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ABSTRACT 

Selective Extraction and Recovery using Volatile Organic compounds is an 

emerging technology developed during the 1970s. This process can achieve the 

extraction of heavy metal contaminants from a matrix using a volatile organic 

reagent which passes through the feed material and reacts selectively with the desired 

metal salt, producing a volatile metal complex, removed from the matrix by a carrier 

gas. Such complexes may be decomposed to produce a pure metal product and 

regenerate the organic reagent for recycle. Previous studies demonstrated the 

possible extraction of nickel from low grade laterite ores using ß-diketones (2,4- 

pentanedione (Hacac)) and Schiff bases (bis(pentan-2,4-dionato)propan-1,2-diimine 

(H2pnaa). 

The current research is directed towards the selective extraction of different metals 

such as zinc, lead, cadmium, molybdenum, and vanadium from contaminated 

sediments and industrial wastes (Orimulsion ash, Municipal Solid Waste fly ash 
(MSW), Pulverized Coal Combustion technology fly ash (PCC)). 

New extractants and their metal complexes have been synthesised to determine their 

thermal stability and their volatility. Of those synthesised the metal complexes of 

tetra-propyldithiophosphoramide (Hprps) are the most thermally stable. 
Using a thermogravimetric analyser the reaction kinetics of the SERVO process have 

been studied. Equipment to study the SERVO process on a laboratory scale has been 

designed and constructed. This equipment has been used to study the extraction of 

metals from four different matrices (sediments, Orimulsion ash, and two types of fly 

ash) using three different extractants, with promising results. These sources have 

been ranked from the best to the least applicable for the technology: Orimulsion ash 

> sediments > MSW fly ash > PCC fly ash. 
Of the three extractants studied, Hacac, H2pnaa and Hprps, the latter is the most 

efficient in terms of the range of metals which can be extracted, the volatilisation 

temperature, the extent of degradation and reaction time, but unfortunately is also the 

most expensive. For the fly ashes, of the three ligands studied, Hprps is the preferred 

extractant followed by H2pnaa. Hacac is not recommended for these sources because 

extraction is too low. 
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Chapter 1: Introduction 

1.1 Introduction 

1.1.1 Aim of the project 

The purpose of the work presented in this report is to establish the optimum 

parameters of the SERVO Process, an emerging technology, to extract and recover 
heavy metals from contaminated sediments and from industrial wastes such as 
Orimulsion ash, Municipal Solid Waste fly ash (MSW), Pulverized Coal Combustion 

technology fly ash (PCC). This technology is designed to extract heavy metal 

contaminants with a high efficiency and also produce a clean matrix and a metal of 
high purity, which can be reused in industry. The clean residues may be replaced on- 

site, or used in other manufacturing processes. 

1.1.2 General introduction 

In the past, man in his quest for a better standard and quality of life has 

exploited the natural resources of the Earth. However, because of rapid growth in the 

population, and also rapid growth of industrial centres and waste disposal sites, man 
has accelerated the process of depletion of natural resources and has damaged the 

fragile balance of the ecosystem. [1,2] Some hazardous compounds are released at 

every stage of product manufacture, its use and also its disposal. Some other 

compounds will enter the environment routinely as result of agricultural practice and 

transport. Release might be intentional, such as discharge of effluents produced by 

manufacturing industry, but it may also be unintentional arising from accidental 

releases. In any case, the environmental consequences are the same: our living 

resources, water, air and soil are globally affected. The potential effects of industrial 

development are no longer confined to national borders. Who would have thought 

that one day heavy metals and organochlorine pesticide residues would have been 

found in the ice sheets of both polar caps, many thousands miles away from any 

manufacturing industry? [2] Not only is the global environment affected but also the 

pollutants are very diverse in nature. A large range of organic compounds, 

organometallic compounds, metals and some gases are potential pollutants and their 



behaviour is extremely difficult to predict and assess. Some chemicals are persistent 

and able to accumulate within the biota, whereas others may dissipate and become 

diluted in the environment. [3] 

Thus man has to face the problem of pollution, as it will not be possible for 

him to escape from its consequences. Khrishna B. Miscra explains the "way of 

success": [3] It is therefore necessary that consideration of environment, economy, 

and performance should become the real basis for sustainable development in the 

planet if life on our planet is to survive forever. Engineers, technologists, researchers 

and also governments, industries and individuals have to take up this serious 

challenge. The only way to reduce pollution is in the first instance to understand it. 

Pollution is primarily an economic problem, as inhabitants of the Earth must take 

economic decisions about what goods and services to produce, how to produce them, 

how much to produce, and how to distribute them. So technologists and engineers 

have to develop routes to clean production and clean transportation, while 

maintaining a level economy and producibility. Industries have to accept the 

emerging clean production, reduce pollutant emissions, and stop the intentional 

release of pollutants to land and sea. Governments have to support any movement for 

a clean environment, but also sanction any damages caused to it. [4] Consumers have 

to stop dumping if recycling is possible, by sorting their municipal waste and 

favouring recycling i. e. aluminium, glass, and paper. Finally, one of the targets for 

environmental researchers is to remediate the strongly polluted sites, which have 

been identified. One possible remedial action is to clean up the soil, using methods 

which could extract pollutants. Unfortunately, it appears that nowadays only a few of 

the available techniques can treat a site with high efficiency, within a relative short 

treatment time, at low cost, and leaving a soil which can be considered clean. 

Clean-up techniques make use of the specific differences between the 

properties of contaminants and the properties of contaminated material. [5] 

Therefore, this introduction deals firstly with the physical and chemical properties of 

sediments, fly ash, followed by a description of heavy metal species and their 

mobility in these materials. Then contaminated land is defined and the source of 

heavy metal pollution is shown. Subsequently, different existing and emerging 
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technologies to treat soils, sediments and fly ash contaminated by heavy metals are 
described, followed by a review of work achieved using the SERVO process. 

1.2 Properties of Sediments 

Sediments are soil and minerals washed from land into water, usually after 

rain. Soils, present in sediments, are composed of a small proportion of sand (20-200 

µm), and a high proportion of silt (2-20 µm) and clay (<2 pm) that gives an overall 

very fine texture to the sediment. The very fine textured sediment contains humic 

materials. This physical property results in a strong affinity for contaminants and 

mobility of metals, but also in a large quantity of interstitial water in the sediment. 

This property arises from their large surface area for adsorption: the smaller the 

particle, the higher the ability to hold nutrients and water. 

Two other important properties of sediments are concerned with their pH and 

redox potential, chemical properties that will interfere with the mobility of metals. [5, 

6,7] Acidic pH values slow microbial activity, so increase the solubility of metals. 

Weak to alkaline pH values increase microbial activity, so increase immobilization 

processes such as precipitation or adsorption. Secondly, changes in sediments redox 

potential have an important effect on the retention or release of metals either directly 

or as a result of the reaction of metals with oxidised or reduced constituents of the 

sediment. Metals that are present in the sediment bound to clay minerals and humic 

substances by cation exchange process are the most mobile, whereas metals bound 

within the crystal structure of clay mineral are generally immobilized. 

For a better understanding of the chemical reactions, which occur in clay and 

organic matter, the nature of these materials is described'first. 

1.2.1 Clay minerals 

Clay minerals are three-dimensional layered structures that have a plate-like 

appearance. They are the most surface-active sediment mineral components as they 

adsorb and hold nutrients as well as water; [8] Clays are layered silicates and consist 

of a combination of two structural units, tetrahedral and octahedral sheets. 

Tetrahedral silica sheets are formed by Si04 tetrahedra sharing oxygen atoms, 

termed basal oxygen. The unshared oxygen atoms are called apical oxygen atoms. 
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These different types of oxygen atom are shown in figure 1 which represents a single 

silica tetrahedron and a tetrahedral silica sheet [9]: 

Basal Oxygen 

Apical Oxygen 

Oxygen " Silicon 

Figure 1: a single silica tetrahedron (left) and tetrahedral silica sheet (right) [91 

The interlinked basal oxygen atoms of the tetrahedral sheet are arranged to form a 
hexagonal (Figure 2, the diagram is not to scale to allow better visibility of the 

phenomenon) leaving a cavity that can mediate a negative charge resulting from 

isomorphic substitution in the tetrahedral silica sheet (e. g. A13+ for Si4+). When 

charged this cavity can form inner sphere or outer sphere surface complexes with 

aqueous solutions. 

Interlayer ion 

Silicon 

Basal Ox., 

Figure 2: hexagonal arrangement of basal oxygens of the linked silica tetrahedra 191 

The amount of isomorphic substitution determines the surface charge density (z) and 

the cation-silicate layer interactions, and thus produces the wide range of clay 

minerals defined later. 

The octahedral sheets are formed by cations (A13+, Fe 2+ or Mgt+), which are 

coordinated with six oxygen atoms or hydroxyl units in an octahedral polyhedron, 
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figure 3. [7] When aluminium is the octahedral cation, only two thirds of the possible 

positions are filled to electrically balance the structure, this is then called a 

dioctahedral mineral. Whereas when iron or magnesium is present, all the octahedral 

sites are filled to electrically balance the structure, this is then called the trioctahedral 

structure. 

O Olf 

Figure 3: A single octahedral unit (left) and an octahedral sheet (right) [71. 

There are several types of clays that can be structurally represented in two 

major categories, the 1: 1 and the 2: 1 type crystal lattices (figure 4). 

The 1: 1 type crystal lattice has one tetrahedral sheet (Si) to one octahedral 

sheet (Al); kaolinite is the best known example and has a non-expanding interlayer 

and low cation exchange capacity. The 2: 1 type crystal lattice is formed with one 

octahedral sheet sandwiched between two tetrahedral sheets. It can be subdivided 

into four categories according to their layer charges, in other words the ions that bind 

the two crystal lattices. Talc (dioctahedral) and pyrophyllite (trioctahedral) contain no 

octahedral, or tetrahedral substitutions and therefore has no layer charge (z = 0) with 

van der Waal's bonding holding the layers together. These minerals have a non- 

expanding interlayer and no cation exchange capacity. Illite (0.6 >z<0.9), mica (z 

-1.0) and brittle mica (z -2.0) also have a non-expanding interlayer composed of K+ 

(inner sphere complex), but possess cation exchange capacity. Smectites (z -0.2 - 
0.6) and vermiculites (z -0.6 - 0.9) have an expanding interlayer composed of an 

outer sphere complex (e. g.: Cat+, 21-120) and a high cation exchange capacity. 

Chlorite, sepiolite and palygorskite have a variable layer charge due to a full range of 

substitutions that can be observed in these most complicated structures. The 

trioctahedral 2: 1 structure has an octahedrally coordinated layer composed of cations 

and anionic units (e. g. Mg3(OH)6). These minerals have a high exchange capacity, 

and a non-expanding interlayer. 
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(a) (b) 

61V 

0 

Si, AI 'Al, Mg 0O0 OH 

Q`'° 

ö0ö 
HH Gý/%ý 

HH 

(d) (e) 

Figure 4: The structure of clay minerals: (a) kaolinite, (b) talc or pýroph l 
(c) illite, mica or brittle mica, (d) smectites and vermiculites, (e) chlorite, sepiolite 

and palygorskite [7,91 

Negative charge arises on the surface of clays as a result of the following 

chemical phenomenon: [7,10,11] 

isomorphic cation substitution in the bulk structure of clays (e. g. A13+ for Si4+ 

in tetrahedral silica sheet, or Mg 2+ for A13+ in octahedral sheet); 

complexation in the surface of the tetrahedral sheet by inner or outer sphere 

complexes; 

ionisation of hydroxyl ions on the mineral surface, which is pH dependent 

e. g. 

AIOH change in pH AlO -+H+ 

SiOH change in pH SiO -+ H+ 
(1 & 2) 

--ý 
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Some ions can therefore be adsorbed on the surface of clay minerals in the diffuse 

layer and move about freely in aqueous solution, but remain close enough to the 

particle surfaces to create an effective surface charge density that balances the net 

structural surface charge density. Three types of surface species (inner-sphere 

complex, outer-sphere complex and diffuse layer) represent three modes of 

adsorption of aqueous ions onto a 2: 1 layer type clay. The ions adsorbed in the 
diffuse layer will be less tightly adsorbed than the internal exchanged ion (inner- 

sphere and outer-sphere). 

1.2.2 Humic substances 

Humic substances are one of the components obtained from the degradation of 
humus, constituent of soil organic matter (figure 5). 

Soil organic matter 

Livinb'orpnisn5: Identifiable dead tissue: Nonliving nontic ue: 
BIOMASS DEIRfNS HUMUS 

MUC SUBSTANCES II NONHUMIC SUBSTANCES 

Humic acids Humin Fulvic acids 
Dark brown to black high molecular Weight highly condensed, complexed with clays Yellow to red, lower molecular weight 

Figure 5: Soil organic matter [121 

They comprise about 60-80% of the soil organic matter and are the most stable part 

of humus. The three main components of humic substances, humic acid, fulvic acid 

and humin, have non-specific variable structures and composition and differ in their 

reactions. Humic substances consist of various chains and rings of carbon atoms, and 

contain a relatively large number of functional groups, e. g. -C02 , -OH, >C=C<, - 
COOH, -SH, capable of interaction with metal ions. [12] Some of these functional 

groups release protons leaving negatively charged sites on the clay. This charge is 

variable and pH dependent. The complexity of humic substances makes them more 

resistant to microbial attack compared with non-humic substances, which are less 

complex. Non-humic substances like polysaccharides and protein-like materials 

constitute 20-30% of humus. Clay-humus interaction plays an important role in the 

protection of soil humus against microbial attacks, as clay minerals can entrap some 

humus in their very small pores, which then becomes physically inaccessible to 
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microbes. 

1.2.3 Sediment Reactions: ion exchange, pH and redox 

As described above, clay materials and humic substances, also called 

sediment colloids, have a negative surface charge that holds cations in equilibrium. 
Ion exchange is a reversible process in which one equivalent of an ion in solution 

replaces one equivalent of an ion on the exchanger. [13] The strength of the cation 

sorption onto colloids reflects the cationic charge. Thus the higher the positive charge 

on the cation, the greater the exchangeability (A13+> Fe 2+> K). 

Similarly, the affinity of sediment colloids for ions with the same charge is 

determined by their hydrated cation radius. Thus the larger the hydrated ion, the 

greater is the exchange (K+ (0.53nm) < Na+ (0.79nm)). This phenomenon is 

explained by the fact that an ion with a larger hydrated radius is held less tightly than 

an ion with a smaller hydrated radius. 

For expanding clays, e. g. smectites, the intercalated cations can be exchanged 

by other cations in the solution surrounding the clay. For non-expanding clays e. g. 

illites, such cations are more strongly attached in the interlayer and are non- 

exchangeable. So the nature of the clay mineral is important for cation 

exchangeability but the nature of the cation is also important. 

Cation exchange takes place continuously as it is initiated by any changes in 

the solution surrounding the colloid. As such changes occur frequently; there is little 

possibility of the system reaching equilibrium. Thus changes in solution parameters 

can result from an addition of fertilizer, increase of potassium ions, and loss of 

cations by leaching, etc. 

The Cation Exchange Capacity (CEC) of a sediment is defined as the number 

of exchange sites, which can adsorb and release cations. So it indicates the number of 

negative charges present per unit mass of sediment. In the past, the units for CEC 

were expressed as milliequivalents per 100 g of soil (meq. 100g"1), but the current 

conventional units are centimoles of positive charge per kilogram weight of soil 

(cmol, kg"'), where ý is the charge of the cation. Since not all cations have the same 

charge, the actual amounts of ions required to balance the CEC of a soil differs 

between cations, e. g. if the negative charges on 1kg of soil is balanced by 0.1 cmol of 
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K+ or 0.05 cmol of Cat+, then CEC can be expressed by 0.1 cmol+1 kg' or 0.05 

cmol+2 kg''. [14] 

The more common exchangeable cations are Cat+, Mgz+, K+, Na+, H+, and 
A13+. 

The concentration of hydrogen ions in the solution within the sediment 

represents the acidity as measured by the pH of the pore water. Hydrogen ions in this 

solution represent a minor quantity when compared to the protons present at the 

cation exchange sites, which may be termed the reserve acidity. Both the reserve and 

active acidity are in equilibrium, thus when the hydrogen ion concentration in the 

sediment solution is increased as a result of natural processes or human activity, the 

equilibrium is disturbed and a redistribution of hydrogen ions occurs between the 

reserve and active sites. [15] This resistance of a sediment to changes of pH is called 

the buffer capacity, and the higher the Cation Exchange Capacity the greater is its 

buffer capacity. 

Sediment is also subject to variations in redox status, which mainly affects 

the state of elements like C, N, 0, S, Fe and Mn. Some other elements like As, Cr 

and Hg can also be affected. Redox reactions occur where there is an exchange of 

electrons between the metal ion and a reducing or oxidising agent, and consequently 

a change in the metal oxidation state. [ 16] 

Oxidation requires removal of electrons from the metal species to increase the 

oxidation state of the metal: 

M oxidation ,M 2+ + 2e- (3) 

2 FeO + 2H2O <:: > 2FeO OH + 2H+ + 2e- (4) 
Fe(I1) Fe(III) 

Oxygen gas (02) is a strong oxidizing agent, which can oxidize both organic and 

inorganic substances. 

Reduction is the gain of electron(s) by the metal, so decreasing the metal 

oxidation state. This reaction can either be performed by a micro-organism itself, or 
by a reducing agent produced by the micro-organism: 
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M 2+ + 2e- reduction IM (5) 

N03- + 2e- +2H+ p NOZ- + H2O (6) 
N(V) N(III) 

1.3 Properties of fly ash 

Fly ash is defined as the very fine particles collected in dust removal systems 

of exhaust gases from industrial processes such as, in the context of this project: fuel 

power plants and waste incinerators, and their composition will depend on the nature 

of the process. In the case of power plants and incinerators, the major chemical 

constituents are silica, alumina and oxides of iron and calcium, but the type, character 

and properties of the ash depend on a number of factors, the most important being the 

composition of the feedstock and furnace design. [17] In the following section, the 

role of the composition and properties of the original material, or feedstock, in the 

design of furnaces and the composition and properties of the resulting fly ash will be 

explained. 

1.3.1 Coal 

1.3.1.1 Composition and properties of coal 

Coal is mainly composed of carbon, hydrogen and oxygen, with lesser 

amounts of nitrogen and sulphur, and varying amounts of moisture and mineral 

matter. [18] The large variety of plants and different degrees of plant conversion 
determine the different types of coal that vary in colour from brownish-red to dark 

black according to the age of the rock. Brown coal and lignite, sub-bituminous and 
bituminous coal, and anthracite make up a series of products with increasing carbon 

and decreasing oxygen content. [17] 

Trace metals, also present in coal, arise from three different mechanisms. 
Metals may be present in the plant material and soil that form the coal, or from mud 

or sediment that cover the original deposits and mix with the organic matter as it is 

undergoing the coalification process. [19] Finally water in cracks and fractures of the 

deposit can carry trace metals into the coal. The concentration of metals can vary 

from a few percent of the total composition of the coal to a fraction of a part per 
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million, and their distribution reflects the distribution of trace elements in the soil. 

1.3.1.2 Combustion of coal 

In 1999,87 % of coal was used as a fuel to produce energy, [18] resulting in 

`gigascale' production of fly ash in the world with 65 millions tons/annum in the US 

and 10 millions tons/annum in the UK. Currently pulverized coal burners are most 

commonly used, as they offer the advantage of being able to use any type of coal, the 

reason being that pulverized coal burns like a gas and so fires are easily ignited and 

controlled. Prediction of some of the coal characteristics, i. e. grindability and 

moisture content, are important to ensure the best performance of the boiler. Fly ash 

comprises about 80% of the solid products of combustion with about 20% as bottom 

ash from the furnace. [17] The type of ash produced is dependent on both the boiler 

type but also its design. 

Fluidised-bed boilers are currently replacing the low capacity stoker-fired 

units and smaller range pulverized coal units. In these boilers, air is injected in the 

furnace though distribution plates to fluidise a bed of hot inert material into which 

the powered coal is injected. [20] The inert material disperses the coal particles 

throughout the bed, helps the ignition of the particles and finally provides sufficient 

residence time for complete combustion. In this case between 10-90% of the solid 

product of combustion is fly ash with the remainder occurring as the bed drawdown. 

In stoker-fired boilers, the coal fuel is injected into the boiler in three different 

ways: [21] underfeed, overfeed, and spreader. In these boilers, fly ash is produced as 

20% of the solid product of combustion. 

When coal particles are burned at high temperatures in the furnace volatile 

matter is vaporized and the carbon is burned off. Inorganic matter, present in form of 
impurities, is converted into ash. Most of this mineral matter consists of clays, pyrite 

and calcite. During combustion, the pyrites changes to iron oxide, and mica and clay 

particles are partially vitrified to form small glassy amorphous alumino-silicate 

spheres. [18] The coarser ashes fall to the bottom of the furnace and are collected as 
bottom ash, while the finer particles are separated from flue gases using electrostatic 

precipitators and are collected as fly ash. For every ton of coal burned 3- 30 % of the 

mass remains after combustion as fly ash and bottom ash, an average of 7- 15% ash 



is common in bituminous coal. [18] 

1.3.1.3 Properties and metal content of coal fly ash 

(a) Physical properties 

The resultant physical properties of the ash, such as moisture content, particle 

mass, glass composition and the portion of unburned carbon will depend on the 

combustion temperature at which the coal was fired, the air: fuel ratio, coal 

pulverization size and rate of combustion. [18] In general, fly ash consists of 

spherical and spongy aggregates, [22] some of which are hollow, `cenospheres', 

while others may contain many spherical particles within a large glassy sphere, 
`pherospheres'. As fly ash particles are extremely fine, with an average size between 

7 to 12 µm, they have a pozzolanic activity, where they react with calcium oxide in 

the presence of water and produce highly cementitious water-insoluble products. The 

portion of unburned carbon (2 - 10%) is an important parameter as it determines the 

loss on ignition. [23] 

(b) Chemical properties. 

Fly ash is mainly composed of oxides of elements including silicon (Si02), 

aluminium (A1203), calcium (CaO), iron (Fe203), magnesium (MgO), titanium 

(TiO2), sulphur (SO3), sodium (Na2O) and potassium (K20). [22] The proportion of 

these oxides depends on the nature of the feedstock. Thus fly ashes, obtained from 

bituminous and lignite coal are relatively rich in ferric oxide and contain less than 5% 

calcium oxide. Fly ashes from sub-bituminous and lignite coals are characterized by 

higher CaO, MgO, and SO3 and lower SiO2 and A1203 than the bituminous fly ashes. 

(c) Metal content. 

During combustion (volatilised) metals may react with sulphur or oxygen to 

form other combustion products. Later these will undergo condensation and enrich 

the fly ash particles or become fume. Some others like As203 will react with calcium 

oxide, alumina and/or silica to form non-volatile compounds. [18] 

12 



1.3.1.4 Utilisation of coal fly ash 

The Netherlands is the country using the most fly ash with virtually 100% 

utilisation in industrial applications principally construction. The average level of use 
in the world was around 40% in 1999 [18] with only 27% for the USA, who have the 

largest fly ash production. By far the greatest utilisation for coal fly ash (in 1999: 

49%) was as an additive to cement and concrete products. [17] The fly ash reacts 

with free lime within the Portland cement to produce a stronger and more durable 

concrete. It has been found that concrete containing coal fly ash is less susceptible to 

attack from chemical products in the environment, and to damage caused by freezing 

and thawing. Fly ash can also be used alone as a structural fill or cover material 

(15%). In this application, the fly ash used requires some specific properties like 

particle size, compaction characteristics, density, permeability and comprehensive 

strength of the grout material. The use of fly ash mixtures for hazardous waste 

stabilisation and solidification accounted for 12% of the total reuse of fly ash in 

1999, and is further developed in §1.6.2.3. To a lesser extent fly ash is used in the 

following applications: 

roadway and pavement construction as a soil stabiliser; 

as an addition to construction materials to form a lightweight aggregate, but 

here suffers from a lack of natural plasticity and the presence of soluble salts; 

zeolite synthesis, the low amount of mullite and low Si/Al ratio allows the 

formation of a high ion exchange capacity material with a high selectivity for polar 

molecules; 

and in the ceramic industry where its high compressive strength and good 

thermal stability makes it suitable for high temperature applications including 

refractory materials. [17] 

However in these applications there is little economical value since fly ash 

utilization is restricted by standards set for their environmental quality. Heavy metals 

traces are considered as potentially hazardous to the environment and their potential 

solubilization during zeolite synthesis or volatilization during fly ash firing for 

ceramic uses restrict the number of reusable fly ashes. 
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1.3.2 Hazardous waste 

Annual hazardous waste production worldwide is estimated to be 350 million 

tons. [24] Although, municipalities and industries are reducing waste production per 
inhabitant, this will not decrease the total annual production because of the 

continuously increasing world population. High temperature incineration is currently 

one of the preferred technologies for managing waste, even if high capital cost 
discourages its use. To reduce the cost of waste incineration, the possibility of 

producing energy as a co-product is becoming popular, but requires some initial 

waste preparation or fuel addition to optimise the combustion. [25] 

1.3.2.1 Composition and properties of hazardous waste 

(a) Municipal solid waste (MSW) 

Municipal waste solids are extremely heterogeneous in size, shape, 

composition and heating value. Municipal waste is composed of more than 50% of 

non-biodegradable material (table 1) that can be segregated by the householder for 

further recycling (metal, glass, paper, and some plastics). The material left after 

segregation, so-called refuse-derived fuel (RDF), is mainly composed of organic 

waste that could be used efficiently for compost preparation or as a better source of 

energy when incinerated. [26,27] Municipal waste solids can also be burnt as 

received, when it is called mass-burning. 

Rubber 
Waste Paper Glass Metals Plastics and Textiles 

leather 
Percent 38.9% 6.3% 7.6% 9.5% 3.1% 3.2% 

Other Food Yard Other Waste Wood 
wastes trimming 

inorganic 
materials wastes 

Percent 7.0% 6.7% 14.5% 1.5% 1.7% 

Table 1: Municipal solid waste composition in the US 1994 F261 

(b) Medical waste. 

Medical waste only represents a tiny fraction of the total waste produced 

14 



annually. Because of its nature, i. e. infectious, low level radioactive, or hazardous, 

[24] almost all medical waste is incinerated to reduce the volume and to prevent 

spreading of infection. The residue is treated as radioactive hazardous waste, and is 

not used for energy recovery or fly ash reuse. 

(c) General chemical industry waste 

Table 2 [24] shows that most of the total chemical industry waste produced in 

the US is classified as organic and general chemical waste. Incineration is often 

preferred to reducing the waste volume because the high heat capacity of the organic 

chemicals provides a good source of energy recovery. 

Waste category 
Organic General Explosives Plastics and resins chemicals chemicals 

Waste generation, 60-80 40-50 10-15 6-10 
kt 

Waste category 
Refuse Agricultural Inorganic Alkalis/chlorine 
systems chemicals pigments 

Waste generation, 5-8 3.5-5 2.5-4.5 2.5-4.5 
kt 

Table 2: Annual waste generation in US chemical industry. [241 

1.3.2.2 Hazardous waste combustion 

Current incinerators have the ability to destroy nearly 100% of liquid and 

60% of solid wastes. [25] 

(a) Solid waste incinerators 

Municipal solid wastes, because of their high heterogeneity, are extremely 
difficult to burn to recover energy if they have not been previously sorted. [28] RDF 

does not require much preparation and thus is often much easier to handle than mass- 
burning refuse. For incinerators to operate without auxiliary fuel or air preheating, 

the waste solid must contain at least 50% moisture or 60% ash and have more than 

25% combustibles. Moreover, combustion is optimised with time, temperature and 

turbulence. [29] 
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(b) Liquid waste incinerators 

Liquid wastes are divided according to their heating value into high (>16MJ 

kg') and low (<16MJ kg-') heating value, with the low heating value liquids 

requiring additional fuel or gas to help combustion. [28] Vertical furnaces, used for 

the combustion of liquid wastes, are constructed on a steel shell lined with high 

temperature refractories and consequently require higher investment than horizontal 

incinerators. 

(c) Rotary Kiln Incinerators. 

These have the ability to accept a wide range of industrial waste such as 

solids, heavy tars, sludges, filter cakes, and liquid wastes. Therefore they are often 

used for the incineration of chemical and medical wastes. [30] 

1.3.2.3 Properties and metal content of fly ash from hazardous waste 

The ashes obtained from combustion of municipal waste incinerators may be 

classified under 3 categories, namely: bottom ash, APC residues (Air Pollution 

Control) also called fly ash, and combined (APC and bottom ash combined). [31] 

(a) Physical properties. 

Bottom ashes produced from hazardous waste incineration are quite 

heterogeneous in size, with 20% of the bottom ash having a particle size > 105 µm, 

and the remaining fraction more uniform in size with up to 10% smaller than 2* 105 

µm. [31,32] Fly ash (APC residues) has an average particle size larger than 20 µm, 

but smaller than 250 µm and contains planar, cylindrical, as well as spherical 

particles and sintered agglomerates and has been described as "shredded sponge". 

[33] 

(b) Chemical properties. 

As mentioned before because of the high heterogeneity of waste components, 

the fly ash obtained from the combustion of municipal waste is quite complex. The 

bottom ash consists of ferrous and non-ferrous metals, slag and construction 

materials. Fly ash particles are dry to semi-dry particles, which consist of the reaction 

products of calcium chloride and unreacted lime. Due to the high concentration of 
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soluble salts, fly ashes are usually highly soluble in water (25 - 85% by weight). [31 ] 

Most of the available literature report different interpretations of the X-ray analyses 

of fly ash. [33-34] For example, a careful analysis of municipal solid waste fly ash 
[33] showed the presence of Na21MgC13(SO4)io, K2Ca(SO4)2. H20, Si02, PbCl2, 

PbSO4, CaSO4 and PbTi3O7. Another X-ray analysis [32] reports the main 

components as K2Ca(SO4)2. H20, (K, Na)3Na(SO4)2), CaSO4, with other crystalline 

phases like KNaSO4, NaCI, Ca3A12SiOio, SiO2, CaCO3, Fe203, (Na, KAISiO8), 

2CaSO4. H20, Ti02, Fe3O4. 

(c) Metal content. 

Metal distribution within the various particle size fractions is important to 

determine the association of metal within the fly ash matrix. For instance, aluminium, 

potassium, magnesium and iron have been found throughout the various sized 

particles [34], whereas cadmium, chromium and lead were present in the highest 

concentration in the smallest particle size fractions. [32] 

The elemental metal content of more than thirty municipal solid waste 

components have been identified and quantified. [35] The target of this study was to 

determine the contribution of each waste component to the total metal content. For 

example, cadmium was found in coloured newsprint, residual mixed paper, plastic 
film, plastic house wares, lawn waste, food containers and Ni-Cd batteries. Certain 

paper fractions like coloured newsprint and magazines, which may be candidates for 

composting and recycled paper, contain the highest concentration of metals. This 

study shows that almost all waste components contain some heavy metals that are 

considered as toxic, and therefore it remains difficult to remove metals prior to 

combustion. 

1.3.3 Orimulsion fuel 

1.3.3.1 Properties of Orimulsion fuel 

Below the Orinoco belt of Venezuela exists the world biggest reserve of 

natural bitumen. [36,37] This "non-flammable" and very inert bitumen is a very 

highly viscous material that requires dispersion in water to reduce its viscosity to a 

transportable level. Orimulsion is the trade name given to Orinoco natural bitumen 
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(70%) dispersed in water (29.8%) that is used as a fuel for electric utility boilers, 

with the aim of replacing heavy fuel oil by a cheaper alternative. Water and bitumen 

do not mix naturally, so a small quantity of surfactant and magnesium-based additive 
is added to the mixture. [38] Until recently (end 1998) the additives used were phenol 

ethoxylate and magnesium nitrate (0.2%), but these have since been replaced by 

tridecylalcohol ethoxylate (0.13%) and monoethanolamine (0.03%), together with 

magnesium hydroxide to improve fuel storage capacity and minimize high- 

temperature corrosion. These modifications result nowadays in two different 

formulations of Orimulsion: Orimulsion or Orimulsion 100 for the original formula 

and Orimulsion 400 for the current product. [38] 

Typical constituents of Orimulsion [36] are carbon (55 - 62%), hydrogen (7 - 
7.5%), sulphur (2.4 - 3%), vanadium (270 - 340µg. g"'), nickel (60 - 70 pg. g"'), 

sodium (15 - 50%), magnesium (300 - 450 ltg. g'1) and water (27 - 30%). These 

percentages are defined in term of ranges, corresponding to a number of Orimulsion 

ash analyses, with carbon the most variable constituent. 

1.3.3.2 Orimulsion fuel incinerators 

From the perspective of combustion, Orimulsion does not differ much from 

coal or heavy oil; it ignites easily in boilers, results in stable flames and is compatible 

with existing ignition and flame detection systems. Since Orimulsion fuel has a high 

content of sulphur and vanadium, the potential of sulphur trioxide (SO3) emission is 

higher than for other fuels. [39] Therefore, Orimulsion fuel incinerators were 

originally designed for coal and fuel firing, modified with good emission pollutant 

control. Use of ammonia injection is for example required to reduce sulphur trioxide 

emission to levels similar to those from other fuels. [40] Another modification 

required on combustors is the fitting of electrostatic precipitators to limit the 

emission of particulates. [37] 

1.3.3.3 Pronerties and metal content of Orimulsion ash 

(a) Physical properties 

The fly ash produced from Orimulsion combustion is less dense than the fly 

ash from other fuels, with particulate matter less than ten microns in diameter, 
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producing handling problems. [37] Therefore granulation of the fly ash on site is 

often carried out for easy handling and transportation. 

(b) Chemical properties and metal content 

The main constituents of Orimulsion ash are not really well documented. 

Typical analysis shows 55 - 70% of oxides and sulphates of magnesium, 8- 10% of 

vanadium, 1.5 - 2.5% of nickel, 0- 2% of unburnt carbon, and 0.1% other trace 

elements and remaining oxygen compounds. [37] An X-ray diffraction study [41] 

shows that the fly ash contains 11% vanadium oxysulphate (VOSO4, xH2O), 7% 

ammonium nickel sulphate ((NH4)2Ni(SO4)2), 75% ammonium magnesium sulphate 
((NH4)2Mg(SO4)2), 10% aluminium sulphate (A12(SO4)3), and 4% ammonium iron 

sulphate ((NH4)2Fe(SO4)2). 

1.4 Speciation and mobility of heavy metals 

To understand the chemistry of heavy metals and their interaction with other 

components of the system, such as clay minerals or organic matter, and to assess their 

mobility and retention, it is necessary to determine the speciation of the metals in the 

matrix. [42] This is normally determined by selective extraction, partitioning into the 

following groups: exchangeable phase; acidic phase (or bound to carbonates); 

oxidizable phase (organically bound for soil/sediment and bound to sulphidic 

compounds for fly ash); reducible phase (occluded in Fe/Mn oxides); and finally 

structurally bound in silicates. Metals are associated with these phases in various 

ways including ion exchange, adsorption, precipitation and complexation. Metal 

mobility depends upon numerous factors. McLean et al [43] have described this 

phenomenon as: 

"Metal mobility in soil-waste systems is determined by the type and quantity 

of soil surfaces present, the concentration of metal of interest, the 

concentration and type of competing ions and complexing ligands, both 

organic and inorganic, pH, and redox status. Generalization can only serve 

as rough guides of the expected behaviour of metals in such systems " 

Based on the above description it is clear that a comprehensive description of 

mobility of metals in soil is well beyond the scope of this thesis. Thus, the following 
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sections explain the mobility of elements found in the water-soluble and 

exchangeable fractions by defining the reactions that increase and decrease solubility. 
[42] 

1.4.1 Literature review of metal speciation 

Sequential extraction procedures for the speciation of particulate trace metals 
in sediment were first established by Tessier in 1979 [44] to partition trace metals 
like cadmium, cobalt, copper, nickel, lead, zinc, iron and manganese into five 

fractions: exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to 

organic matter and residual. This procedure is still currently used as a reference 

method. [45] Several modifications of this procedure including varying the 

soil/extractant ratio, the extractant concentration, the extraction time, and the order of 

extractants have been proposed, allowing a wide range of procedures over Europe. In 

recent years, the Community Bureau of Reference (BCR) launched a research 

programme to establish a unique reference method for the sequential extraction of 

metals from sediment. [46] As a result of this programme a three-step procedure has 

been developed and validated in which metals are partitioned to acid- 

soluble/exchangeable, reducible and oxidizable species. [47] Nevertheless, a 

comparative study [45] has revealed some sources of uncertainty in the application of 

the BCR three-stage extraction procedure that suggests some improvements are still 

required. 

It is also important to determine heavy metal speciation in other solid 

particles like coal fly ash or waste incineration fly ash as their mobility and possible 

leachability in landfill has recently attracted a lot of attention. Again a modified 

Tessier procedure has been developed [34] whereby the fraction leached in the fourth 

step with hydrogen peroxide is bound to sulphide compounds. The BCR procedure 
has also been applied to fly ash [48] but with only an extraction efficiency of 85% 

which was attributed to incomplete dissolution of the final residue. 
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1.4.2 Reactions changing solubility of heavy metals in sediments and fly ash 

1.4.2.1 Reactions decreasing solubility of heavy metals 

(a) Non-specific adsorption of cations and anions 

This is the reversible ion exchange process described earlier with the sorption 

mechanism based on electrostatic attraction. [49] 

The ion exchanger in the system (sediment or fly ash) can be organic matter, 

clay minerals or hydrous oxides e. g. hydrous iron oxide, hydrous manganese oxide. 
The residual charge on these colloidal exchangers depends on the pH of the system. 
Thus iron oxide is positively charged below an approximate pH of 7 and negatively 

charged above this value. Organic matter is positively charged below a soil pH of 2.5, 

and negatively charged above. However clay minerals are always negatively charged 
due to the isomorphous substitution described earlier. Nevertheless, at low pH, these 

negative charged surfaces may also have some surface hydrous oxides of aluminium, 
iron or which are able to adsorb anions. 

Adsorption of cations and anions occurs on negative and positive sites 

respectively on the colloidal fraction of the soil. Cation exchange occurs where a 
higher concentration of cations is held on the negatively charged colloid than in the 

soil solution. The cation exchange capacity of a soil increases as pH rises to 7.0 [49] 

as the number of negative sites increases. Most of the heavy metals occur as cations 

apart from arsenic, boron, molybdenum, vanadium and selenium that are generally 

present as anions under normal soil conditions. 

To summarise, pH is the most important physico-chemical parameter 

controlling the sorption and desorption of metals in a system and thus their mobility. 

(b) Specific adsorption 

This phenomenon is not well defined [49] and was introduced when it was 

found that some cations have a higher exchange power than others, and could 

selectively form complexes with the hydroxyl groups of the hydrous oxides of iron, 

manganese and aluminium. Once these complex MOH+ species are formed, they are 

not easily decomposed and require strong acids or complexing agents to reverse the 

reaction. 
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The strength of such specific adsorption of heavy metals is defined as: [50] 

Cd > Ni >Co> Zn> Cu> Pb > Hg 

(c) Chemisorption of elements 

Chemisorption [49] occurs when a metal like cadmium can replace an 

element such as calcium in the mineral structure of calcium carbonate. The sorption 

process is based on strong formal bonding between the metal and the substrate and 

can only be broken by matrix destruction. 

1.4.2.2 Reactions increasing solubili of heavmetals 

(a) Organic complexation of metals [511 

The type of interaction between organic ligands and metals can be predicted 
from some characteristics of the metal and ligand. 

Inorganic elements have been classified by Sparks [51] into three different 

groups according to their hydrolytic properties. Group I elements form non- 

dissociated oxocomplexes, e. g. SO42", and oxyacids, e. g. As(OH)3. Group 2 elements 

are highly hydrolysed, but can also occur as hydrated cations, e. g. Fe(III). Group 3 

elements do not have very stable hydroxo complexes. 

Elements can also be classified based on their hard and soft characteristics. 
Hard acids e. g. group I metals like Na +, K{, A13+ and Mg 2+ have high positive charge 

and small size and do not have easily excited outer electrons. Hard acids, not 

polarizable, interact via electrostatic and/or ionic reactions with hard bases e. g. P043", 

OH" of low polarizability and high electronegativity. Soft acids e. g. group III metals 

like Cu+, Cd 2+ and Au+ have a low charge and large size, and have some easily 

excited outer electrons. Soft acids are polarizable and form covalent bonds with soft 

bases e. g. CN-, I" of high polarizability and low electronegativity. Transition metals 

e. g. group II metals like Nie+, Mn 2+ form complexes of intermediate strength with 

intermediate bases e. g. Br, N02-- 

Organic ligands can be classified under three different categories according to 

their binding strength. Simple inorganic ligands, majority of which are anions, tend 

to complex with hard metals, as their donor atom is oxygen. The hard donor sites of 

22 



natural organic matter consist of mainly carboxyl and phenolic sites, whereas the soft 
donor sites of natural organic matter are mainly those containing sulphur donor 

atoms. 

The determination of the stability or formation constants for hard and soft 

metal complexes provides information on the affinity of a metal for an organic 
ligand. 

(b) Precipitation and co-precipitation 

Precipitation reactions involve sediment components like carbonates, 

phosphates, silicates, sulphides, and basic salts. [49,52] 

Precipitation occurs when the concentrations of metal and accompanying ions exceed 

the solubility product of an insoluble form K, p: 

MX 
n (5) pM °+(ay) + nX -(ay) (7) 

KSP_ [Mn+ ý[X. ]n 

where M= metal and X" = sediment component. 

Co-precipitation processes occur when a metal ion precipitates in association 

with a secondary mineral such as: iron, manganese and aluminium oxides, calcium 

carbonate and clay minerals. Heavy metals normally found co-precipitated in soil by 

these secondary minerals are listed below: [52] 

Fe oxides: Cu, Mn, Mo, Ni, Zn and V 

Mn oxides: Co Fe, Ni, Pb and Zn 

Al oxides: Pb, Cu, Ni, Co, Zn and Mg 

Ca carbonate: V, Mn, Fe, Co, Cd 

Clay minerals: V, Ni, Co, Cr, Zn, Cu, Pb, Ti, Mn, and Fe. 

Co-precipitation is higher with Fe and Mn oxides than with Al oxides and clay 

minerals, the reason being the higher solubility of the former two minerals. 

The redox status of sediment plays an important role in the behaviour of some 

pollutants. Firstly, some elements such as cadmium, which form insoluble sulphide 

precipitates (CdS) under strongly reducing conditions, are very firmly fixed in 

waterlogged soils. However, if these soils become aerobic, the sulphide oxidises as a 
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result of bacterial action to form sulphate and then the liberated Cd(II) is very mobile. 
Secondly, the redox potential of the soil determines the presence of sorptive iron and 

manganese oxides that under reducing conditions will dissolve and therefore liberate 

all the metal ions previously co-precipitated. 

1.5 Heavy metal contamination 

"Contaminated Land" is the term given to land containing substances that 

when present in sufficient concentrations, may cause harm to humans, animals and 

the environment. [53] 

To determine if land is contaminated, a series of investigations have to be followed 

usually consisting of a three stage site investigation to assess the extent of 

contamination. 

1.5.1 Site investigation procedure 

When there is a suspicion that possible contamination of land has occurred, a 

study is usually first carried out on the previous land use. Ordnance Survey maps, 

publicly available historical records, and details of past industrial use are all studied. 
A list of potential contaminants associated with the main industrial sectors is 

available to establish the kind of contaminant that might be found following 

industrial use (appendix 1). [53] 

Having identified potential sources of contamination, an initial sample survey 

is carried out to establish the nature and concentration of the contaminant and the 

type of risk involved. The site investigation also involves a geophysical survey. [54] 

As soil site conditions frequently limit the selection of a treatment process, it is 

necessary to have data such as soil size distribution, soil homogeneity and isotropy, 

bulk density, particle density, soil permeability, soil moisture, soil pH, Eh (redox 

potential), humic and clay content, total organic carbon, biochemical oxygen 

demand, chemical oxygen demand, availability of electron acceptors, and oil and 

grease content. 

Once the types of contaminant and their total concentration have been 

defined, tables of standards and guidelines are used to check whether the 

concentration of contaminants is above or below the guideline limit. Such 
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contaminated land guidelines differ from one country to another, in contrast to 

guidelines for atmospheric pollutants that are recognised and applied worldwide. The 

United Kingdom Government guidance (ICRCL 59/83 relevant up to March 2002, 

since superseded by CLEA) on soil remediation standards for contaminated soils is 

based on two trigger values, a "threshold" and an "action" value (appendix 2 A2-1). 

[53] These two values define three situations and consequent actions: 

all concentrations are below threshold values, so no remedial action is 

necessary; 

some or all of the concentrations are between the threshold and the action 

value. Here there is a need to consider whether remedial action is required and a 

more detailed risk assessment will be required to define the nature of the 

contaminants and their most likely effect on the environment, considering the most 

likely pathways a contaminant would take to provoke harm; 

some or all concentrations are equal to or exceed the action value. 

Appropriate remedial techniques are proposed and remedial action launched. 

The Netherlands have their own list known as the "A, B, C Dutch list" 

(appendix 2 A2-2). [53] The A, B, C values were originally introduced in 1986, and 

have been superseded by "Target" and "Intervention" values. The A value is a base 

reference for a clean soil; B defines the value at which more detailed sampling is 

required before taking any decision; and C is the intervention value at which clean up 

is required, and finally the "target" value is the concentration to be aimed for in the 

longer term. 

The United States are more concise in the sense that there is only one action 

value, which corresponds to the UK threshold value. 

In determining treatment goals, the question of whether to remediate a site 

and what degree of clean up is necessary should be addressed. A screening logic is 

needed that takes into account specific site factors, the degree of protection required, 

cost, availability and reliability of clean-up alternatives. Sampling data are taken into 

account when selecting an initial list of treatment options. Then a detailed evaluation 

of this initial list, based on selected and appropriate criteria, produces a short list of 

feasible and effective technologies. 
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1.5.2 Origin of heavy metal pollution 

There are two main sources of heavy metals in soils: weathering of the parent 

material, which is considered as a natural source, and external contaminating sources. 
[52,55] Heavy metals naturally occur in parent rocks from which they are released as 

a consequence of weathering. Thus heavy metals become accessible and are subject 

to chemical reactions like oxidation or reduction and consequently become either 

retained or transported depending on the solubility of their final products. 

External contaminating sources can be subdivided into two categories: 

primary sources where heavy metals are added to soil as a result of 

working the soil. [54] Three particular sources are causes of concern, because of the 

high levels of some of the trace elements in these materials. Historically, pesticides 

contributed to high levels of arsenic, lead, and mercury because of the use of 

chemicals such as lead arsenate, calcium arsenate and arsenite, mercuric chloride and 

organomercury compounds. Fortunately the use of these materials is decreasing. 

However, phosphate fertilisers continue to be used in large quantities and sewage 

sludge is also added as a soil conditioner and these are sources of cadmium, lead and 

arsenic; [56] 

secondary sources arise when heavy metals are added to soil as a 

consequence of nearby industrial activity and include: [52] abandoned metalliferous 

mining, an important source of As, Cd, Cu, Ni, Pb, and Zn from fine particles of ore 

carried away by wind or weathering (ions in solution); metal smelting, producing 

atmospheric pollution from fine particles of ore, aerosol-sized particles of oxides 

(As, Cd, Pb, TI) and gases like SO2; metallurgical industries like electroplating 

produce solutions of metal salts, and scrap from the electronics industry where metals 

are used in semiconductors, batteries, contacts, circuits and solders; and finally waste 

disposal and the corrosion of metals used in structures and paints. 

Reduction in the release of pollutants into the environment is the first step in 

the fight against pollution. Good prevention and good remediation are the only 

weapons man has in the serious challenge of reducing pollution. It is essential for the 

future of the planet that industry addresses the problem of environmental pollution. 

To do so, industries should minimise direct discharge and introduce a cleaner 
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technology. 

Cleaner technology refers to a technology that considers all aspects of a 

process from "cradle to grave" and seeks to minimise pollution at every stage. 

Currently industries that already have an established process do not have to close 

their operations, because they do not have a clean technology, but would have to add 

some treatment facilities upstream and downstream to the current operational process 

phase that would reduce the quantity of pollutant released in the environment and 

make the best use of raw materials and energy. However, companies starting new 

operations have to consider installing new cleaner processes to replace the older 

polluting technology. 

Remediation processes currently under development are also looking at the 

possible recovery of the pollutant. As natural resources are depleted new resources of 

raw material are required. Therefore if clean-up techniques can recover the pollutants 

contained in contaminated land, this could be a new resource of raw material, and 

provide an interesting way of reducing remediation costs. 

1.5.3 Metal toxicity 

Metal ions can be potentially toxic to human. This toxicity can be related to 

the position of the metal in the periodic table, and will decrease with an increase in 

the stability of the electron configuration. Among the highly electropositive metal 

ions of the periodic table group I and group 2 elements which occur in biological 

systems primarily as free cations, toxicity increases with atomic number [56]: 

1: Na<K<Rb, Cs 

2: Mg < Ca < Sr < Ba 

According to Fergusson [56], the increase of toxicity reflects the metal 

affinity for amino, imino, and sulfydryl groups, therefore metals from the periodic 

table groups 1,2 and 13 to 18 are less toxic than metals from groups 3 to 12. 

However, this generalisation has to be considered with caution. The position of 

cadmium in the periodic table would suggest that alkyl-Cd compounds are quite 

toxic, but unlike alkyl-Hg compounds, alkyl-Cd compounds are unstable in aqueous 

solutions. The toxicity of metals also depends upon the physico-chemical forms in 

which they occur and the ease with which they are accumulated. Some metals like 
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iron or copper are essential for living organisms, but in excess, as well as in 

deficiency, may have serious consequences. Selenium, for example is a prerequisite 

for human health when taken in small amounts [57] and can protect against heart 

diseases. But selenium becomes toxic when present with other metals like arsenic, 

silver or copper, with which it forms complexes. 

1.5.4 Waste disposal 

Wastes may be classified by their physical characteristics, i. e. solid waste 

(less than 70% water); liquid waste (less than 1% suspended solid); and sludge 
(intermediate between solid and liquid). [58] They can also be classified according to 

their hazard criteria, as non-hazardous waste (no immediate harm to human); 

hazardous waste (contain leachable toxic constituents); and special waste (from 

industry with special waste guidelines). 

Until recently, landfilling was the preferred option for disposal of wastes. 

Before the mid-80's, disposal of waste material was not regulated, and landfill 

consisted of just covering the waste with an adequately thick protective clay cap to 

prevent volatilisation and dusting. No protection was generally considered to prevent 

the eventual movement of the pollutants to the ground water, resulting in extensive 

water pollution. Modem landfills are now equipped with pollutant monitoring wells, 

a management system and leachate barriers. Because of these new landfill designs 

and new regulations, including introduction of landfill tax, it is now becoming 

increasingly expensive to landfill wastes. [58] Thus now it is necessary to reduce the 

amount of waste to be landfilled, and the primary alternatives to landfill are 

combustion, source reduction, and recycling. 

Combustion or incineration involves the reduction in mass (75%) and volume 

(90%) of waste at high temperatures. The heat produced can then be used to generate 

electricity. This relatively expensive technique can contribute to air pollution and still 

requires the disposal of fly ash products in which the metallic pollutants are 

concentrated. Nevertheless, this fly ash may be used as a raw material to substitute a 

part of the constituents in concrete; as a component in building bricks, replacing up 

to 40% of the raw material; in the ceramic industry; in the removal of heavy metals 

from waste water; and can also be converted into zeolites. However in these 
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applications, the use of fly ash is restricted by its environmental quality with the 

presence of hazardous components like heavy metals, and by its technical quality 

with wide differences of composition and mechanical properties. These restrictions 
have to be addressed so that fly ash can be completely reused and not landfilled. 

Source reduction, unlike incineration, involves the prevention of waste such 

as the reduction of material used for packaging. 

Recycling involves the separation of recyclable material from the rest of the 

waste. The regeneration of spent catalysts used in industrial plants is a good example 

to demonstrate these two definitions. The recovery of heavy metals would avoid the 

problems of waste disposal and offer the economical possibility of reusing the 

recovered metals. 

1.6 Treatment technologies 

Remediation technologies can be classified in terms of where operations take 

place, i. e.: ex-situ (processes applied to excavated soil/sediment), in-situ (processes 

occurring in un-excavated soil/sediment, which remain relatively undisturbed). [59] 

The major advantages of ex-situ compared with in-situ processes include better 

control of process conditions; improved accessibility of contaminants to the 

treatment process; and easier control of process emissions and wastes. Nevertheless, 

soil structure and fertility are less damaged when soil is treated in-situ, and this 

option also excludes the cost of excavation and replacement and/or disposal of the 

soil/sediment/waste. 

On-site processes refer to processes that take place on the contaminated site 

and may be ex-situ or in-situ. [60] Off-site processes treat soils/sediments that have 

been removed from the excavated site, therefore incur some transportation cost. 

Finally in-vessel processes are ex-situ processes that take place inside a mechanically 

contained system such as a bioreactor, and may be on-site or off-site. These latest 

offer the advantages of optimised extraction conditions. 

The selection of the most appropriate remediation technique for an area of 

contaminated land is a complex and specific procedure. [61] It will depend on: (a) the 

site, its location and history; (b) soil/sediment/industrial waste characteristics; (c) the 

nature, physical and chemical state of the contaminants; (d) the degree of pollution; 
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(e) the desired final land use; (0 the technical and financial means available; and (g) 

environmental, legal, geographical and social issues. Generally no single technology 

can remediate an entire site and several treatments are combined to form what is 

known as a treatment train. 

Metals, non-destroyable and immutable, can be removed (extraction), or 

rendered less toxic (stabilisation). Therefore, treatment methods described below are 
divided into extraction (mobilisation) and stabilisation (immobilisation) 

technologies. Further categorisation results in the consideration of biological, 

chemical and physical treatment technologies, where biological treatments rely on 

processes carried out by living organisms, chemical treatments rely on a range of 

chemical reactions, and physical treatments rely on the exploitation of differences in 

physical, chemical and thermal properties between metals and the contaminated land. 

1.6.1. Extraction technologies (mobilisation) 

1.6.1.1 Biological treatments 

Two biological processes involve the mobilisation of heavy metals. 
Phytoextraction uses plants or algae that can accumulate heavy metals from soils or 

sediments. Bioleaching relies on the biochemically mediated mobilisation of the 

metal contaminant into a solution that is then separated from the soil or fly ash and 

the metal recovered. 

Initial research in phytoremediation was centred on the use of pre-existing 

plants, which accumulate metals. Ernst [62] reviewed the response of these plants, 

also called hyperaccumulators, to metals and showed that even if some plants have a 

good resistivity to metals and are able to accumulate them (e. g. Thlaspi Coerulescens 

for zinc, cadmium, copper) they are restricted by a very slow rate of growth. In fact 

high levels of metals in soil actually induce a lower production of biota and a lower 

turnover of nutrients during decomposition of metal enriched litter. [62] Even if 

some plant species are shown to be resistant, it is difficult to consider using this 

method for the decontamination of metal polluted soil because of the time scale. 

Ernst explains that decontamination of tailings from a zinc-cadmium smelter would 

require several thousand years to reduce the contamination to the Dutch clean soil 

standard. [62] Moreover, enhancement of the metal uptake by plants was shown to be 
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difficult as some factors like increase of the soil acidity would also decrease the 

metal availability to plants. But due to their small biomass, slow growth rates and 

unknown agronomic potentials, these hyperaccumulators have been superseded by 

harvested plants that may be composted, landfilled, incinerated or extracted to 

recover valuable metals. [63] 

Scott McGregor studied a second type of biological accumulator [64]. He 

demonstrated that metal uptake by trees is related to metal availability as well as the 

metal itself. Also, the accumulations of heavy metals occur mainly in bark and twigs 

and to a lesser extend in wood. Trees did not accumulate all metals, and the level of 

metals found were lower than in plants, but the benefit of using trees is that following 

metal accumulation, they can still be use for paper production, chipboard industries, 

etc. 

Microbial remediation is based on reactions that occur between metals and 

microbes. As metals may become toxic to micro organisms at high concentrations, 

some micro organisms have developed mechanisms to protect themselves from such 

toxic effects. These mechanisms provide a basis for the treatment of metal 

contaminated sites. [65,66] Microbial leaching is a simple and effective technology 

which has been used for metal extraction from low-grade ores [67] and mineral 

concentrates. [68] The first bioleaching process was applied in the 18`h century for 

the extraction of copper in Rio Tinto, Spain. The process was then considered to be 

hydrosolubilisation of copper but it was actually the influence of a bacterium, 

Thiobacillus, which was discovered to be the cause of this phenomenon only 40 years 

ago. Thiobacillus is an acidic sulphur-oxidizing bacterium, which fixes CO2 and 

derives its energy from the oxidation of sulphur compounds to sulphate. 

4H20+S2- -"O42- +8H+ +8e- (8) 

This metabolic process results in the acidification of the environment, which induces 

a metal leaching process. Bioleaching shows best results under anaerobic condition 

[5], i. e. with sediments, where metals occur predominantly in sulphidic and other 

reduced forms. In this case pH is low enough and the metals are quickly oxidised and 
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efficiently solubilised. Under aerobic conditions, metallic species in the sample are 

mostly oxidised and are subject to chemical transformations, which make metals 

more strongly bound to soil, therefore the bioleaching process will be longer and pH 

used will be lower. 

Special techniques have been developed to optimise the operational 

conditions [5,66] e. g. soil slurry reactor and on-site heap leaching. In the reactor soil 

slurry, good mixing and aeration are needed as well as the presence of sulphur 

compounds and pH control. In the on-site heap leaching, a solution of sulphur 

compounds and an appropriate micro organism are sprayed on the surface of the soil 
to be treated. This second mode has the advantage of no excavation, which obviously 

reduces the overall costs. An impervious membrane that allows the leachate to be 

recovered for treatment confines the leached metals. 

This bioleaching process for contaminated land is still at bench or pilot scale, 

with only a few examples developed so far for bioremediation of soil and sediment. 
[69,70,5] Thiobacillus is also considered for bioleaching of metal oxides from fly 

ash [71] where the addition of sulphur for bacterial acid production is a cheap option. 
Another advantage is the gradual in fall pH, which will enhance sequential metal 

passage into solution, and therefore an easy separation of metals. 

1.6.1.2 Chemical treatments 

Oxidation, which requires the removal of electrons from the metal species to 

increase the oxidation state of the metal, [16] and chemical leaching, which uses 
leachants like acids, alkalis, surfactants, and organic solvents are two chemical 

processes involved in the solvent/chemical extraction of metals. 

Solvent/chemical extraction is an ex-sitzt process that requires excavation and 

pre-treatment such as screening, crushing, dewatering and pH adjustment. The 

prepared feed material is then mixed with the solvent in the extraction step, followed 

by physical separation of the decontaminated solids and contaminant loaded 

extraction solvent. A final recovery and recycle step removes the solvent from the 

contaminant allowing the solvent to be recycled and the contaminant collected for 

disposal. [72] 

A variety of chemical extraction processes exist which employ a number of 
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solvents chosen on the basis of contaminant solubility. This process is well 
developed for the removal of polychlorinated biphenyls (PCBs), and polynuclear 

aromatic hydrocarbons (PAHs), but is not as well developed for the removal of heavy 

metals. [73] Recently ethylenediaminetetra-acetic acid (EDTA) has been tested as a 

potential chelating agent for remediation of contaminated soil, and was successfully 
demonstrated for the complete extraction and recovery of lead from contaminated 

soil. [74] The lead is recovered by addition of cationic precipitants in the alkaline pH 

range, allowing EDTA to be reused. 

MSW, coal and Orimulsion fly ashes can also be treated using chemical 
leaching. Acid and alkaline leaching has been most commonly used on MSW fly ash 

with good extraction efficiency for metals like Zn, Pb, and Cr. [33,75] Orimulsion 

ash has been leached with alkaline solutions such as NaOH. [76] With 30% NaOH 

solution 94% extraction of vanadium was achieved with a total recovery of the 

vanadium using 30% H2SO4 for neutralisation and NH4Cl for precipitation. Leaching 

of vanadium using 2 mol dm-3 H2SO4 acid [36] was also quite effective with a 

maximum of 88.5% vanadium extraction and 84.2% recovery using NaCIO3 to 

oxidise the vanadium at the solution boiling temperature and a pH = 2.3. Chelating 

agents such as EDTA, diethylenetriaminepenta-acetate (DTPA), nitrilotriacetic acid 
(NTA) have also been tested on MSW and coal fly ashes with good extraction of Cr, 

Cu, Pb and Zn. [75] The maximum extractions: 50% Cr, 95% Cu, 100% Pb and Zn, 

were obtained with a 0.3 - 1.0% concentration of the chelating agents in a pH range 

of 3-9. Moreover the iron and silicon were stable against extraction. Leaching by 

acid/alkaline solution is achieved by dissolving or destroying the solid structure of 

the residues. [77,78] Consequently, further amounts of heavy metals, which were 

previously integrated in the matrix, such as Fe, Mg and Al, will be released more 

easily after disposal of the residues. 

Soil flushing is an in-sitz chemical mobilisation process, which uses water, 

aqueous solutions, or gaseous mixtures to increase contaminant solubility. [75] The 

idea is to accelerate reactions like desorption, acid/base reactions, oxidation/ 

reduction, ion pairing or complexation, which induce leaching of contaminants and 

also increases the mechanisms of the subsurface contaminant transport, like 

advection and molecular diffusion. Soil contaminants are then transferred to an 
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aqueous leachant, which is recovered, from the subsurface and treated by 

conventional effluent treatment processes. Soil flushing can be carried out in two 

ways [79] depending on the depth of contamination. For shallow depths, the flushing 

solution is pumped onto the soil surface, where it percolates slowly downwards 

through the contaminated soil and carries contaminants towards extraction wells that 

pump out the contaminated solution. Wells may be installed both vertically or 
horizontally depending on the geological factors and engineering considerations. For 

greater depths or for treating sediments, a pump and treat system is used where the 

flushing solution is injected through injection wells in the contaminated 

soil/sediment and, as above, extraction wells will remove the contaminated solution. 
Reagents, which are used in soil flushing, can be acids, alkalis, or complexing agents, 

and are generally used in low concentration. Unfortunately sometimes they appear to 

be environmentally damaging. Thus the use of acid like HCI to mobilise metals was 

successful but acidification again dissolved part of the solid matrix. [78] Chelating 

agents like EDTA, which do not require acidic conditions, have been shown to be the 

most appropriate reagents for soil flushing. [80] Some column tests using 0.01 mol 
dm-3 EDTA showed a good extraction yield of 48% for Cd and 31 % for Pb. 

Soil flushing is more effective in homogeneous permeable soils. Even though 

it offers the advantage of being an in-situ process with no requirement for excavation, 

the process still produces large amounts of contaminated wastewater, which need to 

be handled and treated. 

1.6.1.3 Soil washing 

Soil washing uses a mixture of processes such as physical separation or 

chemical solvent extraction to remove contaminants. It is actually an ex-situ water- 
based system, which uses dilute aqueous surfactant solutions to remove contaminants 

through physical extraction. [81] 

The process is not a complete treatment by itself, but it is better considered as 

a pre-treatment technique, which can reduce the volume of the contaminated soil by 

up to 90%, by separating the clean soil from the 10-30% of residual contaminated 

concentrate, which then requires further treatment. 

Being an ex-situ process, soil washing requires excavation of the 
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contaminated matrix, and some mechanical screening to remove the oversize 

fraction. Then, by mixing with water and using for example, multistage 

hydrocyclones, the screened soil/water slurry is separated into coarse and fine grain 

material. Following this separation process, the coarse grained material is washed 

again, and the fine material is directed to a sludge thickener and filter press where it 

is converted to dry solid filter cakes. The filtrate and spent wash waters are treated to 

remove any contaminants and recycled. 

The washing process may involve the addition of a leaching agent, surfactant, 

or complexing agent like EDTA to aid decontamination and even when water is used 

alone some pH adjustment may be necessary. 

The two most important soil parameters, which affect the efficiency of this 

process [81] and also limit its use, are: 

grain size distribution, as soils which contain at least 50% of coarse 

material, sand and silt, are more appropriate for soil washing; 

cation exchange capacity, as the higher the CEC, the lower the 

efficiency of soil washing as, unless careful pH control is applied, the metals tend to 

be retained. 

Soil washing was successfully demonstrated on a pilot scale in New Jersey in 

1992 [82] with complete removal of Cr, Ni, and Cu. Since this date it has become 

established as a useful approach to soil treatment. However the process still shows 

severe limitations in the cases of soils rich in fines like clay. 

1.6.2. Stabilization technologies 

1.6.2.1 Biological treatments (microbial remediation) 

Biomineralisation and biosorption are two phenomena where metal-microbe 
interaction induces immobilisation of metals. [83,84] Biomineralisation is a passive 

process where insoluble metal precipitates are formed by interactions with microbial 

metabolic products. Biosorption is an active process where metals are directly 

sequestered by live or dead biological matter. 
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(a) Biomineralisation 

Sulphate ions can be reduced under anaerobic conditions by sulphate reducing 
bacteria like desulfovibio, and desulfotoniaculuin to form hydrogen sulphide, as 

shown in equation 11. [83-85] Then, the hydrogen sulphide reacts with soluble 

metals forming insoluble metal sulphides as shown in equation 12. 

S042- +1 OH+ + Se- p H2S + 4H2O (9) 

H2S + MZ+> MS(S) +2H+ (10) 

Precipitation of metal sulphides by such sulphate-reducing bacteria constitutes the 

second phase of a combined sulphur oxidation/reduction biotreatment for soil 
decontamination [86] where metals like Cu, Zn and Cd have been precipitated 

successfully. Because of their low solubility product, most heavy metal sulphides are 

readily precipitated. Metal sulphide precipitation is nowadays well understood and is 

often considered for the bioremediation of contaminated soil in association with 
bioleaching to recover metals from the leached solution. [84,87] 

Precipitations enhanced by other microbial metabolic products can occur. 
Metal phosphate precipitation can be obtained as a result of biologically produced 

phosphate under anaerobic conditions. Thus Pseudomonas aeruginosa and 
Pseudonionas putida have been used to remove Cd, Zn, Cu, Fe, Co and Ni from 

metal-citrate wastes. [88] In an alkaline environment, following for example sulphate 

reduction, the respiration of some bacteria will transform CO2 into carbonate in the 

periplasm to form metal-bicarbonate precipitation, [83] with subsequent formation of 

some metal hydroxides or oxides. [66] 

Reductive precipitation of a metal to a lower redox state can be driven by 

some micro organisms rendering them less mobile and less toxic. For example, 

chromate ions can be reduced to insoluble trivalent chromium with soluble reductase 

enzymes generated by E. Coli. [89] 
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(b) Biosorption 

Methylation of metals is a biosorption process that can be promoted by 

bacteria and fungi. The addition of methyl or alkyl groups to metallic species 
increases their lipophilicity and permeability across biological membranes. 
Methylation of metals also enhances the volatilisation of metals and both of these 

properties increase their toxicity. [62] Metals currently known to convert from an 
inorganic to organo-metallic form are mercury, arsenic, cadmium, and lead. However 

it is unlikely that biological methylation would be employed at contaminated sites, as 
the volatility of the metal contaminant may pose an emission problem. 

Extracellular complexation is also a biosorption process that occurs from 

interaction of metals with extracellular polymers, like polysaccharides or 

glycoproteins, excreted by bacteria or from organic matter accumulated from the 

dead microbes. Indigenous bacteria can be stimulated to produce specific 

extracellular polysaccharides. [90] Another class of microbial chelating agents are 

siderophores, which are low molecular weight ligands synthesised and excreted by 

bacteria, fungi cyanobacteria or algae for capturing and supplying iron to support 

metabolic activity. Other metals like Cr(III), Cu or Ni may also complex these 

ligands. [90] 

Intracellular accumulation can be considered as a two-stage biosorption 

process. First, metal ions are bound passively to the surface of the bacterial cell wall 
by physical/chemical processes. Then the metal ions are transferred to the interior of 

the cell by the microbial energy system normally associated with magnesium and 

potassium transport. [66,91] 

The mechanism by which bacteria resist heavy metals resulted from several 

biomolecular functions in the bacterial cell walls that specifically bind metals. [90, 

94] Secretion of peptidoglycan, a cysteine rich polypeptide, in bacterial cell walls is 

an example of a process for binding essential metals like Cu, Co, Zn, Ni, as well as 

non-essential metals like Cd using ion exchange reactions. Further development of 

polypeptides and proteins by careful screening of bacteria may produce systems that 

are selective for immobilising specific toxic metals. 
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1.6.2.2 Chemical treatments 

Chemical stabilisation converts contaminants into less soluble and less toxic 

species by chemical reactions, thus minimising the leaching of the contaminants. [93] 

Several commercial technologies have been developed and two examples are 

described below. 

THIO RED is a commercial in-situ or ex-situ detoxification and stabilisation 

technology, which involves the use of an organic reagent, able to reduce metals to 

their lowest state and render them insoluble as stable complexes. The technology [94] 

uses a liquid detoxifying reagent (a polymeric organosulphur reagent), which forms 

metallic thiocarbonates in contact with metals and their compounds. These metallic 

thiocarbonates do not leach under either acidic or alkaline conditions, and are not 

hazardous or toxic. For in-situ use, this technology has to face the problem of widely 

diverse concentrations of heavy metals throughout the site. The amount of reagent 

required to complex the metal depends on the different levels of contamination; 

therefore the technology uses a dosing system which controls the quantity of reagent 

percolated into the soil by the use of an electronic sensor. This technology has the 

advantage, compared to the flushing process, of not using water so that the volume of 

the soil is not increased and it can also be applied simultaneously, when necessary, 

with biological treatment for the destruction of organic contaminants. 

The Soluble Phosphate process is another stabilisation process that involves 

the addition of a stabilization agent, orthophosphate (P043") under controlled pH 

conditions to produce insoluble metal phosphates. [95,96] Even though the process 

has been commercially used to stabilise Zn, Cu, Cd, and Pb in fly ash, it still has the 

disadvantage of possible redissolution of the metal phosphates under acidic 

conditions. Moreover not all toxic metals form insoluble metal phosphates, thus 

solubilities of these species and the effectiveness of this technique depends on the 

metal ion and pH. Nevertheless, the advantage of these stabilisation processes 

compared to others is the minimum effect on the soil following treatment, which is 

not hardened, retains its particulate nature, and shows no volume change. 

Addition of sorbing components like Fe(III) and Al(III) salts to MSW bottom 

fly ash together with reduction of the pH to 7-8 enables the simultaneous 

precipitation of Cu(hydr)oxides and oxyanions, such as molybdates [97]. 

38 



1.6.2.3 Physical treatments 

The principle physical treatment to immobilise contaminants is solidification 

where they are physically bound within a stabilised mass to form a mixture which 

sets to a firm impervious species. 

Inorganic cementitious solidification technologies use well-established 
hydraulic cement processes that have been used for more than two decades. [93] The 

primary reagents have their origin in natural limestone and clay formation, and 

therefore have an advantage concerning reagent cost to treat contaminated materials 
like fly ash. The reagents and the contaminated materials tend to contain the same 

active ingredients i. e. Si02, CaO + MgO and A1203 + Fe203. Operational conditions 

require the pH to be above 10 and enough free water in the system to complete the 

cementation reaction. Two different variations are available for remediation, the 

soluble silicate process and the slag process. The soluble silicate process [93] 

involves a mixture of soluble silicates with a source of multivalent metal ions, e. g. 

cement or lime. The soluble silicates can either be accelerators or anti-inhibitors in 

cementitious systems to reduce leachability. 

The slag process [93] involves mixing waste slag with fly ash, kiln dust (both 

waste materials), lime or Portland cement and is widely used for highly acidic 

contaminated soils. These hydraulic cement processes offer advantages of being less 

expensive than other solidification processes. However in both cases the product is a 

waste solid containing the contaminants in a concrete matrix, which has to be 

disposed or used in for example construction. [93] 

The Modified Sulphur Cement Process was developed for the solidification of 

pre-dried material like contaminated soils, sludges and industrial metalliferous 

wastes. [93] It requires the melting of modified sulphur cement at about 119°C, 

followed by mixing with the feed to give homogeneous molten slurry, which is then 

cooled and stored for disposal. Compared with the previous hydraulic cement 

process, this sulphur cement process offers several advantages. As no water addition 

is made, chemical reactions, which can occur in the hydraulic process, are avoided. 

Moreover chemical resistivity of the sulphur concrete is better than conventional 

concrete, [93] but is rather more expensive. 
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Vitrification is a thermal process, which converts contaminated soils and 

waste material into a stable glassy form. Two types of system are available to treat 

heavy metals. In-situ vitrification uses an electric current to melt the soil at extremely 

high temperatures (-'1,200°C) whereby the metal contaminants are incorporated as 

their oxides form into a matrix of vitrified glass and crystalline material. [96] Water 

vapour and organic pyrolysis combustion products are captured by a hood, which 

directs the gases into a treatment system to remove any contaminants. The 

vitrification product is both chemically stable and leach resistant. The process is very 

effective for most types of contaminants as heavy metals are retained within the 

molten soil and organic compounds are thermally destroyed, [98,99] however it is 

very expensive. Thermal vitrification, the second available system, [93] requires the 

excavation of soil and uses a rotary kiln to melt the soil, generally with the addition 

of other materials such as silica and lime to produce a stable glass (often used with 

pre-treatment to reduce volume). For an overall destruction efficiency of 99.99%, 

there are unfortunately some non-negligible limitations to vitrification. High moisture 

content in the feed increases the energy cost, which already represents more than 

40% of the overall cost. Thus vitrification processes tend to be used for disposal of 

contaminated materials where cost is of secondary importance, like nuclear waste and 

radioactively contaminated soils. 

1.7 Preliminary studies of the SERVO process 

The SERVO Process (Selective Extraction and Recovery of metals using 

Volatile Organic compounds) was designed in the early 1970s at the University of 

Hertfordshire as an alternative process for the extractive metallurgy of low grade ores 

[ 100]. 

This section introduces the technology of extractive metallurgy and the development 

of the SERVO Process. 

1.7.1 Extractive metallurgy 

Extractive metallurgy is the recovery of metals naturally occurring in ore. It 

can be divided into three main types of process: [101,102] 
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1.7.1.1 Hydrometallurgy 

Hydrometallurgy involves the leaching of the valuable metal out of the ore 

using an aqueous solution, and recovering the metal from the leach liquor after 

separating from the residual waste ore. [103,104] 

Separation of the leach liquor from the unwanted material is mainly achieved by the 

following three techniques: 

decantation is a slow batch or continuous process, where the unwanted 

material is allowed to settle under gravity, leaving a clear solution; 

thickening is a combined process using settlement and decantation with some 
form of slow agitation of the solid phase to provide densification of the solids; 

filtration is a process where a porous physical barrier is used to collect the 

solid material and allow the liquid filtrate to permeate. 

Unfortunately the leaching operation is rarely selective so the leachate 

contains many different metals in solution in addition to the one required, so that 

processes to separate these, such as liquid-liquid extraction using an organic reagent 

in an organic phase, or ion exchange are required. Many different organic reagents 

and resins are now commercially available to carry out such separations. Both these 

processes are capable of producing a pure concentrated aqueous solution of the 

desired metal, which can be recovered by other techniques such as electrolytic 

deposition to produce a pure metal product. 

Hydrometallurgy is an important technology for producing a number of 

metals, especially aluminium and gold but also metals like copper, cobalt and nickel. 

Here the reduction in the grade of the ore and the increasing use of oxidic ores less 

suitable for pyrometallurgy have increased the proportion of these metals produced 
by hydrometallurgy. 

1.7.1.2 Pyrometalluray 

Pyrometallurgy involves a number of established thermodynamic processes 

and involves heating operations like roasting, calcination, chemical reduction or 

smelting to extract metals. This type of operation depends on metal speciation in the 

ore. [101] However this process is not universally applicable, and some metals 
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cannot be reduced by smelting e. g. titanium, vanadium, and chromium. Pre-treatment 

are often required to remove the ore minerals from waste rock leading to problems of 
disposal of waste, e. g. jarosite in zinc smelting. In addition smelting produces its own 

environmental problems such as emission of SO2. 

1.7.1.3 Mond vapour phase process. f 1051 

This process, developed in 1902, is based on the reaction of carbon monoxide 

with nickel at temperatures around 100°C to produce a volatile nickel carbonyl, 

Ni(CO)4, which, on further heating to 200-300°C, decomposes to give the metal and 

carbon monoxide: [105] 

Ni + 4C0 ' Ni(CO)4 200-300°C > Ni +4CO (11) 

Formation of iron and cobalt carbonyls is also possible. To minimise the co- 

extraction of these two metals, reaction conditions are used which make the 

formation of nickel carbonyl highly selective. [105] The Mond Nickel process is used 

commercially by Inco at Sudbury, Ontario to refine impure nickel powders. 

This process combines the selectivity of hydrometallurgy and the one-step 

operation of pyrometallurgy, but has disadvantages in that nickel carbonyl is very 

volatile and very toxic. 

This process provided the basis of the SERVO process, which combines selective 

extraction process, able to treat low grade feed material, and with a simple one/two 

stage operation. [106] 

1.7.2 SERVO Process literature review 

This patented process extracts metals from a matrix using a volatile reagent, 

which passes through the feed material and reacts selectively with the desired metal: 

[100] 

H(Ext)gQS +M+(Matrix)SO, d > M+(Ext)-g. s +H+Matrixsor, d (12) 

Products of this reaction are metal complexes which can be removed from the gangue 
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by a carrier gas, and may be reduced in the vapour phase to produce a metal product 

and regenerate the reagent for recycle. 

M+(KxI)-Rat + H2 T-> M(SO,, + H(Ext)gar (13) 

The SERVO Process flowsheet is shown in figure 6. The Mond nickel 

process showed that it was possible to extract metal using a volatile reagent, with 

formation of a metal complex, combining selectivity and a one-step process. 

However the carbon monoxide used as extractant reacted only with nickel atoms in 

the zero oxidation state, so that the choice of another type of extractant was 

necessary. In hydrometallurgy selective extraction is achieved using organic chelating 

reagents, which can react specifically with some metals like copper, nickel, and 

cobalt. [ 104] 

Extractant Carrier Gas 

Volatilisation of 
extractant and mixing 

with carrier gas 

Gaseous Extractant 

Ore Extraction of metal Ore (gas-solid chemical reaction) 

Volatile Extract 

Gaseous Extractant 
Recovery of metal 

J-- 

(reduction) Hydrogen 

Metal 

Figure 6: SERVO Process flowsheet 
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Moreover Allis and Chalmers [106] demonstrated that after extraction by a 
liquid-liquid process, nickel and cobalt complexes could be separated by 

volatilisation of the more volatile complex, in this case the cobalt complex as a 

vapour. 

Gas chromatographic studies by Sievers [107] demonstrated that ß- 

diketonates of a number of metals had low volatilisation temperatures, which allowed 

their separation on a column. Fluorinated analogues of ß-diketones like hexafluoro- 

acetylacetone, which had been successfully used by Sievers, were considered for the 

extraction of metals from ore. This reagent was tried on roasted chalcopyrite but 

although reaction with copper oxide had been successfully demonstrated, in the 

presence of ferric iron, the latter reacted preferentially. 

Thus the development of an extractant volatile at low temperature, which was 

selective over iron (111) and which could form reducible metal complexes was 

required. Ferric ion being trivalent and copper ion divalent, the desired reagent had to 

be acidic and exploit the difference in stereochemistry of the divalent and trivalent 

metals, i. e. square planar and octahedral. This led to the study of Schiff base ligands 

(figure 7) that favoured such stereochemistry of the metal. So in 1985, twenty such 

reagents and their corresponding metal complexes were studied by P. W. Duke. [108, 

109] 

R, R, 
OO 
x 
HH 

N N 

R2 R3 R2 

Figure 7: Schiff Base reagent 

Two parameters were used in the choice of reagents: the first selection 

criterion was the volatility and transport of the reagent and subsequent metal 

complexes with little or no decomposition. Secondly, the metal complex should be 

capable of reduction to produce the metal and regenerate the reagent. Studies of 

extraction and reduction demonstrated that the compound, bis-(pentan-2,4- 

dione)propane-1,2-di-imine (figure 8) was the most suitable for extraction and 
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recovery of divalent metals like copper, nickel and cobalt from their ores. 

H3C CH3 
: 

--OH HO 
HC CH 

-N N=< 
H3C 

} 
>I CH3 

H3C 

Figure 8: Bis-(pentan-2,4-dione)propane-1,2-di-imine 

Following these studies, the combined extraction and reduction of copper 

from a sulphide ore (chalcopyrite) was carried out following an oxidative roast prior 

to extraction and a nitrogen/hydrogen carrier gas mixture. The product of these 

experiments was a pure copper metal (>99.9%) and no iron(III), confirming the 

selectivity of the reagent. 

In 1989 D. W. Barr, directed the research towards adapting the SERVO 

Process for the selective extraction of nickel over iron from low-grade nickel laterite 

ore. [106,110] This study optimised operational conditions for the extraction and 

recovery of nickel from New Caledonian laterite ore. It appeared that the better the 

physical contact between the ore and the volatile reagent, the higher the extraction. 

So optimum flow rate and temperature would correspond to the conditions where the 

concentration of the reagent in the vapour is at its greatest. 

Subsequently preliminary reaction kinetics of the chelating process in the 

vapour phase and thermal stability of the extractant with identification of any 

degradation products were necessary to demonstrate that the SERVO process was a 

feasible approach to extractive metallurgy from low grade ore. [106,110] These 

studies were carried out using a redesigned thermal balance, where the weight loss 

could be measured against time. Chemical reaction data obtained from these kinetic 

studies were limited when using a fast flow rate and low reaction temperature. 

Nevertheless rate of reaction data suggested that the process is largely diffusion 

controlled. 

A study on the thermal stability of the organic reagent showed some reagent 

degradation, which could be reduced by decreasing the reagent heating rate. 

Dr A A. Pichugin extended the work done by Barr, concerning the kinetic 
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factors affecting the extraction process. [I 11] These results showed that size of the 

ore, column dimensions, column temperature, and carrier gas flow rate influenced the 

extraction. Moreover, there is an induction period where the extractant seems to 

accumulate within the ore before the extraction starts. The extraction rate between 

the end of this induction period and the end of the extraction is linear. 

All these results suggest the following mechanisms of nickel extraction: [111 ] 

adsorption of the extractant; 

condensation of the extractant in the pores; 

reaction between liquid extractant and nickel; 

desorption of nickel complex; 

accumulation of nickel complex in liquid extractant; 

volatilisation of nickel complex into the carrier gas. 

Thus optimum extraction conditions will be those, which allow the condensation of 

the extractant in the pores to occur. 

Research on the degradation of the reagent was also extended and it was 
demonstrated that there were four possible degradation routes: [111] 

thermal degradation; 

degradation caused by oxygen and water in the carrier gas; 

degradation caused by chemical reaction within water from the ore; 

degradation caused by chemical reaction with other components in the ore. 

1.7.3 Recent studies of the SERVO process 

Originally devised for the treatment of low grade ores, the SERVO process 

has recently been studied for the treatment of metalliferous wastes. The sources 

considered below contain some new challenging metals to be extracted i. e. 

molybdenum, vanadium, lead and zinc: 

sediments from canal and rivers with high concentrations of metals like zinc 

and lead; 

Orimulsion ash containing vanadium, nickel, and magnesium; 
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Puertollano fly ash from a coal fired electricity generating plant; 

MSW Rotterdam fly ash from a waste incineration plant. 

A programme of experiments was designed to study the application of the 

SERVO process for these materials that included: 

synthesis of new extractants and their metal complexes, and a study of their 

volatility to determine the operational conditions of the SERVO process; 

modification of a thermogravimetric analyser with the ability to record the 

weight loss or gain and record operational temperature; 

preparation of simulated materials for testing with this modified equipment; 

design and construction of laboratory scale equipment to test the new 

extractants on actual waste samples. 

47 



Chapter 2: Experimental 

2.1 Analytical Equipment 

The analytical equipment used to identify the extractants and metal complexes 

prepared and to analyse the elements extracted will initially be described. 

2.1.1 Infra Red Spectrometry analysis 

Infrared Spectroscopy (IR) is used to determine the functional groups of the 

ligands and the metal complexes. Discs, prepared using dry potassium bromide 

(KBr), were scanned using a Perking Elmer Paragon 1000 FT-IR spectrometer 

through the wavelength range from 400 to 4000 cm"'. [112] This range covers the 

vibration of the covalent bonds in the molecule; such vibrations have frequencies, 

which depend on the masses of the vibrating atoms and on the strength of the bond 

between them. Such vibrational modes are characteristic of the groups in the 

molecule. Spectra obtained from unknown substances are compared to tables of 

characteristic infrared absorption bands to determine the main functional groups in 

the compounds. 

2.1.2 Mass Spectrometric analysis 

Mass Spectrometry (MS) is used to complement the determination of the 

functional groups obtained by IR. 

IR gives information about the functional groups in a molecule, but tells little about 
its size. MS provides the molecular weight and involves the ionisation of molecules 

in a high vacuum, and correlates the molecular fragments arising from ionisation 

processes according to their masses and records the abundance of such fragments. 

[113] 

2.1.3 Thermogravimetric analysis 

Thermogravimetry (TGA) is a technique in which a change in the weight of a 

substance is recorded as a function of time or temperature. The basic instrumental 

requirement for gravimetry is a precision balance with a furnace programmed for a 
linear rise of temperature with time. The thermogravimetric curve (TG) is a record of 
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the weight [ 114] change as a function of temperature or time. TGA was used here for 

two purposes. Firstly, it was modified as detailed in § 2.3.3 so it could be used as to 

simulate the SERVO process extraction reactor, and secondly it was used to 

investigate the volatilisation temperature of ligands and metal complexes. The 

equipment was normally used with a temperature ramp of 10°C min -1 up to 300°C, 

with argon carrier gas at the flowrate of 60 cm3 mind, operational conditions 

optimised by Dr. Pichugin. [111] 

2.1.4 Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP- 

AES) 

A Perkin Elmer Plasma 40 Emission spectrometer was used for the analysis 

of metal ions in solution. Metal ions present in solution are flushed through a plasma 
torch where the high temperature causes excitation of the atomic species. [115] In 

their excited form, electrons in the metal atoms are transferred to higher and unstable 

energy levels and then return to the original energy level, emitting energy at a 

specific wavelength, which is measured. Standard solutions containing known 

amounts of metals are first flushed through the plasma at the chosen wavelength and 

used as references to determine the concentration of the element present in the 

unknown solutions. 

2.1.5 MDS 2000 Microwave Digestion System 

This equipment was used to digest solid samples in a closed vessel using 

microwave heating. The resulting solution was used to determine the metal 

concentration by spectroscopic methods. Microwaves offer a faster heating rate and 

consequently a faster dissolution rate than conventional heating. 

A mixture of 0.3 g sample, 3 cm3 of distilled water, 3 cm3 of HNO3 (70 %), 3 

cm3 of HCI (37 %) and 3 cm3 of HF (40 %) were placed in an Advanced Composite 

Vessel. 

All the samples, accurately weighed, were run for 30 minutes at full power 
(630 W) and cooled for a minimum of 5 minutes to stabilize the pressure before 

removing the vessel from the turntable of the system. After heating in the microwave 
furnace the solution was transferred to a volumetric flask, following filtration. The 

vessel was rinsed with 2 mol dm-3 HN03 and the flask filled up with distilled water to 

keep a suitable acidity for the spectroscopic analysis (ICP-AES). 
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2.1.6 X-Ray Diffraction 

X-ray diffraction is a technique used to investigate the organisation of solids, 

at the atomic scale, and is recognise as the most useful approach for identification of 

minerals. [1116] X-ray diffraction occurs in accordance with Bragg's Law: n?, = 

2dsinO, where ? is the wavelength of monochromatic X-rays, d is the interplanar 

spacing, 0 is the critical angle for constructive interference of scattered rays, and n is 

an integer. In these studies the samples were presented as powders. 

2.2 Experimental material 

2.2.1 Preparation of simulated contaminated materials 

Air floated sodium bentonite (Volclay Minerals Limited Grade MPS-1, a high 

purity, air floated sodium bentonite, that contains 99.75% minimum 

montmorillonite) was used to prepare the different contaminated clay samples, and a 

technical data sheet provided by the supplier is included in appendix 3. [117] 

Montmorillonite, a dioctahedral smectite, was chosen for its high absorption capacity 

of organic compounds, which is related to its large surface area (760 x 103 m2 kg') 

and also for its cation exchange capacity (1 cmol, kg''). 

tetrahedral 
sheet 

octahedra! 2: 1 
sheet layer 

1 
tetrahedral 
sheet 

Figure 9a: Schematic drawing of Montmorillonite Clay 11171 
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Figure 9b: Schematic representation of Montmorillonite Clay 

Montmorillonite has a 2: 1 clay structure with two sheets of tetrahedral silicate 

species sandwiching a sheet of octahedral aluminosilicate. The tetrahedral cations are 
Si4+ and the octahedral cations are A13+, Fe 2+ and Mgt+. Its ideal half cell chemical 
formula is M0.33, H2O, A11.67(Fe2+, Mg2)0.33 Si401o(OH)2 (figures 9a & b). [10] 

Four different types of clay were prepared, two were fully exchanged with 

either copper or nickel ions and the two other were partially exchanged with either 

copper or nickel ions only in the interlayer region. 

Materials used for the substitution were: 

copper sulphate solution (5 g dm 3); 

nickel sulphate solution (5 g dm 3) 

sodium hydroxide solution (0.1 mol dm 3). 

Procedure: 

Clay (40 g) was added to the copper solution (500 em), the mixture was 

stirred for two hours, and then centrifuged. The supernatant solution was analysed by 

ICP. The resulting clay was then dried at room temperature until no variation of 

weight was observed. Once dried the clay was separated into two portions: 

the first part was mixed and stirred with a sodium hydroxide solution (500 

cm3) for 2 hours. It was filtered, and dried, ready to be ground and stored (clay 1). 
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the second part was washed for 2 hours with distilled water (500 cm3, pH 7) 

to remove the copper ion exchanged outside the interlayer, and centrifuged. The 

supernatant solution was analysed by ICP AES. The resulting clay was dried at room 

temperature until no further variation of weight occurred. It was then mixed and 

stirred with a sodium hydroxide solution (400 cm) for another two hours, filtered, 

and dried, ready to be ground and stored (clay 2). 

The same procedure was used with the nickel solution and the resulting clays 

were respectively identified as clay 3 and clay 4. Figure 10 indicates the four 

different types of clays obtained: 

Cu 
Tetrahedra she, Cu(OH) (OH)2 z 

Cu(OH)2 

Tetrahedra sheet 
Cu(OH)2 Octahedra Sheet Cu(OH)2 

Tetrahedra sheet 

Cu(OH)2 

Cu(OH)2 Tetrahedra sheet 
Cu(OH)z 

C 

Cu(OH)2 
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Cu(OH)2 
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Ni(OH)2 Tetrahedra shee Ni(OH)2 
Ni(OH)2 
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Ni(OH)2 Octahedra Sheet f Ni(OH)2 
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Ni(OH)2 
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Ni(OH)2 
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Ni(OH)2 

Tetrahedra sheet 
Octahedra Sheet 
Tetrahedra sheet 
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Figure 10: Schematic representation of the prepared types of clays 

These four types of clays were leached as described later in §3.3.1.1 to determine 

their metal content. 
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2.2.2 Sediments 

Sediments were sampled by technicians of Voies Navigables de France from 

a French canal in Roubaix (June 97) (appendix 4). 

The surface sediments were sampled using a multisampler. [118] After 

dismantling the sampler, the sediments were collected in a basket and mixed so that 

the sample was homogeneous. The sediments were stored in glass containers and 
delivered to the University for laboratory experiments. 

Metal contents determined by the Pasteur Institut from previous sampling 
(May 97) at the same location are shown in appendix 4. These sediments were 

considered as highly contaminated with zinc and lead. Canal sediments generally 
include clays, quartz (Si02), feldspar (potassium, calcium, and/or sodium aluminium 

silicates), various silicate minerals, gibbsite (Al(OH)3) and calcite (CaCO3). 

On receipt at the University, sediments were dried at room temperature until 

no weight loss could be observed, ground and sieved to produce agglomerates sizes 

ranging from 710 µm to lmm. Finally these sediments were leached as described 

later in §3.3.1.1 to determine their metal content for comparison with the data 

provided by the Pasteur Institut. 

2.2.3 Puertollano Fly ash 

2.2.3.1 Origin and composition 

The fly ashes used in this study came from the Puertollano power plant, 

central Spain, which uses Pulverized Coal Combustion technology (PCC). 

Puertollano fly ash was obtained directly from the electrostatic precipitators of the 

plant, and consequently showed a low moisture content (1%). The major crystalline 

phases identified in these ashes were 17% quartz (Si02), 3.2% mullite (A16Si2O13), 

1.3% magnetite (Fe304) and 78.5% glass. [23] Because of the high content of silica 

and alumina, and a low ratio SiO2/A1203 (2: 1), these fly ashes have potential 

applications for ceramics and zeolite synthesis. Moreover, treatment of these fly 

ashes at high temperature (1050°C) involves mineral transformations, i. e. the 

interaction of the quartz content and the glass matrix, forming large amount of Al 

minerals like mullite (Al6Si2Oi3). [23] 
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An important consideration for subsequent use is the trace element 

concentration in fly ash. Because of potential environmental impact which can occur 
during zeolite synthesis and in ceramic use from the solubilization and volatilization 

of hazardous elements, a low content of heavy metals in fly ash is desired. The 

Puertollano fly ash has limited application because of its very high concentration of 
As, Cd, Ge, Hg, Pb and Zn. The complete chemical composition of Puertollano fly 

ashes is recorded in appendix 5. [231 Application of the SERVO process could be 

useful for the removal of these contaminants and offer the possibility to use the 

treated fly ash as a raw material for the preparation of ceramics and zeolites. 

These fly ashes were leached as will be described in §3.3.1.2 to determine their metal 

content and compare it with the data provided by the Puertollano power plant. 

2.2.3.2 Pellet preparation 

Particles of fly ash were agglomerated at room temperature using clay (2.5%) 

from Volclay (described in § 3.2.1 and analysis provided by the supplier in appendix 
3) as a binding agent. The mixture was moistened with distilled water and the pellets 

were rolled by hand. The pellets were left at room temperature to dry for 24 hours. 

2.2.4 Orimulsion Ash 

2.2.4.1 Origin, production and composition 

As described earlier, Orimulsion is a low cost carbonaceous fuel from 

Venezuela that consists of a water-in-oil emulsion of a Venezuelan heavy crude oil 

with a magnesium stabiliser. Trials of the use of Orimulsion as a fuel have been 

carried out at several power stations in the UK but potential problems were found 

with its use especially concerning the disposal of the combustion ash. This is easily 

leached under landfill conditions and with the high proportion of vanadium 

constitutes a potential hazardous waste. Therefore some means of removing this 

element was required. This Department had previously been involved in the 

development of a successful hydrometallurgical process to recover the vanadium and 

nickel content of the ash and so the opportunity was taken to compare the SERVO 

process with its simple flowsheet, with the traditional hydrometallurgical route. 

Orimulsion ash was provided as a fine powder by Reakt with a size distribution 

between 1-10 µm and a moisture content about 15%. The ash generated from 

Orimulsion appears to be less dense than fly ash from other fuels. The chemical 

54 



composition of Orimulsion ash used in this study is summarized in table 3. [1] The 

major components are ammonium magnesium sulphate (75%); aluminium sulphate 

(10%); ammonium iron sulphate (4%); vanadyl and nickel sulphates; magnesium, 

nickel and vanadium oxides; some oxygen compounds and residual carbon. [37] 

Since these studies began the proposed use of Orimulsion as a fuel in this country has 

been suspended. 

Element % wt Element % wt 
V 7.600 Al 0.030 

Ni 1.730 Cr 0.006 

Mg 17.600 Ti 0.090 

Ca 0.260 Fe 0.300 

Cu 0.003 K 0.300 

Zn 0.006 Co 0.005 

Na 0.720 Mn 0.006 

Si 0.070 Mo 0.070 

Table 3: Chemical composition of Orimulsion ash [1181 

Orimulsion ash was leached as described later in §3.3.1.2 to determine their metal 

content and compare it with the above data provided by Reakt. 

2.2.4.2 Pellet preparation 

Particles of fly ash were agglomerated at room temperature using clay (10%) 

from Volclay as a binding agent. The mixture was moistened with distilled water and 
the pellets were rolled by hand. The pellets were left at room temperature to dry for 

24 hours. 

2.3 Experimental Methods 

2.3.1 Leaching of contaminated materials 

Digestion under reflux was used for samples of sediments and clays. 
Microwave digestion was used for fly ash and Orimulsion ash. 
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2.3.1.1 Reflux digestion 

The materials accurately weighed (0.5 g) were digested in aqua regia solution 
(10 cm3,1: 3 concentrated HNO3/HCI) under controlled reflux for five hours. The 

solution was filtered washed with nitric acid and diluted to 100 cm3 in a volumetric 
flask. The solution was analysed using ICP-AES to determine the metal content. 

2.3.1.2 Microwave digestion 

This was carried out as described earlier (§2.1.5). The resulting solution was 
filtered, rinsed with nitric acid (2 mol dm-3) and distilled water and diluted to volume 
in a 50 cm3 volumetric flask. 

The solution was analysed by ICP-AES to determine the metal content. 

2.3.2 Metal speciation extraction of contaminated materials 

This technique was used on fly ash samples and dried sediments (0.5g of 

material accurately weighed). [47] The extraction was performed in 100 cm3 

polypropylene tubes using a wheel mechanical shaker to allow end-over-end shaking 

at 30 ±2 rpm, at room temperature 25 ± 2°C. The polypropylene tubes were carefully 

chosen to fit the centrifuge MSE Falcon 61300. After extraction, the tubes were 

placed in a centrifuge at a speed of 3000 rpm and temperature of 4 °C to separate 

solid residues from the supernatant liquid, which was then removed using a Pasteur 

pipette. The supernatant liquid was stored at 4 °C in high-density polyethylene 

containers with aV shaped bottom to allow the collection of some residual solids, 

which may arise despite careful pipette manipulation. Residues were washed by 

adding distilled water (20 cm3), shaking for 15 min, and centrifuged. The supernatant 

washing solution was stored in the same conditions as the extracting solutions. The 

"cake" obtained upon centrifugation was broken up prior to the next step. Solutions 

from steps I to 3 were analysed by ICP-AES without dilution to determine the metal 

content. For the last step a dilution of the obtained solution in a 100 cm3 volumetric 
flask was necessary to allow its analysis by ICP-AES. 

Extractants were prepared according to the following procedures: 

Solution 1: Acetic acid, (0.11 mol dm 3): glacial acetic acid (25 em) was 
diluted in a1 dm3 volumetric flask to form an acetic acid solution of 0.43 mol dm-3. 
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250 cm3 of this solution was then diluted to I dm3 to form the required acetic acid 

concentration of 0.11 mol dm"3. 

Solution 2: Hydroxylamine hydrochloride, 0.1 mol dm 3: hydroxylamine 

hydrochloride (6.95 g) was dissolved in 900 cm3 of water. The solution was acidified 

with concentrated nitric acid to pH 2 and made up to I dm. pH of the solution was 3 

always checked if the solution was not prepared and used the same day. 

Solution 3: Hydrogen peroxide, 30 % was used as supplied by the 

manufacturer, and was acid stabilised to pH 2.0 - 3.0. 

Solution 4: Ammonium acetate, 1.0 mol dm 3: ammonium acetate (77.08 g) 

was dissolved in 900 cm3 of water and the solution was acidified to pH 2 with 

concentrated nitric acid and made up to idm3. 

The four step procedure is detailed in table 4: 

Step Fraction Reagent Shaking time and temperature 
I Acid soluble 20 cm solution 1 16 h at 25°C (overnight) 

(e. g. carbonates) 
2 Reducible 20 cm solution 2 16 h at 25°C (overnight) 

e. g. Fe-Mn oxides) 
3 Oxidizable a) 5 cm solution 3 1h at 25°C covered, 

(e. g. sulfides) Ih at 85°C covered, and 
concentrated to low volume. 

b) 5 em3 solution 3 
Ih at 85°C covered, and 

c) 25 cm3 solution 4 concentrated to low volume. 

16 h at 25°C (overnight) 
4 Residual 1 cm3 HCI 35% w/w 26 min in microwave 

AI-Si-O species) +2 cm3 HF 48% w/w 
+4 cm3 HNO3 70% w/w 
+5 cm3 H20. 

Table 4: Sequential extraction procedure for 0.5 a of dried starting material [471 
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2.3.3 Servo process extraction using modified thermogravimetric analysis 

2.3.3.1 Apparatus and operational conditions 

The thermogravimetric analyser was modified for use as the SERVO process 

reactor for preliminary studies on the simulated contaminated materials (Figures 1 la 

and b). The furnace tube was connected using an exhaust tube to a trap where metal 

complexes were collected. This exhaust tube was heated using a heating tape to 

avoid the condensation of the extractant and complex before the cooled trap. 

A Pyrex "extractant boat" was designed so it can be placed under the pan. 

�w.., - 

r-_ hte 

Figure I la: modified TGA for SERVO process extraction, cross section 

............. 

Figure II b: modified TGA for SERVO process extraction 
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The general experimental procedure is described below for the extraction of copper 
from the loaded clays. 

Clay materials were accurately weighed in the sample pan (20 ± 3mg) and 

H2pnaa (ca. 0.7 ± 0.04g) extractant was placed in the "extractant boat" under the 

sample pan, and argon was flushed through the heated system at a flowrate of 60 cm3 

min''. This corresponds approximately to I mole of metal for 10 moles of extractant 

so that the extractant would be in large excess over the normal stoichiometric 

conditions to ensure a saturation of the atmosphere around the clay material. The 

system was gradually heated from room temperature to 230°C. Once this temperature 

was reached, it was monitored for 3 hours. Metal complexes were collected in the 

cooled trap placed at the end of the equipment. 

In a second set of experiments, the clay materials and H2pnaa were mixed 

prior to the experiment in different molar ratios from 1: 1 to 1: 4 and an amount of 

approximately 20 ±2 mg of the mixture was placed in the pan. The system was then 

heated as before and the metal complexes were collected in the cooled trap. 

In a third set of experiments, clay materials and H2pnaa were mixed prior the 

experiment in a 1: 1 ratio and an amount of approximately 30 ±3 mg of the mixture 

was placed in the pan. The system was heated as before and, after cooling, the 

residue was rehydrated overnight with distilled water at pH 7 and the heating 

procedure repeated. This sequence was repeated. 

Finally the first experiment was repeated with the system heated from room 

temperature to 350°C. Once this temperature was reached, it was monitored for 3 

hours. Metal complexes were collected as before in the cooled trap placed at the end 

of the equipment. 

2.3.3.2 Cleaning procedure 

At the end of the experiment, the residual clay was collected and digested 

with aqua regia as described earlier; the tube containing the metal complexes was 

cleaned with nitric acid. The two solutions were then analysed by ICP-AES to 

determine the metal contents. 
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2.3.4 SERVO Process Extraction Apparatus 

2.3.4.1 Process Design 

The apparatus used for the SERVO process was constructed using electrical 

parts from RS Components Ltd, and electrothermal tapes from Electrothermal 

Engineering Ltd. It is composed of 5 major parts as shown in figure 12: 

two ovens connected to temperature controllers; 

one thermocouple 12 way selector switch connected to a digital temperature 
indicator and 4 thermocouples; 

one Electrothermal heating tape shaped into a doughnut connected to a 
transformer. This shape was considered for practical purposes as it was to be 

placed between the two ovens; 

one Electrothermal heating tape shaped into a sock connected to a transformer 

to be placed between the second oven and the cooled trap. 

Sock 

Main 

Temperature - Bottom 
oven Controller 

q-1j 

12 Way selector switch 

Temperature Indicator 

Figure 12: Schematic representation of the 5 major parts composing the Extraction 
section of the SERVO process equipment 

Top 

Temperature 
Oven 

Controller 

Transforme Doughnut 
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UNIVFnOITV r ,, ý. ý.,; RP: ý 1ý ºý LRC 1) Ceramic ovens -' ---- -- 
Ceramic ovens (Lindberg® electric heating units) were made of stainless 

steel resistance wire spirally wound and encapsulated as shown in figure 13. A glass 
fibre cover was designed to avoid heat loss. 

To control the temperature of these ovens, temperature controllers (type K 

sensors, 0 -400°C, RS 344-120) were connected to each oven. The electric system 
for the temperature controllers is shown in figure 14. The system was adjusted to 

allow control of the temperature between ± 3°C of the set value 

Stainless-s 
spiral your, 
wire 
encapsulate 
in ceramic 

Figure 13: Half ceramic oven 

2) Temperature Controller 

A thermocouple 12 way selector switch (type K, RadioSpares (RS) C219- 

4602) was connected to 6 thermocouple probes (type K, RS 159-023) using 

thermocouple extension wires (type K, RS 151-209) protected with a solid glass fibre 

insulators and miniature connectors (type K). These thermocouple probes were 

placed in the regions where temperature needs to be controlled. A digital temperature 

indicator (type K, RS 258-108) was also connected to the selector switch to enable 

the temperatures to be monitored. 
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Ceramic oven 
Thermocouple 
placed inside the 
oven 

F 7ý n6 

Temperature 

F 

Q Controller 
3 

10 11 1u 

13A Electrical '; LN 
socket -I-1- 

Figure 14: Electric system of the temperature controllers 

3) Doughnut electrothermal tape 

The heating tape (Electrothermal HT75502 MKI, 230V, 50-60Hz, 100W, 

2ft) was rolled to form a doughnut shape. A glass fibre cover was designed to hold 

the shape and avoid any heat loss. The doughnut was connected to a transformer (RS 

207-914,8A, 230V, 47-400HZ) to control the energy input. 

4) Sock electrothermal tape 

As with the doughnut, this was an Electrothermal heating tape 
(Electrothermal HT75506 MKI, 230V, 50-60Hz, 300W, 6ft) rolled to form a sock 

shape. A glass fibre cover was designed to hold the shape and avoid any heat loss. 

The sock was connected to a transformer (RS 207-914,8A, 230V, 47-400HZ) to 

control the energy input. 
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2.3.4.2 Apparatus and operational conditions 

The apparatus used was the same for all experiments, although the 

volatilisation reactor was different for liquid and solid extractants. An outline of the 

SERVO process extraction equipment is shown in figure 15. 

Two different types of reactor I were designed to contain either a liquid 

extractant (figure 15: left) or a solid extractant (figure 15: right). Reactor 2 was a 

cylinder fitted with standard joints and a coarse glass frit placed on top of the reactor 
1, and contained the contaminated matrix. This was connected to a heated horizontal 

tube and a cooled receiver to contain the volatilised metal complexes, excess reagent 

and decomposition products. All experiments were run under 60 cm3 min"' of N2 gas. 
The two reactors were first heated up to temperature T, for 90 min, so complexation 

could occur in reactor 2, then the reactor 2 was heated up to T2, allowing 

volatilisation of the metal complex. The metal complexes were collected in trap 

cooled with liquid nitrogen or a trap containing a high boiling solvent e. g. petroleum 

ether, boiling range 100-120°C. 

RC3dl 2 

(t min. - J m: h 
(A1ýilllißl M n} 4 
pdL tl 

R-Ul 1 

cool": d 
try 

Figure 15: SERVO process extraction apparatus 
(left: liquid extractant, right: solid extractant) 
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To test the possible extraction of metals using the new SERVO process 

extraction apparatus, metal carbonates, i. e. copper carbonate, zinc carbonate, nickel 
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carbonate and cobalt carbonate, were used as starting material and placed in the 

reactor 2 with either Hacac, H2pnaa, or Hprps in reactor 1. The operational 

temperatures used in the reactor I were defined by the thermal stability of each 

extractant. The operational temperatures T2 used in the reactor 2 were chosen 

according to the optimum volatilisation of the required metal chelate (DTG 

temperatures) (table 5). 

Metal carbonates 
Hacac 

(T1 = 120°C) 

H2pnaa 

(Ti = 230°C) 

Hprps 

(T1 = 250°C) 

CuCO3 T2 = 250°C T2 = 250°C T2 = 260°C 

ZnCO32Zn(OH)2H20 T2 = 160°C T2 = 175°C T2 = 290°C 

CoCO3 0.5H20 T2 = 250°C T2 = 250°C T2 = 290°C 

2NiCO33Ni(OH)24H20 T2= 270°C T2= NOT T2= 23 0°C 

Table 5: Operational temperatures T1 and Ta used for extraction test 

Metal carbonates (0.1 g accurately weighed) were used with either Hacac (20 cm3), 

H2pnaa (5g accurately weighed), or Hprps (2g accurately weighed). The quantity of 

extractant was determined by the volume of the extractant reactor. Only 2g of Hprps 

were used, to reduce the cost of the experiment. Each experiment was repeated three 

times to establish reproducibility. 

When the SERVO process extraction apparatus was used with contaminated 

materials like sediments, fly ashes or Orimulsion ashes, operational conditions used 

are shown in the table 6 for 2g of material. 

Quantity of extractant used per 
2g of material 

Temperature T1 Temperature T2 

20 cm3 of Hacac 120°C 200°C 

5g of H2pnaa 230°C 270°C 

2g of Hprps 250°C 280°C 

Table 6: Operational conditions for the SERVO process extraction apparatus 

Some experiments were carried out to exhaustion, where 5g of the initial 

material was placed in the reactor with Hacac (20 ern 3), H2pnaa (5 g), or Hprps (2 g). 

Following the first experiment 0.5 g, accurately weighed, of the contaminated sample 

was removed for analysis, and the remaining 4.5 g were subjected to another 
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extraction run with the same quantity of extractant. This procedure was carried out 

until no sample was left. 

2.3.4.3 Cleaning Procedure 

In the above experiments, the material after extraction was shaken to provide 
homogeneity and a sample of 0.5 g, accurately weighed, was removed, and digested 

as described previously. Otherwise, I g, accurately weighed, of material was digested 

and analysed. The remaining sample was stored. 

The traps containing the metal complexes were cleaned after each batch using 
dichloromethane for H2pnaa and Hprps, and petroleum ether for Hacac. Solutions 

were then stripped 5 times with hydrochloric acid (10 cm3,5 mol dm 3). The obtained 

solutions were then diluted ten fold. 

2.3.5 Reduction of metal complexes 

Reduction of the synthesised metal complexes was studied using the 

extraction process reactors modified to enable the introduction of hydrogen gas 
between reactors 1 and 2 as shown in figure 16. Glass balls (20g, 1-2mm diameter) 

were introduced into reactor 2. The collection trap contained petroleum ether (100- 

120°C) to recover the ligand. After each run, reactor 2 and the glass balls were 

washed with 2 mol dm-3 nitric acid to leach the deposited metal and the solution 

analysed by ICP-AES. The recovered ligand was analysed by IR to check if any 
decomposition had occurred during the reduction of the metal complex. 

Metal complexes like copper, nickel, and cobalt were believed from previous 

studies to be reducible. [108,109,120,121] Operational conditions of each run are 

defined in table 7. Generally temperature TI was selected to allow volatilisation of 

the metal complex and avoid any thermal decomposition. Temperature T2 was 

selected at 280°C to be low enough to avoid thermal decomposition. Previously 

[108,109] Cu(pnaa) and Ni(pnaa) had been reduced at T2 = 340 °C and T2 = 325 °C 

respectively. It was not possible to check the reduction of Cu(pnaa) and Ni(pnaa) at 

these temperature because the maximum temperature that could be achieved with the 

reactors were 300°C so it was only possible to check for reduction at 280°C. The 

nitrogen flowrate was kept at 60 cm3 min-'. Gas flowrate was set at 20 cm3 min-' at a 

3: 1 ratio of nitrogen: hydrogen shown previously to be most effective. [119] 
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Reactor 

Hydrogen 

Reactor 

Nitrogen 

Figure 16: SERVO process reduction apparatus 

Metal complexes 
Quantity of metal 

complex used accurately 
weighed 

Temperature 
TI 

Temperature 
T2 

Cu(acac)2 O. Ig 218°C 270°C 

Ni(acac)2 O. Olg 218°C 270°C 

Cu(pnaa) 0.05g 260°C 280°C 

Ni(pnaa) 0.05g 260°C 280°C 

Co(prps)2 0.1 g 270°C 280°C 

Ni(prps)2 0. lg 270°C 280°C 

Table 7: Operational conditions for the reduction of metal complexes 
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2.4 Synthesis and properties of extractants and metal complexes 

All experimental work has been carried out under good laboratory conditions 
fulfilling the University safety regulations. All instrumental analysis (IR, TGA and 
MS) of the prepared compounds are presented in appendix 6. 

2.4.1 2,4-pentanedione and metal complexes 

2.4.1.1: Materials 

2,4-pentanedione (Hacac) was obtained from Aldrich and used as received. 

Bp: 140°C 

TGA: Volatilisation temperatures: 22°C -> 148°C 

Percentage residue after volatilisation: 0.1 % 

IR (cm 1): 3487 (OH str. ), 2925 (C-H str., alkyl group), 1710-1729 

(C=O str. asymmetric), 1624 (C=C str. ), 1304-1250 (C-O aliphatic 
ketone). 

MS (El): m/z: 100 (M+, 17%), 85 (23%), 57 (5%), 43 (100%). 

The volatilisation temperatures of this ligand indicate an extremely volatile 

compound (22°C -> 148°C) that is also thermally stable (only 0.1% of residue is 

formed after volatilisation). IR analysis confirms the structure of Hacac, a ß-diketone 

with the specific C=O stretching frequency at 1710 cm-1. 

HZ H 
O\C/C\C 

OO 

C}13 CH3 
113Cý 

cý 
(14) 

H Ct{3 

keto form (diketo) enol form (keto-enol) 

As with all ß-diketones, Hacac exists in tautomeric equilibrium between the diketo 

and keto-enol forms [122] (equation 14). 

In the later form, Hacac contains one acidic and one basic functional group 

and coordinates as an anion through both oxygen atoms. Upon reaction with a metal 
ion, the positive charge on the latter is reduced by one unit for each ligand anion 
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coordinated. Where the coordination number of the metal is twice the positive charge 

on the ion, chelation with the ligand produces a neutral molecule (equations 15,16): 

M"+ + n(Hacac) p M(acac)" + nH (15) 

(n-1)+ 
}}O\ /CH; /O /CH; 

O\CH O CýCH !1 6) 

I(l 

CH; CH; 

This is the situation for divalent metals ions like Cu2+, Nie+, Zn 2+ with coordination 

number 4 and trivalent metals ions like Fe3+ or Cr3+ with coordination number 6. 

In the case of vanadium and molybdenum, the most stable oxidation states are 

respectively +IV and +VI and involve the ionic species VO2+ and MoO2Z+ with 

coordination numbers of 5 and 6 respectively. The M=O bonds are retained in the 

resulting ß-diketone complexes. 

2.4.1.2 Synthesis procedure 

Starting materials were redistilled 2,4-pentanedione, also redistilled acetone 

and metal oxides or chlorides (ZnO, CdO, NiO, CuO and FeCI3,4H20) [123-124]. 

The method of preparation involved the addition of 2,4-pentanedione (0.097 

moles - 10 cm) to a suspension of the corresponding metal oxides or chlorides 

(approx 0.048 moles) in dry acetone (ZnO: 3.95g, CdO: 6.22g, NiO: 3.62g, CuO: 

3.85g and FeCl3,4H20: 6.42g). The reaction mixture was shaken by hand and heated 

gently under reflux for 10 minutes. The solution was filtered to remove any insoluble 

material and the solvent evaporated under reduced pressure to give a coloured solid 
(as specified in the following table), which was recrystallised from petroleum ether. 
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Metal 2,4 - 
pentanedionate 

Colour Mp Yield 

Zn(acac)2 White fibre 136°C 17% 

Cd(acac)2 Reddish crystals 235°C 23% 

Ni(acac)2 Green crystals 112°C 45% 

Mo02(acac)2 Light Green crystals 172°C (d) - 
VO(acac)2 Green powder 210°C (d) - 

Cu(acac)2 Blue 127°C 74% 

Fe(acac)3 Orange/red crystals 173°C 56% 

* Compounds supplied by Dr Liam Gilby 

Table 8: Specifications of metal 2,4-pentanedionates 

2.4.1.3 Cu (acac)2 

CH3 

C-O 

C/ Cu 
\ 

=0 

CH3 

Figure 17: Cu(acac)2 

The complex was prepared as described earlier (§ 2.4.1.2) 

Yield: 74 % 

Mp: 127°C followed by sublimation at 170°C 

(Reported decomposition above 230°C [125]) 

TGA: Volatilisation temperatures: 163°C -> 270°C 

Percentage residue after volatilisation: = 0.2 

(Reported 172°C -> 224°C (0%) [126]) 

IR (cm-): 3474 (OH str. ), 2900 (C-H str., methyl), 1600 (C=O str. broad 

band, 
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ß diketones), 1033 (C-H deformation vib. ), 692 (C-C str). 
MS(EI): m/z: 263 (65M+, 39%), 261 (3M+, 83.5%), 246 (49%), 

233 (22%), 231 (4 8%), 164 (37%), 162 (58%), 

150 (47%), 148 (83%), 100 (21%), 85 (31%), 43 (100%). 

Cu(acac)2 melts at 127°C but literature data shows only decomposition above 
230°C. The TGA thermogram shows a single weight loss from 163 - 270°C, 

indicating that the chelate obtained is anhydrous and quite volatile. The residue of 

only 0.2% after volatilisation indicates a good thermal stability. The reported 

sublimation temperatures of 172 - 224°C were recorded using a TG-DSC 

thermogram using heating rate of 5°C min"', [127] and the different technique and 

experimental conditions can explain the difference between the reported data and that 

found in the current work. The IR spectrum confirms the main structural 

characteristics of the chelate. MS (El) shows the presence of the two isotopes of 

copper (appendix 7), 63Cu, 83.5% and 65Cu, 39%. The calculated equivalent 

abundance ratio 63Cu : 65Cu 100 : 46.7, is close to the theoretical value (100 : 44.5). 

Molecular ion also confirms the composition. 

2.4.1.4 Ni(acac)2(j 

CH3 
/CH3 

j O 1120 O -C 

CH Ni 
HC 

: 

\O 
- - C c _ o 

H2O \ 
\ CH3 CH3 

Figure 18: Ni(acac)2 

The complex was prepared as described earlier (§ 2.4.1.2) 

Yield: 45 % 

Mp: 112°C followed by sublimation at 152°C 

(Reported decompose above 230 [125]) 

TGA: Volatilisation temperatures: 146°C -> 280°C 
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Percentage residue after volatilisation: - 28.6 % 

(Reported ranges of volatilisation 157°C -> 214°C [127] and 190°C 

326°C (22%) [128]) 

IR (cm-'): 3402 (OH str. ), 2988 (C-H str., methyl), 1610 (C=O str. broad 

band, ß diketones)), 1520 (C=C str. ), 1262 (C=O), 1196 (C-O), 1020 

(C=O str. ), 658 (C-C str. ) 

MS (El): m/z: 260 (62M+, 1.4%), 258 (60M+, 11%), 256 (58M+, 27%), 241 

(25%), 157 (43%), 142 (14%), 100 (15%), 85(23%), 43 (100), 28 

(47%). 

Nickel 2,4-pentanedionate is reported to be trimeric ([Ni(acac)2]3) in solid 

state and monomeric Ni(acac)2 in dilute solutions, in the vapour phase, or when the 

compound is isolated in an inert solid matrix. [126] A melting point is not recorded 
in the literature only decomposition above 230°C. [125] The compound synthesised 

in this work was found to melt at 112°C and sublimes above 152°C. 

The TGA thermogram shows a double weight loss. The first loss of 12% 

appears between 50 - 145.5 °C, and is equivalent to two molecules of water 

(2* 18/292.7 = 12.3%), confirming the chelate obtained is dihydrated. The second 

weight loss of 58.6% from 145.5 - 280° leaving a residue of 28.6%, showing thermal 

degradation of Ni(acac)2 above 280°C. Reported sublimation temperatures of 157 - 

214°C [127] were recorded using a TG-DSC thermogram at a heating rate of 5°C 

min' with no residue reported, and 190 - 326°C [127] using TGA at a heating rate of 

5°C min" 1, that showed thermally instability with a residue of 22%. Again different 

techniques and experimental conditions can explain these differences in the final 

volatilisation temperature. Moreover the composition of the compound synthesised 

by Belcher et al [128] was not stated, but in the preparation, it is mentioned that the 

compound was purified by repeated sublimation which should produce the 

anhydrous nickel acetylacetonate. The residue left (22%) after sublimation [127] 

confirms the thermal instability obtained in this study for Ni(acac)2(H20)2 (28.6%). 

The IR confirms the main characteristics of the structure. 

MS(EI) shows the presence of the main three isotopes of nickel (appendix 7), 

58Ni, 27%; 60Ni, 11% and 62Ni, 1.4%. The equivalent abundance ratios 58Ni: 60Ni: 

62Ni were measured at 100 : 40.7: 5.2, which are close to the theoretical values (100 : 
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38.2: 5.25). The two other nickel isotopes were present but in extremely low 

concentration so that they were barely distinguishable in the MS spectrum. 

2.4.1.5 Zn(acac)2ftQ)2 

CH3 
\ /CH3 

- // 
O OHZ O 

\I 
=C 

C Zn 
\ // 

CH 

ý / O -C - /C 
O 

OH2 
CH3 CH3 

Figure 19: Zn(acac)? (H20)2 

The complex was prepared as described earlier (§ 2.4.1.2) 

Yield: 17 % 

Mp: 136°C 

TGA: Volatilisation temperatures: 122°C - 200°C 

Percentage residue after volatilisation: - 9.7 % 

IR (cm"'): 3446 (OH str. ), 2925 (C-H str. methyl), 1594 (C=O str. Broad 

band, ß diketones)), 1266 (C=O), 1021 (C-O str. ), 928 (C-H vib. ) 

MS (EI): mh: 266 (68Zn(acac)2+, 16.5%, 33), 265 (67 Zn(acac)2+, 3.75%, 7.5), 

264 (66 Zn(acac)2+, 20.6%, 41.2), 262 (6' Zn(acac)2+, 50%, 100), 

167(68 Zn(acac)2+, 21.4%, 37.5), 166 (67 Zn(acac) 2{, 4.7%, 8.2), 

165 (66 Zn(acac) 2+, 35.9%, 63), 163 (64 Zn(acac) 2+, 57%, 100), 

150 (31.1%), 100 (15.6%), 85 (22.6%), 43 (100%). 

The melting point obtained (135°C) is close to the reported value of 138°C [124] and 

the IR confirms the main structural characteristics of the chelate. 

MS (EI) shows the presence of the main isotopes of zinc (appendix 7). Zinc 

isotopes (MZn, 66Zn, 67Zn, and 68Zn) appear complex with two molecules of Hacac as 

expected in clusters of ions 266 (68Zn(acac)2+, 16.5%, 33), 265 (67Zn(acac)2+, 3.75%, 

7.5), 264 (66Zn(acac)2+, 20.6%, 41.2), and 262 (MZn(acac)2+, 50%, 100). The 

measured equivalent abundance ratios 100 : 41.2 : 7.5 : 33 are close to the theoretical 

ratios 100 : 57.4: 8.4 : 38.7 with a 28% error in the 66Zn data. 
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Zinc isotopes also appear with one molecule of Hacac in the ions 167 (68Zn(acacj , 
21.4%, 37.5), 166 (67Zn(acac)+, 4.7%, 8.2), 165 (6Zn(acac)+, 35.9%, 63), and 163 

(64Zn(acac)+, 57%, 100). The measured equivalent abundance ratios of 100: 63 : 8.2 

: 37.5 are close to the theoretical ratios with this time only a 9.7% error in the 66 Zn 

data. The final zinc isotope 70Zn was not observed but this is expected as its 

abundance is low at 0.6%. 

The TGA thermogram shows a triple weight loss and a residue of 9.7%, i. e. a 

thermally unstable compound. The amount of residue at 300°C is insufficient to 

suggest the presence of zinc, as this would require at least 23%, so the residue is 

presumably mainly carbon products. The first weight loss of 14.21% (= 39.87 g mot- 
') appears from 58 - 87°C, would be the loss of water from the compound. Two 

molecules of water corresponds to 36 g mol"' suggesting that compound is 

dihydrated and not a monohydrate as previously reported from a different synthesis 

to that used here [129]. The third weight loss 59.1% (= 163.50 g mol"') from 127.5 - 
200°C seems the easiest to identify as it corresponds to the molecular weight of 

Zn(acac)+. The second 16.28% (= 49.95 g mol"') from 87 - 127.5°C could correspond 

to the loss of a molecule of CH3CO (= 43 g mol'') resulting from the decomposition 

of the second molecule of acac. This observation would mean that upon 

volatilisation, Zn(acac)2. (H20)2 is unstable and split into three parts as shown in 

figure 20 and equation 18. 

weight loss 2 

'eight loss 3 

weight loss I 

Figure 20: Thermal decomposition of Zn(acac)2 0)2 
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Zn(acac)2 (OH2 )2 -4 2H20 + CH3CO + Zn(acac)+ + Residue (17) 

weight loss I weight loss 2 weight loss 3 

The degradation process of 2,4-pentanedionates of divalent metals has been studied 

using a combined TG-DTA-MS technique, [129] and general fragmentation pattern 

has been proposed (figure 2 I): 

+. 
- M(acac)2 

-46 
-15 

/ 
CH3 

-acac 

i 
acac-M-0-C 

\CH 
CH3 

acac-M-O- C 
\ 

CH o= 

-84 

(acac-M)+ 

Figure 21: Fragmentation pattern of metal 2,4-pentanedionates 129 

This general fragmentation pattern confirms the formation of Zn(acac){ as the third 

weight loss but does not support the formation of the CH3CO fragment observed in 

the splitting pattern of the zinc complex prepared above. However as this is probably 

the dihydrate rather than the monohydrate certain variations might be expected. 

2.4.1.6 Fe acac)3 

The complex was prepared as described earlier (§ 2.4.1.2) 

Yield: 56 % 

Mp: 173°C 

TGA: Volatilisation temperatures: 92°C -> 275°C 

Percentage residue after volatilisation: - 3.65 % 

(Reported temperature range from 203°C -> 290°C [130]) 

IR (cm"'): 3469 (OH str. ), 1614 (C=O str. broad band of ß diketones)), 

1539 (C=C str. ), 1367 (C-H), 1291-1148 (C-O), 732 (C-C). 
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MS (EI): m/z: 362 (56Fe , 49.6%, 100), 333 (58.4%), 312 (14.1%), 293 

(16.1%), 283 (10.7%), 209 (13.4%), 159 (45%), +43 (100%). 

C113 

C-CH 
3 C\ 

O C-CH3 
CEO 
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CH 
", ýF 

_-----O 
I 

Ojc_cu3 C 

CH3 

C-CH 

CH3 

Figure 22: Fe(acac)3 

The TGA thermogram shows a single weight loss from 92 - 275°C, indicating 

that the chelate obtained is anhydrous and quite volatile. The residue after 

volatilisation is 3.65%, showing good thermal stability. Reported sublimation 

temperatures of 203 - 290°C [130] were recorded using a TG-DSC thermogram at a 

heating rate of 5°C min' but no residue was reported. As before the different 

technique and experimental conditions used can explain the difference in the final 

volatilisation temperature from that obtained in this work. The IR spectrum confirms 

the main characteristic of the chelate structure. Some presence of moisture is shown 

by the OH stretching at 3469 cm-1. This comes from the presence of water in the 

originally prepared compound that was then stored under vacuum before TGA, 

leaving the time for drying. MS (EI) shows only the presence of the main isotope of 

iron (appendix 7), 56Fe with an intensity of 49.6%. Three other isotopes were 

expected 54Fe 57Fe and 58Fe, with the theoretical abundance ratios 54Fe: 56Fe: 57Fe: 

58Fe of 6.3: 100: 2.4: 0.3. However as the intensity of the 56Fe obtained was 49.6%, the 

expected intensity of 54Fe 57Fe and 58Fe would be 3.1%, 1.2% and 0.15% which are 

too low to be detected in the spectra. 

2.4.1.7 Mo02 acac 
_ 

The complex was supplied by Dr Liam Gilby. [131] 
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Mp: decomposes at 210°C 

TGA: Volatilisation temperatures: 130°C -> 256°C 

Percentage residue after volatilisation: - 55 

IR (cm-'): 3433 (OH str. ), 1585 (C=O str. broad band, ß diketones)), 1506 

(C=C str. ), 1262 (C-O), 1024 (C=O str. ), 915 (Mo-O str. vibration ) 

[131], 669 (C-C). 

MS (EI): m/z: 330 (10°M, 3%, 25), 328 (93M, 12.12%, 100), 327 (97M, 3.94%, 

32.5), 326 (96M, 7.6%, 62.5), 325 (95M, 7.3%, 60), 324 (94M, 2.72%, 

22.5), 322 (92M, 4.85%, 40), 288 (1°°M, 19.5%, 39) 286 (98M, 50%, 

100), 285 (97M, 29.5%, 59), 284 (6M, 39.5%, 79), 283 (5M, 36%, 

72), 282 (94M, 22.5%, 45), 280 (92M, 27%, 54), 231(1°°M, 32.1%, 41), 

229 (98M, 78.2%, 100), 228 (97M, 48.5%, 62), 227 (96M, 67.6%, 86), 

226 (95M, 54.0%, 69), 225 (94M, 29.7%, 38), 223 (92M, 40.9%, 52). 

C\3 
/CH3 

C-9 0 \0 

X CH ö 
J/ 

01 CP 

II`O-C 

CH3 CH3 

Figure 23: MoO acac 

The melting point shows the thermal instability of the chelate as it 

decomposes at 210°C. The TGA thermogram shows a double weight loss: the first 

weight loss of 38.5% appears from 130 - 256°C and the second loss of 6.0% from 

256 - 350°C, is not a smooth curve and shows some irregularities. The 55% residue 
left after the run shows extensive thermal decomposition of Mo02(acac)2. The IR 

confirms the main structural characteristics of the chelate. The presence of some 

moisture is shown by the OH stretching at 3433 cm-1. Following the IR analysis and 
before thermal analysis the compound was stored under vacuum to dry. 

MS (EI) shows the presence of several clusters of seven isotopes of 

molybdenum (appendix 7), with only three noted in the table 9. The isotope ratios 

obtained are given in table 9 are close to the literature values with however some 
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large errors, up to 55.4%, in their intensity. The ratios for cluster 1, the most 

important as it shows the different isotopes of molydenum for the Mo02(acac)2 

molecule ion, is calculated from the smallest cluster in the spectrum and therefore 

measurements are less precise and involve higher errors. On the other hand cluster 3 

ratios, showing the best results of the three (apart from the 2 isotopes 97Mo and 
96Mo), is calculated for the most intense cluster. 

Isotopes 
Cluster I ratios 

Mw 330-322 

Cluster 2 ratios 

Mw 288-280 

Cluster 3 ratios 

Mw 231-223 

Theoretical 

Ratios 

IOUMO 25 (37%) 39 (2.2%) 41 (2.7%) 39.9 

98MO 100 100 100 100 

Mo 32.5 (17.9%) 59(49%) 62 (55.4%) 39.6 

96MO 
62.5 (10%) 79(14.5%) 86.4 (25.2%) 69 

5Mo 60 (9%) 72 (9.1%) 69 (4.5%) 66 

Mo 22(41%) 45 (17.5%) 38 (0.1%) 38.3 

Mo 40(33%) 54(12.1%) 52(15.4%) 61.5 

Table 9: Molybdenum isotope ratios obtained by MS(EI) 

2.4.1.8 VO(acac)2 

C\3 
/CH3 

C- 0 -C 

CH ; v))cu 

OC 

CH3 CH3 

Figure 24: VO(acac)2 

The complex was supplied by Dr Liam Gilby 

Mp: decomposes at 172°C 

TGA: Volatilisation temperatures: 13 1°C -> 230°C 

Percentage residue after volatilisation: = 12 
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(reported 140°C -> 230°C [132]) 

IR (cm-'): 3446 (OH str), 1528 (C=C, C=O conjugated str. ), 1286 (C-O), 

1017 (C=O str. ), 966 (V=O str. ), 684 (C-C). 

MS (EI): m/z: 265 (51M+, 100%, 100), 250 (27%), 183 (50%), 166 (86%), 150 

(9%), 126 (7%), 125 (3%), 124 (3%), 123 (7%), 67 (12%), 43 (30%). 

The melting point determination shows that VO(acac)2 decomposes at 172°C, 

but the TGA thermogram shows that volatilisation starts at 131°C with a smooth 

single weight loss curve. Reported sublimation temperatures of 140 - 230°C [132] 

were again recorded using a TG-DSC thermogram at a heating rate of 5°C min-' but 

no residue was reported. The different technique and different experimental 

conditions used can explain the difference obtained in the starting volatilisation 

temperatures with the current work. 

The IR confirms the main characteristics of the chelate structure. 

MS (EI) spectra shows the presence of the main isotope of vanadium 51V 

(appendix 7) complex with an intensity of 100%. The second isotope 50V does not 

appear in the spectrum as its expected intensity is too low (0.25%). 

2.4.1.9 Conclusions 

All the 2,4-pentanedionato compounds were identified and confirmed as 
being the required compounds. The most important physical characteristics are the 

thermal stability and the volatilisation temperatures and these are presented in table 

10 with further comments. 

Results in table 10 show that nickel, copper and iron 2,4-pentanedionates are 

thermally stable below 280°C and can be recovered after sublimation. The residue 

after volatilisation is an indicator of the thermal stability of the chelate, assuming all 

compounds are initially of equal purity. Thus the most stable chelate is copper 2,4- 

pentanedionate with a thermal degradation of only 0.2%, followed by iron and nickel 

complexes with residues of 3.6% and 29.4% respectively. A literature report [127] 

indicates that the copper and nickel complexes are thermally unstable leaving a large 

residue after sublimation, which is verified in this work for nickel but not copper. 
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Compound; Volatilisation 
° Residue Thermal stability temperature C 

Cu(acac)2 (163 ->270) ±4 0.2% stable 

Ni(acac)2(H20)2 (146 ->280) ±4 28.6% dec > 280°C 

Zn(acac)2(H20) (122 ->200) ±4 9.7% dec. to Zn(acac)+volatile (Zn(acac)) 
Fe(acac)3 (92 ->275) ±4 3.6% stable 

Mo02(acac)2 (130 ->256) ±4 55.0% 
dec > 130°C (MoO2) 

VO(acac)2 (131 ->230)±4 12.0% dec > 172°C 

Table 10: Summary of thermal properties of synthesised compounds 

Another 2,4-pentanedionate which could be recovered after sublimation is 

the vanadyl(IV) complex when heated below its decomposition temperature of 
172°C. Upon heating, the dioxomolybdenum(VI) and zinc 2,4-pentanedionates 

decompose and therefore cannot be recovered. To conclude, an order of stability can 

be established from the most stable to the least stable complexes: Cu > Fe >V> Ni > 
Zn > Mo. A similar order of thermal stability, based on the temperature at which 
decomposition begins, has been published. [124] This order of Fe > Ni > Cu, shows 
iron to be the most stable. This was not confirmed in the current study as the 

decomposition temperature of Cu(acac)2 was above it, but the observation that Fe > 
Ni is in accordance with the order proposed from our work. However decomposition 

temperatures are difficult to reproduce as they tend to vary with the heating rate. 

The volatility of the metal 2,4-pentanedionates is the second important 

property, which requires more discussion. The iron(III) chelate is volatile over the 
largest temperature range from 92 - 275°C, and the zinc chelate is volatilised over the 

smallest temperature range from 122 - 200°C. Therefore selective extraction of 
iron(III) might be possible if the temperature of the extraction reactor in the SERVO 

apparatus were kept at 100°C. The next most volatile compounds are molybdenum 

and vanadium 2,4-pentanedionates at 130°C, with the least volatile being the nickel 

compound starting at 146°C and finally copper 2,4-pentanedionate at 163°C. The 

ease of volatility of these compounds can be explained by several physical 

characteristics such as the shape and size of the molecule, but also the molar heat of 

sublimation. In table 11, the shape, coordination number [127] and molar heat of 
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sublimation (OHsub) [124,126,129,130,132] of the studied chelates are summarised 

and classified in order of volatility. Large discrepancies have been found in the 

literature for the molar heat of sublimation of some metal acetylacetonate complexes 
depending on the technique used (e. g. AHS�b data for Fe(acac)3 range from 19.5 kJ 

mole"', [124] obtained by the isoteniscopic method, to 104 kJ mole"' [129] obtained 
by DSC). The molar heats of sublimation in table 11, for copper, iron, oxovanadium, 

anhydrous nickel and zinc complexes were obtained using DSC under the same 

experimental conditions and can therefore be compared directly. In the case of the 

hydrated zinc and nickel chelates, the molar heats of sublimation were obtained from 

fusion and vaporisation enthalpy calculations, and by the isoteniscopic method 

respectively. 

Spatial 

Volatility Compounds Coordination arrangement 
of chelates 

AHS°b 
- order number: in solid 

) (kJ mole 

phase 127 

1 Fe(acac)3 6 Octahedral 103.9 ± 5.5 
132 

Intermediate 

2 Zn(acac)2H20 between square 74 f2 [124] 5 pyramidal and 117 3 [124] (Zn(acac)2)3 trigonal 
bi pyramid 

3 MoO2(acac)2 6 Octahedral - 
4 VO(acac)2 5 Pyramidal 140.7 ± 4.0 

132) 

5 Ni(acac)2(H20)2 4 Planar 
69 [124] 

2±4 108 9 
(Ni(acac)2)3 Octahedral . . [126] 

6 Cu(acac)2 4 Planar 107.1 ± 5.7 
126 

Table 11: Physical characteristics of metal 2,4-pentanedionates which could 
affect their volatility 

From table 11 it can be seen that the more volatile chelates have higher 

coordination numbers and a more symmetrical structure about the metal, i. e. 

octahedral > pyramidal > planar. In addition the more volatile compounds tend to be 

coordinately saturated and therefore cannot participate in any intermolecular 

bonding. The molar heat of sublimation data presented in table II does not reflect 

this; thus, considering only the anhydrous chelates, the observed molecular heats of 
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sublimation increase in the order: Fe(acac)3 < Cu(acac)2-' (Ni(acac)2)3 < (Zn(acac)2)3 

< VO(acac)2. Iron was found the most volatile and the molar heat of sublimation 

confirms this. But copper was found to be the least volatile whereas from the AHS�b it 

should be the second most volatile complex. However it should be noted that the 

AHsub data were compiled from a number of studies that may not be strictly 

comparable. 

MoO2(acac)2 molar heat of sublimation could not be found in the literature, 

and cannot be placed in this volatility order. 

2.4.2 Bis(pentan-2,4-dionato)propan-1,2-diimine (H2pnaa) and metal 

complexes 

2.4.2.1 Synthesis of bis(pentan-2,4-dionatopropan-1,2-diimine (Hz naa 

Starting materials used were 2,4-pentanedione, 99%, bp: 140°C and 1,2- 

diaminopropane, 99%, bp: 120°C. 

Bis(pentan-2,4-dionato)propan-1,2-diimine is obtained by the slow addition of 1,2- 

diaminopropane (0.487 moles - 42 cm3), to continuously stirred 2,4-pentanedione 

(0.974 moles - 100 cm3 at 0°C) according the chemical reaction (equation 18) : [111] 

CH3 
H3C , 

--OH HO 
CH 

H3C 

(18) >-OH 
HC 

2 HC" +H2NCH2CH(CH3)NH2 >-- N +2H2O 
H3C 

H3C 

Because the reaction is exothermic and reversible, it is important to control the 

temperature and addition of diaminopropane. Once the reaction was complete, the 

crystals were filtered under suction, washed with ice-cold heptane, air-dried and 

recrystallised from heptane to give a white crystalline solid (mp: 88°C, yield: 73%). 

As with ß-diketones, H2pnaa exists in a tautomeric equilibrium [133] 

(equation 19) and contains two acidic and two basic functional groups, and 

coordinates as a dianion through the oxygen and nitrogen atoms as a tetradentate 

Schiff base ligand. 
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H3C 

HC>O 
HO-{CH3 

H CýNH 
N=<CH 

3 }-ý 3 
H3C 

enolform (keto-enol) 

H3C CH3 
ýO 0=< 

T 
HZC CHZ 

i=N N-{ 
H3C }1 CH3 

H3C 

keto form (diketo) (19) 

This ligand has the potential to be more selective as, to produce neutral 

complexes, it requires that the ions have a charge of +2, a coordination number of 
four and favour square planar or square pyramidal coordination. Therefore, 

copper(II), nickel(II), cobalt(II), zinc(II), palladium(II), platinum(II), and 

oxovanadium(IV) can be expected to form volatile derivatives with Schiff bases. 

[134] These ligands and their metal chelates are less volatile than the corresponding 
bidentate ß-diketones [134] but are more thermally stable, [127]. 

Properties of H2pnaa: 

Yield: 73 % 

Mp: 91 °C 

TGA: Volatilisation temperature range: 100°C 250°C 

Percentage residue after volatilisation: -4% 

IR (cm"'): 3500 (H- bonded OH str. ), 2998 (H-bonded N-H str. ), 2970 (C-H 

str., alkyl group), 1578-1772 (C=O str. ), 1607 (C=N), 1436 (C-C), 

1285-1000 (C-O, series of strong peaks), 736 (C-C). 

MS (EI): m/z: 239 (M++1,12%), 195 (2%), 139 (14%), 126 (100%), 112 

(13%), 98 (18%), 43 (39%). 

The volatilisation temperature range shows it to be quite volatile (100 - 250°C), and 

also thermally stable with only 4% residue. IR analysis confirms the structure of 

H2pnaa, as a Schiff base with the specific C=O stretching at 1710 cm-1, and a 

vibration at 3500 cm-1 indicating hydrogen bonding between O-H and N-H 
. 

2.4.2.2 Synthesis of metal complexes 

These metal complexes were obtained by reaction between the metal 2,4- 

pentanedionate and bis(pentan-2,4-dionato)propan-1,2-diimine (- H2pnaa). [134] 
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Bis(pentan-2,4-dionato)propan-1,2-diimine (8.4x10-3 moles - 2g) dissolved in 

ethanol (10 cm) was added to the corresponding calculated molecular ratio (1: 1) of 

metal 2,4-pentanedionate (8.4x10"3 moles) dissolved in ammonia (1 mol dm"3,30 

cm3). The reaction mixture was then heated on a steam bath for 20 minutes. The 

metal complexes were precipitated by the addition of water, filtered, and 

recrystallised from acetone. 

H2pnaa-metal 
complexes 

Colour Mp Yield 

Cu(pnaa) Deep blue crystals Sublimes at 250°C 69 % 

Ni(pnaa) Brown crystals 145°C 49 % 
Co(pnaa) Purple crystals 154°C 34 % 

Table 12: H2(pnaa) -metal complexes specifications 

Several attempts to prepare the Zn(pnaa) using the above method failed to produce 

an identifiable product. 

2.4.2.3 Cu(pnaa) 

CH3 

-0 O-C z \\ 

ýCuý H 

=N\ N\ 

CH-CH2 CH3 

H3C 

Figure 25: Cu(pnaa) 

The complex was prepared as described earlier (§ 2.4.2.2) 

Yield: 69%, 

Mp: sublimes at 250°C (reported mp = 122°C [134]) 

TGA: Volatilisation temperatures: 142 °C -> 192°C 

Percentage residue after volatilisation: - 1.6% 

Reported 105°C --> 305°C (1%) [135] 

IR (cm"'): 3446 (OH str. ), 2920 (C-H str. ), 1660 (C=N), 1533 (C=C str. ), 1419 
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(C-C), 1354 (C-H vib. ), 1275 (C-O). 

MS (EI): m/z: 303 (65M+, 5.8%), 301 C3M+, 12.9%), 239 (5%), 112 (8%), 

85 (33%), 43 (100%). 

Cu(pnaa) sublimes at 250°C but literature data shows a melting point of 122°C, and 

the TGA thermogram shows a single weight loss from 142 - 192°C, indicating that 

the chelate obtained is anhydrous and sublimes from 142°C and not at 250°C as seen 
from the melting point determination. TGA is a more reliable instrument than the 

melting point apparatus and so the sublimation temperature starting at 142°C is more 

precise. The residue after volatilisation is only 1%, showing good thermal stability. A 

sublimation temperature range 105 - 305°C has been recorded [134] using a TGA 

thermogram with a heating rate of 5°C min- , and the different experimental 

conditions used can explain the difference from results obtained in the current study. 
The residue reported in this earlier study (1%) is the same as currently found and 

supports the thermal stability of the compound. The IR spectrum confirms the main 

characteristics of the structure. A small 0-H vibration at 3446 cm -1 shows the 

presence of some moisture. This probably comes from the presence of water in the 

originally prepared compound that was then stored under vacuum before the TGA 

study to dry. MS (EI) shows the presence of the two isotopes of copper (appendix 

7), 63Cu, 12.9% and 65Cu, 5.8%. The calculated equivalent abundance ratio 63Cu 

65CU of 100 : 45.0 is close to the theoretical value (100: 44.5). 

2.4.2.4 Ni(pnaal 

H3C 

Figure 26: Ni(pnaa) 

The complex was prepared as described earlier (§ 2.4.2.2) 
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Yield: 49 % 

Mp: 145°C (reported mp = 157°C [134]) 

TGA: Volatilisation temperatures: 194°C -> 300°C 

Percentage residue after volatilisation: =4% 

Reported values 85°C -> 360°C (8%) [135] 

IR (cm-1): 3500-3000 (broad OH str. ), 2941 (C-H str. ), 1600 (C=N), 

1520 (C=C str. ), 1436 (C-C), 1260-1019 (series of strong peaks C-O). 

MS (EI): m/z: 298 (62M+, 9%), 296 (0M+, 42%), 294 (58M+, 100%), 

281 (M-CH3,32.3 %), 99 (21.7%), 58 (butyl, 10%), 43 (C3H9,12.97%). 

Ni(pnaa) melts at 145°C which is close to the literature value of 157°C [134], 

and the TGA thermogram shows a single weight loss from 194 - 300°C. The residue 

after volatilisation is 4%, showing good thermal stability. The reported sublimation 

temperature range 85-360°C [134] was recorded using a heating rate of 5°C mind, 

and as noted above these different experimental conditions can explain the variation 
in the final volatilisation temperature, and the difference in reported final residue of 
8% compared to 4% found in our work. The IR spectrum confirms the main 

characteristics of the structure. A broad O-H vibration between 3500-3000 cm-1 

shows the presence of OH in the structure, possibly indicating some coordination of 

water to the nickel. The compound as originally prepared was stored under vacuum 
before the thermal analysis studies giving time for the compound to loose water thus 

explaining the absence of any water loss in the TGA. 

MS(EI) shows the presence of the main three isotopes of nickel (appendix 7), 
58Ni, 100%; 60Ni, 42%, and 62Ni, 9%. The calculated equivalent abundance ratios 
58Ni : 6ONi : 62Ni of 100 : 42 : 9, are close to the theoretical values (100: 38.2 : 

5.25). The two other nickel isotopes were not observed being in too low an 

abundance. 
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2.4.2.5 Co(pnaa) 

H3C 
` /CH3 

0N �O_ H\ 
7Co\ /CH 

N\ 
/N 

\ 

HC CH-CH2 CH 3/3 

H3C 

Figure 27: Co(pnaa) 

The complex was prepared as described earlier (§ 2.4.2.2) 

Yield: 34% 

Mp: 154°C 

TGA: Volatilisation temperatures: 167°C -> 292°C 

Percentage residue after volatilisation: - 0.4 % 

Reported 80°C 350°C (6%) [134] 

IR (cm"'): 3419 (broad OH str. ), 2923 (C-H str. ), 1610 (C=N), 1522 (C=C 

str. ), 1463 (C-C), 1401 (C-H), 1260-1019 (C-O). 

MS (El): m/z: 297 (59M+, 54.4%, 100), 279 (98%), 238 (20%), 183 (100%), 

169 (35.6%), 126 (51/6), 99 (24%), 43 (14%). 

There are no reported data for the melting point of Co(pnaa), the current 

work showed that Co(pnaa) melts at 154°C. The thermogram shows a single weight 

loss from 167 - 292°C, indicating that the chelate is anhydrous. The residue after 

volatilisation is 0.4%, showing good thermal stability. Reported sublimation 

temperatures 80-350°C [134] were recorded using a TGA thermogram with a heating 

rate of 5°C min"], and as before different experimental conditions can explain 

differences in the data. The IR confirms the main characteristics of the structure of 

the chelate. The broad O-H vibration between 3419 cm-1 indicates the presence of 

some water in the compound but this was probably surface moisture as it was not 

detected in the TGA analysis. MS (EI) shows the presence of the single isotope of 
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cobalt (appendix 7) for the molecular ion at 297 with a good abundance of 54.4%, 

together with the characteristic fragmentation pattern of H2pnaa. 

2.4.2.6 Conclusions 

All metal compounds of Hzpnaa were identified and confirmed as being the 

required complexes. For this study, the most important physical characteristics are 

the thermal stability and the volatilisation temperatures and these are summarised in 

table 13. 

C l Melting Point °C Volatilisation Residue after Thermal 
ex omp Exp. Lit. range (°C) volatilisation stability 

H2(pnaa) 91 f2 90 (100 -a 250) f4 (4.0 ± 0.2) /o % Moderately Moderately 

Cu(pnaa) 119± 2 122 (142 ->292) ±4 (1.0 ± 0.2) % Stable 

Ni(pnaa) 145 ±2 155 (194 -+ 300) ±4 (4.0 ± 0.2) % Moderately 
stable 

Co(pnaa) 154 - (167 --p292) f4 (0.4 ± 0.2) % Stable 

Table 13: Volatilisation study of the synthesised pnaa metal complexes 

Results in table 13 show that Co(pnaa) is the most stable followed by 

Cu(pnaa) and Ni(pnaa). Thus in general the metal complexes offer good thermal 

stability, with a single weight loss and condensation of the sublimate shows little or 

no decomposition. Copper may be expected to volatilise before nickel which may 

allow selective extraction of copper from cobalt and nickel. From the above studies, 

the order of volatility is H2pnaa > Cu(pnaa) > Co(pnaa) > Ni(pnaa). The nature of the 

metal complexed by H2pnaa can influence the volatility of the metal chelate in many 

ways. [134] The most important property of the metal atom is its Lewis acidity that 

will affect the tendency to interact with Lewis-base sites within the complex 

involving nitrogen or oxygen donors. This type of interaction is supported by the 

existence of stacking chains of metal in the crystal structures of ß-ketoimide 

complexes (figure 28). The lower volatility observed for the nickel and cobalt 

complexes relatively to copper is consistent with the greater capacity of coordinated 

nickel(II) and cobalt(II) atoms to act as Lewis acids. 
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,e-o 

Figure 28: Lewis acid activity of the central metal ion in M(pnaa) [ 1281 

2.4.3 Tetra-alkyldithioimidophosphine and metal complexes 
Tetra-alkyldithioimidophosphinates of zinc, cadmium, nickel, copper, cobalt, 

molybdenum, and vanadium [136,137,138] have been studied in recent years. The 

structure and bonding in the dithioimidophosphinates ligands make them unique 

among sulfur donors in several respects: 

(1) tautomeric equilibrium between the imido (Ph2PS)2NH and thiol 

structures (Ph2PS)(Ph2PSH)N [133] (equation 20). The imido structure 

contains one acidic and one basic functional group, and coordinates as a 

mono-anion through the sulphur. atoms; 

(2) stereochemical trends in complexing with divalent metals to form neutral 

complexes by deprotonation of the ligand at the amine N-H (imido structure 

as shown in equation 21) [133]; 

(3) tetrahedral geometry about the central metal atoms; 

(4) nonrigidity of the six membered MS2P2N ring geometry with either 

pseudo-chair or pseudo-boat conformation depending on the metal involved 

within the chelate ring [133] reveal square planar structures. 
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The ability of these ligands to form neutral complexes with divalent metals led to 

their selection as potential ligands for the SERVO process. 

H 
R''-. 

/N\ 
R R%.. 

/N\ 
R 

R***, 11 11"*R RýýI IHR 
SSS SH 

imido structure thiol structure R=Ph or'Pr (20) 

2.4.3.1 Synthesis and properties of tetra-phenyldithiophosphoramide H(phps) 

Tetra-phenyldithiophosphoramide was obtained after sulphurisation of the 

reaction product between hexamethyldisilazane and chlorodiphenylphosphine. [133, 

136,138] (equation 21). 

H 
H3C N \CH3 

Phi 
ýN\ `kph , \CH3 

CH3º i 
\Si_CH3 

+ 2Ph2PCI IN Phºp P4Ph +2 CISiýCH3 

CH3 CH3 CH3 

HH 
P, 

ýHý \NPh 
P, 

/N\ Ph 

PhVIP P'wPh + 2S Ph'-P PllwPh 

5S ý21ý 

A solution of hexamethyldisilazane (0.071 moles - 15cm3) in toluene 100 

cm3 was placed in a two-neck round bottom flask provided with a dropping funnel 

and a condenser adapted for distillation. The distillate was collected in a round 
bottom flask and the system closed with a calcium chloride drying tube. The flask 

was heated with a heating mantle and the mixture stirred with a Teflon-coated 

magnetic stirrer. 

A solution of chlorodiphenylphosphine (0.141 moles - 25 cm3) in toluene 

(100 cm), placed in the dropping funnel, was added drop-wise to the solution of 

hexamethyldisilazane while heating between 80-90°C for 3 hours to completely 

remove the chloromethylsilane product. Then the mixture was heated further and 

toluene (100 cm3) removed. The mixture was cooled to room temperature, the 

dropping funnel replaced with a stopper, elemental sulphur (4.5 g) added to the flask, 
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and the mixture heated again to 80-90°C overnight. Upon cooling, the precipitate 

was filtered onto a glass frit, washed with toluene, carbon disulfide, petroleum ether, 
dried in air and recrystallised from toluene to give a white crystalline solid. 

Properties of H(phps): 

Yield: 50.1 % 

Mp: 208°C (reported mp = 213°C [132]) 

TGA: Volatilisation temperatures: 274°C -> 500°C 

Percentage residue after volatilisation: = 30.8 % 

IR (cm-1): 3049 (N-H str. vibration), 2631 (N-H), 1690 (C=C str. phenyl), 
1438 (C-C str. phenyl), 1437 (N-H str. ), 925 (P-N-P medium), 778 

(P2N weak), 691 (P=S), 648 (P=S) 

MS (EI): m/z: 481 (M+, 36%), 395 (36%), 310 (100 %), 286 (54%). 

The volatilisation temperatures for H(phps) are quite high and show the low 

volatility of the compound (274°C -> 500°C). Moreover a residue of 30.8% is left at 

500°C indicating thermal instability. IR analysis confirms the structure of Hphps, 

with specific vibrations of N-H and P-N-P at 1320 cm-1 and 932 cm-1 respectively. 
MS analysis shows the presence of the molecular ion of the ligand: 481 g mol-1. 

2.4.3.2 Synthesis and properties of tetra-iso-prop Ids ithiophosphoramide (Hprps) 

HH 
H3C% 

ýN ,, _CH3 
P 

ýNý Pr 
ýýCHg 

CH3' Si, ýCH3 + 2Pr2PCI 
--ýº PrºP P'Pr +2 CISi""CH3 

CH3 CH3 CH3 (22) 

HH 
P, 

ýNý \Pr P, 
ýNý `NPr 

PrºP P'Pr +2S 
-º PrºII ü'Pr 

SS 

Tetra-isopropyldithiophosphoramide was prepared using the same procedure as for 

tetra-phenyldithiophosphoramide substituting chlorodiisopropylphosphine for 

chlorodiphenylphosphine (equation 22). The crude product was recrystallised from 

toluene to give a white crystalline solid. 
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Properties of Hprps: 

Yield: 57 % 

Mp: 173°C (reported mp = 165°C [135]) 

TGA: Volatilisation temperatures: 180°C -> 300°C 

Percentage residue after volatilisation: = 0.84 % 

IR (cm-1): 3238 (N-H str. vibration), 2600 (NH), 1454 (C-C str. ), 1386 (N-H 

str), 935 (P2N vibration), 905 (C-H), 880 (C-H), 774 (P2N 

vibration), 698 (P=S), 646 (P=S). 

MS (EI): m/z: 313 (M+, 49%), 270 (24%), 228 (100 %), 149 (65%), 107 

(22%), 43 (55%). 

The volatilisation temperature for Hprps is quite low and shows reasonable thermal 

stability with only a small residue (0.84%) at 300°C. IR analysis confirms the 

structure of Hprps, with specific vibrations of N-H and P-N-P at 1326 cm-1 and 935 

cm-1 respectively. MS analysis shows the presence of the molecular ion at 313. 

2.4.3.3 Synthesis of H(prps) metal complexes 

Metal complexes were prepared following published procedures. [139-141] 

Starting materials were metal carbonates and the ligand tetra-iso- 

propyldithiophosphoramide. The metal complexes were obtained by addition of 

excess metal carbonate (O. Ig) to a solution of the ligand (-0.3 g) in dichloromethane 

(30 cm) to ensure complete reaction of the ligand, and the mixture was refluxed for 

3 hours. The precipitate was filtered and recrystallised from dichloromethane/ 

petroleum ether (40-60°C). Crystals were then dried at room temperature. More 

details of the complexes prepared are provided in table 14. 

Metal carbonate used 
(O. lg) 

Amount of 
ligand used 

M. p of the 
metal complex 

Crystal colour Yield 

ZnCO3.2Zn(OH)2 H2O 0.3 g 147°C White 84 % 

CdCO3 0.23 g 163°C Colourless 83 % 

CoCO3.0.5H20 0.4 g 168°C Deep blue 68 % 

NiCO3.3Ni(OH)24H20 0.1 g 173°C Light green 65 % 

PbCO3 0.24 g 125°C Yellow-orange 54 % 

CuCO3"Cu(OH)2 0.16 g 152°C Purple 75 % 

Table 14: Specifications of Hprps-metal complexes 
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2.4.3.4 Cd(prps)? 

Pr%,, Pr Prý ' 
.,: Pr PS 

N Cd S P\N 

\P-S/ 
S-P-, 

Pr Pr' Pr' Pr 

Figure 29: Cd(nrps)2 

The complex was prepared as described earlier (§ 2.4.3.3) 

Yield: 83 % 

Mp: 161°C (reported mp = 161°C [136]) 

TGA: Volatilisation temperatures: 140°C -a 300°C 

Percentage residue after volatilisation: - 6.3 % 

IR (cm"'): 1457 (C-C), 1288 (C-C), 786 (P2N vibration), 680 (P=S) 

MS (El): m/z: 738 (13%), 697 (116M+, 40.5%, 40.5), 695 (114M+, 100%, 100), 

694 (1 13M+, 59.5%, 59.5), 693 (' 12M+, 84.8%, 84.8), 692 (111M+, 

45.6%, 45.6), 691 (1OM+, 34.2%, 34.2), 428 (1 16M+, 15.2%, 22.6), 

426 (14M+, 67%, 100), 425 (13M+, 38%, 56.6), 424 (112 M+, 59.5%, 

88), 423 (11'M+, 30.4%, 45.3), 422 (11°M+, 29.1%, 43.4), 313 (23%), 

270 (13%), 278 (39%), 113 (4%), 149 (44%), 73 (10%), 41 (40%), 28 

(77%). 

The melting point (161°C) is the same as reported [135]. 

The IR confirms the main characteristics of the structure. 

MS (EI) confirms the presence of the most abundant isotope of cadmium 
114 Cd complexed with two molecules of Hprps in the molecular ion at 738. The 

presence of other cadmium isomers can be found with clusters appearing in the 

region 697 - 691 and 428 - 422. The first cluster (appendix 7) (116 Cd, 114 Cd, 113 Cd, 
112Cd, 111Cd, and HOCd) indicates the metal complexed to two molecules of prps less 

one propyl group from 697 - 691. The measured equivalent abundance ratios of 40.5 

100: 59.5 : 84.8 : 45.6: 34.2 are close to the theoretical ratios 26.1 : 100 : 42.5 : 84 

44.6 : 43.5. The second cluster (16Cd, 114 Cd, 113 Cd, 112 Cd, "'Cd, and 1°Cd) 

indicates cadmium complexed with one molecule of prps in a cluster of ions from 
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428 to 422. The equivalent abundance ratios measured as 22.6: 100: 56.6: 88 : 45.3 

: 43.4, extremely close to the theoretical values. 

The TGA thermogram shows a single weight loss from 140 - 300°C, 

indicating that the chelate obtained is anhydrous and quite volatile. The residue left 

after complete volatilisation is 6.3%, showing that some thermal degradation has 

occurred. 

2.4.3.5 Co(prps)2 

Pr% 'Pr Pr 
jPSý 

'Pr 

S=P\ 
Ný Co N 

P-S S-P, 

Pr' Pr Pr 

Figure 30: Co(prps)2 

The complex was prepared as described earlier (§ 2.4.3.3) 

Yield: 15 % 

Mp: 168°C (reported mp = 174°C [139]) 

TGA: Volatilisation temperatures: 158°C -> 300°C 

Percentage residue after volatilisation: -4% 

IR (cm-'): 3500 (OH str. ), 1464 (C-C), 1301 (C-C), 780 (P2N), 697 (P=S) 

MS (EI): m/z: 683 (59M+, 2.6%), 667 (5.3%), 624 (17.3%), 608 (24%), 

313 (28%), 228 (610/o), 149 (47%), 43 (100%) 

The melting point obtained (168°C) is slightly different from the reported value of 

174°C [142], and therefore indicates some impurities. 

Co(prps)2 was analysed by TLC to examine the solvent system for 

purification of the chelate on a silica column. It was found that good separation of 

the spots was obtained using 1: 20 ethylacetate/petroleum ether. Upon purification the 

compound was unstable and degraded overnight. The IR confirms the main 

characteristics of the structure of the chelate. 
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MS (EI) shows the presence of the single isotope of cobalt 59Co (appendix 7) 

complexed with two molecules of prps as expected but with a quite low intensity of 
2.6 

The thermogram shows a single weight loss from 158°C to 300°C, indicating 

that the chelate obtained is anhydrous and quite volatile. The residue, left after 

complete volatilisation (4 %), shows some thermal degradation of the cobalt chelate, 

certainly the impurities demonstrated by the melting point. 

2.4.3.6 Pb(prps)2 

Pri 'Pr pr 
ýý". IN;,, \Pr 

N 
P=SN S P\N 

/\ // 
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pr i pr' 

4 'ýo'Pr 

Figure 31: Pb(prps)z 

The complex was prepared as described earlier (§ 2.4.3.3) 

Yield: 54 % 

Mp: 125°C 

TGA: Volatilisation temperatures: 175°C - 300°C 

Percentage residue after volatilisation: = 1.5 

IR (cm-'): 3600-3 100 (small OH str. ), 1619 (C=N), 1464 (C-C), 1355 (C-C), 

775 (P2N), 692 (P=S). 

MS (EI): m/z: 832 (208M+, 7%, 100), 831 (207M+, 1.3%, 18), 830 (206M+, 

2.4%, 34), 790 (100%), 748 (23%), 313 (32%), 270 (4%), 149 (32 

%), 73(20%), 43 (18%), 28 (42%). 

There is no recorded data on Pb(prps)2, so no literature comparison can be 

made. 

The IR spectrum confirms the main characteristics of the structure of the 

chelate, but a small OH stretching from 3600 to 3100 cm"' shows the compound is 

not fully dried. 
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MS (El) shows the presence of a cluster in the molecular ion of the three main 
isotopes of lead (208Pb, 207Pb, 206Pb) (appendix 7) complexed with two molecules of 

prps as expected in the range 832 - 830. The measured equivalent abundance ratios 
100: 18 : 34 are close to the theoretical values of 100 : 21.2 : 46. 

The thermogram shows a single weight loss from 175 - 300°C, indicating that 

the chelate obtained is quite volatile. The residue after volatilisation is only 1.5%, 

showing reasonable thermal stability. 

2.4.3.7 Ni(prps)2 

j Pr Pr% 'Pr Pr i 
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Figure 32: Ni(prps)2 

The complex was prepared as described earlier (§ 2.2.3.3) 

Yield: 12 % 

Mp: 173°C (reported mp = 126°C [136]) 

TGA: Volatilisation temperatures: 160°C -> 300°C 

Percentage residue after volatilisation: = 1.45 % 

IR (cm"'): 3600-3300 (weak OH str. ), 3224 (vibration N-H), 1464 (C-C), 

1301 (C-C), 1097 (C-H), 932 (P2N), 771 (P2N), 699 (P=S). 

MS (EI): m/z: 684 (60M+, 40%), 682 (58M+, 97%), 664 (46%), 648 (82%), 

624 (36%), 604 (22%), 313 (46%), 270 (27%), 228 (100%), 149 

(64%), 107 (21%), 43 (44%). 

The melting point obtained (173°C) is different from the reported value of 126°C 

[139], so the complex was prepared using two different methods and both products 
had the same melting point. The identity of the compound was confirmed by the 

molecular ion. 
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The IR confirms the main characteristic of the structure of the chelate, but a 

small OH stretching from 3600 to 3300 cm-1 shows the compound was not fully 

dried. 

MS (El) shows the presence of the two main isotopes of nickel 58Ni and 60Ni 

(appendix 7) complexed with two molecules of Hprps as expected but at a quite high 

intensity of 97% and 40% respectively. The measured equivalent abundance ratio of 
100 : 41 is close to the theoretical ratio 100 : 38.2 and therefore confirms the 

presence ofNi(prps)2. 

The thermogram shows a single weight loss from 160 - 300°C, indicating that 

the chelate obtained is anhydrous and quite volatile. The residue after volatilisation is 

3.1 %, showing some thermal degradation of the nickel chelate. 

2.4.3.8 Zn(prps)2 
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Pr 

Figure 33: Zn(prps)2 

The complex was prepared as described earlier (§ 2.4.3.3) 

Yield: 84% 

Mp: 147°C (reported mp = 144°C [136]) 

TGA: Volatilisation temperatures: 150°C -> 300°C 

Percentage residue after volatilisation: - 0.7 % 

IR (cm"'): 3600-3240 (weak OH str. ), 3240 (vibration N-H), 1464 (C-C), 

1310 (C-C), 775 (P2N), 695 (P=S). 

MS (EI): m/z: 692 (68Zn, 14%, 35), 690 (6Zn, 25%, 62.5%), 688 (64 Zn, 40%, 

100), 651 (70Zn, 15.2%, 15), 649 (68Zn, 50.6%, 50), 648 (67Zn, 29.1 %, 

29), 647 (66Zn, 72%, 72), 645 (MZn, 100%, 100), 382 (70Zn, 4%, 6), 

380 (68Zn, 30.4%, 42.8), 379 (67Zn, 12.65%, 17.8), 378 (66Zn, 46.8%, 

66), 376 (64Zn, 71%, 100), 313 (13%), 270 (5%), 228 (29%), 149 

(28%), 73 (14%), 65 (3%), 41 (45%). 
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The melting point obtained (147°C) is similar to the reported value of 144°C [136], 

and the IR spectrum confirms the main characteristics of the chelate, but a small OH 

stretching from 3600 to 3240 cm-1 shows the compound is not fully dried. 

MS (El) shows the presence of the main isotopes of zinc (68Zn, 66Zn, 64 Zn) 
(appendix 7) complexed with two molecules of Hprps but in a relatively high 
intensity of 14%, 25% and 40% respectively. The equivalent abundance ratios of 35 : 
62.5 : 100 are close to the theoretical ratios 38.7: 57.4 : 100. The other two isotopes 

of zinc (67Zn and 70Zn) did not appear but this is expected as their expected 
intensities are low. Another two clusters of zinc appear from 651-645 and 382-376 

and correspond to Zn(prps)2-'Pr and Zn(prps)+ respectively. 

The thermogram show a single weight loss from 150 - 300°C, indicating that 

the chelate obtained is anhydrous and quite volatile. The residue left after complete 

volatilisation is 0.7%, showing virtually no thermal degradation. 

2.4.3.9 Cu s 
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Figure 34: Cu(prps)? 

The complex was prepared as described earlier (§ 2.4.3.3) 

Yield: 75% 

Mp: 152°C 

TGA: Volatilisation temp.: 185°C -> 300°C (two observed weight losses) 

Percentage residue after volatilisation: -14.51 % 

IR (cm'): 2597 (NH), 1460 (C-C), 1307 (C-C), 774 (P2N), 695 (P=S) 

MS (EI): m/z: 695 (40%), 689 (65Cu , 8%, 36.6), 687 (63Cu, 22%, 100), 

377 (63Cu, 20%, 37), 375 (65Cu, 53.3%, 100), 313 (57.3%), 270 

(17%), 228 (100%), 149 (50%), 73 (27%), 43 (30%). 
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There is no reported data on the Cu(prps)2, and therefore no comparison can be 

made. The IR spectrum confirms the main structural characteristic of the chelate. 
MS (EI) shows the presence of the main isotopes of copper (63Cu and 65Cu) 

(appendix 7) complexed with two molecules of Hprps in a relatively low intensity of 
8% and 22% respectively. The measured equivalent abundance ratio of 36.6: 100 is 

close to the theoretical ratio of 44.5 : 100. Another cluster appears from 377 - 375 

and corresponds to Cu(prps)+. 

The thermogram shows a single weight loss from 134 - 300°C, indicating that 

the chelate obtained is anhydrous and quite volatile. The residue after volatilisation is 

14.9%, showing some thermal degradation of the copper chelate. 

2.4.3.10 Conclusions 

All Hprps compounds were identified and confirmed as the required 

compounds by their physical properties. As before the most important properties, the 

thermal stability and the volatilisation temperatures are summarised in the table 15. 

Compounds 
Melting Point 

(°C) Volatilisation Residue % left 
afte lete Thermal 

Exp. Lit. temperature (°C) r comp 
volatilisation 

Stability 

Hphps 208 f2 214 (274 -> 500) ±4 (30.8 ± 0.2) % Not stable 

Hprps 173 ±2 165 (150 -> 300) ±4 (0.8 ± 0.2) % Stable 

Zn(prps)2 147± 2 144 (150->3 00) ±4 (0.7 ± 0.2) % Stable 

Ni(prps)2 173 ±2 126 (160 300) ±4 (1.4 ± 0.2) % Stable 

Pb(prps)2 125 ±2 - (175 ->3 00) ±4 (1.5 ± 0.2) % Stable 

Co(prps)2 168 ±2 174 (158->300) ±4 (4 ±0.2) % Stable 

Cd(prps)2 163 ±2 161 (140 -* 300) f4 (6.3 ± 0.2) % Moderately 
stable 

Cu(prps)2 152 - (150 300) ±4 (14.9 ± 0.2) % Not stable 

Table 15: Volatilisation study of the dithiophosphoramide metal complexes 
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Results in table 15 show that volatilisation of Hprps and its metal chelates 

occurs over a suitable temperature range for the SERVO process with, except for 

copper, little or no decomposition. Hphps does not have the volatility required for 

the SERVO process and was therefore not studied further. These results also show 

that Zn(prps)2 is the most stable complex followed by Ni(prps)2, Pb(prps)2, Co(prps)2 

and Cd(prps)2. Cu(prps)2 is thermally unstable. 

Zn(prps)2, Cd(prps)2 and Cu(prps)2 have a similar or lower initial 

volatilisation temperature than the extractant itself, followed by Ni(prps)2 and 
Co(prps)2, and finally Pb(prps)2. All the metal complexes are volatile at the 

temperature of 176°C, and volatilisation is complete at 300°C or below. An order of 

volatility can be established: 

Cd(prps)2 > Hprps - Zn(prps)2- Cu(prps)2 > Co(prps)2 > Ni(prps)2 > Pb(prps)2. 

As with H2pnaa, the Lewis acidity of the metal can influence the volatility of the 

metal Hprps chelate. Again it can be noticed that the lower volatility for Ni(prps)2 

and Co(prps)2 relatively to Cu(prps)2 is consistent with the greater capacity of 

coordinated nickel(II) and cobalt(II) ions as Lewis acids, leading to the type of 
interaction shown in figure 28. The volatility order obtained for Hprps metal chelates 
is similar to that obtained for H2pnaa metal chelates. 
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Chapter 3: Application of the SERVO process 

to contaminated materials and sediment samples 

3.1 SERVO process tests on metal carbonates 

3.1.1 Extraction 

To test the possible extraction of metals using the new SERVO process 

extraction apparatus, some metal carbonates, i. e. copper carbonate, zinc carbonate, 

nickel carbonate and cobalt carbonate, were used as starting material and placed in 

the reactor 2 with either Hacac, H2pnaa or Hprps in reactor I with the thermal 

conditions noted in table 5 (§2.3.4.2). 

Metal carbonates Hacac H2pnaa Hprps 

CuCO3 87.8 %±4.8 39.4 %± 7.9 0.6 %f 0.2 

ZnCO32Zn(OH)2H20 17.9 %± 0.9 15.7 %± 8.0 42.3 %± 9.5 

CoC03.0.51-120 24.2 %± 1.5 94.7 %± 3.0 83.2 %± 1.9 

2NiCO3.3Ni(OH)24H20 1.4 %±0.4 19.4 %± 10.0 56.0 %± 17.8 

Table 16: Extraction results obtained from metal carbonates with the different 
extractants (mean of replicates presented in appendix 8 tables A8-l to A8-3). 

This table shows that the extraction of metal carbonates is possible using the new 
SERVO process design. CuCO3 did not react with Hprps, but a black residue was 

found in the reactor 2 after the run. and thermal degradation must have occurred. 
Hacac is the most efficient extractant for CuCO3, followed by H2pnaa. The optimum 

extractions for zinc and nickel carbonates were obtained using Hprps, but remain low 

(42% and 56 % respectively) compared to the expected results. Moreover, the 

extraction of these metals carbonates using H2pnaa and Hacac are below 20%. Cobalt 

carbonate is the most easily extracted metal with up to 95% extraction using H2pnaa 

and 83% using Hprps. 
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3.1.2 Recovery 

After extraction, it will be necessary to recover the metal from the volatile 

metal chelate and recycle the ligand. The most convenient method of metal recovery 
is deposition of the metal by reduction of the metal chelate with hydrogen in the 

vapour phase. This technique of chemical vapour deposition has received a lot of 
interest for a number of applications, e. g. production of high-density copper film on 

connection plates, [120] nickel metallization of ferrites and as decorative and 

corrosion resistant coatings. [121] Metal 2,4-pentanedionates of copper(II), 

nickel(II), and cobalt(III) have already been successfully reduced in the vapour phase 
by hydrogen, and the metal deposited. [119-121] Chelates of H2pnaa with copper 
[143] and nickel [134] have also been successfully reduced in a similar way. But to 

date no attempts have been reported on the reduction of metal chelates with Hprps. 

Reduction of some of the synthesised metal chelates such as Cu(acac)2, 

Ni(acac)2, Cu(pnaa), Ni(pnaa), Co(prps)2 and Ni(prps)2 has been attempted under the 

conditions described under §2.3.5. Only the two first chelates have been successfully 

reduced with metal deposited on the glass wall of reactor 2 under the fritted glass. 
Table 17 provides a resume of the results observed and the conditions under which 
they have been obtained, and compared with the literature. [119,121,134,143] 

Temperature of reactor T2 and 
Temperature of reactor 

Metal chelates result observed where reduction occurred in 
literature 

Cu(acac)2 ° 
reduction 

w0 
with deposition Above 220°C [143] 

Ni(acac)2 ° 
reduction2wi h deposition Above 250°C [121] 

Cupnaa 280°C, no reduction, At 340°C 
no degradation observed (no reduction below) 143 

Nipnaa 280°C, no reduction, 
At 325°C 

(no reduction below, and no degradation observed decomposition above) [134] 

Co(prps)2 280°C, no reduction, 
_ no degradation observed 

Ni(prps)2 280°C, no reduction, 
_ no degradation observed 

Table 17: Operational temperatures for hydrogen reduction of metal chelates 
and results observed 

101 



Previous works [134,143] have shown that Cu(pnaa) and Ni(pnaa) were 

reduced at T2 = 340 °C and T2 = 325 °C respectively. It was not possible to check 

the reduction of Cu(pnaa) and Ni(pnaa) at these temperature because the maximum 

temperature that could be achieved with the reactors was 300°C so it was only 

possible to check these two complexes were not reduced at 280°C. Also hydrogen 

reduction of metal chelates occurs above temperatures, which are specific for each 

metal chelate. Some metal chelates which are thermally unstable like Ni(pnaa), will 

require reduction over a small temperature range of 2 or 3°C, i. e. above the minimal 

reduction temperature and below the decomposition temperature. This would cause 

some difficult operational conditions where optimum precision in the oven 

temperature has to be defined. No reduction of Co(prps)2 and Ni(prps)2 could be 

observed at 280°C, although it might be achieved at a higher temperature. To date 

hydrogen reduction of the Hprps chelates has not been achieved and recovery of the 

metal and extractant by absorption into organic solvents and subsequent treatment 

with dilute hydrochloric acid is suggested as a possible alternative. 

3.2 Simulated contaminated materials 

3.2.1 Kinetic study 

This study is based on the schematic representation of clay montmorillonite 

shown in figures 9b and 10 in chapter 2. These figures show that the original clay 

and Clay 2 have the same free outer layer, and Clays I and 2 have in common an 
interlayer which is fully exchanged by copper hydroxide. Analysis of the metals 

contained in the four prepared clays, using ICP AES, is given in table 18: 

Clays Clay 1 CIay2 Clay3 Clay4 

% of metal content 
(dry material) 

2.88 ± 0.20 % 
copper 

2.57 ± 0.06 % 
copper 

1.90 ± 0.15 % 
nickel 

1.70 ± 0.03 % 
nickel 

Table 18: Metal content in the different clays (mean of three replicates presented in 
appendix 8 tables A8-4 to A8-7) 

From this analysis the ratios of adsorption of copper and nickel hydroxides in the 

interlayer and diffuse layer of montmorillonite can be deduced and are presented in 

table 19. 
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Thus the total concentration of copper hydroxides adsorbed by montmorillonite is 

2.88% (Clay I is fully exchanged with copper hydroxides), and as the concentration 

of copper adsorbed within the montmorillonite interlayer is the copper content of 
Clay 2, i. e. 2.57% (Clay 2 being exchanged with copper only in the interlayer), the 

concentration of copper adsorbed by the outer layer of montmorillonite will be 2.88 - 
2.57 = 0.31 %. 

Clay I 

(copper) 

Clay 2 

(copper) 

Clay 3 

(nickel) 

Clay 4 

(nickel) 

Interlayer content 2.57% 2.57% 1.70 % 1.70 % 
Diffuse layer content 0.31% 0% 0.20% 0% 

Total content 2.88% 2.57% 1.90 % 1.70% 
Ratio content of 
interlayer: diffuse 

layer 
89.2: 10.8 100: 0 89.7: 10.3 100 :0 

Table 19: Content in the interlayer and outer layer of Clays 

Thus from these data the ratio of copper adsorbed by the outer layer 

compared to the total amount of copper adsorbed will be (0.31 / 2.88) x 100 = 

10.8%, and the ratio of copper adsorbed by the interlayer compared to the total 

amount of copper adsorbed would be (2.57 / 2.88) x 100 = 89.2%. Similarly for the 

nickel system the total concentration of nickel adsorbed by montmorillonite is 1.90% 

(Clay 3 is fully exchanged with nickel), and the concentration of nickel adsorbed by 

the interlayer of montmorillonite is the content of Clay 4,1.702%, so the 

concentration of nickel adsorbed by the outer layer of montmorillonite is 1.898 - 
1.702 = 0.196 %. Thus the ratio of nickel adsorbed by the outer layer compared to 

the total amount of nickel adsorbed will be (0.196 / 1.90) x 100 = 10.3%, and the 

ratio of nickel adsorbed by the interlayer compared to the total amount of nickel 

adsorbed will be (1.70 / 1.90) x 100 = 89.7%. Therefore it can be concluded that 

similar adsorption ratios of 90: 10 of copper and nickel hydroxides in the interlayer 

and diffuse layer of montmorillonite is obtained. 

Figures 35-39 show the TGA thermograms of the five different types of clay, 
heated up to 600°C similar characteristic features occur in all figures. The first 

weight loss corresponds to the loss of adsorbed bound water and the second weight 

loss to the loss of crystalline water. [9] Notice that the original Clay contains less 
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water than the modified samples I to 4. Thus the original clay contains 9.56% of 

adsorbed bound water and 1.50% of crystalline water, whereas clays I to 4 contain 

about 11% of adsorbed and bound water and 3% of crystalline water. So the 

preparation of the modified clays does affect the crystalline structure of the 

montmorillonite clay. 
Figure 40 shows the weight change of clay when heated in presence of 

H2pnaa placed in a boat just below the pan of the TGA instrument. This TGA figure 

shows a weight loss of 8.4% (± 0.2), corresponding to loss of adsorbed water, 
followed by a weight increase of 1.15% (± 0.2), corresponding to the first absorption 

of H2pnaa followed by a plateau and a second weight increase of 10.0% (t 0.2), 

corresponding to a second absorption of H2pnaa. This is then followed by a gradual 

weight loss up to 230°C indicating slight loss of H2pnaa as the temperature increases. 

Figures 41 and 42 show the same experiment using Clay 2 and Clay I 

respectively. From figure 40 the initial weight loss of 8.5% (± 0.2), corresponding to 

the loss of adsorbed water, is followed by a weight increase of 1.16% (± 0.2), 

corresponding to a first absorption of H2pnaa, a plateau and then another weight 
increase of 0.3% (± 0.2), corresponding to a second absorption of H2pnaa. Figure 41 

the first weight loss of 8.6% (± 0.2), corresponding to the loss of adsorbed water is 

followed by a single weight increase of 0.8% (± 0.2), corresponding to absorption of 

H2pnaa. 

The original Clay and Clay 2 both have the diffuse layer free of copper and it 

can seen in figures 40 and 41 that the same weight increased is observed (1.16%) 

corresponding to the absorption of H2pnaa on this diffuse layer, suggesting that the 

first H2pnaa absorption is onto the diffuse layer. Then H2pnaa is adsorbed in the 

interlayer. Again in figure 42 the absorption of H2pnaa in the interlayer is significant 

reaching 10%, compared to the first absorption on the diffuse layer of 1.15%. 

Looking at the ratio of these two values, the total absorption of H2pnaa in clay equals 

1.15 + 10 = 11.15%, so (10 / 11.15) x 100 = 89.7% of the total H2pnaa is adsorbed in 

the interlayer and (1.15 / 11.15) x 100 = 10.3% is adsorbed in the diffuse layer. This 

ratio of H2pnaa absorption in the interlayer and diffuse layer is similar to that found 

when adsorbing nickel and copper on the clay i. e. approximately 10% in the outer 

layer and 90% in the interlayer. This indicates that H2pnaa occupies the same sites as 

copper and nickel hydroxides. 
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In the case of Clay 1, figure 42, both the interlayer and diffuse layer are fully 

exchanged by copper, and the only weight increase (0.8%) is the absorption of 
H2pnaa in the diffuse layer, as the interlayer sites are blocked by copper. Strictly, as 
Clay I is fully exchanged by copper hydroxides, and as H2pnaa is adsorbing on the 

same sites as the latter, no absorption of H2pnaa on Clay I should occur. But some 

absorption could be possible by reaction of the adsorbed copper hydroxides with 
H2pnaa to form the copper pnaa complex directly; this is then volatilised and 

explains the recorded second weight loss. 

In the case of Clay 2, figure 41, the interlayer is fully exchanged by copper, 
leaving the diffuse layer free. The same absorption as that observed for the original 
Clay (figure 44) shows that H2pnaa adsorbs on these free sites. The second observed 

absorption can be explained in a similar way to Clay 1 with the reaction of the 

copper with H2pnaa to form the copper pnaa complex. 

A rough estimate of the rate of absorption of the extractant on the clay can be 

made from these data and table 20 shows that the higher the free diffuse layer space, 

the faster the H2pnaa is adsorbed. 

Type of clay: Original Clay 2 Clayl 

Clay 

Time at which the clays start to l lmin 54s 22 min 36s 25 min 
adsorb the H2pnaa (min-sec) 

Table 20: Absorption time of the different clays 

Finally the rate of absorption of the extractant on the clay is dependent on 

temperature. This can be seen in figure 40 where the slope of absorption decreases as 

the temperature stops rising and becomes constant; i. e. an absorption slope of 1.26% 

min"' when the temperature rise at 20°C min"' compared with a slope of 0.09% min-' 

when temperature is constant at 230°C. The weight changes in the thermograms of 
Clay 3 and Clay 4 (figures 43 and 44) can be similarly interpreted. 
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3.2.2 Extraction study 

The first set of experiments used H2pnaa which had been previously studied 
by P. Duke. [108] 

The analysis of Clay I and Clay 2 after completion of the above experiments 

where the H2pnaa was placed in a boat under the pan (figures 40- 44) show some 

extraction of copper and nickel (table 21): 

Clay material used Clay 1 Clay 2 Clay 3 Clay 4 

Metal extracted (%) Copper Copper Nickel Nickel 
(mean values of 3 

experiments) 
36.8% ±2 24.6% ±2 35.2% ±2 25.0% ±3 

Table 21: Extraction results obtained from Clays1 -4 using H2pnaa after heating 
230°C for 3 hours 

(mean of three replicates presented in appendix 8 tables A8-8 to A8-11) 

The analysis of the volatile extract showed the presence of no metal. However 

a black deposit was found in the exhaust tube of the equipment. Analysis of this very 

small deposit by electron microscopy indicated the presence of carbon and traces of 

copper and nickel respectively. Thus the metal complex seems to have been 

thermally degraded at the exit of the reactor. 

Although, the H2pnaa was sorbed in excess of the normal stoichiometric 

amount these extraction results are low compared to the 60% extraction obtained by 

Pichugin from a nickel laterite ore. [111] It can also be seen that the extraction of 

metals from the fully exchanged clays are better than these of the clays exchanged 

only in the interlayer. This indicates that the extraction of metal, from the outer layer 

of the clay is easier than the extraction of metal in the interlayer spaces. This is 

confirmed by figures 40-44 where desorption of the resulting metal complexes is 

observed as the last weight loss in the thermograms. In the case of Clay I and Clay 3, 

complete desorption of the metal complexes occurs but with Clay 2 and Clay 4 this is 

not the case. Thus the metal species in the interlayer of the clay are more difficult to 

volatilise than those present on the outer layers. Later studies (figure 47) showed that 

a higher temperature and longer contact time will help the complete release of the 

metal complexes present in the interlayers of the clays. 



These preliminary results were used as a basis to improve the extraction of 

metals and reduce the amount of H2pnaa used. Therefore, to improve the 

condensation of the H2pnaa though the clay, it was decided to mix the clay and 

extractant in different molar ratios before running the experiments. This would avoid 

the previously required volatilisation step, which could result in an initial lost of 

H2pnaa before contacting the clay. The molar ratios of copper: H2pnaa used were 

from 1: 1 to 1: 4 and results of these experiments are shown in figure 45. 

The extraction of copper increases as the ratio of H2pnaa increased up to 3 

times the stoichiometric requirement. At this point the extraction of copper no longer 

improves and a plateau of around 23.5% extraction is achieved which is still lower 

than the 36.8% obtained when H2pnaa was present in the boat under the pan (table 

20). Thus this attempt to improve the condensation of H2pnaa within the pores by 

mixing the Clay 1 and H2pnaa before the experiment was not wholly successful. 
Nevertheless, when mixtures of Clay 1-H2pnaa were stored in a closed glass 

container, after 48 hours the colour of the mixture changed from dark green to 

purple; moreover the larger the amount of H2pnaa in the mixture the quicker the 

change in colour. This purple colour indicates the formation of Cu(pnaa). The 
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Figure 45: Extraction results obtained with mixtures of Clay I and H2pnaa at 
different molar ratios copper: H2pnaa maintained at 230°C for 3 hours 

(mean of three replicates presented in appendix 8 tables A8-12 to A8-19) 



mixture ratios 1: 2,1: 3, and 1: 4 were repeated 7 days after their preparation, when all 

mixtures were purple in colour. No improvement in the extraction could be observed. 
The highest extraction (24%) at ratio 1: 3 is still lower than the extraction 

obtained on the Clay] (36.8%), but the amount of H2pnaa involved is much less. 

To improve the extraction, the residual clay was rehydrated after each run, 
before mixed again with the required amount of H2pnaa to simulate repeated batch 

extraction. Samples of Clay 1 and Clay 2 were used for these experiments and the 

results are presented in figures 46 and 47. 
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Figure 46: Extraction of copper obtained from Clay 1 ground with Hzpnaa at a ratio 
1: 1 in 4 steps, at 230°C for 3 hours 

(mean of two replicates presented in appendix 8 table A8-20) 

The curve presented in figure 46 shows increasing extraction of copper up to 

50% after the fourth step. The curve tends to a plateau, and was fitted to a trend-line 

equation, which indicated that the amount of copper extracted after the 10`h step 

would be 62.2%. This value can be compared with the extraction obtained (36.8%) in 

the first experiment with H2pnaa placed in the boat, at the same copper: H2pnaa ratio. 

These results show the extraction of copper is much improved when mixing H2pnaa 

with the clay before the experiment and repeating the process 10 times. 

The results for extraction of Clay 2 shown in figure 47 indicate extraction of 

32% of copper after the eighth step. This value can be compared to the extraction 

obtained (23.5%) when placing the H2pnaa in the boat at the same ratio of copper: 
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H2pnaa. Again it can be concluded that the extraction of copper is much improved by 

mixing the H2pnaa with the clay before running the experiment and repeating the 

process. 
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Figure 47: Extraction of copper obtained from Clay 2 ground with H2pnaa (ratio 1: 1) 

in 8 steps at 230°C for 3 hours (one replicate presented in appendix 8 table A8-21). 

Although a higher extraction is obtained with the same amount of H2pnaa, the 

overall process takes a long time so it is now necessary to try to reduce the overall 

reaction time. Thus the initial experiment, with the H2pnaa placed in a boat with a 

ratio of copper: H2pnaa 1: 10, was carried out at a higher temperature (350°C for 3 

hours) to help release the metal complexes. Figure 48 shows a thermogram of Clay 2 

run under these conditions. It can be noticed that the release of copper complexes is 

completed at 350°C. Thus in future experiments the process should be carried out at 

temperatures high enough to allow the complete volatilisation of the metal 

complexes formed. 

The extraction results obtained from these experiments are shown in table 22. 
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Clay material used Clay I Clay 2 

Copper extracted (%) 
(mean values of 3 experiments) 

39.5 %±1 37 %±I 

Table 22: Extraction results obtained from Clay I and Clay 2 maintained at 350°C 
for 3 hours; molar ratio copper: H2pnaa 1: 10 

The results in table 22 show that although the higher temperature helps the 

release of the metal complexes in the interlayer, the extraction is still not complete. 
Also, while the extraction obtained from Clay I has not changed much when heated 

up to 350°C (39.5% compared to 36.9%), the higher temperature does ensure the 

complete volatilisation of the copper complexes formed. 

Figure 48: TGA Spectra of Clay 4H pnaa in the boat. 
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3.3 Study of the Sediments from Voies Navi2ables de France 

3.3.1 Analysis of Sediment 

On receipt at the University, the sediments were dried at room temperature 

until no further weight loss occurred (after 10 days, 60% weight loss). The resulting 
dried sediments were ground to a fine texture and sieved to remove the organic 
detritus (6.4%) and agglomerates of sizes ranging from 710 µm to 1 mm were 

selected for testing with the SERVO process. These sediments were heated up to 105 

°C in the TGA, and 5% of water was found present in the pores. Analysis of the 

leached sediments is shown in table 23. 

Reference analysis shows the metal content found by the Pasteur Institut from 

previous sampling (May 97) at the same location after the same leaching and analysis 

procedure as described in §2.3.1.1. The difference between the results is significant 
for cadmium, copper and nickel, but not for lead and zinc. Nevertheless repeated 

sampling of material cannot be done at exactly the same point and differences of just 

few centimetres in the location are enough to provide completely different analyses. 
In spite of the variation, these sediments still have concentrations exceeding the 

French AFNOR normes especially for zinc and lead. 

Metals Cd Cu Ni Pb Zn Fe 

Analysis of digested 
sediments (June 97) 50.3± 2 310 ±2 47.7 ±2 1600 ±2 8549 ±2 12104 ±2 

( -') 
Reference Analysis from 
Institut Pasteur (May 97) 84 350.1 91.2 1815.5 8279.8 - 

AFNOR normes 
French regulation limits 2 100 50 100 200 - 

(gg, ) 

Table 23: Analysis of the leached sediments from Voies Navigables de France 
(mean of three replicates presented in appendix 8 table A8-22) 

An X-Ray powder diffraction study of the sediments showed an extremely 

complex system that is difficult to interpret, with only some crystalline components 

giving lines that could not be easily assigned. 
A more complete analysis of these sediments was then carried out to 

determine the speciation of the different pollutants and to provide a better 
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understanding of the subsequent metal ligand reactions to ensure the complete 

removal of the metal pollutants. 

3.3.2 Sequential Extraction of Sediments 

The metal speciation was determined using the BCR three-stage sequential 

extraction procedure (§2.3.2) proposed by the European Community Bureau of 
Reference [47] that distinguishes the speciation of the elements by their ease of 

extraction with various aqueous media. Results are presented in figure 49 and table 

24. An internal check was performed on these results by comparing the total amount 

of metals removed in the procedure with the results of total digestion. In previous 

studies of river sediments, [144] recoveries in the range of 89-110% compared with 

the certified values, for chromium, copper, lead, manganese, vanadium and zinc and 
82% for nickel were obtained. In the present work, recoveries are in the range (99- 

112%) for copper, zinc, and iron. But a larger amount of nickel (146%) was released 
by sequential extraction than by total digestion. Since no suitable reference materials 

were available to validate either the sequential extraction or the aqua regia digestion 

of sediments, it is not possible to determine the source of this variability. 

The sequential extraction results show that iron is mostly present in the 

oxidisable and residual phases, and to a lesser extend in the reducible phase. Nickel 

is present as acid soluble and oxidizable species and to a lesser extent in the 

reducible phase, but absent from the residue. On the other hand, copper is present 

mostly in the oxidisable phase (83.3%) with the remaining 16.7% in the residue. 
Zinc is present in all the phases, with approximately equal amounts in the acid 

soluble, oxidisable and reducible phases and 15% in the residue. 

In tables A8-26, appendix 8, the replicate E analysis result for zinc was 

rejected in steps 3 and 4. This replicate showed a lower concentration of zinc in the 

residual phase (785.2 µg g1 against a mean of 1314.6 µg g' for the other replicates) 

and a higher concentration in the oxidisable phase (2140.3 against a mean of 3305.8 

µg g1). If particular attention is drawn to replicate E (table 25), the zinc quantity 

released from all layers by sequential extraction is 9283 µg g' and a recovery of 

108.6% is obtained, which on its own is a good result. The distribution of zinc in 

replicate E agrees in steps 1 and 2 with the results of the other four replicates, but 

varies considerably in steps 3 and 4. No similar observations could be made for 
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copper, iron, or nickel. But the variation shown here demonstrates the high 

variability of zinc between the two different samples. 

Fe Ni Cu Zn 
(12104 "' (48 " 310 "') (8550 ") 

Step I (available, i. e. 126 f 34 29.9 ± 1.0 2953 ± 
carbonates) (1 %) (42%) 0 137(27.2%) 

Step 2 (reducible, i. e. Fe- 2481 ±240 14 ± 0.6 3271 ± 160 
Mn ox h droxides (20.5%) (19%) 0 (30.2%) 

Step 3 (oxidisable, i. e. 4577 ± 400 28 ± 3.6 255 ±28 3306 ± 111 
sulfides) (37.7%) (39%) 83.3% (30.5%) 

Step 4 (residue, i. e. AI-Si-O) 
4947 ±118 0 52 ± 55.6 1315 Ö 74 

(40.8 /o) (16.7%) (15.4%) 
Total 12131 72 306 10844 

Recovery (%) 100.2 145.8 98.7 126.8 

Table 24: Sequential extraction of sediments from Voies Navigables de France 
(mean of three replicates presented in appendix 8 tables A8-23 to A8-26) 
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Figure 49: Sequential extraction of sediments from Voies Navigables de France 
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Replicate E (µg g') 
Mean of replicates (µg g-) 

presented in table 23 
Step 1 2977 (32%) 2953 (27.2%) 
Step 2 3381 (36.4%) 3271 (30.2%) 
Step 3 2140 (23.1%) 3306 (30.5%) 
Step 4 785(8.5%) 1315 (15.4%) 
Total 9284 10844 

Recovery (%) 108.6 126.8 

Table 25: Comparison of the zinc sequential extraction obtained for replicate 
E and the mean of other replicates 

It is important to note that these speciation analyses were carried out on dried 

sediments, and during the drying process some oxidation of both the sulfide and the 

organic matter may be expected. [144] All the elements studied here were oxidised, 

and redistributed from the immobile residual phase to more mobile phases 
(reducible). Thus iron, present in the reducible phase, can be attributed to species 

such as iron oxyhydroxides (e. g. ferrihydrite (5Fe2O3.9H20), hematite (a-Fe2O3) or 

goethite (FeOOH)), that occur as a result of oxidation of the sediment during drying. 

These iron oxyhydroxides can adsorb metals from the oxidisable phase rendering 

them capable of reduction and therefore more mobile. It has been shown that 

ferrihydrite and hematite can adsorb metals according to the order Cu > Zn > Ni, and 

goethite in the order Cu > Zn. [52,144] From the results in table 23 an order of 

mobility can be established as follows: Zn > Ni > Cu. This agrees with the increasing 

affinity of ferrihydrite and hematite for zinc and nickel, but not for copper. 

3.3.3 SERVO Extraction from sediments 

Extraction of nickel, zinc, copper, and iron was achieved using the three 

different ligands Hprps, H2pnaa and Hacac. 

3.3.3.1 Extraction obtained using HZp 

Treatment of the sediments with H2pnaa under the operational conditions 

specified in §2.3.4.2 gave extraction of only 15 % of nickel, 22% of copper and 16% 

of zinc. As with the clay materials, sequential experiments were carried out with 5g 

of initial material with 5g of H2pnaa. Following this initial experiment, 0.5 g of the 

material was removed for analysis, and the remaining 4.5 g were re-extracted and 

this procedure was repeated four times. These results are shown in figure 50. 
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Figure 50: Extraction obtained from sediments using H2pnaa in SERVO system 
(mean of three replicates presented in appendix 8 tables A8-27 to A8-29): 

The results obtained after 20 hours (four steps) show that up to 80 % of the 

copper is extracted, leaving a final concentration in the sediment of 46 [tg g-1, far 

below the AFNOR normes (100 µg g'). This extraction agrees with the results of 

copper speciation obtained earlier, where it was shown that 16.3% of copper is bound 

in the residual phase and therefore cannot be extracted by the SERVO process, and 

80% out of the 83.7% of copper present as oxidisable phase is extracted after 20 

hours. 

The extraction of zinc follows the same trend as copper up to ten hours, 

although the speciation of these elements within the sediment is different. The 

maximum extraction obtained after 20 hours is 98%, i. e. all the zinc was extracted. 
From the sequential extraction analysis, it was shown that zinc is present in all the 

phases, but there was significant variation between the two samples. The extraction 

of nickel shows a completely different trend, with only 28% of nickel extracted after 
20 hours. This does not agree with the sequential extraction results that indicate that 

all the nickel should be extractable. Extraction of nickel might be improved by 

increasing the extraction time but as the residual concentration of nickel after 20 

hours was reduced to 34 pg g"1, i. e. below the AFNOR norms, no further experiments 

were performed. 
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3.3.3.2 Extraction obtained using Hacac and Hprps extractants 

Using these extractants, only a single heating cycle for 5 hours was required 

to obtain similar extraction performance to that found with H2pnaa after 20 hours 

(four steps). Thus figure 51 shows that after 5 hours the extraction of zinc and copper 

is much higher with Hprps and Hacac than H2pnaa, but nickel extraction still remains 

low with these extractants. 

Looking in detail at the results with Hprps, the extraction of zinc is in 

agreement with the sequential extraction results shown in figure 49. But only 37 % of 

copper of the 83.7% present in oxidisable phase is extracted. A longer extraction 

time may improve this extraction. It is moreover important to recall that Cu(prps)2 

showed some thermal degradation (14.5%) at 300°C, and at the temperature of the 

process (280°C), some decomposition might also be expected. Hprps extracts a small 

quantity of iron (4.7 %). To date no thermal data are available on possible complexes 

of iron with Hprps, for although F e(phps)2 was successfully synthesised following 

the established procedure, [139) attempts to prepare Fe(prps)2 following the same 

Figure 51: Extraction of nickel, zinc, copper and iron from canal sediments using 
Hacac and Hprps extractants 

(mean of three replicates presented in appendix 8 tables A8-30 to A8-36) 
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Hacac extracts up to 96% of zinc and iron and up to 75% of copper but no 

nickel could be extracted. The volatilisation temperatures of Ni(acac)2 and Cu(acac)2 

are similar so this parameter cannot explain the non-extraction of nickel. However, 

Ni(acac)2 is not thermally stable and 28.6% degradation was previously observed at 

280°C (§2.2.1.4), therefore some losses are expected for this element. The good 

extraction of zinc and iron by Hacac (96%) does not agree with the sequential 

extraction result where 41% of these two elements were found in the residual phase 

and therefore should not be extracted. However it should be noted that 2,4- 

pentanedione is particularly active towards iron and Fe(acac)3 can be formed by the 

action of the ligand with metallic iron or steel. Fe(acac)3 and Zn(acac)2 are also more 

volatile than Cu(acac)2 and Ni(acac)2, so their better extraction might be expected. 

The copper extraction obtained with Hacac (75%) agrees with the 83.7% of copper 

present in oxidisable phase. 

3.3.4 Conclusion 

Using the extractants Hacac and Hprps only a single heating cycle for 5 hours 

at 230° C was required to obtain similar extraction performance to that found with 
H2pnaa after 25 hours. However, it should be noted that the extraction of iron with 
Hacac would be detrimental to the operation of the SERVO process for the removal 

of toxic metals as the iron extraction would deplete the amount of extractant 

available in the system. 
The extraction results do not always agree with the results expected from the 

sequential extraction studies, especially for zinc and iron. It is difficult without 
further extensive studies on further materials to come to any firm conclusions as to 

the reasons for this anomaly. 

3.4 General conclusions 

3.4.1 Studies on carbonates and modified clay materials: 

Preliminary tests on metal carbonates have shown that extraction of these 

elements was possible using the new design of SERVO process equipment. Copper 

carbonate is most easily extracted using Hacac (88%), followed by H2pnaa (39%). 

The optimum extractions for zinc and nickel carbonates were obtained using Hprps, 

but remain low (42% and 56 % respectively) compared to the expected results. 
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Cobalt carbonate is the most easily extracted metal with up to 95% extraction using 
H2pnaa and 83% using Hprps. 

Some modified clays were prepared by the adsorption of copper carbonate or 

nickel carbonate in the interlayer and the diffuse layer of the clays. The composition 

of these clays are shown in table 19 (p103). 

It was shown that the preparation of Clays 1 to 4 does affect the crystalline 

structure of the montmorillonite clay. 
The ratio of H2pnaa absorption in the interlayer and diffuse layer is similar to 

that found when adsorbing nickel and copper on the clay i. e. approximately 10% in 

the outer layer and 90% in the interlayer. This indicates that H2pnaa is occupying the 

same sites as copper and nickel hydroxides when adsorbed in the clay structure. 
Preliminary studies of the extraction of copper in Clay 1 and Clay 2 on the 

modified TGA showed that the extraction of metals from the fully exchanged clays 
(Clay 1) are better than these of the clays exchanged only in the interlayer (Clay 2). 

Thus the metal complex in the interlayer of the clay is more difficult to volatilise 

than the one present on the diffuse layer. Some mixing studies of the clay and 

H2pnaa extractant in different molar ratios before running the experiments showed 
improved extraction of copper but it reaches a plateau that is still lower than the 

extraction obtained when H2pnaa was present in the boat under the pan. It can also be 

noticed that the release of copper complexes is completed at 350°C. Thus future 

experiments should be carried out at temperatures high enough to allow the complete 

volatilisation of the metal complexes formed. 

3.4.2 Studies on sediments 

The canal sediments used were first dried, ground, and sieved. Agglomerate 

sizes ranging from 710 µm to Imm were used in SERVO process without any other 

pre-treatment. These agglomerates had a fine texture with a high proportion of silt, 

clay and humic materials that provide high porosity, they also contained some 

gibbsite (AI(OH)3) and calcite (CaCO3), that increase the exchange capacity. The 

sediments as received contained a large quantity of interstitial water (60%), which 

provided the sediments with not only a high porosity, permeability, aeration and 

sorptive capacity, but also makes the metals more likely to be oxidised and 

redistributed to more mobile phases (reducible) during the drying process. Metal 
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speciation showed that nickel is present as both acid soluble and oxidizable species 

and to a lesser extent in the reducible phase, but absent from the residue. On the 

other hand, copper is present mostly in the oxidisable phase (83.3%) with the 

remaining 16.7% in the residue. Zinc is present in all the phases, with approximately 

equal amounts in the acid soluble, oxidisable and reducible phases and 15% in the 

residue. 
The SERVO process using H2pnaa after 20 hours extracted up to 80% copper, 

98% zinc, and 28% nickel. Only the extraction result obtained for copper is in 

agreement with the speciation analysis of the elements of study. 
When using Hacac as extractant, only a single heating cycle of 5 hours at 

200°C was required to obtain similar extraction performance to that found with 
H2pnaa after 20 hours. Hacac extracted up to 96% zinc and iron, up to 75% copper, 
but no nickel. However, the extraction of iron would be detrimental to the operation 

of the SERVO process as this would deplete the amount of extractant available in the 

system. 
Using Hprps a single heating cycle for 5 hours at 280°C extracted 4% of iron 

and nickel, 37.6% copper, and 85% zinc. This time only the extraction result 

obtained for zinc is in agreement with the speciation analysis of the elements of 

study. Copper is less well extracted than expected, which might be due to some 

thermal degradation of the Cu(prps)2 complex. 
Even if the Hprps and Hacac extractants only required a single heating cycle of 

5 hours, H2pnaa remains the extractant of choice for the SERVO process as Hprps 

does not extract all the extractable copper and only little nickel is removed and 
Hacac extracts all the iron and no nickel. Despite its longer heating cycle, H2pnaa 

removed all the zinc and copper, did not extract iron, and gave the highest extraction 
(28%) of nickel. 

124 



Chapter 4: Application of SERVO Process to Industrial Waste 

4.1 Puertollano Fly Ash: 

4.1.1 Analysis of Puertollano Fly Ash: 

Because of the particle size range of the fly ash, and the possible 

condensation of the extractant on the particles, [111] some pressure built-up was 

expected in the process. Therefore, the fly ashes were sieved to give two samples: 
large particles (>730pm) and small particles (<730pm). Attempts to fluidise the 

small particles were disappointing as they were ejected from the reactor. Therefore 

these materials were first agglomerated at room temperature using clay as a binding 

agent at levels of 2.5%. The mixture was moistened with distilled water and pellets 
formed by rolling by hand. These were then left to dry at room temperature for 24 

hours. X-Ray powder diffraction study of the fly ash showed an extremely complex 

system that was difficult to interpret with only some crystalline components giving 
lines that could not be easily assigned (appendix 10). Analyses of Puertollano fly ash 
following total digestion, as defined in §2.3.1.1, are presented in table 26 compared 

with relevant literature values [23] and were used as reference concentrations. The 

reference analysis shown is the analysis of a Puertollano Fly Ash from the same 

pulverized coal combustion run and was verified using suitable reference material 
[25]. Therefore an internal check was performed on the results of the total analysis 
by evaluating the difference (%) and the standard t test [145] to compare the 

experimental mean with the reference analysis. 

Concentration in µg g' Zn Cu V Fe Pb 

Total analysis 1085 ± 11 83 ±4 161 ±5 48860 ±351 556±13 

Reference analysis [25] 1233 75 202 51060 751 

Difference (%) 14.8 10.7 20.3 23.8 25.9 

Table 26: Analysis of the digested Puertollano fly ash 
(mean of three replicates presented in appendix 9 table A9-1) 
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From table 26, it can be seen that the experimental analyses of copper, iron, and zinc 
differed from the reference analysis in a range of ±10% with higher differences for 

vanadium (-20%) and lead (-26%). These differences might be a result of a different 

digestion procedure used for the ash. 

4.1.2 Sequential Extraction of Puertollano Fly Ash: 

The major constituents of this fly ash are shown in table 27, [23] and a more 
detailed composition is given in appendix 5. 

Si02 A1203 Fe203 CaO MgO Na2O K20 P205 Ti02 MnO SO3 

58.4% 29.3% 7.5% 0.9% 1.0% 0.4% 2.4% 0.1% 0.7% 0.1% 0.2% 

Table 27: Major oxide contents of the Puertollano fly ash 

The results of speciation studies, figure 52 and table 28, show that iron, lead, copper, 

and nickel are only leached following complete digestion (step 4), so these metals are 

present within the silicate phase of the fly ash or as resistant oxides and so will be 

resistant to extraction or leaching. As for previous sequential analyses, an internal 

check was performed on the results by comparing the total amounts of metals 

removed with the results of the total digestion (recovery 1). 

Figure 52: Sequential extraction of Puertollano Fly Ash 
(mean of four replicates presented in appendix 9 tables A9-2 and A9-3) 
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Moreover, because a reference analysis is available, a second recovery was 

calculated by comparing the total amount of metals removed in the procedure with 
the results of the reference analysis (recovery 2). 

Zinc is the only metal partially leachable using the BCR procedure with 1% 

of zinc extracted in step I (available phases), 0.6% of zinc in step 2 (reducible 

phases) and finally 4.6% of zinc extracted in step 3 (oxidizable phase). Thus even 

with zinc the majority of the element (93.7%) is only released after complete 
digestion and consequently is bound in the silicate phase. Recovery 1 shows a 
difference of up to 25% when comparing the total sequential extraction with the total 

content obtained after total digestion analysis (table 25). The experimental results 
for iron, copper, vanadium and lead in the first three steps of extraction were within 

experimental error and therefore appear as zero in table 28. 

Fe V Cu Zn Pb 
48 860 "') (161 "') [tg (83 "') (1185 -') [tg (556 -) [tg 

Step 1 0 0 0 12.3 ± 2.5 0 (available) (1.04%) 
Step 2 0 0 0 7.5 ± 2.3 0 (reducible) (0.64%) 
Step 3 0 0 0 54.3 ± 7.8 0 (oxidisable) (4.58%) 
Step 4 50122 ±1056 121.3 ±14.1 66.5 ± 8.7 1021 ± 144 686 ±78 (residual) (93.74%) 
Total 50122 121 66 1095 686 

Recovery 1 102.6 75.2 79.8 101 123.3 

Recovery 2 98.2 59.9 88 88.8 91.3 (%) 

Table 28: Sequential extraction of Puertollano Fly 
(mean of four replicates presented in appendix 9 tables A9-2 and A9-3) 

Recovery I shows that zinc and iron are extracted in the same proportions as for the 

full digestion, and Recovery 2 confirms this as approximately 10% of copper and 

zinc were not extracted when compared to the reference value (table 26). Recovery 2 

value obtained for lead (91.6%) is higher than that in table 26 (74%) therefore better 

extraction of lead was obtained during the sequential extraction. But vanadium 

recovered during the sequential extraction was lower than the full digestion 
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(Recovery 2 lower than the value in table 26). Thus some losses of vanadium must 
have occurred in the first three steps. 

Therefore the total extraction results obtained using sequential extraction are 

closer to the reference values than the total digestion analysis results. This confirms 

that the different digestion procedures used for the digestion of the ash provide a 
feasible explanation of the errors obtained in the full digestion analysis (table 26). 

4.1.3 SERVO Extraction Results 

Extraction studies, under conditions specified in §3.3.4.2, for pellets 

containing 2.5% clay, showed no extraction of nickel, copper, lead, or iron and only 

a little extraction for zinc (results presented in appendix 9 tables A9-4 and A9-5). 

This is expected from the sequential analysis that indicated these elements as being 

present in the silicate phase. Zinc extraction with Hprps (54.1 µg g"' ±10.1 (5.2% 

±1.0)) and H2pnaa (68.1 jig g -I ±1.6 (6.5% ±0.2)) are in line with the results of the 

sequential extraction where 6.2 % of zinc was shown to be extractable. 

4.14 Conclusion 

Metal speciation is very important in the SERVO process and the poor results 

obtained with the Puertollano PCC fly ash are explained by the metals being present 

in the silicate phase of the ash. It is also evident that microwave digestion used to 

digest fully the Puertollano PCC fly ash does not provide complete extraction of the 

metals. 

4.2 Rotterdam Waste Incinerator Fly Ash 

4.2.1 Analysis of Rotterdam Waste Incinerator Fly Ash 

The fly ash as received was sieved and particles in the range 1.4 -2 mm 

used. The diverse nature of the feed material to the incinerator produces a 

heterogeneous fly ash with particles having different physical properties. A scanning 

electronic microscope (SEM) study showed that some particles were burnt plant 

material, with a high carbon content (75%) and no trace metals (appendix 10). Other 

particles were more like characteristic fly ash with high concentrations of zinc and 

copper, and the presence of chlorine in all the particles at a significant level suggests 

that the wastes initially contained some PVC material. 
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The analysis of sieved portion of the Rotterdam fly ash following acid digestion is 

presented in table 29. 

Metals Fe Pb Cd Zn Cu Ni 

Concentration (µg g") 8400 4850 310 13 500 1050 480 

Table 29: Analysis of the digested Rotterdam waste incinerator fly ash 
(mean of three replicates presented in appendix 9 table A9-6) 

X-Ray powder diffraction study of the fly ash showed an extremely complex system 

that is difficult to interpret with only some crystalline components giving lines that 

could not be easily assigned (appendix 10). 

4.2.2 Sequential Extraction of Rotterdam Waste Incinerator Fly Ash 

The speciation studies (figure 53 and table 30) showed that most of the metals 

are easily leachable in the first three stages of the BCR procedure, except for nickel 

and iron that seem to be mainly contained in the silicate phase. Zinc is the most 

easily leachable metal, and is also present at the highest concentration, so posing a 

potentially significant environmental risk. 

Figure 53: Sequential Extraction of Rotterdam Waste Incinerator Fly 
(mean of five replicates presented in appendix 8 tables A9-7 to A9-12) 

Moreover, most of the zinc (60%) and cadmium (71.5%) are easily leached by dilute 

acetic acid and so would tend to leach under acid rain conditions. In the present 
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study, recoveries, calculated as in §4.3.2, are in the range (89-108%) for all metals. 
Therefore the reported sequential extraction data are within errors of ±10%. Since 

no suitable reference materials were available to validate either the sequential 

extraction or the total digestion of these fly ashes, the variability can be attributed to 

the high variability of the particles and consequent sampling difficulties. 

Fe Pb Cd Zn Cu Ni 
(8400 pg g') (4850 pg g") (310 pg g"') (13500 pg g'') (1050-µg g'') (480 pg g') 

Step1, 4.0±2.0 816±78 221±6 8108±742 190±15 116±3 
available (0.05%) (17.3%) (65.8%) (57%) (20.1%) (25.1%) 

Step2, 753±74 1100±68 24.8±2.0 4139±285 143±21 111±8 
reducible (8.7%) (23.3%) (7.4%) (29%) (16%) (24.1%) 

Step 3, 318±23 1936 ± 291 9.9 ± 0.4 1974 ± 162 517 ± 48 71 ±4 
oxidisable (0.4%) (41%) (2.9%) (14%) (55%) (15.4%) 

Step4, 7795±254 867±17 80±5.7 32.0±4.2 82±3 164±9 
residual (90.8%) (18.4%) (24%) (0.22%) (8.7%) (35.4%) 

Total 8585 4720 336 14287 940 462 

Recovery 102.2 97.3 108.3 105.8 89.4 2 96 (%) . 

Table 30: Sequential Extraction of Rotterdam Waste Incinerator Fly 
(mean of five replicates presented in appendix 9 tables A9-7 to A9-12) 

4.2.3 SERVO Extraction Results: 

4.2.3.1 Single extraction 

Extraction with the SERVO process, figure 54 and table 31, still requires 

optimisation. From the speciation results, both zinc and copper should be almost 
fully extracted (i. e. 87% copper and nearly 100% zinc) but the best result obtained 
for these metals using the three extractants is only 50% extraction with Hprps. Also 

with nickel only 21% of the potential 65% is extracted with Hprps and no extraction 
is observed with the other extractants. Similarly with lead only 37% of the potential 
92% is extracted using Hprps and again there is no extraction with Hacac or H2pnaa. 

However up to 76.7% of the potential 83% cadmium is extracted with Hprps but all 

of the extractable iron is removed with Hacac (10.4 %) and Hprps (8.3%). The low 

overall extraction of iron is the result of 90% of it being contained in the silicate 

phase. The extraction of iron and cadmium are the only results in agreement with the 

sequential extraction results. The low extraction obtained for the other metals may be 
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the result of a too brief a contact time; therefore the extraction was repeated using 

several batches of extraction. 

J J 

I I 

t L 

t dNI Fe P 
(13500 (1050 (310 (480 (4850 (8400 
ugg-1) µgg-1) µgg-1) ttgg-1) ugg-1) ugg-1) 

F  Using prps D Using pnaa B Using acac 

Figure 54: SERVO Extraction Results from Rotterdam Fly Ash 
in one step using Hprps, H, pnaa and Hacac 

(mean of two experiments presented in appendix 9 tables A9-13 to A9-23) 

Hprps (ýtg -1) H2pnaa ") Hacac ([tg ") 
6796± 378 4493± 344 3387 ± 193 

Zn (13500 g-) (50.7%) (33.5%) (25.0%) 
571±44 241±37 58±16 

Cu (1050 "1 (50.8%) (23%) (5.1%) 
234 ±6 

Cd (310 ') (76.4%) 0.0 0.0 
100 ± 20. 

Ni (480 "' ttg (20.7%) 0.0 0.0 
1789 ± 270 

Pb (4850 (36.9%) 0.0 0.0 
686 ± 118 859± 168 

Fe (8400 pg "') (8.3%) 0.0 (10.4%) 

Table 31: Concentration of zinc, copper, cadmium, nickel, lead and iron extracted 
from Rotterdam Fly Ash in one step using Hprps, H2pnaa and Hacac 

(mean of two experiments presented in appendix 9 tables A9-13 to A9-23) 

The residues after extraction were studied by scanning electronic microscopy to see 

whether any adsorption of the ligand on the surface of the particles had occurred 
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(appendix 10). No increase of the carbon content was observed on the surface of the 

residues, showing no organic contamination. But there was an increase in the surface 

phosphorous concentration following extraction with Hprps, suggesting that some of 

the extractant or metal complexes (i. e. Cd(prps)2 or Cu(prps)2) were being 

decomposed and the released phosphorus species were reacting with the fly ash 

residues. 

4.2.3.2 Repeated extraction 

a) Using Hacac: 

Figure 55 shows that after two steps the extraction of copper and iron reaches 

a plateau and no further improvement is observed. The observed iron extraction 

(table 32) (11.7%) agrees with the sequential extraction results, as 90.8% of iron is 

bound to the silicate phase. Therefore all the extractable iron is removed with Hacac 

after two steps. In the case of copper, the observed extraction (18.6%) does not agree 

with the sequential extraction results, that shows only 8.7% of copper is bound to the 

silicate phase. However, as shown in figure 55 increasing the contact time does not 

improve extraction. Cadmium and nickel extraction increase with time but seem to 

trend towards a plateau after step 4. Therefore more than four steps would be 

required to obtain the optimum extraction of nickel and cadmium from Rotterdam 

Fly Ash with Hacac. Ni(acac)2(H20)2 is known to be thermally unstable (§2.2.1.4, 

28.6% residue at 300°C) therefore some decomposition of the Ni(acac)2(H20)2 might 

explain the extraction obtained. Zinc extraction also increases with time but does not 

seem to tend towards a plateau. Therefore further investigations are required to 

determine the optimum extraction conditions for zinc. 

The temperature used in the second reactor, where complexation occurs, was 

chosen to ensure the volatilisation of all metal 2,4-pentanedionates, i. e. 200°C. The 

incomplete extraction of "extractable" metals may be explained by incomplete 

complex formation. The optimum extraction of iron is obtained after two steps; this 

result might pose a problem as iron extraction is not required and would restrain the 

extraction of other metals. 
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Zn Cu Cd Ni Fe 
13500 pg_g-) (1050 '' 310 "' 480 ' (8400 "' 

Ste 1 p 
3388±24 136±23 25± 1.5 58±6 635±229 
(28.9%) (11.7%) (10.3%) (11.0%) (6.9%) 

Step 2 p 
3930±68 175.3±28.3 30±0.4 94± 17 678±262 
(33.5%) (15.1%) 12.3% 17.8% 7.4%) 

Step 3 4673±6 194.0± 17.3 43±0.1 119±9 1014±104 
(39.9%) (16.7%) (17.7%) (22.4%) (11.0%) 

Ste 4 p 
5795±48 216.1 f 1.2 55±5 134±3 1078±86 
(49.5%) (18.6%) (22.5%) (25.3%) (11.7%) 

Table 32: Concentration of zinc, copper, cadmium, nickel and iron (pgR-1 extracted 
from Rotterdam Fly Ash in four steps using Hacac 

(mean of two experiments presented in appendix 9 tables A9-34 to A9-38) 
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Figure 55: Extraction of zinc, copper, cadmium, nickel and iron from Rotterdam Fly 
Ash in four batches using Hacac 

(mean of two experiments presented in appendix 9 tables A9-34 to A9-38) 

(b) Using H2j 

Figure 56 shows a continuous increase in the extraction of zinc, copper, and 

extraction seems to be improved by increasing the number of extraction steps as no 

plateau appears for these two metals. The extraction of cadmium and nickel reaches 

a plateau after step I and no further improvement is observed. The extraction of these 

four metals (table 33) stays below the possible extraction suggested by the sequential 
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extraction results and this despite a higher contact time between the Rotterdam Fly 

ash and H2pnaa. Again, the temperature used in the second reactor, where 

complexation occurs, was chosen to ensure the volatilisation of all H2pnaa metal 

complexes, i. e. 270°C. 

50 -~- Copper --F-Zinc Nickel --f-Cadmium 
45 
40 
35 
30 
25 ýr. 
20 
15 z 

10 
5 
0 

012 batch 345 

Figure 56: Extraction of zinc, cadmium, nickel and copper from Rotterdam Fly Ash 
in four batches using H? pn 

(mean of two experiments presented in appendix 9 tables A9-24 to A9-27) 

The incomplete extraction of "extractable" metals can be explained by incomplete 

formation of the H2pnaa metal complexes. The mechanism of complexation proposed 

Dr A. A. Pichugin [111] for H2pnaa suggests that the extractant condenses on the feed 

material where it reacts with the metal salts. Therefore the incomplete formation of 

the H2pnaa metal complexes might be due to incomplete condensation of the 

extractant in the pores of the Rotterdam Fly ash. This mechanistic study [111] also 

showed that the size of the feed material was important and the smaller the particle 

the higher the possible condensation of the extractant and the higher the extraction. 

The size of the Rotterdam Fly ash particles used here are in the range 1.4 -2 mm. 

Grinding the ash followed by agglomeration using clay as carried out with the 

Puertollano Fly ash might improve condensation of the extractant in the pores of the 

Rotterdam Fly ash and thus improve extraction. The mineralogy of Rotterdam Fly 

ash might also prevent ready access of the extractant to the metal salts. 
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Cu (1050 pg g'') Zn (13500 pg g"') Ni (480 pg g"') Cd (310 pg g') 

Step 1 317 ±9 (27.3%) 2751 ± 144 (23.5%) 6.4: h 1.3 (1.2 %) 11.8 ± 4.8 (4.8%) 

Step 2 383 ±7 (33%) 3519 ± 203 (30.0%) 31.2 f 10.8 11.7 ± 2.0 (4.8%) (5.9%) 

Step 3 489 t 18 (42.1%) 3702 t 55 (31.6%) 72.2 f 11.4 21.4 ± 5.1 (8.8%) (13.6%) 
Step 4 512 t 21 (44.2%) 4162 ± 197 (35.5%) 75.7±1.9 (14.3%) 23.2 ± 6.8 (9.5%) 

Table 33: Concentration of copper, zinc, nickel and cadmium (ug g-1) extracted from 
Rotterdam Fly Ash in four steps using H, pnaa 

(mean of two experiments presented in appendix 9 tables A9-24 to A9-27) 

(c Using Hprps: 

Figure 57 shows that after two steps the extraction of iron (8.8%), lead 

(75.1%), cadmium (80.7%) and copper (82.8%) reach a plateau that is close (except 

for copper) to the full recovery of extractable metals as indicated by the sequential 

extraction results. Even though copper should be extracted up to 93%, only 83% is 

extracted by Hprps. Cu(prps)2 is known to be thermally unstable (§2.2.3.9,14.5% 

residue at 275°C), therefore some decomposition of Cu(prps)2 may have occurred. As 

with Hacac, iron extraction is not required and would interfere with the extraction of 

other metals. Zinc, that should be fully extractable from the sequential extraction 

results, is only extracted to 69.2%. However the extraction curve does not tend to a 

plateau and thus further extraction may be possible by increasing the number of 

steps. This extraction is nevertheless better than that observed using Hacac or 
H2pnaa. Nickel, has the lowest extraction of the desired metals, with only 27.2% of a 

possible 64.6% nickel salts being extracted. As for zinc, the nickel extraction curve 
does not tend to a plateau and better extraction might be obtained by increasing the 

number of steps. Ni(prps)2 and Zn(prps)2 are quite thermally stable with respectively 

only 1.45% and 0.7% thermal degradation at 300°C, therefore thermal degradation is 

probably not the reason for this incomplete extraction. 
The incomplete extraction of zinc and nickel can be explained by the 

mineralogy of the Rotterdam Fly ash, where nickel and zinc would be contained in a 

structure not readily accessible to the extractant, e. g. a nickeliferous iron chlorite 

phase. 
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Figure 57: Extraction of lead, zinc, cadmium, nickel, copper and lead from 
Rotterdam Fly Ash in four batches using Hprps 

(mean of two experiments presented in appendix 9 tables A9-28 to A9-33) 

Cu Zn Ni Pb Fe Cd 

(1050 µg g') (13500 µg g') (480 µg g"') (4850 µg g') (8400 µg g') (310 pg g') 

651 ± 17 5232 ± 1013 85 ± 6.4 2330 f 81 430 ± 42 163 ±7 
Step 1 p (56.1%) (44.7%) (16.0%) (48.9%) (4.7%) (67%) 

914±30 6309±373 116±8 3095± 102 785± 137 190± 10 
Step 2 p (78.8%) (53.8%) (21.9%) (65.0%) (8.5%) (78%) 

948 ± 11 6661 ± 498 142 ±5 3456 ± 44 794 ± 93 195 ± 12 
Step 3 p (81.8%) (56.9%) (26.8%) (72.5%) (8.6%) (80%) 

960± 16 7054±244 144±7 3578± 1 815±91 196±7 
Step 4 P (82.8%) (69.2%) (27.2%) (75.1%) (8.8%) (80.7%) 

Table 34: Concentration of copper, zinc, nickel, lead, iron and cadmium extracted 
from Rotterdam Fly Ash in four steps using Hprps 

(mean of two experiments presented in appendix 9 tables A9-28 to A9-33) 

4.2.4 Conclusion 

The higher contact time between the Rotterdam Fly ash and the extractants 
did improve the extraction of all metals using the three extractants. 

Nickel is the least extracted of all the metals by H2pnaa (14.3% ± 0.4) and 
Hprps (27.2% ± 1.3), but it is extracted equally well by Hacac or Hprps. The nickel 

complex with Hprps is more thermally stable (1.5% residue at 300°C) than that 
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formed with Hacac (28.6% residue at 300°C), therefore Hprps would be preferred for 

the extraction of nickel. 

Optimum iron extraction is obtained using Hprps or Hacac but such 

extraction is not required and would constrain the extraction of other metals, H2pnaa 

offers the advantage of not extracting this metal. 

Copper extraction obtained using Hprps is good and reaches a plateau at 83% 

(92% of the "extractable" content), but the complex formed, Cu(prps)2i is thermally 

unstable and some decomposition might have occurred that could explain the 

incomplete extraction. The figure for the extraction of copper using H2pnaa (44% 

extraction after four steps) shows no indication of reaching a plateau so further steps 

might increase this result. Copper is the easiest of the metals to be extracted by 

H2pnaa (27% in the first step) and as the complex formed with H2pnaa is more 

thermally stable (1.6% at 192 °C) than that with Hprps, H2pnaa would be preferred 
for copper extraction. 

Cadmium is the easiest metal extracted by Hprps (67% in the first step) but 

its complex formed with Hprps decomposes at 300 °C leaving a 6.3% residue. 
Lead is also easily extracted by Hprps, its extraction curve shows a smooth 

increase up to a plateau that correspond to the total extractable lead, and Pb(PrPS)2 is 

thermally stable with only 1.5% residue left at 300 °C. 

Zinc is the only metal from those studied that is fully extractable from the 

Rotterdam Fly ash, but after four steps complete extraction was not observed with 

the three extractants and no plateaus were reached. Zinc is most easily extracted by 

Hacac (29% in the first step), but the zinc complex is not thermally stable with 9.7% 

decomposition at 200°C. The best zinc extraction (69%) is obtained using Hprps and 

the complex formed is thermally stable (0.7% degradation at 300°C). 

The complete extraction of the extractable lead and cadmium after two steps 

and the thermal stability of the complexes formed with nickel and zinc, makes Hprps 

the best of the three extractants studied. H2pnaa is the preferred extractant for copper 
because of the thermal stability of the complex, and is also preferred in the presence 

of iron. Finally Hacac would not be selected for the extraction of metals from 

Rotterdam Fly ash because of thermally unstable complexes or a low extraction. 
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4.3 Orimulsion Ash 

4.3.1 Analysis of Orimulsion Ash: 

Analysis of the Orimulsion ash powder following acid digestion, table 35, 

gave results comparable to literature. [119] 

Concentration µg g"1 Zn Cu V Fe Mo Ni Cr 

Digestion analysis 0 0 76990 
±314 

3 356 
±190 

444 
±16.6 

20 573 
±377 

93 
±10 

Literature value [119] 60 30 76 000 3 000 >700 17 300 60 

Table 35: Analysis of Orimulsion ash 
(mean of three replicates presented in appendix 9 table A9-42) 

The major components are magnesium sulphate and magnesium oxides, vanadium 

pentoxide, nickel sulphate, oxygen compounds and residual carbon. [37] X-Ray 

powder diffraction study of the fly ash showed an extremely complex system that is 

difficult to interpret with only some crystalline components giving lines that could 

not be easily assigned (appendix 10). Another study based on XRD and TG-DTA 

analysis [41] indicated that vanadium may be present as vanadium(IV) oxysulphate 

and the following major constituents were proposed (table 36). 

Metal salts VOSO4 (NI44)2Ni(SO4)2 (NH4)2Mg(SO4)2 

Composition 11.2% 6.8% 74.8% 

Metal salts A12(S04)3 (NH4)2Fe(SO4)2 

Composition 10.1% 3.7% 

Table 36: Major constituent analysis of Orimulsion fly ash [411 

The sum of these constituents exceeds 100% but this could be due to the presence of 

some sulphates, sulphides or oxides of some of these metals. [41 ] 

4.3.2 Sequential Extraction of Orimulsion Ash 

The sequential extraction results obtained from Orimulsion ash powder 

(figure 58 and table 37) show that nickel and vanadium are both easily leachable in 

steps 1,2 and 3 leaving no residue after step 3. This ease of leaching is one of the 
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major problems with the disposal of this ash. Because of their high concentration and 

easy leachability the SERVO process should extract both nickel and vanadium. 

V (77 000 Itg ) Ni (20 570 g-) 
Step I (available) 47262 ± 973 (59.8%) 14826 ± 301 (67.7%) 
Step 2 (reducible) 22063 ± 797 (27.9%) 4261± 214 (19.5%) 
Step 3 (oxidisable) 9669 ± 387 (12.2%) 2809 ± 109 (12.8%) 
Step 4 (residual) 0 0 

Total 78994 21896 
Recovery (%) 102.6 106.5 

Table 37: Sequential Extraction of Orimulsion Ash 
(mean of five replicates presented in appendix 9 tables A9-43 and A9-44) 
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Figure 58: Sequential Extraction of Orimulsion Ash 
(mean of five replicates presented in appendix 9 tables A9-43 and A9-44) 

4.3.3 SERVO Extraction Results: 

Studies were performed with a single extraction under the conditions specified 
in §3.3.4.2, using pellets prepared with 10% clay (figure 59 and table 38). 

Both nickel and vanadium (82% and 80.0% respectively) are easily extracted 

with Hprps, with lower extractions for H2pnaa (43% and 23% respectively) and 
Hacac (64% and 15% respectively). 
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Hprps(pg g') H2pnaa(jig g') Hacac(gg g) 

Ni (20 600 µg g1) 16920 ±1100 (82%) 8850 ±210 (43%) 13250 ± 1310 (64%) 

V (77 000 µg g") 61950 ±2220 (80%) 17660 ±570 (23%) 11630 ±1480 (15%) 

Table 38: Concentration of nickel and vanadium extracted from Orimulsion Ash in 
one step using Hprrps, H; pnaa and Hacac 

(mean of two experiments presented in appendix 9 tables A9-45 to A9-50) 

Scanning electronic microscope examination of the Orimulsion Ash residue 

after the SERVO treatment showed no increase of carbon content (appendix 10), so 

no absorption of ligand onto the surface of the Orimulsion Ash had occurred. Also 

the greenish colour of the Orimulsion Ash before processing completely disappears 

giving a light grey coloured residue. 
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Figure 59: Results of a single extraction of Orimulsion Ash with Hprps, H2pnaa and 
Hacac 

(mean of two experiments presented in appendix 9 tables A9-45 to A9-50) 

4.3.4 Conclusion: 

These results are quite encouraging; however, speciation studies suggest that 

total extraction of these elements should be possible. Hprps extractant is the most 

thermally stable and is more effective than either Hacac or H2pnaa as it is able to 
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extract most of the contaminating metals in one step, with the removal of vanadium 
(80.0% ±2.9) and nickel (81.6% ±5.3). 

4.4 General Conclusion 

From this series of experiments on the use of the SERVO process to treat 
different types of ash, some overall conclusions can be drawn. 

4.4.1 Most suitable type of ash for the process 

The type of ash that is most suitable for the process is the one that has the 

best physico-chemical characteristics of both the metal and the ash (e. g. porosity, 

pore size distribution, surface characteristics, adsorption parameters and solid 

structure, but also metal speciation). Therefore the physical comparison of the 

different ashes and their metal speciation are reviewed here to determine the matrix 

to which the SERVO process is most applicable. 

(a) Puertollano Fly 

As received, the Puertollano Fly ash showed low moisture content (1%) and 

the major crystalline phases were identified as 17% quartz (Si02), 3.2% mullite 

(Al6Si2O13), 1.3% magnetite (Fe304) and 78.5% glass (aluminosilicate). The 

exchange capacity of these fly ashes is low because they are free of anhydrite 

(CaSO4), lime (CaO), calcite (CaCO3), and the feldspar group of potassium, calcium, 

and/or sodium aluminium silicates, and they are characterised by a relative low iron 

oxide content. [23] Particles of fly ash were agglomerated at room temperature using 

clay (2.5%) and distilled water to form pellets (diameter -1-1.5mm) that were left at 

room temperature to dry for 24 hours. The moisture content of the pellets measured 

after 24 hours showed low moisture content (1%) and therefore they do not retain 

water. The results of the speciation studies showed that iron, lead, copper, and nickel 

are either present within the silicate phase of the fly ash or as resistant oxides so 

should be resistant to extraction using the SERVO process or leaching. 

(b) MSW Rotterdam Fly ash: 

MSW Rotterdam fly ashes as received were sieved, and particles in the range 

1.4 -2 mm used. Moisture content was about 5%, and the major crystalline phases 
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identified were more like a characteristic combustion fly ash with high 

concentrations of quartz, some anhydrite (CaSO4), calcite (CaCO3), and halite 

(NaCI). The speciation studies actually showed that most of the metals are easily 

leachable in the first three stages of the BCR procedure, except for nickel and iron 

that seem to be mainly contained in the silicate phase. Zinc is fully removed within 

the first three steps of the sequential procedure, making it the most suitable for 

extraction with the SERVO process. Zinc is also present at the highest concentration 

with most of it (57%) easily leached by dilute acetic acid (step I of BCR sequential 

procedure). 

(c) Orimulsion ash: 

The size distribution of the as received Orimulsion ash showed that more than 

70% of the particles were in the range 0.5 - 4mm with less than 10% under 0.2 mm. 
The moisture content was about 15%, and the density 2.2. Sulphate is the major 

constituent of the ash and the metals examined (V and Ni) are also present as 

sulphates, and therefore easily leachable. [41] Particles of fly ash were agglomerated 

at room temperature using clay (10%) and distilled water to form pellets (diameter 

-1-1.5mm) that were left at room temperature to dry for 24 hours. The sequential 

extraction results showed that vanadium and nickel are both easily leachable in step 1 

(60% and 68% respectively), step 2 (28% and 19% respectively), and step 3 (12% 

and 13% respectively) leaving no residue after step 3. 

From these results the least convenient material for the SERVO process is the 

Puertollano Fly ash, not only because of all metals are bound to the silicate phase, 
but also it requires pelletisation, is too dry, and has low permeability, aeration and 

porosity. 

The second least convenient source is the MSW Rotterdam fly ash, with a 

typical fly ash physical structure with some anhydrite (CaSO4), calcite (CaCO3) and 

chloride that can retain metals and easily exchange with them. However no 

preparation is necessary and the MSW Rotterdam fly ash can be treated as received. 

Overall the best material for the SERVO process is Orimulsion ash where all 

the metals studied are extractable in the first three steps of the BCR sequential 

extraction, and it has high permeability, aeration, porosity, and sorptive capacity. 
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4.4.2 Efficiency of the extractants 

The efficiency of the three extractant is reviewed here. Table 39 shows the 

extractable elements from the MSW Rotterdam fly ash, Orimulsion ash, and 
Puertollano fly ash. To provide a better view of the elements extracted with the 

different ligands the following three tables provide a summary of the extraction 

results for the three different fly ashes. 

Element (ýtg "1) MSW Rotterdam fly ash Puertollano fly ash Orimulsion ash 
Zn 14220 ±1189 74 ±13 0 
Cu 850 ±84 0 0 
Cd 256 ±8.4 0 0 
Ni 300 ±15 0 20 573 ±377 
Pb 3850 ±437 0 0 
V 0 0 77 000 ±310 

Table 39: Extractable elements (steps 1+2+3 from sequential extraction) from MSW 
Rotterdam fly ash, Puertollano fly ash and Orimulsion ash: 

(a) H pips 
Hprps is able to remove extractable elements from a typical combustion fly ash 

structure (i. e. zinc from Puertollano fly ash). Extraction of nickel, cadmium, and zinc 
from MSW Rotterdam fly ash corresponds to the concentration of these elements 

present in Step I of the sequential extraction, (table 30). As nickel has the least 

concentration in this `available' species (116 pg g', 25.1%), its extraction is the 

lowest. In Orimulsion ash, nickel and vanadium (table 37) are mostly `available' 

(14826 µg g', 67.7% and 47262 µg g1,59.8%), and their extractions with Hprps 

(table 38) is in the same order (16920 µg g', 82% and 61959 gg g"1,80%), with some 

of the BCR `reducible species' of nickel and vanadium also being extracted. 

Extraction of lead from MSW Rotterdam fly ash corresponds to the amount of this 

element present as `available' and `reducible' (BCR steps 1+2) and extraction of 

copper from MSW Rotterdam fly ash corresponds the amount present as ̀ available', 

`reducible' and also ̀ oxidisable' (BCR steps 1+2+3). 

Hprps will extract most of the nickel, vanadium, zinc and cadmium present as 

`available' in the fly ash, but lead seems to have a better affinity with this sulfur 

donor ligand as the reducible lead is also extracted, finally copper is the element 
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preferred by Hprps as all the categories of `available', `reducible' and `oxidisable' 

copper are removed. 

Element (ftg ") MSW Rotterdam fly ash Puertollano fly ash Orimulsion ash 
6796± 378 54.1 ±10.1 

Zn (47.8%) (73.1%) 0 
571 ±44 

Cu (67.2%) 0 0 
234 ±6 

Cd (91.4%) 0 0 
100±20 16920±1100 

Ni (33.3%) 0 (82%) 
1789±270 

Pb (46.5%) 0 0 
61 950 ±2220 

V 0 0 (80%) 

Table 40: Metal Extracted from MSW Rotterdam fly ash, Puertollano fly ash and 
Orimulsion ash using the SERVO process with Hprps after one step 

It is now interesting to compare this last result with the thermal stability of the 

complexes formed between the elements and Hprps. Even though copper is the more 

widely extracted metal the complex formed, Cu(prps)2i was shown to be thermally 

unstable (15% degradation), therefore careful temperature control will be required to 

recover the maximum amount of copper. Zn(prps)2 is the most thermally stable 

complex, followed by Pb(prps)2, Ni(prps)2, Cd(prps)2. 

fhl H2pnaa: 

H2pnaa is able to remove extractable elements from a typical combustion fly 

ash structure (i. e. zinc from Puertollano fly ash). In the MSW Rotterdam fly ash, 

nickel and cadmium are not extracted after one step, as might be expected. Zinc and 

copper are extracted but less than with Hprps. This can be explained by the fact that 

H2pnaa is more selective and will only extract elements present in a certain form, in 

particular elements present as `reducible' (BCR step 2). However, nickel and 

cadmium are also present in this material as `available' and thus would have been 

expected to have been extracted. It has been shown that this extractant requires 

condensing in the pores of the matrix to complex with the metals, and maybe the 

144 



structure of the MSW Rotterdam fly ash might not allow this condensation readily to 

take place. In Orimulsion ash, nickel is still extracted but less than half of that with 
Hprps, and vanadium extraction is a quarter of that with Hprps. Orimulsion ash has a 
high porosity and will allow condensation of H2pnaa in its pores. 

µg g"' MSW Rotterdam fly ash Puertollano fly ash Orimulsion ash 

Zn 4493 ± 344 31.6% 68.1±1.6 92% 0 
Cu 241 ± 37 (38.4%) 0 0 
Cd 0.0 0 0 
Ni 0.0 0 8850 ±210 (43%) 
Pb 0.0 0 0 
V 0 0 17660 ±570 (23%) 

Table 41: Metal Extracted from MSW Rotterdam fly ash, Puertollano fly ash and 
Orimulsion ash using the SERVO process with H2pnaa after one step 

Of all the elements studied, zinc in MSW Rotterdam fly ash and vanadium in 

Orimulsion ash are those that have the best affinity with H2pnaa. Overall H2pnaa is a 

poorer extractant than H2prps, with lower extraction but is more selective. 

(c) Hacac: 

Hacac is not able to remove extractable elements from a typical combustion 
fly ash structure (no zinc extraction from Puertollano fly ash). It also extracted fewer 

elements than the other two compounds. Thus with the MSW Rotterdam fly ash, zinc 

and copper extraction are poorer than with Hprps and H2pnaa, and with Orimulsion 

ash, nickel extraction is better, but vanadium extraction is lower than with H2pnaa. 

Element (µg g-1) MSW Rotterdam fly ash Puertollano fly ash Orimulsion ash 

Zn 3387 ± 193 (23.8%) 0 0 
Cu 58 ± 16 7% 0 0 
Cd 0 0 0 
Ni 0 0 13250 f 1310 (64%) 
Pb 0 0 0 
V 0 0 11630 ±1480 (15%) 

Table 42: Metal Extracted from MSW Rotterdam fly ash, Puertollano fly ash and 
Orimulsion ash using the SERVO process with Hacac after one step 
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Hacac is therefore the least efficient of the three ligands; and of the elements 

studied, zinc in MSW Rotterdam fly ash and nickel in Orimulsion ash are those that 
have the best affinity with Hacac. 

Overall this study has shown that Hprps is the best of the three extractants. It 

is able to remove most of the extractable elements in a single step from the fly ashes 
that have a typical physico-chemical structure, and also gives good results with 
Orimulsion ash. A large variety of elements can be removed (Cd, Ni, Zn, Cu, Pb, V) 

with good efficiency in one step. The only disadvantage is that the synthetic route is 

difficult and the overall reagent cost will be high. 

4.4.3 Overall conclusions 

Originally devised for the treatment of low grade ores, the SERVO process 
has been studied for the treatment of different combustion fly ashes containing some 

new challenging metals to be extracted, i. e. cadmium, vanadium, lead, and zinc. 
These sources differ in their structure: Orimulsion ash was obtained from 

combustion of a water-in-oil emulsion of a Venezuelan heavy crude oil with a 

magnesium stabiliser and the major components are sulphates (75%). Puertollano fly 

ash is a typical fly ash from Pulverised Coal Combustion with a low moisture content 

(1%)) and with 78.5% glass, and 17% quartz as major components. It also is free of 

anhydrite (CaSO4), lime (CaO), and calcite (CaCO3). MSW Rotterdam fly ash was 

obtained from a municipal waste incinerator and had a low moisture content (5%), 

also with major components of glass and quartz, but it also contained some anhydrite 

(CaSO4), calcite (CaCO3), and halite (NaCI). 

The use of the SERVO process for the removal and recovery of heavy metals 
from these typical fly ashes has been demonstrated using the two ligands Hprps and 
H2pnaa. Hprps can remove a larger variety of elements than H2pnaa, with better 

extraction. The extraction of elements by Hacac is the lowest of the three ligands, 

therefore Hacac is not recommended for the process. Orimulsion ash has an open 

porous structure that is suitable for the SERVO process where most of the metals are 

present as sulphates or oxides. Typical fly ashes are also suitable for the SERVO 

process when they contain some kind of "absorbent" for metals such as anhydrite 
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(CaSO4), lime (CaO), and calcite (CaCO3) and a minimum of moisture (5%). 

These sources also differed in metal speciation. This is important as the 

extractants used in the SERVO process are weak organic acids without extensive 

oxidising or reducing properties, therefore the way in which the elements are 

contained within the fly ash determines the extractability. Thus the elements that 

were most easily extracted were found to be present mainly in those species 

contained in Steps I and 2 of the BCR procedure. This indicates that a detailed 

analysis (total analysis and a sequential analysis (BCR procedure)) of the elements is 

required to quantify the feasibility of the SERVO process. 
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Chapter 5: General Conclusions 

5.1 Studies of Extractants 

5.1.1 Thermal stability and volatility of the extractants and their metal 

complexes 

Three ligands and their metal complexes have been synthesised to determine 

their thermal stability and volatility. A comparison of these data is undertaken here. 

2,4-Pentanedione (acetylacetone, Hacac) is a commercially available liquid 

reagent (b. p. 140°C), volatile and thermally stable below 100°C. A wide range of 

volatile metal complexes can be produced and all are volatile above 165°C (table 

43). However Hacac is not very selective and reacts readily with iron(III), which is a 
disadvantage in some applications like the extraction from sediments or soil where 
iron is naturally present in high concentration. However, the complexes are 

reasonably thermally stable at low temperature (below 170°C), and an order of 

stability has been established from the most stable to the least stable 

acetylacetonates: Hacac> Cu(acac)2> Fe(acac)3> VO(acac)2> Ni(acac)2> Zn(acac)2 

> Mo02(acac)2. Moreover, it has been shown that reduction of the nickel and copper 

acetylacetonates with hydrogen produces the metal in high purity. 
Bis(pentane-2,4-dionato)propan-1,2-diimine, (H2pnaa) is more suitable than 

H(acac) for application of the SERVO process to the extraction of metals from 

wastes, as it gives complete separation of the divalent metals from iron(III). It is a 

solid compound with melting point of 91°C, and easily synthesised from 

commercially available reagents (yield 73%) by slowly adding 1,2-diaminopropane 

(I mol) to continuously stirred 2,4-pentanedione (2 mol). This ligand shows some 

thermal degradation at temperatures higher than 220°C to the extent of between 3 

and 10% [110], and is sensitive to hydrolysis. The complexes of the divalent metals 

(table 43) are relatively thermally stable and can be reduced with hydrogen in the 

vapour phase. The temperature where all complexes are volatile is higher than the 

Hacac complexes (above 194°C), and the order of volatility is H2pnaa > Cu(pnaa) > 

Co(pnaa) > Ni(pnaa), similar to that of the metal acetylacetonates. 
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Tetra-iso-propyldithiophosphoramide, ((i-Pr)2PS)2NH, Hprps), is a solid 

compound (mp 173°C) prepared by a two-stage synthesis where the overall yield 
(57%) is low. But this ligand has good volatility and thermal stability with no 

observed degradation and also forms a wide range of volatile and thermally stable 

complexes with divalent metals (table 43). All the metal complexes are volatile at 
190°C, and volatilisation is complete at 300°C or below. An order of volatility can be 

established: Cd(prps)2 > Hprps > Zn(prps)2 = Cu(prps)2 > Pb(prps)2 > Co(prps)2 > 

Ni(prps)2. To date hydrogen reduction of the metal complexes has not been 

successful and recovery of the metal and ligand has been achieved by absorption into 

dilute acid. 

Metal Compound: NIP (°C) 
Volatilisation 

Temperature (°C) 

Stability 

(% residue) 

- Hacac - 21 ->100 1.4 

Zn Zn(acac)2 137 122 -> 200 9.7 

Cu Cu(acac)2 127 163 ->270 0.2 

Ni Ni(acac)2 112 146 -> 280 28.6 

Fe Fe(acac)3 173 92 ->275 3.6 

Mo Mo02(acac)2 Decompose at 210 130 ->256 55.0 

V VO(acac)2 Decompose at 172 131 ->230 11.5 

- H2pnaa 91 125 -> 240 4.0 

Cu Cu(pnaa) 119 142 ->292 1.6 

Ni Ni(pnaa) 145 194 ->300 4.0 

Co Co(pnaa) 154 167 ->292 0.4 

- Hprps 173 150 -* 300 0.8 

Zn Zn(PrPS)2 147 150 ->300 0.7 

Pb Pb(PrPS)2 125 175 ->300 1.7 

Cd Cd(PrPS)2 163 140 ->300 7.6 

Ni Ni(PrPS)2 175 190 ->300 1.4 

Co Co(PrPS)2 136 190 -> 300 4.0 

Cu Cu(PrPS)2 152 150 ->300 14.9 

Table 43: Summary of thermal properties of synthesised compounds 
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The volatility of the metal chelate is influenced in many ways [134]. The 

most important of these relates to the Lewis acidity of the metal and therefore its 

tendency to undergo interaction with Lewis-base sites involving nitrogen or oxygen 
donors in other molecules. This type of interaction is supported by the existence of 

stacking chains of the metal ions in crystal structures of ß-ketoimide compounds 
(figure 28, p88). This depresses the volatility of, in particular, cobalt and nickel thus 

resulting in the volatility order for Hacac, H2pnaa and Hprps metal chelates: Zn > Cu 

> Co > Ni. 

Hprps is the most thermally stable ligand with only 0.8% thermal 
degradation. It has been shown to complex with at least six metals of interest (Zn, 

Pb, Cd, Ni, Co, Cu) forming thermally stable complexes except for copper and 

cadmium that show 14.9% and 7.6% degradation respectively. Hacac is the second 

most thermally stable ligand with only 1.4% degradation. It can also complex with 

most metals, including iron(III) but only Cu(acac)2 is thermally stable, as the other 

complexes prepared (Zn, Cu, Ni, Fe, Mo, V) show more than 10% degradation. The 

other disadvantage of this ligand is its ability to form a thermally stable complex 

with iron(III), that would be detrimental to the operation of the SERVO process as 

iron extraction would deplete the amount of extractant available in the system. 

H2pnaa is the least stable ligand of the three studied with 4% thermal degradation 

and a tendency to hydrolysis. Only three metal complexes of the metals of interest 

have been successfully prepared for H2pnaa (Co, Cu and Ni), and of these nickel 

shows some degradation (4%). During the extraction studies from Orimulsion ash, 

sediments, and the Rotterdam fly ash, H2pnaa was also shown to complex with and 

extract zinc and vanadium, but the thermal stability of these complexes was not 

defined. Finally, H2pnaa offers the advantage of being selective over iron(III). 

Looking at the thermal properties, and the ability to form thermally stable 

complexes, Hprps is the preferred ligand, followed by H2pnaa and finally Hacac. 

5.1.2 Cost of Extractants 

Another important factor in the evaluation of the best ligand for the feasible 

application of the SERVO process is the cost of the ligand. Therefore a ligand cost 

comparison has been calculated on the basis of the extraction of one mole of divalent 

metal. Prices and physical properties of the starting material were obtained from the 

150 



Aldrich catalogue (2002) and are shown in table 44. These prices are only applicable 
for bench scale quantities of starting materials, but the estimate based on these prices 

will nevertheless provide a cost for comparison that should be higher than the bulk 

price of starting materials. As a reminder, the production of one mole of H2pnaa 

requires two moles of Hacac and one mole of 1,2 diaminopropane; and one mole of 
Hprps requires two moles of chlorodiisopropylphosphine, one mole of 
hexamethyldisilazane, two moles of sulphur and 14 moles of toluene (1.5 L). 

Moreover to extract one mole of divalent metal, two moles of Hacac, one mole of 
H2pnaa and two moles of Hprps are required. The production yield is also considered 
in this calculation. Hacac ligand being the cheapest option, it will be considered as 

the basic price and the cost of the H2pnaa and Hprps required for the extraction of 

one mole of divalent metal is compared relatively to Hacac in table 45. 

Densih Molecular 
weight Price from Theoretical Starting materials i (g L-) 1 " 

Aldrich cost/mole (£) 
(g mol ) 

2,4 pentanedione 975 100 £22 : 975g 2.26 (Hacac) 

1,2 diaminopropane 870 74.13 £22.5 : 870g 1.92 

hexamethyldisilazane 765 161.4 £69.9: 50g 225.63 

chlorodiisopropyl- 959 152.61 £6625g 403 
phosphine 

sulphur powder, 2360 32.07 £34.3 2000g 0.55 
mesh-100 

toluene, anhydrous, 865 92.14 £175.3 : 201 0.94 99.8% 

Table 44: Starting material costs from Sigma-Aldrich, 11/02 [146] 

Theoretical Production Cost/mole Cost required to Relative 
Ligand cost/mole yield (%) (£) extract I mole of cost (E) divalent metal (£) 

Hacac 2.26 100 2.26 4.5 1 

H2pnaa 6.4 73 8.8 8.8 2 

Hprps 1046 57 1835 3670 814 

Table 45: Relative ligand cost comparison. 
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From the results in table 45, Hprps is far more expensive than Hacac and 

H2pnaa. Even if Hprps can complex with a wide range of divalent metals, and form 

volatile and thermally stable complexes, this cost factor is a big drawback for the use 

of Hprps in a SERVO pilot plant. 
The cost of H2pnaa (twice the cost of Hacac) means that this extractant can 

still be considered on cost to be an alternative to Hacac. It also offers the advantage, 

over Hacac, of being selective over ferric iron. Nevertheless, H2pnaa shows some 
degradation [111], and some degradation products, both non-volatile or volatile, may 

accumulate in the sample being decontaminated causing additional costs of pollution 

control and affecting the quality of the final product. 

5.1.3 Conclusion 

In summary on the basis of their thermal properties, and the ability to form 

thermally stable complexes, Hprps is the preferred ligand, followed by H2pnaa, and 

finally Hacac. On cost, Hacac is the cheapest ligand followed by H2pnaa, twice as 

expensive, and H(prps) far more expensive (814 times than Hacac). The cost of 

H2(pnaa) means that this is still comparable with H(acac), and has the advantage of 

selectivity over ferric iron. However although H(prps) can form volatile and 

thermally stable complexes with a range of divalent metals, the current cost of the 

extractant precludes its use in a SERVO pilot plant. 

Therefore on balance H2pnaa is the preferred extractant followed by Hacac 

and Hprps. 

5.2 Physico-chemical characteristics of the contaminated sources studied and 

extraction of metals using SERVO process: 

5.2.1 Physico-chemical characteristics of the contaminated sources 

The extraction of metals present in the different sources depends on the 

physico-chemical characteristics of both the metal and the source. The mechanism of 

metal extraction by H2pnaa in the SERVO process, proposed by Dr A. A. Pichugin 

[1111, and confirmed by thermal analysis studies, suggests that the extractant 

condenses on the feed material where it reacts with the metal salts. It also showed 

that the quantity of H2pnaa retained by the ore will depend on the physico-chemical 
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characteristics of the ore (e. g. porosity, pore size distribution, surface characteristics, 

adsorption parameters and structure of the solid). 

Therefore the physical comparison of the different matrices (sediments, 

Orimulsion ash, Rotterdam fly ash and Puertollano fly ash) and the metal speciation 
in these samples are reviewed and summarised in table 46 to determine the most 

appropriate source for the SERVO process. 
The least convenient matrix for the SERVO process is the Puertollano Fly 

ash, not only because all the metals are bound to the silicate phase, but also it 

requires pelletisation, has a low moisture content, and low exchange capacity, 

permeability, aeration and porosity. 
The second least convenient matrix is the Rotterdam Fly Ash, this has a 

typical physical structure of a fly ash with some anhydrite (CaSO4), calcite (CaCO3) 

and chloride that can retain the available metals and easily exchange with them. 

However apart from size reduction no other sample preparation is necessary and the 

fly ash can be treated as received. 
The second best matrix are the canal sediments that have high porosity, 

permeability, aeration and sorptive capacity, abundant organic matter and clay, 

significant amounts of carbonates, sulphates, and oxides and most of the metals are 

readily available for leaching. 

Finally the best matrix is the Orimulsion ash, as it is mainly made of 

sulphates, has all the metals studied available of extraction, a high permeability, 

aeration, porosity, and sorptive capacity. 
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5.2.2 SERVO process extraction results: 

A study with the modified TGA equipment confirmed the condensation of 
H2pnaa in the pore structure of the clay where the complexation takes place. 
Moreover it was shown that the adsorption rate of the extractant though the clay is 

dependent on the temperature. Extraction studies with the modified TGA shows that 

H2pnaa requires a long contact time with the clay and several cycles of extraction are 

required to obtain significant extraction. The extraction of copper is much improved 

by mixing H2pnaa with the clay before running the experiment, but repeating the 

process ten times using a higher temperature in the reactor 2 did not release more 
Cu(pnaa). 

In the case of the sediments, even though Hprps and Hacac extractants 

required only a single heating cycle of 5 hours, H2pnaa remains the ligand of choice 
for the SERVO process. The reasons for this preference are that Hprps does not 

extract all the extractable copper and only a little nickel is removed, and Hacac 

extracts all the iron and no nickel. Despite its longer heating cycle, H2pnaa removed 

all the available zinc and copper, did not extract iron, and the highest extraction of 

nickel (28%) was obtained. 
The use of the SERVO process for the removal of heavy metals from typical 

fly ashes and Orimulsion ash is feasible using the two ligands, Hprps or H2pnaa. 

Hprps can remove a larger variety of elements than H2pnaa, with a better extraction 

and is therefore preferred. The extraction of elements obtained by Hacac is the 

lowest obtained from the three ligands, therefore Hacac is not recommended for the 

extraction of metals from fly ashes. 

5.2.3 Conclusion 

The SERVO process has been applied to four different sources contaminated 
by heavy metals that had different physico-chemical characteristics. These sources 

can be ranked from the best to the least applicable: Orimulsion ash > canal 

sediments > MSW Rotterdam fly ash > Puertollano fly ash. For the fly ashes, of the 

three ligands Hprps is the best followed by H2pnaa. Hacac is not recommended for 

these sources because metal extraction was too low. For the canal sediments, H2pnaa 

is the best followed by Hprps. Hacac is also not recommended for sediments because 

of its ability to remove iron(Ill). 
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Therefore balancing their thermal properties, ability to form thermally stable 

metal complexes and cost, and the extraction results obtained on the different sources 

studied, H2pnaa is the preferred extractant followed by Hprps and Hacac. 

5.3 Cost of the SERVO process and comparison to other relevant 

technolosies 

In general, costs are site-specific and based on parameters such as the size of 

the affected area, the characteristics of the contaminants, the required clean-up 

standards, the level of health and safety protection during the remediation, the type 

and number of chemical analyses, and any long-term, post-remedial actions required. 

Costs can generally be broken down into capital costs and operating costs. 

Capital costs constitute one-time costs that occur at the beginning of a project 

and depend on the size of the plant. They include cost of all the installed equipment, 

construction of buildings and provision of facilities such as on-site labs and offices, 

one-off costs involved with obtaining licenses, site characterization and preparation, 
bench scale treatability tests, design, engineering, start-up, etc. 

Operating costs include pre- and post-treatments (excavation and dewatering, 

replacement of cleaned sediments), labour, utilities, sampling and analysis, 

consumables, equipment repair and maintenance, waste disposal and transportation, 

project management, quality assurance measures, insurance, and leases. 

Total costs for a full-scale remediation are found by adding the capital, 

operating, and also include contingency costs associated with unforeseen difficulties. 

This section describes the budget cost estimates (±20% accuracy) to process 
10,000 tons of sediments on site using the extractant H2pnaa. The SERVO process 

costs provided the best basis for projecting the costs for a remediation operation. 

Only an approximate evaluation of capital and operating costs will be carried out 

based on catalogue reagent prices, process energy requirements and a typical cost 

breakdown from nickel laterite processing [147] and acid leaching. [146] 

The cost of competing remediation technologies were standardised to the 

same currency and quantity of sediments processed to make them comparable with 

the SERVO process costs. 
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5.3.1 General Assumptions 

It is assumed that the plant would be used for sites up to 10,000 tons, its 

performance will be maintained at 20 tons/hr, and will operate 330 days per annum. 

The process will operate on site and no sediment transportation is required. Power 

will be provided to the pilot plant substation within the plant battery limit. Nitrogen 

and hydrogen will be available at the plant battery limit. Reagents will be self- 

contained with regard to administration and engineering requirements. The battery 

limits include the following inputs: sediments on storage site, tonnage nitrogen and 
hydrogen, power, and bulk reagents; and the output: metal and residues. 

Implicit in the scale-up cost projection is the assumption that some bench 

scale treatability tests on a 40 kg size reactor will have been performed to confirm 

the best operational conditions and the extraction results obtained in the present work 

(small scale) and that the plant would be required to meet similar extraction results to 

those obtained in the present work for the production of metal from sediments using 

the extractant H2pnaa. For the purposes of this exercise zinc was considered as the 

metal to be recovered from canal sediments. 
Some pre-treatment may be required on the sediments before applying the 

SERVO process. These may involve only physical separation like excavation, 

dewatering to remove most of the water present, and screening to remove oversize 

debris (if any). It is important to recover and possibly treat the water from the 

dewatering process because it may contain elevated levels of soluble and suspended 

metals. Commonly used processes for dewatering include filtration, expression, and 

centrifugation. A combination of these methods typically is used to obtain 

successively drier solids. The projected costs for these physical separation processes 

(dewatering and screening) were evaluated by the ESTCP [148]. This cost, for the 

treatment of 10,000 tons of sediments at a processing rate of 20 tons/hr, would be 

approximately £7.5/ton. 

Total costs for technology applications were standardised for comparability, 

with adjustments made for both currency and quantity of sediments treated. It was 

assumed that 1$ = £0.5973, and 10,000 tons = 6850 cu. yd. No adjustments were 

made for time or location (using an inflation factor for time and a cost factor for 

location) [148,149]. Moreover there are some correlation factors between 

technologies costs and quantity treated [150], as the unit costs decrease with increase 
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in the quantity treated. Again when adjustment was made to the amount of sediment 

treated, there was no consideration to these factors. 

5.3.2 SERVO process costs 

5.3.2.1 Capital cost 

Different SERVO systems may vary in the manner in which the soils are 

transported through the second thermal reactor (mechanical design features), the 

method used to heat the soils (direct or indirect, heated or fired); the temperature at 

which the thermal reactors operate (process operating conditions); the time required 

to treat the soils (residence time); and the off-gas treatment used to control emissions 

(air pollution control system), and to method used to reduce the metal complexes to 

metal and recycle the ligand. Moreover systems may either be stationary facilities or 

mobile units. Various types of thermal reactors are currently used in thermal 

desorption technologies and are available in four configurations: rotary dryer, asphalt 

plant aggregate dryer, thermal screw and conveyor furnace. [151] Among these four 

types of desorption units, the latter seems to have the mechanical design features and 

process operating conditions that best fit the SERVO process requirements. A 

conveyor furnace uses a flexible metal belt to convey the sample through the heating 

chamber. A thin layer of sample is spread evenly over the belt. As the belt moves 

through the system, agitators lift the belt and turn the sample to enhance heat 

transfer. The conveyor furnace can heat the sample to temperatures from 150 to 

430°C. This system is mobile and can treat 5-10 tons of sample per hour. A Low 

Temperature Thermal Desorption (LTTD) system using a conveyor furnace could be 

the basis for the SERVO process, and so the capital cost for the SERVO process will 

be based on the LTTD system. This was estimated to be £1 152 390 for excavation, 

thermal desorption and waste container management of sediments. [ 152] 

5.3.2.2 Operating costs 

Operating costs include physical separation processes cost, energy costs, 

reagent costs, maintenance, labour, administration and depreciation costs. The cost 

for physical separation processes (excavation, dewatering and screening) was 

estimated by the ESTCP to be £7.5/ton [146]. 
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Thus the cost for 10,000 tons of sediments will be £74 700. It is assumed that the 

sediments will be dried to the same level as that obtained on the bench scale, i. e. to 

5% moisture content. 
Energy costs include the energy required to evaporate H2pnaa, and to provide 

the heat required for the process. The energy cost was taken as an average unit cost 

in the U. K. as £0.055 (kW hr)-', with I kW hr = 3.6 x 106 J. 

Energy requirement for the evaporation of H2pnaa has been assessed on the basis of 

the heat of evaporation of the extractant (112240 J/mol). [I 11] 

Considering extraction of 95% zinc from 10 000 tons of sediments containing 
0.855 % zinc, the production of zinc by the SERVO process would be: 

0.855 95 81225 
10 000 x 100 x 100 = 81225 kg of zinc or 65.4 =124 200 moles of zinc. 

So the energy requirement for the evaporation of the H2pnaa used to process 10 000 

tons of sediments is: 124 200 
x 112 240 = 38 722 kW hr. 

3.6 x 106 

Energy requirements to heat the SERVO process were estimated by Pichugin 

[111] to be about 7.02 kW hr/kg of metal produced. Therefore the energy 

requirements to heat 10 000 tons of sediments in the SERVO process is: 81 

225 x 7.02 = 57 020 kW hr. 

Total energy cost is: (38 722 + 57 020) x 0.055 = £5 266 

The H2pnaa reagent cost for I mole of metal extracted is £8.8. Considering 

four heating cycles of 5 hours, with 4% H2pnaa degradation in each cycle, this 

corresponds to 16% H2pnaa degradation overall. With the possibility of recycling, 

the reagent costs for the extraction of 124 200 moles of zinc: 100 x 124 200 x 8.8 = 

£175 000 

Maintenance, labour, operating supplies and depreciation costs for SERVO 

pilot plant have been estimated on the basis of the typical operating costs for electric 

furnace smelting for Ni-Fe alloy. [147] 

The different operating costs detailed above have been summarised in table 47. 
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Operating costs Cost for 10 000 tons of 
Sediments processed 

Physical separation processes £75 700 

Energy costs £5 266 

H2pnaa cost E175 000 

Maintenance and material £l 572 

Labour £9 700 

Operating supplies £1 940 

Contingency £15 816 

Indirect costs £15 816 

Depreciation (straight line over 5 years) £63 070 

Total operating costs £ 363 750 

Table 47: Operating cost of the SERVO process for 10 000 tons of sediments treated 

The total cost to clean 10 000 tons of sediments using the SERVO process 

with H2pnaa extractant is obtained by adding the capital cost and the operating costs: 
£1 152 390 + £363 750 = £1 516 140 

Any zinc recovered by the SERVO process can be considered as a credit to the 

operating cost. This credit could be attributed to the sale of 81 220 kg of zinc 

produced at the current cost of £600/ton, which means a credit of £48 735. 

5.3.3 Competing technologies 

Cost of the following remediation technologies that could also be used to 

treat sediments contaminated with heavy metals have been standardised to the same 

currency (£) and quantity of sediments or soil processed (10 000 tons) to make them 

comparable with the SERVO process. 

5.2.3.1 Dredging and Offsite disposal [148] 

This is the simplest technique and would consist initially of dredging and 
dewatering the sediments. This would result in a very significant reduction in the 

mass of the contaminants. The sediments would then be transported off-site for 

disposal at a permitted landfill as hazardous material. 
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It must be mentioned that the landfill tax applied in this American reference, 
[148] in 1997, is different from that in the UK. The landfill tax was set up in 1996 by 

the UK government at an initial cost of £7/ton, and raised annually by £1 until April 

2004. From April 2004, the annual increase will be £3-4/ton, until it reaches a rate of 
£35/ton in the medium to long term. Another important factor is that the number of 
hazardous waste sites in the UK is tending to decrease; so as a treatment option 
landfill is not viable in the long-term. 

Capital costs $262 395 =£ 156 730 

Operating costs (10 000 tons): $2 095 335 =£1 252 544 

Total Project Cost (10 000 tons): £1 408 274 

5.2.3.2 Containment/capping [1531 

As an example of this process the cost data for a project concerning 2600 cu 

yd (3800 tons) of sediments (sediments and the upper six inches of underlying clay) 

excavated from Bayou Verdine (Louisiana) and containing elevated concentrations 

of 1,2-dichloroethane (EDC, 11400 µg g') and also some zinc (620 µg g') in a 

relatively localized portion (reach 2) of the Site Bayou Verdine has been chosen. The 

concentration for removal was set at 289 pg g"' EDC. Three layers were specified to 

cover the sediments, from the bottom up: a barrier layer directly on top of the clay to 

impede the vertical movement of water and sediments; a protective layer to protect 

the barrier layer; and a sand/silt cover material to provide a substrate with a texture 

similar to natural conditions (minimum 1 ft thick). These layers form a physical, 
hydraulic and chemical resistant barrier that separates the contaminated sediments 
from the overlying water column and the biota in the river. 

Capital costs $1 070 000 =£ 639 111 

Operating costs (3800 tons): $ 25000 =£ 149 325 

Total Project Cost (10 000 tons): £1 032 072 

5.2.3.3 HCI acid leaching process [1481 

This chosen example here concerned 835 tons of soil containing 4,117 pg g"' 

of lead in Louisiana processed by physical separation and hydrochloric acid leaching 
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at an average processing rate of 6.3 tons/hour over a period of 18 days. This system 

consistently met both the total and TCLP lead targets. The acid leaching was 

performed as a continuous process and involved four vessels. In the leaching tank the 

acid solution was mixed with the soil to leach out the metals at a pH of 1.4 to 1.5. It 

removed an average of 96% of the total lead. Precipitation of lead was conducted 

efficiently at a pH of around 9.5 by adding sodium hydroxide. About 7% of the lead 

was collected in the precipitate sludge. 

Capital Costs $ 58 450= £ 34 912 

Operating costs (835 tons): $50 100 =£ 26 720 

Total Project Cost (10 000 tons): £ 634 912 

5.2.3.4 Electrokinetic processing [1551 

A site in California ('V2 acre in area) where electroplating and metal finishing 

operations had been conducted was selected for demonstration of electrokinetic 

remediation in 1994. This demonstration was carried out on 1 000 cu yd (1460 tons) 

of a soil matrix consisting of a mixture of 85% sand, 7% gravel, 6% silt, 1% clay, 

with a pH of 5.84, an hydraulic conductivity of 0.045 cm sec-1, and a CEC of 3.9. 

Levels of chromium and cadmium were up to 25,100 µg g"' and 1,810 µg g"', 

respectively. 

The available literature from the equipment manufacturer typically quote 

costs only in terms of power and chemical amendments used. These costs reflect full- 

scale costs extrapolated from the costs incurred on the demonstration-scale project. 
Also, these costs do not reflect turnkey costs because effective treatment was not 

achieved during the demonstration. 

Total Capital costs $890,988 = £532 187 

Total Operating costs (1460 tons) $302,062 = £180 421 

Total Project Cost (10 000 tons): £1 768 075 
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5.2.3.5 In Situ Lead Fixation - Fox River, Wisconsin [1541 

An in-situ underwater treatment system was designed to fix contamination by 

lead to the sediment of the Fox River (Wisconsin, USA), and avoid complications 

and cost of dealing with removal of contaminated sediments. This was a relatively 

small-scale treatment involving 500 tons of sediment. First, cofferdams were driven 

into the bedrock to a total depth of 15 feet (the water depth ranged from 7 to 8 feet in 

the treatment area) and sealed. Water was then pumped out of the cofferdams to 

maintain an inward gradient. Next, a mixture of chemical additives: fertilizer grade 

phosphate, magnesium oxide, and a reactive form of limestone, were incorporated 

into the sediment. Adequate time was allowed for complete reaction, and then the 

stabilized sediment was dredged and put into a containment basin, from which the 

pore water was allowed to drain and the stabilized sediment was then sent to a 
landfill as a non-hazardous waste in USA. The leachable lead from the stabilized 

sediments was reduced to less than 0.26% of the highest observed untreated value. It 

must be mentioned that this value would not be allowed by the hazardous waste 

regulations in the UK (UK ICRCL threshold values for lead are between 500-2000 

g/kg [appendix 2)). 

Total Capital costs $100 000 = £59 730 

Total Operating costs (500 tons) $32 000 = £19 114 

Total Project Cost (10 000 tons): £442 000 

5.2.3.7 Comparison of Technologies: 

The cost of the above technologies have been normalised to provide a 

standard basis for comparison with the SERVO process and the results ranked from 

the cheapest to the most expensive in table 48. 

From this table, the cheapest option is the in-situ fixation, mainly due to the 

fact that fixation uses simpler equipment and therefore incurs lower capital costs. But 

the strength of the solidified sediment is important to prevent its erosion and the 

release of contaminants over time. Since mixing and curing temperature are the 

principal factors that influence solidified sediment strength, it is difficult to control 

in-situ solidification. 
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Technologies Capital costs Operating costs Total cost 

In Situ Fixation (lead) 59 730 382 270 442 000 

HCl acid leaching process 34 912 600 000 634 912 

Containment/capping 639 111 392 961 1 032 072 

Dredging and offsite disposal 156 730 1 251 544 1 408 274 

SERVO process 1 152 390 363 750 1516 140 

Electrokinetic 532 187 1 235 888 1 768 075 

Table 48: Comparison of technologies costs for 10 000 tons () 

The second cheapest treatment is acid leaching that removes the heavy metals 

off-site, and this eliminates any further leaching problems and long term 

maintenance and monitoring of the site. Acid leaching uses simple equipment and 

therefore incurs lower capital costs, however although hydrochloric acid is cheap it is 

also corrosive that can lead to problems with equipment selection. However the 

treated soil still retains its loose texture and can be returned on site and recycled 

metals can be recovered and considered as a credit to the operating cost. However, 

the efficacy of this acid treatment will vary with soil type, especially the content of 

acid-consuming minerals; the metal species and complexing characteristics, and the 

capability of metal oxidation. 

The third cheapest treatment is on-site containment and capping. However, 

the potential for erosion and compatibility with site conditions would have to be 

determined prior to placement of the barrier layers. Incomplete coverage and 

technical difficulties in placing the cover is also a concern, especially in sites that are 
difficult to reach. Long term maintenance and monitoring of the cover is subject to 

estimation and might lead to variation in costs. 

Dredging and off-site disposal is often the preferred option at sites with less 

than about 2,600 tons of soil, because it is the cheapest option, and it offers a rapid 
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and cost effective process that completely remove the liability. [148] At larger sites, 

on-site technologies become cheaper because the fixed costs for site preparation, 

plant equipment, etc., are spread over a larger tonnage of soil processed. But the 

number of hazardous waste sites in the UK are tending to decrease; and the landfill 

tax cost is increasing drastically until it reaches a rate of £35 /ton in the medium to 

long term. So overall landfill is not a viable option in the long-term. 

The SERVO process cost is in the same range as the dredging and offsite 
disposal technique. It offers the advantage of removing and recovering soil heavy 

metals, and eliminating any further leaching problem and long term maintenance and 

monitoring. The treated sediment still retains its texture and can be returned on site. 

At larger sites, the capital cost could be spread over the greater amount of sediments 

processed, and thus the unit cost per ton of sediments processed would be expected 

to be much lower. The processing rate, which affects the costs incurred for labour, 

utilities, chemicals and other consumable supplies, depends on type of sediment. 

Thus some reductions may be possible. Bulk purchases of consumables may also be 

feasible for larger operations. Any recycled metals recovered by the SERVO process 

are considered as a credit to the variable cost, and higher value metal production and 

sale would reduce further the cost. SERVO process remains a process that has been 

only tested at a bench scale and a small pilot scale is required to confirm the 

extraction obtained here. 

Electrokinetic treatment is also a new technology that has only been tested on 

a small scale (1460 tons). Issues such as control of contaminant movement, ability to 

achieve clean-up goals, by-product formation, and treatment effects on the soil 

matrix have not been addressed. Like the SERVO process, electrokinetic processing 

will eliminate the long-term liability that is incurred by land-filling of contaminants. 

Nevertheless, this is an on-site treatment that remains more expensive than dredging 

and off-site disposal, and the unit cost per ton would not decrease much for 

application on a larger scale, because the capital cost is not important compared to 

operating cost that represents more than 2/3 of the total cost. 
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5.3.4 Conclusion 

The total cost for the SERVO process to treat 10 000 tons of sediment is 

estimated at an average cost of £1 516 000, or £151.6/ton. Several benefits of the 
SERVO process may outweigh the cost disadvantage over other remediation 

processes, irrespective of the amount of soil requiring processing, and these should 
be considered by sites trying to identify the best alternative. 

With solidification and containment/capping techniques, although the metals 
have been immobilized or contained, the liability remains. With extraction 
technologies like the SERVO process, the metals should be removed, recovered, and 

reused and any recycled metals would reduce further the cost. Sediments treated with 
the SERVO process are physically unchanged and can be recycled to the site, 

whereas solidification may result in a hardened treated material that is physically 

unsuitable for replacement. 
Due to issues of technical feasibility, containment and capping is often more 

difficult to implement than the dredging alternatives when sites are not easily 

reached. After dredging the SERVO process can be applied instead of sending the 

material to off-site disposal thus satisfying future demands to reduce land-filling. 

Electrokinetic offers the advantages of an extraction process, but it stays an 

expensive and unproven technology for metal removal. 
Like the SERVO process, acid leaching also offers the same advantages of an 

extraction process and for both techniques the efficacy will vary with soil type, 

contained metal species, and metal speciation characteristics. Acid leaching being 

less expensive and being an established technology would generally be preferred 

over the SERVO process unless the sample contained a large proportion of acid- 

consuming minerals than could lead to downstream processing and waste disposal 

difficulties. 

5.4 Future Studies 

New methods for fly ash pelletization need to be considered to improve the 

extraction rate of the metals from fly ash and render them as porous as the 

Orimulsion ash pellets. 

Although extraction of metals has been shown to be possible for new 

contaminated sources with different physico-chemical characteristics, the recovery of 
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the metals remains a problem. A study of the possible thermal separation of metals 
by careful temperature control needs to be considered, and other separation 

techniques need to be investigated to separate the metal complexes from each other 

and hence recycle pure extractant and pure metals for possible reuse. 

If hydrogen reduction is used as a means of metal recovery, then the 

extractants can be recycled and reused. In this case the carrier gas will be a mixture 

of hydrogen and nitrogen, so the influence of hydrogen in the carrier gas on metal 

extraction and the reagents H2pnaa and Hprps needs to be investigated. Earlier 

studies [134] have shown that the mixture of hydrogen and nitrogen has no effect on 
the extraction of copper with Hacac. 

Recovery of metals from complexes with Hprps is also required to 

demonstrate the overall feasibility of the process using this extractant. However as 
Hprps is too expensive for the metals currently being studied, the extraction of more 

valuable metals should be investigated. 

The contact residence time between the extractant and the feed to be 

decontaminated is a key parameter affecting the degree to which decontamination is 

achievable. This time depends upon the design and operation of the system, therefore 

optimization of the SERVO process reactors to improve the contact between the feed 

and the extractant could increase productivity. 

Pilot testing of metal-contaminated soil, in which a quantity of soil from the 

site is processed through the SERVO system is required. The results of preliminary 

testing of soil samples should identify the relevant operating conditions, and 

examination of the overall performance records should indicate the effectiveness of 

the system. In any pilot testing it is important to ensure that the soil tested is 

representative of average conditions and that enough samples are analyzed before 

and after treatment to determine with confidence the overall process operating 

conditions. 
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