inspection of Figure 6.47 below. 
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Figure 6.47. Simple Coles'law model of the backward facing step using a medium 

gmde mesh. 

In the above figure, the simple Coles'law model was operated with modified mesh 
density in the near-wall region, such that the elemental layer abutting the solid surfaces of 

the duct was twice the thickness of that used in the previous solution of Figure 6.20. 

Consequently, the medium grade mesh h ad a larger value for y when evaluating y+ in 

equation 6.1, such that the Coles' line was situated within the wake region of the 
boundary layer. The resulting estimate for the recirculation length given by the medium 

grade mesh was xr = 5.3, which bears reasonable comparison with that of the original, 
finely graded mesh of Figure 6.20, which predicted xr = 5.5. Since the simple Coles' law 

model is effectively an expression of the law of the wall, given in terms of inner 

variables, then as y+ increases, the quality of velocity profile predictions would be 

expected to fall: the law of the wall formula after Prandtl (equation 2.24) is an earlier and 

cruder fit to experimental ne ar-wall data than either the models of Reichardt (equation 

2.29) or of Spalding (equation 2.30). Consequently, as the effective distance between the 

Coles'line, where the wall model is invoked, and the solid boundary is increased, the 

quality of velocity profile predictions at that point would be expected to diminish. This 

observation is supported by a marked deterioration in the estimated recirculation length 

following a further doubling'of the thickness of the first layer of elements adjacent to the 
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solid boundaries of the model. In Figure 6.48 below, the separation of the Coles'lines 

from the wall is four times that of Figure 6.20, with a corresponding reduction in the 

recirculation length as xr = 5.0. 
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Figure 6.48. Simple Coles'law model of the backward facing step using a coarse 

grade mesh. 

Taking an overview of the results arising fi-om study of the backward facing step, 

the principal observations may be summarized as: 

i) The CFD models of the backward facing step offer a fair description of the flow in 

comparison with the work of Kim (1978), underpredicting recirculation length by some 

20% (in keeping with the work of Rodi (1991)). As such, the Coles'law models provide 

a viable alternative to the 'traditional' wall modelling approach of Haroutunian and 

Engelman (1991). 

ii) The Coles'law models predict lower near-wall velocities than the standard FIDAP 

model. As with the U-bend models, this deficit in local velocity is related to low 

,1 
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predictions of shear stress at the wall for the Coles' law models. 

iii) The lower predictions for near-wall velocity of the Coles' models are not fully 

accounted for by the'low'values of shear stress at the wall. As with the U-bend model, 

the discrepancy in results is influenced by the difference in methods by which the 

modelling schemes evaluate y+. 

iv) The 'low' Coles' law predictions of shear stress at the wall were related to the method 
by which the near-wall velocity gradient was calculated - the approach to this for the 
Coles' models was considered to be an over-simplification of the physics of the problem. 

v) Consideration of early backward facing step models with incorrectly applied boundary 

conditions showed the momentum of the core flow to have a marked effect on 
recirculation length. 

vi) The evaluation of the boundary layer thickness, and hence of the wake function, was 

only partially effective. 

vii) The model of the wake parameter was incorrect. The fault was traced to an error in the 

evaluation of the shear stress at the wall. As such, the enhanced Coles! law model did not 
fully evaluate pressure gradient effects. 

viii) In seeldng to correct the model for the wake parameter, the P-rI relationship of Das 

(1987,1988) was shown to be sensitive to the local value of shear stress at the wall. 

ix) 7be boundary conditions for k and e for the Coles'models were overly simplistic - 

attempts to rectify this in using an approach similar to that of Haroutunian and Engelman 

(1991) were unsuccessful. 

x) The Coleslaw model was shown to have limited dependence upon near-wall mesh 
density - the local mesh density could be significantly reduced before adversely affecting 
flow predictions. 
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At the outset of this study, CFD was forwarded as an alternative to, or a 

complementary tool for use with, practical experimentation for the design and 
development of wall-bounded flows, such as the inlet manifold detailed in Chapter Three. 

The majority of CFD schemes use the popular high Reynolds number k-e model in 

conjunction with a wall law for general modelling purposes. However, the widely used 

wall models of Reichardt (1951) and of Spalding (1961) were prepared for equilibrium 
flows, in the absence of marked pressure gradients. In that many practical engineering 
flows are transient, such wall models are unable to mimic the physics of those flows. 

Possible alternatives to this approach within a CFD frainework, such as second 

moment models or low Reynolds number variants of the k-e scheme are of limited 

practical use because of their need for finely graded meshes in the near-wall region. 
Furthermore, the low Reynolds number k-e models typically contain fundamental flaws in 

their modelling assumptions (Patel et al, 1985). 

In a review of momentum integral analyses, a number of potential wall models were 

considered with regard to the preparation of a more robust wall law. The works of 
Clauser (1954,195 6) and of Schofield (19 8 1) were seen to offer advantages for the 

analysis of pressure-driven flows but to be limited in their range of application. The law 

of the wake, developed by Coles in 1956, was then identified as offering a sound basis 

for the modelling of such flows. Whilst the original law of the wake was only valid up to 

the point of near-separation, subsequent work by Kline et al (1983) and by Das (1987, 

1988) has extended its usage into regions of reversed flow. 

Technigues. 

Having revieweda range of modelling approaches to bounded turbulent flows, the need 
for a wall model applicable to pressure-driven flows was identified from a theoretical 

standpoint. In order to determine whether current CFD techniques were deficient for such 
flows in practice, a typical transient engineering flow was analysed using 

contemporaneous methods. The work conducted shows that state of the art CFD models 
do not give suitable results for transient flows. 
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When comparing CFD with experimental results, two issues arise as how to 

compare results and the subsequent analysis of chosen results. In this work, the flow 

through an inlet manifold was identified as an exemplary problem. Since CFD is used in 

industry as an alternative to practical developmental experimentation, it was attempted to 

duplicate the results of the manifold using CFD. To this end, a practical study of the 

manifold flow was conducted using rudimentary laboratory techniques in common usage 

commercially. 
The experimental velocity profiles of Figures 3.5-3.8 were taken using a simple 

flow angle meter and thus gave a time-averaged description of the flow, in that the 

response of the metering equipment was significantly greater than the time scale of 
individual events occurring within the inlet manifoL1 

In presenting CFD results for comparison with experimental data, three main 

options arose as steady-state, time-dependent and averaged time-dependent analyses. The 

steady-state analysis offered a time-averaged flow simulation upon the assumption that in 

having all four ports of the manifold model 'open', that this approximated to the practical 
behaviour of the manifold over a period of time. 7be time-dependent approach provided a 

sequence of model solutions to individual manifold events, such as opening or closing of 
inlet ports, which combined to simulate the complete cycle of manifold events. Finally, 

the averaged time-dependent results gave a time-averaged analysis of the individual time- 
dependent solutions. 

Regardless of the type of CFD analysis chosen, the predictions in the near-wall 
region were very poor. The vertical velocity profiles at station I may be taken to be 

indicative of the CFD results. Using the velocity distributions of experimental Figure 3.5 

as a benchmark, the steady-state results of Figure 3.13 deviated widely in the near-wall 

region. Likewise, the time-dependent results of Figures 3.14-3.16 gave poor near-wall 

predictions and underestimated the magnitude of the freestrearn velocity. Whilst the 

aggregate of the time-dependent results, as shown in Figure 3.17, offered the nearest 

approximation to Figure 3.5 of the three analyses offered, it still gave too slow a rise in 

velocity away from the wall, with freestrearn results being similarly poor. 
Consequently, by attempting to replicate experimental results by a number of 

different approaches, the shortcomings in computational results were not attributed to the 

given modelling technique used per se but rather taken to be a function of state of the art 

CFD. With respect to current, commercial CFD packages, no consideration of such 

problems was observed in conducting a literature survey. Furthermore, where wall effects 

209 



have been mentioned in recent papers on CFD applications, such as those of Baxendale 

(1993) and Takland (1993), neither the effect of local pressure gradients on near-wall 

velocity distributions nor the behaviour of pressure gradients in transient flows were 

appraised. 
The k-e model, in conjunction with the law of the wall, is generally considered to 

offer a cost-effective tool in CFD (Haroutunian and Engelman, 1991) but if such a 
framework is to applicable to adverse and transient flows, then a new approach to 

modelling in the near-wall region is patently needed. Subsequent analysis of the time- 
dependent results highlighted this need. 'Me 'conventional' CFD results for the manifold 
made use of the wall model of Haroutunian and Engelman (199 1), in turn based upon the 

works of van Driest (1956) and of Reichardt (1951). This model makes no allowance for 

the deviation from near-wall equilibrium observed in the results that it generated here. 

Figures 3.26-3.28 demonstrated the existence of marked pressure gradients within the 

manifold, moving in time and space. Furthermore, the y+ distribution, of Face I of the 

manifold for example (Figures 3.29-3.31), was seen to be a function of time. In that the 

working limits for y+ of the Haroutunian and Engelman model (1991) were exceeded in 

different parts of the manifold at different times, then in conjunction with the pressure 
effects noted, the inability of the manifold model to match experimental results is 

accounted for. 

Consequently, having first demonstrated the need for a more robust wall model 
theoretically, conventional CFD modelling also supported this argument. The use of 
Coles' law for such a modelling tool was then investigated, being a scheme prepared for 

adverse flow conditions across a wide range of y+. 

7.2. Selection of Test CaseL 

In order to obtain a reliable implementation of a chosen wall model, it is necessary 

to select a good benchmark against which to validate modelling results. With regard to the 

implementation of Coles'law, test cases were identified as the U-bend and the backward 

facing step. Both of these examples existed as flows that have been thoroughly 

documented and for which high quality experimental data is available. 
Whilst the inlet manifold was useful as a tool for demonstrating the real need for a 

comprehensive and suitable wall model, it was not advocated as a test case for the use of 
Coles'law. The experimental data gained from the inlet manifold was sufficient to the 
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needs of assessing current wall model behaviour. However, given the problems 
discussed in Section 7.1 regarding the matching of computational and experimental data, 

the inlet manifold results were not considered a proper benchmark for Coles' law. To 

offer the manifold as a test case for Coles' law, detailed transient data for the near-wall 

region would be a prerequisite: the gathering of such data would be a specialised task, 
being beyond the intended scope of the current work. 

The proposed test cases constitute fundamental geometric identities for which 

excellent experimental data is readily available. Since the U-bend and backward facing 

step may be viewed as examples of the typical 'building blocks' from which more 

complex flow regimes are constructed, including the inlet manifold of Chapter Three, then 

a wall model successfully describing their behaviour would, by inference, offer a 

powerful tool for modelling complex domains. As such, modelling of the U-bend and the 
backward facing step via Coles' law was sufficient to the needs of this project. 

7.3. Discussion of Modelling with Coles' Law. 

At the outset of this comparison of standard FIDAP and Coles'law models, it is 

worth reitterating the fact that the Coles'lines along which Coles'law was operated were 
sited at the same distance fi-om the wall as the outer edge of the FIDAP special wall 
elements. This allowed for direct comparison of the velocities predicted by Coles'law 

with those of the modified Reichardt model used by FIDAP. . 
The standard against which all the U-bend models were judged was the 

experimental work of Sandborn and Shin (1988). The standard FIDAP model reproduced 
the main flow features identified by Sandborn and Shin but differed in detail. The onset of 
separation in the standard model occured slightly later round the bend than expected, with 
a considerable excess in the length of the recirculation bubble. 

At this point in the overall study, remembering that for an U-bend of tight 
curvature, the flow is thought to be dominated by inviscid mechanisms, the FIDAP model 

was modified and operated using no wall model whatsoever. In that this experiment 

showed no recirculation in the flow at all, the need for a wall model was demonstrated; a 

good model of the core flow, such as the k-e turbulence model here, is insufficient. 

The simple Colesmodel again gave a good general description of the flow but 
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predicted separation too early around the inner bend of the duct. However, a shorter 

separation bubble was observed, much closer in length to that predicted by Sandbom and 

Shin than the standard model. With regard to general features of the flow then, the Colqs' 

model was considered somewhat superior to the standard FIDAP model. 
The main object of either model was to predict the local velocity at each node 

adjacent to the wall and separated from it at a distance, y. In a comparison of the velocity 

predictions of the two models as Figures 6.5 and 6.9, the velocity arising from Coles' 

law was lower than the standard case. Ibe low velocity at the wall also lead to the 

excessively thick boundary layer in comparison with the standard model, as seen in Table 
6.1. By suppressing the velocity near the wall, the rising velocity moving up through the 
boundary layer would not attain the same value as that of the freestrearn so close to the 

wall as the standard model. 
The lower velocities predicted by Coles' law were initially surprising, given that 

higher values were expected under adverse conditions in comparison with the standard 
F11DAP model. On inspecting the main equations of the two models, the principal 

variables were seen to be v* and y+, since rl and w were found to be essentially constant 
for the Coles' law model. Now y+ is proportional to v*, which in turn is proportional to 

the square root of the shear stress at the wall. 
On viewing the post-processed shear stress distributions for both models, Figures 

6.6 and 6.10, c for the Colesmodel was seen to be an order of magnitude lower, hence 

implying that v* was lower for the Coles' model. However, counter to this observation, 

Y+ values for the Coles' model were higher than those of the standard model, when 

comparing Figures 6.12 and 6.11. The low values of y+, despite high inferred v*, for the 

standard model in comparison with those of the Coles'model were attributed to the 
different method by which the wall elements of Haroutunian and Engelman (1991) define 

y+. All the same, by inserting the results for y+ and inferred v* for each model into their 

respective governing equations, the deficit in the velocities predicted by Coles' law was 

apparently accounted for. 

For the backward facing step test case, the numerical solutions were set against the 

work of Kim (1978). All three models, being the standard FIDAP model, the simple and 
the enhanced Coles' models, reproduced the majority of the main flow features. 
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However, the models all underpredicted the length of the recirculation zone behind the 

step expansion by roughly 20% (as observed common for k-e models by Rodi (199 1). 
Furthermore, the secondary recirculation at the base of the step, observed by Kim, was-, 
not seen, although the enhanced Coles' model did show a local rise in pressure gradient 

away from the base of the step, which would provide an adverse pressure gradient to the 

reversed flow in that region. 
Again, as with the U-bend results, in comparing the Coles'models with the 

standard FIDAP model, the velocities along the Coles' lines were lower, and the observed 
boundary layers thicker. For the simple Coles' law model this was partly expected as it 

was an adaptation of the original U-bend model to the case of the backward facing step, 

prepared in order to provide a sound structure within which Coleslaw could be applied 

more fully. For the case of the enhanced Coles' law model, however, these lower local 

velocities required investigation. 

The inferred values of v* from the post-processed results for shear stress were 

again considered, along with the values of y+ for all three models. Once more, the low 

values of inferred v* suggested that y+ for the Coles'models should be lower than the 

corresponding standard results, contrary to the observed results for y+ of Figures 6.29- 

6.3 1. Furthermore, when inserting the predicted values for v* and the observed values of 
y+ into the relevant modelling equations, the estimates for velocity thus gained did not 

match the velocity deficits seen when comparing Coles' law results with the standard 

model. 
It was then necessary to consider the FIDAP model of Haroutunian and Engelman 

(199 1) more closely. Haroutunian and Engelman constructed the wall modelling elements 
of FIDAP with a modified form of Reichardes law. The turbulent scale v* was replaced 
by (CýPkt)1/2 in evaluating yt Whilst no evidence was offered for their claim that the 

two functions were approximately equal provided the flow was in local equilibrium, they 
did observe that kt, the kinetic energy at the top of the wall element, would be a more 
fundamental scale than v*. One advantage of their method is that it avoids the problems 

arising near separation , when v* tends to zero. Against this, it must be remembered that 
Prandd and von Kamm noted the boundary layer to be affected by wall conditions - the 

modified expression for y+ does not explicitly account for this. 

From the observed results for y+, it was inferred that (Cpkt)l /2 < v*, counter to 

the argument based on observation of the post-processed shear stress in Figures 6.26- 

6.28. To resolve this discrepancy, the values of these two functions were evaluated for a 
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point on the lower front Coles'line and (CýPkt)112 from the standard model was seen to 
exceed v* from the Coles'model. Whilst this partially accounted for the greater estimate 
of v based on study of the local shear stress, the low standard y+ results were traced to-, 
the use of y/2 in the FIDAP wall evaluation of Y+. Ibe greater values of local velocity for 

the standard model, in comparison with the Coles'models, were finally attributed to the 

weighting scheme used within the special wall elements, where Reichardt's law was 
modified by the local value of Reynolds number. 

Unfortunately, the difference in the methods by which k was evaluated at the Coles' 
lines for the Coles'models precluded the use of Coles! results to study the claim that 

V* = (P4Pkt)112. However, the reported requirement for local equilibrium of the flow of 
this relationship means that, in theory, it is no more defensible than Reichardt's law when 
in the presence of an adverse pressure gradient. 

7.3.3. Consideration of Model Implementation. 

In devising and encoding Coleslaw algorithms, the nature of the programming 
environment precluded the development of a generic wall model. The complete range of 
data pertinent to the wall model was divided between a number of solution subroutines. 
The basis upon which these subroutines processed data varied between subroutines such 
that the transfer of data between subroutines was mesh-dependent. Given that mesh 
descriptors, such as element and node numbers, varied in their distributions across the 
meshed region (and further differed between the solution procedure and the post- 
processed results), then the Coles'law model was not only non-generic but also zonal in 

application with regard to any given test case. The need to return boundary conditions in a 
global Cartesian format compounded the tendency of the model subroutines to being 

zonal; specif ication of calculated boundary conditions was then a function of the geometry 
of the problem. Consequently, whilst it was possible to evaluate Coleslaw as an 
alternative to 'traditional' wall laws, the current work did not lead to a generic prototype 
wall model, even though the Coleslaw models were based upon a generic algorithm. 

A measure of confidence was gained in the implementation of the simple Coles' 

model, when considering its results in comparison with the proceedings of the Basel 

con fcrence (1994), where a number of modelling schemes were applied to a similar 
U-bend test case. In that widely differing flow predictions were reported, with several 
modelling schemes offering little or no sign of separation, then the close correspondance 
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of the simple Colesmodel with Kim's findings showed the general structure of the 
model to be valid. 

However, for the simple Coles'model, where the wake function was set to unity', 

and the crude model for the wake parameter showed rl to be invariant throughout the 
model, then the variation in local velocity was governed by v* and y+ alone. This then 
meant that the principal variable in the simple Colesmodel was the local velocity 
gradient, dK 

dy* 
77he simple model of Coles'law, in having effectively fixed values of rT and w, was 

reduced to being an expression of the traditional law-of-the-wall, to which an 'arbitrary' 

cons=t had been added. Be this as it may, the general predictions of the simple model 
for both the U-bend and the backward facing step compared favourably with experimental 
data and the standard FIDAP model. 7be low estimates for velocity provided by the 
simple models were then a result of the estimate of the local velocity gradient. 

From the analysis of the enhanced Coles' model, T. in Figure 6.38 (the value of 
shear stress at the wall calculated within the circus subroutine) was much lower than the 
corresponding post-processed results for shear stress at the boundary,, r, of the same 
model (Figure 6.28). Further, the values of r from the enhanced Coles'model were less 

than those of the standard FIDAP model as Figure 6.26. This is direct reflection upon the 

method by which dX was calculated within the Coles' models. 7be'improved' method by dy 
which LLY- was estimated, when adapting the simple Coles'model to the case of the dy 
backward facing step, showed no great advantage over the original approach, used in the 
U-bend. 7be greater values of shear stress at the boundary seen by post-processing of the 
velocity field imply that FIDAP calculates the local shear from the available velocity 
gradients in a different fashion to the Coles' models. 

The low estimate of T. is then thought to arise from the assumption that it varies 
linearly from the wall out to the edge of the first elemental layer. In the absence of further 
information on the distribution of the velocity gradient in the near-wall region, this 
dubious assumption was adhered to rather than resorting to ad hoc numerical tuning of 
the model which might offer 'improved' results. 

Turning to the enhanced model, the law-of-the-wake component of the velocity 
distribution was to be evaluated formally. Given the greater thickness of the Coles'model 

boundary layers in comparison with the standard model, a high value of 8 was expected, 
hence providing a small estimate for w, the wake function. However, the simplified test 
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used to identify the edge of the boundary layer, lead to a prediction of 5 smaller than 

expected. All the same, 8 in Figure 6.35 was typically less than 0.25 over much of the 
Coles'line inspected, suggesting that Coles'law was typically being operated at a point 

within the inner region of the boundary layer. 7be main problem with the model for 8 was 
the method by which the freestrearn velocity was identified. 7be test for the successive 
increase in nodal velocity normal to the wall being less than 10% worked poorly within 

the shapes of boundary layer encountered. As such, the value for 8 was almost constant 
over large reaches of the Coles'line, implying no development of the boundary layer 

throught the model. 

The comparatively large value of 5 at separation and reattachment showed that the 
test was even poorer near to rwirculation. In this instance the problem lies in the choice of 
an appropriate reference velocity, with the velocity within the neighbouring fire shear 
layer being a possible candidate. However, for the current structure of the general model, 
the method for distinguishing between various zones in the flow that would be required to 
detect free shear velocity is difficult to imagine. 

The singular downfall of the wake component of the model lay in the calculation of 

the wake parameter, rl. Whilst the value of w was low (away from the points of 
separation and reattachment), in keeping with the point of evaluation being in the inner 

boundary layer, the value of rl was almost universally near zero. As such, the enhanced 
model did not offer the expected advantages of Coles'law in the presence of pressure 

gradients. As the product Mw was lower for the enhanced model, then the predicted 
velocity for the enhanced model was less than for the simple Colesmodel. 

The resultn- 0 arose from the incorrect sign allocated to the shear stress at the 
wall. 77he sign of T. was the same as that of the local velocity and soro was negative for 

adverse (positive) pressure gradient. Similarly, for forward flow under a negative 

pressure gradient, T. was erroneously posi I tive. As the signs of T, and 
dp 

were almost dx 
invariably opposite (when comparing Figures 6.38 and 6.36), then P was forced to take a 

negative value and 1`1 tended to zero. The exception to this was at the base of the step face 

where the reversed flow gave an incorrect, negative value of To whilst 
dP 

was negative, dx 
corresponding to the localised fall in pressure away from the step base. In this region 

then, the typically low value of r. in conjunction with a large value of 
dp 

gave an dx 
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excessive estimate of 0 and hence of rl. This then had to be curtailed to prevent 
breakdown of the solution. 

An attempt was made to rectify this problem but this did not meet with success. T'he 

relationship for P was seen to be very sensitive to the precise balance between Lp 
and -rl. dx 

in the reversed flow region. Whilst the exact nature of the problem was not identified, that 
it arose in the region of reversed flow wherer. would be low (even if not underestimated 
as for all the Coles'models) is significant. 

Insight into the nature of the U-bend and backward facing step flows was also 
provided by the overtly incorrect applications of the Coles'law models, where the local 

velocities ran counter to experience. Whilst the prescription of no wall law in Figure 6.7 

showed the k-e model to be incapable of predicting separation on its own, where a 
boundary layer model was provided, separation under adverse pressure gradient ensued. 
That this was also true for boundary layer models predicting flow against the body of the 
separation bubble suggests that the momentum of the core flow is as important as the 
near-wall viscous effects in leading to separation. This idea was bolstered by observation 
of an incorrect backward facing step model, where flow was reversed along the top 
Coles' line as Figure 6.34.11is lead to greater thickening of the upper boundary layer 

and hence skewing of the core flow towards the free shear layer. As the momentum 
within the free shear layer increased, so did the entrainment with the separation bubble 

and so the recirculation length was further reduced below expectations. 
Implementation of a wall law is not only a programming exercise but also requires 

understanding of the physics involved, as demonstrated by problems in current low 
Reynolds number k-e modelling (Patel et al, 1985) and in the papers of the recent Basel 

conference (1994). Taking an overview of model results arising from the operation of 
Coles' law, the developed algorithms provided a good description of the selected test 
cases. 7be predictions of separation events for the U-bend and the backward facing step 
provided a viable alternative to the'tradidonal'model of Haroutunian and Engelman 
(1991): furthermore, in seeking to incorporate pressure gradient effects into the near-wall 
modelling scheme used in conjunction with the freestrearn model, the applicability of the 
standard high Reynolds number k-e turbulence model to transient flow has been 
improved. 7be robustness of the Coles' law model developed here was further 
demonstrated in the mesh density experiments of Figures 6.47-6.48, where coarsening of 
local mesh density was still seen to offer reasonable flow predictions. 
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8. Conclusions. 

i) The use of the standard, high Reynolds number k-c model was identified as a cost- 

effective tool for the analysis of turbulent, wall-bounded flows, subject to sensible 

prescription of boundary conditions. 

ii) Theoretical consideration of prevalent wall models showed them to be unsuitable for 

the analysis of pressure-driven or transient flows. 

iii) The selection of appropriate CFD results for comparison with experimental data was 

shown to be critical to their valid interprrtation. 

ilv)l Current CFD techniques, when compared with experimental data, do not offer a 
suitable model in the near-wall region. Transient modelling results show pressure gradient 

and y+ to be time-dependent. 

v) Coles' law was identified as offering a potentially more robust wall model. 

vi) In comparison with both experimental data and the standard FIDAP model of 
Haroutunian and Engelman (1991), the Coles'law models provided good general flow 

predictions. 

vii) The method by which wall models are implemented markedlY affects computational 

results. 

viii) The simple U-bend model was effectively an application of the classic law-of-the- 

waH, to which a constant, extra term had been added. 

ix) Given the favourable response of the simple U-bend model in comparison with 

experiment and the standard FIDAP model, it provided a viable framework within which 
to develop a complete model of Coles' law. 

x) Analysis of the simple Coles'law model showed it to reduce to the application of the 
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classic law-of-the-wall, to which a constant, extra term had been added. However, in 

predicting the general flow of the U-bend at least as well as the standard FIDAP model 

and also in comparison with a range of U-bend analyses using a variety of wall models. 

the simple Coles'model was seen to offer a viable framework within which to develop a 

complete model of Coleslaw. 

xi) In the absence of a significant estimate of the wake component of Coles' law, the 

predicted velocity was seen to hinge upon the estimate of the local shear stress at the wall 

and hence upon the determination of the velocity gradient. By comparison of shear stress 

values within the model subroutine with post-processed boundary stresses for the same 

model, the velocity gradient model was shown to be deficient. 
I 

xii) The differing approach in the estimation of y+ between the Coles' law and standard 
FIDAP models made detailed comparison of local velocities between the models 

somewhat involved. However, in seeldng to improve the Coles' model, greater concern is 

experienced for the accurate evaluation of the local velocity gradient. The validity of the 

substitution of (CýIL/2kt)l /2 for v* in the equation for Y+ is questionable in its suitability for 

pressure driven flows. Whilst the altered equation for y+ in the FIDAP model is 

somewhat peripheral to the desired end goal of a more robust wall model, the necessary 

preparation of more suitable boundary conditions for k and e would allow the relationship 
between v* and (CýIt/2kt)1/2 to be tested. 

xiii) The wake component of the enhanced Coles'model was flawed. The low estimate 
for the wake function (away from duct inlet and from the separation bubble) was 

reasonable, given the close proximity of the Coles' lines to the walls. However, the 

model was somewhat crude, with the value of 5 not increasing proportionately with 

observed boundary layer growth. 

The error in the evaluation of wall shear stress and hence of Clauser's equilibrium 

parameter caused the wake parameter of the enhanced model to be largely negligible. The 

correction of this fault had the greatest effect within the reversed flow: in regions of 

forward flow under favourable pressure gradient, 0 was correctly favourable in the faulty 

model but for the wrong reasons. Within the separation bubble, the 0- IT model of Das 

was seen to be very sensitive to the precise balance between pressure gradient and shear 

stress. Whilst the shear stress was underestimated, future improvements to the Coles' 
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model will have to concentrate on the response of P to variations in -r.. 

xiv) The implementation of early Coles'models with aberrant flow directions showed that 

the momentum of the core flow riding over the separation bubble had a marked effect on 
flow behaviour, with wall conditions being less significant than previously supposed. 

xv) In summing up this work, in comparison with the aims laid out in Section 2.5, the 

need for a more robust wall law was clearly shown by studies of a transient, three- 
dimensional flow. Definite progress was also made towards the development of just such 

a wall model. 
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The improvements necessary for the continued development of the Coles' law 

model are laid out briefly below: 

i) first and foremost, the correct description of the velocity gradients in the near-wall 

region, 

ii) the use of velocity gradients in the detection of the boundary layer thickness, 

iii) the mixing le-igth equation in the model for k and e at the edge of the Coles' 

model is faulty but these conditions require to be replaced by a more significant 

model anyway, 

iv) investigation of the claim made by Haroutunian and Engelman (199 1) that 

v* = (PýPkt)112, which would be possible once having satisfied (iii) above, 

v) investigation of possible reductions in model dependency on problem geometry, 

with a view to developing a generic Coles'law wall model, 

vi) analysis of the problem in the 0- II relationship for reversed flow. Extension of 

the modelling system to embrace the wake velocity approach of Kline, Bardina and 
Strawn (1983) might be merited, where the wake velocity function remains positive 

and finite across the region of separation and finally 

vii) exploration of the effect of applying the Coles' model to a series of elemental 
layers adjacent to the wall, observing the increased influence of the wake as y+ thus 

rises. 
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In wanting to take a number of discrete velocity distribution samples along the 
length of the main duct of the manifold, the VAx of processed test results required must 
first be considered. To draw direct comparison with FIDAP results, the experiment 
should yield velocity distributions for v,,, vy and vz. A simple probe of the Pitot-static 

type, whilst yielding the total flow velocity at a point, would not provide data relating to 
the individual velocity components as it would not assess the local flow angle, being the 

angle between the local velocity vector and the main, longitudinal x-axis of the duct. As 

such, a probe was required that could measure both total flow velocity and flow angle. 
Given that the flow to be measured was three-dimensional, the flow angle would then 
have both horizontal and vertical components, deemed yaw and pitch respectively. 
Furthermore, for one intended probe to be able to measure horizontal and vertical 

velocity distributions across the section the duct, the probe calibration for yaw and pitch 
for, say, a velocity sample taken vertically across the duct, would have to serve as pitch 

and yaw calibrations for a corresponding horizontal traverse of the duct at the same 

station. As such, the probe used may be best described as a flow angle meter and is 
depicted in Figure Al. 1 below. 

Epoxy resin shroud 

Probe h 

Horizontal 
tube pair 

Probe c 

Vcrtical 
tube 
pair 

Figure Al. I. Showing the construction of the flow angle meter. . 

Ideally, the probe should be as slight as is practicable in order that it not disturb the 
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passage of the flow being measured. The duct cross-section at stations I and IT was 

approximately WOO= and the finest, steel capillary tubing that was available had 

internal and external diameters of 0.6 and 0.8mm respectively. As such, four of these 

capillary tubes could be mounted in a brass tubing sheath of 3.2mm external diameter, 

providing the simplest form of combined pitch and yaw meter possible. 
The brass sheath secured the capillary tubes in relation to one another and also 

acting as a sliding mount for traversing the probe across the duct. 17hat section of the 

probe that stood proud of the sheath was held together and 'streamlined' by a shroud of 
epoxy resin that served to smooth the exterior of the probe as presented to the flow. 

The probe, as described, was capable of evaluating Oh and 0, the horizontal and 

vertical components of the flow angle, 0. The' tip of each capillary tube was at an angle of 
301 to its major axis, as shown in Figure Al. 1, so that the pitch and yaw components of 
the meter were designed to act exclusively. In order to measure the total velocity of the 
flow, a form of Pitot-static arrangement was required. In order to provide a probe of 
slender section in comparison with the duct cross-section, there was space for neither a 
formal stagnation nor a static tapping at the probe head. Ile method by which these 

results were then obtained is detailed in Figure A1.2 below, showing the method by 

which the probe was mounted in the inlet manifold duct. 

Nip mount Probe Static pressure 
tapping 

Transverse Longitudinal section of manifold, 
cross-section of showing relative position of probe and 
manifold, showing static pressure tapping 
probe path 

Figure A1.2. Showing the mounting of the flow angle meter in the manifold duct. 

Figure A1.2 shows transverse and Ion git. udinal sections of the manifold for stations 
I and H. The longitudinal section shows the probe in situ for vertical traversing of the 
duct. The probe can move freely normal to the duct wall and be secured at any given 

position by tightening a nip mount at the wall. This mount consisted of a hollow stud 
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threaded into the manifold wall. The probe sheath could move freely with respect to the 

stud and be clamped down by use of a locknut that forced an olive ring to pinch the 

sheath. This locknut had to be tightened carefully to allow for secure location of the probe 

without crushing of the probe sheath. 

At a distance upstream of the probe mounting point equal to the streamwise length 

of the probe, a static pressure tapping was drilled in the manifold wall. As the static 
tapping was in the same plane as the tip of the probe, static pressure readings were taken 

on the assumption that at any point downstream of the manifold entrance, the static 

pressure was then constant across the entire cross-section of the duct at that point. The 

stagnation pressure reading was then obtained by assuming it to equal the average of the 

pressure readings taken from the four capillary tubes comprising the probe tip. 
The transverse cross-section of the manifold, shown in Figure A 1.2, shows the 

horizontal and vertical paths along which the probe traversed the manifold. 77he 

experiment then gave one horizontal and one vertical velocity profile at station I and at 

station II along the length of the manifold. 

In order to calibrate the flow angle meter, it was placed in an open-jet, recirculating 

wind tunnel, as shown in Figure A1.3 below. ,, 
Pitot-static tube 

Flow 

xx 

Wind tunnel Clamp Probe 

Figure A1.3. Showing the flow angle meter mounted in a wind tunnel for 

calibration purposes. 

The probe was held in position in the wind tunnel by a simple clamp that allowed 

the inclination of the probe to the flow to be set to the desired value. The horizontal and 

vertical tube pairs of the probe were connected to an air-on-water U-tube manometer 
bank. The inclination of the manometer bank to the horizontal could be varied to provide 

signal amplificadoii'A -separate Pitot-static tube was also mounted in the flow to measure 
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its dynamic pressure. 
The flow angle meter was calibrated in both the horizontal and vertical planes by 

setting the probe at a known angle to the flow and then reading, for each tube pair, the 

difference in head across the tube pair as recorded at the manometer bank. For each 

reading, the dynamic head from the Pitot-static tube was also recorded. 
The inclination of the probe to the flow was measured by use of a protractor scale 

fixed to the clamp holding the probe in position in the flow. For both horizontal and 

vertical calibration of the flow angle meter, results were taken in 5* steps for probe 
inclinations from -450 to +45* nonnal to the flow. The sign convention used to denote the 
flow angle, for both calibration and subsequent practical use, is given by Figure A 1.4. 

G, -ve 

Flow 

0, +ve 

Front Elevation 

Oh'VC 

Flow 

()h+Ve 

Plan view 

Figure A 1.4. Flow angle sign convention in relation to the main, longitudinal x-axis 

of the inlet manifold. 

Having thus calibrated the flow angle meter by recordin 19 its response when inclined 

at known angles to the flow, it could then be used to analyse the flow in the inlet 

manifold. In this instance, for each given step in the probe's passage across the duct, it 

had the same nominal inclination to the flow; at all times, the longitudinal axis of the 

probe head was held parallel to the main axis of the inlet manifold. 

Velocity profiles were then taken, both horizontally and vertically at each station, by 

traversing the duct in 5mm. steps. Initially, trouble was experienced in trying to take 

readings that could be repeated or even read: the readings at the manometer bank were 

found to fluctuate both rapidly and wildly about a given point. Considering the transient 

nature of the flow under consideration and the measurement technique used, the response 
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time of a pressure tapping-manometer combination should yield a time-averaged 

measurement of the true, transient flow. The instability in the readings was then held to 

arise from the too quick a response from the manometer columns and hence to be caused 
by insufficient signal damping. This problem was then solved by introducing extra 
damping to the system in the form of glass capillary links at inlet to each manometer leg. 

Each glass link consisted of a glass rod, roughly 20mm in length, through which was 
drilled a hole of comparable internal diameter to that of the probe's capillary tubing. nese 

glass links then acted as fluid capacitors. 

Al. 2. Processing of Results. 

Before presenting the results of the probe calibration, the methods by which the 

results were analysed will be detailed. 

Consider first the readings taken in calibrating the flow angle meter. For the flow 

angle meter of Figure Al. 1, the horizontal tube pair correspond to a pressure head 

reading, Ahh, at the manometer bank, the vertical tube pair to Ah, and the dynamic 

pressure head across the Pitot-static tube is read as Ahdyn- 

The pressure difference, Ap, across a given pair of tubes is related to the head 

recorded at the manometer, Ah, by 

Ap = p. gAh 

where p. is the density of the manometer fluid. 

For a given flow angle, 0, a non-dimensionalized pressure coefficient, Cp, may be 

written as 

C= Ap across a tube pair 
P dynamic pressure 

where dynamic pressure = p. -p = stagnation pressure - static pressure, as given by 

the Pitot-static tube. 
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So CP =p.. 
gAh 

= 
Ah 

p, ngAhdyn Ahdyn 

and the horizontal and vertical pressure coefficients may be written as 

Ahh 
= 

Ahv Cph = CPV 

Ahdyn Ahdyn 

As the pressure coefficient is a ratio comparing two pressure heads read from the 

same manometer bank, the inclination of the manometer bank (used to amplify the 

readings for ease of inspection) does not need to be taken into account. 
By preparing pressure coefficients for each prescribed flow angle, when these 

coefficients are plotted against flow angle, a calibration graph is obtained. When the probe 
is used to measure a practical flow, by calculating the horizontal and vertical pressure 

coefficients at a point in that flow, they can be used in conjunction with the calibration 

graphs to provide the flow angle, 0. 

For such a flow angle meter, for moderate flow angles of up to ± 4511, an 

approximately linear relationship betwee 
'n 

Cp and 0 would be expected. Furthermore, for 

an accurately machined device, when, calibrating the meter in one plane, say the 

horizontal, the corresponding response of the vertical tube pair to movement in the 

horizontal plane should be negligible, giving Cp, =0 as Cph varies with 0. (The converse 

should be true as well. ) 

Now consider the use of the flow angle meter to measure the total flow velocity, vt. 

For a Pitot-static tube, 

vt 
12(prp 

and p,, -p pmgAhdyn Pa 

where p,, is the density of the fluid flow being measured. 
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So vt 
2p,,, gAhdr, 

Pa 

The above result will hold true for a well machined Pitot-static tube for small flow 

angles of up to ± 15* or so. In this instance, the inclination of the manometer bank, 0, is 

important. For a given amplified reading of Ahdyn for a given value of 0, the con-ected 
dynamic head will be Ahdynsino and so the total flow velocity is given by 

vt where X= 
2p. gsino 

Pa 

Having calculated Cph, Cp, and vt and used the calibration graphs to obtain 

Oh and 0,, the velocity components vx, vy and'vz may be obtained simply, as shown in 

Figure Al. 5 below. 

.o 

Vt 
Ac- 

le 
VX vy 

Vt z 
x 

I, 
- 

Oh 

ov ov 
vtýý 

v, = vt sin 0, Vx Vt COS Ov COS Oh 

vy = vt COS 0, sin Oh 

Figure A 1.5. Relationships between the total flow velocity, vt, and its components 

vx, vy and v,,. 

Note that the transformations given in Figure A1.5 and the sign conventions for 

flow angle given in Figure A 1.4 lead to values for v,,, vy and v,. in keeping with FIDAP's 
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sign convention. 

Note that in the following tables, unless otherwise specified, the following units are 

used 

i) all manometer readings, Ahh, Ah, and Ahdyý in inches, 
ii) v, v.,, vy and v, in mils, 
iii) Oh and 0, in degrees and 
iv) Cph and Cp, are dimensionless. 

Table Al. 1. Manometer readings for the horizontal calibration of the flow angle 

meter. 

I- Manometer readings 
Angle ýf 
inclin n 

South North West East Stagnation Static 

Up Down Up Down Up Down Up Down Up Down Up Down 

45 29.30 32.15 15.50 40.80 26.20 15.40 
40 27.00 26.95 29.30 29.00 15.95 16.45 39.20 38.70 26.40 26.50 15.80 16.30 
35 25.75 25.60 26.40 25.85 16.30 16.75 37-60 37.00 26.60 26.65 16.10 16.45 

30 24.60 24.40 24.35 23.80 17.00 17.10 35.35 34.85 26.70 26.80 16.55 16.60 
25 23A5 23.45 23.20 23.20 17.45 17.50 32.55 32.50 26.85 26.90 16.70 16.70- 
20 22.90 22.90 23.20 23.20 18.00 18.05 30.90 30.75 26.90 26.95 16.80 16.75 

15 22.20 22.40 23.20 23.35 18 * 50 19.00 29.20 28.95 26.95 27.00 16.70 16.80 
10 22.20 22.10 23.30 23.30 20 . 00 20.10 27.40 27.10 27.00 27.00 16.85 16.80 
5 22.00 22.00 23.20 23.15 21.60 21.60 25.35,25.30 27.00 27.00 16.85,16.80 

0 21.95 21.95 23.40 23.20 23.15 23.25 23.30 23.15 27.00 27.00 16.95 -16.85 

-5 21.95 22.00 23.30 23.20 24 , 90 25.05 21.45 21.25 27.00 27.05 17.00 16.80 
-10 21.80 21.80 23.30 23.25 26.60 26.75 19.95 19.80 27.00 27.05 17.00,16.85 
-15 21.45 21.45 23.55 23.55 28.40 28.40 18.65 18.75 27.00 27.00 16.60 16.80 

-20 21.45 21.50 23.90 24.00 30.60 30.50 17.85 18.00 27.00 27.00 16.60 16.75 
-25 21.90 21.90 24.50 24.50 32.50 32.40 17.35 17.50 26.90 26.90 16.55'16.70 
-30 22.45 22.40 25.30 25.30 34.00 34.20 17.20 17.05 26.80 26.80 16.70 16.60 

-35 23.10 23.05 26.35 26.35 35.80 35.95 16.85 16.75 26.70 26.70 16.60 16.50. 
-40 23.90 24.00 27.80 27.90 37.60 37.70 16.60 16.55 26.60 26.60 16.45 16.40 
-45 26.20 29.30 38.90 - 16.40 26.45 16.30 
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Table A1.2. Processed test results of the horizontal calibration of the flow angle 

meter. 

Anglc ýf 
inclination Ali, Ahh Ahdyn r-P. Cýh 

45 -2.85 -25.30 10.80 -0.26 -2.34 
40 -2.18 -22.75 10.40 -0.21 -2.19 
35 -0.45 -20.73 10.35 -0.04 -. 2.01 

30 0.42 -18.05 10.18 0.04 -1.78 
25 0.25 -15.05 10.18 0.02 -1.49 
20 -0.30 -12.80 10.15 -0.03 -1.27 

15 -0.98 -10.32 10.23 -0.95 -1.01 
10 -1.15 -7.20 10.18 -0.12 -0.71 
5 -1.18 -3.73 10.18 -0.12 -0.37 

0 -1.35 -0.13 10.10 -0.13 0.00 

.5 -1.28 3.63 10.13 -0.13 0.36 

-10 -IA8 6.70 10.10 -0.15 0.68 

-15 -2.10 9.70 10.30 -0.21 0.95 

-20 -2.48 12.63 10.33 -0.24 1.23 

-25 -2.60 15.03 10.28 -0.25 1.46 

-30 -2.88 16.98 10.15 -0.28 1.67 

-35 -3.28 19.08 10.15 -0.32 1.88 

-40 -3.90 21.08 10.18 -0.38 2.07 

-45 -3.10 22.50 1 
10.15 

1 -0.31 2.22 

Table A1.3. Manometer readings for the vertical calibration of the flow angle 

meter. 

Manometer readings 
Angle of 
inclination South No West East Stagnation 4 SEi StafiEc- 

Up Down Up Down Up Down. Up Down Up Down ,wn U, U Down 

45 15.95 44.5 32AO 31.10 25.95 15.8 15 

F 

40 16.20 16.70 41.70 40.75 30.60 30.00 28.80 28.40 26.15 26.25 )0 166.00 16.60 C 
35 16.40 16.90 39.0038.50 28.80 28.65 26.45 26.65 26.35 26.40 1& 25 16.75 

30 16.65 17.10 36.40 35.85 27.15 26.95 24.50 24.65 26.55 26.55 16-50 16.95 
25 17.00 17.40 33.85 33.70 25.15 25.15 23.00 23.30 26.70 26.70 16.65 17.05 
20 17.50 17.85 31.70 31.45 24.55 24.50 22.50 22.65 26.80 26.80 17.00 17.15 

15 19.30 18.40 29.20 29.15 24.60 24.55 22.25 22.35 26.85 26.85 17.10 17.20 
10 19.00 19.15 27.45 27.35 24.75 24.60 21.90 22.00 26.90 26.90 17.15 17.20 
5 20.00 20.10 25.50 25.40 24.35 24.30 21.65 21.75 26.95 27.00 17.20 17.25 

0 21.25 21.40 23.45 23.35 24.15 24.05 21.60 21.80 27.00 27.00 17.25 17.30 

-5 22.60 22.80 21.75 21.70 23.90 23.85 21.80 22.00 27.00 27.00 17.25 17.35 
-10 24.00 24.10 20.50 20.50 23.70 23.70 21.90 22.00 27.00 27.00 17.20 17.35 
-15 25.40 25.55 17.50 19.60 23.75 23.75 21.95 22-05 27.00 27.00 17.20 17.35 

-20 26.95 27.00 18.75 18.80 24.10 24.10 22.00 22.10 26.95 26.95 17.25 17.30 

-25 28.60 28.65 18.05 18.20 24.75 24.80 22.30 27-40 26.90 26.90 17.15 17.25 

-30 30.40 30.35 17.55 17.1M 25.60 25.60 23.00 23.10 26.80 26.80 17.10 17.20 

-35 32.05 32.15 17.25 17.30 26.70 26.80 24.00 24.05 26.70 26.65 17. W 17.05 

-40 33.80 33.70 17.00 17.05 28.45 28.35 25.10 25.00 26.55 26.60 16.90 16.95 

-45 34.75 16.90 

1 

30.00 

1 

26.40 

1 

26.45 

1 

16.80 

11 
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Table A 1.4. Processed test results of the vertical calibration of the flow angic 
meter. 

Angle of 
inclination AIV, Ahh Ahd)ý C1. Cph 

- 

45 -28.55 1.30 10.15 -2.81 0.13 
40 -23.78 1.70 9.90, -2.50 0.18 
35 -22.10 2.18 9.87 -2.24 0.22 

30 -19.25 2.48 9.83 -1.96 0.25 
25 -16.58 2.00 9.85 -1.69 0.20 
20 -13.90 1.95 9.73 -1.43 0.20 

15 -10.83 2.28 9.70 -1.12 '0.24 
10 -8.33 2.73 9.73 -0.86 0.28 
5 -5.40 2.63 9.75 --0.55 0.27 

0 -2.08 2.40 9.73 -0.22 0.25 

-5 0.98 1.98 9.70 0.10 '0.21 

-10 3.55 1.75 9.73 0.37 '0.18 
-15 6.93 1.75 9.73 0.72 0.18 

-20 9.24 2.05 9.68 0.86 0.22 
-25 10.27 2.43 9.70 1.06 0.25 
-30 0.75 2.55 9.65 1.32 0.27 

-35 14.83 2.73 9.65 1.54 0.29 

-40 16.73 3.35 9.65 1.74, 0.35 
-45 17.85 3.60 9.65 , 1.85 0.37 

Table A1.5. Ambient conditions for the velocity profile experiments. 

Station 

Horizontal Vertical Horizontal Vertical - 

Engine speed (rpm) 1241 1218 1230 1229 

Atmospheric 
pressure (mmHg) 767.75 761.50 766.75 765.40 
Ambient 
temperature *Q 21.0 23.5 24.0 24.0 
Manometer 
inclination 20 20 20 20 
(degrees) 

Air density 
(kgb3) 1.20 1.20 1.19 1.19 

Water density 
(kg/m3) 997.96 998.20 997.25 997.25 

x in v 141.43 141.43 142.86 142.86 
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Table A1.6. Manometer readings for the horizontal velocity prof lie expcrimcnt 
conducted at station I. 

Manometer reading 
Probe 
osition 

South North West East Average Static wall p 
Up Down Up Down Up Down Up Down Up Down Up Down 

0 4.40 4.60 5.30 5.50 5.40 5.50 4.104.30 4.80 4.98 6.30 6.30 
1 4.60 4.60 5.40 5.40 5.40 5.40 '4.20 4.20 4.90 4.90 6.10 6.10 
2 4.10 4.10 5.00 5.00 5.00 5.00 3.90 3.90 4.50 4.50, 6.10 6.10 

3 4.60 4AO 5.40 5.20 5.30 5.15 4.35 4.20 4.91 4.74 6.50 6.05 
4 4.60 4.60 5.45 5.45 5.30 5.30 4.50 4-50 4.96 4.96 6.30 6.30 
5 4.80 4.80 5.65 5.65 5.45 5.45 4.75 4.75 5.16 5.16 6.10 6.10 

6 4.80 4.60 5.50 5.50 5.30 5.20 '4.80 4.70 5.10 5.00 6.20 6.30 
7 4.30 4.40 5AO 5.50 5.05 5.15 4.65 4.70 4.85 4.94 6.30 6.35 
8 4.45 4.45 5.25 5.25 4.80 4.80 4.50 4.50 4.75 4.75 6.00 6.00 

9 4.50 4.50 5.00 5.10 4.50 4.60 4.40 4.40 4.60 4.65 6.00 5.90 
10 4.50 4.50 5.20 5.20 4.55 4.55 '4.60 4.60 4.71 4.71 5.90 5.90 
11 4.50 4.50 4.80 4.80 3.95 3.95 4.30 4.30 4.39 4.39 

1 
5.70 5.70 

Table A 1.7. Processed test results of the horizontal velocity profile experiment 

conducted at station I. -- 

Probe 
position 

Ah,. Ahh Cp Iv Ov , Cph Oh Ahdy. v, V, vy va 

0 -0.90 1.25 0.83 14.3 -0.60 5.5 1.51 14.62 14.12 1.36 3.60 
1 -0.80 1.20 1.00 17.0 -0.67 6.0 1.20 13.03 12.39 1.30 3.81 
2 -0.90 1.10 0.69 12.0 -0.56 5.0 1.60 15.04 14.66 1.28 3.12 

3 -0.80 0.95 0.67 11.5 -0.56 4.8 1.45 14.31 13-97 1.16 2.95 
4 -0.85 0.80 0.60 10.0 -0.63 6.0 1.34 13.77 13.49 1.44 2.39 
5 -0.85 0.70 0.74 13.0 -0-90 11.0 0.94 11.53 11.02 2.14 2.59 

6 -0.80 0.50 0.42 7.5 , -0.67 6.5 1.20 13.02 12.83 1.46 1.70 
7 -1.10 0.43 0.30 5.3 -0.77 8.0 1.43 14.22 14.02 1.97 1.30 
8 -0.80 0.30 0.24 4.5 -0.64 6.0 1.25 13.30 13.19 1.39 1.04 

9 -0.55 0.15 0.12 2.0 -0.42 -2.3 1.33- 13.69 13.67 0.54 0.48 
10 -0.70 -0.05 -0.04 -1.0 -0.59 5.5 1.19 12.97 12.91 1.24 -0.22 11 -0.30 . -0.35 -0.27 . 5.0 

. -0.23 -0.5 1.31 
1 

13.61 
1 

13.55 -0.12, -1.19. 
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Table A 1.8. Manometer readings for the vertical velocity profile experiment 

conducted at station I. 

Manometer reading 
Probe South North West East Average I Static wall position 

Up Down Up Down Up Down Up Down Up Down Up Down 

0 4.05 4.05 2.60 2.60 3.25 3.25 1.90 1.90 2.95 2.95 4.40 4.40 

1 4.05 4.05 2.90 2.90 3.40 3.40 1.90 1.90 3.06 3.06 4.30 4.30 
2 4.05 4.05 3.30 3.30 3.60 3.60 2.70 2.70 3.41 3.41 4.60 4.60 
3 4.10 4.10 3.90 3.90 3.90 3.90 3.80 3.80 3.93 3.93 5.50 5.50 
4 4.90 4.90 4.40 4.40 4.30 4.30 4.60 4.60 4.55 4.55 6.20 6.20 

5 5.40 5.40 5.00 5.00 4.70 4.70 5.35 5.35 5.11 5.11 6.60 6.60 
6 5.55 5.55 5.35 5.35 4.90 4.90 5.90 5.90 5.45 5.45 7.00 7.00 
7 6.45 6.45 6.00 6.00 5.55 5.55 6.85 6.85 6.21 6.21 7.65 7.65 
8 6.65 6.65 6.20 6.20 5.50 $50 7.20 7.20 6.39 6.39 8.20 8.20 

19 16.80 6.80 1 6.40 6.40 15.65 5.65 1 7.50 7.50 1 6.59 6.59 18.35 8.35 

Table A 1.9. Processed test results of the vertical velocity profile experiment 
conducted at station I. 

ProýF 
position 

Ah,, Ahh CPv Ov Cph Oh 4&hdyrt V VK VY Vt 

0 1.45 1.35 1.00 23.00 0.93 16.00 1.45 14.28 12.64 -3.62 5.58 
1 1.15 1.50 0.93 22.00 1.21 20.00 1.24 13.20 11.50 . 4.19 4 94 2 0.75 0.90 0.63 16.50 0.76 13.00 1.19 12.93 12-08 -2.79 . 3 67 3 0.20 0.10 0.13 7.50 0.06 1.00 1.57 14.96 14.73 -0.26 . 1 94 4 0.50 -0.30 0.30 10-50 -0.18 -3.00 1.65 15.23 14.95 0.05 . 2.78 
5 0.40 -0.65 0.27 10-00 -0-44 -7.50 1.49 14.47 14 13 86 1 
6 0.20 -1.00 0.13 7.50 -0.65 -11.00 1.55 14.76 . 14 36 . 79 2 2.51 
7 0.45 -1.30 0.31 11-00 -0.90 -15.00 1.44 14.23 . 49 13 . 61 3 1.93 
8 0.45 -1.70 0.25 9.50 -0.94 -16.00 1.81 15.95 . 15.12 . 4 34 272 i . 63 
9 0.40 -1.85 

1 
0.23 

1 
9.00 -1.05 

1 
- 17.00 1.76 15.73 14.86 4.54 2.46 

239 



Table Al. IO. Manometer readings for the horizontal velocity profile experiment 
conducted at station 111. 

Manometer reading 
Probe 
position 

South North West East Average Static wall 
1 

Up Down Up Down Up Down Up Down Up Down Up Down 

0 4.00 4.00 3.40 3.40 3.70 3.70 3.30 3.30 3.60 3.60 5.60 5.60 
1 4.00 4.00 3.15 3.15 3.40 3.40 2.90 2.90 3.36 3.36 5.30 5.30 
2 4.00 4.00 3.30 3.30 3.50 3.50 3.20 3.20 3.50 3.50 5.30 5.30 

3 4.00 4.00 3.00 3.00 3.10 3.10 3.00 3.00 3.28 3.28 5.00 5.00 
4 4.00 4.00 2.90 2.90 2.902.90 2.90 2.90 3.18 3.19 5.00 5.00 
5 4.00 4.00 2.80 2.80 2.80 2.80 2.90 2.90 3.13 3.13 4.95 4.95 

6 4.00 4.00 2.70 2.70 2.65 2.65 2.75 2.75 3.03 3.03 4.55 4.55 
7 4.00 4.00 2.102.50 2.10 2.50 2.20 2.55 2.60 2.89 4.15 4.55 
8 4.00 4.00 2.55 2.55 2.60 2.60 2.70 2.70 2.96 2.96 4.63 4.65 

9 4.00 4.00 3.25 3.45 3.30 3.50 3.40 3.65 3.49 3.65 5.40 5.70 
10 4.00 4.00 4.704.70 4.704.70 4.904.90 4.58 4.58 6.80 6.80 
11 

. 
4.00 4.00 

. 
4.90 4.90 

. 
4.85 4.85 

, 
5.05 5.05 

, 
4.70 4.70 7.00 7.00 

Table Al. 11. Processed test results of the horizontal velocity profile experiment 
conducted at station H. 

Probe 
poZitiOn 

Ah, ähh cýW 
1 

01 cph N AhGýn V vx Vy va 

0 0.60 0.40 0.20 3.5 0.30 -10.0 2.00 16.90 16.61 -2.93 1.03, 
1 0.85 0.50 0.26 5.0 0.44 -13.0 1.94 16.65 16.16 -3.73 1.45 
2 0.70 0.30 0.17 3.0 0.39 -12.0 1.80 16.04 15.67 -3.33 0.84 

3 J. ()o 0.10 0.06 l. 0 0.58 -16.0 1.72 15.68 15.07 -4.32 0.27 
4 1.10 0.00 0.00 0.0 0.60 -16.0 1.82 16.12 15.49 -4.44 0.00 
5 1.20 -0.10 -0.05 -0.5 0.66 -16.5 1.82 16.12 15.45 -4-58 -0.14 

6 1.30 -0.10 -0.07 -1.0 0.86 -20.0 1.52 14.74 13.85 -5.04 -0.26 
7 1.70 -0.08 -0.05 -0.8 2.07 -24.0 1.61 15.14 13.83 -6.15 -0.20 
8 1.45 -0.10 -0.06 -1.0 0.86 -20.0 1.69 15.54 14.60 -5.31 -0.27 

9 0.65 -0.13 -0.06 -0.8 0.33 -11.0 1.98 16.82 16.50 -3.20 -0.22 
10 -0.70 -0.20 -0.09 -1.5 -0.32 0.5 2.22 17.81 17.80 0.16 -0.47 
11 -0.90 -0.20 -0.09 -1.5 , -0.39 f 

2.0 2.30 18.13 
, 

18.12 
, 

0.63 
ý -0.47 
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Table Al. 12. Manometer readings for t, he vertical velocity profile experiment 

conducted at station H. 

Manomet reading 
Probe 
position 

South North West East Average Static wall 

Up Down Up Down Up Down Up Down Up Down Up Down 

0 7.55 7.55 4.85 4.85 5.05 5.05 4.70 4.70 5.54 5.54 6.85 6.85 

1 4.90 4.90 4.55 4.55 4.75 4.75 4.50 4.50 A. 68 4.68 6.85 6.85 
2 5.00 5.00 4.50 430 4.65 4.65 4.55 4.55 4.68 4.68 6.60 6.60 
3 4.55 4.55 4.004.00 4.15 4.15 4.10 4.10 4.204.20 6.10 6.10 
4 4.45 4A5 3.80 3.90 3.904.00 4.004.10 4.04 4.11 6.10 6.10 

5 4.10 4.10 3.40 3.40 3.40 3.40 3.60 3.60 3.63 3.63 5.50 5.50 
6 3.80 3.80 3.33 3.35 3.30 3.30 3.55 3.55 '3.50 3.50 5.30 5.30 
7 3.85 3.85 3.10 3.10 3.05 3.05, 3.30 3.30 3.33 3.33 5.20 5.20 
8 3.85 3.85 3.00 3.00 3.00 3.00 3.10 3.10 3.24 3.24 5.00 5.00 

9 3.85 3.85 3.30 3.00 3.30 3.00 3.40 3.05 : ý 3.46 3.23 5.30 5.10 

Table Al. 13. Processed test results of the vertical velocity profile experiment 

conducted at station 111. 

Probe 
position 

Ah., Ahh Clw 
1 

Ov Clph Oh ähdy,. v vx 

, 
VY va 

0 2.7 0.35 2.06 41.0_ 0.21 
---5.0 , 

1.31- 13.68 10.29 -0.90 8.97 

1 0.35 0.25 0.16 8.0 0.12 -2-5 2.17 17.61 17.59 -0.77 2.45 
2 0.50 0.10 0.26 10.0 0.05 -1.0 1.92 16.56 16.30 -2.88 188 
3 0.55 0.05 0.29 10.5 0.03 -0.5 1.90 16.48 16.20 -0.14 3.00 
4 0.60 -0.10 0.30 10.5 -0.05 0.5 2.03 17.01 16.72 0.15 3.10 

5 0.70 -0.20 0.37 11.0 -0.11 1.5 1.87 16.34 16.03 0.42 3.12 
6 0.45 -0.25 0.25 9.5 -0.14 2.0 1.80 16.04 15.81 0.55 2.65 
7 0.75 -0.25 0.40 12.0 -0.13 2.0 1.87 16.34 15.97 0.56 3.40 
8 0.85 -0.10 0.48 14.0 -0.06 0.5 1.76 15.86 15.38 0.14 3.83 

9 0.70 -0.08 0.38 12.3 -0.04 0.5 1.86 16.28 15.90 0.14 3.44 
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The calibrations of the flow angle meter, for horizontal and vertical pressure 

coefficients versus flow angle are presented graphically below. 

3 

2 

. tz 

4 .1 

-2 

-3 

CPV 

cph 

-45 -35 -25 -15 -5 5 15 25 35 45 

Flow angle (degrees) 

Figure AIA Showing horizontal pressure coefficient against the horizontal 

component of the flow angle, Cph vs. Oh- 

2. . 1. 

I 

E 

"1 

-2 

-3-1 11-. IvII.. a.. I 
-45 -35 -25 -15 -5 5 15 25 35 45 

Flow angle (degrees) 

-cl- cpv 
-*- cph 

Figure A 1.7. Showing vertical pressure coefficient against the vertical component 

of the flow angle, Cpv vs. 0, 
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The calibration results are also tabulated in Section A 1.3 of Appendix A 1. 

Inspecting either of the calibration graphs, it can be readily seen that the response of 

the flow angle meter is nearly linear for a fair range of flow angle. Also, as predicted, the 
I 

interaction of, say, the horizontal component of the meter to normal flow angle variation 

is negligible. (Similarly, a variation in Oh causes only minor fluctuation in Cpv about 

zero. ) 'Me slight kinks in the above figures may be reasonably attributed to slight 
imperfections in the manufacture of the probe, such as the angled tips of the two sets of 

tube pairs not being quite normal to one another. 

A1.5. Estimation of the Nominal Streamwise 
-Velocity 

Along the Mnin 

Duct of the Manifold. 

The manifold considered is that at inlet to a four cylinder, four stroke engine. So, 

during one complete revolution of the crankshaft, two cylinders will undergo an induction 

stroke. 
If the engine speed is N rev/min and the volume of each cylinder is V then the 

volumetric flowrate through the manifold is given by , 

q= 2VN M3/S 60 

provided that volumetric efficiency is blithely assumed to be 100%. 

Now for a given cross-section of the manifold, of breadth, b, and height, h, then 

the cross-sectional area for flow is 

A=bh 

Thus the strearnwise velocity at this section, v, is given by 

v= E- 
= 

2VN nVs A 60 bh 
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Now if N= 1220 rpm, 
b= 70 mm, 
h= 60 mm and 

11 = 1XIO-3M3 

Then v= 2xlxlO-3xl220----=9.72nVs 
60 x 70xlO-3 x 69ý10-, 3 
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A1212endix A2. Develooment of a Computational Model of the Tnlet 

Manifold. 

A2.1. Development of a ComDutational Mesh for the Tniet Manifold. 

The inlet manifold described in Figures 3.1-3.3 of Section 3.2.1 will now be 
detailed. The inlet manifold can be subdivided into three main sections, as shown below. 

Flow 

Main duct 

Figure A2.1. Thumbnail sketch of the inlet manifold in elevation. 

The main features (and principal dimensions with regard to meshing) of these three 

sections will now be considered in turn, making use of a number of further thumbnail 

sketches. 
Section A of the manifold comprises the inlet to the flow domain and a side branch, 

linking to port one of the engine, as shown in Figure A2.2 below. 
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Figure A2.2. Section A of the inlet manifold. 

The five-sided duct at inlet is raised some 40mm above the main run of the 

rectangular section duct which forms the lower reach of section B of the manifold. The 

side branch, connecting to engine port one, is essentially of rcc=gular cross section, 
blending to an oval cross-section at the port. The whole side branch slopes back toward 

the plane of the inlet, as seen in elevation. 
The side view of the branch shows that it slopes away from the inlet duct, blending 

smoothly with the main duct halfway along the upper and right-hand walls of the inlet 

duct, as seen in side view. 'Me inlet duct merges smoothly with the main duct, at which 

point the main duct is seen to be some 10mm wider than at inlet, as seen in the side 

elevation. Again, it must be emphasised that all cross-sections of the manifold have fillct 

radii (rounded comers) of 5mm radius. 
Section B of the manifold, consisting of the main duct and side branch to ports two 

and three, is shown in Figure A2.3 below. 
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Figure A2.3. Section B of the inlet manifold. 

44. 

Nfidway along the rectangular main duct of section B, the manifold branches off to 

connect with inlet ports two and three of the engine. From the side view skctches above, 
it can be seen that the wedge-shaped side branch blends with the top of the front of the 

main duct and also halfway down its rear vertical face. Furthermore. the main duct tapcrs 

abruptly fi-orn 80mm to 70mm in breadth at the rear vertical face, midway along its length. 

The side branch, rectangular in cross-section, draws in to a waist before blending to oval 

section at the ports. 
Section C is basically a plain side branch, connecting the main duct to port four, as 

shown in Figure A2.4 below. 
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Figure A2.4. Section C of the inlet manifold. 
Section C exists as a series of complex curves in rectangular cross-section. The 

main duct first turns through 900 before sloping back towards inlet (in elevation). 111is 

results in the ridge seen at the fiont of the duct where the upper front edge of the duct 

meets the wedge shaped side branch. At the rear, the side branch blends with the main 
duct halfway up its vertical face. Again, the rectangular cross-section of the side branch 

becomes ovular at the port. 
Having considered the main features of each section of the manifold, the 

simplifications used in generating a corresponding computational mesh will now be 

considered. With regard to mesh generation then, the basis of the model can be seen as 
two tee-sections and a plain channel, as shown in Figure A2.5. 

Figure A2.5. Simplified elevation of the manifold. 

For the mesh generation system used, any given section of the mesh is required to 
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exist as a curvilinear region. Whilst mesh generation techniques are fully discussed in the 
FIMESH manual (FIDAP, 1994), in essence, this flow domain, existing as a curvilinear 

region in geometric space (represented by Cartesian co-ordinates), is simultaneously 

modelled by a rectilinear region in logical space (represented by the co-ordinates i, j ana 
k). The logical space model merely serves to define inter-clcment connectivity but the 

requirement that it should consist of rectilinear regions means that it cannot rcplicatc 
triangular prisms. Figure A2.6 then shows a valid model for a tee-section in both 

geometric and logical space. 
z 

y 

x 

k 

I 

. 0, 

i 

t. - 

Logical space 

i 

Figure A16. Showing the wire frame of a tee-section, capable of providing mesh 

grading in three directions. 

Where a given surface of the tee-section of Figure A2.6 is seen to be divided 

between two mutally perpendicular logical planes, the presence of finer mesh elements is 
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confined to the near-wall region by use of the MERGE facility. 7be mutally perpendicular 

near-wall regions are modelled as two discrete logical regions, even though they have a 

common, connecting face in geometric space. The two mesh regions are gradcd 
individually in logical space and then 'merged' together in geometric space. 

Whilst Figure A2.6 offers a method of restricting finer mesh elements to the 

proximity of the solid boundaries, two significant problems arise in comparison with the 

real geometry of the manifold as 

i) treatment of the duct cross-sections, which typically exist as rounded-off 
rectangles and 
ii) modelling the real surface of the junctions between the side branches and the 

main duct. 

Whilst the former problem relates to the number of nodal points in the mesh (and 

hence to the computational power available), the latter is more fundamental in nature as it 

touches upon the requirement for the model to consist of rectilinear blocks in logical 

space. 
Figure A2.7 below compares the meshes for a simple rectangular cross-section and 

for one with rounded comers. ", 
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Figure A2.7. Two possible methods of meshing the main duct cross-section. 

Straight away, it can be seen that the more elegant, curved-comer mesh requires 

roughly five times as many elements, and hence almost four times as many nodes, as the 

simple rectangular mesh'Section. For a model of the complexity of the inlet manifold, 

computational restrictions meant that a direct choice had to be made between the 
foRowing: 

i) use of a graded mesh, with finer elements close to the walls and 
ii) use of a more realistic duct cross-section, with rounded comers. 

Since one of the principal concerns of this study is to assess the response of current 

near-wall modelling techniques to the variation in Y+ and pressure gradient with time, it 

was decided that the facility of grading the mesh toward its boundaries was more 
important than rounding off the duct cross-section (where the comer radius was typically 

one tenth of the duct width). 
Now the more serious problem of how to join the side branches of the model to the 

main duct may be considered. Having elected to construct the model from simple, 
rectangular mesh sections, then a'squared-off form of one of the tee-sections, say for 

15 16 17 

10 11 12 

5 6 7 
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section B, would appear as Figure A2.8 below. 

Figure A2.8. Simple exploded view of section B. 

As seen in Figure A2.8 above, where the side branch mates with the main duct, 

there exists a triangular lip. In sub-dividing section B into curvilinear blocks to generate a 

valid mesh, as outlined in Figure A2.6, this triangular lip cannot be rationalised as a 

curvilinear block in real space and hence as a rectilinear block in logical space. Indeed, 

where other sub-divisions of the duct cross-section were attempted (remembering that a 

graded mesh is required), the result was merely to shuffle this triangular prism about the 

region. As far as could be determined, this triangular prism was a direct result of the 

choice of a simple rectangular form for the duct cross-section. 
Since the simple cross-section had been chosen to allow for reasonable mesh 

density, given the computational power available, it was reluctantly decided to abandon 

this triangular prism and to model the side branches with rear faces flush with the main 
duct. 

As such, these decisions caused a number of other features of the actual manifold 

not to exist in the model: the oval port outlets were substituted by rectangular ones and the 
inlet duct reduced to a rectangular cross-section of constant area. Even so, the major 
dimensions of the manifold were retained, with particular attention paid to maintaining 
similar cross-sectional areas for flow wherever possible. 
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A2.2. Model Construction. 

In the previous section, the geometry of the inlet manifold was discussed, with 

regard to those approximations to its actual geometry necessary to prepare a suitable 

computational mesh. It was proposed that the model be constructed from rectangular 

cross-section ducts, in three discrete but adjoining sections. As such, each section 

possessed its own local co-ordinate system and, once designed, by relating these local co- 

ordinate systems to one another, the sections were joined together to form one contiguous 

whole. The general layout of the model can then be seen as Figure A2.9 below. 

ZA. 

ZB 
Port 4 
C: 51 

XC4 XC24 ZC2 Inlet to k 
section A 

ýAz. 
<::: 

> 
T, ZC1 

C2 IYCI 

X13 A-B interface Y&GIoN 

Y yc ; 
C1 

interface YB 
Section A 

Section 133 
XA, GbW 

Section C, 

Figure A2.9. Showing the relationship between the local section co-ordinate 

systems and the global co-ordinate system. 

Sections A and B were modelled on the tee-section design given as Figure A2.6. 

The side branch of the tee-section then served as the side branch of the model section, 
linking the manifold main duct to the relevant engine inlet port. These side branches then 

had constant width in the x-direction and had tapering depth in the y-direction, to offer the 

wedge-like shape of the actual side branches. In each case, the wedge portion of the side 
branch was linked to its engine inlet port by use of the ARC facility to create a curved duct 

of rectangular cross-section. A side elevation of the resulting side branch is shown in 

Figure A2.10 below. 
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Curved connection 
to inlet port 

Lo-y 

Wedge-like portion 
of side branch 

Main duct 

Figure A2.10. Side elevation of the tee-section used to model the side branches. 

I 

Section C, linIdng the main manifold duct to engine inlet port 4, was required to 

simulate a rectangular cross-section duct, tapering from 70x6Omm at its inlet to 4Ox4Omm 

at the port face, in a complex curve. The simplest method by which this could be achieved 
was in the use of the BLEND facility, whereby a region of the mesh may be created 
between two previously specified end planes'. Three-dimensional blending is only offered 
in the x-y plane and so use was made of COORDINATE commands to provide 
appropriate local axes for the end planes defining the region to be blended. This technique 
is shown in Figure A2.11 below. , 

40 M'l 
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40 

XC2 
* ZC7" 

YC2 

Port 4 

blend 
xC! A- 

zci 

Yci 

70 
B-C interface 

Not to scale 

60 

li 

Figure A2.1 1. Showing the method of construction of section C. 
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On considering the manifold model, employing the technique of Figure A2.6 for the 
tee-sections, by presenting a sudden, right-angle turn to the flow, the roots of the tee- 
sections would be likely to predict separation in the flow that might not be present in the 

real manifold. As such, this portion of the model was redesigned to allow for more gentle 
turning of the flow, as shown in Figure A2.12 below. 

--d-- Inlet 

Figure A2.12. Showing a wire-frame proposal for better tee-sections in sections A 

and B of the model (in front elevation). 

The above improved tee-sections were incorporated into the model and, as desired, 

provided a better approximation to the interface between the side branches and the main 
duct. However, the resulting front face of each side branch was grooved: this problem is 

considered in Figure A2.13 below, showing tee-section B. 

Section through x-y plane 
along line A-B 

ACB 

Figure A2.13. Showing the vee-shaped groove running up the face of tee-section 
B. 

255 



The mesh line C-D-E, representing the centreline of the front face of the side 
branch, is seen to run behind the vertical line dropped through point C. Ideally, the front 

face centreline should rise vertically from point C to intersect the line A-B, being the 

upper front edge of the main duct. The desired form of the face A-C-B-D is shown in 
Figure A2.14 below. 

., 
h x-y plane Section throug 

along line A-B 

ACB 

Figure A2.14. Showing an improved side branch frontage. 

Inspecting Figure A2.14, it wiR be realised that the proposed face A-C-B-D consists 

of two subordinate, five-sided faces, contrary to FIDAP's requirement of rectangular 

prisms for three-dimensional elements. This problem was circumvented by defining the 

line C-D with CURVE, taking advantage of the 'dot-to-dot'nature of the CURVE 

command, in its constructing curves from straight lines between those points specified by 

its corresponding data card. 
The final version of the model geometry, as demonstrated by the turbulent, steady- 

state input file barf. FDREAD, which is listed in Appendix A2, is then shown in detail in 

geometric space as Figure A2.15 below. Figure A2.16 then provides a velocity 
distribution at inlet and outlet to the model. 

256 
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Figure A2.15a. Computational mesh for the turbulent, steady-state manifold model 

- geometric representation in front elevation. 
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Figure A2.15b. Computational mesh for the turbulent, steady-state manifold model 

- isometric geometric representation. 
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Figure A2.16. A velocity vector plot of the manifold model. 

The above figures show the model to have no hidden false surfaces, not to leak' 

and to have side branch faces that are largely true. 
This version of the manifold mesh was then expanded to provide a denser mesh and 

used for all subsequent work in this study. Whilst the model still had some shortcomings, 

which will be detailed shortly, for the purposes of this work, they were not rectified. ne 

model, as detailed, contained some 19,000 nodes, which was found to be close to the 

capacity of the computer used for model simulation for time-dependent analysis. More 

elegant meshes could have been prepared for steady-state analyses but these would have 

been trivial, in that any results thus obtained could not be compared with transient results 
from simpler meshes. However, these model limitations will now be touched upon 
briefly, before turning to the uses that this computational mesh was put to. 

The model inlet exists as a rectangular section, as opposed to the five-sided duct of 

the real manifold. A modified inlet section could be used as Figure A2.17 below. 
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Figure A2.17. Possible improved cross-section for model inlet. 

Such a section could be run along the inlet duct to join thf, - rectangular cross-section 

of the main duct beneath the side branch to port 1. However, at this point a curved section 

would be required for the two ducts to be joined together smootfily. Ilis would require 

more complex meshing locally and hence would increase the number of nodes necessary 
for the model. 

Finally, the links between the side branches and their engine inlet ports could be 
improved, as shown in Figure A2.18 below. 

Ports 1,2 and 3 
in side elevation 

Present model 

Port 4 in 
front elevation 

Possible model 

Figure A2.18. Showing details of potential porting improvements. 

With regard to ports 1,2 and 3, connected to tee-sections A and B, by tilting the 

end plane of the wedge-shaped body of the tee, the front face of the tee could be made to 

259 



be tangential to the arcs forming the port entrance, as shown in Figure A2.18. Also, by 
forming the duct between the outlet of section B and port 4 from three blended sections 
instead of two, the joint between the port and the duct could be made less abrupt. Agaiq, 

whilst this is possible to do, with the nodal limitations for time-dependent study, it was 
elected not to perform these repairs. 
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A2.3. Inout File Listings for the Inlet Manifold Model. 

Figure A2.19. Input file, barf. FDREAD: the inlet manifold model. 
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Figure A2.20. Modifications to the input file, barf. FDREAD: solution procedures for 

transient models of the inlet manifold. 

/ MODIFICATIONS TO MANIFOLD INPUT FILE 
/ FOR TRANSIENT RUN no I 
/ ***** alterations in fimcsh module 
title 
manifold model - transient run no. I 
/ports I- IV 
bcnodc(vclocitN) 
/2437 
7579 
/8188 
130138 
0*000 alterations in f1prcp modulc 
specirication or problcm and solution t3pes 

problcm(3-(LturbulcnLiionlinear. transicni) 
execution(rcstart) 
solu(ion(scgrcgatcd=2050. i-cicon%-O. (, '075. cgs=5000. cr--50M. accf=0.8) 
tiincintcgration(backi%mrcLnsteps=g. tstart=O. O. tend=O. (M336. dt=0.001042. ri. xod) 
postproccss(nblocks- I 
283 

/ MODIFICATIONS TO MANIFOLD INPUT FILE 
/ FOR TRANSIENT RUN no. 2 
/ ***** alterations in fimcsh module 
litic 
manifold model - transient run no. 2 
/ports I- IV 
bcnodc(%clocity) 
2437 
7579 
/8188 
130 138 
***** alterations in riprep module 
spocirication of problem and solution t%pcs 

problcni(3-(Lturbulcnt. nonlinear. transicnt) 
execution(rcstart) 
solution(segrcgatod=2050. -., clcon%-0.0075. cgs=50(X). cr-500O. accf=-0.8) 
timeintegration(back%%2rdýristcps=8, tstart=O. (X)8336. tcnd=0.025(X)8. dl=0.00 1042. fix-ed) 
postprocess(nblocks- 1) 
2 167 

/ MODIFICATIONS TO MANIFOLD INPUT FILE 
/ FOR TRANSIENT RUN no. 3 
/ ***** aftcrations in firnesh modulc 
litIc 
manifold modcl - transicnt run no. 3 
/ports I- IV 
bcnodc(%-clocit,, ) 
2437 
7579 
/8188 
/130 138 

***** alterations in liprep module 
specification of problem and solution qpcs 

problcm(3-cLturbuicnLnontinear, transient) 
execution(restart) 
solution(scgrcgated--2050. %-clconi-0.0075. cgs--5000. cr=5(X)O, accf=0.8) 
(imeintegrationNck-ivarcLnstcps=g. tstart=0.025008, tcnd=0.0333440, dt=0.00 1042. fixed) 
postproccss(nblocks--I) 
283 
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Appendix A3. Algorithm Flowcharts and Subroutine Listings for Two- 
dimensional Coles' Law Models. 

The FIDAP input files, algorithm flowcharts and subroutine listings detailing the 
Coles'law models of the U-bend and the backward facing step will now be listed in tum. 
A description of the workings of these models is given in Chapter Five. 

Figure A3.1. Input file, ex29. FDREAD: the standard FIDAP model of the U-bend. 

INPUT FILE FOR U-BEND - 130. 
STANDARD fidap MODEL bcnodc(%-clocit)-) 

title 170. 
u-bcnd - standard FIDAP model 830. 
fimcsh(2-d, inmx-5jma. \-3) bcnodc(kinctic) 
C, \Pi 13.001 
/1 2345 bcnode(dissipation) 
120355070 13. (XX)9 

C\pj elcmcnts(quadrilatcral, nodcs=4. all. cnliký-'blob") 
/1 23 clemcmts(boundan,, facc, cntiki-"horn") 
12141 17 

point 83 
IN IJK X Y number 
III1 -1. 4.5 21 
2 121 -1. 5.0 end 
3 13 1 -1. 5.5 fiprcp 
4 21 1 7. 4.5 problcm(nonlinear. turbulcnt. axi-sN-mmetric) 
53118.5 6.0 prcssurc(mi\cdLdiscontinuous) 
6 41 1 7. 7.5 cxccution(nc%%job) 
7511 -1. 7.5 dcnsity(constant- 1) 
8 53 1 -1. 6.5 icnodc(kinctic, constant-. 00 I. Cntit)-"blob*) 
9 43 1 7. 6.5 icnodc(dissipationconstant-. 0009. cntitNl-"blob") * 10 33 1 7.5 6.0 . i-itN-(k. e.. clip=l. c6, constant=l. c-5) 
11 23 1 7. 5.5 solution(scgrcgated-300. pprojcction) 
12 521 -1. 7.0 options(up%%inding) 
13 22 1 7. 5.0 dataprint(nodes=2. clcmcnts- 1) 
14 321 8.0 6.0 entit% (namc="blob*. fluid) 
15 421 7. 7.0 entitýýnamc="horn". wall) 
30 000 7. 6.0 ENDend 
line crcatc(fisolv) 
121.05 endEND 
321.05 7" 
9 12 1.05 
7 t2 1.05 
4 13 1.1 
11 13 1.1 
10 14 1.1 
5 14 1.1 
9 15 Lt 
6 15 1.1 
14 . 875 
3 11 . 855 
76 . 875 
89 . 855 

arc 
45 30 
56 30 
11 10 30 
10 9 30 
surface 
18 
bcnode(u. x) 
13 1. 
bcnode(uy) 
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Figure A3.2. Input file, peeg. FDREAD: the simple Coles'law model of the U-bend. 
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Figure A3.3. Algorithm flowchart, blammo. f-. the simple Coles'law model of the U- 
bend. 
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Figure A3.4. Subroutine listing, blammo. f. - the simple Coles' law model of the U-bend. 
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ii ritc(10. *) 'ducky'Audy(node) 
writc(l 0, *) 'coe. COS(thctai). 'sin', sin(tlictai) 
writc(l 0. *) '%, cl(nodc)'. %-cl(nodc) 

iýTitc([O. *)'shearO', shcarl). 'shrmo(r. shmiod 

writc(10. *)'Re. rcý-no. 'bigpi*. bigpi 
A%Titc(IO. 0) 

endif 
elseiRflag. oq 2)thcn 

if((nodc. cq. 2). or. (nodc. cq 43). or. (node. eq. 
c 740). or. (nodc. eq. 2052). or. (nodc. eq 2790). or 
c . (node. cq. 283t))thcn 

u ritc(10. *)start!, start 
write(lo. 0) II 
writc(IO. *)'nodc!. nodc 
%%Titc(10. *)'UOW. UOUAlot`. uot 

, nTitc(lo. *), Ucu"ucu., Uct`, uct 

%%Titc(10,0) %inf, %inf 
%Titc(10, *)'duodt', duodt 
%,, Titc(10, *)'dud3ý, dud) (node) 
%%Titc(]O, *) %, cl'. %-cl(nodc)A-al, Aal 
%t-ritc(10,0)'shear(l, shcarO. 'shrmocr. sliniiod 
witc(lo. 0) %vajfre. %%21frc. )ý+. wkApls 
%%Titc(10. *) 'Rc. M-no. oigpi', bigpi 
%lTitc(l 0,0) 11 

elseif((node. eq. 781). or. (node. eq 822). or. (nodc. 
c eq. 1355). or. (node. eq. 1396). or. (node. eq. 1437). o 
c r. (nodc. eq. 1970). or. (node. eq. 201 1))thcn 

%%Titc(10, *) 'staifstart 

uTitc(lo. 0), I 

writc(IO, *) 'nodc', node 
-, %Tite(IO, *)'uou', uou. %-o%ý. %-o%- 
. t%Titc(IO, *), Ucte. um, %V%", %. C%- 

-. %Titc(10, *)'uoe, uor., uce. ucr 
%%Titc(10, *)'uct`, uct. %inf. %inf 
%%Titc(10, *)'uov. uot 
%%Tite(10, *)'thetao! jhctao. 'pliid, phio 

i%Titc(10, *)'thetae. thetac, 'phie. phic 
i%Titc(10, *)'duocW, duodt 
uTitc(10, *)'ducV, dudý, (nodc) 

%%Tito(10, *)'coe. cos(thctao). 'sin!. sin(thctao) 
%iTite(10, *)'vel(nodc)'. vel(nodc) 
%%Titc(10, *) 

%%Tite(lo, *)'shearO'. shearO. 'shrmocr. shrmod 

%%Tite(10, *) W, rcyno. "oigpi'. bigpi 

%%ritc(10, *) 

endif 
cndif 

endif 
c bedtime 

close(10) 
close(g) 

return 
end 
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Figure A3.5. Input file, exl9. FDREAD: the standard FIDAP model of the backward 

facing step. 

INPUT FILE FOR BACKWARD FACING STEP - 
STANDARD fidap MODEL 

titic 
bfs - standard FIDAP modcl 
fi m cs h (2 - d, i ma.,. - 5jm ax-9) 
C. \p 
1011046 
c%: pj 
10 90 17 0 27 0 37 
points(eartcsian) 
1191-23 
239 143 
3391283 
4 171-22 
5 15 1-21 
635141 
733140.5 
831140 
9511280 
linc 
5463 
4164 
6733 
7834 
1244 
2363 
9963 
cdrivc 
13 13 
6889 
bcnodc(ux) 
151 
360 
680 
890 
3 10 
bcnode(u. %) 
150 
560 
680 
890 
3 10 
bcnode(kinctic) 
15 0. (X)3 
bcnode(dissipation) 
150.00364 
nuinbcr 
21 
elcmcnts(quad. nodcs=4. all. cntit)--channcl") 
clcmcnts(boundary, facc. entikN-*sidcs") 
56 
68 
89 
31 

cnd 
r1prep 
problcni(nonlincar, turbulcnt) 
v=ution(m%job) 
icnodc(u. %, constant-I.. cntity-*channcl") 
icnodc(kinctic, constant-0.003. cntit)-*channcl") 
icnode(dissipatiomconstant-0.00364. cntilý-*channcl") 
i-iscosit)-(k. c.. clip-l. c6. constant- I. Oc-3) 
solution(scgr-9W. cr-50(X), Cgs-5(XX). accf=0.5) 
ojAions(upwinding) 
cntit) (nanvc-"channcl". fluid) 
cntiVnamcm"sidcs". wall) 
rcnuniber 
end 
creatc(fisolv) 
end 
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Figure A3.6. Input file, tat2. FDREAD: the simple Coles'law model of the backward 

facing step. (This input file also served as andy. FDREAD, the enhanced Coles' law 

model of the backward facing step. ) 
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Figure A3.7. Algorithm flowchart, erasure. f. the simple Coles' law model of the 
backward facing step. (This flowchart also describes the enhanced Coles' law model of 

the backward facing step, circus. f - where circus. f differs from erasure. f, the flowchart 

outline is printed boldly for circus. f operations. ) 
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Figure A3.8. Subroutine listing, erasure. f. the simple Coles'law model of the backward 
facing step. 
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cn&f 
c writc(IO. 0)cay. cay(nodc). 'nocie. node. cpsil'. cpsiI 
c Rcýmolds number and big pic *so** 

M-no=(dcstny*dia*-tinf)Aisk 
if(rcyno. Ie. S000. )thcn 

z4done-abs((rc), no/425. )-I. ) 
bigpi=0.55*(I. -c. *(-0.243*sqrt(zedonc))-(0.298*/. cdonc))) 

else 
bigpi-0.55 

cridif 
C evaluate velocity at )--delta 
c delta forced to uall 
C counter to decide %hich %21 to use 

iRstarLILSO)thcn 
c *** set to default for first few passes 

'k al=0.0 
else 

if(wkýpIs. Ie. 5. )thcn 
c *** rclaminarization 

, tal-tvalfrcOwhypis 
else 

C 0*0 Colce law 
%, al-%%21frc*((Iog(%%, kN s)/%, oncam)+bcc . PI 

c +(2. sbigp)Aoncam) 
cndif 

C assign sign to Aclocityý remember top 
c where coords are rc%-crscd. so du/dy %-e 

if((node. eq. 20). or. (node. eq. 4 1). or. (nodc-eq. 62). or. 
C (node. eq-83). or. (node-eq. 104). or. (node. eq. 125). or. 
C (nodc. eq. 146). or. (node. oq. 167). or. (nodc. eq. I 88). or. 
c (node. eq. 209). or. (node. eq. 212). or. (node. eq. 249). or. 
C (node. eq. 286). or. (node. eq. 323). or. (node. eq. 360). or. 
c (node. eq. 3 97). or. (nodc. eq. 4 34). or. (node. eq. 47 1). or. 
c (nodc. eq. 508). or. (node. eq. 545). or. (nodc. eq. 582). or. 
c (nodc. eq. 619). or. (node. eq. 656). or. (nodc. eq. 693). or. 
C (nodc. eq. 730). or. (node. eq. 767). or. (nodc. eq. 804). or. 
c (node. eq. 84 1). or. (node. eq. 878). or. (node. eq. 915). or. 
c (node. eq. 952). or. (node. eq. 989). or. (node. eq. 1026). or. 
c (node. eq. 1063). or. (node. eq. I 100). or. (nodc. eq. I 137). or. 
c (nodc. eq. I 174). or. (nodc. eq. 121 1). or. (nodc. eq. 1249). or. 
c (node. eq. 1285). or. (node. eq. 1322). or. (nodc. cq. 1359). or. 
c (nodc. oq. 1396). or. (nodc. eq. 1433). or. (node. eq. 1470). or. 
C (node. eq. 1506))then 

bing--shearO 
-,, al=sign(%, al. bing) 

else 
%-al=sign(-*zl. shearO) 

endif 
cridif 
if((node. oq. 2). or. (nodc. eq. 20))thcn 

c *** protect inlet condition 
-. -Al-I. 0 

endif 
if((nodc. eq. 2). and. (idf. eq. 1))thcn 

I%Tite(9. *) 'stariv, start 
cridif 
if(start. ge. 7108)thcn 

-. %Tite(10. *)'node. nodc. ý-+'. %%h. % Is 
.P cndif 

c bedtime 
closc(IO) 
closc(9) 
return 
end 
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Figure A3.9. Subroutine listing, circus. f. the enhanced Coles' law model of the backward 

facing step. 
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Appendix A4. Calculated Solution Variables from the Enhanced Coles' 

Law Model of the Backward Facing Step., 

The following table lists the values of selected solution variables for the final 

iteration of the enhanced Coles'law model of the backward facing step. These values 

were calculated within the subroutine circus. f, whose workings are described in Sections 

5.3.4 and 5.3.5. 

Distance along 
Coles'line (m) 

Boundary layer 
thickness (m) 

Pressure 
gradient (N1m) 

Clauser's 
parameter 

Stress at 
wall (kg/ms2) 

Wake 
parameter 

0.24 0.245 0.78e-I 101298.9 O. Ile-6 5.0 
0.50 0.245 -0.78e-I 101298.9 -0.25e-5 5.0 
0.77 0.245 -0.78e-I 101298.9 -0.88e-5 5.0 
1.05 0.120 -0.74e-3 1.5 -0. l8e-4 1.4 
1.35 0.120 0.4le-2 -0.4 -0.26e-4 0.13e-7 
1.67 0.120 0.16e-1 -0.4 -0.32e-4 0. l3e-7 
2.01 0.120 0.28e-I -0.4 -0.36e-4 0.13e-7 
2.36 0.074 0.42e-I -0.4 -0.38e-4 0.1 3e-7 
2.73 0.074 0.53e- 1 -0.4 -0.37e-4 0.13e-7 
3.12 0.074 0.59e-1 -0.4 -0.34e-4 0.13c-7 
3.54 0.074 0.6le-1 -0.4 -0.28e-4 0. l3e-7 
3.97 0.074 0.55e-I -0.4 -0.18e-4 0. l3e-7 
4.43 0.074 0.55e- 1 -0.4 -0.67e-5 0. l3e-7 
4.91 0.074 0.55e-I -0.4 0.47e-5 0. l3e-7 
5.42 0.550 0.25e-I 414.6 0.15e-4 30.5 
5.96 0.550 0.15e-I 141.9 0.24e-4 17.5 
6.53 0.174 0.78e-2 16.5 0.29e-4 5.5 
7.13 0.174 0.44e-2 7.6 0.35e-4 3.5 
7.76 0.120 0.22e-2 2.2 0.4le-4 1.7 8.42 0.120 -0.47e-3 -0.4 0.48e-4 0. l3e-7 9.12 
9 86 

0.120 -0.28e-2 -0.4 0.54e-4 0.13e-7 
. 10.63 

0.120 
0 120 -0.65e-2 

-0 63 2 -0.4 0.57e-4 0. l3e-7 
11.45 . 0.120 . e- 

-0.8le-2 
-0.4 
-0.4 

0.59e-4 
0 60e-4 

0.1 3e-7 
0 1 3e-7 12.32 

23 13 
0.120 -0.64e-2 -0.4 

. 0.60e-4 . 0. l3e-7 
. 14.19 

0.120 
0 120 -0.74e-2 

-0 56 2 -0.4 0.60e-4 0. l3e-7 
15.20 . 0.120 . e- 

-0.67e-2 
-0.4 
-0.4 

0.6le-4 
0 6le-4 

0. l3e-7 
0 1 3e-7 16.27 

17.39 
0.120 
0 120 -0.57e-2 

-0 70 2 -0.4 
. 0.63e-4 . 0. l3e-7 

18.58 . 0.120 . e- 
-0.67e-2 

-0.4 
-0.4 

0.64e-4 
0.66e-4 

0.13e-7 
0 13e-7 19.83 0.120 -0.76e-2 -0.4 0.66e-4 . 0 l3e-7 21.14 0.120 -0.78e-2 -0.4 0.68e-4 . 0 13e-7 22.53 0.174 -0.85e-2 -0.4 0.67e-4 . 0 l3e-7 24.00 1 0.120 1 0.0 1 2.0 J 

_. 
0.69e-4 . 0.4 
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