
THE VIABILITY OF WEIBULL ANALYSIS OF 
SMALL SAMPLES IN PROCESS 

MANUFACTURING 

TAREQ ALI IBRAHIM ABUGHAZALEH 

A thesis submitted in partial fulfilment of 
the requirements of the University of Hertfordshire 

for the degree of Doctor of Philosophy 

The programme of research was carried out in the Department of Design, 
Technology & Management, Faculty of Engineering & Information Sciences, 

University of Hertfordshire 

August 2002 



ýtl 
r 

ýtr 

rr^r", ýr r 

l: .r 
ý' ý.: "' ýý1.: x. 1 º I. ýi ý.. ý. ý -ý I 

uJ.: -= ;: 
i ZJ i Lam...: , 4. iJ; e ý-= 

0 

('r-äLeý - tw '; 

In the name of 91Clah, 9k lost Gracious, Most 9klerc ftth 

Ohy Lord bath decreed that ye worship none but 9-Cim, and 
that ye be kind to parents. Whether one or both of them attain 
off age in thy qe,, say not to them a word of contempt, nor 
repeC them, but address them in terms of honour * Alnd, out 
of kindness, Cower to them the wing of humility, and say: ' My 
Lord! bestow on them thy Mercy even as they cherished me in 
chiiCdhood. J. 

Tie Holy Quran : A[-Isra' : 23 24 

This PhD is the bear fruit of my parents and my 
brother love, encouragement, precious support and 
sacrifice. Therefore, I dedicate this work to them as a 
mark of my gratitude, respect and thanks. 



Tareg Ali Abughazaleh 1 

ABSTRACT 

This research deals with some Statistical Quality Control (SQC) methods, which are 

used in quality testing. It investigates the problem encountered with statistical process 

control (SPC) tools when small sample sizes are used. Small sample size testing is a 

new area of concern especially when using expensive (or large) products, which are 

produced in small batches (low volume production). 

Critical literature review and analysis of current technologies and methods in SPC 

with small samples testing failed to show a conformance with conventional SPC 

techniques, as the confidence limits for averages and standard deviation are too wide. 

Therefore, using such sizes will provide unsecured results with a lack in accuracy. 

The current research demonstrates such problems in manufacturing by using 

examples, in order to show the lack and the difficulties faced with conventional SPC 

tools (control charts). Weibull distribution has always shown a clear and acceptable 

prediction of failure and life behaviour with small sample size batches. Using such 

distribution enables the accuracy needed with small sample size to be obtained. With 

small sample control charts generate inaccurate confidence limits, which are low. On 

the contrary, Weibull theory suggests that using small samples enable achievement of 

accurate confidence limits. This research highlights these two aspects and explains 

their features in more depth. An outline of the overall problem and solution point out 

success of Weibull analysis when Weibull distribution is modified to overcome the 

problems encountered when small sample sizes are used. 

This work shows the viability of Weibull distribution to be used as a quality tool and 

construct new control charts, which will provide accurate result and detect non- 

conformance and variability with the use of small sample sizes. Therefore, the new 

proposed Weibull deduction control charts shows a successful replacement of the 

conventional control chart, and these new charts will compensate the errors in quality 
testing when using small size samples. 
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CHAPTER 1 

INTRODUCTION 

1.0 CHAPTER ONE REVIEW 

Chapter 1j 

The drive for quality improvement has lead to the use of Statistical Process Control 

(SPC) techniques to monitor and maintain low reject levels. For high scale production 

large samples can be used to measure with a high level of confidence. 

When low volumes is required, or processes with high piece cost, it can be expensive 

to collect large samples for analysis. Statistical analysis will always offer higher 

confidence levels as samples sizes increase. 

This research is based on investigating the stability of Weibull analysis to analyse 

small samples. In particular, how the use of small samples (<10) can act as a 

predictive tool in low volume manufacturing. The principal aim of this research is to 

establish how quality and reliability techniques may be combined to offer feasible 

analysis for the statistical control in manufacturing processes. 



-- 7 

Tareq Ali Abughazaleh Chapter 13 

The above definitions show that quality is linked directly to customers or the end 

users. Therefore, it is the quality provider's mission to satisfy customer need and 

ensure that the customer is enchanted by the product or service provided. 

Unmitigated quality may be achieved when the product or service exceeds customer 

expectation. This technique may be considered as every establishment current goal 

due to the globalisation of the market and the tough competition, which exist in the 

world industries and services. In the ordinary situation in an industry, the gap between 

the customer satisfaction -or expectation- and the product - or services - reflects the 

quality measurement scale. The gap is inversely proportional to the quality scale, in 

other words, when the gap scale is large it means that the quality standards are low, 

and if the gap is small the quality characteristics are high. This Situation is 

demonstrated in Figure 1: 1. 

Product or 
Service 

Target 

1 
Variation of 
customer 

satisfaction 

------- -Quality Measure 
Reality 

Variation of the 
product or 0 

service 

Figure 1: 1 - Quality Scale 

Customer Satisfaction & 
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Ideally, the product or service variations should exceed the customer expectation in 

order to obtain unmitigated quality, which is shown in figure 1: 2. Due to such facts, 

the reality of a product or service should equal to the target that the customer is 

expecting in the item in which the customers' money will be invested. For that reason, 

it can be argued that a company should set its goal to exceed the customer needs and 

expectations, which will grant the company a world-class quality characteristic. 

Customer Satisfaction & 
Expectation 

Process or 
Service 

ri Goal 

Variation of 
customer 

satisfaction 

Variation of 
process or 

service 

Quality Measure 

Figure 1: 2 - Unmitigated Quality. 

As mentioned above, different related avenues can reach optimum quality; and one of 

these avenues is by using statistics. Statistical techniques and methodologies are 

vitally needed to establish the new gaols of quality. Two of the original and most 

famous authors on the subject of statistical methods applied to quality management 

are Dr. W. Edward Deming and Dr. Walter Shewhart. In their book, Statistical 

Method for the viewpoint of Quality Control 5, they wrote: "The long-range 
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contribution of statistics depends not so much upon getting a lot of highly trained 

statisticians into industry as it does on creating a statistically minded generation of 

physicists, chemists, engineers and others who will in any way have a hand in 

developing production processes of tomorrow". This phrase was written in 1939, and 

it can obviously be true today. Total Quality Management (TQM) is concerned with 

identifying customer requirements and tries to meet them based on a defined quality 

approach. This requires three basic management essentials, which are a good quality 

management system, tools such as Statistical Process Control (SPC) and teamwork. 

Statistical Process Control (SPC) methods, affirmed with strong management 

commitment in a good establishment provides objective means of controlling quality 

in any process or service. SPC is not only a tool, but also a strategy for reducing 

variability, which is the principal concern in quality problems. Statistics can be 

gathered by studying either all the values associated with a process (population) or 

only a portion of the values (sample). Therefore, it is understood that a sample is a 

subset of the population. In SPC, numbers and information gathered will structure the 

bases of a managerial decision and action. Data recording is a basic element of a 

comprehensive quality framework. SPC tools vary, but there are some common tools, 

which may be applied to explain fully and involve maximum use of data. These 

simple tools offer the organisation an uncomplicated method of collecting data, 

presenting and analyse. 
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1.1.2 - Reliability 

Reliability is an essential aspect of both product and process design. Sophisticated 

equipment used today in such areas as transportation, communication, and medicine 

requires high reliability. High reliability can also provide a competitive advantage for 

many consumer goods. As the overall quality of products continues to improve, 

consumers expect higher reliability with each purchase; they are simply not satisfied 

with products that fail unexpectedly. However, the increased complexity of modern 

products makes high reliability more difficult to achieve. Likewise in manufacturing, 

the increased use of automation, complexity of machines, low profit margins, and 

time-based competitiveness make reliability in production processes a critical issue 

for survival of the business. 

Reliability can be generally defined as "the probability that an item will fail over 

given time ". However, the probability distribution of failures is usually a more 

convenient figure to use in reliability computations. Weibull distribution can be an 

effective distribution to be used in order to calculate reliability and predict failures. 

One of the principal advantages of Weibull is the unique method by which handles 

distributions. This approach allows for predictions to be made with small sample 

sizes. Unfortunately, the theory is based on a finite lower value with a defined upper 

limit. Therefore, it is not a direct comparison to SPC that bases analysis on first and 

second order moments, e. g. µ and a. 



Tareq Ali Abughazaleh Chapter 17 

1.2 SMALL SAMPLE SIZE CONSEQUENCES ON PRODUCTION 

INSPECTION 

Inspection is an imperative technique to check the quality standards that have been set 

to attain the elite quality required to fulfil customer satisfaction. Inspection can be a 

useful way to examine the behaviour of a process and detect the variation that may 

occur within the process. Inspection can be made on the whole production lot, and at 

that time is called 100% inspection, as every item will be thoroughly checked. Such a 

technique is a time consuming procedure. 

Sample inspection is considered a more effective and efficient way to inspect 

variation or non-conformance of a process. Thus, many factors affect such techniques, 

it is considered to be a modern method to detect default and assure quality. Sampling 

inspection should submit to different guidelines, which are6: 

I. Sample should be rational - Sample should reflect the population 

behaviour, a chosen sample ought to be homogeneous, as the non- 

conformance should be clear and appear between samples, while it need 

not be noticed within each sample. By this principle, spotting deviation 

within the process across a certain time period can be precisely predicted 

by mathematical formulas. 

II. Sample size should be diminutive - as the size of a sample may be 

proportional to some financial aspects. Many managerial opinions support 

the idea of having small sample size always. The sample size is important 

when financial criteria are involved. Small sample are preferable specially 

when low volume size, and highly cost product are being inspected. If the 
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inspection involve destructive testing the a company can not risk testing 

large size sample due to the financial impact, which will cause the retail 

price to increase and the competitive virtue will decrease. 

III. Sampling frequency (rate of recurrence) - Using large sample size 

frequently with short time period lags will be desirable for inspectors to 

maintain high quality standards and detect every variation, which may 

occur in the process. But due to economical reasons this behaviour cannot 

be useful and cost effective. For that reason, a balance should be imposed 

between the frequency of sampling and the cost of quality needed. 

Practically, this issue is determined by the experience of the inspector and 

the quality designer. 

Typically, small size samples are desirable, as sample size has an economical impact. 

The breakeven point is the standard of quality required to achieve customer 

expectations. Practically, it was found that a sample size of 30 could achieve a 

sensitive detection for non-conformance7. The sample size of 30 could be still 

considered as a large figure in such manufacturing venues such as defence and space 

industry, as the cost of the product is extremely high and high quality and reliability is 

essentially needed when risk should be minimised. 

As a result of the above-mentioned factors, this research has taken reducing the 

sample size accompanied with obtaining a sensitive inspection technique as a main 

goal to be accomplished. 
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1.3 GENERAL DESCRIPTION OF THE CONTRADICTING OUTCOMES 

BETWEEN SPC AND WEIBULL ANALYSIS 

Recent global competitiveness has made companies look for a new strategy to 

increase their profit, gain market reputation, and strengthen their industry. Quality 

control (SPC) and reliability can ensure these goals for any company if they are used 

in a correct manner; they are regarded as effective tools when large sample size 

(n>50) is being tested. The problems is that with small samples, which means when a 

high value low volume is being manufactured- such as military, satellite, and medical 

parts, and normally these parts have an expensive financial value. Within this type of 

manufacturing, safety and life cycle computation is the most vital element to ensure 

the success of such products. Using the conventional SPC control charts does not 

ensure the detection of variability and non-conformity due to sample size restrictions. 

Weibull distribution has always shown a clear and acceptable prediction of failure and 

life behaviour with small sample size batches. Using such distribution enables the 

accuracy needed with small sample size to be obtained8. While, on small samples SPC 

Charts generate inaccurate confidence limits, which are low. Additionally, Weibull 

theory suggests that using small samples enable achievement of accurate confidence 

limits. 

Small samples testing failed to show a conformance with conventional SPC 

techniques, as the confidence limits for averages and standard deviation are 

considered to be too wide. Hence, using such sizes will provide unsecured results with 

a lack in accuracy. 
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Therefore, in this research a new idea will be investigated and examined to use a 

reliability model such as Weibull to be used as a Statistical Process Control Model for 

the expensive, low volume production. However, to achieve this, the difference 

between their analyses must be addressed. 
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1.4 CURRENT PHD RESEARCH AIMS AND OBJECTIVES 

Chapter 1 11 

This research concentrates on quality and reliability methods, which are used in 

quality testing. It will investigate the potential problems encountered with Statistical 

Process Control (SPC) tools when small sample sizes are used. Small sample size 

testing is a new area of concern especially when using expensive products that are 

produced in small batches (low volume production). 

These stated concerns are demonstrated in problems with respect to manufacturing, in 

order to show the lack and the difficulties faced with conventional SPC tools (control 

charts). The examples used are dimensional parameters of products, and failure rates. 

Subsequently, the research hypothesis is: 

It is suggested that remodelling small Weibull samples to accommodate 

populations will produce data suitable for measuring non-conformance. 

To examine the above hypothesis the consecutive aim and objectives are established. 

Aim: 

I. To identify how small samples affect statistical analysis to monitor 

processes with the use of Weibull data. 

II. To propose a method of using Weibull analysis for statistical control of 

low volume processes. 
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Obiectives: 

Chapter 11? 

I. To establish the principal limitations of small samples for process control. 

II. To determine the relationship of Weibull for controlling the process. 

III. To develop a Weibull model for the process. 

IV. To generate a charting process control with small samples. 
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1.5 THESIS LAYOUT 

Chapter 1: Introduction. 

Chapter 2: Critical literature review of SPC, Control charts, Weibull parameters with 

small samples. 

Chapter 3: Methodology to analyse the problem and set new ways to achieve a 

solution 

Chapter 4: Primary Investigation in Shewhart control charts and its limitations, and 

Weibull analysis when small sample sizes are adopted. 

Chapter 5: Modelling new control charts based on Weibull distribution, which will 

overcome the problem encountered with small sample size use. 

Chapter 6: Discussion for the main finding and results. 

Chapter 7: Conclusion, Recommendations and Future Work. 
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1.6 CHAPTER ONE CONCLUSION 

This chapter has introduced the impact of using small sample size in inspection. It 

demonstrated the important incongruity between SPC and Weibull analysis outcomes. 

Also, it has addressed a clear understanding of the problems associated with using 

small sample size and obtaining a suitable sensitivity to detect variations. 

Chapter one has given a general overview of the importance of quality and reliability 

principles and methods in a manufacturing environment. It has also explained the 

research aims and objectives. A brief layout of the thesis was explained in a logical 

manner to test the hypothesis set to tackle such problem. 
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CHAPTER 2 

LITERATURE REVIEW 

2.0 CHAPTER TWO REVIEW 

Chapter 2 15 

In order to have a clear view and understanding to the problem encountered with 

small samples size, a comprehensive review to present and past research will be 

introduce and critically present each idea associated with small sample size problem 

in statistical quality analysis. 
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2.1 HISTORICAL DEVELOPMENT OF QUALITY 

Chapter 2 16 

Quality is an ancient idea developed along with human society maturity across the 

years. It can be clearly seen that the old civilisations used Excellence as a parameter 

of their progress in providing good life standards for its nations. Going backward 

3000 years B. C., it can be evidently noticed that the ancient Egyptian civilisation used 

measurement instrumentations to maintain and inspect the dimension of their carving 

in walls, pyramids, and temples. Therefore, such procedure made the ancient 

Egyptians succeed in their work and left their monuments as a remarkable print in the 

history and undoubtedly proof of their Excellence, superb development for human 

kind luxury and promise of human capabilities. 

During the Middle Ages in Europe, craftsmen were totally skilled and able to 

manufacture the whole product, to satisfy definite purpose of the customer. However, 

in the middle of the 18th century, Honore Le Blanc, a French gunsmith, was the first to 

person to develop a system for manufacturing muskets to a standard pattern using 

interchangeable parts9. Due to this development, products became more complex and 

hard to be manufactured by one person. Therefore, the idea of interchangeable parts 

dictated a close look at standards and the overall inspection for the finished product. 

Quality as a terminology flourished at the beginning of the twentieth century. 

Especially, when Dr. William A. Shewhart set, at Bell telephone Laboratories in 

192510, new statistical charts to monitor and control product variability and standard 

non-conformity. Dr. Shewhart stated " The long range contribution of statistics 

depends not so much upon getting a lot of highly trained statisticians into industry as 
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it does on others who will in any way have a hand in developing production processes 

of tomorrow"". It can be clearly seen; Dr Shewhart believed that statistical techniques 

and methodologies are vitally needed to establish the goals of quality. Also F. Dodge 

and H. G. Roming developed a new methods based on sampling inspection and both of 

the above published the first tables constraining such method to check quality and 

standards, based on acceptance sampling which may assure 100% inspection12. 

Afterwards, many people started to research in the field of quality and they developed 

many philosophies in quality and techniques to examine quality standards and 

approve them. 

In order to understand quality as a concept and methodology, there should be a clear 

consideration of the quality definitions, philosophises, and techniques. Such 

recognition needs to be explored through a thorough analysis of the previous people 

who stated their opinion, depending on their knowledge and experience, and 

developed a unique understanding to the philosophy of quality. Furthermore, the set 

of standards play an influential role in easing the understanding of quality and the way 

it should be applied to each area of use. 

Quality became one of the concerns that occupy manager activities, as quality is 

associated with money; managers tried to reduce quality cost to gain profit, on the 

contrary, quality should reach a certain standard to satisfy customer expectations and 

to ensure a good demand for the product or service provided. 
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2.2 A COMPARISON IN THE QUALITY PHILOSOPHY DEVELOPMENT 

2.2.1 Shewhart Quality Philosophy 

It is undoubted that Dr. W. Shewhart led the way to modern quality control 13. He was 

the first to adopt statistical methods to develop a method to control quality. Shewhart 

established a statistical chart to constrain quality standards; hence these charts became 

the first tool to be used in Bell Laboratories and other companies afterward to manage 

quality and to monitor the behaviour of a process, in order to detect variability and 

distortions within a process. Shewhart control charts were the foundation of quality 

assurance. 

Shewhart, using a literal definition of quality (Latin qualitas, from qualis, meaning 

"how constituted"), defined two common aspects of quality14: 

1. Objective quality - which handles the quality of an item as an objective 

reality, without the influence of the human; 

2. Subjective quality - which handles the quality of a thing relative to what the 

human thinks, feels, or senses as a result of the objective reality. 

Shewhart believed that there is an objective state in quality control, which allows a 

possible prediction of quality within limits even though the sources of variability are 

not clear. Based on such beliefs, it is feasible to achieve the following aspects: 

1. Decreasing the cost of inspection; 

2. Cutback the cost of rejection; 

3. Attainment of maximum benefits from quantity production; 
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4. Achievement of uniform quality even though the inspection test is 

destructive; 

5. Reduction in tolerance limits, where quality measurement is indirect. 

Shewhart was widely recognised afterwards as the pioneer of quality control. In May 

1932, he was invited to England to attend a meeting at the British Standard Institute 

with representatives of manufacturing industries. Shewhart's developments in the 

field of statistical quality control, and its practical applications and benefits to 

industry were examined. 

The meeting gave rise to a committee, which responsible for producing a report on the 

application of statistical methods in standardisation and specification of quality. In 

1935, after lots of discussions, the committee produced the famous BS60015, based on 

the comments of Shewhart and the work of Dr. Egon Pearson. 

It can be seen that Dr. Shewhart had left a remarkable fingerprint in the quality 

control field, due to his astonishing use of statistics in quality, and his development of 

quality control charts. Despite some modern opinions, which consider Shewhart's 

methods to be orthodoxy, it is indeed the foundation of quality control science. 
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2.2.2 Deming Quality Philosophy 

Chapter 2 20 

Statistician W. Edward Deming never defined or described quality in a precise 

manner. Deming stated "A product or service possesses quality if it helps somebody 

and enjoys a good and sustainable market"16. The Deming philosophy focuses on 

bringing about improvements in product and service quality by reducing uncertainty 

and variability in design and manufacturing process. In Deming's point of view, 

variation is the chief culprit of poor quality. 

Deming established 14 points, which improve the quality and reduce variation. These 

14 points are 17: 

1. Create and publish to all employees a statement of the aims and purposes of the 

company. The management must demonstrate constantly their commitment to 

this statement. 

2. Learn the new philosophy to top management, and everyone. 

3. Understand the purpose of inspection, for improvement of processes, and 

reduction of cost. 

4. End the practice of awarding business on the basis of price tag alone. 

5. Improve constantly and forever the system of production and service. 

6. Institute training. 

7. Teach and institute leadership. 

8. Drive out fear. Create trust. Create a climate for innovation. 

9. Optimise toward the aims and purposes of the company efforts of teams, 

groups, and staff areas. 

10. Eliminate exhortations for the work force. 
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11. a) Eliminate numerical quotas for production. Instead, learn methods for 

improvement. 

b) Eliminate MBO (management by objective). Instead, learn capabilities of 

processes. 

12. Remove barriers that rob people of pride of workmanship. 

13. Encourage education and self-improvement for everyone. 

14. Take action to accomplish the transformation. 

Deming's philosophy and his 14 points caused some confusion and misunderstanding 

among business people, because Deming did not provide a clear rationale or 

foundation for them. As a comparison, Shewhart used the idea of technical quality to 

encourage adopting his philosophy; on the other hand, Deming concentrated on the 

development of the concept of quality as an economical philosophy, which was hard 

for the Americans to adopt, as they did not expect the competition of other countries, 

and they did not associate customer needs as a matter of profitability. 

After the Second World War there was an economic recession in many American 

companies, so as a result of this recession Deming was no longer welcome in 

American industry. In 1951, he went to Japan upon an invitation by JUSE (Japanese 

Union of Scientists and Engineers), Deming held seminars and training courses for 

Japanese industry to assist the languished Japanese industry in statistical questions 

during its process of reconstruction. Deming focused on quality as a strategic 

economical goal, which could enable Japanese industry to compete in global 

markets 18 
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The results of Deming philosophy appeared clearly when Japanese industries became 

a competitor in the world market, while the US industry began to lose share against 

Japanese industry during the 1960's, due to the precise significance to quality in the 

Japanese product19 

Deming has proposed a "chain reaction", which links quality, productivity, market 

share, and jobs. This chain is illustrated in figure 2: 1. 

1 

! ---- ,: Improve Quality 

Costs decrease as less 

rework, fewer mistakes, 
minimum delays, better 

use of machines and 
materials 

Provide more jobs for the society 

Ljý I 
y 

- 

- 
- 

Stay in Business 

\ 

Capture 
the 

market 
with 

bette r 
quality 

and 
lower 
price 

Prod u ct vt Increases 

Figure 2: 1 - Deming quality chain reaction. 
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2.2.3 The Juran Philosophy 

Chapter 2 23 

In the 1920s, Joseph Juran initiated the development of statistical methods for quality 

in Western Electric Corporation. Juran spent his working life as a corporate industrial 

engineer involved with quality concepts, analysis and applications. In 1951, Juran 

published a book entitled "Quality Control Handbook". This handbook became later 

one of the most basic references in quality science. Juran improved quality by 

involving with the existing systems, which were common to the American managers, 

differing from Deming, who adopted the methodology of major cultural changing in 

the enterprise to improve its quality. 

Juran noticed that in any organisation employees at each level have their own 

languages20, manager's language is dollars, workers speak the language of things, 

while middle management must be able to speak both languages and convert between 

dollars and things. In order to draw top management attention, quality issues must be 

in the language of these people (dollars). Therefore, Juran initiated the use of quality 

accounting and analysis to get top manager's attention on quality problems. While at 

the worker's level, Juran focused on increasing conformance to specification and 

rejecting the defect by the help of statistical tools for analysis. Juran's philosophy was 

adopted by the existing American organisations, thus it was easier than Deming 

philosophy, who believed that all the people in the enterprise should speak in the 

common language of Statistics. 

Quality from Juran's point of view is simply summarised as "fitness for use"2. Juran 

defines quality as "product performance that results in customer satisfaction", in other 
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words, freedom from product deficiencies, which avoid customer dissatisfaction. 

Juran tackled quality from four aspects, which are: 

1. Quality of design- that concentrates on market investigation, and items or 

service concept. 

2. Quality of conformance- that contains technology, staff involved and 

management. 

3. Availability- that focuses on reliability, maintainability and logistical support. 

4. Field service- that comprises promptness, competence and integrity. 

Juran's prescriptions focus on three major processes, called the Quality Trilogy, which 

are13: (refer to Table 2: 1 for details) 

1. Quality planning- the process of preparing to meet quality gaols. 

2. Quality control- the process of meeting quality gaols during operations. 

3. Quality improvement - the process of breaking through to unprecedented 

levels of performance. 

Quality planning Quality control Quality improvement 
Determine who the Evaluate actual product Establish the infrastructure 
customer are performance 

Determine the customer Compare actual Identify the improvement 
needs performance to product projects 

gaols 

Develop product feature to Act on the difference Establish project teams 
satisfy customer needs 

Develop processes able to Provide the team with 
produce the product resources, training, and 
feature motivation. 

Transfer the plans to the Diagnose the cause, and 
operating forces stimulate remedies 

Table 2: 1 - Juran Trilogy of quality 
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Many of the ideas which Deming and Juran came up with, are similar so there is a 

closeness in their philosophy to a reasonable extent; as an example: Juran and Deming 

concentrated on top management commitment to improve the quality in their 

organisations. However, it is a fact that Juran and Deming were different in many 

issues in the case of Quality improvement. Juran established a well-specified 

mechanism to improve quality. His mechanism includes proving the urgency of 

quality improvement, specifying detailed projects for improvement, diagnoses of 

dissatisfactory causes affecting quality, and providing control to maintain the 

improvement of quality. Deming stated that management ought to drive out fear, on 

the contrary, Juran thought that Deming is wrong is this statement, and he mentioned 

that " Fear can bring out the best in people"21. 
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2.2.4 The Crosby Philosophy 

Chapter 2 26 

In 1979, Philip Crosby established Philip Crosby Associates, it was founded to 

develop quality and provide training programs and constancy. Crosby worked in 

American industry and was involved with quality adoption within various 

establishments. He was the corporate vice president for quality at International 

Telephone and Telegraph (ITT). Crosby wrote many books concerned with quality 

and management, such as "Quality is free" which was his first published book. 

Crosby's core of quality philosophy was based on two major concepts, which are: 

(a) Absolutes of quality management; 

(b) Basic elements of improvements. 

These two concepts consist of many points such as22: 

1. Quality means conformance to requirements, not elegance; 

2. There is no such thing as a quality problem, as quality originates in functional 

departments, not in the quality department; 

3. There is no such thing as the economics of quality; doing the job right first 

time is always cheaper; 

4. The only performance measurement is the cost of quality, which is the expense 

of non-conformance; 

5. The only performance standard is "Zero Defects (ZD)". 

Crosby's Zero defects (ZD) methodology was a performance standard not a 

motivational programme. The theme of ZD is do it right the first time, which means 

concentrating on preventing defects rather just finding and fixing them. 
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It can be seen that quality can be looked after from different angles, and each one can 

have a significantly different approach by implementing organisational changes to 

achieve quality. Hence, quality is understood to be everyone's responsibility in an 

organisation. 

Juran's philosophy was to provide changes within the current system, as quality is 

fitness for use, and his quality trilogy provides this concept in the system, while 

Deming's philosophy was based on improving products and services by reducing 

uncertainty and variation. Conversely, Crosby's philosophy was based on behaviour 

changes rather than using statistical techniques to maintain a quality standard within 

an organisation, which also require a change in corporate culture and attitude. 

A unique interesting issue in Crosby's philosophy is the detail he provided about how 

organisations stated the enhanced features of managing quality. Moreover, Crosby 

focused in his philosophy on the methodology of managerial thinking toward quality. 

He advised mangers to take as their duty shaping and adopting the best methods, 

which is appropriate to their organisations based on the organisation's individual 

situation, due to some implementation problems occurring when some organisation 

tried to adopt Deming philosophy23 
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2.2.5 The Modern Quality Philosophy 

Chapter 2 28 

Due to the importance of quality in daily life in raising the standard of living and 

ensure a luxurious environment for mankind to enjoy their life, people were attracted 

to quality. Quality has developed dramatically in the last century. Experts who 

researched in the field of quality have provided many philosophies. Despite the 

difference in their philosophies, all of them agreed that quality should be a 

commitment to everyone in the enterprise. For this reason, many authors tried to use 

this idea to manage the application of quality and the methods to be implemented; in 

order to have state of the art quality. 

Competition was the driving factor to enhance quality and adopt new strategies to 

establish a quality environment, which produces a quality product or service that 

satisfies customer needs, and achieve profit and reputation for the survival of the 

company in turbulent markets. 

Many scrupulous people in the field of quality tried to develop a comprehensive 

strategy to apply the knowledge provided by previous researches. Despite the 

differences and the nature of each company's activity many developed new ideas 

based on the experience, which they gained across the years working in quality. For 

example, Armand V. Feigenbaum was researching in measuring conformance to 

technical specifications. He set the concept of Total Quality Management (TQM) 24. 

Feigenbaum defined TQM as "Total Quality is an effective system for integrating the 

quality-development, quality-maintenance, and quality improvement effort of various 

groups in an organisation so as to enable marketing, engineering, production, and 
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service at the most economical levels which allow for full customer satisfaction"4. 

Therefore, Feigenbaum perceived quality as a comprehensive strategic business tool, 

which required everyone's involvement within the organisation. His strategy was 

based on three main pillars, which are: quality leadership, modem quality technology 

and organisational commitment. His strategy argued continuous management 

improvement based on realistic planning not only reducing the error or failure. Also, 

new methods of evaluating the conformity should be implemented in order to satisfy 

customers. Finally, training and motivation for the whole organisation's workers 

should be continuously and constantly provided, to ensure quality enhancement in 

each aspect of the company's activity, and to establish a comprehensive commitment 

in each person. 

Dr. Kaoru Ishikawa was also a pioneer in Japanese quality strategies and methods. He 

encouraged the ideas of Total Quality Control (TQC), which involves refining the 

application of different statistical tools to quality problem25. Ishikawa understood that 

every individual in the organisation ought to participate with quality monitoring, 

improvement, and quality problem solving. Dr. Ishikawa took a large part in shaping 

the Japanese quality movement26. The Japanese Quality characteristics were 

emphasised by Ishikawa aspects, which gives Japanese quality a different scope to 

that of western countries. These aspects can be summarised as follows: Quality begins 

and ends with education and training, quality should be associated with customer 

requirements, the ideal state of quality occurs when inspection is no longer necessary, 

roots of cause should be removed not the symptoms, differentiation between means 

and objectives, quality should be established first by which long term profit will 

results, marketing the quality nationwide, and the majority of the company problems 
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(95%) can be solved by using simple statistical tools, therefore, statistical methods 

should be utilized27. 

Dr. Ishikawa used the term "Company Worldwide"28 to relate to the principles of 

Feigenbaum TQC29, which relate to the Japanese industrial environment. Ishikawa 

stated that every Japanese company wishing to transform to company Worldwide 

quality control status should adopt and train all its employees on Statistical Quality 

Control (SOC). Some researchers such as Barrie G. Dale draw a conclusion through 

their study of Japanese organisations that Ishikawa's definition of company 

Worldwide is only manipulating semantics, in other words, Japanese effort to enhance 

the quality can be described by Feigenbaum's western definition of Total Quality 

Control (TQC)30 

It is clearly seen that quality methods are in continuous improvement due to the rapid 

change in today's industry. Many scientists and researchers are trying to develop new 

models to fill the gaps, which might occur in industry. Despite the common view of 

Deming, Juran and Crosby regarding quality, each of them chooses a different 

ideology to implement quality. Quality for all of them needs commitment, but 

commitment varies, for example, Deming stressed on management commitment as 

managers dictate all the quality specifications and monitor the behaviour of strategy 

within the organisation, on the contrary, Ishikawa states that quality is like a process 

and every individual in the organisation is working in counted as a part of this 

process, so every one is committed and responsible for quality. For quality to succeed 

in an organisation, the organisation should set its gaols based on the behaviour of it 

nature in the market, then it should adopt the appropriate strategy which fits such 
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nature and gaols. Moreover, managers need to fully digest the diversities and 

resemblances in the most important quality philosophies and build up a quality 

management approach tailored to their organisations. 

As seen previously, quality definition is a complex endeavour; it varies depending on 

the strategy and ideology adopted. It is the author's opinion that quality, in today's 

ideology, is not only achieving customer needs and expectation, it is "getting on target 

with minimum variance". Specification is the aid to achieve quality; hence, 

productivity is doing something efficiently, while quality is doing the right thing 

efficiently. Achieving quality needs a high level of commitment for everyone 

involved in producing the item or service. 
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2.3 QUALITY STANDARDS AND AWARDS 

Chapter 2 32 

Due to the enormous contribution to quality by different people across the world, 

many diverse philosophies and methodologies were present. As world markets 

became more competitive and the technology reached point where the world became 

like a small village, the urgency of regulating the inter-changeability crop up. Today 

momentum of technological advance makes conventional technical agreements 

between manufacturers hard to formulate and keep, hence barriers were established 

and the idea of having a common ground of understanding was obvious 31 

A standard is simply a decision concerning materials, performance, capability, 

arrangement, condition, action, methods, procedures, formalities, responsibility, 

concept, ... etc32. Therefore, many institutes tried to form their own standards to 

improve the efficiency and provide a high level of production or service. The main 

aims of standardisation can be summarised in the following points: overall economy 

and reduction of cost that is associated with a good product or service, protection of 

customer interests and safety, provision of a means of expression and 

communication 33. British Standard institution (BSI)- founded in 1901- was the 

pioneer in the standardisation field. Also other standards we established such as the 

European committee for standardisation (CEN), International Standards Organisation 

(ISO), Japanese Industrial Standards (JIS). 

At 1978, BSI initiated setting guidelines to standardise a quality management system, 

this system was issued and published in 1979 under the code of BS585034. BS5750 is 

considered the leading standard for quality management; it is not a product 
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specification, nor a guarantee of product quality. BS5750 splits into four main parts 

which are: 

1. BS5750 Part 0 (equivalent to IS09000 & EN29000) - is a guide to the 

selection of appropriate parts of the overall quality management system and 

its elements within the standard. 

2. BS5750 Part 1 (equivalent to IS09001 & EN29001) - is related to quality 

specifications for design, development, production installation and services. 

3. BS5750 Part 2 (equivalent to IS09002 & EN29002) - sets out requirements 

where a firm is manufacturing goods or offering a service to a published 

specification or to the customer's specification. 

4. BS5750 Part 3 (equivalent to IS09003 & EN29003) - specifies the quality 

system to be used in final inspection and test procedure. 

In order to enhance the use of standards and market quality improvement to ensure a 

better customer oriented industry, many awards have been launched to boost the 

awareness of quality importance. There are two main prestigious quality awards, 

which are the Deming Prize Award for industrial Achievement, and the Malcolm 

Baldrige award. 

In June 1951, less than a year after Deming's first lecture on quality control in Tokyo, 

Japan instituted the Deming Prize for industrial achievement35. This prize was based 

on Deming 14 points, which epitomize a challenge to leadership in quality assurance. 

Many Japanese companies achieved excellence by adopting Deming's strategy and 

gaining his prize for industrial achievements. 
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In the United States, it took 30 years, until 1981, before an equivalent American 

incentive, named for the late Secretary of Commerce, Malcolm Baldrige, was 

established to encourage higher American quality, then known as Malcolm Baldrige 

National Quality Award (MBNQA). The MBNQA criteria define key practices in 

categories of leadership, customer and market focus, strategic planning, human 

resource development, and process analysis. 

Deming was not an advocate of the Baldrige award36. The competitive nature of the 

Baldrige award is fundamentally at odds with Deming's methodology. Nevertheless, 

most of the Deming's principles are implicitly associated with the Baldrige award 

criteria. A good example for such fact is symbolised by Zytec - an electronic 

corporation in the US, Zytec adopted the 14 points of Deming to improve their quality 

system, and as a result of such improvement they succeeded in obtaining the 

MBNQA6. 

It is clearly seen that quality awards have a huge influence on quality improvement, as 

they stimulate the companies to reach an acceptable level of quality and customer 

satisfaction. 
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2.4 QUALITY DIMENSIONS 

Chapter 2 35 

Quality of a product may be measured in different ways and can be evaluated based 

on many point of views regarding many conceptual understandings of the criteria. 

Garvin set comprehensive key elements to evaluate quality37. These keys are called 

Dimensions of quality, they are: 

1. Performance (will the product do the intended job? ). 

2. Reliability (how often does the product fail? ). 

3. Durability (how long does the product last? ). 

4. Serviceability (how easy is it to repair the product? ). 

5. Aesthetics (what does the product look like? ). 

6. Features (what does the product do? ). 

7. Perceived Quality (what is the reputation of the product? ). 

8. Conformance to Standards (is the product made exactly as the designer 

intended? ). 
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2.5 THE ECONOMICS OF QUALITY 

The quality for a product or a service has a cost value attached to it. The cost of 

quality will influence the profit margin; therefore, the cost of quality contributes to the 

overall profit of the company. In order to establish a clear view on quality cost, figure 

2: 2 and 2: 3 will illustrates the idea behind the quality cost38. 

Figure 2: 2 - Quality Economics 

Figure 2: 2 shows the cost of quality versus the return of quality; from this figure it can 

be seen there are various regions that a company can operate in. These regions will 

reflect the amount of profit earned by the company. As seen in figure 2: 2, equilibrium 

should be established between the cost of quality and the return of quality in order to 

reach a profitable breakeven point. This point is point B in the above figure, which 

will guarantee high level of quality accompanied with high return. 
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Figure 2: 3 - Total Cost of Quality 

Figure 2: 3 illustrates the relationship between total cost, quality control cost and scrap 

cost. The total cost is a function of quality cost and cost of scrap, rework, and loss of 

goodwill. However, the magnitude of the total cost is a combination of both quality 

control cost plus the cost of losses. Within the quality level there is a point of 

minimum cost where the optimum operating conditions (specification) are present. 

Therefore, failures and not reaching specifications within the product or the 

manufacturing process may result in money waste and quality disappointment, which 

will be reflected on the overall cost and profit. 
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2.6 STATISTICAL CONTROL CHARTS 

Chapter 238 

As Ishikawa stated, "95 percent of quality related problems in the factory can be 

solved with seven fundamental quantitative tools" 27. The fundamental statistical tools 

aid the researcher to examine, scan, monitor, and analyse the process. These 

fundamental tools are: (Refer to figure 2: 4 for further understanding) 

1. Process flowcharting - {what is done? } 

2. Check sheets/tally charts - [how often is it done? ]. 

3. Histograms - [what does variation looks like? ]. 

4. Pareto analysis - (which are the big problem? ]. 

5. Cause and effect analysis and brainstorming - [what causes the problem? ]. 

6. Scatter diagrams - [what are the relationships between factors? ]. 

7. Control charts - [can the variation be represented in a time series? And 

which variation to control and how? ]. 

As seen above, Shewhart Control Charts is one of the seven quantitative quality tools. 

Control charts enhance the analysis of a process by showing how that process is 

performing over time. Therefore, combining these charts with an appropriate 

statistical summary will provide a clear understanding for those who are studying 

certain process, and enable them to make decisions concerning future production. 

Control charts describe whether the process is in terms of current performance or not. 

Generally Control charts serve two basic functions, which are39: 

1. Control charts are considered as decision-making tools. They provide an 

economic basis for making a decision as to investigate for potential problems, 

to adjust the process, or to leave the process as it is. 
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2. Control charts are problem-solving tools. They assist in the identification of 

problems in the process. They help to provide a basis on which to formulate 

improvement actions. 

Modern quality goal is to produce a product or a service that exhibits little or no 

variation if afforded. Variation -where no two items or services are exactly the same- 

exists in all process. Variation varies depending on the criteria of investigating them 

and tackling these variations. Variation has mainly three types (a) within piece 

variation (b) piece to piece variation (c) time to time variation. Normal variation 

within certain processes is studied by sampling the process. Control charts monitor 

the variation within the process and using statistical measurements process variation 

is recorded on different control charts, which show changes in the process, allowing 

early detection of process changes, which reduce rework, scrap, process delays and 

money loss 13 

Two main hazardous criteria should be tackled and omitted from any production 

process, as they represent a risky situation on quality. These two criteria are (a) 

deviation from target specifications, and (b) excessive variability around target 

specification. 
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2.6.1 Variable and Attribute 

Chapter 2 41 

Two main vital terminologies should be understood and have been distinguished; 

which are Variables and Attributes. A Variable is a record, which is made of an actual 

measured quality characteristic. On the contrary, if a record shows only a summary or 

classification with regard to any specified set of requirements; it is said to be a record 

of attribute. Many quality requirements are stated as variables, such as dimensions, 

boundary temperature, life of a product in hours, weights. . . etc. Many other quality 

requirements are also stated in terms of attributes rather than variables, such as if a 

pen writes or not, whether a surface finish is smooth or rough ... etc. In general, the 

items, which are examined to be conforming or non-conforming, are taken as 

attributes. 

Normally, product and process engineers typically express a quality requirement as a 

target value, a tolerance interval, or both. Information contained in the variable's 

measurements (e. g., we know more about the wire diameter) than in the attributes 

measurements (e. g., we know only that the wire diameter is with in the interval)7. 

Choosing between variables and attributes, many specific technical, economic and 

time factors should be considered. In round numbers, variables sample sizes will be 

smaller than the attributes sample sizes. 
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2.6.2 Control Charts for variable Measurements 

Chapter 2 42 

Control charts, like any other basic tools for quality improvement, are relatively 

simple to use. Control charts have three basic applications: (1) to establish a state of 

statistically controlled process, (2) to monitor a process when the process goes out of 

control, and (3) to determine process capability. 

This current research is concentrating on small samples of variable data, and their 

behaviour using the Conventional Shewhart SPC charts. While the attribute data 

assume only two values, good or bad, pass or fail. Attributes usually cannot be 

measured, but they can be observed and counted and are useful in many practical 

situation. Usually, attributes data are easy to collect, often by visual inspection. Many 

accounting records, such as percent scrapped, are readily available. However, one 

drawback in using attributes data is that large samples are necessary to obtain valid 

statistical results. For these reasons, the main interest in the current investigations is to 

understand the background knowledge of variable control charts such as X, R Charts. 

There are four major models of control charts for variable measurement, which are40: 

1. Shewhart Control Charts for Variables. 

2. Cumulative-Sum (CUSUM) Control Charts. 

3. The Exponentially Weighted Moving-Average (EWMA) Control Charts. 

4. Moving average control charts. 

In 1920's, Dr. Walter A. Shewhart set elaborated charts, which test, monitor and 

control variability within a process. Shewhart developed control charts to detect 
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various variability and distortion in the process. Shewhart Control charts for variables 

are: 

1. X, R chart (Average, range chart). 

2. X, s chart (sample average and standard deviation chart). 

The first step in developing X, R chart is to gather data. Usually, about 25 to 30 

samples are collected. Samples between size 3 and 10 are generally used, with 

samples size of 5 being the most common. The number of samples is indicated by k, 

and n denoted the sample size. For each sample I, the mean is denoted X; and the 

range by R; are computed. The values are then plotted on their respective control 

charts. Next, the overall mean and overall average range calculations are made using 

equation 2.1 and 2.2, and these values specify the centre lines for the X, R chart. 

k_ 

"X; 

X= i-1 
k""" 

Equation 2.1 

k 
LRi 

R= i=1k """ Equation 2.2 

The average mean and average range are used to compute control limits for X, R 

chart. Control limits are easily calculated using the Shewhart formulas, as shown in 

equation 2.3,4,5, and 641 

Upper Average Control Limit = UCLX =X+ A2R 

Lower Average Control Limit = LCLX =X- A2R 

Upper Control Range Limit = UCLR = D4 R 

Lower Control Range Limit = LCLR = D3 R 

""" Equation 2.3 

""" Equation 2.4 

""" Equation 2.5 

""" Equation 2.6 
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Where the constants D3, D4 and A2 depend on the sample size and can be found in 

special tables. Figure 2: 5 shows a standard shape for X, R chart. 

Figure 2: 5 - Control chart 

The control limits represent the range between which 99.73% of all points are 

expected to fall if the process is in statistical control. If any points fall outside the 

control limits or if any unusual patterns are observed, then some special cause has 

probably affected the process. The process should be studied to determine the cause. 

If special causes are present, then they are not representative of the true state of the 

statistical control and all the calculation for the centreline and control limits will be 

biased. The corresponding data points should be eliminated, and new values for the 

average of mean, average of range, and control limits should be computed. 
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2.7 PRE-CONTROL CHART 

Chapter 2 45 

Pre-control charts are used as any other control charts to detect variation within a 

process. However, pre-control charts are mainly distinguished from other charts by 

having clear warning zones, which indicate the weight of the error, and provide 

primary quick information to respond to such variation for variable data only. Unlike, 

Shewhart control charts where control limits ought to use calculated control limits42 

Pre-control charts are based on dividing the areas under the normal distribution curve 

(bell curve) into different indication zones. Figure 2: 6 shows the areas of the pre- 

control charts under the normal distribution curve. 

Lower Lower Upper Upper 
Specification Pre-control Pre-control Specification 

limit limit limit limit 

Target Area 
12/141(86%) 

94 
1 

1/14 ° 

'/4 W Y2 W '/4 W 

Red Red 
Zone Zone 

Figure 2: 6 - Pre-control Areas 

As seen above, the target area (Green zone) represents 86% of the population. The 

area between the Upper Pre-control limit (UPCL) and the Upper specification limit 

equal to 7%, while on the other side, the area between the lower pre-control limit and 
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the lower specification is also equal to 7%. Out of these three areas is the red zone, 

which represents the out of control status. Also, Figure 2: 7 represent a pre-control 

chart. 

Red Zone Upper 

...... 
Spec- 

---- 

%. W Yellow Zone 

-- 

..... 

UPCL 

Green Zone 

------ 

%: W 

Target Area 
ä LPCL 

................ ....... ----- 

Y.. W Yellow Zone Lower 
Spec. 

Red Zone 

Figure 2: 7 - Pre-Control Chart 

Using pre-control charts is easy, and to make these charts successful; certain rules 

should be applied in order to analyse specific process. These rules, which govern the 

use of pre-control charts, are43: 

1. The initial sample of five consecutive measurements from the process. If all five 

measurements fall within the green zone, then it can be concluded that the process 

is in control and full operation can be launched. Otherwise, the process is out of 

control, and a specified investigation should be launched. 

2. During the operation, two consecutive measurements from the process are 

periodically taken, and if 

Both are in the green zone, or if one is in the green zone and the other in the 

yellow zone, then continue the operations. 
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r Both fall in the same yellow zone, and then adjust the operation setting. 

Both fall in different yellow zones, then stop the operation and investigate the 

causes of increased variation. 

3. During the operation, if any measurement falls in the red zone, a direct stop for the 

operation should be placed, because there is an out of specification problem, and 

an investigation should be established to configure the causes. 

Pre-control chart are simple tools, therefore, it is recommended to use only when 

monitoring a process and verifying the conformance of the process characteristics 

with the specifications required, as pre-control charts are a weak tool to be used to 

improve the process, and it is a major disadvantage for such type of quality control 

charts. 

Some researchers does not encourage companies to use such control charts, as this 

type of charts is based on specification limits as the red zone area, however, control 

limits should be the out of control limitation for the process. Some managers, using 

this chart, often draw wrong conclusion when they take specifications as their limits. 

This is wrong, because control charts are based on variability of the process, while 

specification limits are determine by designers before the start of the process. It is 

obviously seen that there is now relation between the two limits. Also, specification 

limits are based on individual measurement, while the control charts are based on 

average measurements of samples. For such reasons, it is wrong to base decisions on 

specification limits. 
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2.8 ZONE CONTROL CHART 

The zone control chart is another type of control chart, which relies on weighting each 

measurement in the operation based on its location from the mean line. If the point is 

near the centre line, it has low weight, and if it far away it has a high weight. 

Figure 2: 8 - Zone control chart 

Figure 2: 8 shows a zone control chart, where there is a weight scale on the right hand 

side of the chart. Each point in the control charts is given a score of 1,2,4 or 8, 

depending on which band it falls into. Therefore, it is concluded empirically that the 

process changes if the cumulative summation of the score exceeds 7, noting that the 

cumulative sum is reset to zero whenever the plot crosses the centreline45 
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2.9 CONTROL CHART DECISION RULES 

49 

Control charts can normally present process behaviour; control charts will give a 

general view on the process behaviour and whether it is in control (stable) or out of 

control (unstable). There are four general rules, which can give a quick decision about 

any control chart. Therefore, a process can be in control if all of these four conditions 

are valid within any control chart. These four rules are46: 

Rule 1- No points are outside the control limits. 

Rule 2- The number of points above and below the centre line is about equal. 

Rule 3- The points seem to fall randomly above and below the centre line. 

Rule 4- Most points, but not all, are near the centre line, and only few are 

close to the control limits. 

The assumption behind these four rules is that the distribution of sample means is 

normal. The central limit theorem in statistics states that the distribution of sample 

means tends to be a normal distribution as the sample size increases regardless of the 

original distribution. For small sample sizes, the distribution of the original data ought 

to be reasonably normal for this assumption to be valid. Furthermore, using the 

Central Limits Theorem (CLT), which states that despite the nature of the data 

distribution, averages of samples are normally distributed47 

Rule 1 originated from the fact that the lower & upper control limits are computed to 

be three standard deviations from the overall mean. Thus, the probability that any 

sample mean falls outside the control limits is very small. Rule 2 and 3, are based on 

the fact that the normal distribution is symmetric, therefore, the same number of 
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points fall above as below the centre line. Hence, since the mean of the normal 

distribution is the median, about half of the points fall on either side of the centre line. 

Rule 4 relays on the fact that 68% of a normal distribution falls within one standard 

deviation (16) of the mean (µ); thus, most, but not all, points should be close to the 

centre line. Knowing that these characteristics will hold provided that the mean and 

variance of the original data have not changed during the time the data 

(measurements) were collected, means, that the process is stable. 
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2.10 INTERPRETING PATTERNS IN CONTROL CHARTS 

Control charts reflect the behaviour of a process through monitoring it by selecting 

samples and analysing them. Measurements on control charts follow certain pattern. 

These patterns represent different points, which helps analysts to detect variability 

(out of control status) and its cause. These patterns are: 

A. One point outside control limits - in special cases a measurement can be out 

of the control limits. Usually R chart provide a similar situation of oddness for such 

measurement (see figure 2: 9). The reasons why this happens can be an error in 

calculation with in the control charts, or it can happen by chance, otherwise it can 

happen due to sudden change in the process such as sudden power surge, tool failure, 

or incomplete process. 

Figure 2: 9 - Point out of limit 
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B. Sudden shift in the process average - it is when consecutive points (normally 

eight points)48 fall on one side of the centre line. This is caused by a change in the 

machine set-up or new operator existence. If the shift is above the centre line in the R 

chart that means the process is less uniform. On the other hand, if the shift in the R 

chart is down of the centre line then, it means the uniformity of the process has 

improved. Another case, which indicates a sudden shift in the process average, 

happens when two of three consecutive points are above two standard errors of the 

centre line. Also, if four of five points below one standard error. (See figure 2: 10). 

Figure 2: 10 - Sudden shifts chart 

C. Cycles - cycles are short repeated patterns with peaks and valleys. This pattern 

is due to some causes, which are in the process and appear regularly (see figure 2: 11). 

If cycles appeared in X chart that may be due to fatigue, seasonal causes such as 

temperature or humidity, or changes between day and night. But if it appears in R 

charts, that may be due to maintenance schedules, or differences between shifts. 
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Figure 2: 11 - Cycles 

D. Trends -a trend is a result of some cause that gradually affects the quality 

characteristics of the product and causes the points on a control chart to gradually 

move up or down from the centre line. Generally, in X chart, trends may be the result 

of improvements. While, in R charts, increasing trend may be a cause of a gradual 

decline in material quality. (See figure 2: 12). 

Figure 2: 12 - Trend 
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E. Hugging the centre line - this pattern occurs when nearly all the points fall 

close to the centre line. In the control chart, it appears that the control limits are too 

wide. A common cause of hugging the centre line is that the sample indicates one 

item systematically taken from each of several tests or machines. As well some times, 

an error with calculating some factors in the control limits may result in such patterns. 

(See figure 2: 13). 

Figure 2: 13 - Hugging the centre line 

F. Hugging the control limits - in this pattern many points are near the control 

limits with few points in between. This pattern is often called a mixture, as it is a 

combination of two different patterns in the same control chart; and a mixture can 

normally be split into two separate patterns. This pattern normally occurs when two 

different inputs are used in one process, i. e. the different material supplies. (See figure 

2: 14). 
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Figure 2: 14 - Mixture pattern 

G. Instability - instability is characterised by unnatural and erratic fluctuation on 

both sides of the chart over a period of time. Points will often lie outside both the 

upper and lower control limits without consistent pattern. Causes for such a pattern 

may be difficult to identify. A general cause of instability is over-adjustment of 

machines. (See figure 2: 15). 

Figure 2: 16 - Instability 
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2.11 FAILURE RATE AND PRODUCT LIFE CHARACTERISTICS CURVE 

Today's market dictates that a company should know its product reliability and 

produce control them in an optimum reliability level, in order to succeed in the highly 

competitive and technologically complex environment. A product should work for 

the whole of its design lifetime period. In the same time, it is not advised to design a 

product to operate more than the desired lifetime period, as this will be associated 

with high cost. 

A product that does not survive its expected lifetime due to certain failure; result in 

losses to the company profits. Product failures range from minor failure to major 

failures. Reliability engineering was born out of the necessity to avoid such failures. 
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Figure 2: 17 - Cumulative failure rate curve49 

Figure 2: 17 shows the cumulative percentage of failures against time, where the slope 

of the obtained curve at any point (the purple line and star point) represents the 
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instantaneous failure rate, while the red line represents the average failure rate over 

this whole time interval. 

Figure 2: 18 - Failure rate curve 

In figure 2: 18, the carve represents the product life characteristics (Bathtub curve), 

which contains the different stages of failure. The first stage in any product life, is 

early failure or burn-in period, where the failure rate decreases with a short period of 

time, and if a product passed this stage with no failures, then it goes to a constant 

stage where the product serve its function with a stable failure rate, such stage is 

called a useful life of a product, after relatively long time period, the failure rate start 

to increase with time, and in this specific period the assumed life for the product start 

to decline and failures start to be expected. 

As a result, manufacturer should be concerned with the reliability (time of serving or 

operation of a product) so he can insure a good level of customer satisfaction and gain 
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their trust, which will end in enforce his market share and gain high reputation and 

profits. 
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2.12 WEIBULL MODEL 

As Weibull distribution has a flexibility and ability to model a wide range of failure 

rates, it has been used successfully in many applications as a purely empirical model. 

The Weibull reliability equation50 (see eq. 2.7 for Weibull cumulative distribution 

function -CDF) consists of three main parameters, which are shape factor (ß), location 

parameter (y), and characteristic life factor or scale factor (TI). Normally the location 

parameter (y) is equal to zero; which means the failures start at the origin. The shape 

factor in Weibull distribution is related to the behaviour of the hazard function. 

Therefore, if ß equal to 1 that means the hazard function is constant, while if ß is 

greater than 1, that means the hazard function is increasing. When ß is less than 1, it 

indicates that the hazard function is decreasing (see figure 2.19 for Weibull failure 

rate function). There is a special case, which this research is concerned about, when ß 

is equal to 3.44 then the Weibull distribution is a close approximation to the normal. 

I t-y R 

Rt=e""" Equation 2.7 () 

Figure 2: 19 - Weibull failure rate function 
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Weibull plots consist of two axes, Vertical and Horizontal. Horizontal axis is Log of 

order response, while the Vertical axis is Weibull cumulative probability expressed as 

a percentage and it is log-log (1-p) where p= (I-0.3)/(n+0.4) and I is the rank of 

observation and n is the number of observations. 

The cumulative Weibull density function is represented as a straight line in the 

Weibull plot. The following derivation will prove this phenomenon 

(r-yl 

R(t)=1-F(t)=e-l 77-yJ 

Inverting both sides, will result in : 

(r-y lQ 
1- +l-y J 

-e 1- F(t) 

Taking natural log for each side: 

(t)1=(t-iJ 
1nL1 

1 

n 

By talking natural log to both sides again will result in: 

In In 
1 l=(ß1og(t-y))-(ß1og(-y)) 

1- F(t) """ Equation 2.8 

Equation 2.8 is of a straight-line equation y= mx + c, therefore, it is proven that the 

cumulative Weibull density function is represented as a straight line in the Weibull 

plot. 



u 
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2.18 CHAPTER TWO CONCLUSION 

This chapter formed a strong knowledge foundation in order to clearly understand the 

concept of quality, control charts, limits calculation, reliability, Weibull probability 

density and Weibull parameter. Also this chapter has showed that the area of research 

of this current work is a genuine concept to be analyses, as the use of Weibull 

distribution in control chart as quality tool has not been addressed clearly till the 

present time. 

1UNIVERSTY OF NERYFORDSHiRE LRC 
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CHAPTER 3 

METHODOLOGY 

3.0 CHAPTER THREE REVIEW 

Chapter 3 62 

This chapter will introduce the logic, which should be used to establish a acceptable 

research path to ensure a scientific way to analyse and understand the current 

problem, to lead to a solution which will over come the problems of small samples 

size effects. 
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3.1 CONVENTIONAL PROCESS CONTROL MODELS FOR SMALL 

SAMPLE INSPECTION 

In a small capacity manufacturing process, engineers tend to ensure a 100% 

inspection strategy to guarantee that all specifications are fulfilled and the level of 

quality is optimum. However, such application is infrequent in practice, due to the 

high cost associated with such inspection and the amount of scraps that may produce 

in the event of destructive testing. 

Commonly, using small sample size to generate control charts, which is a subset of 

quality control methods, implies dealing with samples obtained from a stable process, 

and these samples are then compared with some functions of the long-term parameters 

(e. g. mean, variance). If the sample has a very small size (less than six), and the 

process variation is relatively large, then the results acquired will be very rough. 

Therefore, the crucial issue in such situations is not the small size of the sample as the 

large size of the process variance. Normally, it is accepted that the Coeffecient of 

Variation (CV) can measure such criteria, and it is the percentage of the standard 

deviation with respect to the mean. Coefficient of variation can show an indication of 

the variability of the process in terms of its mean 51 

Generally, Shewhart SPC charts can be effectively used with large sample size 

batches. When using small samples the probability of false notices can increase due to 

the rise of uncertainty with respect of small samples effect on the theory behind 

building up such control charts52. Small samples can be used for setting up the 

process, this can be obtained by two ways, firstly by using the known limits of the 
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process, which has been validated by large sample size testing history or by 

experienced engineers skills. Secondly, small samples can be the datum for 

establishing the limits of process control charts, by using each set of samples as a 

reference point to the next stage of limit calculation. Such method reduce time and 

money, which by it self a good enhancement of process control53 

An essential sampling disadvantage of control charts in small sample size methods is 

the risk of not detecting a non-conformance item54. If a sample was deducted from a 

process and unfortunately, this sample did not contain a failed item (regarding 

specification), this item will be in the market as a passed item knowing that it is not, 

despite its high confidence. 

Nowadays, conventional SPC chart show a clear lack in complying with the trend of 

industry to cut its cost specially when using small sample size. SPC philosophy and 

model is an easy method to be adopted in manufacturing environment, therefore, 

many researchers are trying to adopt new adjustments to the conventional SPC chart 

to be used with the association of small sample size inspection and provide reasoning 

and confident results. 
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3.2 PRESENT WEIBULL ANALYSIS USAGE IN PROCESS CONTROL 

WITH SMALL SAMPLE SIZE 

Weibull distribution existed due to the unique research delivered by the Swedish 

Professor Waloddi Weibull. In his paper "A statistical Distribution Function of Wide 

Application" in 1951, he verified the ability of the Weibull distribution to be used 

with small sample sizes and to have a good flexibility to establish a good fit to reach 

reasonable results 55 

The Weibull Density Function is defined as follow56: 

t 16-' exp -t (fort >_ 0) 
f (t) = 17,6 77 ... Equation 3.1 

0 (fort<0) 

Due to the dependency of a Weibull distribution on various parameters, its behaviour 

is constrained by the values that these Weibull parameters. The location parameter is 

normally equal to zero at the time of the start of the failure, which begins after 

initiating the part to operation life. The scale parameter and shape parameter are 

uncertainly calculated when using small samples, normally their values oscillate 

around the true unknown value57. A true demonstration of this fact is with a shape 

parameter 0=3.44, the Weibull plot approximates to a normal distribution. This is a 

theoretical value (i. e. a parameter) not an estimation value obtained from a sample. 

Hence, there is no expectation of an exact value of 3.44 for the shape parameter from 

a small size sample, which has been drawn from the normal distribution, especially if 

sample size is small. 
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In addition, different small samples, regardless of the distribution they come from, 

may provide widely varying point estimates58. This is especially so when variance of 

parent distribution is large relative to the mean. Therefore, it can be seen that using 

small sample size is an uncertain method to predict quality and life behaviour for the 

manufactured product. 

The nature of Weibull distribution distinguishes such distribution from others, by 

having different characteristic due to the altering of the shape parameter. The values 

of the shape parameter values vary the shape of the Weibull probability density 

function. As a result, Weibull distribution is a suitable distribution to be employed in 

various situations, by depending on the value of shape parameter; many distributions 

can be established (refer to table 3: 1) 

p. cl. t. Shape 

P=1 Indicates Exponential distribution 

ß=2 Indicates Rayleigh distribution 

ß=2.5 1 Indicates Lognormal distribution 

ß=3.4 1 Indicates Normal distribution 

P=51 Indicates peaked Normal distribution 

Table 3: 1 - Weibull shape parameter effect on p. d. f. 

Weibull is a good model to use, as it is a comprehensive method to cover most of the 

variation that may be involved in a process. 
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After the effective use of computers and the efficiency of the modem calculation 

devices and software, many researchers tried to develop many models (such as Monte 

Carlo, Maximum Likelihood Estimation MLE, and least square methods) to increase 

the accuracy of Weibull parameters estimation and to overcome the deficiencies 

encountered with the use of Weibull in manufacturing environment, specially using 

small sample size to test the performance of an item. The estimation can be point 

estimation or range estimation. The main focus in the present work will be on 

estimating shape parameter as Weibull scale parameter is mostly estimated by MILE 

method59, which ensures high confidence level using small sample sizes. On the 

contrary, Weibull shape parameter show no response with conventional estimation 

method to comply with these methods and enable an estimation of its value with 

reasonable confidence level. 
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3.3 PHD RESEARCH METHODOLOGY 

The needs of today's competitive market dictate the essentiality of using small sized 

samples to test quality and reliability. SPC charts are counted as a simple and 

effective way to draw conclusion and monitor conformance to specifications and 

standards. 

Having a clear understanding of the available models in the field of Weibull analysis 

can indicates the lack of research in the small sample sized area regarding Weibull 

and Shewhart control charts. Aims and objective had been established to ensure the 

practicability of the PhD research field. In order to recognise such field and ensure a 

reasonable result of this research a methodology philosophy should be set to establish 

the guidance path to achieve the aims of the PhD. 

The research method consists of many stages to understand problems encountered 

with small sample size inspection, hence to try to modify new models that will over 

come the disadvantages with conventional models, to explicitly shows that Weibull 

analysis is capable to control processes and prove effectiveness in solving existing 

problems. 

Such methodology consists of many pillars, which are essential to success. A 

thorough background study should be adopted to conventional methods in order to use 

the disadvantages of such methods, a coverage of existing literature (books, journals, 

papers) ought to be taken into consideration to know the problem facing industry and 
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to adopt such problem to be a hot spots in the research and result in a good 

contribution to knowledge and industry benefit. 

Figure 3: 1 will illustrate the steps, which will be used to justify the problems of the 

PhD and achieve the objectives and aims set for the PhD research. The methodology 

passes through four main stages, which are: 

1. Data setting and check. 

2. Problem hunting in existing models. 

3. Modelling a new method to solve problems and increase accuracy. 

4. Validating and testing for the model. 

It is proposed that using this methodology will result in a contribution to the 

variability of Weibull analysis in process manufacturing. 
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3.4 CHAPTER THREE CONCLUSION 

In this chapter, the problem was clearly understood and a logical scientifically 

methodology was set. The methodology tackles, understands and diagnose the 

problem of small sample sizes, and tried to ensure the remedy for such problem. 
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CHAPTER 4 

PRIMARY INVESTIGATION 

J 

4.0 CHAPTER FOUR REVIEW 

Chapter 4 72 

This chapter will be introducing the main key issues when small sample sizes are 

adopted in quality control analysis. The mathematical behaviour of small sample 

sizes will be tackled as this may provide a primary idea about the steps, which should 

be employed to solve the industry problem and provide a effective solution. 
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4.1 MATHEMATICAL PROPERTIES OF SMALL SAMPLES 

Chapter 4 73 

Small samples always show an exceptional behaviour when it is adopted in quality 

and reliability methods. Generally, small samples do not conform to the common 

knowledge associated with the conventional quality and reliability techniques (ibid 

p. 2). Small sample give widely result different due to the small number of its elements 

in the individual sub-groups as the small number of elements show difficulty in 

reflecting the behaviour of the overall universe of data, i. e. degree of freedom. Most 

of the methods have been approved for large sample size and accurate results are 

drawn out of such methods, which will enable transparent overview of the process and 

detect non-conformance with high level of confidence. 

Process control charts are based on population, which is normally distributed. Hence, 

the mechanism of the control chart is concluded through using normally distribution 

data hypothesis. If two samples x, and x2 were selected from the whole population, 

then the critical shaded regions (a12) are calculated using the sample size and the 

standard deviation, knowing that a is the risk, which has been accepted to be put up 

with (Type I error probability). Type I error consists of rejecting the null hypothesis 

when Ho is actually true, and on the contrary, Type II error consists of not rejecting 

the null hypothesis when Ho is actually false. In simple words, Type I error can be 

when somebody is convicted when he is innocent, while Type II error can be when 

somebody is acquitted when he is guilty. Therefore, it can be seen, as xl falls with in 

the rejection area then the null hypothesis Ho (the null hypothesis claim that the Ho is 

initially true, unless proven it is false) would be rejected, while X2 does fall within 

the control limits then Ho cannot be rejected as such sample conforms to 
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specifications. Therefore, Ho is rejected if and only if the test statistics falls in the 

rejection area. Generally, it is recommended for a fixed experiment and sample size to 

decrease the size of the rejection area (decreasing the type I error) and increasing the 

acceptance area (type II error) for each feasible value in the population 

characteristics60. It is obviously noticed that the effect of small sample size can be 

apparent when the sample does not represent the actual population and it misjudge the 

process based on the neglecting of petite variation as small number of items may be 

not effective to detect such small variation. Figure 4: 1 depicts the hypothesis-testing 

concept. 

X1 

Upper Control Limit 
-------------------------------------------------------------------- 

ýj X2 

--------------------------------- 
_° _ 

Lower Control Limit 
U 

Figure 4: 1 - Hypothesis testing in control charts with small sample size. 

The Central Limit Theorem (CLT) is directly involved with the analysis of Shewhart 

control charts. The CLT states that the sum of n independently distributed random 

variables is approximately normal, regardless of the distributions of the individual 
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variables (ibid p. 8). Using such a theorem will facilitate the understanding of small 

sample problem encountered with control charts. 

Controlling a process implies a persistent monitoring of the mean µ, while to insure a 

valid acceptant precision of the monitoring values; the variance of monitored reading 

should be taken into consideration. By using the central limit theorem (CLT), 

inference procedures for the mean of a normal population can be extended to the 

mean of a non-normal population when enough samples is available61. 

For large sample size (n>30), the CLT assumes that the sample mean X is 

approximately N (µ, (T2/n) distributed, even if the population is not normally 

distributed. The inference or detection of µ will be based on the sample mean X, 

which is counted as unbiased estimator of µ with a variance of 62/n. Also, in large 

sample size, the sample variance S2 may be taken as an accurate estimator of 62 with 

negligible sample error. Using such estimation for o, confidence intervals of the mean 

may be calculated62. After establishing a point estimation of the standard deviation, 

confidence interval can be set in order to approach the true value of the population 

mean, based on two limits, Upper limit and lower limit, and this interval has a 

probability of 1-a (such value is called confidence coefficient) of seizing the true 

value of the mean parameter. Therefore, the confidence interval of the mean µ is 

P[ LCL 
_< p _< 

UCL ]""" Equation 4.1 

A sample of large size (n>30) is taken from a population of specific mean µ and 

variance 62, and X is a point estimator of µ, where the estimator point has a normal 
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distribution of the mean and variance (based on CLT), then for any value of a, the 

probability can be (using the standard normal distribution): 

P[- Za/2 <Z< Za/2 I= 1- a""" Equation 4.2 

Using equation 4.2, confidence interval can be derived as follows: 

1-a=P [ -Z 2 <_ 
XP< 

+Z ] 

'-a = P[-Z«/2 <- X-, u -< 
ZQ/2 V=n I 

1- o' =P[X -Z 6/2 
6 <- µ _< 

X+Z 
«/2 

6J 

Consequently, 

ýC Confidence Interval =X-Z Q/2 
6ý 
=n ,X+Z 6/2 

6"""Vn Equation 4.3 

Equation 4.3 is valid when large sample is used, on the contrary, when small sample 

sized is used (n<15) then the standard normal distribution will not variability, and it is 

appropriate to use the t-distribution. And the confidence interval will be derived as 

follow, 

1- a=P[- to-l 
Q/2 

<_ T <_ to-l, 
a/2 

] ... Equation 4.4 

X -, u 1-a =P[- to-l, 
a/a 

C 
S// 

< to-1, 
«/2 

I 

n 

1- a= P[ X- tn_l, 
a/2 

S 

/ý 
CX+ to-l, 

a/2 

S 

V== J 

Consequently, for small sample size 

p Confidence Interval =X- t�_, al2 
S, 

X+ tn_l a/2 
S""" 

Equation 4.5 Wn Tn 

-L, I. 
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It can be clearly seen that using the t-distribution will ensure a good chance of 

predicting the true value of the mean sample, as the spread of this distribution is 

bigger and the confidence interval is wider so it will take the variability occurring 

when using small sample size. 

Many other techniques were developed recently due to the huge boost in computer 

capabilities and the high speed providing easy solutions for complex numerical 

equations. Some of the recent techniques are the bootstrap technique and the Box- 

Cox. Generally, the normal theory method, the bootstrap technique and the Box-Cox63 

transformation method can be used to construct the confidence interval of any 

population, hence the bootstrap technique is accurate methods to be used for 

predicting the mean and the confidence interval for non-normal population 64. The 

basic assumption of the bootstrap techniques are based on the following equations65: 

B 

_ 

IY(i) 

_ 
i=1 

lu bootstrap B 

B (v 
(i) 

bootstrap 

_ 
i=1 Sbootstrap 

B-1 

where B: is the number of bootstrap samples 

""" Equation 4.6 

""" Equation 4.7 

Therefore, an approximate (1-a)100% confidence interval for ty by the standard 

methods is: 

Pbootstrap ± Za/2 Sbootstrap 
""" Equation 4.8 

Due to the complexity of the bootstrap technique calculations, in this research, the t- 

distribution technique will be used for small sample mean with confidence interval 

prediction. 
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A main point, which should be addressed when using small size samples, is the 

normality of the sample. A normal distribution is symmetric bell-shaped curved 

distribution, with a single peak at the mean. This distribution is arguably the most 

important and used distribution in both the theory and application of statistics. If x is a 

normal random variable, then the probability distribution of x is 

I -I(x-1m) 

2 

ý 
f(x) =-62e -00 <x< C>O """ Equation 4.9 

The parameters of the normal distribution are the mean µ and the standard deviation 6 

(or the variance 62). The normal distribution is a theoretical concept. In reality, almost 

no data are truly normal (the data do not follow the curve exactly, they are very close 

to normal). However, many variables are distributed in a nearly normal fashion, so the 

normal distribution is the basis behind many statistical tests. 

There are several tests to check the normality for certain data, such as the Anderson- 

Darling test, the Ryan-Joiner test, and the Kolmogorov-Smirnow test. In this research, 

the Ryan-Joiner normality test will be used to examine the collected data. Ryan-Joiner 

normality test is a correlation-based test (The Anderson-Darling test is an ECDF - 

empirical cumulative distribution function- based test, and the Kolmogorov-Smirnov 

test is a chi-square based test). Data, which are plotted in this test, generate a normal 

probability plot. The grid on the graph resembles the grids found on normal 

probability paper. The vertical axis has a probability scale; the horizontal axis, a data 

scale. Ryan-Joiner normality test can help to determine whether the data follow a 

normal distribution by calculating the p-value (significant factor), The p-value ranges 

from 0 to 1, and indicates how likely it is that the data follow a normal distribution. 
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Usually the level of approved significance is 0.1, which equal to a leve166. A 

hypothesis test is been used to examine whether or not the observations follow a 

normal distribution. For the normality test, the hypotheses are: 

Ho: data follow a normal distribution, HI: data do not follow a normal distribution 

In some test the hypothesis will be examined with respect to the results of p-value, if 

the test resulted in a value greater than the common value (usually 0.1) then there is 

no evidence that the null hypothesis should be rejected, which implies that the data are 

normally distributed. 
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4.2.1 Mathematical Behaviour of Small Samples Obtained from Rod Diameter 

Test 

Small sample size show an unforeseen behaviour with respect to the conventional 

knowledge obtained when using large amount of sample size (n>30). Illustrating the 

behaviour of small samples could be notice by adopting the rod diameter test. The 

diameter of a manufactured rod has been measured (see figure 4: 2). Fifty reading 

were collected. Ten samples were taken and each sample has a size of five readings. 

Using such data may provide a primary understanding to the effect of small samples 

in conventional quality and reliability techniques. Table 4: 1 shows the overall 

measurements collected by measuring the diameter by using a micrometer. 

Fi, E6, EL-i 5, ftm, Toth Uübo W. F Deer W. do.. H, b 

DWkW -mlýM 

Figure 4: 2 - Rod diameter test 

n=1 n=2 n=3 n=4 n=5 

Sample 1 0.65 0.70 0.65 0.65 0.85 

Sample 2 0.75 0.85 0.75 0.85 0.65 

Sample 3 0.75 0.80 0.80 0.70 0.75 



Tareq All Abughazaleh Chapter 4 81 

Sample 4 0.60 0.70 0.70 0.75 0.65 

Sample 5 0.90 0.75 0.65 0.85 0.80 

Sample 6 0.60 0.75 0.75 0.85 0.70 

Sample 7 0.75 0.80 0.65 0.75 0.70 

Sample 8 0.60 0.70 0.80 0.75 0.75 

Sample 9 0.65 0.80 0.85 0.85 0.75 

Sample 10 0.60 0.70 0.80 0.80 0.65 

Table 4: 1 - Rod diameter 

Using MINITAB, these data will be used to run a few test in order to understand their 

statistical behaviour. Figure 4: 5 shows a descriptive statistics for the overall data for 

rod diameter test. This figure shows the following details: 

¢ Histogram of data with normal curve fit. 

¢ 95% confidence interval graph for 6 (Sigma). 

¢ 95% confidence interval graph for µ (Mu). 

¢ 95% confidence interval graph for the Median. 

¢ Basic statistical values such as Mean, Standard Deviation, Variance, 

Skewness, and Kurtosis. 

The mean of an average value for the overall data, is computed by dividing the 

summation of the measurements and the number of measurements. The variance 

(6^2) is a measure of how spread out a distribution is. It is computed as the average 

squared deviation of each number from its mean (See eq. 4.10). And the standard 

deviation (s or some use 6) is the square root of the variance (see eq. 4.11). 

_2 Variance =a2= 
ýx ý) 

""" Equation 4.10 
n 

S tan dard Deviation =s=Q2""" Equation 4.11 
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Skewness is a measure of the asymmetry of the data around the sample mean. If 

skewness is negative, the data are spread out more to the left of the mean than to the 

right. If skewness is positive, the data are spread out more to the right (see figure 4: 3). 

The skewness of the normal distribution (or any perfectly symmetric distribution) is 

zero. 

Positive skew 

Figure 4: 3 - Skewness 

Kurtosis is a measure of how outlier-pronehow (sharply peaked) a distribution is (see 

figure 4: 4). A flat-topped distribution tends to have a low value of Kurtosis and is 

called platykurtic (flat bulging). A sharp-peaked distribution will tend to have a high 

value of kurtosis and is called leptokurtic (thin bulging). 

Platykurtic 

Symmetric distribution 
(No skew) 

leptokurtic 

Negative skew 

Figure 4: 4 - Kurtosis 

A confidence interval is an interval used to estimate a population parameter from 

sample data. The upper and lower bounds of the confidence intervals for µ (Mu), ß 

(sigma), and the median are displayed in the graphical summary. Confidence intervals 
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are composed of two basic parts: (1) point estimate -a single value computed from 

the sample data. This value is considered to be an estimate of the parameter of 

interest, however it is unlikely that the point estimate is equal to the parameter. 

Therefore, to account for the possibility of estimation error, the error margin is 

included in the confidence interval to provide a range of possible parameter values. 

(2) Error margin - determines the width of the confidence interval through the use of 

probability. To construct the confidence interval, you simply add and subtract the 

error margin from the point estimate. In this analysis, a 95% confidence interval is 

selected; the method used to construct the interval has a probability of 0.95 of 

producing an interval containing the parameter of interest. In other words, you can be 

95% confident that the true value of the parameter is within the interval. Thus, if one 

hundred 95% confidence intervals were constructed, you would expect around 95 of 

the intervals to contain the parameter. 

As usual practice of engineers using large sample size and analysed by MINITAB, it 

is designed to calculate the mean interval using the standard normal distribution and it 

can be seen that the interval calculated for the mean with confidence of 95% is 

[0.691995,0732005] (refer to figure 4: 5). But as small samples (assuming that these 

data are considered as small sample size comparing to the whole population) mean 

interval is better calculated with t distribution. Using equation 4.5 will result in more 

accurate prediction of the mean value. 

Confidence Interval =X- tn_1 QlZ 
S9X+ 

tn_I Q/2 
S 

Substituting the result of the MINITAB analyses will result in 

Confidence Interval = 0.712 - t49 
0.70392 

712 +t0.70392 , 0.025 
00 ' 49,0.025 

00 
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Noting that t 49,0.025 = 02.011 

Then the µ Confidence Interval is equal to 

C. I. µ= [0.691981,0.732010] 

Clearly the C. I. resulting from the use of t distribution is wider that the C. I. resulting 

from using the standard normal distribution. In other words, the probability of 

predicting a true value in the confidence interval obtained from t distribution is higher 

that the confidence interval of standard normal distribution. 

Descriptive Statistics 

Rod Diameter 

II Mean 0.712000 
StDev 0.070392 
Variance 4.96E-03 
Skewness 0.147663 
Kurtosis -7.3E-01 
N 50 

0.60 0.64 0.68 0.72 0.76 0.80 0.84 
IIIIIII 

95% Confidence Interval for Mu 

IIIIIII 
0.69 0.70 0.71 0.72 0.73 0.74 0.75 

IIIIIII 

95% Confidence Interval for Median 

95% Confidence Interval for Mu 

0.691995 0.732005 

95% Confidence Interval for Sigma 

0.058801 0.087718 

95% Confidence Interrel for Median 

0.700000 0.750000 

Figure 4: 5- Descriptive statistics for rod test (overall data) 

Moreover, applying the normality facts and using a Ryan-Joiner test on the rod 

diameter figure 4: 6 is obtained. This figure shows that the points almost falling on the 

lines, and the calculation shows that the p-value is greater than the specified a-level 

which is 0.1. Therefore, the dietician will not reject Ho as there is not enough evidence 
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to suggest that the data are not normally distributed. As well, the Skewness and 

Kurtosis factors are 0.147663 and -0.73 respectively, which are near zero in values. 

Consequently, it can be concluded that these data are normally distributed. 

Ryan-Joiner normality test for Rod Diameter 

. 
999 

. 
99 

. 95 
80 

Co . 50 
o 
a 

20 

05 

. 
01 

. 001 

0.6 0.7 0.8 0.9 

Average: 0.737 R-J test for 

StDev 0.0787725 Normality 0.9973 
N: 50 P-Value (approx): > 0.1000 

Figure 4: 6 - Ryan-Joiner normality test 

Based on the mathematical behaviour of small samples it can be seen that the use of 

small sample size can provide some result with certain level of accuracy, and if such 

level of accuracy is increase, an effective use of the small sized sample can be 

employed to provide a true analysis of data. 
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4.2.2 Quality Control Charts of Small Samples Obtained from Rod Diameter 

Test 

X Bar, R charts will be used to study the behaviour of the measurements and to know 

the variability with in these data based on 10 samples with each sample size of 5 

measurements, as shown in table 4: 1. Applying the Shewhart technique in building X 

bar, R charts generates figure 4: 7. Figure 4: 7 shows that these measurements have an 

average of 0.737 cm, upper control limit of 0.8466 and a lower control limit of 

0.6274. Also, the measurement range average of 0.19, Upper range control limit of 

0.4018 and a lower range control limit of zero. Figure 4: 7, provides a clear conclusion 

that the measured rod diameter data falls within the calculated limit and the overall 

data are within reasonable control with no variation. Therefore, the data are with in 

control and non-conformity does not exist. 

Xbar/R Chart for Rod Diameter 

0.85 UCL=0.8466 

c 0.80 
M 

0.75 
Mean=0.737 

a 0.70 
E 

0.65 
LCL=0.6274 

0.60 

Subgroup 0123456789 10 

0.4 UCL=0.4018 

cy) 0.3 
c 
2 

0.2 R=0.19 
(D 
CL 
E 0.1 
co 

0.0 LCL=O 

Figure 4: 7 - Rod diameter control charts 
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4.2.3 Weibull Plot of Small Samples Obtained from Rod Diameter Test 

Using the Weibull distribution on the measure data and using WINSMITH software, a 

Weibull plot is generated as seen in figure 4: 8. This figure indicates that the 50 

measurements taken have a Beta value (shape parameter) of 12.18 and Eta (scale 

parameter) value of 0.7473. This plot shows a contradiction with the fact that the 

normal distribution should give a Shape parameter of 3.4467. The margin of variation 

(Error) of the calculated value is: 

(Real Value -Theoretical value) Error *10 0" """ Equation 4.12 
Theoretical value 

(12.18 - 3.44) 
_ *100'0 = 254.07 % 

3.44 

Equation 4.12 shows the real value of the shape parameter is almost 2.5 times the 

theoretical value of the shape parameter for normally distributed measurements. 

Therefore, it can be concluded that there is a difference between the reality and the 

theory behind normally distributed data. 

RESULTS 
99 

^ 0 Eta 2 n/s Beta r n 
95 

c 0.71173 90 12.18 0.928 50/0 

c 80 
u 70 

60 
50 

40 

n 30 

c 20 
e 

10 

D 
5 ° 

n 

9a 2 
W/rr 

.1 
Daten (Units) 

ýF 

Figure 4: 8 - Rod diameter Weibull plot 
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4.3 ANALYSIS OF A2 PENCE DIAMETER TEST 

In order to prove the diversity between the theory and the practical application of 

small sample usage in quality and reliability another test is carried out to show the 

deviation between predictive values and true values. In this test, a2 pence coin 

diameter is been measured. 100 coins are been used to collect 100 measurements for 

the 2 pence diameter. These 100 measurements will be examined with statistical 

process control charts, Weibull, and normal statistical tests. Table 4: 2 shows the 100 

measurements, which were taken from the test. 

Si S2 S3 S4 S5 S6 S7 S8 S9 S10 

n=1 25.87 25.96 25.91 25.93 25.93 25.97 25.93 25.91 25.97 25.95 

n=2 25.98 25.91 25.97 25.90 25.93 25.97 25.89 25.88 25.90 25.94 

n=3 25.92 25.90 25.95 25.91 25.91 25.90 25.96 25.98 25.98 25.99 

n=4 25.90 25.92 25.94 25.94 25.94 25.91 25.98 25.95 25.98 25.94 

n=5 25.94 25.94 25.97 25.93 25.95 25.95 25.89 25.96 25.96 25.95 

n=6 25.90 25.97 25.90 25.94 25.96 25.96 25.93 25.93 25.94 25.93 

n=7 26.03 25.97 25.97 25.89 25.95 25.95 25.96 25.98 25.98 25.97 

n=8 25.89 25.92 25.89 25.93 25.86 25.93 25.97 25.97 25.99 25.95 

n=9 25.93 26.01 25.96 25.88 25.91 25.94 25.90 25.94 25.94 25.87 

n=10 25.94 25.95 25.96 25.91 25.95 26.01 25.87 25.89 25.87 25.92 

Table 4: 2 -a2 Pence Diameter Test 

Figure 3.8 shows descriptive statistics for the 100 measurements. This figure shows 

that the measurements have a mean of 25.917 mm and standard deviation 0.0346. 

Skewness and Kurtosis are low in value; they are 0.068 and 0.31 respectively. Also 

the 95% confidence limits for µ, o, and median are [25.93,25.94], [0.03,0.04] and 

[25.91,25.95] respectively. These confidence limits are based on standard normal 
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distribution. But using small sample size ought to be associated with C. I. based on t 

distribution, which equal to [25.9301319,25.9438681]. It is a fact that when the 

sample size increase the accuracy of standard normal distribution will provide a 

similar mean confidence interval as the t distribution, and this test illustrate such fact 

clearly. 

Descriptive Statistics 

100 measurements for 
2-pence diameter 

Mean 25.9370 
StDev 0.0346 
Variance 1.20E-03 
Skewness -6.8E-02 
Kurtosis -3.1E-01 
N 100 

25.87 25.90 25.93 25.96 25.99 26.02 

IIIIII 

95% Confidence Interval for Mu 
95% Confidence Internal for Mu 

25.9301 25.9439 
II 

25.93 25.94 25.95 95% Confidence Interval for Sigma 
III 

0.0304 0.0402 

95% Confidence Interval for Median 
95% Confidence Interval for Median 25.9300 25.9500 

Figure 4: 9 -2 pence diameter test 

Ryan-Joiner normality is been used to provide figure 4: 10, which shows that the 

points are on the line, and the differences in distances almost negligible. Such a graph 

gives a clear indication that the 100 measurements are distributed in a normal 

distribution, as p-value is greater than 0.1. Therefore, there is no proof that these data 

are not distributed normally. 
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Ryan-Joiner normality test for 2 pence diameter test 

_7 

. 999 - 

. 99 

. 95 

. 
80 

Cu 
. 
50 

o 20 IL 
. 
05 

. 01 

. 
001 

25.88 25.93 25.98 26.03 

A'erage: 25.937 R-J test for Normality 

StDev 0.0346264 R: 0.9959 
N: 100 P-Value (approx): > 0.1000 

Figure 4: 10- a2 pence diameter normality test 

Figure 4: 11, shows control charts for 100 measurements (based on 10 samples; each 

sample with 10 sample size). The calculation shows that the control upper limit for 

the 2 pence diameter is 25.97mm, while the lower control limit for the 2 pence 

diameter is 25.90 mm, and the average of the mean in is 25.94 mm. The 2 Pence test 

shows that the range of diameter has an upper range limit of 0.1901 mm, lower 

diameter range limit of 0.02387 mm, and an average for the ranges equal to 0.107 

Based on figure 4: 11, it can be noticed that the measurements of the 2 pence diameter 

are within the control limits. Also no variability can happen in such data sets. 

Therefore, it can be concluded that the measurement are conforming to the limits, and 

no variability is occuring. 
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Xbar/R Chart for 100 2 pence diameter 

25.98 
25.97 UCL=25.97 

c 25.96 
c° 25.95 

25.94 Mean=25.94 
25.93 

CU 25.92 
25.91 
25 90 LCL=25.90 

Subgroup 0123456789 10 

0.2 
- UCL=0.1901 

rn 

0.1 R=0.107 
a) 
n. 
E 
c0 CO LCL=0.02387 

0.0 

Figure 4: 11 -a2 pence X Bar, R control charts 

Using WINSMITH to analysis the 2 pence diameter measurements generates figure 

4: 12. Weibull calculation gives a Shape parameter (Beta value) of 44.9, and a scale 

parameter (Eta value) of 26.35. This figure gives another proof of the contradiction 

that normally distributed data have a shape parameter of 3.44. Using such facts may 

help in predicting a new method for a Weibull plot. 

In order to achieve a clear understanding for the contradiction associated with the use 

of small sample size, a sample size of 10 measurements will be taken. Such samples 

will be plotted on Weibull, and then a shape parameter will be calculated. Figure 4: 13, 

shows 10 samples (each with a size of ten) gives a Weibull plot with a slope (Beta) in 

a range of [31.54,54.34]. The calculated values show a difference between theory and 

practice. 
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Figure 4: 12 - the 100 2 pence diameter Weibull plot 
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RESULTS 

Etr a -Beta r^2 n/s YR2001 
26.35 44.9 0.881 100/0 M03D02 

100 

Eta Beta r^2 n/s 

X26.51 33.9 0.928 10/0 

26.18 45.33 0.951 10/0 

26.45 34.08 0.922 10/0 

26.14 38.58 0.938 10/0 

26.44 42.67 0.901 10/0 

25.77 54.34 0.779 10/0 

26.59 31.54 0.955 10/0 

26.16 38.93 0.898 10/0 

26.57 40.73 0.973 10/0 YR2001 

26.59 47.48 0.946 10/' M03D02 

100 

Datum (Units) 

Figure 4: 13 - Weibull plot for samples with size = 10 

To make the inconsistency of results associated with the sample size obvious, a 

sample of a size equal to five will be taken randomly from the overall 100 

measurements. This sample will consist of the following elements (25.95,25.90, 

25.92,2601,25.87). Figure 4: 14 shows the Weibull plot for such random a sample 



Tareq Ali Abughazaleh Chapter 4 93 

with shape parameter and scale parameter of 77.19,25.31 respectively. This can 

provide a clear proof that Weibull shape and scale parameter can be affected with 

small sample size, which can result in altered values of such parameter than the 

theoretical predictable values. As this small sample is taken from a normally 

distributed data and also they behave normally, the results of calculated scale and 

shape parameters increased significantly when the sample size decrease, and the value 

of the shape parameter associated with the 5 data sample resulted in a shape parameter 

value (Beta) of 77.19, which is a far value from the theoretical 3.44 value expected 

from a normally distributed data. 

RESULTS 

o 
90 

j W/r= 
0 80 
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r --------- -- -----'------°' 60 
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F 20 

Eta Beta r^2 n/s Ya2001 

25.31 77.19 0.975 5/0 M03D03 

10 --- 
10 100 

Datum (Units) 

Figure 4: 14 - Weibull plot for sample of size five 
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4.4 SAMPLE SIZE EFFECT ON CONTROL CHARTS 

Noting from the equation of UCLR and LCLR that both limits depend on D3, D4 

factors (refer to Equation 2.5 & 2.6). D3, D4 have various numerical values depending 

on the sample size68, which can be used to generate a plot with extrapolating D3 and 

D4 values. It is seen in figure 4: 15, that D4 and D3 converge to specified numerical 

value at large sample size. Therefore, the result of UCLR and LCLR calculations will 

be achieved with high confidence and approved certainty. 

The value of D3 has a an increasing trend, it start increasing after the value of n equal 

to 6, while before that the effect of D3 is negligible as D3 has the value of zero then it 

increase till being steady at n more than 25. On the contrary, D4 value is inversely 

proportional to the sample size, it decrease when the value of n increase, and it 

stabilise when n is greater than 2569 

Control charts provide a true analysis of the process or system. It keeps 

superintendence on variables and acquaints any variability of specified variable within 

the system. Control charts are successful tools to respond to any fluctuation within the 

system parameter. The disadvantages of Control chart are: control charts effectively 

operate with large sample size not on small sample size bases. Therefore, this fact 

makes control charts not an efficient tool; especially when they are used in high cost 

manufacturing product environment and small batches; also control charts do not 

provide a prediction on system failures. 
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Figure 4: 15 - D3 and D4 curves 

As seen from figure 4: 14, the accuracy established by using the conventional control 

charts, which is based on normal distribution, increase only at sample size greater than 

3070. Many researchers in the field of statistical quality control have agreed such fact, 

which has been exposed in the analysis of figure 4: 15. 

In attribute charts, it is preferable to use samples size greater than 3071, as the 

accuracy of the results in attribute charts analysis increase significantly with the 

increase of the sample size. Therefore, it is generally known that attribute charts need 

double or more the sample size that of the variable charts to obtain accurate result 

with acceptable level of confidence72, which is able to detect variability and non- 

conformance. 
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4.5 SAMPLE SIZE EFFECT ON WEIBULL ANALYSIS 

It is clear in theory that data, which is normally distributed, will have a shape factor 

(0) of 3.4473. Nevertheless, small sample sizes produce various 0 values, which can be 

explained from a comparison with D3 and D4 constants used in SPC (refer to figure 

4: 14). Small sample size with respect to Weibull techniques had been used to achieve 

a durable understanding of the behaviour, and relationship of the Weibull shape factor 

ß and the sample size74. 

An analysis based on the median rank of n=5 will be discussed in order to contribute 

to the understanding of the problem of this research. In fig. 4: 16, a Weibull line with a 

0 =3.44 is plotted, which represent the Weibull plot of normally distributed data in 

theory. The corresponding age of failure values of the median rank values can be 

known using ß=3.44 line (refer to figure 4: 16 & table 4: 3). Subsequently, further 

mathematical calculation will be used to show the behaviour of 0 in small sample 

sizes (n=5)76 

Median Rank 

n=1 12.945 113 
n=2 31.381 150 
n=3 50.000 180 
n=4 68.619 208 
n=5 87.055 245 

Mean of X 179.2 
6 50.97745 

Table 4: 3 - Median rank Vs. Age failure for n=5 
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Figure 4: 16 - Weibull plot 

For a given sample of size 5 and known Age failure average, the range can be 

calculated as follow: 

6=R""" Equation 4.13 
d, 

=R= d2*6 = 50.977*2.326 

R=118.573 

Having a range average of 118.573 can be used to produce average control limits; 

these control limits are calculated as follow; 

Range Control Limits for X=X±R Equation 4.14 
2 

= 179.2±h18.573 
2 

Therefore UCLX = 179.2 + 59.2865 = 238.7865 = 239 

And LCLX =179.2 - 59.2865 =120.2135 =120 

Using Weibull reliability function 
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-lnJ 
... R(t) =e Equation 4.15 

Using 98% reliability gives at value of 130 

Then, using figure 4: 15 the limiting (3 value for n=5 will be 

130 18 

0.98 =e 200 

Therefore, ß is equal to 9.057784124 = 9.06 

ßE [9.06, x] for a sample size of 5 

Chapter 4 98 

It is concluded, a sample with a size of 5, which is normally distributed, can have 

different average values, but the average should fall between the calculated average 

limits. Each average can produce a certain Weibull line depending on the sample 

standard deviation. The Weibull line has a Beta value constrained within the 

calculated interval. Therefore, for a certain average; an infinite number of Weibull 

lines and each of them has a different beta value. 

The previous analysis draws a result, which is considered a primary finding in the 

field of Weibull parameter prediction. The common knowledge in small sample size 

use with Weibull distribution revolves around the idea, which small samples from 

normally distributed data generates any value of shape parameter57. But, such an idea 

can be considered as a general piece of evidence, and the pervious analysis 

constrained the validity of such statement by verification the limits of the shape 

parameter when using small sample size. Thus, it is shown that when using a sample 

in Weibull analysis, predicted value of the shape parameter has a lower limit, which 

depend on the sample size, in other words, the shape factor is impeded in an interval, 

and it can not has any value as it was known by Weibull conventional knowledge. 
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4.6 SMALL SAMPLES SIZE CONSEQUENCES ON WEIBULL SHAPE 

PARAMETER PREDICTION 

Weibull distribution is a useful distribution to be used with small sample size57. 

Weibull distribution consists of three main parameters (shape, scale and location 

parameter), which are the pivots to the success of Weibull analysis. The role of these 

parameters can be seen from the equation 4.16, which represent the probability 

density function of Weibull distribution75. 

t= 
(t Y)-ý 

eX -t_Yt> 17 6 17 

Where :i= Shape parameter 

y= Location Parameter 

q= Scale parameter 

""" Equation 4.16 

The success of the Weibull analysis significantly depends on the accuracy of the 

parameters used. Many techniques have developed in recent years to study the 

behaviour of such parameter, and try to establish accurate point estimation for 

Weibull parameter. In this research, the estimation of shape parameter will be dealt 

with in details as such parameter is important in Weibull analysis, and the difference 

between theory and practice occur when using small sample size. Three main 

techniques will be discussed, these techniques are: 

1. Weibull probability plot. 

2. Least square technique (Regression analysis). 

3. Maximum Likelihood Estimation. 
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4.6.1 Probability Plotting to Predict Weibull Shape Parameter 

Chapter 4 100 

A particular method of calculating the shape parameter of the Weibull distribution is 

by using probability plotting. As shown in equation 2.8, the Weibull line can be 

plotted, and such plot will facilitate the analyses of data. This plot is designed to 

predict a value for Weibull shape parameter by using specially designed Weibull plot 

graph paper. This paper is constructed from to main coordinates axes; the Y 

coordinate axis is median rank values, and the X coordinate axis is the time to failure 

or data axis. Both of the X and Y axes are log-log axes. 

The median rank is a non-parametric estimate of the cumulative distribution based on 

ordered failures or data in a sample77. Such estimation is hard to be developed without 

the use of modern computer technology, however, an approximate expression 

(Bernard's method) provide an acceptable values to the real median rank cumulative 

sum. 

% MRBernard =j-0 .3x 100% " .. Equation 4.17 
N+0.4 

Equation 4.17, shown Bernard's approximation, where j is the Failure or Data order, 

and N is the total sample size. Bernard's approximation can be used to achieve 

acceptable Weibull plot using special Weibull graph papers (refer to Appendix). In 

this research computer software (WEIBULL++) will be used to achieve high accuracy 

in Weibull probability plot and the exact median rank will be calculated by equation 

4.18. 

NN (MR 
Exact 

)k (1- MRExact )N-k = 0.50 = 50% """ Equation 4.18 
k=, k 
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4.6.2 Regression Analysis to Predict Weibull Shape Parameter 

Least square method (regression analysis) is another way to establish a point 

estimation for Weibull shape parameter. Using the idea of probability plotting 

discussed previously, regression analysis mathematically fits the best straight line to a 

set of points, in an attempt to estimate the value of shape parameter accurately. The 

term rank regression is used in this research instead of least squares, or linear 

regression, because the regression is performed on the rank values, more specifically, 

the median rank values (represented on the Y-axis of the Weibull plot). 

The method of least squares requires that a Weibull straight line is fitted to a set of 

data points such that the sum of the squares of the distance of the points to the fitted 

line is minimized. This minimization can be performed in either the vertical or the 

horizontal direction. If the regression is on X, then the line is fitted so that the 

horizontal deviations from the points to the line are minimized. If the regression is on 

Y, then this means that the distance of the vertical deviations from the points to the 

line is minimized. This is illustrated in figure 4: 17. 

Rank Regression on X Rank Regression on Y 

X-Axis X-Axis 

Figure 4: 17 - Regression analysis 
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When a set of data pairs (xl, y'), (x2, y2),.., (xN, yN) is obtained and plotted, and that 

the y-values are known exactly. Then, according to the least squares principle, which 

minimizes the horizontal distance between the data points and the straight line fitted 

A 

+ da to the data, the best fitting straight line to these data is the straight line x=äy 

(where the recently introduced (A) symbol indicates that this value is an estimate) such 

that's: 

NN 
A 

ä+ by, -x, )2 = min (a. b) (a + bx, -y)2 """ Equation 4.19 

Where :ä, b are the least square estimates for a and b. N= total number of data points 

A 
These equations are minimized by estimates of a and b such that, 

NN 
L xi Lys 

ä= i=1 _b =x_b- NNy 

and 

NN 

NI xilyi xt1 
i=1 i=1 

i�i 

b=z=1 N 
N2 

NI 
yi 

1 2_ i=1 
yi 

N 

""" Equation 4.20 

""" Equation 4.21 

The regression analysis is quite good for functions, which can be linearized. Its 

calculations are relatively easy and straightforward, having closed-form solutions 

which can readily yield an answer without having to resort to numerical techniques or 

tables. Regression is generally best used with data sets containing complete data. 

Normally in Weibull, X variable has much more scatter and statistical error than Y. It 

is recommended to select the scale with largest error as the dependent variable79. 

Therefore, in this research X rank regression will be adopted to ensure accurate 

calculation and analysis results. 
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4.6.3 Maximum Likelihood Analysis to Predict Weibull Shape Parameter 

Maximum likelihood estimation is considered to be the most robust and complicated 

of the parameter estimation techniques. The basic idea behind MLE is to obtain the 

most likely values of the parameters, for a given distribution, that will best describe 

the data. Ideally, Maximum likelihood estimation works by developing a likelihood 

function based on the available data and finding the values of the parameter estimates 

that maximize the likelihood function. This can be achieved by using iterative 

methods to determine the parameter estimate values that maximize the likelihood 

function, but this can be rather difficult and time-consuming, particularly when 

dealing with the three-parameter distribution. Therefore, another method of finding 

the parameter estimates involves taking the partial derivatives of the likelihood 

function with respect to the parameters, setting the resulting equations equal to zero, 

and solving simultaneously to determine the values of the parameter estimates. The 

log-likelihood functions and associated partial derivatives used to determine 

maximum likelihood estimates for the Weibull distribution. 

The likelihood function is a function of the data. It is the product of the probability 

density function, for each data point, with the distribution parameter unidentified. If x 

is a continuous random variable with a probability density function 

f (x; e1, e2,. 
«, 

Ok ) 

Where 01,02,. - -, 
9k are unidentified parameters, which need to be estimated, where 

R independent observations, x1, x2,..., Xk , which correspond data analysis. The 

likelihood function is given by80: 
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R 
L(01,02,..., ekI X1, X2,..., XR) =L =I 

If (x{, O1, e2,..., ek) 

i =1 

Wherei =1,2,3,..., R. 

The logarithmic likelihood function is, 
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""" Equation 4.22 

R 

A=1nL=LLn f(xi, 91,82, """, 9k) """ Equation 4.23 
i=l 

The maximum likelihood estimators (or parameter values) are obtained by 

maximizing L or A. By maximizing A, which is much easier to work with than L, the 

maximum likelihood estimators (MLE) are the simultaneous solutions of k equations 

such that: 

an 
=o , ae; 

j =1,2, "", k""" Equation 4.24 

Log Likelihood function is used to predict Weibull parameters, as this research is only 

concerned with 2-parameter Weibull, the 2-weibull log likelihood function will be 

discussed. The 2 parameter Weibull log-likelihood function is composed of three- 

summation portions81: 

ln(L)=A= 

Where, 

%ý 
ß-1 1IiLß1 e 

ý'" 
T' iJ 

Ni In e- - 
i=1 "/ 

FI -(Tý'1 -TRH1 
NlIn e -e 

i=ý 

Fe= is the number of groups of data points, 
N; = is the number of data in the ith data group, 
P= is the Weibull shape parameter (unknown a priori), 
71 = is the Weibull scale parameter (unknown a priori), 
T; = is the time of the group ith of data, 

S= is the number of groups of data points, 
N I=is the number of data in ithgroup of data points, 
Ti'= is the data of the ith data group, 

S Til, 
ý 

l LN, 

i=l r% 

""" Equation 4.25 
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FI= is the number of interval data groups, 
N'i' =is the number of intervals in ith group of data intervals 
T"Li = is the beginning of the ith interval, 
T"Ri = is the ending of the ith interval. 

- I- 
? )J 1 

For the purposes of MLE, data will be considered to be intervals with T "Li = 0. The 

solution will be found by solving for a pair of parameters ((3A, ß") so that 
an 

=0 
ai 

and 
an 

= 0. It should be noted that other methods could also be used, such as direct 
a77 

maximization of the likelihood function, without having to compute the derivatives. 

OIF, F 
... Equation 4.26 

_E JYj + Ni In 0.3 J3 ý =I 
F, Ti. s Ti Til EA. In 

71 TI 

l 
TLC 

F 
Try ý1 

1tl 
ýý c. +- 

(Tm 

i=1 

3U 

'c Equation 4.27 

'V'i + -'Vi ý 7,1 
S 1 

+ El' i i, 
tl =1 '77 

(- 

+ 
'31 

)( 
-T. 

'i=1 

ý-ýý ;ý 
ýý 

e 'ý'1 -e 
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It is observed that when the log likelihood is differentiated with respect to the 

parameters, and the resulting equation is set to equal to zero. The resulting equations 

are then solved simultaneously to obtain the best estimates of the parameters that 

maximize the likelihood function and such estimate is called the Maximum 

Likelihood Estimate (MLE). 

The MLE method has many large sample properties that make it attractive for use. It 

is asymptotically consistent, which means that as the sample size gets larger, the 

estimates converge to the right values. It is asymptotically efficient, which means 

that for large samples it produces the most precise estimates. It is asymptotically 

unbiased, which means that for large samples one expects to get the right value on 

average. The distribution of the estimates themselves is normal, if the sample is large 

enough. 

Unfortunately, the size of the sample necessary to achieve these properties can be 

quite large, thirty, fifty to more than a hundred exact data points, depending on the 

application. With fewer points, the methods can be badly biased82. It is known, for 

example, that MLE estimates of the shape parameter for the Weibull distribution are 

badly biased for small sample sizes, and the effect can be increased depending on the 

amount of censoring. This bias can cause major discrepancies in analysis. 
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4.6.4 Unbiased Maximum Likelihood Estimation of Weibull Shape Parameter 

The likelihood function usually has a maximum at specific values of the distribution 

parameters. These values of parameters are more likely to give rise to the data that 

other values. Therefore, using a maximum likelihood method will provide a best 

single point estimate in predicting a parameter of the needed function. 

The MLE analysis provides a point estimate of beta, but this calculated value is biased 

for a small n. Bain and Engelhardt suggest the use of an unbiased factor G. Using 

such factor, the unbiased estimation of the shape parameter is83 

ß=G 
nX /-' MLE """ Equation 4.28 

Gn is calculated using the approximation: 

G =1.0 _ 
1.346 

- 
0.8334 

n n2 """ Equation 4.29 

Where n is the sample size. 

Therefore, the unbiased Shape parameter ß is the multiplication of the unbiased factor 

by the shape parameter derived from the Maximum Likelihood Estimation (MLE). 

Using Bain and Engelhardt technique gives us the following approximation for the 

upper and lower limit for the estimated unbiased Weibull shape factor62. 

1 
2 +p2 

cn 

2 +p2 

Al =ßx ("), df 
cn 

""" Equation 4.30 

""" Equation 4.31 

Where c is the chi - squared factor = 
Yr 

22 where C 22 is asymptotic values for MLE 
P C221 

and c= 0.822 for p equal to 1. 
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4.7 WEIBULL WIRE TEST ANALYSIS 

A wire diameter test has been set to illustrate the methods of estimating Weibull 

parameters. In this test 16 samples were collected, where each sample has a size of 7 

diameter values (refer to table 4: 4). These collected data will be used to estimate 

Weibull parameters in order to understand the behaviour of such parameter when 

linked with small sample size. The parameters will be estimated using three main 

techniques, which are: Weibull Rank Regression on X (RRX), Maximum Likelihood 

estimation (MLE), and the unbiased shape parameter estimation. The probability 

plotting technique was omitted from the analysis due to the need of high in accuracy 

in plotting the data by hand. 

Si S2 S3 S4 S5 S6 S7 S8 

1 5.6 6.1 6.0 5.8 5.9 6.0 6.0 5.9 
2 6.2 5.4 6.2 6.3 5.7 6.1 6.3 5.8 
3 5.9 5.9 5.8 6.0 6.3 5.8 5.9 6.1 
4 6.1 6.0 6.1 5.9 6.1 6 5.8 6.0 
5 5.7 5.8 6.0 6.2 5.6 6.2 6.1 6.2 
6 6.0 6.2 5.9 6.1 6.2 5.9 6.2 5.9 
7 5.8 6.1 5.7 6.0 6.0 5.7 6.0 6.3 

Continued 
... 

S9 S10 S11 S12 S13 S14 S15 S16 

1 6.0 5.7 6.2 5.9 5.9 5.8 6.3 5.9 
2 6.1 6.2 5.7 6.1 6.5 6.0 5.6 6.2 
3 6.0 6.4 5.9 6.5 5.5 6.3 6.0 5.8 
4 6.2 5.9 6.1 5.8 6.0 5.9 6.1 6.3 
5 5.5 6.3 6.1 6.2 6.4 5.7 6.0 5.9 
6 5.9 5.8 6.0 6.0 6.1 6.2 6.4 6.1 
7 5.8 6.1 5.8 6.6 5.8 6.1 5.9 5.7 

Table 4: 4 - Wire Diameter (mm) 
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By using simple statistical calculation by MINITAB figure 4: 18 is generated, from the 

descriptive statistics it can be seen that overall wire diameter data have a mean of 6 

and a standard deviation of 0.22461. 

Descriptive Statistics 

Anderson-Darling NonTalityTest 
r ! }Squared 0.940 

P-Value 0.019 

Mean 6.00000 
StDev 0.22461 IL 
Variance 505E-02 

IM= SleM ess 310E 20 

II Kirtosis -5.1E-02 
5.4 56 5.8 6.0 6.2 6.4 6.6 N 112 

Minirrum 5.40000 
1stC]atile 5.82500 
Medan 6A000D 
3rd Cua 1i le 6.17500 

951/6 Cot19thx eI ntenel fcr Mu Madn un 6.6000D 

5.9 6.0 6.1 

95% ConfidWr ce I rtef,. el for Medan 

Figure 4: 18 - Descriptive statistics of wire diameter test 

Founded on the wire diameter data, Weibull++ is used to calculate the parameter of 

Weibull based on rank regression on X and Weibull logarithmic maximum likelihood 

(MLE). Figure 4: 19 shows a RRX Weibull plot, from this method, the estimated 

Weibull parameters are: Shape parameter of 35.2530 and Scale parameter of 6.0963. 

It is noticed that the shape parameter is extremely far away value than expected 

(3.44). While The estimated MLE parameters are: Shape parameter of 21.77 and Scale 

parameter of 6.12 (refer to figure 4: 20). Clearly, the MLE provide much closer value 

to the theoretical value than RRX method, hence it is a poor estimation. 
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Generated by: ReliaSofPs Weibull++ 5.0 - www. Weibull. com - 888-886-0410 
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Figure 4: 19 - Weibull RRX plot 
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Figure 4: 20 - Weibull MLE plot 
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Using the MLE estimation, a probability density function is drawn (refer to figure 

4: 21). The Wire diameter test P. D. F. shows that the distribution does not initial from 

zero and it is shifted positively to the right. 

Generated by. ReliaSofts Weibull++ 5.0 - www. Weibull. com - 888-886-0410 
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Figure 4: 21 - Weibull MLE probability density function of wire diameter test 

Using the same techniques on each sample will provide an estimation of Weibull 

parameters. These estimations are tabulated in table 4: 5. Also, unbiased MLE shape 

parameter will be calculated to study the effect of the unbiased factor on resulting 

values. In addition Weibull shape parameter limits will be calculated by using 

unbiased Weibull shape parameter. 
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pper 

Si S2 S3 S4 S5 S6 S7 F--Ss 

5.9 5.92857 5.95714 6.04286 5.971429 5.95714 6.042857 6.02857 
0.216025 0.26904 0.17183 0.17183 0.256348 0.17182 0.171825 0.17995 
29.8885 24.0358 37.784 38.9227 25.2915 37.784 38.9227 37.9189 
5.9978 6.0499 6.0357 6.1203 6.0879 6.0357 6.1203 6.1077 
33.0637 34.4981 42.353 40.6887 29.8918 42.353 40.6887 38.136 
5.99658 6.03455 6.03358 6.12119 6.08293 6.03358 6.12119 6.1149 

26.14367 27.2779 33.4888 32.1728 23.63563 33.4888 32.1728 30.1544 
38.67427 40.3521 49.5399 47.5932 34.96413 49.5399 47.59315 44.6073 
13.93774 14.5424 17.8536 17.152 12.60065 17.8536 17.152 16.0759 

Continued 
... 

S9 Sio Sll S12 S13 S14 S15 S16 

Avg. 5.928571 6.05714 5.97143 6.15714 6.028571 6 6.042857 5.98571 
a 0.228869 0.26367 0.17995 0.29921 0.345033 0.21603 0.263674 0.21931 

(3RIRX 28.044 25.276 36.1136 23.6017 19.1349 30.3969 25.0954 30.7155 
TIRRX 6.0332 6.1753 6.0538 6.285 6.1823 6.0979 6.1616 6.0822 
PMLE 36.7344 28.8187 43.116 23.1322 21.047 33.6196 28.4529 31.9205 

MLE 6.02264 6.17335 6.05006 6.29406 6.18019 6.09663 6.15766 6.08543 

Unbias 29.04612 22.7872 34.0921 18.2908 16.64199 26.5832 22.49788 25.2397 
Upper 42.96785 33.7089 50.4324 27.0575 24.61846 39.3245 33.28106 37.3371 
Lower 15.48509 12.1483 18.1752 9.75119 8.872194 14.1721 11.99409 13.4558 

* Unbiased factor = Gn = 0.79070614 

Table 4: 5 - Wire diameter estimations 

It can clear that the unbiased shape parameter is the minimum value obtained 

compared with MLE and Weibull RRX. (See figure 4: 22) 

Wire Shape Parameter Estimations 

50 

40 
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Samples 

Figure 4: 22 - Wire shape parameter estimations 
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It is noticed from figure 4: 21, that Weibull p. d. f. initiates from a positive value, and it 

is an area of concern to be studied. After little mathematical and empirical calculation, 

it has been observed that deducting a numerical value of 5.28 will help achieving 

shape parameter, which are expected to occur based on the theory that normally 

distributed data will have a shape parameter of 3.44. 

To achieve understanding of the small sample behaviour with this deduction criterion, 

each sample of the 16 samples obtained in the wire test will be analysed individually. 

Each sample will be used to calculate its average and standard deviation values (after 

the deduction); also Weibull parameters will be obtained by different estimation 

methods. Table 4: 6 is showing the new data after the deduction and table 4: 7 will 

illustrate results of this analysis. 

Si S2 S3 S4 SS S6 S7 S8 
1 0.32 0.82 0.72 0.52 0.62 0.72 0.72 0.62 
2 0.92 0.12 0.92 1.02 0.42 0.82 1.02 0.52 
3 0.62 0.62 0.52 0.72 1.02 0.52 0.62 0.82 
4 0.82 0.72 0.82 0.62 0.82 0.72 0.52 0.72 
5 0.42 0.52 0.72 0.92 0.32 0.92 0.82 0.92 
6 0.72 0.92 0.62 0.82 0.92 0.62 0.92 0.62 
7 0.52 0.82 0.42 0.72 0.72 0.42 0.72 1.02 

Continued 
... 

S9 S10 S11 S12 S13 S14 S15 S16 

1 0.72 0.42 0.92 0.62 0.62 0.52 1.02 0.62 
2 0.82 0.92 0.42 0.82 1.22 0.72 0.32 0.92 
3 0.72 1.12 0.62 1.22 0.22 1.02 0.72 0.52 
4 0.92 0.62 0.82 0.52 0.72 0.62 0.82 1.02 
5 0.22 1.02 0.82 0.92 1.12 0.42 0.72 0.62 
6 0.62 0.52 0.72 0.72 0.82 0.92 1.12 0.82 
7 0.52 0.82 0.52 1.32 0.52 0.82 0.62 0.42 

Table 4: 6 - Deduction wire test data 
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S1 S2 I s3 s4 Sg S6 S-, S8 

Avg. 0.62 0.648571 0.677143 0.762857 0.691429 0.677142 0.762857 0.748571 

6 0.2160247 0.269037 0.171825 0.171825 0.256348 0.171825 0.171825 0.179947 
PRRX 2.8736 1.7231 4.0272 4.7455 2.5744 4.0272 4.7455 4.613 

TIRRX 0.6987 0.7521 0.7457 0.8305 0.7853 0.7457 0.8305 0.8154 
f MLE 3.359 2.954 5.423 4.974 3.442 5.127 4.983 4.897 

MLE 0.6972 0.7135 0.7338 0.8439 0.753 0.7307 0.8172 0.8307 
" 6559819 2.335746 2 4.287999 3.932972 2.721611 4 053950 3 940087 3 872088 Unbias . . . . 

Upper 3.9289874 3.455263 6.343226 5.818036 4.026071 5.996998 5.828563 5.727970 
Lower 1.4159595 1.245235 2.286022 2.096749 1.450947 2.161245 2.100543 2.064291 

Continued ... 
S9 Slo 811 S12 S13 S14 815 S16 

Avg. 0.6485714 0.777142 0.691428 0.877142 0.748571 0.72 0.762857 0.705714 

6 0.2288688 0.263673 0.179947 0.299205 0.345032 0.216024 0.263673 0.219306 

ßP. RX 2.4112 2.9808 3.8768 3.2426 1.9252 3.4149 2.7236 3.4506 

, jPJCX 0.74 0.8727 0.7634 0.9764 0.8655 0.8017 0.8629 0.7836 
PMLE 3.779 3.559 4.865 3.467 2.364 4.34 3.728 3.497 

MLE 0.7184 0.8571 0.7478 0.98 0.8484 0.7958 0.837 0.7833 

Unbiasý 2.9880785 2.814123 3.846785 2.741378 1.869229 3.431664 2.947752 2.765099 

Upper 4.4202571 4.162925 5.690540 4.055313 2.765146 5.076453 4.360602 4.090404 
Lower 1.5930072 1.500267 2.050801 1.461486 0.996525 1.829492 1.571508 1.474132 

* Unbiased factor = Gn = 0.79070614 

Table 4: 7 - Deduction wire shape parameter estimations 

From the deduction method, many conclusions may be draw. The shape parameter in 

all of the estimations techniques is in the interval of theoretical expectation for 

normally distributed data, in other words, most of the readings are near the value of 

3.44. Figure 4: 23 shows the detection Weibull shape parameter values and the wire 

test shape parameter common values. For this figure it can be seen that the average of 

Weibull Shape parameter estimated by RRX, MLE and Unbiased methods are 3.3347, 

4.047375 and 3.200284 respectively. Figure 4: 24 illustrate a comparison of the 

common method and the deduction methods and its effect of the estimation of 

Weibull shape parameter in the wire test. 
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5.28 deduction Weibull shape parameter 

6 

5 

4 
RRX Beta 

ea 
3 MLE Beta 

2 Unbiased Beta 

1 

0 
123456789 10 11 12 13 14 15 16 

Sample 

Figure 4: 23 - Deduction Weibull Shape Parameter 

Wire diameter Weibull shape parameter comparison 
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Figure 4: 24 - Wire Weibull shape parameter estimations comparison 
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4.8 CHAPTER FOUR CONCLUSION 

This chapter has concentrated on the key issues that allow Shewhart control charts to 

fail when small sample sizes are present. It also showed the influencing factors D3 and 

D4 behaviour when sample size alters. Shape parameter is constrained by minimum 

value, which is a function of the sample size, and such a conclusion was draw from 

the chapter analysis. It also flagged out the difference be estimated values and 

theoretical values of shape parameter when small sample size has been used. 
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NEW MODEL BASED ON WEIBULL ANALYSIS 

5.0 CHAPTER FIVE REVIEW 

This chapter summarises the main steps, which was used to develop a new Weibull 

based control chart model to compensate the existing Shewhart control charts when 

small sample sizes are used. In this chapter the modelling of the deduction percentage 

and formulate the result so a deduction model will be used to aid the Weibull analysis 

in achieving new control charts to achieve accurate limit ranges and detect variability 

and non-conformance. Also, data from a single lap shear test will be used to test the 

ability of the new Weibull deduction charts to overcome Shewhart control charts. 
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5.1 Shape Parameter Estimation Based on Deduction Technique 

It has been detected that Weibull shape parameter estimation may be accurate if 

deduction method is implemented (section 4.7). The detection methods try to shift the 

p. d. f. of the data, which have Weibull shape parameter estimation away from the true 

theoretical method (refer to figure5 : 1) 
. 

This shift showed a constructive influence on 

the result of Weibull shape parameter estimation. 

Figure 5: 1 - Deduction Method 

Weibull shape parameter estimation techniques showed different result of the value of 

the shape parameter, and using the deduction method should be accompanied with an 

estimation technique from one of the estimation techniques available (Probability 

plotting, RRX, MLE and unbiased shape parameter). From the wire test analysis, it 

has been noticed that the rank regression method showed an estimated value of 

Weibull shape parameter (after the use of deduction method) of 3.3347 (this value is 

an average value of shape parameters of 16 samples), which is the nearest value for 

the theoretical value 3.44. It also shows that MLE estimation was not suitable for 
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estimating population parameters with small samples84. Therefore, it can be noticed 

that deduction technique can be accompanied with rank regression method to predict 

an accurate shape parameter value when using small sample size. Figure 5: 2, shows 

the different estimated shape parameter values (for all the 112 diameter values) when 

using deduction technique. 
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Figure 5: 2 - Deduction shape parameter estimation in wire test 
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Achieving truthful deduction method should minimize the error of prediction of 

Weibull shape parameter. From figure 5.2, it is noticed that despite the change in the 

technique of estimation (RRX or MLE), there is no great impact on the estimation of 

scale parameter (i). For that reason, the deduction method will only concentrate on 

shape parameter estimation as this parameter value is visibly affected by the 

estimation technique. 

Normally, choosing the correct deduction value is based on experimental trials, 

however, a starting value can be used to reduce the iteration made to achieve the 

accurate deduction value. The starting value can be the Gamma (y), as using such 

value will allow the p. d. f. to be shifted and starts near zero. Such usage of gamma will 

allow a transformation of Weibull distribution to a2 parameter Weibull distribution. 

The gamma value can be calculated using equation 5.1; such equation will provide a 

primary estimation to start the deduction method. 

Y= 
43 

- t2)(t2 - tl 

""" Equation 5.1 
(t3 

-t2)-(t2 - tl) 

The values of t3, t2 and tl can be selected from the data values of the test, providing 

that t3> t2> t1. However, to soften the calculation and implement a standard method 

for these values, it is suggest in this research to use tj as the first smallest data value in 

the test, while t3 is the last largest value in the test. Therefore, t2 can be the average 

value of both t3 and t1. Figure 5: 3, illustrate the choice of the t values using any rank 

regression Weibull plot. 
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Figure 5: 3 -t deduction values. 

Using the iteration method to detect the deduction factor may be time consuming and 

need lots of effort and computer aid. To use the deduction method efficiently a 

development is required. The development can exist by exploring the relationship 

between the deduction factor and Weibull shape parameter. 

To establish the relationship between the Weibull shape parameter and the deduction 

factor can be possible by analysing different data with different Weibull shape 

parameter, and use the deduction method to calculate the deduction factor by which 

the RRX estimation accompanied with deducted data will provide an accurate 
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estimation for the beta parameter. To accomplish such analysis, different beta will be 

use; its values will be, ß=0.5,1,2.2,3.44,4.5,7,10,12,15,20. 

By using each shape parameter, a p. d. f can be plotted, and using such p. d. f a primary 

data can be found, and each data will have a frequency, which enable its use to 

generate the exact number of data needed for the test. A fully explained example will 

be introduced to show the mechanism of such analysis. 

With a shape parameter of 2.2, a p. d. ff, can be plotted by Weibull++ as seen in figure 

5: 4, using this figure data will be obtained to be analysed, as an example a value of 

5.7 can have a frequency of 17 observations. By this way, a total of 154 readings are 

available as in table 5: 1. 

Probability Density Function 

PDF for Beta=2.2 & Eta=6 

2F 

U 

5.4 5.8 15 t' R 

Figure 5: 4 - Probability density function for a shape parameter of 2.2 

Si S2 S3 S4 S5 S6 S7 S8 

1 5.4 6 5.5 6.2 6 6.2 6.4 6.7 
2 6.3 5.9 5.6 5.8 5.7 6.5 5.9 6 
3 5.6 6.4 6.1 6.6 6.1 5.6 6.3 5.6 
4 6 6.2 5.9 6.1 5.5 6 5.7 6.2 
5 6.1 5.7 6.3 6 5.9 5.8 6.1 5.9 
6 6.4 6.7 5.7 6.4 6.2 6.8 6.2 6.3 
7 6.5 61 6 5.6 6.3 5.9 5.5 5.7 
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Continued ... 
S9 S10 S11 S12 S13 S14 S15 S16 

1 6.1 6 6.5 6.1 5.9 5.8 6.4 6.1 
2 5.9 6.3 5.9 6 6.3 6.8 5.6 5.8 
3 5.8 5.7 6.4 5.9 5.6 5.7 5.8 6.3 
4 6 5.9 5.7 5.8 5.5 5.8 6 5.8 
5 5.8 6.9 6.1 6.2 5.8 6.1 5.9 6.6 
6 6.5 5.7 5.9 5.6 5.7 6.2 5.8 5.8 
7 5.6 6.2 6 6.6 6.1 5.9 6.5 5.7 

Continued.. 
. 

S17 S18 S19 S20 S21 S22 

1 5.5 5.9 6.5 5.8 6.6 5.7 
2 6.2 6.1 6 6.4 5.9 6.3 
3 5.8 5.6 5.8 5.7 5.6 6 
4 6.1 5.4 5.9 6 6.3 6.4 
5 5.9 5.7 6.1 6.2 5.7 5.9 
6 6 5.8 6.2 6.3 6 6.1 
7 6.4 6.2 6.3 5.5 6.7 6.2 

Table 5: 1 - Shape parameter 2.2 data. 

Using MINITAB all of the 154 data will be analysed, figure 5: 5 shows the descriptive 

statistics for the 154 data of 2.2 shape parameter. 

Descriptive Statistics 

Variable: 
Beta 2.2 

Anderson-Darling NormalityTest 

A-Squared: 1.158 
P-Value: 0.005 

Mean 6.02078 
StDev 0.32210 
Variance 0.103748 
Skewness 0.386124 
Kurtosis -4.1E-01 
N 154 

95% Confidence Irterval for Mu 

I 
59 60 61 

Confidence Interval for Median 

Minimum 5.40000 
ist Quartile 5.80000 
Median 6.00000 
3rd Quartile 6.20000 
Mazmum 6.90000 

95% Confidence Interval for Mu 

5.96950 6.07206 

5% Confidence Interval for Sigma 

0.28970 0.36273 

% Confidence Interval for Median 

5.90000 6.10000 

Figure 5.5 - 2.2 Shape parameter data descriptive 

II 
5.5 5.8 6.1 6.4 6.7 

IIIII 
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As S14 can be used to show the basic calculation regarding estimating the Weibull 

shape parameter, S14 consists of 7 data points with average of 6.042857143 and 

standard deviation of 0.377964473. S14 has a Weibull shape parameter of 20.7652 

(RRX Weibull estimation) and 12.55 (MLE Weibull). Refer for figure 5: 6 and 5: 7. 
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Figure 5: 6 - MLE Shape parameter for S14 
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Figure 5: 7 - RRX Weibull estimation for S 14 
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From figure 5: 6 it can be noticed that the p. d. f has a positive skewness which can be 

explained by the shape parameter of 12. Also the data of table 5: 1, can be analysed by 

the conventional estimation techniques for each subgroup (sample), and table 5: 2 

summarises the results of the calculations. Figure 5: 8 shows estimated beta 

Si S2 S3 S4 S5 S6 S7 S8 

Avg. 6.042857 6.14285 5.87142 6.1 5.957142 6.11428 6.014285 6.05714 
6 0.411732 0.33094 0.28702 0.34156 0.281999 0.41804 0.328778 0.37796 

j3p 29.8885 24.0358 37.784 38.9227 25.2915 37.784 38.9227 37.9189 
lrlRm 5.9978 6.0499 6.0357 6.1203 6.0879 6.0357 6.1203 6.1077 
IMLE 15.5 17.61 17.98 24.9 24.61 13.6 26.49 14.3 
TIMLE 6.223 6.395 6.044 6.373 6.11 6.392 6.107 6.309 

Unbias 12.25595 13.92434 14.2169 19.68858 19.45928 10.7536 20.94581 11.3071 
Upper 18.13019 20.59823 21.03102 29.12527 28.78606 15.90778 30.98508 16.72656 
Lower 6.533901 7.423355 7.579325 10.4964 10.37415 5.732971 11.16665 6.028051 

Continued.. 
. S9 sio S11 S12 S13 S14 S15 S16 

Avg. 5.957142 6.1 6.07142 6.02857 5.842857 6.04285 6 6.01428 
6 0.287849 0.42031 0.28702 0.31997 0.281999 0.37796 0.331662 0.33380 

PRRX 24.6329 17.8578 24.3794 21.4895 23.5555 20.7652 21.3904 22.7099 
TIRRX 6.0755 6.264 6.1936 6.1657 5.9645 6.1828 6.1365 6.1426 
IMLE 15.25 14.41 14.22 20.42 22.72 12.55 13.85 21.86 
TIMLE 6.158 6.326 6.151 6.206 5.88 6.224 6.187 6.072 

Punbias" 12.05827 11.39408 11.24384 16.14622 17.96484 9.923362 10.95128 17.28484 
Upper 17.83777 16.85523 16.63299 23.88506 26.57535 14.6796 16.2002 25.56942 
Lower 6.428515 6.07442 5.994327 8.607888 9.577434 5.290352 5.838357 9.214908 

Continued.. 
. S17 S18 S19 S20 S21 S22 

Avg. 5.985714 5.81428 6.11428 5.98571 6.11428 6.08571 
6 0.291138 0.27945 0.24102 0.33380 0.429839 0.24102 

PRRX 22.1413 22.7006 28.2617 19.5323 16.764 27.1498 
TIRRX 6.1186 5.9402 6.2212 6.1354 6.3047 6.1966 
IMLE 30.44 22.92 32.58 16.38 14.69 26.7 

MLE 6.045 6.857 6.084 6.117 6.464 6.203 

Unbias 24.06909 18.12298 25.76121 12.95177 11.61547 21.11185 
Upper 35.60535 26.80929 38.10849 19.15952 17.18274 31.23071 
Lower 12.83174 9.661743 13.73384 6.904858 6.192452 11.25517 

Table 5: 2 - Samples of shape parameter of 2.2 
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Beta for samples from a shape parameter of 2.2 
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Figure 5: 8 - Beta for samples from a shape parameter of 2.2 

Using Weibull++, figure 5: 9 is generated, which shows the overall data rank 

regression x estimation. It can be noticed that the data have a shape parameter of 

25.02 (far away from 2.2). This graph will be used to calculate the primary deduction 

factor, and having little iterations afterward, it can be realised that the value of 5.3215 

is the appropriate deduction value. This value will enable the rank regression x 

estimation of the data after the use of deduction method to have an estimated value of 

shape parameter near 2.2. 

Using the deduction method will show the useful outcomes of such technique to 

calculate Weibull shape parameter accurately when using data with small sample size. 

Table 5: 3 will show the data values after deduction, and table 5: 4 will show the results 

of estimation techniques after the use of deduction method for each sample. 

NM LO (OI`CO 0) O NMVLO (OI-OD0) 0N 
ýýýýýýýýýNNN 

Sample 
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Figure 5: 9 - RRX estimation for all data from shape parameter of 2.2 

Si S2 S3 S4 S5 S6 S, S8 
1 0.0785 0.6785 0.1785 0.8785 0.6785 0.8785 1.0785 1.3785 
2 0.9785 0.5785 0.2785 0.4785 0.3785 1.1785 0.5785 0.6785 
3 0.2785 1.0785 0.7785 1.2785 0.7785 0.2785 0.9785 0.2785 
4 0.6785 0.8785 0.5785 0.7785 0.1785 0.6785 0.3785 0.8785 
5 0.7785 0.3785 0.9785 0.6785 0.5785 0.4785 0.7785 0.5785 
6 1.0785 1.3785 0.3785 1.0785 0.8785 1.4785 0.8785 0.9785 
7 1.1785 0.7785 0.6785 0.2785 0.9785 0.5785 0.1785 0.3785 

Continued... 
S9 S10 S11 S12 S13 S14 S15 S16 

1 0.7785 0.6785 1.1785 0.7785 0.5785 0.4785 1.0785 0.7785 
2 0.5785 0.9785 0.5785 0.6785 0.9785 1.4785 0.2785 0.4785 
3 0.4785 0.3785 1.0785 0.5785 0.2785 0.3785 0.4785 0.9785 
4 0.6785 0.5785 0.3785 0.4785 0.1785 0.4785 0.6785 0.4785 
5 0.4785 1.5785 0.7785 0.8785 0.4785 0.7785 0.5785 1.2785 
6 1.1785 0.3785 0.5785 0.2785 0.3785 0.8785 0.4785 0.4785 
7 0.2785 0.8785 0.6785 1.2785 0.7785 0.5785 1.1785 0.3785 

Continued.. 
. 

317 018 º019 020 021 022 

1 0.1785 0.5785 1.1785 0.4785 1.2785 0.3785 
2 0.8785 0.7785 0.6785 1.0785 0.5785 0.9785 
3 0.4785 0.2785 0.4785 0.3785 0.2785 0.6785 
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4 0.7785 0.0785 0.5785 0.6785 0.9785 1.0785 
5 0.5785 0.3785 0.7785 0.8785 0.3785 0.5785 
6 0.6785 0.4785 0.8785 0.9785 0.6785 0.7785 
7 1.0785 0.8785 0.9785 0.1785 1.3785 0.8785 

Table 5: 3 - Shape parameter 2.2 data after deduction 

S1 S2 S3 s4 SS s6 S7 S8 

Avg. 0.721357 0.82135 0.54992 0 
. 
7785 0.635642 0. 79278 0 

. 
692785 0.73564 

6 0.411732 0.33094 0.28702 0. 34156 0.281999 0. 41804 0 
. 328778 0. 37796 

FM 1.1642 2.5704 1.786 2 
. 
1006 1.8696 1 . 9251 1.7259 1 

. 
9606 

0.8444 0.9305 0.6343 0 
. 
8963 0.738 0 

. 
9081 0.8066 0 

. 8426 
IMLE 1.7905 2.911 2.2313 2 

. 
7176 2.715 2 

. 
2046 2.4894 2 

. 
2656 

r1MLE 0.8004 0.9231 0.6228 0 
. 
8771 0.7144 0 

. 
8991 0.7802 0 

. 
8338 

1.415759 2.30174 1.76430 2. 14882 2.146767 1. 74319 1 
. 968383 1. 79142 

Upper 2.094329 3.40496 2.60992 3. 17874 3.175707 2.57869 2 
. 
911825 2. 65004 

Lower 0.754770 1.22710 0.94058 1. 14558 1.144486 0. 92933 1 . 
049386 0. 95504 

Continued.. 
. S9 S10 S11 S12 S13 S14 S15 S16 

Avg. 0.635642 0.7785 0.74992 0.70707 0.521357 0.72135 0.6785 0.69278 

6 0.287849 0.42031 0.28702 0.31997 0.281999 0.37796 0.331662 0.33380 
PRRX 2.4549 2.1855 2.8317 2.2499 1.8474 2.5105 2.2265 2.6321 
'qRRX 0.7176 0.8739 0.8416 0.8069 0.5987 0.7999 0.7679 0.7971 
IMLE 2.5428 2.1512 3.862 2.5661 2.1449 2.2092 2.3939 2.4194 

MLE 0.718 0.8841 0.8413 0.7982 0.5912 0.8193 0.7691 0.7857 
ßunbias 2.010607 1.70096 3.05370 2.02903 1.695985 1.74682 1.892871 1.91303 
Upper 2.974286 2.51623 4.51734 3.00154 2.508867 2.58407 2.800120 2.82994 
Lower 1.071896 0.90682 1.62799 1.08171 0.904165 0.9312 1.009129 1.01987 

Continued.. 
. S17 S18 S19 S20 S21 S22 

Avg. 0.664214 0.49278 0.79278 0.66421 0.792785 0.76421 
6 0.291138 0.27945 0.24102 0.33380 0.429839 0.24102 

PRRX 1.9021 1.3612 3.501 1.7114 1.8105 3.0427 
IIRRX 0.7702 0.5776 0.8803 0.7717 0.9083 0.8595 
IMLE 2.7056 1.9269 3.9083 2.3204 2.1466 4.0106 

MLE 0.7455 0.5527 0.8776 0.7502 0.8992 0.8457 
Unbias 2.139334 1.52361 3.09031 1.83475 1.697329 3.17120 

Upper 3.164712 2.25387 4.57149 2.71414 2.510855 4.69115 
Lower 1.140524 0.81226 1.64751 0.97814 0.904882 1.69063 

Table 5: 4 - Samples of shape parameter of 2.2 calculations after deduction 
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Using the deduction technique showed the effectiveness and accuracy, which such 

method provide specially when using small sample (n=7). A sample size of seven was 

used as the D3 factor starts to gain value after n=6. Figure 5: 10 shows a comparison 

between the estimation of shape parameter of data from population of beta =2.2. It is 

clearly seen that using such method (deduction method) enables the estimation to be 

in the average of 2.2 rather in the average of 20. 

Figure 5: 11 shows the MLE for the overall data after deduction and it can be seen that 

the shape parameter equal to 2.3202. While, in figure 5: 12, RRX has been used and it 

generated a shape parameter of 2.2945. This can be considered as another proof of the 

choice of RRX estimation associated with the deduction method. 

Shape parameter estimation of data of 2.2 after and 
Deduction 
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Figure 5: 10 - Shape parameter estimation comparison 
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Likelihood Function Surface 
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Figure 5: 11- MLE of 2.2 data after deduction 
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Figure 5: 12 - RRX estimation of 2.2 data after deduction 

At this point, it can be generalised that using deduction method associated with rank 

regression of x estimation will provide accurate Weibull shape parameter estimation 

when employing small sample size (n=7). 
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Data generated by using a shape parameter of 2.2, had to be modified by the 

deduction method. A value of 5.3215 had to be subtracted from all the data, so the use 

of deduction and RRX methods can be successful. Such value was obtained by many 

trial and error estimation to get a real applicable value to be used in deduction 

method, despite a primary value (y) used, but such a procedure can be time consuming 

and accompanied with high level of uncertainty. To ease such choice of deduction 

value, a percentage can be developed, in order to be used with any data taken from a 

population of shape parameter of 2.2. The percentage can be calculated as follow: 

t 

R(t) =e Equation 4.15 

Using the results from figure 5: 9, and substituting (3=25.0223, i=6.151 and t= 5.3215 

will result in a R(t) = 0.973706059. Therefore, the percentage of the deduction value 

(5.3215) is equal to 97.3706059 %. 

A data of a population with shape parameter of 2.2, should have a deduction value of 

97.3706059%. Using such a value can allow the analysis of deduction method and 

RRX to estimate and accurate shape parameter for sample size of 7. 
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5.2 WEIBULL DEDUCTION CONTROL CHART MODEL 

It is concluded that data taken from a population with shape parameter of 2.2 has a 

deduction factor of 97.3706059%. To make such conclusion wider, data of 

populations with different shape parameter ((3 = 0.5,1,3.44,4.5,7,12,15 and 20) 

were also used to calculate the deduction factor percentage. Calculations were carried 

out; table 5: 5 shows the resulting deduction values and Weibull parameter before and 

after the deduction. (Refer to appendix for detailed calculations and results). Also, 

table 5: 6, shows the deduction percentage of each population shape parameter. 

Original 
population 

Parameters Deduction M odified 

Beta (Weibull 2P) 
value parameters 

ß=0.5 1.651 
-1.1925 

ß= 0.5012 
rý= 4.981 il= 2.3236 
ß= 2.1936 ß= 1.0017 

1 ß -2.139 rý= 7.0552 4.135 
ß= 25.0223 ß= 2.2945 P=2.2 -5.3215 il= 6.151 0.7891 
ß= 34.253 ß= 3.4051 

P=3.44 -5.28 ij= 6.0963 rý= 0.7891 

0-4.5 
ß= 19.5859 

-5.147 
0= 4.4832 

rý= 7.1284 il= 1.9623 
ß= 7.1753 ß= 7.0014 

P=7 -0.134 6.2674 6.132 
13= 9.4392 ß= 9.4392 

P=10 -0.000001 rý= 6.0102 rý= 6.0102 
ß= 11.4539 ß= 12.027 

P=12 +0.32 
7ý= 7.1458 rý= 7.4664 
ß= 17.4513 ß= 15.0219 

P=15 
6.9368 -0.899 6.0368 

ß= 20.6366 ß= 20.0141 
P=20 

rý= 6.9821 -0.2 rý= 6.7819 

Table 5: 5 - Weibull parameters before and after deduction 
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Original 
population 

Beta 

ß=0.5 

R=1 -74.7ulf1 O`tJL 

P=2.2 97.3706059 

P=3.44 99.275690 

R=4.5 99.831362 

R=7 99.999999 

R=10 loo 

R=12 100 

R=15 100 

R=20 100 

Deduction 
Percentage (% ) 

90.99318508 71 

Table 5: 6 - Deduction Percentage 

133 

The percentage deduction values have a special trend, which is increasing in Beta 

interval of [0.5,7], then it tends to stabilise between beta interval of [7,20]. Figure 

5: 13 shows the trend of deduction percentages with respect to beta values. The 

deduction percentage can be modelled and formulated in a mathematical equation. 

Such equation (model) can be used to predict any percentage when knowing the 

parent population shape parameter with minimum error; also it must fit the percentage 

data in table 5.6 with high goodness-of-fit. 
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Deduction percentage 
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Figure 5: 13 - Deduction percentages trend 

After many modelling tests with the use of CurveExpert 1.3, a model has been found 

which satisfy the prediction of deduction percentages near the true experimental 

results (available from table 5: 6) with minimum error. The model formula of 

deduction percentage is: 

Deduction percentage =a-b e-Cn 

Where: 

a=0.99994 

b=0.10225931 

c=0.38041323 

d =1.5959549 

n= Sample size 

Equation 5.2 

Equation 5.2 has been conducted as a result of different trials to fit percentage data, 

many models have been tested. Out of the 32 different models, the model that is 
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symbolised in equation 5.2 was the nearest best model to fit the data. The 32 models 

where used from several families. The non-linear models used have been divided into 

six families based on their characteristic behaviour. These families are: 

1. Exponential family - Exponential models have the exponential or logarithmic 

functions involved. They are generally convex or concave curves, but some 

models in this family are able to have an inflection point and a maximum or 

minimum. Some of this family models are: Modified Exponential and 

Reciprocal Logarithm. 

2. Power family - The Power Family involves raising one or more parameters to 

the power of the independent variable, or raising the dependent variable to the 

power of a given parameter. This family is generally a set of convex or 

concave curves with no inflection points or maximum or minimum. Some of 

this family models are: Root Fit Model and Hoerl Model. 

3. Yield density family- two types of response are observed in practice: the 

"asymptotic" and "parabolic" yield-density relations. If the response is such 

that as density (x) increases, but the yield (y) approaches a fixed value, the 

relationship is asymptotic. If the response is such that there is a distinct 

optimum as the density increases, the relationship is parabolic. Of course, 

these types of relationships occur commonly in other scientific areas; 

therefore, this family of models is very useful. Some of this family models are: 

Harris Model and Bleasdale Model. 

4. Growth family - Growth models are characterized by a monotonic growth 

from some fixed value to an asymptote. These models are most common the 

engineering sciences. Some of this family model is saturation growth. 
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5. Sigmoidal family - Processes producing sigmoidal or "S-shaped" growth 

curves are common in a wide variety of applications such as biology, 

engineering, agriculture, and economics. These curves start at a fixed point 

and increase their growth rate monotonically to reach an inflection point. 

After this, the growth rate approaches a final value asymptotically. 

Occasionally, some scientists consider this family is a subset of the Growth 

Family. Due to the behaviour of equation 5.2, the Deduction Percentage 

Model is considered to be from this family, other models in this family are: 

Richard Model and Gompertz Model. 

6. Miscellaneous family - Some models just don't fit into previous families. The 

miscellaneous family is the one in which these "different" nonlinear regression 

models exist. Some of this family models are: Sinusoidal Fit Model, Gaussian 

Model and Hyperbolic Fit Model. 
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Figure 5: 14 - Best Curve fitting for the deduction percentage model 
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The deduction percentage model has the best goodness-of-fit, as it is seen in figure 

5: 14 the curve of the model cover most data with the minimum error and it has a 

correlation coefficient (r) of 0.99995896, which can express a high level of goodness- 

of-fit. The correlation coefficient is considered to be a measure of the goodness of fit. 

To explain the meaning of this measure, the standard deviation should be defined 

regarding the data points, which quantifies the spread of the data around the mean. 

The standard deviation around the mean is regarded as the spread around a constant 

value (the mean) as opposed to the spread around the regression model. This value is 

calculated by St, which equal to84: 

n 
st =J(y-y1)2 

i=l 
""" Equation 5.3 

Where y; is the deduction percentage for shape parameter of i. And y bar is the 

average of deduction percentages associated with the number of shape parameters 

used in calculation. y bar is calculated as follow: 

In 
y=-J yz """ Equation 5.4 

n i=1 

The deviation from the fitting curve as Sr, which equal to 

n 

Sr =ý (yi -f (xi ))2 """ Equation 5.5 

The term [yj f(x1)] is called the residuals. Residuals are the difference between the 

actual data points (data from table 5: 6) and the evaluated deduction data from the 

deduction percentage model (equation 5.2). Residuals can be plotted graphically. The 

residuals can provide an indication of a particular model's performance. Residual can 

be positive and negative residuals. Positive residuals mean that the predicted 

deduction percentage is over the curve of the fit; while negative residuals indicate that 
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the prediction values of deduction percentages in under the model curve. Optimally, 

the residuals should exhibit a random scatter around zero, which indicates that the 

data points are randomly distributed around the curve. 

The correlation coefficient (r) can be calculated by the use of equation 5.3 and 5.5, the 

value of r is calculated by equation 5.685 

ISST 
""" Equation 5.6 

St 

As the regression model better describes the data, the correlation coefficient will 

approach unity 86 
. In other words, for a perfect fit, the standard error of the estimate 

will approach Sr =0 and the correlation coefficient will approach r =1. 

Noting that the this method to calculate the correlation coefficient is based on a linear 

regression modelling, as it consists of a linear combination of a particular set of 

functions. It should be clear that the word "linear" refers only to dependence of the 

regression model on the parameters, not to the function of deduction percentage. 

Table 5: 7 shows calculated mathematical terms used in the calculations of the 

correlation coefficient (r). 

yi f(xi) y; -f(x) ybar - yj (ybar - yi) 2 

i1(ß = 0.5) 0.909932 0.909772 0.00016 -1.8902 3.572867 

i, (ß = 1) 0.929642 0.930038 -0.0004 -1.91047 3.649892 

i3 (ß = 2.2) 0.973706 0.973134 0.000572 -1.95357 3.816416 
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i4 (P= 3.44) 0.992757 0.993288 -0.00053 -1.97372 3.895567 

i5 (I3 = 4.5) 0.998314 0.998399 -8.5E-05 -1.97883 3.915768 

i6 (ß = 7) 1 0.999919 8.1E-05 -1.98035 3.921786 

i7 (ß = 10) 1 0.999940 6E-05 -1.98037 3.921869 

i8 (ß = 12) 1 0.999940 6E-05 -1.98037 3.921869 

i9 (ß = 15) 1 0.999940 6E-05 -1.98037 3.921869 

ilo (ß = 20) 1 0.999940 6E-05 -1.98037 3.921869 

Table 5: 7 - Correlation coefficient mathematical calculation terms 

Using calculated data in table 5: 7, and employing them in equation 5.3,5.4,5.5, and 

5.6 the following result can be found: 

ybar = 0.98043 1, 

Sr = 8.19747E-07, 

St= 38.45977356 

Therefore, deduction percentages curve correlation coefficient (r) equal to 

0.99995795. 

Furthermore, using the results of y; -f(xi) from the table 5: 7, a residual graph can be 

plotting as seen in figure 5: 15. 
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Figure 5: 15 - residual graph for deduction percentage model 

In addition, the deduction percentage model can be plotting by using a logarithmic 

scale. (refer to figure 5: 16) 
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Figure 5: 16 - logarithmic residual graph for deduction percentage model 
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Based on the finding of the deduction percentage model, such model can be used to 

develop a new control chart based on deduction Weibull analysis to be used with 

sample size equal to seven. 

Conventional control charts are based on normal distribution analysis, the common 

Shewhart average and range control charts is based on 36 (standard deviation). 

Normal distribution has a unique property, which is the area under the normal curve 

equal to one. And it has predictable proportions of its total area within one, two and 

three standard deviations of the mean, regardless the magnitude of the standard 

deviation. Figure 5: 17 shows the percentages of areas covered by 16,2a and 36. 

Figure 5: 17 - Normal distribution standard deviations percentages 

Using the principle of standard deviations percentages can be modified to Weibull 

distribution and develop values of the percentages based on Weibull probability plot. 
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Using 3 standard deviations in this analysis, it can be found that Weibull have an 

upper and lower range limits as follow 

Upper Range Limit = 50 %+ 49.865 %= 99.865 % 

Lower Range Limit = 50 %- 49.865 %=0.135 % 

... Equation 5.7 

... Equation 5.8 

Using such limits, a correspondent data values can be obtained by Weibull probability 

plot, which was originated using any test data after the use of deduction method to 

achieve accurate representative Weibull probability plot based on rank regression on 

x. Figure 5: 18 represents the previous idea used to achieve the range limits based on 

Weibull analysis and deduction method. 

From Figure 5: 18 it can been seen that based on equation 5.7 and 5.8, upper and lower 

limits of the data used has been configured based on Weibull deduction method 

associate with RRX. The value are symbolised by Pepper and PLower. Also the mean is 

predicted using the same technique. Using these predicted values control chart based 

on Weibull distribution can be constructed. The construction of Average and Range 

control chart can be described as follow: 

From the Values of Figure 5: 18, it can be easily noticed that the average Weibull 

control chart limits are calculated as follow, (also refer to Figure 5: 19) 

Average Weibull Centre Line = Mean =p 

Range = PUpper - Plower 

... Equation 5.9 

... Equation 5.10 
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Weibull Probability Plot 
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Figure 5: 18 - Weibull Range Percentages (based on deduction and RRX) 

Range =R= PUpper - PL"', =3u 

R 
= Therefore, a= - 

(PUpper 
- 

'Lower 
/ 

3 

""" Equation 5.11 

""" Equation 5.12 
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Uppper Weibull Deduction Average Limit =p+6 V 

+ 

(PUPP-11 
- 

PLower) 

_ 

(Pupper 
- 

PLower ) 

3ý -ý+ 3V 
UWDAL p+ 0.1259882(PUpp, -PL C, ) """ Equation 5.13 

Lower Weibull Deduction Average Limit =, u -6 a n 
(PUpper 

- 
PLower) (PUpper 

- 
PLower ) 

-ý- 
3V-n 3/ 

LWDAL -p-0.1259882 (PUpp, - PLower) """ Equation 5.14 

Upper Weibull Deduction 
Average Limit (UWDAL) 

Average (p) 

Upper Weibull Deduction 
Average Limit (UWDAL) 

Figure 5: 19 - Weibull Deduction Average Control Chart 
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Also the Weibull Deduction Range Control Chart Limits are calculated as follow; 

(refer to figure 5: 20) 

R=d2xcr "" Equation 5.15 

When n=7, d2 = 2.704 68. Therefore, 

R=2.7040" """ Equation 5.16 

Upper Weibull Deduction Range Limit = D4 xR 

=1.924 xR 

=1.924x2.704xo 

= 5.202496 a 

Upper Weibull Deduction Range Limit = 5.202496 
( upper - PL°wer ) 

3 
UWDRL =1.7341653 (PUpper - Power ) 

Lower Weibull Deduction Range Limit = D3 xR 

= 0.076 xR 

""" Equation 5.17 

=0.076x2.704x0 

= 0.205504 a 

Lower Weibull Deduction Range Limit = 0.205504 
(P°pper -' Lower 

3 

LWDRL = 0.0685013 (Puppe, - PioWer) """ Equation 5.18 
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Figure 5: 20 - Weibull Deduction Range Control Chart 

It is a fact now, that Weibull distribution can be used with the association of 

deduction model and rank regression x; to establish control charts (Average and 

Range Control Charts), which are based on small sample size (n=7). These Weibull 

Deduction control charts will provide accurate results more than the use of 

conventional Shewhart control charts. 
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5.3 WEIBULL DEDUCTION CONTROL CHART APPLICATION 

The Developed Weibull Deduction Average and Range Control Charts showed in 

theory a logical verification of replacing the conventional control charts when small 

samples (n=7) is used by the new Developed charts. To validate the theoretical 

assumption an experimental test will be used to positively insure the success of the 

developed charts when using small sample size. 

The experimental test, which will be used in this research, is the Lap Shear Strength 

Test (LSST). In this test strength of a lap sheared adhesive bond will be stressed in 

shear to determine the strength of the joint, which have specific type of adhesive. The 

joint will be exposed to a concentric parallel force. The maximum shear force or stress 

rapture will be calculated. Figure 5: 21 shows the behaviour of shear force. 

When Force F is applied then the rigid adhesive will deform only in shear, then the 

average adhesive shear stress t can be calculated by equation 5: 1987. Where F is the 

applied load, L is the length of the joint, and b is the width of the joint. 

Shear Stress =t=F""" Equation 5: 19 
Lb 

Lap shear specimens were prepared using 100mm x 3mm aluminium sheet88. In order 

to hold the specimens, two holes were drilled in the size of the clamp pin. Joints were 

assembled with a 12.5mm overlap, and then stacked on a special clamping jig using 

guide pins on a metal base to control dimensional changes. The adhesive was placed 

in between the substrates leaving a 19mm gap for wedge insertion. The crack length 



Tareq Ali Abughazaleh Chapter 5 148 

was measured which gave the strength retention data of the joint as a function of time. 

Maximum lap-shear strengths of the joints were measured with a constant cross-head 

speed of 0.42 mm/s (1 inch per minute)89 

L 

F 

F 

t 

X 

With Rigid Adhesive 

Figure 5: 21 - Deformation in loaded Single Lap joints 

Figure 5: 22 shows the specimen specification used in lap shear test, a set of 7 

specimens were used in each test, and the shear stress was calculated for each test. 

Tests were performed under the room temperature and relative humidity. Test where 

done by using different adhesives (O-XD4600, Q-Citec FM73 and P-Araldite 2012), 

also the tests were done twice, first with untreated surface and the second with B-Si 

treated surface. 
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Figure 5: 22 - Lap Shear Test 

After performing the lap shear tests the following data were obtained, refer to table 

5.8. 

S1 

O-XD4600 

S2 

O-XD4600 

S3 

Q-CitecFM73 

S4 

Q-CitecFM73 

S5 

P-Araldite 2012 

S6 

P-Araldite 2012 

Un treated B-Si Only Un treated B-Si Only Un treated B-Si Only 

il 4.62 5.37 3.165 4.72 0.834 0.15 

i2 4.06 5.41 3.045 5.55 0.914 0.313 

13 5.03 5.89 4.18 5.095 0.99 0.592 

14 5.4 5.6 4.035 5.12 0.85 0.0755 

15 5.69 4.79 4.285 4.65 0.97 0.191 

i6 4.86 5.17 3.65 4.99 0.87 0.2203 

i7 4.38 3.98 3.19 4.86 0.676 0.22 

Table 5: 8 - Lap Shear Test Results 
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Using the data in table 5: 8, few calculations will take place on each sample, such as, 

average, standard deviation, Weibull parameter based on conventional RRX and 

MLE, and unbiased shape parameter will be calculated. The results are tabulated in 

table 5: 9. 

Si S2 S3 S4 S5 S6 

Average 4.862857 5.172857 3.65 4.997857 0.872 0.25168 

Std. Dev. 0.568234 0.627341 0.523641 0.30179 0.104594 0.16664 

PRRX 9.2904 8.5984 7.9804 19.4164 8.7902 1.7686 

'nRRx 5.4505 3.8559 5.1227 0.9178 0.2830 

ßn LE 10.2638 12.0521 8.1447 17.1691 11.6478 1.7635 

11MLE 5.1014 5.4132 3.8648 5.1367 0.9129 0.2848 

PUnbiased 8.1156496 9.529669 6.9144879 13.575713 9.2099870 1.39441 

Table 5: 9 - Weibull parameter estimations 

Observing the results of Weibull parameters estimations in table 5: 9 shows a lack of 

prediction and high level of variation. As these are sample sizes of 7 and the sample 

mean is normally distributed (Based on Central Limit Theorem), therefore, it is 

known that the parent population is normally distributed, with a shape parameter of 

3.44. Using this fact, it is recommended to run Weibull Deduction Method to achieve 

high level of confidence in shape parameters estimations. 

Having a parent population with a shape parameter of 3.77, and using the Deduction 

Model, then the deduction percentage can be calculated. The deduction percentage 

resulting from equation 5.2 is equal to 99.3288 %, table 5: 10 shows the correspondent 
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deduction values for deduction percentage of 0.993288. Also, table 5: 11, shows the 

lap shear test data after the deduction. 

Sample Deduction Value 

Si 2.9810 

S2 3.0470 

S3 2.0606 

S4 3.9596 

S5 0.5196 

S6 0.0167 

Table 5: 10 - Deduction Values 

S1 S2 S3 S4 S5 S6 

O-XD4600 O-XD4600 Q-CitecFM73 Q-CitecFM73 P-Araldite 2012 P-Araldite 2012 

Un treated B-Si Only Un treated B-Si Only Un treated B-Si Only 

11 1.639 2.323 1.1044 0.7604 0.3144 0.1333 

i2 1.079 2.363 0.9844 1.5904 0.3944 0.2963 

13 2.049 2.843 2.1194 1.1354 0.4704 0.5753 

14 2.419 2.553 1.9744 1.1604 0.3304 0.0588 

15 2.709 1.743 2.2244 0.6904 0.4504 0.1743 

16 1.879 2.123 1.5894 1.0304 0.3504 0.2036 

17 1.399 0.933 1.1294 0.9004 0.1564 0.2033 

Table 5: 11 - Deducted data. 
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Using the deduction data in table 5: 11, the Weibull shape and scale parameters will be 

estimated based on deduction method associated with RRX, The results of deduction 

method estimation can be found in table 5: 12. 

Si S2 S3 S4 S5 S6 

RRRX 
3.4028 3.0708 3.3406 3.9667 3.1113 1.5935 

(Deduction) 

11 RRX 

2.0961 2.3848 1.7621 1.1402 0.3948 0.2643 
(Deduction) 

Table 5: 12 - Weibull Deduction Parameters Estimations 

The following graphs (see Figure 5: 23) are the probability plots for each sample based 

on Weibull deduction method associated with rank regression x estimation. These 

graphs will be used to calculate the mean and Pepper and PIoWer for each sample, and 

these values will be used to generate average and range Weibull deduction graphs. 
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Due to the retrieval calculations for each sample, the third sample S3 will be taken and 

analysed. The control charts will be generated and this will be a prototype off the 

other Samples calculations and analysis. 

From the Weibull Deduction RRX Probability Plot, the following can be calculated: 

µ=1.5790 

PUpper = 3.0013 5 

PLower = 0.243 8 

Using these values, the following Control charts terms can be calculated, 

UWDAL = 1.926418761 

LWDAL = 1.23158124 

6=0.115806253 

R=0.313140109 

LJWDRL = 0.602481558 

LWDRL = 0.02798636 

The Above control limits are deduction control limits, and in order to have the 

absolute control limit an addition value (Deduction Value) should be added. 

Therefore, the absolute control limits are: 

µ=3.6396 

UWDAL = 3.987018761 

LWDAL = 3.29218124 

UWDRL = 2.663081558 

LWDRL = 2.08858636 
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The results obtained from the use of Weibull deduction technique can be employed 

graphically to generate a graphical representation to control charts based on Weibull 

distribution and rank regression on x for small sample size (n=7). Two main graphs 

can be generated, a Weibull Deduction Average Control Chart and a Weibull 

Deduction Range Control Chart. Figure 5: 24 is a Weibull Deduction Average Control 

Chart, which show the behaviour of the average strength for a joint with Q- 

CitecFM73 adhesive and no surface treatment resulting form a single lap shear test. 

Joint Lap Shear Strength (S3) 

2.5 

1.5 ------ -- ---Average 
UWDAL 

LWDAL 
c1 

S3 Average 

0.5 

0 
Strength 

Sample 

Figure 5: 24 - Weibull Deduction RRX Average Control Chart 

Also to make such analysis softer and easy to digest the Weibull Deduction Average 

Control Charts can be re-plotted by using absolute values, which is achieved by 

adding the deduction value to the limits and averages. Figure 5: 25 shows Weibull 

deduction average charts based on absolute values. Figure 5: 26 present a conventional 

average Shewhart chat for S3, and the difference between Shewhart and Weibull 

deduction chart is so apparent. 
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Single Lap Shear Strenghth for S3 (Absolute Values) 
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Figure 5: 25 - Absolute Weibull Deduction Average Control Chart for S3 
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Figure 5: 26 - Shewhart Control Chart for S3 
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Figure 5: 27 is an Absolute Weibull deduction Average control chart for S4, and it is 

compared with S3 in figure 5: 28. The comparison shows a higher strength value for 

S4 than S3. 

Weibull Deduction Average Chart For S4 
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Figure 5: 27 - Absolute Value Weibull Deduction Average Control Chart for S4 
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5.4 CHAPTER FIVE CONCLUSION 

This chapter has presented remarkable conclusion, as the success of the new Weibull 

deduction rank regression on x control charts was proven by the use of strength data 

from a single lap shear test. Therefore, it is believed that the new Weibull control 

charts can accommodate small sample analysis with high level of accuracy. 
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In this chapter a discussion of all primary finding and model analysis will be handled. 

A brief argument regarding the concept of quality and its philosophies will be 

addressed, as many researchers have different points of view regarding the definition 

of quality. Moreover, A comparison of estimation techniques will be held to show the 

technique, which will be adopted to be used with Weibull deduction method. Finally, 

results of single lap shear test will be analysed to show the effectiveness of the new 

Weibull deduction rank regression on x control charts with the comparison of 

Shewhart control charts. 



Tareq Ali Abughazaleh 

6.1 THE LONG AND THE SHORT OF QUALITY 

Chapter 6 161 

Quality is may be considered as the religion of engineers, it guides them to the 

successes and goal achievement. It is based on the idea that they all agree on, which is 

worshiping a god. However, religions have many paths to fulfil their objective, but 

they all lead to one ending. Similarly, in quality there were many philosophies 

concerning the definition, objectives and strategy. Nevertheless these philosophies 

revolve around basic pillars of quality. Quality Philosophers tried to explain their own 

prospective view about quality as a separate science overlapping with many other life 

ventures. 

Quality had been defined in many different ways (Section 1.1), it was defined as 

fitness for use2, complying with specification and achieving customer needs4. Due to 

the nature of the new technology in these days, such definitions can be general and 

open-ended definitions; therefore, it is the author opinion to constrain quality is a 

simple professional view. For the present time, Quality can be defined as exceeding 

customer satisfaction by minimising the variation between the process and a service 

and the requirement by market. Such a definition will lead to unmitigated quality and 

allow quality providers to compete successfully in the global market. 

Many quality researchers showed impressive contributions in managing quality 

through fixing a comprehensive quality management system to provide a world-class 

quality level. Some of the developed quality management viewpoints have been 

conducted through a personal experience by the researcher himself. Shewhart 

concentrated on developing statistical control charts to monitor and develop quality 
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(Section 2.2.1), while Juran and Deming focused on the managerial side to develop 

quality through implementing organisational strategy to be committed to quality 

improvement (Section 2.2.2,2.2.3 and figure 2: 1). Dr Ishikawa established many 

statistical tools to be integrated with quality improvement (Section 2.6). 

The current research involves the study of Shewhart control charts and the statistical 

aspect when small sample size is associated. Therefore, improving the quality in this 

research has been through developing new statistical tool to increase the accuracy of 

monitoring and to allow transparency in process control, which will enhance the 

confidence in decision making by managers (Section 2.6,3.1 and figure 3: 1) 
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6.2 LACKS IN CONVENTIONAL STATISTICAL CONTROL CHARTS 

Statistical control charts play a vital role in the quality development and enhancement 

to manufacturing processes. After many years of concerns and debates, many dispute 

and lack of agreement may be pointed out90. SPC is considered a sub-division of 

Statistical Quality Control (SQC), however, many companies these days invest 

heavily in SPC, and this is the reason that this current research in valuable to address 

the lack in the current SPC charts and provide an alternative solution for the present 

obstacles in adopting SPC charts in some areas. In high cost and low volume 

manufacturing environment, conventional SPC charts does not fully satisfy the needs 

of the manufacturers to monitor quality, as the problem issued in this case is 

considered as a financial problem. In such an environment, it cannot be wise and 

efficient to use large sample sizes, as this maybe expensive (specially in case of 

destructive testing). Also, if the large samples use expensive items, it needs to be 

replaced by small sample sizes; the current SPC charts are not capable to ensure the 

required level of accuracy and detection of variability and omitting non- 

conformance91 (section 1.2). 

High levels of acceptable accuracy obtained by conventional (Shewhart) Control 

charts may be only established when using large sample size (n>50), which is highly 

not recommended in low volume high cost process environment. Nevertheless, the 

conventional control charts establish its control by developing limits to control the 

process; these limits are based on practical calculations. Nevertheless, a control chart 

with a large number of sample sizes may not predict variability, as the specification is 

met in control chart but the process may vary while it is within the control. In such a 
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case the conventional control charts fail to achieve acceptable accuracy and early 

warning status even with large sample size92'93 

Shewhart Control Charts are based on normal distribution, and such distribution 

showed a lack in performance when small samples sizes are use94'9s Such charts were 

unable to detect variability and variations when small size samples are used. 

Consequently, the effectiveness of these charts was so low and they did not reflect the 

true behaviour of the process, which made many processes produce non-conforming 

items. Moreover, normality of small sample size is a debateable matter of concern, as 

normality tests did not reflect accurate nature of small samples size. (Section 2.6.2, 

2.9,4.1, and 4.3). 

When Shewhart control charts are used with small sample size, they may establish a 

trend figure, which will deceive the interpreter of such graphs, as they will not detect 

the variability in a correct manner and draw different trend than the reality. 

Conventional Shewhart charts limit calculations depend on the many empirical 

factors, such as D3, D4, A2 and d2. Such factors have been tabulated and the accuracy 

of the average and range control charts limits depend on the values of these factors. 

Each factor changes its value depending on the sample size (n) used in construction 

average and range control charts. In this current research, values of D3 and D4 have 

been analysed, it has been clear that D3 and D4 shows a contrary behaviour with 

sample size change. D4 Start with a value of 3.268 at n=2 and decreases till value of 

1.777 at n=10, then it tries to stabilises around 1.6 when n is greater than 11. On the 

other hand, D3 start with value of zero a it keeps this value till n=6, afterward, when 

n=7 the D3 value increases to 0.076, then it keeps increasing till the value of 0.223 at 
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n=10 then it tried to stabilise around the value of 0.23 when n goes greater than 11 

(Figure 4: 14). Therefore, this research has shown that when the sample size increases 

(n=20 items or more), Shewhart control charts tends to achieve acceptable reflection 

to process behaviour in reality as D4 and D3 tend to converge and stabilise near a 

specific value. On the contrary, it is clear that when small sample sizes are 

implemented with Shewhart control charts the values of D3 and D4 fluctuate 

significantly, and it will affect the accuracy of control charts to trace variability 

(Equation 2.5 and 2.6, Section 4.4). 

The control charts are usually based on three standard deviation range, as this range is 

wide, and also the small sample effect associated with control chart, a poor prediction 

to non-conformance will occur with the conventional control charts despite the 

different control charting96. Also, for the pre-control charts, when the specification 

limits are set (assume it to be) as an upper and lower control limits, this may also 

increase the range and widen the interval of detection and small variation will be hard 

to notice. Also, such an assumption may cause confusion as if any point exceeding the 

limits means it exceeded the specification, and this will cause a problem to set up 

process parameters and detect problems affecting of limits points (Figure 2.7, Section 

2.6.2,2.8 and 2.12). 



Tareq Ali Abughazaleh 

6.3 CONTROL CHARTS BASED ON WEIBULL ANALYSIS 

Chapter 6 166 

Weibull distribution has showed a great success with small sample size analysis. It 

has an acceptable level of accuracy with small sample sizes. As the control charts are 

based on normal distribution and it fails the accuracy in small sample size analysis97, 

it has been suggested in this research to use Weibull distribution to overcome the 

problems with normal distribution based control charts. 

Weibull distribution is considered a reliability tool, but in this research it has been 

used in quality to achieve success in small sample size control charts. Weibull 

distribution analysis accuracy depends on the accuracy of estimating Weibull 

parameters. Many methods have been developed to overcome some errors in 

predicting Weibull parameters. These methods are Weibull probability plot, rank 

regression estimation and Maximum likelihood estimation98,99,100 (Section 4.6.1, 

4.6.2. and 4.6.3) 

Weibull distribution when used with small samples showed estimated values for 

Weibull parameters, which differ from the theoretical expected Weibull parameters 

values. For example, when a small sizes sample data adopted from a normally 

distributed population the Weibull parameters estimation techniques showed results 

far away from the expected value for Weibull parameter. The expected values for 

shape parameter is 3.44, but with the use of small sample with Weibull probability 

plot, the estimated shape parameter was 82.3,77.19 Weibull rank regression on x, and 

42.28 for Weibull maximum likelihood estimation (Section 4.3 and figure 4: 12). This 

occurred as Weibull 2- parameters estimation techniques are based on beta with 
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location parameter of zero. However, in the case of practical data, manufacturing data 

have positive location parameter. For such reason the Weibull estimation techniques 

failed to ensure estimated values near 3.44. 

It has been proven that Weibull shape parameter based on the conventional techniques 

of estimation has a specific lower value dependent on the sample size, where it has a 

starting point for estimation and increase to positive infinity depending on the nature 

of the original data. It was shown that with sample size of 5 the value of the shape 

parameter would lay in the interval of [9.06, cc]. (Section 4.5 and figure 4.15) 

To have an accurate method to predict Weibull parameters and use its results in 

constructing control charts based on Weibull analysis, it was found in this research 

that deduction a specific value from the absolute original data enhances the accuracy 

in calculating Weibull parameter. This deduction will solve the problem of data offset, 

as their gamma value will be more than zero (Figure 4.8,5.1). 

Data samples from many different populations with known shape parameter were 

used and deduction values were calculated. Based on calculated deduction values, a 

mathematical model was established to formulate the relation between the deduction 

percentage and parent population shape parameter (Section 5.1, Equation 5.2). 

A Weibull parameters estimation technique was needed in Weibull deduction method. 

Therefore, the three previously mentioned techniques were tested with real 

experimental data obtained from single lap shear strength test for aluminium joint 

with different adhesive. Rank regression on X was selected after running the test as 
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the RRX showed accurate results when adopting deduction data in Weibull deduction 

analysis when n=7. Reaching this selection, a Weibull deduction average and range 

limits were derived and formulated. Such limits can be drawn graphically to construct 

a new control chart based on Weibull deduction rank regression on x method (Section 

5.2, table 5: 12). 

Data were applied in Weibull Deduction Average Control chart, and clear observation 

of the success of such method and ensuring an accurate limiting charts to monitor the 

strength of the lap shear joints with different adhesives. The Weibull deduction 

average control limits were tighter than Shewhart average control charts (Section 5: 2. 

Equation 5.13,5.14,, 5.16 and 5.17). 

A compression of two single lap shear strength test samples was used to show the 

success of the Weibull deduction average control charts. The charts showed that using 

a Q-CitecFM73 adhesive with a B-Si treated joint will have a higher strength 

(Strength of 4.9991 KN) than the untreated joint (Strength of 3.6396 KN) (Section 

5.3, Figure 5: 25,5: 27 and 5: 28). 

Finally, it is the author's believe that the Weibull Deduction Rank Regression on X 

Control charts demonstrate a successful monitoring and provide an accurate results of 

manufacturing data when small sample of seven items are used, and such charts 

compensate the weakness of Shewhart conventional control charts when small sample 

size is employed (Figure 5: 25 and 5: 26). 
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It was concluded from the previous discussion, that Shewhart control charts failed to 

show capability in detecting variation with small sample. The deduction percentage 

model was an accurate model to be adopted in order to overcome the offset of the 

manufacturing data. The new Weibull Deduction control charts show a distinguish 

potential to detect variability and establish new tight control limit, and these charts 

compensated the disadvantages of Shewhart charts when small sample sizes are used. 
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Conclusion, Recommendations and Future Work 

Generally, Shewhart Control charts are considered to be a good statistical tool to 

monitor quality characteristics. Such control charts are effective when large sample 

size is used (more than 30), however, in some manufacturing environments where low 

production volumes and high cost exists Shewhart control charts are being 

undesirable to use due to the financial aspect associated with the use of large sample 

sizes. It has been a need for the industry to provide an alternative of Shewhart control 

chart, and the need of using small sample sizes to reduce inspection time and cost. 

Knowing that the alternative method should provide an acceptable level of accuracy 

and sensitivity in detecting variations. Based on this existing problem, this research 

was carried out to provide a solution to the problem of using Shewhart control charts 

with small sample sizes. 
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Weibull distribution has showed a useful prediction of reliability aspects with small 

sample sizes, and using Weibull analysis as a quality tool not a reliability tool is the 

basic hypothesis of this research. Therefore, the research will be based on the 

following hypothesis: "It is suggested that remodelling small Weibull samples to 

accommodate populations will produce data suitable for measuring non- 

conformance". 

In order to test the research hypothesis, two main aims were set. These aims guided 

the research process to find a solution for the present industrial problem. The aims 

were achieved in this research, and the following points address the research aims and 

the way they were handled in the process of testing the hypothesis: 

¢ Identifying how small samples affect statistical analysis to monitor processes 

with the use of Weibull data. This was meet by a critical literature review for 

the existing knowledge and spotting areas of concern regarding small sample 

use in quality control analysis. Also, statistical quality control tools were 

examined and clearly understood to establish the basic fundamentals of each 

tool and generate a clear view of the use of each tool. Then, small sample size 

behaviour was investigated to tackle the problem associated with the use of 

small sample size with conventional Shewhart control charts, and understand 

the mathematical properties of small sample size with Weibull analysis. 

Moreover, a clear ideas of small sample size behaviour with Shewhart control 

chart and Weibull distribution were flourished after a deep search in the scope 

areas accompanied with this aim. 

¢A second aim, which was brought forward when testing the hypothesis, is 

proposing a method of using Weibull analysis for statistical control of low 
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volume processes. Such aim is achieved by understanding the problem in the 

existing Shewhart control charts and Weibull analysis with small sample size. 

Afterward, a research based on the difficulties encountered by the use small 

sample size with Control charts and Weibull analysis were the foundation to 

find an acceptable model to omit the obstacles in the way of using Weibull 

analysis with small sample to construct new control chart, which serve the 

industry goals and achieve success in monitoring quality in a low cost manner. 

The aims discussed previously were accomplished by setting the research objective, 

by which these objective provided a clear and confidant believe to accept the 

hypothesis of the research and to provide a strong considerations about the success of 

the solution to the research problem. This is guided by the research methodology 

(Chapter 3), which lighted the dark roots of the research problem. The objective can 

be summarised in four main principles: 

¢ Establishing the principal limitations of small samples for process control. 

This objective was meet in chapter two, when a critical review has been 

discussed and showed the lack of certainty of using small sample sizes with 

Shewhart control charts. Also, it was shown in chapter 4, by primary 

investigation, that control charts limits are dependant on factor values, D3 and 

D4, and such values are functions of the sample size (Figure 4: 14). 

¢ To determine the relationship of Weibull for controlling the process. This 

essential objective has been examined and investigated thoroughly. Weibull 

knowledge background was fulfilled by a critical literature review. Then 

Weibull analysis nature has been clarified when associated with small sample 

size. Also, research led to a primary finding, on the limitation of Weibull 
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shape parameter estimation when small sample is use, and it was explained 

how Weibull shape parameter has a restricting lower value, by which the 

estimation of shape parameter start with (Figure 4: 15). To understand why 

Weibull shape parameter estimated value exceeds the theoretical value, four 

main techniques (Weibull probability plot, rank regression on x, Maximum 

Likelihood estimation and Unbiased shape parameter estimation) were used to 

establish accurate explanation of such difference. It was figured out that the 

accuracy increase when using Unbiased estimation of Weibull shape 

parameter. Many sample sizes where used and it was noticed that when sample 

size tend to decrease prediction error increase, as the manufacturing data have 

an offset location parameter (Gamma parameter). 

¢ The major objective, which was acceptably achieved with confident, is 

developing a Weibull model for the process. This objective was 

comprehensively covered in this research and led constructing a new model of 

control charts based on Weibull distribution with sample size of 7. This model 

is established after many findings. Conventional offset obstacle accompanied 

with Weibull analysis was bypassed by implementing the deduction method, 

this method was able to formulate the relationship between the percentage 

deduction value and parent population shape parameter (Equation5.2). 

Afterwards, a applicable choice of estimation technique was found (RRX). 

With the present of such findings and conclusions a new model was 

emphasised. The new Weibull deduction rank regression on x control charts 

were formed, and the limits of averages and ranges were derived. 
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>A final objective to achieve the aims of this research and proof the success of 

the research hypothesis was to generate and check a charting process control 

with small samples. Implementing experimental data, conducted from a single 

lap shear test, satisfied this objective. The new Weibull deduction method with 

rank regression on x estimation technique provided superb results. Weibull 

deduction average control chart was able to constrain the strength data with 

accurate limits. These limits were tight and provide high level of accuracy and 

can easily detect variation contrary of the Shewhart control charts. Also by 

using the new Weibull deduction charts, a significant conclusion were easily 

drawn and a clear decision was made regarding the strength of the joints when 

using untreated surface joints with adhesive material. 

These logical reasonable procedure, which was carried our in the current work 

verified and approved the main hypothesis in this research. Therefore, the main 

contribution to knowledge was the validation of Weibull analysis with small sample 

in process manufacturing was successfully proven and the idea of creating new 

control charts based on Weibull distribution showed a great deal of accomplishment 

to solve the existing problem of using small sample sizes in monitoring quality in a 

low volume and high production costs in manufacturing atmosphere 

It is highly recommended by the result of this research that the new Weibull deduction 

control charts will be able to replace the conventional Shewhart chart when using 

small sample size, and the new charts will provide a high level of confidence, as they 

compensate the lacks occurring when small sample sizes are used. 
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It is advised that further future work maybe carried out to ensure new stage of 

development of the new Weibull deduction control charts. The future work can be 

summarised in two ideas; firstly, establishing a confidence interval bond for the 

deduction model and gamma. Secondly, testing the new Weibull deduction control 

charts for different sample size. Sample size below 7 will be an interesting area of 

future research. 
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Software Packages 



Tareg Ali Abughazaleh 

In this research Five main commercial software where used to: 

1. MiniTab. 

2. Weibull Smith - By Wes Fulton 

3. SPSS. 

4. Weibull ++ - By ReliaSoft 

5. Curve Expert - By Daniel Hymas 
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Weibull Deduction Method Analysis 
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Summary 

In this paper, Weibull analysis will be examined and used to establish a durable 
understanding of the implication of replacing Statistical Process Control methods with 
Weibull method regarding using small sample size (n<6). SPC failed to control and 
detect variations with small sample size, therefore, Weibull techniques will be a useful 
method to use specially in high cost inspection items to reduce time and cost. Weibull 
beta parameter will be examined and a clear understanding of the relation between the 
shape factor and the sample size will be studied in order to constrain the limits for the 
shape factor, which will be contributed with specified sample size. 

Introduction 

Quality control charts are effective Statistical Process Control (SPC) methods to control 
quality by detecting any distortion or non-conforming criteria within the manufacturing 
[1]. Control charts (x ,R charts) measure quality characteristics through sampling. 
Sample size is a vital parameter when using such charts; large sample size (usually 
n>30) is needed to obtain an acceptable prediction with a satisfactory level of 
confidence. Due to some restrictions in the inspection and controlling quality, small 
samples are preferable to reduce the cost of destructive inspection especially in high 
cost elements, also not to waste time, which is highly contributed to the overall cost. 

Theories now exist to develop new mathematical or numerical models, which is 
analysed and tested to replace the conventional SPC method, as these conventional 
methods give predictions on samples not on the overall population. Taking into 
considerations that these methods will be analysed on small sample size where the 
conventional SPC methods failed to establish a high level of confidence solution 
concerned with the criteria of choosing small sample size (n <6). Further on, these 
techniques will be developed to successfully provide an advance durable model, which 
will be developed -to replace SPC- to overcome any manufacturing quality and 
unreliability problem. This model aims to satisfy the quality standards, manufacturing 
specifications and provide a profitable, confident and reliable method of establishing 
reliability using small sample size. 



Theory 

Monitoring the level of achieving desired specification within the manufacturing is a 
requisite aspect to control quality. Two main hazardous criteria should be tackled and 
omitted from any production process, as they represent a risky situation on quality. 
These two criteria are: (1) deviations from target specifications, and (2) excessive 
variability around target specifications. In 1920's, Dr. Walter A. Shewhart set 
elaborated charts, which test, monitor and control the variability within a process. 
Shewhart developed three main control charts to detect various variabilities and 
distortions in the process. These charts are: 
1- Shewhart control charts for measurable quality characteristics (know as Variables 

charts)- 
i- X, R chart (average and range chart). 
ii- x, s chart (sample average and standard deviation chart). 

2- Shewhart control chart for fraction rejected (p chart). 
3- Shewhart control chart for number of non-conformities (c chart). 

The most commonly used charts in manufacturing are x, R charts. X, R charts are 
charts to measure the variability, which means when a record is made of actual 
measured quality characteristic; then the quality is said to be expressed by Variable. 
Specification of variables may have limits of control (UCL-Upper Control Limit, LCL- 
Lower Control Limit). Figure 1 shows x, R chart based on standard SPC formula for 
calculating control limits [2] 

---------------- ---------------- 
UCL8 

8 

-------------------------------- 
LCL8 

.......................................................................... 
UCLR 

R 

................................................................................................................... 
LCLR 

Figure 1- X, R chart 
x, R charts can be a useful tool to control a process quality, they indicate lack of 
control if any point is out of the boundary limits. Therefore, the system will not be a 
constant-cause system, because causes of variations are present (as it can be seen in the 
x chart in figure 1 at the star point, which is out of the UCLx). 

Noting from the equation of UCLR and LCLR both limits depends on D3, D4 factor. D3, 
D4 have various numerical values depending on the sample size. From figure 2 D4, D3 
converge to specified numerical value at large sample size. Therefore, the result of 
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Figure 2- D3, D4 curves 

UCLR and LCLR calculations will be achieved with high confidence and approved 
certainty. 

Control charts provide a true analysis of the process or system. It keeps superintendence 
on variable and acquaints any variability of specified variable within the system. 
Control charts are successful tools to respond to any fluctuation with in the system 
parameter. The disadvantages of Control chart are, control charts effectively operate 
with large sample size not on small sample size bases. Therefore, this fact makes control 
charts not an efficient tool; especially when they are used in high cost manufacturing 
product environment and small batches; also control charts do not provide a prediction 
on system failures. 

Weibull is a predictive reliability tool newly used in manufacturing. Weibull assists 
reasonably failure analysis, data fitting and supply early prediction of problems with 
small sample sizes. Weibull graphical plots are an accurate tool to predict and analysis 
system reliability. Two main important parameter are related with Weibull line, these 
two are the Weibull line slope or scale parameter (ß) and the characteristic life value 
(rl). The Weibull function has a specific mathematical formula; this formula is being 
presented in Equation 1[3]. 

R(t) =1- F(t) =e -fit-Y rn-Y )ß 
, 

Application of Weibull 

y is location parameter Eq. (1) 

Data which is normally distributed will have a shape factor (ß) of 3.44. Nevertheless, 

small sample sizes produce various ß values, which can be explained from a comparison 
with D3, D4 constants used in SPC, see Figure 2 [4]. In this paper, small sample size 
will be discusses with respect to Weibull techniques to achieve a durable understanding 



of the behaviour of the Weibull shape factor P. This research is based on the median 
rank of n=5. A Weibull line with aß =3.44 is plotted below. The corresponding age of 
failure values of the median rank values can be known using ß=3.44 line (see Figure 3 
& Table 1). Subsequently, further mathematical calculation will show the behaviour of 
P. 

Median Rank Age Failure 
n=1 12.945 113 
n=2 31.381 150 
n=3 50.000 180 
n=4 68.619 208 
n=5 87.055 245 

8 179.2 

6 50.97745 

Table 1- Median rank Vs. Age failure for n=5 

Weibull line with slope of 3.44 Upper average limit 
99 
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FF 

Figure 3- Weibull analysis plot 

For a given a, R can be calculated 

R=d2x= 50.977 x 2.326 = 118.573 """ Eq. 2 
2 

Which produces average control limits 

X± 
(>") 

= 17 92+ 
(118.573,4) 

= 238.7865 239 & 120.2135 120 """ Eq. 3 



W- 

From Weibull for a given confidence : 

t 1'ý 
R(t) =e Eq. 4 

With a Reliability of 98% -)o. t =130 0.98 = e-(13o200/ 
The limiting 6 values for n=5 will be : 

. ". 
8=9.057784124 = 9.06 

=8 E[ 9.06, oo ] for a sample size of 5 (See D3 forn=5) 

In figure 3, an average line has been plotted showing the upper and lower average 
limits. Assuming a reliability of 98%, beta can have various values but these values 
must belong to calculated ß range, which is [9.06, a]. Therefore, it has been proved that 
for any given sample size with a specified 6, ß can has a specific minimum limiting 
value. Using Weibull technique, small samples can be used to achieve and predict 
reliability with a clear understanding of the limitation conditions this technique, and 
Weibull can be used as SPC. 

A sample with a size of 5, which is normally distributed, can have different average 
values, but the average should fall between the calculated average limits. Each average 
can produce a certain Weibull line depending on the sample standard deviation. The 
Weibull line has a Beta value constrained with in the calculated interval. Therefore, for 

certain average we have an infinite number of Weibull lines and each has different beta 

value. Finally, the analysis in this paper showed the relationship between the sample 
size and beta value. 

Conclusion 

This paper has addressed the implication of using Weibull to control process with small 
batches or high cost inspection products. The resulting use of Weibull has been shown 
to allow control limits to be set, which correspond to SPC control limits. As such 
Weibull can be used in situations where conventional Statistical Process Control 

methods are not applicable. 
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ABSTRACT 

Adhesive bonding can replace conventional joining techniques such as mechanical 
fastening, soldering, brazing and welding in appropriate manufacturing situations. 
Advanced adhesive technologies can offer improvements in productivity, cost, strength and 
durability. The greatest drawback to the use of organically based adhesives is that they are 
still suspect in hostile environments and at high temperatures. Surface treatments of 
aluminium alloy sheet with siloxane are known to enhance bond strength of joints 
constructed of aluminium sheet material with organic adhesives. The present paper tests 
strength of siloxane surface treated aluminium alloy sheet with a rubber-toughened epoxy 
(Cytec FM73) as the adhesive. The Boeing wedge test is used with a range of 
temperatures, exposure times and atmospheric relative humidities to model hostile 
environments. Crack growth at the interface over time shows good strength retention. The 
results are also compared with lap shear tests to show general agreement. Results of the 
mechanical tests are related to the mode of failure of the joint. 

1. INTRODUCTION 

Metal to metal joining of 2024-T3 aluminium with epoxy based adhesives have been used 
in a variety of aerospace applications (1). Strength tests to date have shown that durability 
of aluminium joints depends on several factors including the type of alloy, the pre- 
treatment, the primer if used, the adhesive and the environment to which the structures are 
exposed(2). Many surface treatments have been developed to increase the initial strength 
and durability of bonds to aluminium alloys (3). Recent investigations into methods for 
improving the strength of adhesive bonds have used a polyether siloxane as part of the 
surface pretreatment (4). These investigations using FM73 film adhesive indicated an 
increase in strength retention particularly for short-term durability tests. 



In the present work, polyether siloxane only and no treatment conditions are studied using 
Boeing Wedge Test investigation (B WT). Prepared B WT specimens using 2024-T3 
aluminium with FM73 adhesive are assessed after exposure to a harsh condition. Standard 
investigations are carried out at 33%, 50% and 96% RH (Relative Humidity), performed at 
20°C and 35°C to analyse strength retention behaviour (3). These results are also compared 
with lap-shear strength test data; where specimens were exposed to 1000 hour durability in 
50°C at 96% RH. 

2. EXPERIMENTAL 

2.1. Materials 

The adherend material was 2024-T3 unclad aluminium, solution heat-treated, cold worked 
and naturally aged to a stable condition). The 3mm thick aluminium sheet was cut into 
strips of 150mm x 25mm. The adhesive used was Cytec FM73, a toughened single part 
epoxy adhesive supplied as a 0.25mm thick film and cured at 120°C under a load of 
200KPa (The FM73 film adhesive is a general purpose aerospace epoxy to be used from - 
55°C to 82°C). The siloxane used was a polyether type supplied by Th. Goldschmidt AG. 

2.2. Specimen preparation and measurement 

All samples were degreased using acetone prior to preparation/assembly. Siloxane was 
deposited onto the aluminium surface by flooding the specimen to ensure complete 
coverage, followed by removal of excess siloxane with a lint-free disposable cloth. Each 
set of aluminium samples for particular test regimes of adhesive type and durability was 
prepared together in batches of six samples. Bond line thickness was controlled using two 
0.1mm thick steel wires across the adhesive area prior to assembly. All joints during the 
adhesive curing process were subjected to a load of 200 kPa that was applied by a 
compression spring incorporated within the clamping system (5). Assembled specimens 
were cured as recommended by the manufacturers. Specimens were allowed to cool to 
room temperature, prior to being placed in an environment chamber for durability testing 
and then joint strength testing. All specimens were tested in a harsh environment using a 
range of saturated salt solutions in a closed system at different temperatures. Potassium 
sulphate was used to obtain 96%RH, with Sodium dichromate and Magnesium chloride to 
obtain 50% and 33% RH respectively. 

2.2.1. BWT investigations 

Standard specimens were constructed (6), which were made of 150mm x 25mm x 3mm 
strips as shown in Figure 1. The adhesive was placed in between the substrates leaving a 
19mm gap for wedge insertion. The crack length was measured which gave the strength 
retention data of the joint as a function of time. 

2.2.2. Lap-shear investigations 

Joints were assembled with a 12.5mm overlap, then stacked on a special clamping jig using 
guide pins on a metal base to control dimensional changes. This method minimised 
alignment variation as the load was applied during the curing process-See Figure 2. 
Maximum lap-shear strengths of the joints were measured with a constant cross-head speed 
of 0.42 mm/s (1 inch per minute). 
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3. RESULTS AND DISCUSSION 

3.1. Boeing wedge test investigations 

Figure 3 and Figure 4, show average crack length vs. exposure condition for 20°C and 
35°C temperatures. Type `A' lines represent untreated samples, while type `B' lines 
represent siloxane treated samples. 

Comparing the relative performance of the two treatments shown in Figure 3, which it is 
clearly seen that the siloxane treated samples retained strength better than the untreated 
samples. The siloxane treated samples not only gave improved strength retention initially, 
but also provided strength retention of the joint for a much longer period than the untreated 
type. For example, considering the '20C97A' and '20C97B' , where relative humidity was 
97%; the untreated sample withstood 1 hour exposure, while the siloxane treated sample 
withstood 450 hours. In addition, the siloxane treated samples also provided a lower initial 
crack length of 76mm compared to 90mm for the untreated type. Tests at 33%RH and 
50%RH, also performed very similarly with extended periods of strength retention 
particularly for the lower humidity. 

Figure 4 clearly shows a significant difference between the two treatments. Similar to the 
tests performed at 20°C, siloxane treated samples show improved strength retention 
compared to the untreated type. Raising temperature from 20°C to 35°C, produced an 
aggressive atmosphere which at high humidity conditions caused the joints to fail much 
sooner. This is clearly seen comparing the results of '35C96A' and '35C96B', where 
siloxane treated samples lasted 1 hour before complete failure and the untreated samples 
failed completely after 0.3 hours of exposure. However, considering results of 35°C 
exposed to 33%RH; siloxane treated values showed a distinct improvement compared to 
untreated samples, with the joint assembly withstanding an extended period of exposure. 
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3.1.1. Failure analysis of wedge test specimens 

For the Purpose of this paper, pairs of failed specimens of Boeing wedge tests samples 
picked randomly, from both 20°C and 35°C exposures showed high adhesive failure with 
increased temperature and humidity. Mixed mode failures and cohesive failure were also 
observed for some conditions of exposure and surface treatment. Extended exposure at low 
temperature or low humidity also showed a build up of oxide. Although increased humidity 

showed a clear adhesive failure, certain areas of the failed specimens (especially at low 
temperature) show a mixed mode failure of cohesive and adhesive; or clearly, a cohesive 
failure. 
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3.2. Lap shear investigation 

Figure 5 show values obtained from these tests, where specimens after adhesive bonding 
were subjected to 50°C at 96% RH. Results show the FM73 adhesive when used with 
siloxane giving 37% improvement at zero hours compared to untreated specimens and 27% 
improvement even after 1000 hours, showing agreement with Boeing wedge tests. 
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Figure 5 Maximum load vs. exposure (0 hrs and 1000 hrs at 50°C 96% RH) 

4. SUMMARY AND CONCLUSION 

Detailed analysis of failures of BWT specimens showed that the mode of failure was 
adhesive for those joints, which failed completely after a short period of time. In addition 
this mode of failure was present when both the humidity and temperature were high. In the 
same manner, more cohesive failures were observed when the same two variables, 
temperature and humidity were low. Thus a summary of the observed results can be 
outlined as shown in Figure 6. 

Comparing the specimen failures in lap shear investigations, the untreated samples showed 
very high adhesive failure compared to the siloxane treated samples. This also agreed with 
the relevant measured results of decreased crack growth and extended periods of exposure 
prior to complete failure, for siloxane treated samples in the BWT investigation; and 
provides useful evidence to show that siloxane treated samples improve surface treatment 
characteristics. The low rate of crack growth, joints withstanding extended periods of 
exposure under tensile load and increased cohesive failure of joints all lead to the siloxane 
treated samples producing joints of high strength and durability. Additional testing is 

needed to identify the best composition of adhesive and siloxane to obtain a successful 
procedure for adhesive bonding of aluminium. 
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ABSTRACT 

Small sample inspection in manufacturing has traditionally relied on conventional statistical 
analysis to predict the parent population characteristics [1]. The theory of t-distributions and 
the central limit theorem assumes samples will have near normal distributions, which cannot 
be guaranteed. What the conventional approach has failed to address is the implications of the 
small sample inspection and predicting function parameters with acceptable accuracy. 
Weibull analysis applied to sample inspection can be shown to allow predicting the critical 
parameters values. Nevertheless, small samples implementation in Weibull analysis shows a 
clear lack of predicting such parameter in reasonable accuracy, which does not correspond 
with the theory behind Weibull distribution. Small samples will be used to achieve a clear 
understanding of the estimation of Weibull shape parameter and calculate accurate confidence 
intervals constraining the estimation range. 

1 INTRODUCTION 

Often, a single or a best estimate of a process parameter is needed. Also it is important to 
determine an interval or range, in which this single point estimate has a high probability that 
the parent process universe will fall in. In other words, sampling is required in order to predict 
the population parameter by estimating this parameter using the sample collected and this 
estimate will reflect the overall population parameter. Confidence limits are a good way to 
narrow the estimation with in certain parameter and it achieved a durable accuracy of this 
prediction. The confident interval has two limits, Upper Limit and Lower limit. In probability, 
having a 95% confidence limit means there is 0.025 chance that interval will not include the 
population parameter value because the interval fell below it, and 0.025 chance that the 
interval will not contain the population parameter value as the interval fell above it. Thus the 
confidence interval is a balanced interval. Sample size is a vital issue when calculating the 
confidence interval. The accuracy of the estimation depend on the sample size, it is 
proportionally related with the accuracy, which means, if the sample size if high the accuracy 
of the interval estimation is high as the interval converge to a smaller range of probabilities. 



Weibull distribution is an effective way to be used in sampling, it can predict the lifetime and failure occurrence within a process, therefore, it has many advantages over the conventional 
statistical control methods. Consequently, Weibull is a predictive reliability tool used in 
manufacturing. As Weibull facilitate failure calculations, data fitting and supply early 
prediction of problems with small sample sizes. Two main important parameters are 
associated with Weibull distribution; these two are the Weibull line slope or scale parameter 

R(t) =1- F(t) = e_(t-71'14 ,y is location parameter ... Eq. (1) 

(ß) and the characteristic life value ('q). The Weibull function has a specific mathematical 
equation; this formula is being presented in Equation 1 [2] 

2 THEORY 

Weibull distribution theory dictates that a normally distributed data has a Weibull shape 
parameter of 3.44. However, in practice that does not apply especially when a small sample 
size is used. Knowing, that manufacturing strategy tends to have the small sample size testing 
approach in order to save money and time. Using the confidence limits may help solving the 
small sample size problem and provide a reasonable estimation of the parameter. Data 
normality can be tested through many methods; one of these methods is Ryan-Joiner 
normality test. Generally, it is not that accurate to use this technique with small sample but in 
this research, this low accuracy will be accepted for such research purpose. If x is a normal 
random variable, then the probability distribution of x is [3] 

1 x-µ)2 
1ß f(x) = e- 

2( 
- oo <x< oo ... Eq. (2) 
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2.1 Confidence intervals for population standard deviation and mean 

Confidence limits for a universe variance or standard deviation are most easily obtained when the universe 
(n-1 )s2 2 is normal. The sample values of 2 

form aX- distribution with v=n -1, Hence it has the following : 
0' r 

2 (n-1)s2 2 Prob. X0.975 < 

ßr2 
< X0. o25 = 0.95 ... Eq. (3) 

but it can be written as 
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(n21)s2 
0.95 ... Eq. (4) 
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Hence 
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2 

and 
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21)s 

2 

are the lower and upper 0.95 confidence limits for ß' 2. 
x0.025 x0.975 

The confidence limit for the mean with a normal distribution with unknown mean and 
unknown variance is 

SS 
X- ta/2, n-1 9 <X + tä2, n-1 ... Eq. (5) <V -n 



where ta(2, n_, 
denotes the percentage point of the t- distribution with n -1 degrees of freedom 

such that P{tn-1 >_ t, 1} = a/2. 
Therefore, the sample average should be calculated and then substituted within the mean 
confidence limits. 

2.2 Maximum Likelihood Estimation (MLE) 

Likelihood function is one of the common methods exploited in estimating Weibull 
distribution parameters. The likelihood function has many sub functions, which serve the 
estimation methods, these sub-functions are: marginal, partial and maximum likelihood 
methods. 

It can be deduced that the likelihood function is the joint probability of an observed sample as 
function of unknown parameter. It is more convenient to calculate the logarithmic values of 
the likelihood function that to calculate the function itself. Plotting the likelihood function 
will be greatly simplified since the likelihood are normally calculated by multiplying the 
probabilities of independent events and by considering the logarithm of the function it can 
eliminate the constant term of the logarithm. The likelihood function usually has a maximum 
at specific values of the distribution parameters. These values of parameters are more likely to 
give rise to the data that other values. Therefore, using a maximum likelihood method will 
provide a best single point estimate in predicting a parameter of the needed function. 

Maximum likelihood method objective is to determine the best estimates of certain function 
parameters. Establishing the likelihood function for the data and obtaining its logarithmic 
expression can reach such objective. This expression is then differentiated with respect to the 
parameters, and the resulting equation is set to equal to zero. The resulting equations are then 
solved simultaneously to obtain the best estimates of the parameters that maximize the 
likelihood function and such estimate is called the Maximum Likelihood Estimate (MLE). 

The probability density function (p. d. f. ) of the Weibull distribution is given by 

ßt 0_1 
tßtßß ý- f(t) _-- ex --... Eq. (6) where F(t) =1- ex - and h(t) =ýt'... Eq. (7) 
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Using the maximumlikelihoodprocedure, it can be shown thatßis the solutionof Equation8[4] 
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3 CONFIDENCE INTERVALS APPLICATION 

A rod diameter is being measured and 10 samples are being collected. Each sample has a 
sample size of 5 readings -See Table 1. By using these samples, the population mean and 

variance (standard deviation) will be estimated with a 95% confidence interval. A normality 
test was used to check for normality characteristic see figure I. Also a Weibull plot (using 

WinSmith software- refer to figure 3) will allow the calculation of beta value of the sample. 
Table 2 shows the resulted parameters of the rod diameter testing. 



Table 1 Rod diameter testing sam 
7 cR I C. 0 I c1n 

0.65 0.75 0.75 0.60 0.90 0.60 0.75 0.60 0.65 0.60 
0.70 0.85 0.80 0.70 0.75 0.75 0.80 0.70 0.80 0.70 
0.65 0.75 0.80 0.70 0.65 0.75 0.65 0.80 0.85 0.80 
0.65 0.85 0.70 0.75 0.85 0.85 0.75 0.75 0.85 0.80 
0.85 0.65 0.75 0.65 0.80 0.70 0.75 0.75 0.75 0.65 

Using the known statistics the standard deviation and the mean of each sample can be 
calculated and the result can be seen in the table 2. This table also shows the upper and lower 
limit of the standard deviation and the mean, which are been calculated by the equation 2,3,4 
and 5. Noting that the X value (v=4) 0.975 and 0.025 are from X-distribution table = 0.48 and 
11.14 respectively; also, that the 95% accuracy is used which means that the alpha factor (a) 
is 0.05, therefore, 100(1-(x)%=95%. In the calculation of 95% mean confidence limits, it can 
be seen that ((x) is 0.05; and from the t-distribution tables, the value oft 0.025,4 is equal to 2.776. 
Refer to table 2 for the variance estimation of the samples. 

Table 2 Rod diameter parameters 
6^2 a^2 

Upper 
(3`1 

Lower 
µ µ 

Upper 
µ 

Lower 
Beta Beta 

Unbiased 
Upper 
Beta 

Lower 
Beta 

1 0.0075 0.062 0.0026 0.7 0.820 0.5796 10.57 7.37 11.19 3.07 
2 0.007 0.058 0.0025 0.77 0.886 0.6538 12.02 8.38 12.73 3.48 
3 0.0018 0.014 0.0006 0.76 0.818 0.7019 25.02 17.45 26.50 7.25 
4 0.0035 0.027 0.0016 0.68 0.759 0.6008 13.38 9.33 14.17 3.88 
5 0.0095 0.077 0.0033 0.79 0.923 0.6565 11.12 7.76 11.78 3.22 
6 0.0082 0.068 0.0029 0.73 0.856 0.6039 10.31 7.19 10.92 2.99 
7, 0.003 0.025 0.0010 0.74 0.816 0.6639 14.02 9.78 14.85 4.06 
8 0.0058 0.047 0.0020 0.72 0.825 0.6147 13.98 9.75 14.81 4.05 
9 0.007 0.058 0.0021 0.78 0.896 0.6638 11.62 8.10 12.31 3.37 
10 0.008 0.066 0.0028 0.71 0.834 0.5858 9.77 6.81 10.35 2.83 

3.1 Unbiased estimate of Weibull shape parameter 

The MLE may be used to provide a point estimate of beta, but this calculated value is biased 
for a small n. Bain and Engelhardt [5] suggest the use of an unbiasing factor Gn. Using such 
factor, the unbiased estimation of the shape parameter is 

A 
Gnß MLE ... Eq. (9) 

Gn can be computedusing this approximation : 
1.346 0.8334 

G� =1.0 --2 wheren is the samplesize .... Eq. (10) 
nn 

For n=5 the Unbiasing factor is: Gn=1-(1.346/5)-(0.8334/25)= 0.69744, While the unbiased 
Shape parameter ß is shown in Table 2. Using Bain and Engelhardt technique gives us the 
following approximation for the upper and lower limit for the estimated unbiased Weibull 

shape factor. [6] 
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Eq. (12) 

where c is the chi - squared factor =2 ý(1 + p2 )2 p C1 
wherec22 is asymptoticvalues for MLE 

zz 
c= 0.822 for p equal to 1, and 

Xö9s, a = 0.711 and X05,4 = 9.488 
Substituting these values in the equations the unbiased confidence limits are shown in figure 1 
and table 2. 
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Figure 1 Weibull shape parameter estimation 

4 CONCLUSION 

Methods exist to determine population parameters with sample sizes that exceed 10, these 
methods have been shown here to be unreliable for smaller samples. This paper has explored 
using MLE and unbiased Weibull shape parameters for small samples to predict the parent 
population parameters from known populations. The conclusion drawn from this comparison 
is that MLE is not suitable for estimating population parameters with small samples. Whilst 
the Weibull method does offer an alternative solution it still does not fully explain the total 
variability. 
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Abstract 

The drive for quality improvement has lead to the use of Statistical Process Control (SPC) 
techniques to monitor and maintain low reject levels. For high scale production large samples 
can be used to measure with a high level of confidence. However, when low volumes is 
required, or processes with high piece cost, it can be expensive to collect large samples for 
analysis. Statistical analysis will always offer higher confidence levels as samples sizes increase. Conventional Statistical Process Control tools show a lack in accuracy. Weibull 
distribution has always shown a clear and acceptable prediction of failure and life behaviour 
with small sample size batches. Using such distribution enables the accuracy needed with 
small sample size to be obtained. With small sample control charts generate inaccurate 
confidence limits, which are low. On the contrary, Weibull theory suggests that using small 
samples enable achievement of accurate confidence limits. This paper highlights these two 
aspects and explains their features in more depth. An outline of the overall problem and 
solution point out success of Weibull analysis when Weibull distribution is modified to 
overcome the problems encountered when small sample sizes are used. 

1. Introduction 

Inspection is an imperative technique to check the quality standards that have been set to 
attain the elite quality required to fulfil customer satisfaction. Inspection can be a useful way 
to examine the behaviour of a process and detect the variation that may occur within the 
process. Inspection can be made on the whole production lot, and at that time is called 100% 
inspection, as every item will be thoroughly checked. Such a technique is a time consuming 
procedure. 

Sample inspection is considered a more effective and efficient way to inspect variation or 
non-conformance of a process. Thus, many factors affect such techniques, it is considered to 
be a modern method to detect default and assure quality. Sampling inspection should submit 
to different guidelines, which are (Evans et al, 1999): 

l. Sample should be rational - Sample should reflect the population behaviour, a chosen 
sample ought to be homogeneous, as the non-conformance should be clear and appear 
between samples, while it need not be noticed within each sample. By this principle, 
spotting deviation within the process across a certain time period can be precisely 
predicted by mathematical formulas. 

2. Sample size should be diminutive - as the size of a sample may be proportional to 
some financial aspects. Many managerial opinions support the idea of having small 
sample size always. The sample size is important when financial criteria are involved. 
Small sample are preferable specially when low volume size, and highly cost product 
are being inspected. If the inspection involve destructive testing the a company can 
not risk testing large size sample due to the financial impact, which will cause the 
retail price to increase and the competitive virtue will decrease. 

3. Sampling frequency (rate of recurrence) - Using large sample size frequently with 
short time period lags will be desirable for inspectors to maintain high quality 
standards and detect every variation, which may occur in the process. But due to 
economical reasons this behaviour cannot be useful and cost effective. For that 



reason, a balance should be imposed between the frequency of sampling and the cost 
of quality needed. Practically, this issue is determined by the experience of the 
inspector and the quality designer. 

Typically, small size samples are desirable, as sample size has an economical impact. The 
breakeven point is the standard of quality required to achieve customer expectations. 
Hence, Recent global competitiveness has made companies look for a new strategy to 
increase their profit, gain market reputation, and strengthen their industry. Quality control 
(SPC) and reliability can ensure these goals for any company if they are used in a correct 
manner; they are regarded as effective tools when large sample size (n>50) 
(Montogomeryl994) is being tested. The problems is that with small samples, which means 
when a high value low volume is being manufactured- such as military, satellite, and medical 
parts, and normally these parts have an expensive financial value. Within this type of 
manufacturing, safety and life cycle computation is the most vital element to ensure the 
success of such products. Using the conventional SPC control charts does not ensure the 
detection of variability and non-conformity due to sample size restrictions. 

Weibull distribution has always shown a clear and acceptable prediction of failure and 
life behaviour with small sample size batches. Using such distribution enables the accuracy 
needed with small sample size to be obtained (Drapella et al, 1999). While, on small samples 
SPC Charts generate inaccurate confidence limits, which are low. Additionally, Weibull 
theory suggests that using small samples enable achievement of accurate confidence limits. 

Small samples testing failed to show a conformance with conventional SPC techniques, 
as the confidence limits for averages and standard deviation are considered to be too wide. 
Hence, using such sizes will provide unsecured results with a lack in accuracy. Therefore, in 
this paper a new idea will be investigated and examined to use a reliability model such as 
Weibull to be used as a Statistical Process Control Model for the expensive, low volume 
production. 

2. Shewhart Control Charts for Variable Data 

As Ishikawa stated, "95 percent of quality related problems in the factory could be solved 
with seven fundamental quantitative tools" (Ishikawa, 1986). The fundamental statistical 
tools aid the researcher to examine, scan, monitor, and analyse the process. Shewhart Control 

charts are considered an effective tool to be used. 

Control charts enhance the analysis of a process by showing how that process is 

performing over time. Therefore, combining these charts with an appropriate statistical 
summary will provide a clear understanding for those who are studying certain process, and 
enable them to make decisions concerning future production. Also, Control charts describe 

whether the process is in terms of current performance or not. 

As, modern quality goal is to produce a product or a service that exhibits little or no 
variation if afforded. Variation -where no two items or services are exactly the same- exists in 

all process. Variation varies depending on the criteria of investigating them and tackling these 
variations. Variation has mainly three types (a) within piece variation (b) piece to piece 
variation (c) time to time variation. Normal variation within certain processes is studied by 
sampling the process. Control charts monitor the variation within the process and using 
statistical measurements process variation is recorded on different control charts, which show 



changes in the process, allowing early detection of process changes, which reduce rework, 
scrap, process delays and money loss. 

Control charts, like any other basic tools for quality improvement, are relatively simple to 
use. Control charts have three basic applications: (1) to establish a state of statistically 
controlled process, (2) to monitor a process when the process goes out of control, and (3) to 
determine process capability. 

This paper concentrates on small samples of variable data, and their behaviour using the 
conventional Shewhart SPC charts. While the attribute data assume only two values, good or 
bad, pass or fail, so the attribute data. Attributes usually cannot be measured, but they can be 
observed and counted and are useful in many practical situation. Usually, attributes data are 
easy to collect, often by visual inspection. Many accounting records, such as percent 
scrapped, are readily available. However, one drawback in using attributes data is that large 
samples are necessary to obtain valid statistical results. For these reasons, the main interest in 
the current investigations is to understand the background knowledge of variable control 
charts such as X, R Charts. 

In 1920's, Dr. Walter A. Shewhart set elaborated charts, which test, monitor and control 
variability within a process. Shewhart developed control charts to detect various variability 
and distortion in the process. Shewhart Control charts, which is used in this paper is: X, R 
chart (Average, range chart). 

The first step in developing X, R chart is to gather data. Usually, about 25 to 30 samples 
are collected. Samples between size 3 and 10 are generally used, with samples size of 5 being 
the most common. The number of samples is indicated by k, and n denoted the sample size. 
For each sample I, the mean is denoted X; and the range by R; are computed. The values are 
then plotted on their respective control charts. Next, the overall mean and overall average 
range calculations are made using equation 2.1 and 2.2, and these values specify the centre 
lines for the X, R chart. 

k 

LXi 

X= i=lk (Equation 1) 

k 
LR; 

R= '°' 
k 

(Equation 2) 

The average mean and average range are used to compute control limits for X, R chart. 
Control limits are easily calculated using the Shewhart formulas, as shown in equation 3,4,5, 

and 6 (Ott el al, 2000). 

Upper Average Control Limit = UCLX =X+ A2 R (Equation 3) 

Lower Average Control Limit = LCLX =X- A2 R (Equation 4) 

Upper Control Range Limit = UCLR = D4 R (Equation 5) 

Lower Control Range Limit = LCLR = D3 R (Equation 6) 



Where the constants D3, D4 and A2 depend on the sample size and can be found in special 
tables. Figure 1 shows a standard shape for X, R chart. 

The control limits represent the range between which 99.73% of all points are expected to 
fall if the process is in statistical control. If any points fall outside the control limits or if any 
unusual patterns are observed, then some special cause has probably affected the process. The 
process should be studied to determine the cause. If special causes are present, then they are 
not representative of the true state of the statistical control and all the calculation for the 
centreline and control limits will be biased. The corresponding data points should be 
eliminated, and new values for the average of mean, average of range, and control limits 
should be computed. 

3. Small Sample Size Effect on Conventional Control Charts 

Commonly, using small sample size to generate control charts, which is a subset of 
quality control methods, implies dealing with samples obtained from a stable process, and 
these samples are then compared with some functions of the long-term parameters (e. g. mean, 
variance). If the sample has a very small size (less than six), and the process variation is 
relatively large, then the results acquired will be very rough. Therefore, the crucial issue in 
such situations is not the small size of the sample as the large size of the process variance. 

Generally, Shewhart SPC charts can be effectively used with large sample size batches. 
When using small samples the probability of false notices can increase due to the rise of 
uncertainty with respect of small samples effect on the theory behind building up such control 
charts. An essential sampling disadvantage of control charts in small sample size methods is 
the risk of not detecting a non-conformance item (Fine, 1997). If a sample was deducted from 
a process and unfortunately, this sample did not contain a failed item (regarding 
specification), this item will be in the market as a passed item knowing that it is not, despite 
its high confidence. Nowadays, conventional SPC chart show a clear lack in complying with 
the trend of industry to cut its cost specially when using small sample size. SPC philosophy 
and model is an easy method to be adopted in manufacturing environment, therefore, many 
researchers are trying to adopt new adjustments to the conventional SPC chart to be used with 
the association of small sample size inspection and provide reasoning and confident results. 

tligure I- Control chart 



4. Usage of Small Samples with Weibull Analysis 

Weibull distribution existed due to the unique research delivered by the Swedish 
Professor Waloddi Weibull. In his paper "A statistical Distribution Function of Wide 
Application" in 1951, he verified the ability of the Weibull distribution to be used with small 
sample sizes and to have a good flexibility to establish a good fit to reach reasonable results 
(Donson, 1962). The Weibull Density Function is defined as follow (O'Conner, 1993): 

ßt P-' exp 
t 

-t fort >_ 0) f(t) _ (Equation 7) 

0, fort<0) 

Due to the dependency of a Weibull distribution on various parameters, its behaviour is 
constrained by the values that these Weibull parameters. The location parameter is normally 
equal to zero at the time of the start of the failure, which begins after initiating the part to 
operation life. The scale parameter and shape parameter are uncertainly calculated when 
using small samples, normally their values oscillate around the true unknown value 
(Abernethy, 1998). A true demonstration of this fact is with a shape parameter ß=3.44, the 
Weibull plot approximates to a normal distribution. This is a theoretical value (i. e. a 
parameter) not an estimation value obtained from a sample. Hence, there is no expectation of 
an exact value of 3.44 for the shape parameter from a small size sample, which has been 
drawn from the normal distribution, especially if sample size is small. 

In addition, different small samples, regardless of the distribution they come from, may 
provide widely varying point estimates. This is especially so when variance of parent 
distribution is large relative to the mean. Therefore, it can be seen that using small sample 
size is an uncertain method to predict quality and life behaviour for the manufactured 
product. 

The nature of Weibull distribution distinguishes such distribution from others, by having 
different characteristic due to the altering of the shape parameter. The values of the shape 
parameter values vary the shape of the Weibull probability density function. As a result, 
Weibull distribution is a suitable distribution to be employed in various situations, by 
depending on the value of shape parameter; many distributions can be established (refer to 
table 1) 

Beta p. d. L Shape 

ß=1 Indicates Exponential distribution 

2 Indicates Rayleigh distribution 

= 2.5 Indicates Lognormal distribution 

ß=3.4 Indicates Normal distribution 

=5 Indicates peaked Normal distribution 

Table 1- Weibull shape parameter effect on p. d. f. 



For that reason, Weibull is a good model to use, as it is a comprehensive method to cover 
most of the variation that may be involved in a process. 

After the effective use of computers and the efficiency of the modern calculation devices 
and software, many models were developed (such as Monte Carlo, Maximum Likelihood 
Estimation MLE, and least square methods) to increase the accuracy of Weibull parameters 
estimation and to overcome the deficiencies encountered with the use of Weibull in 
manufacturing environment, specially using small sample size to test the performance of an item. The estimation can be point estimation or range estimation. The main focus in the 
present work will be on estimating shape parameter as Weibull scale parameter is mostly 
estimated by MLE method (Skinner et al, 2000), which ensures high confidence level using 
small sample sizes. On the contrary, Weibull shape parameter show no response with 
conventional estimation method to comply with these methods and enable an estimation of its 
value with reasonable confidence level. 

5. Analysis 

To analyse the current problem of small samples effect on control charts, a set of data, 
which has been taken from a single lap shear test, will be used to address the problems with 
conventional control charts and propose a suitable solution of such problem. 

In Lap Shear Strength Test (LSST), the strength of a lap sheared adhesive bond will be 
stressed in shear to determine the strength of the joint, which have specific type of adhesive. 
The joint will be exposed to a concentric parallel force. The maximum shear force or stress 
rapture will be calculated. Lap shear specimens were prepared using 100mm x 3mm 
aluminium sheet (ASTM, 1996). In order to hold the specimens, two holes were drilled in the 
size of the clamp pin. Joints were assembled with a 12.5mm overlap, and then stacked on a 
special clamping jig using guide pins on a metal base to control dimensional changes. The 
adhesive was placed in between the substrates leaving a 19mm gap for wedge insertion. The 
crack length was measured which gave the strength retention data of the joint as a function of 
time. Maximum lap-shear strengths of the joints were measured with a constant cross-head 
speed of 0.42 mm/s (1 inch per minute) (Abughazaleh et al, 2001). 

Figure 2 shows the specimen specification used in lap shear test, a set of 7 specimens 
were used in each test, and the shear stress was calculated for each test. Tests were performed 
under the room temperature and relative humidity. Test where done by using different 

adhesives (O-XD4600, Q-Citec FM73 and P-Araldite 2012), also the tests were done twice, 
first with untreated surface and the second with B-Si treated surface. 
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Figure 2- Lap Shear Test 

After performing the lap shear tests the following data were obtained, refer to table 2. 

Si 
O-XD4600 

S2 
O-XD4600 

S3 
-CitecFM73 

S4 
Q-CitecFM73 

S5 
P-Araldite 2012 

S6 
P-Araldite 2012 

Un 
treated B-Si Only Un treated B-Si Only Un treated B-Si Only 

il 4.62 5.37 3.165 4.72 0.834 0.15 
i2 4.06 5.41 3.045 5.55 0.914 0.313 
i3 5.03 5.89 4.18 5.095 0.99 0.592 
i4 5.4 5.6 4.035 5.12 0.85 0.0755 
i5 5.69 4.79 4.285 4.65 0.97 0.191 
i6 4.86 5.17 3.65 4.99 0.87 0.2203 
i7 4.38 3.98 3.19 4.86 0.676 0.22 

Table 2- Lap Shear Test Results 

The success of the Weibull analysis significantly depends on the accuracy of the 
parameters used. Many techniques have developed in recent years to study the behaviour of 
such parameter, and try to establish accurate point estimation for Weibull parameter. In this 
paper, the estimation of shape parameter will be dealt with; as such parameter is important in 
Weibull analysis, and the difference between theory and practice occur when using small 
sample size. The three main techniques are: 

1. Weibull probability plot. 
2. Least square technique (Regression analysis). 
3. Maximum Likelihood Estimation. 

Using the strength data in table 2, a prediction of the Weibull parameters can be calculated 
by using Weibull++ and WinSmith. Table 3 summarises the out coming results of such 
predictions based on different estimation techniques, which are: Rank regression on x, 
maximum likelihood estimation and Unbiased factor estimation (Abughazaleh et al, 2002). 
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S, S2 S3 S4 S5 S6 

Average 4.862857 5.172857 3.65 4.997857 0.872 0.25168 
Std. Dev. 0.568234 0.627341 0.523641 0.30179 0.104594 0.16664 

p mix 9.2904 8.5984 7.9804 19.4164 8.7902 1.7686 
r1 RJ; LX 5.1065 5.4505 3.8559 5.1227 0.9178 0.2830 

MLE 10.2638 12.0521 8.1447 17.1691 11.6478 1.7635 
71 MLE 5.1014 5.4132 3.8648 5.1367 0.9129 0.2848 
Unbiased 8.1156496 9.529669 6.9144879 13.575713 9.2099870 1.39441 

Table 3- Weibull parameter estimations 

It is known that Rank regression estimation on X (RRX) is an adequate estimation to 
be used in the analysis of Weibull when using small sample size. Therefore, the main 
estimation, which will be considered in this paper, is RRX. 

Observing the results of Weibull parameters estimations in table 3 shows a lack of 
prediction and high level of variation. As these are sample sizes of 7 and the sample mean is 
normally distributed (Based on Central Limit Theorem), therefore, it is known that the parent 
population is normally distributed, with a shape parameter of 3.44. Using this fact, it is 
recommended to run a modified Weibull Method to achieve high level of confidence in shape 
parameters estimations. 

It has been detected that Weibull shape parameter estimation may be accurate if 
deduction method is implemented (Abughazaleh, 2002). The detection methods try to shift 
the p. d. f. of the data, which have Weibull shape parameter estimation away from the true 
theoretical method (refer to figure 3) . This shift showed a constructive influence on the result 
of Weibull shape parameter estimation. 
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Figure 3- Deduction Method 



The deduction values are modelled by equation 8 (Abughazaleh, 2002), which allows the 
deduction value to be calculated based on sample size of 7. 

Deduction 

Where: 

a=0.99994 
b=0.10225931 

d=0.38041323 

d=1.5959549 

n= Sample size. 

Also, having a parent population with a shape parameter of 3.77, and using the Deduction 
Model, then the deduction percentage can be calculated. The deduction percentage resulting 
from equation 8 is equal to 99.3288 %, table 4 shows the correspondent deduction values for 
deduction percentage of 0.993288. Also, table 5, shows the lap shear test data after the 
deduction. 

Sample Deduction Value 
S1 2.9810 
S2 3.0470 
S3 2.0606 
S4 3.9596 
S5 0.5196 
S6 0.0167 

d 
percentage =a-b e- cn (Equation 8) 

Table 4- Deduction Values 

Si 

O-X04600 

S2 

O-XD4600 

S3 

Q-Citer-FM73 

S4 

Q-CitecFM73 

S5 

P-Araidite 2012 

S6 

P-Araldite 2012 

Un treated B-Si Only Un treated B-Si Only Un treated B-Si Only 

il 1.639 2.323 1.1044 0.7604 0.3144 0.1333 

12 1.079 2.363 0.9844 1.5904 0.3944 0.2963 
i3 2.049. 2.843 2.1194 1.1354 0.4704 0.5753 
i4 2.419 2.553 1.9744 1.1604 0.3304 0.0588 
15 2.709 1.743 2.2244 0.6904 0.4504 0.1743 
i6 1.879 2.123 1.5894 1.0304 0.3504 0.2036 
i7 1.399 0.933 1.1294 0.9004 0.1564 0.2033 

Table 5- Deducted data. 

Using the deduction data in table 5, the Weibull shape and scale parameters will be 

estimated based on deduction method associated with RRX, The results of deduction method 
estimation can be found in table 6. 



SI S2 S3 S4 SS S6 
IRRX 3.4028 3.0708 3.3406 3.9667 3.1113 1.5935 

(Deduction) 

11 RRX 2.0961 2.3848 1.7621 1.1402 0.3948 0.2643 
eduction 

Table 6- Weibull Deduction Parameters Estimations 

6. Control charts Based on Weibull Deduction Model 

Conventional control charts are based on normal distribution analysis, the common 
Shewhart average and range control charts is based on 3a (standard deviation). Normal 
distribution has a unique property, which is the area under the normal curve equal to one. 
And it has predictable proportions of its total area within one, two and three standard 
deviations of the mean, regardless the magnitude of the standard deviation. Figure 4 shows 
the percentages of areas covered by Icy, 2a and 36. 

Using the principle of standard deviations percentages can be modified to Weibull 
distribution and develop values of the percentages based on Weibull probability plot. 

When 3 standard deviations in this analysis, it can be found that Weibull has an upper and 
lower range limits as follow 

Upper Range Limit = 50 %+ 49.865 %= 99.865 % (Equation 9) 
Lower Range Limit = 50 %- 49.865 %=0.135 % (Equation 10) 

Using such limits, a correspondent data values can be obtained by Weibull probability plot, 
which was originated using any test data after the use of deduction method to achieve 
accurate representative Weibull probability plot based on rank regression on x. Figure 5 

represents the previous idea used to achieve the range limits based on Weibull analysis and 
deduction method. 

Figure 4- Normal distribution standard deviations percentages 



From Figure 5, it can be seen that based on equation 9 and 10, upper and lower limits of 
the data used has been configured based on Weibull deduction method associate with RRX. 
The value are symbolised by PUpper and PLower. Also the mean is predicted using the same 
technique. Using these predicted values control chart based on Weibull distribution can be 
constructed. The construction of Average and Range control chart can be described as follow: 
from the Values of Figure 5, it can be easily noticed that the average Weibull control chart 
limits are calculated as follow, (also refer to Figure 6) 

Average Weibull Centre Line = Mean =µ (Equation 11) 
Range = PUpper - PLower (Equation 12) 
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Figure 5- Weibull Range Percentages (based on deduction and RRX) 

Range =R= PUpper - Piowe =3a 

Therefore, a= 
R= `PUpper - PLower 

33 

(Equation 13) 

(Equation 14) 

h. -- 



Uppper Weibull Deduction Average Limit =p+ 
n 

=µ+ 
(PUpper 

- Plower 

3c 

) (PUpm - PLower 

3V 
UWDAL -t+0.1259882 (PUpper- PLoWer) (Equation 15) 

Lower Weibull Deduction Average Limit =µ-6 V -n 
(PUpper 

- PLower) (PUpper - Plower ) 

LWDAL =µ-0.1259882 (PUpper - PLower) (Equation 16) 
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Figure 6- Weibull Deduction Average Control Chart 

7. Discussion 

For the sake of simplicity and due to the retrieval calculations for each sample one sample 
will be discussed, this sample will be S3. 

The third sample S3 will be taken and analysed. The control charts will be generated and 
this will be a prototype off the other Samples calculations and analysis. 

From the Weibull Deduction RRX Probability Plot, the following can be calculated: 
µ=1.5790 

PUpper = 3.00135 

PLower = 0.243 8 

Using these values, the following Control charts terms can be calculated, 
UWDAL = 1.926418761 
LWDAL = 1.23158124 

6=0.115806253 

16- 
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The Above control limits are deduction control limits, and in order to have the absolute 
control limit an addition value (Deduction Value) should be added. Therefore, the absolute 
control limits are: 

µ=3.6396 
UWDAL = 3.987018761 
LWDAL = 3.29218124 

The results obtained from the use of Weibull deduction technique can be employed 
graphically to generate a graphical representation to control charts based on Weibull 
distribution and rank regression on x for small sample size (n=7). A main graph can be 
generated, which is Weibull Deduction Average Control Chart. Figure 7 is a Weibull 
Deduction Average Control Chart, which show the behaviour of the average strength for a 
joint with Q-CitecFM73 adhesive and no surface treatment resulting form a single lap shear 
test. 

Joint Lap Shear Strength (S3) 
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Figure 7- Weibull Deduction RRX Average Control Chart 

Also to make such analysis softer and easy to digest the Weibull Deduction Average 
Control Charts can be re-plotted by using absolute values, which is achieved by adding the 
deduction value to the limits and averages. Figure 8 shows Weibull deduction average charts 
based on absolute values. Figure 9 present a conventional average Shewhart chat for S3, and 
the difference between Shewhart and Weibull deduction chart is so apparent. 
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Figure 8- Absolute Weibull Deduction Average Control Chart for S3 
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Figure 9- Shewhart Control Chart for S3 

8. Conclusion 

It is clear that using a Weibull deduction based control charts overcome the problem of 
conventional Shewhart control charts associated with small sample size. Weibull deduction 

control charts can provide accurate control limits when using small sample and it can replace 
the conventional Shewhart control charts in small sample size inspection. 
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