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Abstract

This thesis aims to find general principles governing the behaviour of biological systems, with a
particular emphasis in the communicational (social) aspect of these systems. Communication
between biological entities plays a major role in their evolution, enabling them to exchange
information about their environment and thereby improving their chances of survival. Com-
munication also plays a pivotal role in the organisation of populations of organisms, clearly
observed in social insects, but present also at least in bacteria, plants, fungi, animals and
humans. It is also theorised that the genetic code is a by-product of the establishment of an
innovation-sharing protocol between primitive cells [Vetsigian et al., 2006].

This thesis is mainly concerned with identifying necessary conditions for the emergence of
communicational codes, and the problems that arise with their establishment. For this pur-
pose, we introduce an information-theoretic framework where species maximise their growth
rate by following a Kelly-gambling strategy to bet on environmental conditions. Information
theory provides a powerful tool for abstracting away mechanisms and for focusing on hard
limits of a system’s dynamics which cannot be circumvented.

We begin by exploring the relation between information exchange and limited resources.
We show that a transition from cooperation to antagonism in the exchange of environmental
information follows from a change in the availability of resources, from abundant to scarce.
We then assume a non-competitive scenario with abundance of resources, where conflicts in a
population occur only at a communicational (informational) level, rather than on the physical
level, such as competing for (physical) resources. However, traditional Shannon communi-
cation is non-semantic, as opposed to the semantic communication observed in biological
systems, which is necessary for capturing conflicts in communication.

In the traditional use of information theory, it is assumed that every organism knows how
to “interpret” the information offered by other organisms. However, this assumes that one
“knows” which other organisms one observes, and thus which code they use. In our model,
however, we wish to preclude that: namely, we will do away with the assumption that the
identity of the organisms who send the messages and those who receive them is known, and
the resulting usable information is therefore influenced by the universality of the code used
and by which organisms an organism is “listening” to.

We introduce a model which captures semantic communication in information-theoretic
terms, where organisms talk to each other in a communication network. We show that, for
particular population structures, when organisms cannot identify which other organisms they
talk to, the adoption of a universal code emerges as a solution for full interpretation of the
shared information.

However, the evolution and establishment of universal codes for communication introduces
vulnerabilities: organisms can be exploited by parasites. We define two types of parasites
whose strategies have different levels of complexity and study the co-evolution of a host (the
population) and a parasite by optimising their respective objective functions in stages. First,
we consider a disruptive parasite (a troll) that inflicts harm in a host by minimising a pop-
ulation’s mutual understanding, and then a more complex parasite, which manipulates the
members of the population via their codes (the puppetmaster). We show emergent charac-
terisations of both parasites, as well as which host configurations are robust against parasites
and show adaptive properties.



This thesis introduces a framework which allows the study of informational properties
in the host-parasite co-evolution, where the rules of the parasite’s habitat, the host, are the
outcome of an evolutionary process, and where these very same rules are those that allow the
parasite to exploit the host.
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Chapter 1

Introduction

1.1 Motivation

In the modelling of biological systems, one major objective is to capture properties observed
in nature that are emergent from the dynamics of the modelled system. Furthermore, one
would like to identify the minimal set of assumptions that produces a particular phenomenon.
Let us consider quorum sensing in bacteria: when the extracellular concentration of a spe-
cific molecule passes a certain threshold, bacterial cells switch their phenotypes in order to
maximise their chances of survival (usually by coordinating behaviour on a population-wide
scale) [Waters and Bassler, 2005]. This alteration of gene expression in response to a partic-
ular molecule concentration is an evolved property of cells, where the environment changes
the internal state of the cell and vice versa.

This brief example already gives a rather abstract overview of the complexity of an organ-
ism: it needs to establish predictive rules between environmental cues (e.g. molecules) and its
internal organisation, such that the provoked changes, in turn, produce an adequate response.
The predictive rules correspond to a semantic interpretation, which is context-dependent (i.e.
can differ with environmental conditions or among species) [Walker and Davies, 2013]. Such
rules allow for effective communication between organisms, thereby increasing their predic-
tions of their environment. However, in the same way these conventional rules can improve
predictions, they can also be exploited by other organisms, for instance by communicating
“false” information such that the receiver’s updated belief of the state of the environment is
detrimental to its purposes [Doyle, 2010]. Therefore, some defence mechanism needs to be
implemented for the long-term success of the species.

This simple picture raises several properties of interest in biological systems: first, organ-
isms communicate to improve their chances of achieving their goals [Lachmann et al., 2000];
second, they interpret information in a semantic way (signals have a specific meaning to
them) [Smith, 2000, Barbieri, 2003]; third, their evolved interpretation of information can be
exploited by other organisms [Robbins, 1994, Doyle, 2010]; and finally, the resulting dynamics
of the system is determined by evolution and is susceptible to further changes according to
the context [Auletta et al., 2008, Walker and Davies, 2013].

These are the main properties that I intend to capture in a model of a biological system.
As I mentioned in the beginning of this section, these properties should emerge, ideally, from a
minimal set of assumptions over the organisms. This type of study requires the use of general
models, where we want to gain insights into the possible forms of a solution for common
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biological problems (in opposition to specific models, which are concerned with particular
species and environments) [Parker and Smith, 1990]. I take the optimality approach to
modelling, which assumes that organisms are maximising some function. The challenge is,
therefore, to be able to reproduce observed outcomes in a principled manner. In this way, we
can test our assumptions by determining whether there is support for the predictions of the
model [Sutherland, 2005].

In this framework, I adopt an information-theoretic perspective for modelling biological
systems. Information theory was originally conceived as a theory of communication [Shannon,
1948], although its potential for modelling living organisms was quickly recognised in the works
of Attneave [Attneave, 1954], Ashby [Ashby, 1956] and Barlow [Barlow, 1959]. In this view,
living organisms acquire information from their environment and process it in order to produce
a particular response [Nemenman, 2011]. This abstract representation of an organism is very
powerful, and it allows to quantify, for instance, how much information an organism needs to
process in order to achieve a certain utility [Polani et al., 2006]. Furthermore, since biological
sensors operate close to the theoretical optimum dictated by physics and by information
theory (see [Polani, 2009] and references therein), abstracting away the constraints imposed
by biological mechanisms allow us to focus purely on informational constraints (physical
constraints can also be considered from an information-theoretic point of view).

This approach to modelling biological systems permits the exploration of unobserved
phenomena: for a given set of assumptions, the results may show qualities that are supported
in observations, or they may provide us with solutions that were not observed in nature. This
expands the research in biology beyond the territory circumscribed by life-as-we-know-it, to a
larger domain which Langton famously called life-as-it-could-be [Wilson and Langton, 1989].
However, we should be careful when relating these models to biological systems, since the
absence of observations may be due to additional constraints that are not being considered.
Another avenue that I will explore occasionally is the connection of the models I develop with
different disciplines, such as economics and social sciences.

The main objective of this thesis is to develop information-theoretic models that capture
the properties mentioned above: organisms can communicate (semantically) to improve their
chances of survival, but at the same time they can be deceived by other organisms. The
dynamics of the system are determined by evolution and are subject to further changes. As
I stated, for organisms that operate close to the limit dictated by information theory, one of
the main challenges is to find the constraints that capture these properties of interest. First, I
explore the communicational behaviours of two species’ populations competing for resources.
Second, I develop a model that shows the emergence of common codes within a population,
which introduces semantics in communication. Third, I study how this organisational step
introduces vulnerabilities, by formalising two paradigmatic types of parasites and studying
their characteristics, as well as which properties of host populations show robustness and
adaptability in reaction to these parasites.

1.2 Research Questions

• Why do organisms communicate? How does competition for resources affect communi-
cation?

• Why do many species share common codes for communication? What are the conditions
for the emergence of codes?
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• How does the structure of a population influence the evolution of codes?

• Which strategies can be used to exploit communicational conventions?

• How can a host population achieve robustness, adaptability and/or immunity against
parasites?

1.3 Contributions

• An information-theoretic model combining bet-hedging (or Kelly-gambling) and com-
munication in a scenario with limited resources. We show a transition from cooperation
to antagonism in information exchange when there is a change in resource availability
from abundant to scarce.

• The development of an information-theoretic model able to capture semantic aspects of
communication. The model also captures the influence that the structure of a population
has on the outcome of their codes for communication.

• A framework to analyse the informational co-evolution between a host and a parasite.

• The formalisation of two types of informational parasites: a disruptive parasite (the
troll), and a manipulative parasite (the puppetmaster). We show how their defined
behaviours show emergent characteristics: for instance, the troll behaves as a contrarian,
while the puppetmaster manipulates with a “dog-whistle” effect, and hides by stealing
other entities’ identity.

• Identification of desired properties of a host in contact with parasites: how to achieve
immunity, robustness and adaptability? We show configurations of a population that is
immune to one type of parasite but vulnerable to the other; how the use of synonyms
can increase robustness; and that centralised populations are more adaptable against
parasites.

1.4 Outline

In the next chapter, we provide an overview of the technical background of the thesis’ work.
This covers the several methods and frameworks used throughout the thesis. A particular
method used in one of our models is described in Appendix A. Then, we present the original
work of this thesis in three chapters. In each of these, we discuss other works in the literature
that study the same or similar problems.

In the first of these, Chapter 3, we explore the dynamics of information exchange in a
system composed of two species living in an environment with limited resources. We introduce
a simple model where species have the option to share information with the other species,
relating their growth rate with the information they have about the environment. Then, in
Chapter 4, we take a step back and look at the necessary conditions for a species to fully
interpret the information shared by other species. We present a model that captures the
use of conventions for communication between organisms, and study how the structure of a
population influences the evolution of communication. Chapter 5 deals with the vulnerabilities
that arise when establishing conventions for communication: parasites can make use of these
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to exploit other organisms to their advantage. We formally characterise two types of parasites,
and study some properties of the co-evolution of host-parasite systems. Finally, in Chapter
6, we discuss our results in a general context.
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Chapter 2

Background

2.1 Introduction

The main framework used throughout this thesis consists of information theory and Bayesian
networks. We use Bayesian networks to model how the variables in our system (environment,
organisms, etc.) are related, while we use information theory to define optimisation criteria
according to which we propose the dynamics to be aligned, such as maximising or minimising
mutual information quantities.

Then, we introduce the information processing view of organisms, which serves as a con-
ceptually clear abstraction for explaining our assumptions in their modelling. By taking an
optimality approach, we make, throughout the thesis, extensive use of fitness functions. The
decision of what is being optimised in a biological system is usually of great controversy
in biology. We briefly explain some common views/concepts of what is being optimised by
Darwinian evolution.

Finally, we introduce basic game-theoretic notions that we use, by presenting a well-known
social dilemma for cooperation. We conclude with a brief description of the optimisation
algorithm (a genetic algorithm) utilised in this thesis in all experiments where an optimisation
was carried out.

2.2 Bayesian Networks

2.2.1 Basic concepts and notation

Bayesian networks are a framework that allows reasoning under uncertainty. They allow to
describe probability distributions of variables of interest with a clear view to their statistical,
and, in principle, also their causal dependencies. It provides a formalism for making quantifi-
able statements about these variables, relying on the rules of probability theory to manipulate
values. Let us introduce the notation for probabilities that we will use in the remaining of
the thesis.

For a random variable X (uppercase), its alphabet is the set of possible values it can
take, denoted by X (calligraphic). The cardinality of the alphabet is given by |X |, and,
for writing probability mass functions, we denote the concrete values of the alphabet using
sub-indexes: x1, x2, . . . , x|X |. The probability of X having the specific value x ∈ X will
be denoted by Pr(X = x), unless there is no possible confusion about which variable we
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are using, in which case we write p(x). Similarly, the conditional probability is written as
p (y | x) for Pr (Y = y | X = x) when no confusion is possible. If no specific value for a variable
is provided, as for instance, in p(X), then this denotes the whole probability distribution over
X. Subscripted random variables, such as Xi, denote a different variable for each index i. For
sums and products over elements of an alphabet, we will write

∑
x instead of

∑
x∈X where

no confusion can arise.

2.2.2 Formalism

A Bayesian network is defined as a directed acyclic graph where each node represents a random
variable, and arcs indicate the existence of direct causal influences or dependencies between
the linked variables [Pearl et al., 2000]. These dependencies are quantified by conditional
probabilities for each node given its parents in the network, allowing the computation of joint
probabilities for any subset of variables given evidence about any other subset [Pearl et al.,
2000].

Each node in the network is a random variable Xi, and its parents are denoted by
pa(Xi). How this variable depends on its parents is given by the conditional probability
Pr (Xi | pa(Xi)). The joint distribution function over the variables X1, X2, . . . , Xn is given
by the product

p(x1, x2, . . . , xn) =

n∏
i=1

Pr (Xi = xi | pa(Xi)) (2.1)

Having the joint probability of any set of events allows us to answer probabilistic queries
about the variables. A typical example is the following Bayesian network:

Sprinkler

Grass wet

Rain

Figure 2.1: A simple Bayesian network

Let us suppose we want to investigate why the grass is wet. We know that the grass can be
wet for two reasons: because it rained, or because the sprinkler was activated (or both). Also,
we know that the status of the sprinkler depends on the rain. A simple Bayesian network that
captures these relations is shown in Fig. 2.1. By defining the causal conditional probabilities
p (Sprinkler | Rain) and p (Grasswet | Sprinkler,Rain), together with p(rain), we can then
answer questions such as “what is the probability that it is raining, given that the grass is
wet?”. This is computed in the following way:

p (Rain = true | Grasswet = true) =
p(Rain = true,Grasswet = true)

p(GrassWet = true)
(2.2)

2.3 Information Theory

Information theory was originally develop by Shannon as a theory of communication [Shan-
non, 1948]. The two fundamental results he introduced are (a) the entropy as the ultimate
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data compression; and (b) the channel capacity as the ultimate transmission rate of commu-
nication [Cover and Thomas, 2002]. However, information theory has contributed to several
fields beyond communication theory, such as physics (thermodynamics), computer science
(Kolmogorov complexity) and economics (portfolio theory; Kelly-gambling). Its applications
to biology are not straightforward since information theory intentionally ignores semantics.

2.3.1 Basic concepts

In this section we briefly introduce some basic concepts of information theory. All the defini-
tions are taken from [Cover and Thomas, 2002], to where the reader is referred for an in-depth
treatment.

Entropy

A measure for the uncertainty of a random variable is given by the entropy of that random
variable. The entropy of a random variable X defined over the alphabet X is given by

H(X) = −
∑
x ∈ X

p(x) log2 p(x) (2.3)

For a base of the logarithm of 2, the resulting unit is bits, which is the one used throughout
the thesis. It gives the number of bits, on average, that are required to describe it. It is always
non-negative and is upper-bounded by log2 |X |. Let us make the concept of entropy clear by
an example, which we take from [Cover and Thomas, 2002]: suppose there is a horse race
with eight horses, with probabilities of winning being
(1/2, 1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64). The entropy of the race is

H(X) = −1

2
log2

1

2
− 1

4
log2

1

4
− 1

8
log2

1

8
− 1

16
log2

1

16
− 4

1

64
log2

1

64
(2.4)

= 2 bits (2.5)

Now, let us suppose we would like to send a message indicating which horse won the race.
One possibility is to send the index of the horse, but this will require 3 bits for any horse
(they would be represented by 000, 001, etc.). We can do better by using shorter codes for
most probable winners, and longer ones for more unlikely winners, such that, on average, we
lower the number of bits used. For example, let us consider the following codes to represent
the eight horses: 0, 10, 110, 1110, 111100, 111101, 111110, 111111. The average description
length (weighted by probability of occurrence) is 2 bits, which is exactly the entropy. This
provides a more compact way of representing the winning horses, and, actually, is the most
compact one: the entropy is a lower bound for the compression of information.

The conditional entropy measures the uncertainty of a random variable once another
random variable has been observed. For instance, let us consider a horse race where the
winning horse is X, and we receive a tip about the race, represented by Y and related to the
race by p (y | x). Then, the uncertainty of the horse race considering the tip we received is
given by

H (X | Y ) = −
∑
y

p(y)
∑
x

p (x | y) log2 p (x | y) (2.6)
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The reduction in the uncertainty of the outcome of the horse race is given by H(X) −
H (X | Y ), which will turn out to be exactly the mutual information between the variables
(defined below). For a gambler betting all his money on repeated races, a reduction in the
uncertainty of the race is directly translated in an increase in his long-term growth rate. This
will be made precise using Kelly-gambling in Chapter 3, where we use it in a model of species
betting on environmental conditions.

Mutual information

Mutual information measures how much information, on average, the knowledge of a random
variable give us about another random variable.

I(X ; Y ) =
∑
x,y

p(x, y) log2

p(x, y)

p(x)p(y)
(2.7)

We can also think of mutual information as the reduction in the uncertainty of a random
variable due to the knowledge of another random variable:

I(X ; Y ) = H(X)−H (X | Y ) (2.8)

The mutual information has some important properties:

• It is always non-negative: I(X ; Y ) ≥ 0

• It is symmetric: I(X ; Y ) = I(Y ; X)

• It is zero if and only if the variables are independent:
p(x, y) = p(x)p(y) ⇐⇒ I(X ; Y ) = 0.

• It is upper-bounded by the minimum of the individual entropies
I(X ; Y ) ≤ min[H(X), H(Y )]

The conditional mutual information is the reduction in the uncertainty of a variable due
to the knowledge of another variable when a third variable is given. It is defined by

I (X ; Y | Z) = H (X | Z)−H (X | Y, Z) (2.9)

Then, the mutual information for a collection of variables is given, via the chain rule for
information, by

I(X1, X2, . . . , Xn ; Y ) =

n∑
i=1

I (Xi ; Y | Xi−1, Xi−2, , . . . , X1) (2.10)

Finally, the Kullback-Leibler divergence between two probability mass functions p(x) and
q(x) is defined as

D (p || q) =
∑
x∈X

p(x) log2

p(x)

q(x)
(2.11)

When p(x) = 0, then it is assumed that 0 log2
0

q(x) = 0 regardless of the value of q(x), and

if p(x) > 0 and q(x) = 0 then p(x) log2
p(x)

0 =∞, giving D (p || q) =∞. The Kullback-Leibler
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Encoder Channel p (y | x) Decoder
W Xn Y n Ŵ

Figure 2.2: Communication system

divergence is always non-negative and is zero if and only if the probabilities p and q are equal.
Sometimes it is called the Kullback-Leibler distance, although it is not a true distance since
it is not symmetrical and does not satisfy the triangle inequality.

We can rewrite the mutual information using the Kullback-Leibler divergence.

I(X ; Y ) = D (p(x, y) || p(x)p(y)) (2.12)

The mutual information is expressed as the divergence between the joint probability and
the product of the marginals. When these probabilities are equal, the divergence, and thus
the mutual information, is zero.

2.3.2 Data-processing inequality

Let us assume the following Bayesian network: X → Y → Z. Then, the data-processing
inequality states that I(X ; Y ) ≥ I(X ; Z). Informally, it shows that no clever manipulation
Z of the data Y about X can improve the inferences that can be made about X from the
data Y .

For instance, let us consider again the horse race X, and a series of tips we received about
it represented by Y . The information about the horse race of the tips is given by I(X ; Y ),
and, the data-processing inequality tell us that we cannot make clever manipulations of the
tips in order to increase that information. The only way that the information about the race
can be increased is by injecting new information, as, for instance, by integrating the tip with
particular knowledge from other sources and times.

2.3.3 Channel capacity

A central result of information theory is the channel capacity. It gives the maximum rate at
which we can transmit information over a noisy channel.

In Fig. 2.2, we show a communication system that consists of an encoder, a channel, and
a decoder. We want to transmit a message W from one point to another through a noisy
channel, such that we can recover the message (i.e. such that our estimate of the message Ŵ
matches the original message). We can think of a communication channel as a system where
the outputs, chosen from an alphabet Y, depend probabilistically on the inputs, chosen from
an alphabet X . This is characterised by the conditional probability of the outputs given the
inputs, p (y | x), and the channel is said to be memoryless if the probability distribution of the
outputs depends only on the input at that time and is conditionally independent of previous
channel inputs or outputs.

The channel capacity of a discrete memoryless channel is defined as

C = max
p(x)

I(X ; Y ) (2.13)
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The maximum is taken over all the possible input distributions p(x). The problem with
transmission of information over a channel comes when we have two different inputs giving
the same output: the inputs are confusable. The idea is to choose a subset of the inputs
such that there is high probability that the produced outputs are caused from only one highly
likely input.

2.4 Information processing view

As mentioned earlier, in this thesis we are concerned with general models for biological sys-
tems. This type of system is immensely diverse, and therefore we would like to find solutions
to problems in biology that hold across different organisms. A powerful abstraction for this
purpose is to treat organisms as information processing units: organisms perceive their en-
vironment, they process this information, which culminates in an action [Nemenman, 2011].
The actions of the organism modify the environment, and can potentially be perceived back by
the organism. This introduces a feedback cycle with intricate dynamics, and can be modelled
as a perception-action loop (PAL) [Klyubin et al., 2005b]. Although we will not particularly
use this model in this thesis, it will help us put into context the models we introduce later,
as well as introduce and discuss some of the assumptions we make.

The perception-action loop is modelled as a Bayesian network consisting of three random
variables: the environment E; the agent’s sensors S; and the agent’s actuators A. In Fig. 2.3
we show these variables unrolled in time. The agent perceives the environment according to
the conditional probability p (S | E), it performs an action according to its policy p (A | S),
and its actions influence the state of the environment according to p (E′ | E,A).

Et

St At

Et+1

St+1 At+1

Et+2. . . . . .

Figure 2.3: Bayesian network representing a memoryless perception-action loop

This abstraction provides a conceptually transparent and universal model for agent-centric
systems. It abstracts away details about composition, mechanisms, etc. of the agent, express-
ing them in the form of a policy. Therefore, a policy can be as simple as a noiseless channel,
or as complex as a human brain. How are all these conditional probabilities defined?

This will depend on the constraints we want to impose in the system. For instance, if we
are given the conditional probabilities for sensing the environment and for updating it, which
together are defining the rules of the world, then these constrain the system: certain states
might be impossible to reach, independently of those variables whose values are not fixed.
Then, what are the values of these variables?

As we have mentioned, we will take an optimality approach to modelling systems with
undefined behaviour. In other words, we will specify a measure to maximise (or minimise)
by letting the undefined variables of the system change. This approach is commonly used in
biology to analyse evolutionary adaptations, where first we ask a question we would like to
analyse, for instance “why is the sex ratio often unity?” [Parker and Smith, 1990]. The set of
available actions of the organism are directly related to this question: here, we can consider
a continuum from producing only female offspring to producing only male offspring. The
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underlying assumption when adopting this model is that natural selection with reproduction
and variation is a sufficient force to achieve optimality, although here we also consider non-
Darwinian adaptations to be outcomes of optimisation processes.

The problem now is to define a criterion to choose the optimal policy p (A | S) of an
organism.

2.4.1 Fitness function

Usually, in biology, some measure of Darwinian fitness is used [Parker and Smith, 1990]. The
choice of fitness function is a significant assumption with consequences in the outcomes of
a model. To illustrate this, let us imagine there is a common pasture where herdsman can
place their cattle for grazing, and let us assume that the total amount of cattle is such that
there is just enough re-growth of grass to maintain a constant grazing. Now, let us assume
a herdsman adds an animal to its herd, which, considering our premises, would result in
overgrazing. What are the consequences for that herdsman, and what are the consequences
for the other herdsmen, in terms of monetary gain?

The herdsman that added the animal will have an additional sale, while all the herdsmen’s
cattle (including those of the abuser) will decrease in value due to malnutrition. However,
from the abuser’s perspective, the gains of an additional sale will normally be much higher
than the cost of overgrazing, since this cost is shared among all herdsmen, while the profit
is not. Therefore, if all herdsmen act in order to maximise their gains, the overgrazing will
eventually deplete the grass.

This situation is famously known as the tragedy of the commons [Hardin, 1968], and
exemplifies the difficulties of cooperation in scenarios with public goods. A similar problem
is presented in the Prisoner’s Dilemma [Rapoport and Chammah, 1965], which we explore
later. In these situations, individual striving can lead to the breaking of the system, while
cooperative behaviours can sustain it.

The point we want to make is that, if we choose as the fitness function the average gain
of the herdsmen, then our optimum will be at the equilibrium point where the benefits of
adding an extra animal equals the decrease in the overall gains. However, choosing a fitness
function where each herdsman maximises their individual gains, then the optimal choice is
to add animals up to the point of depletion. In the former choice, a cooperative behaviour
is assumed, and implicitly the global effects of an agent’s decisions are incorporated into the
fitness function. In the latter, these effects are unknown to an actor, and a local decision
needs to be made, which usually would be one in its favour, and possibly detrimental to the
whole. This produces conflicts in the decision-making process, which are usually analysed
using game theory.

In this thesis, we make the use of both mentioned types of fitness functions, depending on
our respective purposes. For instance, we will use a fitness function that assumes cooperation
to obtain a configuration which serves as a starting point to study conflicts. Conflicts are
studied in two ways: through a game-theoretic analysis and by looking at adaptive responses
when we consider parasites.

However, understanding the emergence of cooperation in public goods games is a major
objective in biology. Fitness functions that assume cooperative behaviour within populations
are said to operate at the population level. On the other hand, where organisms maximise
their own fitness regardless of the others, selection operates at the individual level. Which
should be the unit of selection is a controversial topic in biology [Wilson and Sober, 1994,
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Nowak et al., 2010, Abbot et al., 2011], and hasn’t reached a consensus to date. I will briefly
review the main approaches to biological modelling in terms of the choice of a fitness function,
so that later we can explain our choices in the used terminology.

Unit of selection

Let us first try to clarify what is usually meant by levels of selection. In the process of natural
selection, the units that are “selected” by nature are the ones that are better adapted to their
environment, and thus have a reproductive advantage over competing units, becoming more
common in their population. If we consider a population of birds, which is a group of birds,
which in turn is a group of organised cells, where each cell contain many genes, then what is
the unit of selection that we should choose in our model?

Gene-centric view of evolution

The gene-centric view of evolution sees the gene as the fundamental unit of selection. This
view was developed by Williams [Williams, 1966] and popularised by Dawkins [Dawkins,
1976]. They argue that evolution occurs mainly through the differential survival of competing
genes, where the phenotypes that they jointly express are only to be seen as “vehicles of
selection”, i.e. they only help to propagate the genes, since phenotypes cannot themselves
accumulate change. Then, a question that arises from this premise is, given that genes are
selfish entities, how is it that there exist higher organisms showing altruistic behaviour (which
sacrifice their own fitness in favour of the whole)?

Kin selection

The concept of kin selection [Hamilton, 1964] can explain certain forms of altruistic behaviours
while being compatible with the gene-centric view of evolution. The idea is that an agent’s
individual fitness can be increased by helping related individuals. In this way, the genes
that are shared between these individuals gain an evolutionary advantage, since they are
propagated by both individuals. There is of course a cost to helping others, and several
degrees of relatedness. This is captured in Hamilton’s rule for kin selection: rB > C, where
r is the genetic relatedness of the interacting agents, B is the additional reproductive benefit
gained by the helped agent, and C is the reproductive cost of helping the other. Where this
condition holds, we expect this behaviour to be favoured by natural selection. This special
way of computing an organism’s fitness is called inclusive fitness.

Group selection

The idea in group selection is that evolution acts at the level of the group, implicitly assuming
that lower levels always act cooperatively within groups. According to Wilson & Sober
[Wilson and Sober, 1994], a form of group selection (referred as “näıve group selection”)
that “uncritically assumed that natural selection evolves adaptations at upper levels of the
biological hierarchy” [Wilson and Sober, 1994] was popular in the 60’s, before the gene-centric
view took off. It was neglected thereafter, until its revival in the form of multi-level selection.
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Multi-level selection

The theory of multi-level selection attempts to integrate the interactions among units at all
levels of a hierarchy. It recognises the value of the theory of group selection, where evolution
is considered at levels other than the individual, but it does not disregard conflicts at lower
levels, or any levels at all [Wilson and Sober, 1994, Nowak et al., 2010]. One theory proposes
that competition between populations (i.e. at the population level) can favour the selection
of cooperative behaviour [Traulsen and Nowak, 2006].

2.4.2 Game Theory

Game theory was developed by von Neumann and Morgenstern for studying economic be-
haviour [Neumann et al., 1944]. They introduced a notion of utility which goes beyond
monetary value, where quantities can be assigned to any type of outcome. Their utility the-
orem states that, for any rational agent, if an outcome X is preferred over another outcome
Y , then there exists an utility function such that the expected value of X is larger than that
of Y [Von Neumann and Morgenstern, 1947]. An agent showing rational behaviour is that
whose preferences are consistent with the axioms of VNM-rationality [Neumann et al., 1944].
Without going into details, the axioms are completeness: an agent always has a preference
over any pair of outcomes; transitivity : the preferred outcomes are consistent; independence:
the preference between two outcomes is maintained when each outcomes is mixed equally
with a third one; and continuity : if outcomes X is preferred to Y , and outcome Y is preferred
to Z, then there exists a combination of X and Z that is indifferent from choosing outcome
Y . Then, a rational agent choosing outcomes according to its preferences will behave as if it
was maximising its expected utility.

A game consists in a set of two or more players, a set of actions of the players, and a defined
payoff or utility for each combination of all player’s actions. Games are usually described by
a payoff matrix, such as the following:

Cooperate Defect

Cooperate -1,-1 -3,0

Defect 0,-3 -2,-2

Player B

P
la

y
e
r

A

Figure 2.4: Prisoners’ Dilemma

In Fig. 2.4, we show the payoff matrix for a well-known problem for cooperation: the
Prisoner’s Dilemma (PD) [Rapoport and Chammah, 1965]. The dilemma is depicted in the
following situation: two criminals are imprisoned and put into solitary confinement with no
possibility of communication with each other. The prosecutor lacks enough evidence to convict
them on the principal charge, but they can convict them on a lesser charge. The prosecutor
offers each prisoner a bargain: each of them can betray the other (defect) by testifying that
the other committed the crime, or they can cooperate with the other by remaining silent
[Poundstone, 1992].
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The offers are described in the payoff matrix of Fig. 2.4: if both criminals cooperate
with the prosecutor (i.e. “defect” in PD lingo), each of them get 2 years in prison (agents
maximise their payoffs, but they don’t want to maximise their years in prison, hence we use
negative values). If A betrays B, and B remains in silence, then A walks free and B serves 3
years in prison. Similarly, if B betrays A, and A remains in silence, then B walks free and A
serves 3 years in prison. If both cooperate with each other (i.e. “cooperate” in PD lingo) by
remaining in silence, the will only serve 1 year in prison.

This presents a dilemma for any of the criminals: if A cooperates, then B should defect
and walk free. If A defects, then B should also defect, because serving 2 years is better
than serving 3 years. From this analysis, we should conclude that both criminals will defect,
getting a worse sentence than if both would cooperate. This exemplifies strategic dominance:
defection is a dominant strategy for both players because, regardless of the action of the
other player, one is always better off playing this strategy. In this case, this strategy is called
strictly dominant, but if a player is at least equally well by playing one strategy, and better
off for the rest of the strategies, no matter what the other plays, then the strategy is weakly
dominant.

Cooperate Defect

Cooperate R,R S,T

Defect T,S P,P

Player B

P
la

y
e
r

A

Figure 2.5: Generalised form payoff matrix for social dilemmas

The generalised form of the previous payoff matrix is shown in Fig. 2.5, which can
represent different social dilemmas, depending on the values chosen for R (reward), P (pun-
ishment), S (sucker) and T (temptation). For the prisoner’s dilemma, we have that T >
R > P > S. Other social dilemmas are the Snowdrift game (T > R > S > P ), where mu-
tual cooperation is undermined by the temptation of cheating (T > R); the Stag-hunt game
(R > T > P > S), where cooperation is undermined by the fear of being cheated (P > S);
and the Harmony game (R > S > T > P ), where cooperation is dominant. The Prisoner’s
dilemma combines both the temptation to cheat and the fear of being cheated [Macy and
Flache, 2002].

These games can be solved by using the concept of Nash Equilibrium (NE) [Nash et al.,
1950], where, by fixing the strategies of each player, no player can improve its payoff by
unilaterally deviating. For example, the Snowdrift game is an “anti-coordination” game, with
two NE: one player defects and the other cooperates, and the one with opposite actions for each
player. The Stag-hunt game, instead, has two NE, when both players either simultaneously
cooperate or defect. The Harmony game has only one NE, with both players cooperating,
and in the Prisoner’s Dilemma both players defecting is the only NE.

However, Nash equilibria relies on players with the ability to understand the game and
predict the actions of other players. A solution concept better suited for biological models,
which alleviates the requirements on cognition, is the evolutionarily stable strategy (ESS)
[Smith, 1982]. ESS is a refined form of a NE, adding the condition that a population cannot
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be invaded by a mutant agent playing a different strategy from that of the NE. In this thesis,
nevertheless, we will only use the concepts of strategic dominance. Dominant strategies in
games are sufficient to describe the outcomes of games, wihtout needing to rely on NE or
ESS.

2.5 Optimisation techniques

We argued that, when choosing an optimisation function that considers the fitness of the pop-
ulation, instead of having each agent maximising its own fitness, then the discussed conflicts
disappear. For example, in the PD shown in Fig. 2.4, if we consider the average fitness of
both players, then the optimal solution is mutual cooperation.

In cases in which we are only concerned with the final solution, then the optimisation
mechanism we use is irrelevant. However, the mechanism used will have an influence on
which solution is found, depending on the initial conditions and how we move through the
fitness landscape. The fitness functions we consider throughout the thesis have usually a large
number of local maxima, and we will use genetic algorithms (GA) for optimisation. There
is no particular reason for this choice other than implementation simplicity, and we could
have used any other local optimisation algorithm such as the Hill climbing algorithm for our
computations. Let us note here that we are not using crossover rules in our GA, and thus
these two algorithms will almost always achieve the same optimum.

Genetic algorithms, in general, consider a population of solutions, where each solution is
represented as a genome. A solution can be evaluated by computing its fitness function. Given
an initial population of solutions, genomes with high fitness values are selected, and mutation
and/or crossover rules are applied to them probabilistically. This creates a new population,
and we can repeat the process until a termination criterion is reached. The criterion can be a
maximum number of generations, or, for example, no change in the fitness values for a fixed
number of generations.

Although this technique is inspired on the process of natural selection, here we are only
concerned with the properties of the final solution. However, since our final solutions could be
many, the result of the optimisation process will be highly influenced by the parameters of the
GA. This is indeed a problem but unrelated to the ability to find global optima: in general,
we are interested in the properties of all equilibrium points, regardless whether they are local
or global. Our aim when we define fitness functions for optimisation is that all equilibrium
points share the same properties, and thus local optima are equally important to global. We
will optimise via a GA in all experimentes of Chapter 4 and Chapter 5.
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Chapter 3

Cooperation and antagonism in
information exchange

3.1 Overview

In this chapter we relate information exchange with limited resources. We lay out the Kelly-
gambling model by which species bet on environmental conditions that is assumed throughout
the remaining of the thesis. We show the well-known information-theoretic relation between
an increase in environmental information and an increase in growth rate. Then, we introduce
a game between two species where each has the option to share information with the other
in a scenario with limited resources.

This chapter is based on the journal paper written by the author and Daniel Polani called
“Cooperation and antagonism in information exchange in a growth scenario with two species”,
which was published in the Journal of Theoretical Biology [Burgos and Polani, 2016b].

3.2 Introduction

Information is a central concept in biology. The ability of living organisms to acquire and
process information about their environment is essential for their survival and reproduction.
This is particularly crucial for organisms living in fluctuating environments, where they face
the challenge of adapting to unpredictable circumstances. The failure of a species population
to anticipate such changes could be fatal, eventually leading the species to extinction. In
environments where reliable cues that a species requires to survive are present, sensing the
environment may eliminate environmental uncertainty, allowing the species to adopt a suitable
phenotype for the current conditions. However, when uncertainty remains in the environment,
a species will follow a bet-hedging strategy [Slatkin, 1974, Seger and Brockmann, 1987], where
it tries to maximise its long-term growth rate by adopting different phenotypes for each of
the possible environmental conditions, in proportions based on the information about the
environment they possess. The classic example of bet-hedging in biology is Cohen’s model
of seed dormancy, where a seed germinates stochastically in different periods relative to the
probability of rainfalls [Cohen, 1966].
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3.3 Related work

The relation between information and long-term growth rate was first formalised by Kelly
using the example of a horse race, where a gambler receiving side information about the
race maximises its capital’s long-term growth rate by betting proportionally to the updated
probabilities each horse has of winning [Kelly, 1956]. The same principle was considered in
models of evolution of biological systems living in fluctuating environments [Dempster, 1955,
Levins, 1962, Cohen, 1966], and the relationship between information and long-term growth
rate was analysed in information-theoretic terms in [Kussell and Leibler, 2005, Bergstrom and
Lachmann, 2004, Bergstrom and Lachmann, 2005, Donaldson-Matasci et al., 2008, Donaldson-
Matasci and Lachmann, 2010, Rivoire and Leibler, 2011], where it is shown that an increase in
environmental information of a species is translated into an increase in its long-term growth
rate.

Bacteria, as many other organisms living in fluctuating environments, must constantly
make adaptive decisions in order to survive [Perkins and Swain, 2009, Balázsi et al., 2011]. For
instance, bacteria have the ability to switch their phenotype to a more suited one when facing
a change in environmental conditions [Elowitz et al., 2002, Balaban et al., 2004, Leisner et al.,
2008, Fraser and Kaern, 2009, Lopez et al., 2009]. The decision to adopt a particular pheno-
type is based upon its information about the environment, and when the future conditions
cannot be perfectly predicted, bacteria will hedge their bets [Veening et al., 2008, Beaumont
et al., 2009]. This stochastic decision-making process, where a cell adopts a phenotype with
a certain probability, can be considered as the outcome of a complex internal biochemical
network, and therefore as an evolvable trait [Tagkopoulos et al., 2008, Perkins and Swain,
2009, Lopez et al., 2009].

Besides sensing environmental factors such as temperature, oxygen, pH levels, etc., bac-
teria also obtain information about their environment by detecting concentration levels of
diffusable cues released by the same bacterial species or by other species of bacteria [Fuqua
et al., 1994, Surette et al., 1999, Miller and Bassler, 2001]. This process is commonly known
as quorum sensing, although the original interpretation was more restrictive. Originally, the
diffusable cues were only considered as an indicator of cell density, where a sufficiently large
concentration of these cues would indicate that a quorum of cells was achieved [Fuqua et al.,
1994, Surette et al., 1999]. This quorum allows bacteria to perform diverse physiological ac-
tivities such as secretion of virulence factors, formation of biofilms, conjugation, sporulation
and bioluminiscence [Miller and Bassler, 2001, Henke and Bassler, 2004].

Since the introduction of quorum sensing, other uses for diffusable cues by bacteria have
been found. For instance, in diffusion sensing, bacteria employ cues to monitor diffusion in
their environment [Redfield, 2002]. Another study relates bacterial cues to pH levels in the
environment, a process called diel sensing, which, due to pH fluctuations, shows a daily cycle
[Decho et al., 2009]. A list of different uses for diffusable cues by bacteria can be found
in [Platt and Fuqua, 2010], where they propose to utilise the term quorum sensing to refer
to these processes, without restricting its meaning to a method of measuring cell density.
Instead, the term should be considered as a general method to indirectly obtain information
about environmental factors that influence the accumulation and perception of the cues.

Considering this, we propose a theoretical model which combines the two mentioned as-
pects of bacteria: bet-hedging and cell-to-cell communication, where cells exchange informa-
tion about the environmental conditions on which they depend and are trying to predict. We
will neither attempt to model any particular mechanism to integrate the different sources of
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environmental information, nor intend to model how a cell chooses a phenotype. Instead, we
will model the dynamics of bacteria cells in a generic information-theoretic framework, such
that bacterial communication becomes an illustrative interpretation of a general model of
growth with information exchange in a scenario with limited resources. Other interpretations
of the model are discussed in Sec. 3.6. Information theory [Shannon, 1948] allows general
high-level descriptions of systems, permitting to hide away irrelevant details for the purposes
of a model [Polani, 2009, Nemenman, 2011]. In particular, information theory provides a
natural framework to analyse cells’ decision-making processes in uncertainty where the mech-
anisms need not to be modelled [Mian and Rose, 2011, Waltermann and Klipp, 2011, Brennan
et al., 2012, Rhee et al., 2012].

In taking this view, we focus on the emergent behaviours related to information exchange
between two species of bacteria following a bet-hedging strategy in a scenario with limited
resources. In our model, the consumption of resources as well as the amount of environmental
information (from the same and from the other species) are density-dependent. Larger pop-
ulations can potentially share more environmental information than smaller ones, increasing
the long-term growth rate of recipient cells. Thus, a species can actively increase the infor-
mation about the environment it could perceive in the future, by sharing information with
the other species, thereby increasing its population. On the other hand, larger populations
consume more resources, which affects the survival of a species’ population, and therefore
the environmental information the cells in the population acquire. We analyse this trade-off
through a game, where two species of bacterial cells competing for resources have the option
to share all of their environmental information with the other species.

Other game-theoretical models have also considered dynamical payoffs [Tomochi and
Kono, 2002, Santos et al., 2006, Lee et al., 2011, Requejo and Camacho, 2011, Requejo and
Camacho, 2012]. In particular, [Requejo and Camacho, 2011, Requejo and Camacho, 2012]
considered a model based on limited resources, achieving qualitatively similar results. Both
in their work and ours, there is a transition in the dominant strategy resulting from a change
in the availability of resources. In their work, the transition is from a game equivalent to a
Prisoner’s Dilemma, where there is abundance of resources and defection is dominant, to a
Harmony Game, where there is scarcity of resources and cooperation dominates. In this study,
the transition is in the opposite direction: cooperation is dominant in abundance of resources
and defection is dominant in scarcity. We explain this contradiction in the conclusions.

While the majority of evolutionary game-theoretical models assume species with fixed
strategies during their lifetime, and then analyse the composition of the resulting population
(cooperators vs. defectors), here we want to study which are the best communication strate-
gies for a species based on the information it has about its context and its internal (predictive)
model of the system’s dynamics.

3.4 Model

3.4.1 Overview

We consider a model where two different species of bacteria can sense complementary infor-
mation about their environment and have the ability to share that information with other
species. Both species follow a bet-hedging strategy, where the environmental information they
obtain is translated into growth rate. Therefore, the more information about their environ-
ment they obtain, the higher their growth rate will be. We study whether the species would
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communicate (cooperate) or behave antagonistically in scenarios where they both depend on
a common resource for their survival.

For this purpose, we consider a minimal model that is able to capture the communication
behaviour of a species. We imagine an environment that can be in one of four equally likely
states (i.e. its entropy is 2 bits). We chose this amount of states since this accelerates
computations while allowing to have two species that sense complementary bits. Each species
can potentially sense only one of the two bits. In this way, species depend on each other to
eliminate (approximately) their environmental uncertainty, creating a mutual interest in their
survival (otherwise there is little or no incentive to communicate). In addition, we assume
that each individual cell can measure its corresponding bit with only 85% accuracy. This is
an arbitrary amount that leaves uncertainty in the measurement while still being valuable for
prediction.

We consider two types of communication that can help bacteria obtain more information
about the environment: (a) within-species communication, in which each member of the
population can integrate completely the information from all other members of the population
(so that even though each individual can sense the species-specific environmental bit with
only 85% accuracy, several bacteria from the same species can talk to each other to obtain
close to the entire bit). Thus, the total information available to an individual increases
with population size; and (b) between-species communication, in which a receiver species can
incorporate all the information from the individuals of the sender’s species. As before, the
amount of information that is available increases with the population size.

We assume that all the information shared, either within- or between-species, is fully in-
terpretable by the receiver, and thus can always be translated into growth rate (via improving
their bet-hedging strategy). This is an idealisation that allows us to focus on communication
strategies rather than on the interpretation of information. Later, we discussed what is re-
quired to relax this assumption, and in the next chapter we address this problem. In order
to give both species the option of not communicating with the other species, while still being
able to communicate with members of its own species, we assume three different chemical
languages: each species communicates through its own particular language, which cannot
be understood by the other species; and we assume a joint language for between-species
communication. All communication happens through an idealised non-noisy channel.

When does a species communicate with the other species? Our hypothesis is that a species
will have an incentive to communicate with the other species in scenarios where competition
for resources is sufficiently weak. As competition for resources between the species increases,
sharing information becomes a detrimental strategy, and species will withhold information.

In the system, at each time-step, the available resources are distributed among the species
such that an equal proportion of both species’ populations survive. This eliminates favouritism
towards a species, assuming an unstructured distribution of resources. Then, if resources are
enough for both populations, then all of them survive. Of those that consumed resources, the
ones that match the demands of the environmental conditions further survive and reproduce.
The proportion of a population that matches the environment will depend on how much infor-
mation each individual has: in the ideal case where all of them know the future environmental
condition, 100% of the population that consumed resources survives and reproduce.

Then, if a species shares information with the other, the latter will increase its growth rate,
since it will improve its prediction of the environmental conditions. This can be beneficial
for the species that shared information, since by increasing the other species’ population size,
it increases the amount of environmental information that the latter can potentially share
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back to the former. We note here that we are considering a system where the consequences
of a species’ actions can only be perceived at a later stage. However, increasing the other
species’ growth rate has the disadvantage that resources are depleted at a faster rate. This
trade-off between environmental information and resources is what we study here through a
game-theoretic scenario.

In this chapter, we characterise the relationship between resource scarcity and the evo-
lution of communication exactly and we find that species communicate (cooperate) in abun-
dance of resources, while they do not communicate when resources are scarce. The relative
terms “abundance” and “scarce” are formally captured in our model, and we show the regimes
associated to each communication behaviour for a species.

3.4.2 Model introduction and outline

Let us give an introduction to the model, which mainly describes the relations between the
variables of the system shown in Fig. 3.1. Our system consists of populations of two species
of bacterial cells, X and Y , both living in the same environment and depending on the same
set of environmental conditions for survival. We assume temporarily varying conditions, and,
therefore, at each time-step, one of these environmental conditions occur. We model the
environmental conditions at time-step t by a random variable Et with four states, where p(et)
is the probability of condition et to occur.

Each individual cell of each species acquires information about the environment through
its sensors, which are denoted SXit for a cell i of species X at time-step t, and SYjt for a cell j
of species Y at time-step t. We denote the sensors of the population of species X at time-step
t by the random variable SXt , and the sensors of the population of species Y at time-step
t by SYt (the sensor variable of a population is a function of the individual sensors, we will
explain later how this is computed).

Et Et+1 Et+2

SXt SXt+1 SXt+2

Xt Xt+1 Xt+2

SYt SYt+1 SYt+2

Yt Yt+1 Yt+2

. . .

. . .

pt pt+1 pt+2

pt pt+1 pt+2

δXt
δXt+1

δXt+2

δYt
δYt+1 δYt+2

Figure 3.1: Bayesian network describing the relation between the main variables of the model. Et

denotes the environmental conditions at time-step t, Sxt
(Syt

) the sensors of species X (Y ) at time-step
t, and Xt (Yt) the population density of species X (Y ) at time-step t.
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The number of individual cells of species X (Y ) that acquire environmental information
at time-step t is a function of the population density Xt (Yt). However, only the proportion
pt of the population that consume resources (and therefore survives) is able to capture in-
formation about the environment. When resources are not sufficient for the consumption of
both populations, we assume that both population densities are reduced by a proportionality
factor pt. This factor depends on the available resources (introduced later in Sec. 3.4.6), as
well as on the population densities.

Now, the rate at which species X grow at time-step t is given by δXt , and depends on the
amount of environmental information of the population at that time-step. This information
can increase if, for instance, species Y shares its environmental information with X. Moreover,
if species X shares back information with species Y , then species Y would have increased its
growth rate by sharing information in a previous time-step. However, larger populations
consume more resources, and Y ’s growth rate may decrease as a consequence of sharing
information. Therefore, different strategies are optimal depending on initial conditions, and
this is what we will study using a game-theoretical framework.

In the following sections we explain the model in detail. The dynamics of the population
are defined in Sec. 3.4.4. In Sec. 3.4.5, we explain how cells acquire information about their
environment. The information is obtained from three exclusive sources: from environmental
cues not related to bacteria (these cues infer different sensor states on bacteria, see Sec. 3.4.5);
from communicated information from cells of the same species (within-species communication,
see Sec. 3.4.5); and from communicated information from cells of the other species (between-
species communication, see Sec. 3.4.5). In Sec. 3.4.6, we show how the environmental
information each cell obtains, when a bet-hedging strategy is followed, translates into the
long-term growth rate of a population. Finally, we study through a game presented in Sec.
3.4.7 the optimal communication behaviour of the species in different scenarios.

3.4.3 Environment

Our system consists of populations of two species of bacterial cells, X and Y , both living in
the same environment and depending on the same set of environmental conditions for survival.
These conditions are assumed to be independent of bacterial populations, and therefore are not
affected by their consumption or production of substances in the environment. For instance,
bacteria may need to adapt its phenotype to a change in temperature, or in pH levels, sugar
concentration, or any combination of environmental factors. While the range of these variables
may be in the continuum, we assume a partition of the range into relevant states for the
organism survival.

We assume temporarl varying conditions, and, therefore, at each time-step, one of these
environmental conditions occur. We model the environmental conditions at time-step t by a
random variable Et with four states, where p(et) is the probability of condition et to occur.
Without loss of generality, we assume Et to be uniformly distributed. Additionally, we assume
environmental conditions to be independent and identically distributed (i.i.d.) in time.

3.4.4 Population dynamics

We model the dynamics of populations of species X and Y by logistic maps:{
Xt+1 = δXt Xt (1−Xt)
Yt+1 = δYt Yt (1− Yt)

(3.1)
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where Xt and Yt represent the population density of species X and Y at time t, respec-
tively. The density is the ratio of the existing population to the carrying capacity, which in
our case is set to to 1 for both populations.

The logistic map is a simple non-linear difference equation with complex behaviour, gen-
erally used in ecology and biology to model population growth, but also used in other research
areas, such as genetics, epidemiology and economics [May, 1976]. This equation has interest-
ing properties that makes it attractive to use, such as proportional growth at low densities and
asymptotic growth at high densities. The value δX and δY are the rates at which population
X and Y grows, respectively, which depend on the amount of environmental information each
species have obtained. For non-trivial dynamical behaviour, 1 < δX < 4 and 1 < δY < 4 is
required [May, 1976]. We will use values such that 0 < δX ≤ 2 and 0 < δY ≤ 2, assuming 2
as a reproductive limit. To define the growth rate of a species, we first need to compute how
much information about the environment it acquires, which we do in the following section.

3.4.5 Environmental information of an individual cell

In this section we define how we compute the amount of information an individual cell obtains
from each of the possible sources we are considering: its sensors, information shared by
individuals of the same species, and information shared by individuals of the other species.
We recall that an individual would obtain more environmental information when the density
of the population of the communicating species is larger. The densities of the populations are
given by Eq. 3.1.

Sensory information of individual cells

Each individual cell of both species sense cues from the environment. We represent the sensors
of an individual cell i of species X as a random variable SXi , and the sensors of an individual
cell j of species Y as a random variable SYj . We define the conditional probabilities p (SXi | E)
for every individual i of species X and p

(
SYj

∣∣ E) for every individual j of species Y in the
system, and thus we can measure the amount of information that each individual acquires
from the environment by computing the mutual information between its sensor variable and
the environmental variable. These values are bounded by the entropy of the environment,
which in our case is H(E) = 2 bits.

In order to avoid giving an advantage to a species, we assume that all individuals of
both species acquire the same amount of environmental information (this becomes impor-
tant later when this amount is translated into long-term growth rate). Nevertheless, the
difference between the two species is in the aspects of environmental information that they
capture, as shown in the conditional probabilities Eq. 3.2 and Eq. 3.3. Individuals of
species X capture information only about two states of the environment E, being unable
to sense the other two states. Conversely, individuals of species Y capture information only
about the two states species X cannot sense, while being unable to sense the other two
states. The amount of information about the environment that an individual i of species X
captures is I(E ; SXi) = 0.39016 bits, the same amount as an individual j of species Y ,
I(E ; SYj ) = 0.39016 bits, although the intersection of the information each of them capture
is I(SXi ; SYj ) = 0 bits. We explain in the next sections how this assumption influences
the total environmental information an individual cell can acquire, while we analyse how it
affects the results obtained from our model in B.1.
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p (SXi | E) :=


s1 s2

e1 0.85 0.15
e2 0.85 0.15
e3 0.15 0.85
e4 0.15 0.85

 (3.2) p
(
SYj

∣∣ E) :=


s1 s2

e1 0.85 0.15
e2 0.15 0.85
e3 0.85 0.15
e4 0.15 0.85

 (3.3)

Environmental information of an individual cell obtained from within-species
communication

Let us consider an individual cell i of bacterial species X. The amount of information, on
average, this cell obtains from its sensors is I(E ; SXi). Now, if another cell j 6= i of species
X communicates with its own species’ population (as, for instance, by releasing a molecule
into the extracellular environment), then, assuming cells of the same species share the same
language, the information about the environment of species i increases (as well as that of
the rest of the population). The total amount of information about the environment for an
individual cell i of species X when another cell j 6= i communicates information is, on average,
I(E ; SXi , SXj ), and the increase in environmental information for cell i is I

(
E ; SXj

∣∣ SXi)
(see Fig. 3.2).

The assumption about a common language that perfectly conveys the sensory state of a
cell is an important one, and it allow us to simplify the model by ignoring the relationship
between sensor states and output signals (which are implicitly assumed to be one-to-one in
this model). A further important assumption we make regarding the population structure is
that all cells perceive what other cells communicate.

As more cells communicate, the environmental information of all cells increases as shown
in Fig. 3.3 (see label I(E ; SX1 , . . . , SXn)), considering a carrying capacity of N = 15 cells.
In the same way, the amount of environmental information of cells of species Y increases
with each individual exactly as it does in species X (see label I(E ; SY1 , . . . , SYm)), with the
same carrying capacity M as species X, M = 15 (this choice of value is discussed in B.1).
In Fig. 3.2, we show in a different way how the environmental information of individuals
increases when there is within-species communication. Each species captures exclusive bits
of environmental information, and thus when individuals of the same species communicate,
they can only reduce the uncertainty of one bit of environmental information.

Note that the computational complexity of the mutual information grows exponentially
with the number of individual cells communicating information. Since each individual cell can
be in two states, the total number of states of the whole population is 215 states. However,
we can take advantage of the fact that the probability distribution p (SXi | E) is the same for
any Xi ∈ [1, 15], and thus the probability of a particular state of the population depend only
on the frequencies of the states of the individuals. In this way, the total number of possible
states of a population grows linearly with population size, and we can represent the states of
a population conditioned on environmental conditions more efficiently, as we explain in A.1.
The same reasoning is also valid for representing the population of species Y . The choice of
15 as the carrying capacity of both populations was made in order to reduce computational
costs.

Finally, since both species live in the same niche, we will assume exclusive means of com-
munication for the species, i.e. the chemical language used by species X and Y has no overlap.
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Nevertheless, we consider a common language for between-species communication. Scenarios
where bacteria use different chemical languages for within- or between-species communica-
tion are common. For instance, the bacterium Vibrio harveyi uses two different autoinducer
signals to regulate light production and other target outputs; one mediating within-species
communication, and the other between-species communication [Federle and Bassler, 2003].

first bit of E second bit of E

I(E;SX3
|SX1

, SX2
)

I(E;SX2
|SX1

)

I(E;SX1)

I(E;SY3
|SY1

, SY2
)

I(E;SY2
|SY1

)

I(E;SY1)

environmental information E

Figure 3.2: Diagram sketching the environmental information each species captures, and how
this varies when there is within-species communication. Individuals of species X capture
information only about the first bit of E, while individuals of species Y capture information
only about the second bit of E. When, for instance, individuals of species X communicate
with each other, their environmental information increases, but it only eliminates uncertainty
about the first bit. In the same way, individuals of species Y communicating with each other
can only increase their environmental information about the second bit of E.

Environmental information of an individual cell obtained from between-species
communication

In the same way as last section, individual cells also obtain information from cells of the
other species. Again, we need to assume a common code between the species. However, as
stated before, the chemical language used for between-species communication needs to be
different from both of the within-species communication languages. Then, an individual cell i
of species X acquiring communicated environmental information from cell j of species X and
cell k from species Y will have an amount equal to I(E ; SXi , SXj , SYk). In Fig. 3.3 we show
the amounts of environmental information an individual cell acquires in different scenarios:
with only sensory information, with within-species communication and with between-species
communication.

Let us note that, since each species is specialised to capture different aspects of the en-
vironment, the contribution (from a cell’s perspective) of a first cell of the other species
is significantly higher (in terms of environmental information) than that of a cell of the
same species. This can be appreciated in Fig. 3.2: if we consider an individual cell 1 of
species X, its environmental information is I(E ; SX1) = 0.39016 bits. If cell 1 of species
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Figure 3.3: Total amount of environmental information for different scenarios: H(E) is the
uncertainty of the environment, I(E ; SXi) and I(E;SYj ) correspond to the case where
an individual cell i of species X and an individual cell j of species Y acquire information
from their sensors only, respectively. I(E ; SX1 , . . . , SXn) is the total amount of information
of each cell of species X when n cells communicate; in the same way I(E ; SY1 , . . . , SYm)
is the total amount of information of each cell of species Y when m cells communicate.
I(E ; SX1 , . . . , SXn , SY1 , . . . , SYm) is the total amount of environmental information each cell
of both population have when n cells of species X and m cells of species Y communicate.

Y communicates information, then the total amount of information for cell 1 of species X is
I(E ; SX1 , SY1) = I(E ; SX1)+I(E ; SY1) = 0.78032 bits (since I(SX1 ; SY1) = 0 bits); while
if a cell of the same species shares information, the increase in environmental information is
I (E ; SX2 | SX1) = 0.209267 bits, in the same way that if another cell 2 of the other species
shares information, the increase is I (E ; SY2 | SY1) = 0.209267 bits.

3.4.6 Bet-hedging on environmental conditions

Long-term growth rate of a bacterial population

Bacterial cells in our system adopt one of a set of possible phenotypes at each time-step. For
each possible environmental condition, we assume there is only one phenotype that meets its
demands and thus allows the cell to survive. Then, cells adopting a phenotype other than the
one that meets the demands of the current environmental conditions die out. This simplifying
assumption will allow us to express the relationship between environmental information and
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long-term growth rate in a more elegant way. We explain in Sec. 3.4.6 the consequences
to our model of removing this assumption. Without loss of generality, we assume that the
environmental conditions and the phenotypes are labelled from the set {1, 2, 3, 4}. We define
the reproduction rate f of a bacterial cell adopting phenotype ϕ when the environmental
condition et occur as the following function:

f(ϕ, et) =

{
2 if ϕ = et
0 otherwise

(3.4)

Bacterial cells are complex organisms, with intricate biochemical networks. As it is recog-
nised in several studies, these internal networks in bacteria enable predictive behaviour in a
probabilistic fashion [Libby et al., 2007, Tagkopoulos et al., 2008, Perkins and Swain, 2009].
Then, individual cells will develop one of its possible phenotypes with some probability, and
we regard the probability distribution over the phenotypes as the betting strategy π of an
individual cell. Which strategy do cells follow?

This part of the model is similar to the model developed in [Donaldson-Matasci and
Lachmann, 2010]. If we consider a clonal population of cells, then the proportion of the
population that develops a particular phenotype equals, on large populations, the probability
of each cell to develop that phenotype. Considering this, we define the growth rate of a clonal
population of bacterial cells given environmental conditions et as following:

r(f, et, π) :=
∑
ϕ

π(ϕ)f(ϕ, et) (3.5)

In this definition, the growth rate of the population is a consequence of the betting strategy
of each cell, which is the same for all cells of the population. Now, if all cells of a population
are able to capture cues about the environment, then they can base their decision on the
environmental cues they perceive, conditioning their strategy on them. Then, the growth rate
of a clonal population of bacterial cells given environmental conditions et and the perceived
cue ct is defined as:

r(f, et, ct, π) :=
∑
ϕ

π (ϕ | ct) f(ϕ, et) (3.6)

In the following sections, where we show the optimal betting strategy, we consider only
one source of cues to exemplify. However, as we have explained, cells may receive information
from multiple sources: from environmental cues (where, as stated, we assume these cues are
not related to bacteria), from members of its own species, and from members of the other
species. In Sec. 3.4.7, we show how the long-term growth rate changes for all these cases.
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Expected growth rate of a bacterial population

Which betting strategy π should a cell follow? The answer certainly depends on the assump-
tions we make about the behaviour of these organisms: in this section, we analyse the best
strategy for cells that seek to maximise their population growth rate in a single generation.

In Eq. 3.6, we considered the growth rate of a population given a particular environmental
condition when they perceive a particular cue. However, to analyse the possible strategies,
we need to take into account all the possible environmental conditions the cells may face, in
combination with all the possible cues they may perceive. The probability that a cell will
face environmental conditions e together with a cue c at time-step t is given by p(et, ct). We
define the per-generation expected growth rate of a population of bacterial cells following the
betting strategy π as:

r̄(f, π) :=
∑
et,ct

p(et, ct)
∑
ϕ

π (ϕ | ct) f(ϕ, et) (3.7)

Since we assume that cells developing a phenotype that does not match the environment
die out, and since phenotypes and environmental conditions are defined over the same set,
the equation simplifies to:

r̄(f, π) :=
∑
et,ct

p(et, ct)π (et | ct) f(et, et) (3.8)

However, following a strategy that maximises a cell’s per-generation expected growth rate
is an unlikely outcome of an evolutionary process. To see this, first we present a simple
example where we do not consider (for simplicity) environmental cues: let us assume a cell
can choose between two phenotypes, 1 and 2, for two possible environmental conditions, also
labelled 1 and 2. The probability of each environmental condition is 1/2, and we define
f(1, 1) = 5, f(2, 2) = 3 and f(1, 2) = f(2, 1) = 0. In this scenario, the optimal strategy for
a cell maximising its per-generation expected growth rate is to always develop phenotype 1,
eventually leading to the extinction of the population once environmental conditions 2 occur.

However, if each individual develops stochastically one of its available phenotypes with
non-zero probability, then for any conditions, on average, there will always be a proportion
of the population that survives and reproduce, permitting the persistence and subsequent
evolution of the species. For instance, if each cell in the population develops phenotype 1 with
probability 0.8, and phenotype 2 with probability 0.2, then when environmental conditions 1
occur, 80% of the population (on average) survive and reproduce, while when environmental
conditions 2 occur, 20% of the population (on average) survive and reproduce.

Considering that species maximising the per-generation expected growth rate eventually
die out, which objective function do individual organisms seek to maximise? Several authors
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have shown that a likely outcome of evolution is for organisms to maximise their long-term
growth rate [Cohen, 1966, Slatkin, 1974, Seger and Brockmann, 1987]. The growth rate of a
species over a sequence of n environments is given by:

G(n, f, π, p) :=

n∏
t=1

r(f, et, ct, π) (3.9)

Here, et represents the environmental conditions at time-step t, ct is the cue received at
time-step t, p gives the joint probability p(et, ct), f is the reproduction rate, and π is the
betting strategy of the cell. Our goal is to find the betting strategy π that maximises the
growth over a sequence of infinite environments, formally:

max
π

lim
n→∞

G(n, f̂ , π, p) (3.10)

Since logarithm is a monotonically increasing function, then the strategy that maximises
the logarithm of the growth rate will also maximise the growth rate. And, since functions
of independent random variables are also independent, log r(f̂ , e1, c1, π), log r(f̂ , e2, c2, π), . . .
are i.i.d., then, first by applying the logarithm product identity and then by the weak law of
large numbers, we have

lim
n→∞

logG(n, f̂ , π, p) = lim
n→∞

log
( n∏
t=1

r(f̂ , et, ct, π)
)

(3.11)

= lim
n→∞

n∑
t=1

log r(f, et, ct, π) (3.12)

= nEp(e,c) log r(f, e, c, π) (3.13)

Here, E denotes expectation. The expected value of a random variable g(X), where
X ∼ p, is given by Epg(X) =

∑
x p(x)g(x). The distribution of environmental conditions and

cues in an infinite sequence of environments converges to the expected value, which is given
by p(e, c).

Then, we have that

lim
n→∞

1

n
logG(n, f, π, p) = Ep(e,c) log r(f, e, c, π) (3.14)

And this lead us to the definition of long-term growth rate of a bacterial population as

W (f, π, p) := Ep(e,c) log r(f, e, c, π) (3.15)
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The relation between G and W is the following:

lim
n→∞

G(n, f, π, p) = 2nW (f,π,p) (3.16)

Optimal long-term growth rate of a bacterial population

Which betting strategy π achieves the maximal long-term growth? From Eq. 3.16, we can
clearly see that maximising the long-term growth rate maximises the long-term growth of a
population. We define the optimal long-term growth rate of a bacterial population as

W ∗(f, π, p) := max
π

W (f, π, p) (3.17)

The long-term growth rate of a species depending on conditions E, perceiving environ-
mental cues C with reproduction rate f is upper-bounded in the following way:

W (f, π, p) =
∑
e,c

p(e, c) log π (e | c) f(e, e) (3.18)

=
∑
e,c

p(e, c) log
(π (e | c)
p (e | c)

p (e | c) f(e, e)
)

=
∑
e

p(e) log f(e, e)−H (E | C)−D
(
p (e | c) || π (e | c)

)
≤
∑
e

p(e) log f(e, e)−H (E | C)

with equality iff π (e | c) = p (e | c). For notational convenience, we denote Wf
∗ (E | C) :=

W ∗(f, π, p) and F :=
∑
e
p(e) log f(e, e). Now we can re-write the long-term growth rate as

following:

W ∗f (E | C) = F −H (E | C) (3.19)

= F −H(E) + I(E ; C) (3.20)

and thus we have that:

lim
n→∞

G∗(n, f) = 2nWf
∗(E | C) (3.21)
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Equation 3.19 shows the optimal long-term growth rate for populations living in environ-
mental conditions E perceiving environmental cues C. F is an upper bound given by the
expected reproduction rate. H (E | C) is the remaining environmental uncertainty of each
cell of the population given environmental cues C. Equation 3.20 shows the value of envi-
ronmental cues C in the long-term growth rate, namely I(E ; C). However, if there is at
least one phenotype meeting the demands of more than one environmental conditions, then
the value of C in the long-term growth rate when species follow a bet-hedging strategy is
not exactly I(E ; C), but it is bounded by this value [Donaldson-Matasci and Lachmann,
2010]. Moreover, for some non-diagonal functions of the reproduction rate f , bet-hedging
is not the optimal strategy that maximises the long-term growth rate [Donaldson-Matasci
and Lachmann, 2010]. Therefore, our assumption that there is only one phenotype in each
species that meet the demands of each of the environmental conditions and thus survives to
reproduce allows us to provide the optimal betting strategy for any case, also allowing a clear
expression of the increase in long-term growth rate.

As a final remark, the value F always equals 1, and the growth rate of a population when
it has no environmental information is 2F−H(E) = 21−2 = 1/2, which means that 1/4 of the
population survives and reproduces, which is the probability for an individual cell to develop
a suitable phenotype by choosing one randomly. On the other hand, when the uncertainty of
the environment is eliminated, let us assume by the perception of environmental cues C, then
the growth rate of a population is 2F−H(E | C) = 21−0 = 2, i.e. the whole population survives
and reproduces, since they are all able to perfectly predict future environmental conditions.

Growth rate of a bacterial population per time-step

We now define the growth rate δXt of a species X at time-step t, and the growth rate δYt of
species Y at time-step t. Instead of computing the growth rate of a species in one particular
environment, we consider the average growth over all possible environments. The growth rate
at time-step t when a species considers the information C is given by:

δt := 2W
∗
f (E | C) (3.22)

For instance, the growth rate of species X when n individuals share information only

within their species is δXt = 2
W ∗f (E|SX1t

,...,SXnt )
. In a similar way, the long-term growth in

one time-step of species Y when m individuals share information only within their species is

δYt = 2
W ∗f (E|SY1t ,...,SYmt )

. Here, n needs to be related to Xt (the current population density
of species X) and m needs to be related to Yt (the current population density of species Y ).

In our model, population densities are represented by real values in the range [0, 1], and
we need to map this range to a number of individual cells to able to compute the long-
term growth rate, which requires computing values I(E ; SX1t

, . . . , SXnt ) for nt individuals
of species X and I(E ; SY1t , . . . , SYmt ) for mt individuals of species Y . However, only the
individuals that are able to consume resources (and therefore survive) sense the environment.
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The proportion of individuals that consume resources at time-step t is given by

pt :=

{
1 if Rt > Xt + Yt

Rt
Xt+Yt

otherwise
(3.23)

In Eq. 3.23, both populations survive if resources are sufficient for their consumption.
However, when they are not sufficient, the proportion of each population that survives is
proportional to the ratio of resources to the sum of the population densities. The dynamics
of the resources is defined as follows:

Rt+1 :=

{
α
(
Rt − (Xt + Yt)

)
if Rt − (Xt + Yt) > 0

0 otherwise
(3.24)

In Eq. 3.24, the resources are depleted relative to the population densities, and, if there
are any left, they grow by a factor α. Once resources are depleted, they remain in that
state. In appendix B.3, we consider resources that are periodically replenished instead of the
dynamics described above.

Now we can compute the number of individuals that sense the environment at time-step
t, which is given by nt = pt×Xt×N for species X and mt = pt×Yt×M for species Y (N and
M are the assumed carrying capacity for the population of species X and Y , respectively). As
stated earlier, when nt and mt are integers, we can represent the conditional probabilities for
the populations, p (SXt | E) and p (SYt | E), as explained in A.1. However, when one or both
of these values are not integers, we represent the conditional probabilities p (SXt | E) and
p (SYt | E) by interpolating between bntc and bnt + 1c individuals for species X and between
bmtc and bmt + 1c individuals for species Y . How we interpolate is explained in detail
in A.2. Ideally, we would define a higher carrying capacity for both populations (instead of
N = M = 15, the value we use in our simulations), and then we would not need to interpolate
values. However, since computation costs grow exponentially, we overcome this difficulty by
defining a small carrying capacity and simulating “intermediate” sizes of the population. In
any case, what matters in our model is the amount of environmental information of each
species, rather than the actual amount of individuals composing the population.

3.4.7 Game between the species

Introduction

In order to study the communication behaviour of the species, we set up a game where they
can either share information (cooperate), or behave antagonistically. The goal of each species
is to maximise their growth rate for a local look-ahead. We explain below why species need
a look-ahead for making decisions related to communication, and how this relates to species
that bet to maximise their long-term growth rate.
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The game we propose here differs from traditional evolutionary game theory in that, in
our model, an organism does not have an inherited (and fixed during its lifetime) strategy.
Instead, we consider species whose communication behaviour depends and changes on the
context.

The context of the species is composed of several variables: population densities, resource
concentration, and other environmental conditions. How these variables change in time is
determined by the system’s dynamics. Our aim is to find optimal strategies for communi-
cation in different contexts, and these would serve as an indication of which communication
behaviours of a species evolution would favour.

There are two important assumptions in this approach that we take: first, the species
have complete knowledge of the current population densities and resource concentration, but
their knowledge about other environmental conditions (which are relevant for their survival)
depends on information that is communicated by the same/other species. Ideally, we would
consider all of these factors as environmental information that a species needs to obtain by
communicating (for instance, quorum sensing obtains densities estimates), but here we do
not – only the survival-relevant environment state is assumed unknown to permit application
of the Kelly-gambling model.

Second, the species is capable of processing the contextual information. Having complete
knowledge of the former mentioned variables is not sufficient for an organism to make a
decision regarding its communication behaviour. A species would need some mechanism (e.g.
epigenetic mechanisms) that functions as a model for the dynamics of the system the species
inhabits. We argue below that in order for bacteria to perceive the effects of their actions
(sharing or not sharing information) in the rest of the system, at least a two-step look-ahead
is necessary. In other words, the mechanism needs to be a second-order process.

Here, we are not modelling this mechanism. Instead, we are using the system’s dynamics
as a best case scenario for the species to make decisions. Of course, bacteria would not have
such a detailed internal mechanism, it would be a simplified model of the dynamics that is
sufficient for predicting variables of interest. However, the system’s dynamics sets the limit
of what is achievable in terms of optimal decisions, and when species have less information
about the relevant variables, their decision-making will necessarily be worse.

Finally, in the system’s dynamics, species follow a bet-hedging strategy that maximises
the long-term growth rate. In the game, however, species maximise their growth rate for a
defined look-ahead. There is no conflict with these assumptions: the former is a strategy
related to how species bet on environmental conditions; the latter is about whether a species
should share information or not. Independently of the look-ahead we are using, and under
the current assumptions, species always do proportional betting.
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Species’ look-ahead

For this study, we assume both species consider only a local look-ahead, and thus the horizon
we will be considering in the computations is intentionally finite. For any given initial condi-
tions Rt, Xt and Yt, the growth rate of a species’ population at that time-step depends on the
population’s sensory information together with the shared information from the other species
(which depends on the other species’ communication strategy). Therefore, any strategy a
species may take (whether it shares information with the other species or not) would not
influence its immediate payoff (i.e. its growth rate), and hence the model does not provide
an insight into how communication strategies interact with evolution. On the other hand, if
we consider species with foresight, then their strategies would indirectly affect their payoffs,
and here it then makes sense to analyse whether a species would share information or not.

A species that shares all of their environmental information would increase the growth
rate of the other species. For instance, if species Y shares all the information it has avail-
able with species X at time-step t, then W ∗f (Et | SXt , SYt) = Ft − H(Et) + I(Et ; SXt) +
I (Et ; SYt | SXt); if it does not share any information, then W ∗f (Et | SXt) = Ft − H(Et) +
I(Et ; SXt), which is clearly less or equal than the former value. Now, if we consider a species
that maximises their growth rate at the next time-step, t+ 1, then a species’ payoff is, let us
say for species X when species Y shares information at time-step t+ 1:

W ∗f
(
Et+1

∣∣ SXt+1 , SYt+1

)
= Ft+1 −H(Et+1) + I(Et+1 ; SXt+1) + I

(
Et+1 ; SYt+1

∣∣ SXt+1

)
(3.25)

In this equation, the terms SXt+1 and SYt+1 both depend on species X and Y ’s decisions at
time-step t, and on species Y ’s decision at time-step t+ 1, but not on species X’s decision at
time-step t+1. Let us note W ∗Xt as the growth rate of species X at time-step t. While we could
consider W ∗Xt+1

as the value to maximise by species X, it will not reflect the consequences of
the decision taken by species X at time-step t+ 1. In other words, this value will be always
equal for different sequences of actions (those where X shares in the last time-step, and those
where X do not share in the last time-step).

On the other hand, if we consider longer (finite) decision horizons, we will incur into the
same problem: the last action does not affect one’s payoff. For this reason, at time-step
t+horizon, we consider the payoff to be the growth rate when the other species do not share
information, in a worst-case scenario for the species. In this way, all of the actions of both
species influence the payoffs. Since in this study we are considering a second-order process, the
minimal horizon that would show any interesting behaviour in the communication strategies
is 2. For economy in the computations and simplicity, we will use this value for the horizon.

Payoff matrix

The payoff for species X is given by
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W ∗X(Et+2|SXt+2) = Ft+2 −H(Et+2) + I(Et+2;SXt+2) (3.26)

In Eq. 3.26, the values of Ft+2 and H(Et+2) are fixed. The value of SXt+2 , however,
depends on all the previous decisions taken by both species. Therefore, the payoff matrix
will be composed of 16 values, since we are using a look-ahead equal to 2. This payoff
matrix corresponds to the most accurate information a species could have to make a decision
regarding whether it should share information or not. It is the most accurate because it is
obtained from the model itself, instead of from an organism’s internal approximation. An
example of a payoff matrix is shown in Box 1.

To get an intuition on how the game will be played, we can imagine two opposite situations:
first, with abundant resources, if a species shares information in the first time-step, it will help
the other species to improve their predictions, and then the collective information of a larger
population of the latter species may be “fed back” into the former species. We should note
that, since resources are abundant, there is no damage for a species to share information, even
if the other species do not share back. In the other case, we consider scarce resources, and
then sharing information has two opposite effects: first, it increases the potential information
that can be shared back, as we improve the other species’ predictions on the environment,
but it also decreases the total amount of available resources, which affects the information
that both species capture. This trade-off between resources and environmental information
is what we analyse in the following section.

3.5 Results

We analysed the resulting payoff matrix described above for 250 × 250 × 300 initial values
(contexts) uniformly distributed in [0, 1] × [0, 1] × [0, 3] (the range of population density of
species X times the range of population density of species Y times the range of resources’
values). We look in these matrices for dominant strategies for species X (see Box 1 for
strategic dominance definitions). The parameters used (those which were not yet defined) are
α = 1.05, N = M = 15. In appendix B.1 we discuss the sensitivity of the parameters and
the generality of the results obtained. In appendix B.2 we consider different dynamics for the
resources in our simulations, where resources are replenished periodically instead of growing
by a factor α.
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Box 1. Strategic dominance definitions.

The payoff matrix consists of 16 values, where each value corresponds to the growth rate of species X.
Each value results from the decisions of each species of sharing or not their environmental information in
two time-steps. Below is an example of a payoff matrix resulting in not sharing information being strictly
dominant (see definition below) for species X, with initial values R = 1.0, X = 0.304 and Y = 0.392.

-0.99890773 -0.99907912 -0.99889800 -0.99907118

-0.99911144 -0.99926619 -0.99910257 -0.99925910

-0.99891489 -0.99908596 -0.99890519 -0.99907805

-0.99911738 -0.99927174 -0.99910854 -0.99926468

n, n n, s s, n s, s

n, n

n, s

s, n

s, s

Species Y

S
p

ec
ie

s
X

We note s as the action “share information” and n as the action “do not share information”. Then, for
instance, (n, s), is a short expression of “not sharing in the first time-step, and sharing in the second
time-step”. Let v, w be strategies in {(n, n), (n, s), (s, n), (s, s)}. The payoff of species X when species X
plays strategy v and species Y plays strategy w is represented by ux(v, w).

We say a strategy v∗ ∈ {(n, n), (n, s), (s, n), (s, s)} is strictly dominant if

∀v′ ∈ {(n, n), (n, s), (s, n), (n, n)}, v′ 6= v∗, we have that ux(v∗, w) > ux(v′, w) (3.27)

We say a strategy v∗ ∈ {(n, n), (n, s), (s, n), (s, s)} is weakly dominant if

∀v′ ∈ {(n, n), (n, s), (s, n), (n, n)}, v′ 6= v∗, we have that ux(v∗, w) ≥ ux(v′, w) (3.28)

with at least one strategy v′ giving a strict inequality.

In Fig. 3.4, we show a classification of the initial values of R, X and Y based on the
resulting payoff matrices. The plots shown are the result of computing the convex hull on the
classified points, and for this reason the “bottom” part of the volumes appear to be straight.
This will hopefully become clear by looking at Fig. 3.5.

Figure 3.4a shows situations where there is no dominant strategy — the optimal one is
conditioned on the other species’ strategy. For instance, in Table 3.1 we show an example of
such payoff matrix. Here, the payoff of species X when it plays (n, s) (short for “not sharing
in the first time-step, and sharing in the second time-step”) and species Y plays (s, s) is
higher than when species X plays (n, n) while keeping Y ’s strategy the same. While this may
seem counter-intuitive, since the returns (in environmental information) for species X when
sharing information in the second time-step are not perceived by it due to the locality of the
look-ahead, it nevertheless increases its payoff since Y ’s population mortality is increased. In
Sec. 3.6 we discuss how such situations could be analysed.

For initial values where the amount of resources is higher than those of the volume of
Fig. 3.4a, sharing information is weakly dominant for species X. This situation corresponds
to amounts of resources such that the consumption of both populations after two time-steps
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(a) No dominant
strategies (b) Not sharing weakly dominant (c) Not sharing strictly dominant

Figure 3.4: (see in colour) We analyse the payoff matrix resulting from initial values in
X ×Y ×R. We obtained five non-overlapped volumes classifying the strategies: (a) The grey
volume corresponds to initial values where the optimal strategy of species X is conditioned on
the strategy of species Y , and therefore there are no dominant strategies. For all points above
this volume, sharing information is weakly dominant. (b) The dark-red volume corresponds
to initial values where not sharing information is weakly dominant for species X. (c) The red
volume corresponds to initial values where not sharing information is strictly dominant for
species X. Finally, for all points below volume (c), species X will get extinct independently
of its behaviour.

does not deplete them, and hence sharing information cannot hurt a species, since its growth
will not be affected. Moreover, sharing information would be beneficial, in cases where the
other species shares back.

For cases where the potential benefits of having extra information from the other species
is always outweighed by the decrease in the populations due to the diminished resources,
then not sharing information is a strictly dominant strategy (see Fig. 3.4c). In Fig. 3.4b
we show the volume corresponding to initial values where not sharing is weakly dominant.
This volumes “encloses” the one shown in Fig. 3.4c, where initial values can be distinguished
within two types: in the first one, resources are sufficient for both species to share information
only in the first time-step, and therefore, species X achieves the same payoff playing either
(n, n) or (s, n) when Y plays either (n, n) or (s, n) (see Table 3.2). In these situations, the
reduction of resources after the first time-step makes sharing information as damaging as the
subsequent action.

For the second type of initial values, sharing information in the second time-step causes
complete depletion of resources and therefore species’ X subsequent extinction. A typical
example of the payoff matrix for these cases is shown in Table 3.3, where we can see why
the strategy (n, n) is not strictly dominant: if a species shares information in the second
time-step, then species X will get extinct no matter what the other species does, obtaining
the same payoff for all the other species’ options. Let us note here that a growth rate of −1.0
implies the extinction of the species, since this value is a lower bound for the growth rate,
and can only be achieved when the proportion of the population that acquired environmental
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information is zero (which means that both populations completely die out). Finally, for all
initial values of X, Y and R below the volume shown in Fig. 3.4b, species will go extinct
independently of their behaviour.

As a complement, in Fig. 3.5 we show 2D plots by fixing the amount of resources to 10
different values, in each of these values analysing 2502 points uniformly distributed in X ×Y.
The black zone corresponds to initial values of population densities in which species X go
extinct regardless of its strategy. In these plots, we can more clearly visualise the described
“enclosure” of the volume shown in Fig. 3.4c. Additionally, we can better appreciate the
relationship between resources and population densities. Relative terms used to describe the
amounts of resources such as “scarce” of “abundant” are directly correlated with the areas
shown in the plots. For instance, scarce resources are in correspondence with red, dark-red
and black areas; while abundant resources are in correspondence with green areas.

As resources increase in absolute values, the range of population densities for which re-
sources are scarce gets smaller. In Fig. 3.5f, for instance, we see the red area surrounded by
the dark-red areas, where values of X between the red and grey areas are those of the type
exemplified by the payoff matrix shown in Table 3.2; and those between the red and the black
areas are those of the type exemplified by the payoff matrix shown in Table 3.3.

The scarcity area disappears approximately when R ≥ 2.4. Conversely, when resources
decrease, the range of population densities for which resources are abundant also gets reduced,
corresponding only to small population densities (see Fig. 3.5a and 3.5b for examples). In
grey areas, resources can be considered neither scarce nor abundant. This area presents an
incentive for species to coordinate behaviour. For resources values approximately of R > 2.8,
then sharing information is always weakly dominant.

3.6 Discussion

Our theoretical model integrates two behaviours of bacteria, bet-hedging and cell-to-cell com-
munication, which are usually studied in isolation [Perkins and Swain, 2009]. Bacterial cells
follow a bet-hedging strategy, incorporating density-dependent environmental information
into their decision-making process. Therefore, a cell’s communication behaviour influences
the long-term growth rate of other cells. Assuming within-species communication, what can
we say about the dynamics of information exchange between species?

As we have seen, environmental information is translated into long-term growth rate.
Thus, cells that acquire environmental information will have an advantage over those that do
not. While acquiring information (other than that which a species already has) depends solely
on whether the other species shares information, the potential recipient species can actively
increase the amount of information the other species may provide in the future, by sharing
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(f) R = 1.8

Y population density

(g) R = 2.0

Y population density

(h) R = 2.3
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Figure 3.5: (see in colour) We analyse the payoff matrix from 2502 initial values of population
densities of species X and Y uniformly distributed in X ×Y, with the amount of resources R
fixed. Green points corresponds to sharing information being a weakly dominant strategy for
species X. Grey points corresponds to initial values where there is no dominant strategy for
species X. Red points represent values for which not sharing information is strictly dominant
for species X. Dark-red points corresponds to values where not sharing information is weakly
dominant for species X. Finally, black points represent values where species X goes extinct
regardless of its strategy.

information with it. The cost of this investment is zero when resources are sufficient for
the consumption of both populations. Therefore, when resources are abundant, cooperative
strategies between species of bacterial cells will out-compete those where none or only one of
the species cooperate.

When the consumption of resources by the populations results in a reduction of resources,
then the cost of sharing information is not zero any more, and it is related to the loss in the
species’ environmental information caused by the diminished proportion of cells perceiving
the environment. In cases where a species does not share back information, the other species
will always lose its investment in the first species’ growth. On the other hand, when the
first species does share in return, and depending on initial values, it may pay off to invest.
These situations correspond to the volume shown in Fig. 3.4a, where there are no dominant
strategies.

As resources become scarcer, the cost of sharing information becomes higher, and even-
tually the losses caused by the other species having extra information outweigh any possible
benefit (volumes in Fig. 3.4b and Fig. 3.4c). In this scenario, bacterial cells developing an
antagonistic behaviour will out-compete those that do not.
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It becomes clear from our analysis that there is an indirect cost for sharing information
which is relative to the amount of resources and to the population densities. As noted in
[Lachmann et al., 2000], the immediate cost of sharing information is different from that of
sharing a resource (such as food) (although there is evidence that there is a cost associated
with signal production in bacteria [Keller and Surette, 2006, Diggle et al., 2007], incorporating
this feature in the model would not qualitatively change the results). Namely, in the latter, the
shared amount equals the losses of an organism and the gains of another, while in the former,
as well as in our model, sharing information does not incur any immediate cost. However,
the indirect cost of sharing information is given by the decrease in a species’ environmental
information, which is zero in abundance, and increases as resources become scarcer. Our
model captures the relative value of resources, which dominates the species’ communication
behaviour.

The transition in the dominant strategy, from cooperation to antagonism, results from a
change in the availability of resources: in abundance, cooperative species out-compete non-
cooperative ones, while in scarcity, antagonistic species out-compete non-antagonistic ones.
This is supported by the results obtained in [Requejo and Camacho, 2011, Requejo and Ca-
macho, 2012], where there is also a transition from cooperation to defection depending on
available resources. However, in this work, cooperation results (weakly) dominant in scarcity
of resources, while defection is dominant in abundance. Although the results seem contra-
dictory, the difference comes from the assumptions: for unlimited resources, cooperation, in
our model, gives players an advantage, while, in their model, defection does. The model of
[Requejo and Camacho, 2011] consists of a multi-agent system where the payoff of an agent
when it interacts with another agent is given by

Cooperate Defect

Cooperate 0 -Er

Defect ∆E -Ec

Player B

P
la

y
e
r

A

Figure 3.6: Payoff matrix for Player A when interacting with player B

In this model, a parasitic agent will obtain from a cooperative agent a reward Er, while
paying a cost Ec. The gains obtained are given by ∆E = Er − Ec. Parasites always pay a
fixed cost, while cooperators don’t. When ∆E > 0, this game is equivalent to a Prisoner’s
Dilemma. However, the rewards an agent obtains depend on limited resources, and, when
they drop below the cost of defecting, then the game is transformed into a Harmony Game,
where cooperation is dominant.

There are many differences between this model and ours. One is that, in their model,
the cost of an interaction between two agents is fixed, while, in ours, costs are relative to a
loss in growth rate. Therefore, in their model, agents will only cooperate if the benefits of
cheating are lower than the costs of interacting, which happens in scarcity of resources. In our
model, agents will cooperate when the costs of sharing information are zero, which happens
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in abundance of resources.

The most relevant difference is what the interactions between agents are about. In their
model, the agents trade resources through their actions, while, in ours, agents trade on in-
formation, which affects resources in a delayed manner. It is not clear from their model why
agents would trade on a resource that is abundant: in an economy, the value of such resource
is zero, which is correctly captured by our model. Then, there would be no incentive to
interact. If, instead, agents trade on different resources, then their payoff matrix will need to
account for this, and the model and results may be different.

Although both models capture a transition in the dominant strategies, the difference in the
direction of the change is rooted in what the interactions are about. They assume that agents
will interact in abundance, without a clear benefit for this, while in our model, interaction in
abundance can increase a species’ growth rate. The contradiction between the models arise
from this assumption.

Finally, a comment regarding the complexity of the computation for bacteria of the com-
munication strategy: contexts (initial values) where the species do not share information
belong to a well-defined region that can be approximated using a threshold value. The same
is valid for contexts where the species do share information. For contexts with no dominant
strategies, more complicated computations are needed. One prediction that could be possible
would be that simple organisms would either avoid this area because it requires more com-
plex computation, or indeed, that even very simple organisms that operate in this region do
have more complex decision-making cascades. However, we are cautious making a concrete
numerical prediction, because for an experimental test a more precise understanding of the
dynamics will be necessary.

3.6.1 Modelling bet-hedging mechanisms

In the presented model, we made a strong assumption in relation to the interpretation of the
information a species obtains. Namely, we assumed that all the information communicated by
one species was unambiguously interpreted by the other species, and vice versa, and they were
both able to translate this information into the optimal bet-hedging strategy. However, in
biological systems, information can be, for instance, ambiguous, meaningless or false, leading
to the implementation of sub-optimal bet-hedging strategies.

The incorporation of a bet-hedging mechanism into the model would require explicitly
modelling the actions of cells, where an action is developing into a particular phenotype.
The policy of a cell would indicate how it translates the perceived information into actions.
Now, in order for cells to be able to communicate, one of the following properties need to
hold: either the identity of the sender is known, in which case the transmitted “message” can
be fully interpreted (further assuming absence of noise in the used channel); or they would
need to agree on a common language: that is, they would have identical (or similar) policies
for interpreting messages, such that, no matter who the sender is, the information can still
be interpreted [Burgos and Polani, 2014, Burgos and Polani, 2016b]. In other words, where
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identification of the sender is not possible, then a common language is necessary in order to
make sense of the information. Such framework would allow further interesting dynamics,
such as parasitism, where some cells convey “false” information for the detriment of other
cell’s predictions [Burgos and Polani, 2016a]. We believe that these are essential aspects to
include in the study of bet-hedging mechanisms. These concepts are explored in Chapter 5.

3.6.2 Other interpretations of the model

Although we presented the model in a biological context, it could as well be considered in
other contexts, such as economics. For instance, we could think of two software companies
sharing the same market with the option to adopt two different models: open source or
closed source software production. Assuming a high demand for such products, a free flow of
innovations would allow higher growth rates (in terms of returns) for both companies, while,
when competing for demand, a closed source model would benefit both of them.

Particularly in our model, we could consider innovations to be environmental information
which is not already present in the collective information of a population. Then, if one
company is more proficient than another company in developing software for a particular
niche, the latter could benefit from the innovations of the former to expand its market (in
our model, we assume each species is more proficient in capturing different aspects of the
environment). Then, acquired innovations would be translated into higher growth rates.

It is important to note that, in our model (and under this consideration), innovations are
implicitly assumed to increase with population size (see Fig. 3.3). A more truthful model
should distinguish the information that is incorporated into a population (which could be
redundant, innovative, or of other types), as well as how the new information is integrated with
the existing information (whether it is compatible or not). Finally, our model assumes that the
knowledge of how to perform the actions necessary to survive for certain conditions (develop
a certain phenotype for bacteria, or, for a software company, produce a particular code) is
available for both species or companies, and thus innovations here should be understood as
new knowledge which improves the prediction of future conditions.

To consider other types of innovations, such as those that would allow the optimisation
of the processes producing the actions, or even innovations that would result in new actions
enabling expansion, a more comprehensive and complex model would be needed. These
types of innovations allow bacteria, for example, to incorporate traits through lateral gene
transfer such as antibiotic resistance, virulence attributes and metabolic properties [Ochman
et al., 2000]. In the same way, software companies can integrate efficient modules performing
specific tasks into their projects. As stated above, the incorporation of foreign information
raises issues of redundancy and language compatibility, where reading a gene or executing a
module would have to be possible, and the results of such actions would have to be integrated
with the rest of the system.

In relation to this, we could also interpret our model in the framework of cellular evolution,
where there is a transition from horizontal exchange of genetic material between primitive
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cells (cooperation) to a stage dominated by vertical transfer (antagonism). In early stages
of evolution, primitive cells would constantly exchange genetic material through horizontal
gene transfer (HGT) [Woese, 2002, Woese, 2004]. These can be considered “innovations”,
and would allow them to achieve higher growth rates. However, this would also present the
problem we have just discussed about incorporating foreign information to a functioning sys-
tem. This problem was considered in [Vetsigian et al., 2006], where they model the evolution
of the genetic code accounting for universality and optimality. In their work, they consider
the genetic code “not only as a protocol for encoding amino acid sequences in the genome,
but also an innovation-sharing protocol” [Vetsigian et al., 2006]. While our model ignores
the intricate aspects of exchange of genetic material, it offers a high level interpretation of
the transition from HGT to vertical gene transfer (VGT). We discussed this interpretation in
more detail in Chapter 6.

3.6.3 Stigmergy

As recently noted in a study of self-organisation in bacterial biofilms [Gloag et al., 2013a],
bacterial communication can be considered as a type of stigmergy [Grassé, 1959], where
cells modify their environment by releasing chemical signals and influence the behaviour of
the cells perceiving them. This results in a coordinated collective behaviour without the
necessity of a central control. In the mentioned study, the expansion in biofilms of the
bacterium Pseudomonas aeruginosa is analysed. This bacterium has the ability to remodel
its substratum to form an interconnected network of trails, which guides the transit of cells,
and uses extracellular DNA to facilitate traffic flow through it [Gloag et al., 2013a, Gloag
et al., 2013b].

Many distinctions have been made on the concept of stigmergy, such as sematectonic or
marker-based [Wilson, 1975], quantitative or qualitative [Theraulaz and Bonabeau, 1999].
These distinctions can be considered orthogonal [Parunak, 2006], and they are important
to describe in more precision the system in question: for instance, quorum sensing can be
considered marker-based and quantitative, but also qualitative (bacteria recognise different
chemical signals, for example in cross-species talking). Other distinctions have been proposed,
one related to the duration of modifications, transient or persistent, and the other related to
the structure of the population, termed broadcast or narrowcast [Heylighen, 2011].

Specifically in this study, we do not explicitly model the mentioned aspects of stigmergy,
but by considering our model in the framework of stigmergy, they contribute to more accu-
rately describe the assumptions made. First, the communication between cells is assumed to
be instantaneous and transient, since in every time-step the previously shared information is
not considered. Second, information is broadcasted, since every individual cell perceives the
output of every other cell. Third, information is qualitative, as shown in Fig. 3.3, where the
information of a population increases with population size. Finally, whether communication
is marker-based or sematectonic, nothing particular is assumed in the model.
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3.6.4 Multilevel selection

As mentioned in the introduction, we assumed in our model within-species communication
in order to simplify the game-theoretic analysis. However, it would be desirable to analyse
whether individual cells would share information with other cells of the same species or not
by considering a communication strategy for each cell.

In this scenario, natural selection would operate at multiple levels [Wilson and Sober,
1994, Michod, 1999, Keller, 1999], where there are conflicts both at the individual level (within
a species) and at the population level (between species). In our particular setting, species
capture different aspects of the environment on which they depend, and we can speculate that
the preference, at least initially, would be towards the other species, who contribute more to
the total environmental information (see Sec. 3.4.5).

This seems contrary to kin selection [Hamilton, 1964, Smith, 1964], where individuals
would prefer to cooperate with individuals of the same species (and thus maximising inclu-
sive fitness). Instead, because of our assumption of global competition on resources, there is
as much competition between kin as there is between non-kin, and since the other species pro-
vides more information about the environment, interactions with members of the other species
would be preferred. Had we assumed that the contribution in environmental information from
members of the same species was larger than that of the other, then the preference of coop-
eration would be toward kin. For the latter situation, such behaviours have been observed in
the pathogen Pseudomonas aeruginosa [Diggle et al., 2007]. The same bacterium diminishes
kin cooperation as the scale of competition becomes more local [Griffin et al., 2004]. The scale
at which species compete would have a significant effect in the communication behaviour of
individual cells [Griffin et al., 2004, Platt and Bever, 2009].

3.7 Conclusion

To conclude, we presented an information-theoretic model which integrates two aspects of
bacterial behaviour, bet-hedging and cell-to-cell communication. While simple, several im-
portant aspects of communication were captured by our model: we related the communication
behaviour of species to the relative availability of resources, which can be classified into three
main regimes. Species would cooperate in abundance of resources, while they would behave
antagonistically in scarcity. In this transition, for the situations in-between, species would
have an incentive to coordinate their behaviours, adapting in response to each other’s strate-
gies.

One of the main assumptions made in this chapter is that species can fully interpret the
information shared with them. In biology, organisms will have different abilities to interpret
information. We address this point in the following chapter.
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Table 3.1: Example of a payoff matrix where there is no dominant strategy for species X.
The initial values for this specific matrix where X = 0.5, Y = 0.2 and R = 1.8. Each cell
contains the growth rate of species X when each species plays the correspondent sequence of
actions.
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Table 3.2: Typical payoff matrix where not sharing information is weakly dominant for species
X. The initial values for this specific matrix where X = 0.28, Y = 0.76 and R = 1.8. Each
cell contains the growth rate of species X when each species plays the correspondent sequence
of actions.
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Table 3.3: Typical payoff matrix where not sharing information is weakly dominant for species
X. The initial values for this specific matrix where X = 0.6, Y = 0.6 and R = 1.8. Each cell
contains the growth rate of species X when each species plays the correspondent sequence of
actions.
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Chapter 4

Evolution of communication in
populations

4.1 Overview

In this chapter, we consider the problem of the evolution of communication within a structured
population of agents. In the same way as in the previous chapter, we assume a population of
agents maximising their growth rate by following a Kelly-gambling strategy. However, here,
the ability of organisms to interpret information shared by others is not assumed.

The agents try to maximise their information about their environment by acquiring infor-
mation from the outputs of other agents in the population. In the traditional use of informa-
tion theory, it is assumed that every agent knows how to “interpret” the information offered
by other agents. However, this assumes that one “knows” which other agents one observes,
and thus which code they use. In our model, however, we wish to preclude that: namely, we
will do away with the assumption that the identity of the agents who send the messages and
those who receive them is known, and the resulting usable information is therefore influenced
by the universality of the code used and by which agents an agent is “listening” to.

For this model, we assume a cooperative scenario in the population. That is, we assume
that we are in the regime of abundant resources, such that communication between organisms
is preferred. We postpone the analysis of conflict scenarios to first gain an understanding on
the emergence of a common code in populations. We further investigate whether an agent who
does not directly perceive the environment can distinguish states by observing other agents’
outputs. For this purpose, we consider a population of different types of agents “talking”
about different concepts, and study whether a “blind” agent can extract new concepts by
considering the agents’ outputs only.

Our hypothesis is that, in populations where agents cannot identify the source of a mes-
sage, there will be an evolutionary pressure for universality in their codes.
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This chapter is based on the conference paper “An informational study of the evolution
of codes in different population structures” [Burgos and Polani, 2014], which won the best
student paper award in the conference ALIFE 14. An extension of the paper, titled “An
Informational Study of the Evolution of Codes and of Emerging Concepts in Populations of
Agents” [Burgos and Polani, 2016b], was published in the Artificial Life journal.

4.2 Introduction

If we consider organisms capable of processing information, then we can argue that they must
be able to internally assign meaning to the symbols they perceive in a code-based manner
[Görlich et al., 2011]. For instance, bacteria perceive chemical molecules in their environment
and interpret them in order to better estimate environmental conditions and (stochastically)
decide their phenotype [Platt and Fuqua, 2010, Balázsi et al., 2011, Perkins and Swain, 2009].
Plants detect airborne signals released by other plants, being able to interpret them as attacks
of pathogens or herbivores [Heil and Karban, 2010, Shah, 2009]. Therefore, a correspondence
between environmental conditions and chemical molecules must be established. It is in this
way that Barbieri characterises codes, and he proposes three fundamental characteristics for
them: they connect two independent worlds; they add meaning to information; and they are
community rules [Barbieri, 2003].

Codes connect two independent worlds by establishing a correspondence or mapping be-
tween them. These worlds are independent and thus there are no material constraints for
establishing arbitrary mappings. The meaning of information comes exclusively from the
mapping: symbols by themselves are meaningless. Finally, the third property requires that
the correspondence between the two worlds constitutes an integrated system.

For instance, human languages establish a correspondence between words and objects
[Barbieri, 2003]; in bacteria it is between chemical molecules and environmental and social
conditions [Waters and Bassler, 2005, West et al., 2006]. Words (or chemical molecules) by
themselves do not have any meaning, and each individual of a population can have its own
interpretation of them, which is arbitrary to some extent. However, populations of individuals
sharing the same code are ubiquitous in nature. How is it that codes come to be shared by
many individuals when their constitution involve arbitrary choices for each individual? This
question is what we are investigating in this chapter.

We assume a similar scenario of organisms living in a fluctuating environment to that
of Chapter 3. That is, organisms will follow a bet-hedging strategy to bet on environmental
conditions that maximises their long-term growth rate, where an increase in their information
about the environment is translated directly into an increase in the population’s growth rate.
Additionally, we assume a scenario with unlimited resources for evolution, where, as we have
shown in the last chapter, sharing environmental information cannot harm a species, and those
that mutually share can out-compete those that do not. The purpose of this assumption is
to focus exclusively on conditions for the emergence of communication. Otherwise, as we
have shown in the previous chapter, species will not share information when there is strong
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competition for resources.

Those organisms obtaining additional environmental information (other than that from
their sensors, which we assume does not completely eliminate environmental uncertainty) from
other individuals will have an advantage over those that do not, since they would be able to
better predict the future conditions. However, for individuals to be able to communicate with
each other, they must be able to translate symbols into environmental conditions, where the
output of these symbols is determined by an individual’s code. We consider the code of an
individual as a mapping from its sensor states to a set of outputs.

We consider outputs (or messages) of individuals (or agents) as conventional signs. In
semiotics, the science of all processes in which signs are originated, stored, communicated,
and being effective [Görlich et al., 2011], two types of signs are traditionally recognised:
conventional signs and natural signs [Deely, 2006]. In conventional signs there is no physical
constraint on the possible mappings, they are established by conventions. Although in physical
systems there can be limitations to the possible mappings that can be implemented, in this
work we assume complete freedom of choice. On the other hand, in natural signs, there is
always a physical link between the signifier and signified, such as smoke as a sign of fire,
odours as signs of food, etc. [Barbieri, 2008].

We are not interested in the particular detailed mechanisms by which an agent implements
its code, nor how the agent decodes the outputs of other agents. Instead, we focus on the
theoretical limits on the amount of environmental information an agent can possibly acquire
resulting from different scenarios of population structure and code distribution. The natural
framework to analyse such quantities is information theory [Shannon, 1948]. However, it does
not take semantic aspects into account, as it only deals with frequencies of symbols instead
of what they symbolise. Codes in biology, on the other hand, add meaning to information,
which makes the integration of sciences such as semiotics and information theory non-trivial
[Favareau, 2007, Battail, 2009]. In Sec. 4.4, we present an information-theoretic model which
incorporates the necessity of conventions by dropping from the model the usual implicit
assumption of knowing the identity of the communicating units.

4.3 Related work

The model presented in the previous chapter implicitly assumed that individuals could fully
interpret the information shared by others. For instance, when members of a population
perceive a particular cue, there was an increase in the long-term growth rate equal to the
mutual information between the cue and the environment. However, it is desirable that the
interpretations of cues in a population are not a priori defined, mainly for two reasons: first,
with common codes being typical in biology, one would like to understand in which circum-
stances the emergence of common codes is favoured; and second, it allows the exploration
of exploitation of individuals of the population that have evolved particular interpretations
of information. This last point is explored in Chapter 5, while here I review the existing
literature on the evolution of communication from an artificial life perspective.

50



There are many models for the evolution of communication, but only a few take an
information-theoretic perspective. The reason is that Shannon intentionally left out semantics
from his theory of communication [Shannon, 1948], while generally in biological systems,
information is useful because it has a specific meaning to the receiver. I will first introduce
a useful classification of the computational methods for emergent communication, and I will
briefly mention some results of similar models, with particular attention to models using
information theory.

4.3.1 Classification of existing models

In a dated but still relevant review of the progress in the simulation of emergent communi-
cation and language [Wagner et al., 2003], the methods broadly used are classified in four
categories of communication: (i) non-situated and unstructured; (ii) non-situated and struc-
tured; (iii) situated and unstructured; (iv) situated and structured. Situated simulations are
those that place the agents in an environment, with which they interact. It is required that
agents interact with the environment in “non-communicative” ways, and that they can in-
fluence it. Non-situated simulations consist solely of senders and receivers of signals. Then,
simulations can be structured, where signals can be composed of other “smaller” signals; or
unstructured, where signals are atomic.

In this thesis, we are concerned with biological systems in the situated and unstructured
category. First, communication seems always to be intricately connected with tasks they need
to solve (finding food, mate selection, avoiding predators, etc.) to perpetuate themselves.
Models which directly reward communication are not discussed here, since we are concerned
in understanding particularly the emergence of communication in an evolutionary process.
Second, considering simple communication signals relaxes the complexity requirements over
the organisms in consideration.

4.3.2 Commonalities in these models

These type of models always have prediction as the underlying objective, although in varied
forms. In some of them, the agents need to distinguish properties of an object, where some
properties positively affect their fitness, and other properties negatively affect their fitness.
For instance, in [Cangelosi and Parisi, 1998], agents feed from mushrooms, and there are
poisonous and edible ones. In [Ackley and Littman, 1994], agents need to know whether they
are heading towards predators or food. Usually, agents cannot fully perceive the objects they
need to predict, but they can improve them with extra information, for example that coming
from a similar agent that perceives the same object in question. Then, agents have the ability
to produce different signals, but initially they have no associated meaning, i.e. they are not
related to what they need to predict. Through different scenarios and mechanisms, such as
evolution or learning, such models usually establish useful associations between the conditions
they need to predict and the signals they can produce [Oudeyer, 1999].
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Generally, these models employ different mechanisms to control the behaviour of the
agents, such as artificial neural networks, finite state machines, lookup tables, etc. This has
the disadvantage of possibly introducing additional constraints on the agents, which are not
directly related to their perception, making the interpretation of results harder. For example,
in [Cangelosi and Parisi, 1998], they use a feed-forward neural network to control all aspects of
an agent’s behaviour: movement, direction of the nearest mushroom, orientation, perceptual
input of signals and emission of them. In their experimental setting, a pair of agents interact
randomly, where one has full perception of the mushroom, and the other has partial or no
perception at all of it. Agents have roles, where the former agent is the speaker and the
latter the receiver. They found that agents achieve a relatively good consensus for signals
that signify poisonous mushrooms, and signals that signify edible mushrooms. However, their
experiments have not achieved perfect consensus, and it is not clear why this happened. It
might be due to the experimental setting, or due to the adopted mechanisms to control the
agents.

4.3.3 Information-theoretic models

The point is that complex settings lead to hard to understand results, and they might be
adding constraints that are either unknown to the authors or not explicitly stated. Con-
sidering this, the use of information theory can alleviate these problems, by abstracting
away mechanisms, and being explicit about the assumptions made. However, as I have
stated, information-theoretic models do not lend themselves easily to models of “meaningful”
communication. One recent study addresses this problem and defines a measure of consis-
tent information between the predictions of two agents that communicate with each other
[Corominas-Murtra et al., 2014].

XΩ Xs X ′s X ′Ω
PA Λ QB

Figure 4.1: Bayesian network representing the relantionship of the variables in the model
described in [Corominas-Murtra et al., 2014].

Their scenario can be illustrated by the Bayesian network shown in Fig. 4.1. There,
both random variables XΩ and X ′Ω take values from a finite set Ω, and agent A codes these
values using PA, transmit them to agent B through a possibly noisy channel Λ, and then
agent B decodes them using QB. They argue that maximal values of the mutual information
between XΩ and X ′Ω do not capture a correct reconstruction of the transmitted informa-
tion. For instance, if we consider Ω = {m1,m2}, there can be an induced mapping such
that Pr (X ′Ω = m1 | XΩ = m2) = 1 and Pr (X ′Ω = m2 | XΩ = m1) = 1, where the mutual in-
formation is maximised, but state m1 is “incorrectly” identified by the receiver as m2, and
state m2 is identified as state m1. They propose a measure, which as they recognise is not
an information-theoretic measure between two random variables, which captures correlations
between identical labels.

Indeed, Shannon’s mutual information does not take into account the labels we use for
our states, as long as they are fixed. It is assumed that all participants of a communication
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process in a Shannon-like network know the probability distributions they have to operate
with. In this thesis, I approach the problem of capturing semantics in information-theoretic
terms, and I develop a framework where symbols acquire meaning related to environmental
conditions they need to predict.

4.4 A model for code evolution

To introduce the model in a progressive manner, let us first consider three agents, indexed
from the set {1, 2, 3}. Each of these agents depend on the same environmental conditions
for survival, which are modelled by a random variable µ. Agents acquire information about
the environment through their sensors, which are modelled by random variables Yi, all with
values in the same set Y with i ∈ {1, 2, 3}, all three conditioned on µ. Let us assume
each agent acquires the same amount and aspects of environmental information from µ, i.e.
p (Y1 | µ) = p (Y2 | µ) = p (Y3 | µ), they are the same distributions. Let us further assume that
the information each agent acquires about the environment does not eliminate its uncertainty,
i.e. H (µ | Y ) > 0. The code of an agent is a mapping from its sensor states into a set
of outputs, and is represented by the conditional probabilities p (X1 | Y1), p (X2 | Y2) and
p (X3 | Y3) for agents 1, 2 and 3, respectively (see Fig. 4.2).

µ

Y2Y1 Y3

X2X1 X3

Figure 4.2: Bayesian network representing the relation between the sensor and output variables of
three agents: 1, 2, and 3. The random variable µ represents the environmental conditions.

In information theory, a source code C for a random variable X is a mapping from X to
D∗, the set of finite-length strings of symbols from a D-ary alphabet [Cover and Thomas,
2002]. The codeword that corresponds to x is denoted C(x). Our definition of a code is
similar, although we are not concerned with any particular representation of the codewords.
Instead, we call the result of applying a code an output, to be generic. However, sometimes we
will use the term message instead of output, since we are modelling communication. Another
term that we will use, particularly in the next chapter, is encoding, and we say that an agent
encodes its perception (or its environment, depending on the model).

Source coding is used for data compression, and the entropy of a data source is the limit
for its compression. However, if we transmit the compressed information from one point to
another, both parties need to agree on the code in order to interpret it. The traditional use
of mutual information in the model presented in Fig. 4.2 does not capture this property.

To show this, let us assume that, in the example of Fig. 4.2, agent 1 perceives only
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the outputs of agents 2 and 3. One possible way of computing the information about the
environment agent 1 has is to consider the mutual information between µ and the joint
distribution of the sensor of 1 and the outputs of 2 and 3: I(µ ; Y1, X2, X3). However, by
writing down this quantity, we are implicitly assuming, not only that agent 1 can interpret the
outputs of both agents 2 and 3, but also that agent 1 can identify which output corresponds
to 2 and which output corresponds to 3. Therefore, in this consideration, the outputs of
agents 2 and 3 are uniquely identifiable as those of the particular agents by 1.

4.4.1 Indistinguishable sources of messages

For this study, on the contrary, we consider an agent observing other agents’ messages, but
under the assumption that the source of a message cannot be identified. In this way, the
total amount of information an agent can infer from the outputs of other agents will depend
on to which extent it either can identify who the other agents are or can rely on them using
a coding scheme that does not depend too much on their particular identity. For instance,
if agents 2 and 3 both agree on the output for each of the environmental conditions, then
agent 1 should be able to infer more environmental information than if they disagree on the
output for each of the environmental conditions, given that agent 1 does not know which of
the agents it is observing.

To model this idea, let us assume a random variable Θ′ denoting the indexed agent. This
agent depends on the same environmental conditions for survival as 1, which are modelled, as
above, by a random variable µ. Agents acquire information about the environment through
their sensors, which are modelled by a random variable Y conditioned on the index variable
denoting the agent under consideration, Θ′, and µ. The amount of acquired sensory informa-
tion of a specific agent θ′ about µ is given by I (µ ; Y ′ | Θ′ = θ′). As above, the code of an
agent is a stochastic mapping from its sensor states into a set of messages, and is represented
by the conditional probability p (X ′ | Y ′,Θ′ = θ′) for an agent θ′ (see Fig. 4.3).

µ

Y1 Y ′

X1 X ′ Θ′

Figure 4.3: Bayesian network representing the relationships as described above (see text).

However, we want to model the fact that we do not know which agent is observed. If we
do not know the value of Θ′, then we cannot identify whose agent’s output we are perceiving.
In appendix C, in Sec. C.2, equations C.8 and C.9 show two examples of codes for agents 2
and 3, while their sensor states are define by the Eq. C.7 (Eq. C.6 defines the sensors states
of agent 1). We compute how much information about the environment there is when agent
1 cannot identify the source of the outputs of agents 2 and 3.
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If we assume p(Θ′ = 2) = p(Θ′ = 3) = 1/2, and p(µ1) = p(µ2) = 1/2 and ε = 0.01, then
if we consider the codes shown in Eq. C.8, we have that I(µ ; Y1, X

′) = 0.97 bits, where
Θ′ its either 2 or 3 with equal probability. However, by setting 2 and 3 to have “opposite”
codes as shown in Eq. C.9, then I(µ ; Y1, X

′) = 0.91 bits, which is exactly I(µ ; Y1), that
is, I (µ ; X ′ | Y1) = 0 bits (agent 1 cannot acquire any side information from the outputs of
agents 2 and 3).

4.4.2 Environmental information of a population

The model shown in Fig. 4.3 considers the environmental information of one agent only.
However, measuring the average environmental information of a population will give us a
good indicator of the growth rate of this population. To incorporate this option in the model
shown in Fig. 4.3, we could consider the state space of Θ′ as the set {θ1, θ2, θ3}. Then, to
express not only the environmental information of agent θ1, but the average environmental
information of the whole population, we can parametrise the agent by a random variable
Θ (defined over the same state space, representing the same set of agents as Θ′), such that
p (Y | µ,Θ) = p (Y ′ | µ,Θ′) (i.e., Y ′ is i.i.d. to Y ).

µ

Y Y ′

X ′ Θ′Θ

Figure 4.4: Bayesian network representing the sensor variables of a set of agents indexed by the
random variable Θ, and the sensor and output variables of a copy of the set of agents indexed by Θ
named Θ′.

In this way, the average environmental information of a population of the agents selected
by Θ is given by I(µ ; Y,X ′) (see Fig. 4.4). Using the chain rule for information presented
in Sec. 2.3, we can express this quantity as follows:

I(µ ; Y,X ′) = I(µ ; Y ) + I
(
µ ; X ′

∣∣ Y ) (4.1)

This decomposition of the measure shows a direct interpretation: the total environmental
information corresponds to the sum of the environmental information perceived by the agents
selected by Θ (first summand) and the environmental information added by the messages of
the agents selected by Θ′ (second summand).

This measure can be considered as the objective function to maximise in our model. We
make the assumption that evolution would indeed maximise this function in the long term,
since it corresponds to maximising the long-term growth rate of the population. Let us note
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that, in this chapter, the considered objective functions will assume cooperative behaviour
between agents, with the caveat that they are not competing from resources. In other words,
those agents that favour the population’s growth rate by agreeing on their codes will be
selected.

However, agents would normally not have direct access to the environmental conditions
– their access is only through their noisy sensors. Then, this objective function does not
given any insight about how an agent would use the information it has available in order to
update its own code. For this purpose, we investigate here agents that maximise their mutual
understanding with those agents they interact with. Although we consider this as a proxy for
maximising the environmental information of the population, it does not necessarily always
leads to that outcome. We discuss this in the next section. In addition, we will introduce
a potentially flexible population structure, such that we can model an abstract interaction
structure.

4.4.3 Mutual understanding

First, we introduce a copy of the codes of the agents, such that, when Θ = Θ′, we have
that p (X | Y ) = p (X ′ | Y ′). The structure of the population is then given by p(Θ,Θ′) =
p(Θ)p(Θ′). However, the conditional independence of Θ and Θ′ restricts significantly the
diversity of the structures that can be represented. In such cases, the agents selected by Θ
perceive the outputs of all the agents selected by Θ′ (including their own clone) and vice
versa. In order to model a general interaction structure between agents, we therefore consider
p(Θ,Θ′) which are not independent, as shown in the Bayesian network in Fig. 4.5, where we
introduce a helper variable Ξ. This allows different agents selected by Θ to perceive outputs
exclusively from exclusive agents selected by Θ′.

µ

Y Y ′

X X ′Θ Θ′

Ξ

Figure 4.5: Bayesian network representing the relationship of the variables in the model of code
evolution. p (Y ′ | µ,Θ) is an i.i.d copy of p (Y | µ,Θ′) when Θ = Θ′. In the same way, p (X ′ | Y ′) is
an i.i.d. copy of p (X | Y ) when Θ = Θ′. Θ′ covers the same set of agents as Θ, but its probability
distribution is not necessarily the same.

We define the mutual understanding of a population as I (X ; X ′), which takes into ac-
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count the structure of the population, given by p(Θ,Θ′). This joint probability induces a
weighted graph, where agents represent the nodes of the graph and there is an edge from agent
θ to an agent θ′ if p(θ, θ′) > 0 (which is the weight of the edge). We interpret p(θ, θ′) as the
probability of interaction between these two agents, and thus we require that p(θ, θ′) = p(θ′, θ)
(interactions are symmetrical) and p(θ, θ) = 0 for every agent θ (self-interaction is excluded).

To get an intuition on the consequences of maximising the mutual understanding, we first
informally analyse a few scenarios. For instance, when the interaction probability of two
agents is zero, then their mutual understanding is irrelevant for the objective function. On
the other hand, the ability for an agent to understand all of its sources will depend exclusively
on the source’s universality: this follows from its inability to identify who is talking. Then,
the mutual understanding of two fully interacting subsets of agents will be maximised when
all sources for each of the agents have the same code. A non-empty intersection between these
two subsets implies that the mutual understanding is maximised when codes are universal
between both subsets. When the intersection between them is empty (let us note that the
induced graph is then bipartite), then each subset of agents is allowed to have a different
code. It is important to note here that this model allows the agents to cluster into different
sub-populations due to the differences in their codes. Therefore, each sub-population could
have its own conventions for representing different aspects about the environment, and the
conventions used can vary. Let us note that this fitness function, as well as the population’s
environmental information, assumes cooperative behaviour in the agents.

As we mentioned above, agents maximising their mutual understanding do not need direct
access to the environment. For instance, a possible mechanism to maximise this could be
for agents to update their codes such that they express the most popular output of their
sources for each environmental condition. In this way, the agent relates its perception of the
environment with the most popular output. Let us note that, even expressing a different
output from the most popular one, it is still possible to maximise the mutual understanding,
given that there is consistency across environmental conditions.

The environmental information of an agent θ perceiving messages from the agents it
interacts with is given by I (µ ; Y,X ′ | Θ = θ). Let us note that, given that the interac-
tion graph is symmetric, it can also be measured by I (µ ; Y ′, X | Θ′ = θ). The average
environmental sensory information of the population is given by I(µ ; Y ), or equivalently,
I(µ ; Y ′). The average environmental information of the population when they consider their
sensory perception and the messages of other agents according to the population structure is
given by I (µ ; Y,X ′ | Θ), or equivalently, by I (µ ; Y ′, X | Θ′). These values are bounded by
I (µ ; Y, Y ′ | Θ), which corresponds to the maximum achievable average population growth
rate when communication/signalling is perfect.

I
(
µ ; Y,X ′

∣∣ Θ
)
≤ I

(
µ ; Y, Y ′

∣∣ Θ
)

(4.2)
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4.5 Results

In this section, we put the model to test by analysing different scenarios where the mutual
understanding is maximised. This objective function has a large number of local optima,
and the outcomes certainly depend on our initial values and the way we traverse this land-
scape. However, a strength of the model is that every local optimum, which has the mutual
understanding maximised, has the same property: all sources of messages for each agent
has universal codes. This allows for general statements about how the assumptions lead to
particular outcomes.

In all the experiments below, we assume that the conditional probabilities for sensors are
defined as follows:

p (y | µ, θ) := δy,µ(1− ε) +
ε

|µ| − 1
(1− δy,µ) (4.3)

In this way, Eq. 4.3 introduces symmetric noise controlled by a parameter ε. When ε = 0.0,
all agents capture unequivocally the same aspects of the environment, and I(Y ; Y ) = H(Y ).
However, with environmental noise, their perceptions are not related to one environmental
state only, but to all of them with a peaked probability on one of them. As the noise increases,
the peak value decreases, and we consider noise values until p (y | µ) is uniformly distributed,

which happens when ε = |µ|−1
|µ| , giving I(Y ; Y ′) = 0 bits.

Unless stated otherwise, we assume that |µ| = |Y | = |X| = 8, that is, the number of states
for the environment, the sensors, and outputs, is 8. The probability of the environmental
states is uniformly distributed.

4.5.1 Well-mixed population

In the first scenario, each agent θi perceives the output of every other possible agent θj with the
same probability, that is p(θi, θj) = 1/n(n−1) for every i, j ∈ [1, n], where n is the population
size. We consider a population of size 64, with an ε = 0.07. The conditional probabilities
p (X | Y ) are optimised to maximise the mutual understanding. After maximisation, we
obtained I (X ; X ′) = 1.67 bits. Considering only the individual sensory input for the agents
of the population, their growth rate is related to I(µ ; Y ) = 2.43 bits (we say that the
growth rate is “related” since, as we showed in Eq. 3.20, the actual long-term growth rate is
F −H(µ)+I(µ ; Y ), where F is a value obtained from some fitness function). However, after
maximisation of their mutual understanding, they would have improved their growth rate in
an amount related to their environmental information which considers their sensory input
together with their messages, given by I (µ ; Y,X ′ | Θ) = 2.76 bits. In Table 4.7, we analyse
different noise values, showing the benefit of communication for low/high noise scenarios.

By inspecting the resulting codes (see Fig. 4.6) we observe two properties: first, codes
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are universal; and, second, agents can only distinguish 6 out of the total 8 sensory states
(distinguishing all of them would certainly increase the environmental information, but not
necessarily the mutual understanding). We explain why we obtain these properties below.

y1 y2

y3 y4

y5 y6

y7 y8

(a) states of Y

x2 x3

x4 x4

x1 x8

x7 x1

(b) 62

x2 x5

x4 x4

x1 x8

x7 x1

(c) 1

x6 x3

x4 x4

x1 x8

x7 x1

(d) 1

Figure 4.6: (a) Illustration of the sensory states in a grid. (b-d) Compact representation of a code
p (X | Y ). For example, x2 in code (b) is in the left top corner of the grid, and so is y1 in (a). Then,
this means that p (x2 | y1) = 1. The states X are coloured to make clear how many states a code can
distinguish from Y . Below each code we show the amount of agents that adopted the code shown,
which induces a partition of the sensory states.

Figure 4.6 shows three types of codes, which are represented by partitioning the sensory
states according to p (X | Y ). The number of states that results from the partition is the
number of states an agent can distinguish from its sensory states.

In this example, we say that the codes in the population are universal, although there are
three types of codes. The reason lies in the non-semantic assumption of information theory:
how we label the states of random variables is irrelevant for the computation of Shannon’s
information-theoretic measures. For instance, state x5 (Fig. 4.6 (c)) denotes the same state
as x3 in Fig. 4.6 (b) and (d); and, in the same way, state x6 (Fig. 4.6 (d)) denotes the same
state as x2 in Fig. 4.6 (b) and (c). These are synonyms, because they have exactly the same
correspondence (although stochastic in the case of noisy sensors) to the environmental states.

The question now is why the objective function settles in such an optimum. After all,
a change in any code of any agent that would distinguish one more state of its sensors (7
instead of the achieved 6) would increase the mutual understanding. However, here we show
that the adoption of synonyms can be disadvantageous when there is a limited set of outputs
X. For example, had all agents adopted the code shown in Fig. 4.6 (b), then a change in
the code of any agent that distinguishes sensory states y3 and y4 by using an unused output
would increase the mutual understanding. However, this is not possible since all outputs are
in use, and any update would create inconsistencies that decrease the objective function.

An inconsistency would be expressing different sensory states with the same output x.
For example, the output x6 is not used in the code scheme (b) in Fig. 4.6, then we could
use it such that p (x6 | y3) = 1. Now, agents with this updated code scheme would be able
to distinguish between y3 and y4. However, since there is one agent using this output to
encode sensor state y1, and since the population is well-mixed, then agents perceiving output
x6 cannot distinguish whether it refers to y1 or y3.

59



Let us note that increasing the available alphabet for choosing outputs alleviates this
problem: the larger the set, the most likely it is that agents would be able to distinguish all
of their sensor states. Typical solutions for doubling the alphabet (|X| = 16) shows a large
number of synonyms, but yet agents can distinguish all of their sensor states (results not
shown).

Noise variation

Our results have shown that a well-mixed population always leads to the emergence of a
universal code for communication, assuming a cooperative scenario. Now we analyse whether
these properties still hold when we vary the noise in the sensory input. Particularly, we ask
if our original solution is still optimal when we vary the noise in the sensory input. If, as
a result of this test, the obtained solution is still optimal, then our previous analysis is still
valid independently of noise values. Let us note that the fitness landscape may change for
different noise values, but our concern at this point is with the properties of optimal values,
and not with the precise details of how the global optimum is reached.

ε I(Y ; Y ′) I(X ; X ′) I(µ ; Y ) I (µ ; Y,X ′ | Θ)

0.00007 2.99761 2.50 2.99874 2.99975

0.0007 2.98079 2.48 2.98969 2.99766

0.007 2.85492 2.37 2.92018 2.97780

0.07 2.05331 1.67 2.43756 2.76741

0.14 1.45372 1.17 2.02273 2.50325

0.28 0.68195 0.53 1.35849 1.91497

0.56 0.06954 0.05 0.43829 0.72595

Figure 4.7: Summary of further optimising the solution found in Sec. 4.5.1 by varying the value
of ε for the sensory input (defined in Eq. 4.3). For each ε value, I(Y ; Y ′) is the upper bound
resulting from it, and I(X ; X ′) is the result of further optimising the mutual understanding. In
all these cases, the original solution (obtained from ε = 0.07) remained the same. We also show the
average environmental sensory information of the population, I(µ ; Y ), for each considered noise
value; and the average environmental information by considering together sensors and messages, given
by I (µ ; Y,X ′ | Θ).

In Table 4.7 we show the results for further optimising the original solution (with ε = 0.07)
represented in Fig. 4.6, for different ε values. In all of them, the equilibrium point from the
original solution did not change with the updated noise value.
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4.5.2 Spatially-structured population

We analyse here how the structure of a population influences the outcomes in the agent’s
codes. The population structure abstracts away space, and thus it allows the representation
of any type of space. Here, we study the maximisation of mutual understanding for structures
that “segregate” agents of the population into clusters. We consider c clusters of agents of
equal size, having d = n/c agents per cluster (we consider only values of c where the remainder
of the division is zero), and we specify a population structure such that there are two classes
of interaction: between agents of the same cluster, and between agents of a different cluster.
We index the clusters in the range 1..c, and we say two clusters are neighbours if their indexes
are neighbours, assuming 1 and c are also neighbours. In this way, each cluster has exactly
two neighbours, and we define the population structure as shown in Eq. 4.4.

p(θi, θj) :=

{
p

c×d×2×d if θi and θj belong to neighbour clusters
1−p

c×d×(d−1) otherwise
(4.4)

Equation 4.4 defines the population structure as a function of p. The number of interac-
tions of one agent with agents of other clusters is 2× d, and since we have n = c× d agents
in total, the total number of interactions is c× d× 2× d. Then, the number of interactions of
one agent with agents of the same cluster is d− 1, and we have c× d agents in total, giving
c× d× (d− 1) interactions.

When p = 0, agents interact only with agents of the same cluster; when p = 1, agents
interact only with agents of neighbour clusters; and when p =

(
1 + (d − 1)/2d

)−1
, agents

interact with agents of neighbour clusters as well as with agents of the same cluster with
equal probability. In the experiments done here, we use c = 8, which gives d = 8 (the
number of agents per cluster). We are interested in analysing these cases and those where
agents interact “mostly” with agents of the same cluster (e.g. p = 0.15); and where agents
interact “mostly” with agents of neighbour clusters (e.g. p = 0.85). In all experiments, we
use ε = 0.07. We plot the results as a graph, where nodes represent agents and are coloured
according to their adopted codes (colours between different experiments are not related!),
and there is an edge between nodes if the respective agents interact. Edges are in grey scale,
relative to the maximum of all probabilities of interaction (black represents the maximum).

Not surprisingly, when agents interact only with agents of the same cluster, their adopted
codes are uniform within clusters, but vary between them (see Fig. 4.8). It is possible,
although unlikely, that agents in disconnected clusters develop the same code. The same
outcome is achieved when agents interact mostly with agents of the same cluster, but also
with agents of neighbour clusters (see Fig. 4.9). Here, a universal code among all clusters
would be the optimal solution. However, the low interaction probability with other clusters
does not bring enough pressure to achieve global consensus, and deviating from a cluster’s
code would decrease the mutual understanding. Nevertheless, we expect the adopted codes
between clusters to be “closer” to each other when there is interaction between clusters.
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Figure 4.8: Result of codes for p = 0.00. Here,
agents interact only with agents of the same clus-
ter.
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Figure 4.9: Result of codes for p = 0.15. Agents
interact “mostly” with agents of the same cluster,
but also with agents of neighbour clusters.

Although we do not have a distance metric between codes, we can get an idea of how
close codes are by updating the population structure to a “well-mixed” one, and keeping the
configuration of codes. In the extreme case were all agents agree on their codes, the mutual
understanding will remain the same. However, if agents of neighbour clusters partially agree
on how they express environmental conditions, the mutual understanding would decrease,
because there will be disagreement, but not as much as if they did not agree on their codes
at all. Our hypothesis is that, as the interaction between clusters increase, the pressure to
agree on codes would be higher, favouring the agreement for expressing some environmental
aspects. In Table 4.14, we show a summary of the results, which are discussed later.

We ask now what would happen if agents interact with agents of the same cluster and of
neighbour clusters with the same probability. In the case where d = 8, this value corresponds
to p = 0.69. Interestingly, agents belonging to the same cluster agree on their codes (see Fig.
4.10). It is not clear at first sight why this would happen, after all, any agent interacts with
the same probability with 23 other agents (8 from one neighbour cluster, 8 from the other
neighbour cluster, and 7 from its own cluster). Why agents do not agree on their codes among
neighbours? In the case they do agree, then the only solution is universality, since agreement
is needed within and between clusters. Solutions of universal codes are unlikely to happen
with such structures, since early disagreements on the codes in the optimisation process can
still produce an increase in the objective function. Then, once a few of these conventions
are established, the possibility of full agreement between the codes is highly constrained by
inconsistent ways of expressing same environmental aspects between neighbour clusters. We
can test this hypothesis by “cutting” the interactions between two clusters, therefore having
two of them interacting with one cluster only. The results are shown on Fig. 4.11, where we
see that those clusters that have only one neighbour cluster indeed adopt the same code as
their neighbours.
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Figure 4.10: Result of codes for p = 0.69.
Agents interact with agents of the same cluster
and with agents from neighbour clusters with the
same probability.
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Figure 4.11: Agents interact with agents of the
same cluster and with agents from neighbour clus-
ters with the same probability, but we “cut” inter-
actions between two clusters only.
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Figure 4.12: Result of codes for p = 0.85. Agents
interact “mostly” with agents of neighbour clus-
ters, but also with agents of the same cluster.
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Figure 4.13: Result of codes for p = 1.00. Here,
agents interact only with agents of neighbour clus-
ters.
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Similarly to what happens when the interaction probability is homogeneous, when agents
interact mostly with agents of neighbour clusters (p = 0.85), then they adopt common codes
on a cluster basis (see Fig. 4.12). Here again, updates of codes are constrained by having to
agree with two neighbour clusters. Finally, we analyse what happens when agents interact
only with agents of neighbour clusters. In this case, the pressure to agree on a code is only
with agents belonging to a cluster’s neighbours. Nevertheless, agents from the same cluster
still agree on their codes, even if they do not interact at all (see Fig. 4.13). This is because
each agent of a particular cluster is the source to agents of other clusters, and uniform sources
increase the mutual understanding. In Fig. 4.13 we see that there is agreement in the adopted
codes of all clusters that are neighbours of a common cluster, therefore having only two codes
in the population, with agents that adopted one code interacting only with agents that have
adopted the other code. This differs with the previously done experiment (shown in Fig.
4.12), where all clusters had different codes. In this experiment, the exploration of codes is
less constrained, and therefore more likely to adopt the same code as your neighbour’s code.

p I(X ; X ′) Iw(X ; X ′) I (µ ; Y,X ′ | Θ) Iw (µ ; Y,X ′ | Θ)

0.00 2.11 0.10 2.72615 2.54814

0.15 1.57 0.07 2.68146 2.53771

0.35 1.32 0.31 2.65776 2.59305

0.69 1.42 0.97 2.70794 2.68105

0.85 1.49 1.23 2.73340 2.70600

0.95 1.95 1.30 2.73081 2.71301

1.00 2.24 1.24 2.69970 2.69970

Figure 4.14: Summary of optimising the mutual understanding for different values of p, determining
the population structure according to Eq. 4.4. To test how “close” the evolved codes of each cluster
are from each other, we change the population structure to a well-mixed one, while keeping the codes
of each agent, and then we compute the mutual understanding, denoted Iw(X ; X ′). We also show
the average environmental information of the agents, I (µ ; Y,X ′ | Θ), and how this changes when we
change the population structure Iw (µ ; Y,X ′ | Θ).

In Table 4.14, we show a summary of the results for different values of p. We analyse here
how “close” the adopted codes of all solutions are, where closeness is given by the mutual
understanding by updating the structure to a well-mixed one. In case of full disagreement
between all clusters (each cluster represents a state of the environment differently than all
the remaining clusters), we have that Iw(X ; X ′) = 0.00093 (the subscript w means that
the population structure was updated to a well-mixed one). Then, any increase of this value
would denote at least partial agreements between the agent’s codes. With full agreement,
the maximum mutual understanding is Iw(X ; X ′) = 2.05331. Table 4.14 shows that, in
general, higher interaction probabilities between agents of different clusters results in closer
codes. Closer codes enable a faster potential integration between clusters. Moreover, we see
that the environmental information does not significantly decrease in those cases.
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4.5.3 Flexible population structure

In another consideration, we let the structure co-evolve with the codes without any constraint
(the probability distribution of the interaction between agents, p(Ξ), is optimised together
with the codes). In this case, agents will cluster with other agents preferring uniformity of
sources. That is, an agent can incorporate another agent as a source if the latter’s code does
not create inconsistencies with the rest of the sources of the former. In a similar way, it can
avoid interactions with agents that encode their perception with different symbols. In this
optimisation process, agents that do not fit in any cluster (because of their codes) are isolated.
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Figure 4.15: Result from maximising the mutual
understanding with an evolving population struc-
ture with 128 agents.
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Figure 4.16: Result from maximising the mutual
understanding with an evolving population struc-
ture with 256 agents.

Two examples are shown in Figs. 4.15 and 4.16. In each of them, we see that all sources
of every agent have the same code, which is the condition for maximisation of the mutual
understanding. However, each sub-population have two different codes, and all of the sub-
populations are bipartite (agents with the same code do not interact with each other, only with
agents with codes different than theirs). The reason why we have this property is that agents
in the same sub-population would encode environmental conditions by using overlapping
outputs, and therefore creating inconsistencies for their understanding. However, this does
not always have to be the case, and it is possible to have sub-populations with uniform codes
as well as bipartite ones. This could happen, for instance, where one sub-population only
uses outputs that are uniquely interpretable among all agents, and other sub-populations use
outputs whose meaning depends on the agent we are looking at (context dependent).

Let us compare the codes of one sub-population to understand why agents avoid interac-
tions with agents of the same code type. The codes shown in Fig. 4.17 exemplifies this. In
these codes, there are two types of differences between them: some of them correspond to
synonyms, such as x5 on code (b) is a synonym of x14 on code (c), or x9 and x8 on code (b)
are synonyms of x16 on code (c). These are universal synonyms in the sub-population: that
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is, independently of which agent we select, they always refer to the same set of perception
states, which in turn refer to the same set of environmental states (due to all of them having
the same conditional probability for sensory input, as define in Eq. 4.3).

y1 y2 y3 y4

y5 y6 y7 y8

y9 y10 y11 y12

y13 y14 y15 y16

(a) states of Y

x5 x15 x9 x4

x9 x6 x10 x8

x3 x7 x13 x1

x12 x2 x11 x3

(b)

x14 x15 x16 x4

x9 x6 x10 x16

x3 x7 x13 x2

x12 x1 x11 x3

(c)

Figure 4.17: (a) Illustration of the sensory states in a grid. (b-c) Compact representation of a code
p (X | Y ). For example, x5 in code (b) is in the left top corner of the grid, and so is y1 in (a). Then,
this means that p (x5 | y1) = 1. The states X are coloured to make clear how many states a code can
distinguish from Y .

On the other hand, some synonyms are context-dependent, such as x1 and x2, which refer
to perception states y12 and y14, depending on the code of the agent. For an agent perceiving
messages from agents with a code scheme like 4.17 (b), then x1 refers to the perception state
y12; while, if an agent perceives messages from agents with a code scheme like 4.17 (c), then
x1 refers to the perception state y14.

This constrains the choice interaction partners (or sources of messages): agents cannot
mix their interactions with agents of different codes, because they would be inconsistent with
each other. Why agents do not interact with agents of their own type only? To answer
this, let us look at what the maximisation of mutual understanding achieves: the resulting
mapping p (x | x′) is universal across sub-populations. Early in the optimisation of the mutual
understanding, trends for this mapping are established, and changes to reverse these trends
require a larger amount of updates than the ones needed for updating the structure. Therefore,
bipartite sub-populations emerge as a solution to avoid inconsistencies.

4.5.4 Emerging concepts in a well-mixed heterogeneous population

So far, we have only considered populations of agents that acquired the same aspects of
information from µ (i.e., p (Y | µ,Θ = θi) = p (Y | µ,Θ = θj) for any pair of agents θi, θj).
Now, we consider a different scenario, where different types of agents acquire different aspects
from the environmental conditions µ. We investigate whether it is possible for an agent
that does not directly perceive the environment at all (we call this type of agent “blind”)
to predict conditions based solely on the outputs of other agents. We consider a well-mixed
population, such that different types of agents are forced to talk to each other. Considerations
with a flexible population structure are not interesting for our purposes, since in these cases,
each type of agent would form a cluster disconnected from clusters of other types. This was
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confirmed by simulations which are not shown here.

Let us illustrate the idea with a relatively simple scenario: we consider five types of
agents (we denote the i-th type φi), where each type can only distinguish two macro-states
from the environment. The environment consists of 9 states, and the probability of each state
is uniformly distributed. We illustrate this environment by a 3 × 3 grid, as shown in Fig.
4.18, although the square does not denote the actual structure of the environment. Then, the
outputs of each type of agent will be related to the aspects of the environment they capture.
For instance, for agents of type φ2, their outputs will be related to either environmental states
such that p (µ | Y = y1) > 0 (in this case, environmental states {3, 6, 7, 8, 9}), or to those such
that p (µ | Y = y2) > 0 (states {1, 2, 4, 5}) (see Fig. 4.18). We say that a population of agents
has a joint concept of the environment if by considering its outputs of the environmental
information they capture, it is possible to obtain information about the environment, i.e. we
require that I(µ ; X,X ′) > 0.

1 2 3

4 5 6

7 8 9

states of µ

y1 y1 y1

y1 y1 y1

y1 y1 y1

type φ1

y2 y2 y1

y2 y2 y1

y1 y1 y1

type φ2

y1 y2 y2

y1 y2 y2

y1 y1 y1

type φ3

y1 y1 y1

y2 y2 y1

y2 y2 y1

type φ4

y1 y1 y1

y1 y2 y2

y1 y2 y2

type φ5

Figure 4.18: Representation of the conditional probabilities p (Y | µ) for an agent θ of each type.
These are defined such that each type of agent can only distinguish between two environmental macro-
states. For instance, the sensor of type φ2 is defined as p (Y = y2 | µ) = 1 if µ ∈ {1, 2, 4, 5}, and
zero otherwise, and p (Y = y1 | µ) = 1 if µ /∈ {1, 2, 4, 5}, and zero otherwise. For type φ1, we have
p (Y = y1 | µ) = 1.

The amount of environmental information that an agent θ of type φ1 (a blind agent) cap-
tures is I (µ ; Y | Θ = θ) = 0 bits, while all agents θ of the other types capture I (µ ; Y | Θ = θ) =
0.991076 bits (note that the total entropy in µ to be resolved is H(µ) = 3.16993 bits).
Throughout this study, we considered that agents predict the environment by considering
their perceptions together with the outputs of other agents. The blind agent, instead, since
it is not able to capture any direct cue from µ, we consider capable of perceiving the outputs
of both of the agents selected by Θ and Θ′. With this relaxed consideration, we say a blind
agent has a concept of the environment if I (µ ; X,X ′) > 0, i.e. we consider the maximum
amount of information an agent can possibly infer from the joint outputs X and X ′.

Let us recall that the structure of the population is well-mixed, and thus the distri-
bution of outputs of all agents is considered, including the blind ones, which are not able
to express (via their outputs) any particular concept by themselves (for a blind agent θ,
I (µ ; X | Θ = θ) ≤ I (µ ; Y | Θ = θ) = 0, i.e. I(µ ; X) vanishes). Therefore, whether a
blind agent has some concept of the environment will depend, first, on the universality of the
codes of each type of agent (agents representing the same information with different symbols
may create ambiguities). Second, on the cardinality of the alphabet of X (i.e. |X|) utilised
by the population. A small alphabet will force agents to represent different concepts of the
environment with the same symbols, while a large alphabet is likely to result in exclusive
representations of concepts for each type of agent.
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Taking this into account, we ask, is it possible for a blind agent to identify concepts of the
environment? If so, how are these concepts related to the concepts of the individual agents
(other than the blind ones)? Is the size of the available alphabet related to the quality of the
concepts?

To study these questions, we performed different experiments varying the size of the
alphabet |X|, where the rest of the parameters remained the same. In these experiments, we
optimised the mutual understanding for a population composed of 20 agents, with 4 agents of
each of the five types. In Table 4.1 we show that the cardinality of the alphabet of X affects
the limit of the amount of information a blind agent can possibly infer about the environment.

|X| I(µ ; X,X ′)

2 0.34621

3 0.56555

4 0.71620

5 0.95467

6 1.08139

7 1.18362

8 1.30919

9 1.30919

Table 4.1: Results of experiments where the size of the
alphabet of a population varies. The maximum amount of
environmental information that a blind agent can infer is
achieved with |X| = 8 and remains equal for larger alpha-
bets. As the size of the alphabet decreases, this information
also decreases.

µ1µ2µ3µ4µ5µ6µ7µ8µ9
X = 1, X ′ = 1

X = 1, X ′ = 2

X = 1, X ′ = 3

X = 1, X ′ = 4

X = 1, X ′ = 5

X = 1, X ′ = 6

X = 1, X ′ = 7

X = 2, X ′ = 2

X = 2, X ′ = 3

X = 2, X ′ = 4

X = 2, X ′ = 5

X = 2, X ′ = 6

X = 2, X ′ = 7

X = 3, X ′ = 3

X = 3, X ′ = 4

X = 3, X ′ = 5

X = 3, X ′ = 6

X = 3, X ′ = 7

X = 4, X ′ = 4

X = 4, X ′ = 5

X = 4, X ′ = 6

X = 4, X ′ = 7

X = 5, X ′ = 5

X = 5, X ′ = 6

X = 5, X ′ = 7

X = 6, X ′ = 6

X = 6, X ′ = 7

X = 7, X ′ = 7

Figure 4.19: Conditional probabil-
ity p (µ | X,X ′) in inverse grey-scale.
Each row represents a combination of
values of X and X ′, and each column
represents a state of µ.

Now, if we measure the uncertainty of the environment for a blind agent for each combina-
tion of outputs X and X ′, we find that for some of them, it is zero. For instance, with |X| = 7,
we found that when p (µ = 5 | X = 1, X ′ = 2) = 1.0 (see Fig. 4.19, where only combinations
with X ≤ X ′ are shown). These distributions are also valid when swapping the values of X
and X ′, since in the well-mixed population the structure is symmetric. Looking at the ex-
ample of the conditional probability in Fig. 4.19, we can find many other concepts, although
none of them —apart from the one already discussed— can uniquely identify a state of the
environment. For instance, we have that p (µ | X = 3, X ′ = 6) = 0.33 when µ ∈ {3, 5, 7},
which is a concept for being on a particular diagonal of the environment.

In Fig. 4.25 we show the resulting codes (which are universal for each type, including the
blind one) for this particular experiment. Here, the types φ2 and φ5 utilise the same symbols
to represent different environmental conditions. By using a small size of the alphabet for X,
we force inconsistencies in the population, but these will be chosen (by evolution) such that
they are minimal. In this way, we maximise the amount of information we can infer from
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the outputs (although this can be a local optimum). For instance, the outputs of the blind
agents (type φ1) for all the experiments never overlapped that of other types (unless we use
|X| = 2, where there is no choice). In other words, blind agents always choose one symbol so
that they minimise the amount of utilised symbols from the whole population.

X1 X2 X3 X4 X5 X6 X7

Y = 1

Y = 2

Figure 4.20: Code of type φ1

X1 X2 X3 X4 X5 X6 X7

Y = 1

Y = 2

Figure 4.21: Code of type φ2

X1 X2 X3 X4 X5 X6 X7

Y = 1

Y = 2

Figure 4.22: Code of type φ3

X1 X2 X3 X4 X5 X6 X7

Y = 1

Y = 2

Figure 4.23: Code of type φ4

X1 X2 X3 X4 X5 X6 X7

Y = 1

Y = 2

Figure 4.24: Code of type φ5

Figure 4.25: Representation of codes p (X | Y,Θ) by a heat-map using inverse grey-scale for the
experiment with |X| = 7. For each node, the rows represent a sensor state y, while the columns
represent an output state x.

In all the performed experiments, we found that for values of |X| ≥ 6, the blind agent can
perfectly predict the environmental state µ = 5 for at least one combination of outputs X
and X ′. Interestingly, this new concept, which in this particular experiment can be called the
“centre” of the world or environment, cannot be obtained by looking to individual concepts
only.

4.6 Discussion

In this chapter, we have considered populations of agents with the ability to encode their
perception of the environment, through their codes, and shared this encoding with other
agents according to a population structure. We proposed a model for the evolution of codes
which drops the assumption of agents knowing the identity of their communicating agents. As
a consequence, for agents to be able to interpret shared messages, they either need to rely
on their universality, or they must know the identity of the source. This enables the capture
of semantic communication in an information-theoretic model, a non-trivial property in such
systems [Favareau, 2007, Battail, 2009].

In the evolution of codes, an important factor is the structure of the population, which
determines the interactions between the agents. In well-mixed populations, we have seen
that universality of codes is the only solution, since each agent needs to understand the rest
of the agents. Similar results where obtained in two other studies: first, Vetsigian et al
studied the evolution of the genetic code in a non-situated model [Vetsigian et al., 2006]. The
genetic code was represented as a probabilistic mapping between codons and amino acids,
and entities exchange their codons (subject to compatibility measures) in an Horizontal Gene
Transfer (HGT) scenario. They found that a universal code emerged as a result of evolution
in a well-mixed population.
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Another similar study was done in [Levin, 1995]. This is also a non-situated model, where
the fitness of an agent depends on its ability to predict other agent’s internal states. Each
agent communicates its internal state through a code, and interprets other agent’s internal
states through another code. In an evolutionary setting, they obtained a universal coding for
a well-mixed population.

In another related work, [Oudeyer, 2005] explored the origins of language in a scenario
consisting of artificial agents with a coupled perception and production of speech sounds.
Although this work is focused on plausible mechanisms for the origin of language, it assumes
the same similarity principle as we do (hearing a vocalisation increases the probability of
producing similar vocalisations), arriving to the same outcome (a universal language, or
code).

Our work differs from the previous studies in one crucial aspect: it is clear why a universal
code for communication would increase an agent’s fitness. In our work, agents that can
understand each other can incorporate side information into their Kelly-gambling strategies
and improve their predictions of the environment. All other models mentioned are non-
situated: agents interact with each other, but it is not specified any interaction with their
environment. As a consequence, it is not clear why a universal code would give them an
advantage, unless this is included in the fitness function. This is the case in the first two
studies, while in [Oudeyer, 2005], the focus is on the mechanism rather than on the conceptual
framework. Other works have considered similar scenarios in the evolution of languages: for
instance, the naming game [Steels, 1995] and the imitation game [Boer, 2000]. However, these
models assume some common conventions in order to evolve new ones.

An insight from our model that is not present in the related works is that universality fol-
lows from not being able to identify the sources of messages, and from a well-mixed population
structure. The first point is not obvious, but becomes evident with the use of information-
theoretic measures such as mutual information. As we explained, the traditional use of mutual
information implicitly assumes that an agent knows the identity of the sender, and thus can
theoretically perfectly interpret its messages. Dropping this assumption is fundamental for
obtaining universal codes. The other important property is the population structure.

We have analysed different population structures in our evolutionary model. Well-mixed
populations create pressure towards universal codes. On the other hand, non-interacting
sub-populations would establish different conventions between them, but uniform within each
sub-population. We have shown that even when the agents of each sub-population interact
mostly with agents of other sub-populations, but still interact, with less frequency, with agents
of its own sub-populations, then we have the same result. This is also achieved when agents
only interact with agents of other sub-populations, but in this case homogeneity is achieved
in the sources of each agent.

A particularly interesting phenomenon was observed in the experiment with a well-mixed
population. There, the adoption of synonyms to express the same environmental condition
(via perception states) prevented achieving a global maximum. The reason for this was the
limited choice for outputs for the agents: using synonyms decreases the amount of choices
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to encode the environment, and therefore not all of them can be distinguished, because the
re-use of occupied outputs would create inconsistencies.

One way in which restrictions such as the one above can be alleviated is by “disconnecting”
agents with dissimilar conventions. This is the case where we considered “flexible” population
structures: we allowed the update of the structure simultaneously with the update of the
codes. This property enhances evolution, and can potentially lead to the adoption of several
different conventions within an increasingly fragmenting, or “speciating” population.

Our last scenario assumed perceptual constraints on the environmental information of each
agent, an we looked at emerging concepts within a well-mixed population. This scenario was
studied in [Moller and Polani, 2008], where, as well as in our study, new conceptualisations
of the world emerged as a result of considering together the concepts of every agent. In both
studies, the new concept was not representable individually by any agent. Differently from
the mentioned study, the new concepts obtained in our study were the result of a simple
similarity maximisation principle, while in the work of [Moller and Polani, 2008], concepts
were obtained through the modelling of an explicit fitness function.

The type of evolution that our model captures is predominantly social. It assumes a
non-competitive population of units that can improve their fitness by communicating. This
is a first step for understanding the emergence of new levels of organisation, as, for instance,
the emergence of the cell from the evolution of a genetic code [Woese, 2002, Woese, 2004];
the evolution of multicellularity from epigenetic codes [Jablonka, 1994]; and the evolution of
societies from natural languages [Dor and Jablonka, 2001]. These are some of what are con-
sidered “major transitions” in evolution [Szathmáry et al., 1995, Szathmáry, 2015], where one
fundamental property is that new ways of storing, transmitting and interpreting information
are developed to give rise to a new level of organisation.

In this view, we can consider the evolution of conventional codes as a form of cultural
evolution. For instance, considering the definition of culture given by [Boyd and Richerson,
1985]: “Culture is information capable of affecting individuals’ behaviour that they acquire
from other members of their species through teaching, imitation, and other forms of social
transmission.”, it could be argued that a form of cultural information is present in organisms,
such as bacteria or plants. Although there is a dependence among the different dimensions
on which information is transmitted in organisms (if we assume the dimensions to be, for
instance, genetic, epigenetic, behavioural and symbol-based, as proposed by [Jablonka and
Lamb, 2005]), our model assumes freedom of choice in one dimension, without direct influence
on the others (although there is an indirect influence).

Finally, communication between individuals of a population opens up the possibility of
“signal cheaters”, which could be either individuals that do not produce signals themselves but
still perceive those of the others (eavesdroppers), or individuals who exploit other individual’s
learned responses to symbols to their advantage (manipulators). We have ignored possible
conflicts with our definition of the fitness function, which favours the fitness of the whole
over the individuals. As a consequence, some individuals in our model might be sacrified (for
example, when they are isolated) to improve the population’s fitness, or their fitness may
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decrease in favour of that of the population.

However, in the evolution of joint codes, there will be conflicts within a population, and
the evolutionary path of a population will be greatly influenced by these conflicts and how
they are resolved. For example, Krebs and Dawkins consider communication as fundamentally
manipulative, where an actor will signal another organism, the reactor, in such a way that
its response will benefit the former [Krebs and Dawkins, 1984]. We address possible conflicts
that arise in communicating organisms in the next chapter, where we consider parasites in a
population.

4.7 Conclusion

In the proposed model, we introduced a key assumption which allowed us to evolve, for some
structures, universal codes. This assumption states that an agent cannot distinguish the
sources of the outputs it perceives from other agents. Following from this, a universal code
will necessary introduce semantics by relating symbols to environmental conditions (via the
internal states of the agent) for populations maximising their mutual understanding. Our
model proposes an information-theoretic way of measuring the similarity within a population
of codes.

In this work, we proposed, as an evolutionary principle, that agents try to maximise their
side information about the environment indirectly by maximising their mutual code similarity.
This behaviour produces several interesting outcomes in the code distribution of a structured
population. Depending on the population structure, it captures the evolution of a universal
code (well-mixed population structure), while also the evolution of different codes organised
in clusters (in a freely evolving population structure).

Finally, we considered a well-mixed heterogeneous population with perceptual constraints
on the agents about the environment, and showed how, just by looking at the outputs of
agents, it is possible to extract concepts that relate to the environment, concepts that none
of the agents of the population could individually represent.

We have postponed the study of conflicts in order to first understand how the structure of
a population influences the evolution of codes. In the next chapter, we incorporate conflicts
into the model, and study two forms of parasitism, as well as how populations can defend
themselves against them.
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Chapter 5

Informational parasitism

5.1 Overview

In this chapter, we explore how the establishment of conventional codes for communication
opens up the possibility of parasitism. We first simplify the model introduced in the previous
chapter such that what agents perceive from the environment is determined by their codes,
instead of being fixed by their sensor variable. We then extend the model by incorporating ex-
plicit predictions of the population over the environment. This allows us to fix a population’s
decoding, while retaining the option to change their encodings of the environment.

We study the host-parasite co-evolution in stages, by considering separate turns for opti-
misation of the host and of the parasite. We define two types of paradigmatic parasites, which
are studied separately. We give characterisations for each of them that emerge from their be-
haviour. We further investigate which host properties show robustness and adaptiveness when
interacting with parasites.

Part of this chapter is based on the conference paper “Information parasitism in code
evolution” [Burgos and Polani, 2015], published in the Proceedings of the 15th conference on
Artificial Life, although the majority of the results have not been published to this date.

5.2 Introduction

Codes shared among entities are ubiquitous in nature, and are not only present in biological
systems, but also, at the least, in technological ones [Doyle, 2010]. For instance, the TCP/IP
protocol allows the interaction of hardware and software in a code-based, “plug-and-play”
fashion, as long as they both obey the protocol [Doyle, 2010]. In biology, the genetic code acts
as an innovation-sharing protocol, one that allows the exchange of evolutionary innovations,
for example, through horizontal gene transfer (HGT) [Woese, 2004].
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However, communication protocols introduce vulnerabilities. We have shown that drop-
ping the assumption of knowing who is the sender of information in a communication scenario
forces the universality of codes in well-mixed populations. Not being able to identify the
sender does not present any problems in a population of cooperative individuals, but it is this
same property which creates vulnerabilities: parasitic agents, acting anonymously, can take
advantage of them [Ackley and Littman, 1994, Doyle, 2010]. For instance, the chemical cues
that ant colonies use to recognise nest-mates can be mimicked by slave-making workers for
social integration [d’Ettorre et al., 2002]. On the Internet, one can take advantage of machine
communication protocols (TCP/IP) to force target computers to perform computations on
behalf of a remote node [Barabási et al., 2001], to spread viruses or to hijack machines. Once
a community agree on a protocol, a law, or a set of rules on how to interpret information,
then it opens itself to exploitation by malicious users.

In its broadest sense, exploitation can take two forms: manipulation, where a receiver’s
response to a signal damages its success, while increasing that of the signaller; and eaves-
dropping, where a signaller’s success is reduced by the interception and subsequent action of
an unintended receiver, and the latter benefits from this interaction. Based on this, I con-
ceptualise a parasite as any agent that exploits any other agent or agents, damaging them
in their interaction, is considered a parasite. This definition is not typical in biology, where
usual requirements include nutritional dependence and utilisation of the host as an habitat
[Anderson and May, 1978]. However, in this section of the thesis, I intentionally ignore such
considerations (for instance, by assuming no resource competition) to focus on the informa-
tional aspects only. While these material requirements indeed play a role in communication,
their inclusion would increase the complexity of the analysis, making it harder to pry apart
which effect is contributed by which constraint. Most importantly, we would like to obtain a
system’s dynamics (host-parasite for example) in a principled manner, with a minimal set of
assumptions.

The study of informational parasitism can shed light on the evolution of biological systems
in several ways: first, they improve our understanding of the properties needed for a persis-
tent organisation, which are those that are, among other properties, robust and adaptable
against parasites [Kitano, 2004]; second, they help to identify vulnerabilities in a system’s
organisation, which could be used to design drugs targeting specific agents or in the context
of cyber security; and third, ultimately understanding the prerequisites of parasitism can help
us move towards a unified behaviour for hosts and parasites.

The host-parasite co-evolution is often characterised by Red Queen dynamics. The Red
Queen Hypothesis states that organisms must constantly adapt to each other with an im-
portant point that they typically keep evolving in order to survive and be able to reproduce
[van Valen, 1973]. In this dynamics, the host’s primary task consists of the identification of
parasites, and the parasite’s primary task is to avoid being identified. For instance, in social
insects, kin recognition is a response to the presence of parasites, but, at the same time,
parasites respond to their hosts by mimicking their chemical profiles [Summers et al., 2003].
The adoption of the host’s language is fundamental to another widely observed phenomenon
in this arms race: manipulation of the host by the parasite [Poulin, 2010].
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We look at some aspects of the co-evolutionary arms race between host and parasite.
Particularly, we would like to characterise informationally the behaviour of parasites and the
consequences for the host. We put special emphasis on host’s configurations that are robust
and adaptable to the parasites we consider.

5.3 Related work

Common approaches to study host-parasite co-evolution include game theoretical models,
population dynamics models, virulence models and evolutionary simulation models. I here
mention some general theoretical results concerning the effects of parasitism in the evolution
of a system’s organisation, focusing on the emergent properties rather than on the particu-
lar methods. We focus on studies of parasitism in models that account for the evolution of
communication protocols, which are mostly simulation-based studies. There are no studies of
parasitism from a purely information-theoretic perspective as far as the author is concerned,
and only a few that explore parasitism as a consequence of the evolved communication pro-
tocols.

5.3.1 Parasites in the evolution of communication

Our interest is in models where agents use communication as a mean to improve their pre-
dictions of a variable of interest. Such models naturally enable parasites to abuse the evolved
protocols of communication, creating confusion in the population, and taking advantage of it.
Generally, these models have a first phase of evolution, where the communication protocols
are established within the population. Then, a parasite (or parasites) is introduced in the
population and the consequences are studied. The reason for this two-staged evolutionary sce-
nario is mainly that (manipulative) informational parasites are only effective if a population
has evolved rules for communication. We will take a similar approach in our study.

We describe here a few results of models that studied parasitism in the context of the
evolution of communication. For instance, Robbins imagined a world where female babel
animals communicated with males in order to guide them to their location and be able to
reproduce. His results showed that, in the presence of parasites (e.g. females that place
themselves close to more mature females that already have a mutual understanding with
males), communication attained more efficiency in their protocols [Robbins, 1994]. Ackley
and Littman explored how the evolution of local communication protocols is vulnerable to
migration, observing waves of parasites taking over most local environments, establishing
new conventions, which in turn can be exploited by a new wave of parasites [Ackley and
Littman, 1994]. Krakauer and Johnstone studied how the cost of signalling influence the
fitness dynamics between signallers and receivers [Krakauer and Johnstone, 1995]. They
found that receivers only obtain truthful information when there is a cost for producing
signals, although the establishment of particular interpretations of signals by receivers also
allows exploitation. The evolved dynamics showed waves of exploitation, followed by a change
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in the interpretation strategy of the receivers to avoid being exploited. This in turn allowed
the cycle to start over again.

Two of these studies showed Red Queen dynamics [Ackley and Littman, 1994, Krakauer
and Johnstone, 1995], while in [Robbins, 1994] the result was a more efficient protocol that
minimises the interaction with parasites. These are two ways in which a host population
can adapt to mitigate the effects of parasites. Another possible way to achieve this is by
identifying the parasites and then suppressing them, which is how immune systems protect a
host population. Some parasites, then, will try to become invisible to the population to avoid
detection. Let us look into some studies in this direction.

5.3.2 Mimicry by parasites

Franks and Noble studied the evolution of mimicry on predator-prey systems [Franks and
Noble, 2002a, Franks and Noble, 2002b, Franks and Noble, 2004]. They studied two types
of mimicry: Batesian mimicry, where a palatable prey mimics an unpalatable one, which
presents a parasitic relationship between the two; and Müllerian mimicry, where two or more
unpalatable prey species converge on appearance. In their system, each prey had a fixed
palatability level, and a phenotype which evolved in time. Predators updated their experiences
based on the appearance of the consumed prey, and its palatability, with some ability to
generalise on appearances. In scenarios with both palatable and unpalatable species, they
have shown that palatable species mimicked the unpalatable ones, where the palatable species
is a parasite in relation to the unpalatable one. This happens because the palatable species is
now more difficult to be identified by predators, and the traits associated with the unpalatable
species by predators are no longer deadly for all cases. They also showed that the presence
of Batesian mimicry decreased the number of mimicry rings (Müllerian relationships between
two or more species).

Parasite’s mimicry of a host is a common phenomenon in biology, and it’s a fundamental
property of social parasites [d’Ettorre et al., 2002, Lorenzi et al., 2014]. For instance, some
social insects are chemically neutral when invading a population, such that they can avoid
detection and learn the chemical profile of the population in order to manipulate them. In
our model, we will give a measure of how much one can identify agents in a population, which
can be used as a measure to identify parasites. Identification is directly related to mimicry:
a good mimicker cannot be identified from the mimicked.

5.3.3 Manipulation by parasites

Poulin defines host manipulation by a parasite as any alteration in host phenotype, induced by
a parasite, that has fitness benefits for the parasite [Poulin, 2010]. Studies of this phenomenon
usually employ population dynamics models to study the effects of manipulation on the host
[Lion et al., 2006, Fenton and Rands, 2006]. These type of models study parasitism in relation
to a particular phenomenon. For instance, Lion et al. studies the influence of a parasite in
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host dispersal, and Fenton and Rands study the effects of manipulation of prey in a predator-
prey system. Both studies are concerned with parasitic transmission between species. In this
chapter, however, we want to study parasitism in general systems, rather than in specific
settings. Particularly, we would like to understand which properties a host must have for a
parasite to be effective, as well as which are the emergent characteristics of a manipulative
parasite. These type of properties are difficult to study in models using population dynamics.
Another important property in host-parasite interactions that is of interest here is robustness
and adaptability of a host population to parasites.

5.3.4 Robustness of hosts against parasites

Robustness is a fundamental property of systems, where their persistence depends on how
well they can respond to external and internal perturbations [Kitano, 2004, Wagner, 2005,
Whitacre, 2012]. Wagner argues that robustness is a pre-condition for evolvability, where
neutral mutations can explore the innovation space without disrupting the general functioning
[Wagner, 2005]. Robustness can be achieved by several mechanisms. Kitano proposes four of
them, which are system control, alternative (fail-safe), modularity and decoupling [Kitano,
2004]. Briefly, he associates system control with negative feedback loops (maintenance of a
desired state); fail-safe mechanisms with redundancy and phenotypic plasticity (diversity);
modularity with isolation of perturbations from the rest of the system; and decoupling with
isolation of noise and fluctuations from functional level structures and dynamics. We will
focus here on literature related to fail-safe mechanisms, which is a form of adaptation.

Alternative (fail-safe) mechanisms

Fail-safe mechanisms maintain the functioning of a system in case of component failure.
Components can be broadly classified into redundant and diverse. Redundant components
provide a similar function to the system, while diverse components provide different means
to maintain functioning [Kitano, 2004].

Haldane suggested that pathogens can help maintaining the genetic diversity in popula-
tions more than half a century ago [Haldane, 1949]. Now theoretical as well as experimental
studies support his hypothesis [Summers et al., 2003]. In artificial systems, one early study by
Hillis used co-evolving parasites as a way of avoiding local optima in evolutionary algorithms
[Hillis, 1990]. He used the idea of diversity as a by-product of competitive co-evolution to
“pull out” a population of solutions from a local optimum. In his experiment, parasites would
attack highly frequent solutions, and an increased diversity of them would reduce the success
of the parasites. Other works have extended this approach to solve search problems with
rugged fitness landscapes [Paredis, 1995, Rosin and Belew, 1997, Nolfi and Floreano, 1998].

In experiments done in the digital platform Avida, where self-replicating computer pro-
grams compete for resources, the presence of parasites increased host diversity [Zaman et al.,
2011]. One of the mechanisms to achieve this was to target the most frequent host pheno-
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type. Another work studied how parasites lead to robust organisations in signalling networks
of proteins [Salathé and Soyer, 2008]. They found that the co-evolution of these networks with
parasites increased the presence of redundant proteins, although robustness was also achieved
by the architecture of the networks. This means that some architectures can mitigate a par-
asite’s effect even in the absence of redundant proteins. Typically, in their simulations, the
evolution of hosts with high fitness was preceded by an increase in structural diversity.

5.4 Model extension

5.4.1 Simplification of the model

In the model for the evolution of communication described in the previous chapter, the out-
puts or messages of an agent were produced according to a code which was expressed as a
conditional probability from sensor states to messages. The sensor model, i.e. the probabil-
ity of each sensor state of an agent conditioned on the environmental variable µ, was given.
The information about the environment which each agent obtains was given by the mutual
information between the environmental variable and its sensor variable, together with the
information (outputs) transmitted by other agents. These outputs would be perceived or not,
according to the structure of the population. The codes, as well as the population structure,
were optimised in order to maximise the mutual understanding (defined in Sec. 4.4.3) of the
interacting agents of the population.

Here, instead, we further simplify the model from Chapter 4, by considering a model where
the sensor states of an agent and the agent’s messages are represented by the same random
variable X. That is, p (X | µ,Θ = θ) gives the probability distribution of the sensor states
(and, consequently, the messages) of an agent θ given the environmental conditions µ. We will
say that this conditional probability induces an encoding of the environment. There are two
main advantages in introducing this change: first, we are making fewer assumptions by not
defining which environmental aspects each agent perceives; and secondly, we are simplifying
the agents by not allowing them to perceive information directly from the environment and
not sharing it.

We will further simplify the model by assuming the conditional probabilities p (X | µ,Θ)
to be functions of µ for each Θ. Although this highly restricts the possible encodings, since
for each value of µ we can choose only one value of for X, the results are easier to interpret
and the computations are faster. In any case, optimisations of the mutual information which
are optimal would have to be functions of µ, since otherwise they would lose information.
This is simply because, in the case they are not functions of µ, knowing µ does not uniquely
determine the value of X. Let us note that being a function of µ can still produce non-optimal
mutual information I(µ ; X), as, for example, when different values of µ are mapped to the
same value of X.

Agents perceive the sensor states (messages) of other agents according to the structure
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Figure 5.1: Bayesian network representing the relation of the variables in the simplified model of code
evolution. p (X ′ | µ,Θ′) is an i.i.d copy of p (X | µ,Θ) when we have that Θ = Θ′. Θ and Θ′ selects
agents from the same set, but their marginal probability distributions are not necessary the same.
These two variables depend on a common variable Ξ to model more general interaction structures.

of the population interaction, which is given by p(Θ,Θ′). This joint probability induces a
weighted graph, where agents represent the nodes of the graph and there is an edge from agent
θ to an agent θ′ if p(θ, θ′) > 0 (which is the weight of the edge). We interpret p(θ, θ′) as the
probability of interaction between these two agents. As before, we exclude self-interactions,
without requiring symmetric interactions (we can have p(θ, θ′) 6= p(θ′, θ)).

As we noted before, a problem of not requiring symmetric interactions in the model is that
we would have two ways of measuring an agent θ’s environmental information: I (µ ; X,X ′ | Θ = θ)
and I (µ ; X,X ′ | Θ′ = θ). Since the interactions are not symmetrical, these values can be
different. However, to analyse parasitism we will use estimations of the environment at the
population level, where asymmetry is no longer an issue (this is explained in the next sec-
tion). We should note here that this model is not equivalent to the one defined in the previous
chapter (see Fig. 4.5). For instance, the information that an agent directly perceives from
the environment cannot be “hidden” away by that agent from other agents by choosing an
appropriate code, unless it is done by not interacting with them.

5.4.2 Modelling predictions

So far, we have not explicitly modelled predictions or bets. Here, now, we will introduce
explicit “actions” or “decisions” of the agents in the form of bets. More precisely, those bets
are given by the Bayes-inverse probability p (µ | X,X ′,Θ = θ) for an agent θ.

Our objective function is given by I (µ ; X,X ′), and, once we find a (possibly local)
maximum, we interpret it as the outcome of an evolutionary process, where the encodings
of agents as well as the population structure is fixed. In this equilibrium, each agent would
estimate the environmental conditions by considering its own encoding together with the ones
of the agents it interacts with, according to the population structure.
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Figure 5.2: Bayesian network representing the relation of the variables in the simplified model of code
evolution. p (X ′ | µ,Θ′) is an i.i.d copy of p (X | µ,Θ) when we have that Θ = Θ′. Θ and Θ′ selects
agents from the same set, but their marginal probability distributions are not necessary the same.
These two variables depend on a common variable Ξ to model more general interaction structures.

There are two ways in which we can model predictions: at the individual level or at
the population level. If we consider the individual level, then each agent θ will have its
own estimation of the environment, given by p (µ | X,X ′,Θ = θ), and the predictions will
be conditioned on the agent. However, to study parasitism, the bets on the environment
are modeled at the population level. This means that the estimation of the environment is
independent of the agents, or, in other words, is the same for all agents. There are several
reasons to choose this option: first, as we explained, at the individual level we have two
possible estimations of the environment, which is a consequence of asymmetric structures.
Second, we want to study the co-evolution of a host and a parasite, and having agent-based
predictions would imply different interactions with the parasite, making the analysis and
display of results significantly more complicated.

The population’s estimation of the environment is given by p (µ | X,X ′), i.e. by Bayesian
inference on the environment, and we consider this as the evolved policy of the population for
the optimal (proportional) betting on the environment. In other words, the bet is implemented
by introducing a new variable whose value is determined from the predictions of the population
via Bayes-inverse. We define the estimation of the environmental variable as a random variable
µ̂, which is defined in the following manner:

p
(
µ̂ = µ

∣∣ X,X ′) := p
(
µ
∣∣ X,X ′) (5.1)

The bet µ̂ is implemented by the population’s prediction of the environment µ via the
Bayes-inverse probability p (µ | X,X ′). It is important to note that, while µ̂ is distributed
according to the Bayes-inverse of p (µ | X,X ′), it is only i.i.d., but it is not the same variable
as µ.

We will call the conditional probability defined in Eq. 5.1 the decoding rules of the
population. The relation between all the defined random variables is shown in Fig. 5.2.
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Importantly, let us note that the proposed policy has the following property:

I (µ ; µ̂) ≤ I
(
µ ; X,X ′

)
(5.2)

The inequality shown in Eq. 5.2 derives from the data-processing inequality, which infor-
mally states that “no clever manipulation of the data can improve the inferences that can
be made from the data” [Cover and Thomas, 2002]. In our terms, the environmental in-
formation that is lost in the joint encodings of the population cannot be recovered to fully
predict/reconstruct the environment.

5.5 Host-parasite co-evolution

To study the co-evolution of a host and a parasite, we consider a host to be a population
where its environmental information I(µ ; µ̂) is a local/global maximum. We want to study
here how the introduction of parasitic agents affect the environmental information of the host,
and how the interaction between the host and the parasite plays out. We assume hereafter
that a host will always try to keep its environmental information maximised.

For this purpose, we introduce a parasite in a population which has its environmental
information maximised. Such populations will have evolved ways to encode their environ-
ment, given by p (X | µ,Θ), as well as their interaction structure, given by p(Θ,Θ′). As a
consequence, the population would have evolved their rules to predict the environment, or,
in other words, to decode their encodings, given by p (µ̂ | X,X ′).

We introduce parasites artificially rather than having them arising as a consequence of an
agent’s conditions in the model, which would allow to characterise the emergence of parasites
in the model. However, there are at least two disadvantages to this approach: first, it would
make more difficult to analyse the interactions between an agent that is (temporarily) a
parasite and a host; and, second, we would not be studying parasites that have an evolved
strategy when interacting with a host. Introducing parasites artificially will allow us to test
the success of different strategies, as well as to study the interactions with the host in a
controlled manner.

Here, we study two types of parasites: one is a disruptive agent, which tries to minimise
the mutual understanding of the overall population; and the other is a manipulative agent,
which tries to maximise its influence over other agent’s actions (in our case, predictions).

To study the introduction of a parasite in a population, we will consider different stages
of evolution in the host-parasite interaction. Assuming we start with a population where its
environmental information is maximised, we consider the following steps:

1. Introduction of parasites in the population
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2. Re-encoding of the environment by the population

Step 1 involves optimising a function for the parasite, which are defined later for each of
the parasites we will consider. Step 2 involves the response of the population to the parasite’s
attack, and here we allow the agents to update their encoding of the environment p (X | µ,Θ).
There are many ways in which we can allow the population to respond to the parasite: for
instance, we could let the population re-structure its interactions p(Θ,Θ′); we could let it
update the decoding of the messages to predict the environment, p (µ̂ | X,X ′); or we could
let it update the encoding of the environment, p (µ | X,X ′). We will informally argue here
against the first two options, and argue in favour of last option, which is to allow the agents
of the population to re-encode the environment.

Let us begin considering letting the population re-structure its interactions. For an agent
to choose a type of agent to interact with, it will need to be able to identify the type. For
instance, agents will need to distinguish the parasite from the rest of the agents in order to
avoid interactions with it. We will show that this is difficult for a host population, since
parasites blend in with the host and become invisible (or hard to distinguish).

Letting the population update its predictions assumes that the rules to decode are instantly
spread over the population, such that there is global agreement in the decoding rules (we recall
that decoding rules are on a population basis instead of on an agent basis). On the other
hand, updating the encoding of the environment can be done on an agent-by-agent basis,
without the need to agree on new rules. Based on this argument, this is considered to be a
“cheaper” option.

In summary, during the steps described above, we keep the decoding rules of the popula-
tion, p (µ̂ | X,X ′), fixed, and we only vary the value of an agent’s encoding of the environ-
ment p (X | µ,Θ), in such a way that the environmental information is back to a local/global
maximum.

We will also define further steps to study this co-evolution: after the response from the
population, we will let the parasite re-encode the environment without altering its interactions
with the population, which will be given by p(Θ,Θ′) after having introduced the parasite.
Then, it’s the turn of the population, and so on. Although we will not show the details of the
results, since until we have a better understanding of simple host-parasite interactions, would
not add any insight, we will discuss them for each experiment. We formalise the steps in the
following sections, where we present both types of parasites, and we study the co-evolution
of a host population and each of the parasites.

5.6 Disinformation agents

We begin by adopting the model that characterises an informational parasite as an agent π
that tries to minimise the mutual understanding between the agents with whom it interacts.
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Here, the parasite is concentrating at abusing the host system for its own interest, but does
not care about the host except for avoiding detection. However, in the context of social
networks or news sources, such a parasite can be considered a troll or a “disinformation” (Fear
Uncertainty and Doubt) agent who has direct interest in damaging the mutual understanding
of the other agents of the population and/or their confidence in their knowledge of the true
state of the environment.

In this characterisation, the parasite will choose its code, as well as its interactions, in
such a way that the mutual understanding of the population where the parasite is introduced
is minimised (see Eq. 5.3).

min
p(π,Θ′)
p(Θ,π)

p(X | µ,Θ=π)

I
(
X ; X ′

)
(5.3)

Let us note that, in this definition, the troll does not need direct access to the environmen-
tal conditions to implement its strategy. Additionally, let us note that it by minimising the
mutual understanding of the population, it will have an impact on the latter’s environmental
information. In the following experiments, our objective is to show emergent properties that
result from the host-parasite interaction (for a disinformation agent in this case).

5.6.1 Blending in with the crowd

One common characteristic of parasites is that they adopt the language of the host. There
are at least two reasons for this, and they are not necessarily exclusive: first, organisms evolve
to respond to specific signals and thus can only be influenced if these signals are meaningful
for the recipient; and second, conveying a different set of signals from the ones used by
the population makes the parasites stand out from the rest of the organisms, making them
identifiable and thus vulnerable to immune response.

Our model allows us to measure how “identifiable” agents are by looking at their messages.
This can be measured by the mutual information between the messages the agents produce
and the agent selector:

I(X ; Θ) (5.4)

For a population with a universal encoding, this measure is zero, that is, we cannot
identify the communicating agent by looking only at the message. Also, if different agents
have different encodings of the environment, but the frequencies of the messages are the
same, then the measure is also zero. On the other hand, if all agents produce different
messages, we can perfectly identify the agent selected by Θ. For example, if 3 agents interact
with one another, and they use exclusive symbols to encode the environment, then we have
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I (X ; Θ) = 1.58 bit, since each agent interacts with two other agents, and they always know
who is talking.

Equation 5.4 measures how much, on average, the sources of the agents can be identified
by its messages. Or, if we want, it measures how universal the messages used by the sources
are, being 0 when the all sources use the same messages with the same frequency. One
example of this is a population with a universal encoding. This equation does not give us
a direct measure of how much we can identify the parasite, but it does if we start with a
population where the mutual understanding is maximised. When that condition holds, then
we have that I (X ; Θ) = 0 bits, and any subsequent change must be due to the parasite. We
will use this as a measure of how well a parasite blends in the population, or of how well it
can be identified.

If, instead, we want to measure the universality of the sources of each agent, on average,
then we need to consider the population structure. This can be done by conditioning on the
other agent selector variable:

I
(
X ; Θ

∣∣ Θ′
)

(5.5)

In this measure, we consider, on average, how much each agent selected by Θ′ can identify
its sources by their messages only. By choosing a value θ′ of Θ′, we consider only those values
of Θ where p(θ, θ′) > 0. Therefore, if the encodings of all sources of messages, for all agents,
are uniform, even if we have many types of encodings, then this measure is zero.

5.6.2 Contrarian behaviour

Let us start by introducing a troll into a well-mixed population of 48 agents with a universal
code, with an alphabet consisting of 4 symbols, where the environmental information of
the population is I(µ ; µ̂) = 2 bits. In Fig. 5.3 we show the (universal) encoding of the
environment, and in Fig. 5.5 the decoding of their representation. The encodings are hand-
coded for the purpose of this experiment, and the decoding rules derive from them. In this
configuration, we have that I(X ; Θ) = 0 bits, and thus we cannot identify any agent in
the population. The mutual understanding is I(X ; X ′) = 2 bits, which is the maximum
achievable with the current alphabet.

As a result of minimising the mutual understanding of the population by introducing a
parasite, we have that it interacts with all agents of the population, but in disagreement on the
encoding: the parasite always choose a different symbol than that chosen by the population
to encode the environment (see Fig. 5.4).

To understand this result, let us note that the mutual understanding depends solely on
p(X,X ′). The parasite can only influence this joint probability by interacting with agents
of the population. Since the encoding of the population is universal, the influence of the
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Figure 5.3: p (X | µ): encoding of all agents of
the population
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Figure 5.4: p (X | µ,Θ = π): encoding of the par-
asite
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Figure 5.5: p (µ̂ | X,X ′): decoding rules of the
population
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parasite on the joint probability is increased by maximising its interactions with the agents of
the population. In populations with diverse encodings, this might not hold, since the parasite’s
encoding can have opposite effects on different agents regarding the mutual understanding.

The introduction of the parasite changed the probabilities for the encoding of the environ-
ment: now there are encodings for which the population doesn’t have a rule to decode them.
As explained above, in these cases the population randomly chooses one environmental state.
Thus, having non-zero probability on these encodings diminishes the information preserved
about the environment, which in the shown example decreased to I(µ ; µ̂) = 1.75 bits, while
the mutual understanding to I(X ; X ′) = 1.71 bits. The parasite’s environmental informa-
tion is I (µ ; µ̂ | Θ′ = π) = 1.85 bits, and it slightly stands out in the population, having now
I(X ; Θ) = 0.01 bits, since, although it uses the same symbols as the population, it uses
them with a different frequency.

Another point to note is that there are 24 different encodings for the parasite that minimise
the mutual understanding, and all of them result in the same reduction of the population’s
environmental information. All these encodings have the property of being in disagreement
with the population, in the sense that there is no rule on how to decode codes formed by
interactions with the parasite.

Now we consider the response of the population to the introduction of the parasite: if
we let the population change its interactions, including those with the parasite, then after
further optimising its predictions we have that the parasite becomes isolated, reverting to the
configuration prior to its introduction. However, as we explained in Sec. 5.5, we will constrain
the response of the population by only allowing it to change its encoding. The population
will retain the way in which it decodes the messages, but it has the ability to re-encode the
environment, by using the same alphabet, in any way. Let us note that the chosen encoding
of the environment by an agent determines what it perceives of the environment, and thus
can be interpreted as “sensing” the environment.

We found that, for this particular example, the current encoding remained the optimal
one (considering the constraints imposed). That is, no changes to the encodings of the agents
increase the environmental information of the population. We explore next which conditions
allow the population to improve its environmental information in response to a disruptive
parasite.

5.6.3 Robustness and adaptability against disruptive parasites

Population size

One not surprising form of robustness against parasites is due to the size of the population.
The larger a population, the less frequent the interactions with the parasite, and thus the less
frequent agents would incorrectly predict the environmental state. Let us consider the same
encodings as in the experiment of Sec. 5.6.2, as well as the same decoding rules. However,
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we vary the population size between 2 and 1024 agents, without counting the parasite.
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Figure 5.6: Plot of the environmental information against populations with varying size. We consider
a well-mixed population with uniform encodings, with a parasite introduced as presented in Sec. 5.6.2.

In Fig. 5.6, we plot the environmental information of a well-mixed population containing
a parasite when its size varies. As the population grows in size, its environmental information
approaches asymptotically the maximum value of 2 bits. For well-mixed populations, small
ones in size are more vulnerable, and larger populations are more resilient. However, other
types of population structure with richer decoding rules allow different types of robustness.
We explore this in the following subsections.

Encoding diversity in a well-mixed population

We consider now a well-mixed population of 48 agents where we maximise the population’s
environmental information by letting the codes change. The environment consists of 4 equally
likely states, and we use an alphabet for encoding the environment consisting of 4 symbols.
After the optimisation process, we have that the environmental information of the population
is I(µ ; µ̂) = 2 bits. We obtained 6 different types of codes in the population, even though
there is one type that dominates (43 agents adopt this code type). This is reflected when we
measure how much we can identify an agent by its messages: we have I(X ; Θ) = 0.051 bits.
The mutual understanding is I(X ; X ′) = 1.63 bits instead of 2 bits as when the population
adopts a universal encoding.
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In Fig. 5.9 we show the most popular encoding of the environment, and in Fig. 5.11 the
decoding of their representation. What is interesting of this example is that the population
has evolved a single interpretation for each possible combination of messages. In other words,
there is a rule to interpret every possible joint messages, such that there is no unknown
combination where agents must choose an environment randomly. For instance, we have
p (µ̂ = 1 | x = 1, x′ = 1) = 1, p (µ̂ = 3 | x = 1, x′ = 2) = 1, and so forth for other combinations
of x and x′.

Moreover, since I(µ ; µ̂) = H(µ) = 2 bits, the maximum possible, there are necessarily
no inconsistencies when decoding the environment: that is, the possible joint encodings do
not contradict each other when decoded, such that there is always certainty of which is the
current environmental state. Then, since we have different ways of decoding messages into
environmental states, we say that the population uses synonyms. For example, in the decoding
rules shown in Fig. 5.11, we have three ways of expressing the environmental condition µ = 2:
p (µ̂ = 2 | x = 1, x′ = 1) = 1, p (µ̂ = 2 | x = 1, x′ = 3) = 1, and p (µ̂ = 2 | x = 3, x′ = 1) = 1.
These joint encodings are synonyms for µ = 2, because we have that p (µ = 2 | µ̂ = 2) = 1.
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Figure 5.7: Encoding type of
one agent
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Figure 5.8: Troll encoding 1
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Figure 5.9: Most popular en-
coding
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Figure 5.10: Troll encoding 2

µ̂1 µ̂2 µ̂3 µ̂4
X = 1, X ′ = 1

X = 1, X ′ = 2

X = 1, X ′ = 3

X = 1, X ′ = 4

X = 2, X ′ = 1

X = 2, X ′ = 2

X = 2, X ′ = 3

X = 2, X ′ = 4

X = 3, X ′ = 1

X = 3, X ′ = 2

X = 3, X ′ = 3

X = 3, X ′ = 4

X = 4, X ′ = 1

X = 4, X ′ = 2

X = 4, X ′ = 3

X = 4, X ′ = 4

Figure 5.11: p (µ̂ | X,X ′): decoding
rules of the population

We introduce a troll in this population, which minimises the mutual understanding. As a
result, we have that the population’s environmental information decreased to I(µ ; µ̂) = 1.74
bits, which is slightly less than the environmental information we obtained after introducing
the parasite in the previous example. We recall that the structure of the population, well-
mixed, is the same for both examples. The resulting encoding of the parasite is shown in Fig.
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5.8. To check if this encoding of the parasite achieves a global minimum for the population’s
mutual understanding, we run an exhaustive exploration of the parasite’s encoding. Indeed,
the mentioned encoding and the one shown in Fig. 5.10 are the encodings that minimises
the mutual understanding, which is I(X ; X ′) = 1.42 bits. The parasite’s environmental
information in this experiment is quite low: I (µ ; µ̂ | Θ′ = π) = 0.12 bits (compared to 1.85
in the previous example). This is a consequence of the diversity in the encodings: the parasite
perceives irregular messages producing many inconsistencies in its decoding. The graph of
the population after introducing the parasite is shown in Fig. 5.12.
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Figure 5.12: Graph of the population after introducing the parasite (in pink). The graph is plotted
from the interaction probabilities p(Θ,Θ′). Each node is an agent, an its colour denotes a type of
encoding. The interactions of the parasite are represented by the edges in black.

After we let the population maximise its environmental information by re-encoding the en-
vironment, the value increases to I(µ ; µ̂) = 1.75 bits. We obtain an homogeneous population
where all agents adopt the most popular code, as was the case in the previous experiment we
considered (Sec. 5.6.2). The graph of the population after introducing the parasite is shown
in Fig. 5.13. The parasite’s information about the environment, now that all its sources are
uniform, increased to I (µ ; µ̂ | Θ′ = π) = 1.85 bits, as it was in the previous experiment. If
we further allow the parasite to change its encoding, without updating its interactions, we see
no further changes in the system. We can say that the parasite’s strategy is successful here,
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since now its environmental information is high and the population is not able to counteract
its presence.
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Figure 5.13: Graph of the population after the population’s response to the parasite, adopting an
homogeneous encoding. The graph is plotted from the interaction probabilities p(Θ,Θ′). Each node
is an agent, an its colour denotes a type of encoding. The interactions of the parasite are represented
by the edges in black.

We tested in this section whether the use of synonyms would increase the robustness
against parasites in a well-mixed population, but this was not the case: the population’s
environmental information was slightly lower. However, we could consider this population
to be more robust since only two types of encodings minimise the mutual understanding,
and the average environmental information of the population when introducing each para-
site separately is 1.81 bits. For the previous experiment, where encodings where universal,
we have that 24 parasite’s encodings minimise the mutual understanding, and the average
environmental information of the population when introducing each parasite separately is
1.88 bits. For universal encodings, there are many possible parasites the population needs to
defend against, while for populations using synonyms, finding the most damaging encoding
for a parasite is harder.

In terms of adaptability, the population and parasite reached an equilibrium after the
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population fully adopts the most popular encoding. That is, there are no further changes
when we continue optimising for both the population, and then for the parasite. We explore
other population structures below.

Encoding diversity in a centralised population

We consider now a population of 48 agents where we maximise the population’s environmental
information by letting the structure change. We use 48 different types of codes, where all
of them use 4 different symbols to encode the environment. The environment consists of 4
equally likely states, and we use an alphabet that consists of 8 symbols to obtain a richer
diversity in the encoding. After the optimisation process, we have that the environmental
information of the population is I(µ ; µ̂) = 2 bits. Other measures are I(X ; Θ) = 0.99 bits
and the mutual understanding, I(X ; X ′) = 0.26 bits. The graph of the population is shown
in Fig. 5.14, where we can see that the structure is highly centralised (one agent is the only
source of many). This type of organisation will play a role in the response of the population
after introducing the parasite.

In Fig. 5.20 we show the evolved decoding rules by the population. Although there are
4 combinations of messages where there is no rule to decode the environment, the evolved
diversity to decode is much richer than in the example shown in Sec. 5.6.3. We will present
only three initial encodings of the 48 of the example, and one updated encoding after the
population responded to the parasite. This will suffice to convey the point of this experiment.

After introducing the parasite, we have that the population’s environmental information
decreased to I(µ ; µ̂) = 0.89 bits, where initially it was 2 bits. The information about the
environment of the parasite is I (µ ; µ̂ | Θ′ = π) = 0.47 bits. The resulting interaction graph
of the population is shown in Fig. 5.21. The parasite acquires a central position as a result
of minimising the mutual understanding of the population, and it blends in the population,
decreasing how much agents can be identified by their messages: now we have I(X ; Θ) = 0.89
bits, compared to the initial value of 0.99 bits.

Let us look at, to begin, the encoding of the central node (see Fig. 5.18), one from a
peripheral node that initially solely interacts with the central node (see Fig. 5.16), and the
encoding from the parasite (see Fig. 5.15). When the peripheral agent interacts with the cen-
tral one, they can perfectly decode the environment (without incurring in inconsistencies with
their other interactions). However, when the peripheral agent interacts with the parasite, it
fails to decode the environmental state µ = 2 (having to guess randomly) and it “incorrectly”
decodes µ = 3.

There are many ways where we consider a decoding “incorrect”. For instance, if a pop-
ulation decodes all joint encodings to the same environment, then it retains 0 information
about the environmental conditions. Another way is when there is no rule to decode joint
encodings, and it needs to choose one environment randomly. The last one is when an agent
has inconsistencies between its interactions. For example, an agent might be able to decode
and distinguish all environmental conditions when interacting with each of two agents, but,
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Figure 5.14: Graph of a centralised population with maximal environmental information. The graph
is plotted from the interaction probabilities p(Θ,Θ′). Each node is an agent, an its colour denotes a
type of encoding.

let us say, with one agent the environmental state µ = 1 is decoded to µ̂ = 1, and with the
other, the same environmental state is decoded to µ̂ = 2. This inconsistency will be reflected
in the computation of I(µ ; µ̂), decreasing the information preserved about the environment.

Back to the example, when we have µ = 1, and the peripheral agent interacts with the
parasite, then we have that µ̂ = 1. To see this, we need to look for the joint encoding
of the peripheral agent and the parasite when µ = 1. In this case, the joint encoding is
X = 1, X ′ = 2, the former comes from θc (Fig. 5.16, where p (X = 1 | µ = 1,Θ = θc) = 1),
while the latter comes from the parasite (Fig. 5.15, where p (X ′ = 2 | µ = 1,Θ′ = π) = 1).
According to the evolved rules of the population shown in Fig. 5.20, this joint encoding is
decoded as µ̂ = 1. Then, when µ = 3, and the peripheral agent interacts with the parasite, we
have that µ̂ = 1. This clearly loses information about the environment, since the peripheral
agent will predict the same environment µ̂ = 3 for both µ = 1 and µ = 3, which are different
conditions.

Now we let the population respond to the parasite by updating p (X | µ,Θ) (and conse-
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X1X2X3X4X5X6X7X8

µ = 1

µ = 2

µ = 3

µ = 4

Figure 5.15: Encoding of the par-
asite

X1X2X3X4X5X6X7X8

µ = 1

µ = 2

µ = 3

µ = 4

Figure 5.16: Encoding of θp, a pe-
ripheral agent

X1X2X3X4X5X6X7X8

µ = 1

µ = 2

µ = 3

µ = 4

Figure 5.17: Encoding of θp after
responding to the parasite

X1X2X3X4X5X6X7X8

µ = 1

µ = 2

µ = 3

µ = 4

Figure 5.18: Encoding of θc, the
central agent

X1X2X3X4X5X6X7X8

µ = 1

µ = 2

µ = 3

µ = 4

Figure 5.19: Encoding of θc after
responding to the parasite

µ̂1 µ̂2 µ̂3 µ̂4
X = 1, X ′ = 1

X = 1, X ′ = 2

X = 1, X ′ = 3

X = 1, X ′ = 4

X = 1, X ′ = 5

X = 1, X ′ = 6

X = 1, X ′ = 7

X = 1, X ′ = 8

X = 2, X ′ = 1

X = 2, X ′ = 2

X = 2, X ′ = 3

X = 2, X ′ = 4

X = 2, X ′ = 5

X = 2, X ′ = 6

X = 2, X ′ = 7

X = 2, X ′ = 8

X = 3, X ′ = 1

X = 3, X ′ = 2

X = 3, X ′ = 3

X = 3, X ′ = 4

X = 3, X ′ = 5

X = 3, X ′ = 6

X = 3, X ′ = 7

X = 3, X ′ = 8

X = 4, X ′ = 1

X = 4, X ′ = 2

X = 4, X ′ = 3

X = 4, X ′ = 4

X = 4, X ′ = 5

X = 4, X ′ = 6

X = 4, X ′ = 7

X = 4, X ′ = 8

X = 5, X ′ = 1

X = 5, X ′ = 2

X = 5, X ′ = 3

X = 5, X ′ = 4

X = 5, X ′ = 5

X = 5, X ′ = 6

X = 5, X ′ = 7

X = 5, X ′ = 8

X = 6, X ′ = 1

X = 6, X ′ = 2

X = 6, X ′ = 3

X = 6, X ′ = 4

X = 6, X ′ = 5

X = 6, X ′ = 6

X = 6, X ′ = 7

X = 6, X ′ = 8

X = 7, X ′ = 1

X = 7, X ′ = 2

X = 7, X ′ = 3

X = 7, X ′ = 4

X = 7, X ′ = 5

X = 7, X ′ = 6

X = 7, X ′ = 7

X = 7, X ′ = 8

X = 8, X ′ = 1

X = 8, X ′ = 2

X = 8, X ′ = 3

X = 8, X ′ = 4

X = 8, X ′ = 5

X = 8, X ′ = 6

X = 8, X ′ = 7

X = 8, X ′ = 8

Figure 5.20: p (µ̂ | X,X ′):
decoding rules of the popula-
tion
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quentially its i.i.d. copy p (X ′ | µ,Θ′)), the encodings of the environment. The population
keeps its evolved decoding rules. As a result, we have that the population’s environmental
information is back to I(µ ; µ̂) = 2 bits, which means that re-encoding the environment,
while keeping their interpretations of encodings, allows the population to fully recover from
the parasite. That is, the population recovers not by avoiding the parasite (no identification
possible), but by adapting to its encoding scheme, thus incorporating it to the population.
As a consequence, the parasite also can always predict the environment as well. Here is where
the centralised organisation of the population plays a role: for agents to re-encode the envi-
ronment in such a way that, by using the evolved decoding, can distinguish all environmental
states, they only need to be consistent with two agents, the central agent and the parasite.

Moreover, since the central agent, which has a very similar interaction network to the
parasite, can update its encoding, then it can “imitate” the parasite’s encoding, such that
now consistency is more easily reached. This is exactly what happens in the example, as
shown in the updated encoding of the central agent (Fig. 5.19). The encodings are not exactly
identical, differing for representing µ = 1, although, as we argued, the evolved decoding allows
the use of synonyms. Had the encodings been identical, we would have the same result.
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Figure 5.21: Graph of a centralised population after introducing a parasite. The graph is plotted
from the interaction probabilities p(Θ,Θ′). Each node is an agent, an its colour denotes a type of
encoding. The interactions of the parasite are represented by the edges in black.
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Let us look at the encoding of the peripheral agent after updating it (Fig. 5.17): now it is
consistent with both the central agent and the parasite. The same happens to all other agents
that interact with two or three agents. Centralised populations are examples of structures
where most agents interact with few other agents. These have an advantage in the re-encoding
process, where the update of peripheral agents’ encodings are less constrained (they only need
to unequivocally decode all environmental states, although by keeping consistency with the
whole population).

Encoding diversity in a decentralised population

Let us consider a population where we use the same decoding strategy of the previous example.
However, we use different encodings and a different population structure (shown in Fig. 5.22),
less centralised than the previous one, although we still have I(µ ; µ̂) = 2 bits.
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Figure 5.22: Graph of a decentralised population with maximal environmental information. The
graph is plotted from the interaction probabilities p(Θ,Θ′). Each node is an agent, an its colour
denotes a type of encoding.

After introducing the troll in the population, we have that the environmental informa-
tion is reduced to I(µ ; µ̂) = 1.25 bits (graph shown in Fig. 5.23), while for the parasite
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is I (µ ; µ̂ | Θ′ = π) = 0.56 bits. When we let the population respond, the environmental
information increases to I(µ ; µ̂) = 1.37 bits. The reason why this population structure can-
not recover well from the parasite, despite having the same decoding rules, is that here most
agents interact with several agents. This constrains the options for updating the encodings,
since an update has to be consistent with all of them when decoding. The parasite encounters
the same problem: its environmental information is I (µ ; µ̂ | Θ′ = π) = 0.69 bits, due to the
irregularities in the population.
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Figure 5.23: Graph of a decentralised population after introducing a parasite. The graph is plotted
from the interaction probabilities p(Θ,Θ′). Each node is an agent, an its colour denotes a type of
encoding. The interactions of the parasite are represented by the edges in black.

Immunity against trolls

As we have seen in Sec. 4.5.3, a bipartite interaction structure emerged in populations
optimising their mutual understanding. In bipartite populations, agents with one type of
encoding interact only with agents of the other type. The encodings can have different
properties. For instance, as in the example of Sec. 4.5.3, we can have two types of encodings
that capture the same aspects of the environment, cancelling out the noise in their perception.
On the other hand, it is also possible to have two types of encodings, such that each type
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complements the other in the information they perceive about the environment. In such
scenarios, there are two extreme cases for the encodings: in one, the types of encoding use
exclusive alphabet subsets, while, in the other, they use the same alphabet subset. For the
latter case, we can have populations such that there is no mutual understanding. However,
they are still able to fully predict the environment, only that one cannot predict a type’s
encoding by knowing the other type’s encoding.

An example is shown in Fig. 5.27, where we have a bipartite population with two types
of encodings, where the mutual understanding is zero. The encodings are shown in Fig. 5.24
for one type, and in Fig. 5.25 for the other. These type of populations are immune to trolls
–agents that try to minimise the mutual understanding– by definition.

X1X2

µ = 1

µ = 2

µ = 3

µ = 4

Figure 5.24: Encoding type 1

X1X2

µ = 1

µ = 2

µ = 3

µ = 4

Figure 5.25: Encoding type 2

µ̂1 µ̂2 µ̂3 µ̂4
X = 1, X ′ = 1

X = 1, X ′ = 2

X = 2, X ′ = 1

X = 2, X ′ = 2

Figure 5.26: p (µ̂ | X,X ′):
decoding rules of the popula-
tion

The evolved structure shown in Fig. 5.27 is asymmetrical: we have the property that if
p(θ, θ′) > 0 (meaning that agents θ and θ′ interact), then we have that p(θ′, θ) = 0. Since we
have that interactions happen only between agents of different types, then all interactions are
in one way only, from one type to the other. This is a consequence of having a small alphabet
to encode the environment: there are as many possible combinations for encoding as there are
environmental conditions (see Fig. 5.26). Therefore, having symmetrical interactions would
reduce the amount of environmental conditions that can be distinguished. For instance,
in this example, having symmetrical interactions would imply that p (µ̂ | X = 1, X ′ = 2) =
p (µ̂ | X = 2, X ′ = 1), leaving only two combinations of messages to represent 4 environmental
states.

5.7 Manipulative agents

We consider another characterisation for an agent entering a population: this agent would try
to maximise the influence its messages have on the predictions of the agents of a population.
The puppetmaster, as we will call such agent, will convey messages in order to manipulate
other agents. However, we don’t consider a parasite that specifically manipulates to favour
its agenda: we exclude this from the analysis in order to consider parasite with a simpler
strategy. We look at the behaviour of a parasite with the ability to manipulate the outcome
of other agent’s choices in an empowerment-like quantity, and how the host can mitigate its
effects.

The puppetmaster will select its code, i.e. the messages it conveys, in order to maximise
its influence on the other agents. Formally,
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Figure 5.27: Bipartite population, where agent of one type interact only with agents of the other
type. Each node is an agent, an its colour denotes a type of encoding. The graph is plotted from the
interaction probabilities p(Θ,Θ′), and, in this particular case, we have that interactions are in one way
only: if p(θ, θ′) > 0, then p(θ′, θ) = 0.

max
p(κ,Θ′)
p(Θ,κ)

p(X | µ,κ)

I
(
µ̂ ; X ′

∣∣ X,Θ′ = κ
)

(5.6)

Equation 5.6 can be interpreted as the channel capacity of the channel between the mes-
sages of the puppetmaster (given via its code) and the predictions of the state of the envi-
ronment of the rest of the population. This behaviour is closely related to the concept of
empowerment [Klyubin et al., 2005b], where an agent maximises its influence on the environ-
ment, but where the channel capacity is computed between the agent’s actuators and sensors.
Here, however, we don’t require the agent itself to perceive its influence on the others.

Let us now explore this relation in more detail. Empowerment can be considered as a
measure of the ability of an agent to change its environment and perceive the consequences
of its actions on it. The requirement of perceiving the consequences comes because an agent
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modifying its environment without perceiving any difference is a powerless agent. Empower-
ment is a local, universal and task-independent utility function for agents: it is local, because
using empowerment does not rely on a long history of past experience and does not require
global knowledge of the world, only a forward-cone of the future immediately ahead; it is
universal, since it is applicable to any agent-world interaction; and it is task-independent
because there is no specific associated goal or reward state [Klyubin et al., 2005b, Salge et al.,
2014].

In the absence of specific goals, agents maximising empowerment will seek states where
they maximise their options. Examples of this are having high status in a group, which
allows more mating choices; or having more money, enabling one to engage in more activities
[Klyubin et al., 2005a]. The maximisation of the influence over the channel between an
agent’s actuators and sensors provides a natural driver for adaptive behaviour: the effects
of an actuator that cannot be perceived will be selected against by evolution, if there is no
gain in efficiency. In the same way, sensors that cannot detect change from an agent’s actions
do not add to its survival probability and are likely to be lost during evolution to reduce
metabolic cost.

The formalisation of the notion of empowerment uses the PAL (see Fig. 2.3) and infor-
mation theory, and it is defined in the following way:

Et = C (p (St+n | At)) = max
p(At)

I(At ; St+n) (5.7)

Equation 5.7 defines the n-step empowerment in the unrolled PAL. It is defined as the
channel capacity between the agent’s actuators at time-step t and its sensors at time-step
t+ n. The parameter n is usually set according to the environment of the agent: depending
on the latter, a varying number of steps is needed to perceive the consequences of the actions.

An agent maximising this quantity will need a (local) forward-model of the system dy-
namics. That is, it will need to know, somehow, not only how its actions will affect the
environment, but also how the environment will react to its actions. This might already seem
impossible for a small look-ahead, but we should take into account that highly ordered envi-
ronments can make this computation cheap. These can be environments, for example, where
each action produces a unique reaction. Nevertheless, the agent should have this information
to maximise its empowerment.

This bring us to our definition of a manipulative agent. In Eq. 5.6, the agent κ chooses
an encoding that maximises its influence on the decisions of agents of the invaded population.
In the same way as empowerment, they both compute the channel capacity. However, in our
model, the channel is between the actuators of the agent and its immediate consequences in
the environment (i.e. the population’s bets or actions); while, for empowerment, the channel
is between the actuators of the agent and its perception of the environment’s reaction in a
future step. The reaction could be, in our framework, the population’s re-encoding of the
environmental conditions. What the puppetmaster computes can be considered a predecessor
of empowerment, where the reaction/response of the environment is not taken into account.
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This type of parasite can be said to be more complex than the disruptive one. A ma-
nipulative parasite has to learn the decoding rules of the population in order to manipulate,
while for disruptive parasites this does not play any role. We will not model here how a
parasite learns the rules of a population, and we assume they are known to it, allowing the
maximisation of its influence over the population.

5.7.1 Behavioural characteristics

Dog-whistling

Let us consider the population of the experiment of Sec. 5.6.3, where a bipartite population
using the same alphabet to encode the environment was immune to disruptive agents. In
this population, we have that one type of agent uses, on average, I (µ̂ ; X ′ | X) = 1 bit of
information from the other type of agent. This opens up the possibility to influence the
decisions of the agents of the population, since they rely on side information for decoding the
environment.

Introducing a manipulative parasite in this population re-
duces the latter’s environmental information to I(µ ; µ̂) =
1.72 bits, while now the average side information decreased
to I (µ̂ ; X ′ | X) = 0.84 bits. The decrease is due to the fact
that the puppetmaster’s encoding differs from both types,
creating inconsistencies for decoding messages. The encod-
ings of the population are the ones shown in Fig. 5.24 and
Fig. 5.25, while the decoding rules are the ones shown in
Fig. 5.26. The two encodings of the puppetmaster that
maximises its influence in the population’s decisions, which is
I (µ̂ ; X ′ | X,Θ′ = κ) = 0.07 bits, are the one shown in Fig.
5.28 and Fig. 5.29. The parasite’s environmental informa-
tion is I (µ ; µ̂ | Θ′ = κ) = 1.5 bits, the loss in information
being due to perceiving two types of encodings.
The puppetmaster perfectly blends in with the population,
having I(X ; Θ) = 0 bits in both cases, which means that it
is not possible to identify the puppetmaster (or, in fact, any
agent) by its messages. Having two types of agents does not
matter here, since they use the same symbols with the same
frequency, and the parasite does not change this.

X1X2

µ = 1

µ = 2

µ = 3

µ = 4

Figure 5.28: Encoding type 1

X1X2

µ = 1

µ = 2

µ = 3

µ = 4

Figure 5.29: Encoding type 2

In the graph shown in Fig. 5.30 we see that the parasite’s interactions are in one direction
only: it conveys information to other agents but it does not perceive any from others. This is
purely because the optimisation function of the puppetmaster does not consider the effects of
it perceiving information. The parasite interacts with agents of both types, since its encoding
is able to affect the decisions of any type of agent. However, the agent types are affected in
a different way.
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Let us consider the encoding of the parasite shown in Fig. 5.28: when it interacts with
agents of the type of encoding shown in Fig. 5.24, it incorrectly decodes the states µ1 and
µ2. The decoding is incorrect because it is inconsistent with how agents of that type decode
those states when they interact with agents of the other type. Specifically, when interacting
with the parasite, µ1 is decoded as µ̂2, and, when interacting with agents of the other type,
µ2 is decoded as µ̂1.

When the parasite interacts with the other type of agent (encoding shown in Fig. 5.25),
this type of agent incorrectly decodes environmental states µ1, µ2 and µ3. Therefore, the
parasite affects this type of agent more negatively than the other. When the environmental
state µ3 occurs, the parasite produces a harmless message to the former type of agent, since it
is consistent with its other interactions. However, for the latter type of agent, it is detrimental.
This is the “dog-whistling” effect [Albertson, 2006], where messages act as noise to only one
type of agent. Here, a message is shown to have different interpretations depending on its
context. It should be noted that this effect is an unintentional side effect of the puppetmaster
trying to manipulate the agents. One could also (not done here) consider the framework to
create intentional “dog-whistle” effects.

Optimising further the encodings of the population does not have any effect, the current
configuration is the (locally) optimal one.

Identity theft

Let us consider a similar experiment as the previous one, but this time with a larger alphabet
X = X ′ = {1, 2, 3, 4}, with no overlap in the used symbols in the encodings by the two
types of agents. One type of encoding uses the set {1, 2} (see Fig. 5.31) and the other uses
the set {3, 4} (see Fig. 5.32). This is a bipartite population that can perfectly predict all
environmental states, where the type of an agent can be identified by its messages: we have
I(X ; Θ) = 1 bit. The decoding rules are shown in Fig. 5.34.

As a result of introducing a manipulative agent in the population, the environmental
information decreased to I(µ ; µ̂) = 1.92 bits. Unlike the previous experiment, here the
puppetmaster interacts only with one type of agent (see Fig. 5.35), that which can jointly
be decoded according to the evolved decoding rules (Fig. 5.34). Had the parasite use an
encoding that comprised the whole alphabet, it will necessarily produce codes that have no
decoding rule, resulting in the agents having to guess the environment randomly. Using this
type of code, formed by the interaction of the parasite and an agent of the population, would
not contribute to the parasite’s influence on the actions of the agents of the population.

The parasite “adopts” the identity of the type with which it does not interact, by using
the same symbols in its encoding, although the encoding is different. This motivates our
characterisation of the parasite as stealing an agent’s identity: first, each type can be identified
(after introducing the parasite, we have I(X ; Θ) = 0.9996 bits, since now there is one more
agent of one type, and therefore the distribution of messages is not uniform), and thus,
globally, agents have an identity characterised by the group they belong to. Secondly, the

101



●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

Figure 5.30: Population graph after introducing the parasite, which interacts in one direction with all
agents of the population. Each node is an agent, an its colour denotes a type of encoding. The graph
is plotted from the interaction probabilities p(Θ,Θ′). The interactions of the parasite are represented
by the edges in black.

parasite cannot be identified by the agents it interacts with. This last point is captured by
conditioning the measure for identification on the other index variable: here, we have that
I (X ; Θ′ | Θ) = 0 bits (the parasite is selected by Θ′, thus we measure if its sources can
identify their own sources, which includes the parasite). Since the parasite perceives uniform
encodings from one type of agent, its environmental information is I (µ ; µ̂ | Θ′ = κ) = 2 bits.

5.7.2 Robustness and adaptability against manipulative parasites

Encoding diversity in a centralised population

We revisit the experiment of Sec. 5.6.3, only that this time we introduce a manipulative
parasite instead. The initial encodings as well as the decoding rules are the same as in the
mentioned experiment. In Fig. 5.36 we show the graph of the population after introducing
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Figure 5.31: Encoding type 1
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Figure 5.32: Encoding type 2
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Figure 5.33: Parasite’s encoding
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Figure 5.34: p (µ̂ | X,X ′):
decoding rules of the popula-
tion

the parasite. Here, the parasite interacts with all agents of the population, including the
central agent, which was ignored by the troll when introduced in the same population. In
this case, the puppetmaster is able to influence all agents of the population.

After introducing the parasite, the environmental information of the population decreases
to I(µ ; µ̂) = 1.22 bits, while the parasite’s information about the environment is I (µ ; µ̂ | Θ′ = κ) =
1.68 bits.

In this population, we have that one agents uses, on average, I (µ̂ ; X ′ | X) = 1.31 bits of
information from other agents in their decisions. The central agent (let’s call it θc) is the one
that influences the most other agent’s decisions: we have I (µ̂ ; X ′ | X,Θ′ = θc) = 0.73 bits,
while the peripheral agent with maximal value (we call it θp) have I (µ̂ ; X ′ | X,Θ′ = θp) =
0.02 bits.

The puppetmaster takes influence away from the central agent, which is reflected in the
values: now the parasite’s influence is I (µ̂ ; X ′ | X,Θ′ = κ) = 0.58 bits, while for the cen-
tral agent it decreased to I (µ̂ ; X ′ | X,Θ′ = θc) = 0.50 bits. The average influence in the
population is I (µ̂ ; X ′ | X) = 1.52 bits.

After the population’s response, the average influence in the population decreased to
I (µ̂ ; X ′ | X) = 1.34 bits, decreasing the influence of both the parasite and the central
agent, although the former retains more than the latter. The central agent adopted the same
encoding as the parasite, although the parasite’s influence is higher since it reaches more
agents.

In contrast to the similar experiment of Sec. 5.6.3, where after introducing a troll, the
population could still re-encode the environment to retain all environmental information,
here the we have after the population’s response I (µ ; µ̂) = 1.92 bits. What is preventing
to achieve the maximum of 2 bits is the interaction between the parasite and the central
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Figure 5.35: Population graph after introducing the parasite, which interacts in one direction with
one type of agent only. Each node is an agent, an its colour denotes a type of encoding. The graph
is plotted from the interaction probabilities p(Θ,Θ′). The interactions of the parasite are represented
by the edges in black.

agent: in all other interactions, the involved agents can perfectly predict the environment.
The parasite’s information about the environment increased to I (µ ; µ̂ | Θ′ = κ) = 1.81 bits.

Continuing with the rounds of encoding updates, we found an equilibrium for both the
parasite and the population after 7 of them, with I (µ ; µ̂) = 1.30 bits and I (µ ; µ̂ | Θ′ = κ) =
1.23 bits. We comment about this result later in the discussion.

Immunity against manipulation

We re-consider here the experiment of Sec. 5.6.2, where a well-mixed population used a
universal encoding. In that experiment, the amount of information coming from other agents
that agents use to make predictions of the environment is 0, since they all distinguish all
environmental conditions by themselves. This is captured by I (µ̂ ; X ′ | X) = 0 bits.
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Figure 5.36: Population graph after introducing the parasite, which interacts in one direction with all
agents of the population. Each node is an agent, an its colour denotes a type of encoding. The graph
is plotted from the interaction probabilities p(Θ,Θ′). The interactions of the parasite are represented
by the edges in black.

While a troll affects this type of population, it is immune to manipulation. A manipulative
parasite will maximise its influence in the decisions of the agents of the population, but, in this
case, any encoding that deviates from the adopted by the population will cause the agents to
choose an environment randomly. When this happens, the parasite doesn’t exert any influence
on the agents, since the information from the environment is completely lost. That is, the
influence of the parasite through X ′ is lost when µ̂’s value is equiprobable distributed among
its outcomes. On the other hand, having the same encoding as the population will not affect
the population’s decisions, since agents will predict in the same way as before introducing the
parasite.
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Figure 5.37: Population graph after the population’s response. The central agent has adopted the
same encoding as the parasite. Each node is an agent, an its colour denotes a type of encoding.
The graph is plotted from the interaction probabilities p(Θ,Θ′). The interactions of the parasite are
represented by the edges in black.

5.8 Discussion

In this chapter, we have extended the model to incorporate explicit decoding rules. This
allowed us to update the encodings of the environment, while keeping a fixed interpretation
of them. In general, mature codes function in this way: decoding rules are well-established
and would rarely change, while the information that feeds into these rules can vary. For
example, genes can mutate, but the rules to translate codons into amino acids, given in the
genetic code, have not been found to have changed, and may not have changed since they were
widely adopted [Hinegardner and Engelberg, 1963, Woese, 2004]. We have assumed decoding
rules are common over the whole population once it has found an equilibrium point with its
encodings, and we do not study here how these rules change.
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5.8.1 Parasite characterisations

We have studied two types of parasites: disruptive (trolls) and manipulative (puppetmasters).
One constant characteristic of both types is that they blend in the population, sometimes to
the point of being unrecognisable. Parasites are known to mimic the chemical signatures
utilised by the attacked host [d’Ettorre et al., 2002, Lorenzi et al., 2014]. In this way, identi-
fication of the parasite by the population becomes harder, if not impossible. Not being able
to identify who is a “friendly” agent (a nest-mate for example) and who is a “hostile” agent
prevents a population to defend itself against parasites by avoidance or by attacking it.

Although interpreting our informational studies in the context of biologically relevant
scenarios, the given characterisations of parasites might be transferable to the context of
social networks. The main reason is that, in such an environment, we either don’t know who
is sending a message or we cannot trust the claimed identity. The use of screens detaches
the message from any other (e.g. physical) information about the sender, leaving only the
message itself to judge its validity and/or value. This is why, for instance, fake news sources
adopt common phrases and certain keywords that convey a sense of familiarity to the reader,
which by-passes a simple detection alarm.

Interpreting our model in the light of social networks (rather than the biological realm), we
give some examples of our characterisations. The phenomenon of “trolling” (from which we
derived our naming) abound on the internet, and their behaviour can vary between aggressive,
disruptive, deceptive, bullying, etc.. A particular type of troll is the contrarian, that which
specifically goes to forums for discussing particular themes, where they hold different beliefs
from its own. This troll will try to disrupt the forum, usually concealing its identity by the
use of theme-specific keywords, but conveying a contrary view to that of the community.

For manipulative parasites, we gave two characterisations. The first one is dog-whistling,
a term used in the political domain, where politicians would communicate using code words
that do not stand out with a general population, but resonate strongly with a targeted part
of the audience. Messages are only “heard” by some; for instance, religious code words would
only have a special meaning for religious audiences [Albertson, 2006], in the same way that
racial ones would only resonate with people sharing these feelings.

Our experiment showed that, for certain populations, the puppetmaster behaves just in
this way: some of its messages are innocuous for a type of agent, while they generate noise
in the context of the other type of agent. This behaviour is unintentional in our context,
while, in politics, this is specifically desired. For this behaviour to emerge, it is necessary
that different types of agent use common symbols to encode the environment. In these cases,
both types will have evolved interpretations for common messages, and we have the case of
messages having different interpretations depending on the recipient (or the context).

However, if each type of agent uses non-overlapping symbols to encode the environment,
the puppetmaster will focus on manipulating one type only, by stealing the identity of the
agent that the attacked agent interacts with. The parasite will use the same messages the
attacked agent knows how to interpret, with the same frequency, but creating inconsistencies
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with the recipient’s context.

Identity theft and dog-whistling (or, more generally, code words) present an interesting
duality: in the former, where an agent pretends to be another agent, we have two different
agents being interpreted in the same way (from the recipient’s perspective); while in the
latter, we have one agent inducing two different interpretations, depending on the recipients.

5.8.2 Robustness and adaptability against parasites

We have also showed which properties a population may have in order to be robust against
parasitic attacks. For instance, large populations are more resilient, since its numerous mem-
bers provide a more solid base from which perturbations become less significant (of course, we
considered only a single parasite, future more detailed studies with larger parasite proportions
may lead to a disproportionally stronger influence of the parasites on the population - or vice
versa).

We have also shown that populations that utilise synonyms in their decoding rules mitigate
the number of encodings that damage them. In the experiment of Sec. 5.6.3, the encodings
that minimise the mutual understanding where two, as oppose to the previous experiment,
in Sec. 5.6.2, where there were no synonyms in the decoding rules and the encodings that
minimise the mutual understanding were 24. The former presents a form of robustness, since
it should be more difficult for parasites to find the right encoding for a particular population,
but most importantly, a population can develop contingency strategies if it can identify the
weak points. This concept is explored in the next section.

Organisms with fixed decoding rules respond to parasites via changes in their encoding
of the environment, which is a form of adaptation. We showed that populations without
diversity in their decoding rules (Fig. 5.5) don’t have the ability to adapt: any update
in the agent’s encodings will decrease its environmental information. On the other hand,
populations with diversity in their decoding rules have multiple global maxima in the fitness
landscape. However, this is not sufficient to circumvent the parasite: our experiment in
Sec. 5.6.3 shows that the best a well-mixed population can do in response is to adopt an
homogeneous encoding. As we have explained, the population structure highly restricts the
encoding updates that don’t create inconsistencies between interacting agents.

In the experiment of Sec. 5.6.3 where we considered a centralised structure, we showed that
this permitted the population to fully recover form the parasite. Centralised structures have
the advantage of relaxing the constraints for updating encodings such that the environmental
information increases: non-central agents need to adapt to one type of agent only, since the
central agent would adopt the same (or very similar) code to the parasite. We have also
shown that a population with the same decoding rules but with a less centralised structure
cannot go back to a global maximum.
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5.8.3 Host-parasite co-evolution

In all the experiments where, after introducing the parasite, we continued the response steps,
first by the population and then by the parasite, and then repeating these steps, we found
that the co-evolution converged to an equilibrium state. In this state, further re-encoding
by the population would not increase its environmental information, and further re-encoding
by the parasite would not decrease the mutual understanding for the troll, or increase the
influence of the puppetmaster.

This is contrary to Red Queen hypothesis, which states that organisms would have to
constantly adapt to ever-evolving antagonistic organisms [van Valen, 1973]. However, Red
Queen dynamics can well be the case for certain populations. One of our results showed that
the population, by the use of synonyms and a centralised structure, could fully recover from a
parasite. We can speculate that truly robust and adaptable populations would be in control of
their weak points, facilitating a response to them. In other words, the decoding rules and the
population structure can be in such a way that they would be vulnerable to certain parasite
encodings, but at the same time assuring that there are paths leading to a global maximum.

This relates to the concept of “directed mutation” or “adaptive mutation” [Cairns et al.,
1988, Foster, 1993], which seems contrary to the Darwinian assumption that mutations are
random, and only those that are beneficial remain by the process of natural selection. The
hypothesis of adaptive mutation is that, when organisms are put under stress, they would only
produce appropriate mutations (i.e. mutations that are beneficial to the organism) [Cairns
et al., 1988].

Our speculation can help to think about this controversial theory: if we have paths be-
tween global maxima and local minima (induced by the parasite), then it is sufficient for
the population to know where the current location is in order to take action (re-encode, or
“mutate”). Of course, the population must have constraints imposed to certain mutations
according to the situation (there must be the concept of “taboo” paths, those which lead to
only local maxima).

5.8.4 Immunity and the evolution of sex

Two of the presented populations had very different outcomes depending on the parasite we
introduced. A well-mixed population with universal encodings is immune to manipulation,
but is affected by disinformation agents, without possibility of recovering. On the other hand,
a bipartite population where each type of agent uses the same symbols for their encodings is
immune to trolls, but it is vulnerable to manipulation.

These are two extreme configurations of a population: in one, the messages of interacting
agents are completely redundant (well-mixed population), while, in the other, the messages of
interacting agents are complementary (bipartite population). When the information provided
by interacting agents is redundant, then there is no possibility of manipulation. However,
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when the information provided by interacting agents is complementary and necessary, then
only in cases where both types of agents use the same symbols in their encodings, there is no
room for disinformation agents.

This lead us to speculate over the evolution of sex. Thinking –consistent with the philoso-
phy of the thesis– purely in informational terms, sexual reproduction requires to complement
the information coded in genes from two types of organisms: a male and a female, where
interactions are only between different types of organisms (to achieve reproduction at least).
The genes of each type are encoded using the same nucleotides (Cytosine, Guanine, Adenine,
Thymine). This configuration is very similar to one found in our examples, in the sense that
we have a bipartite population using the same symbols to encode their environment.

Some theories put forward parasitism as the main driver in the evolution of sex [May-
nard Smith et al., 1988]. Here, we show the advantages with respect to immunity that such
populations have: they are immune to disruptive agents. This could be a reason why such par-
asites are not commonly found in biology, but are common in social contexts, where languages
are more redundant. However, and as our informational models indicate, this organisation is
vulnerable to manipulative parasites, which can be sex-specific or not, as we showed in the
puppetmaster’s characterisation.

5.9 Conclusion

We have extended the model defined in the previous chapter to incorporate explicit decoding
rules of a population. Then, we defined two paradigmatic types of parasites: a disruptive
parasite (a troll) and a manipulative parasite (a puppetmaster), in order to study host-
parasite co-evolution. We have shown that these definitions show emergent characteristics
in the parasites that can be recognised in biological systems, while other characteristics are
better appreciated in social networks systems. For example, the disruptive parasite shows
a contrarian behaviour with the host population, while the manipulative parasite shows two
dual emergent properties: identity theft and dog-whistling. In all cases, we have that the
parasite blends in the host population by adopting its conventions.

We identified host properties for robustness and adaptability. For instance, we showed
that the adoption of synonyms in the encoding of the environment reduces the amount of
possibilities for a troll’s encoding to minimise the population’s mutual understanding. We
also showed that centralised populations allow the population to re-encode their environment
after being attacked by a parasite, in such a way that it fully recovers its functioning.

Finally, we showed a population immune to disruptive agents, which are those that en-
code different aspects of the environment using the same subset of an alphabet. However,
this population is vulnerable to manipulation. On the other hand, populations immune to
manipulation are vulnerable to disruption. In summary, agents cannot be immune to both
disruptive and manipulative agents, unless they are communicationally isolated.
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Chapter 6

General discussion

6.1 Summary

The main contribution of this thesis is the development of an information-theoretic framework
that captures semantics. This allows the evolution of conventions for communication, as well
as the presence of informational parasites (agents that convey false information in order
to confuse/manipulate others). Only by capturing semantics is the modelling of parasitism
possible, and this allowed us to explore the conditions for a population to be robust, adaptable
and immune to them, from a purely informational point of view. This is of great significance,
since it permits the modelling of conflicts without any a priori assumptions regarding the
most desired states of either the host or the parasite.

We started by looking at the exchange of information in a model of two species competing
for limited resources. We have assumed that species try to maximise their growth rate, and
the optimal behaviour, under special circumstances, is to adopt a Kelly-gambling strategy.
Species incorporating extra information, for instance, from other species, can improve their
predictions, thereby improving their growth rate. However, with limited resources, it is
not always beneficial to exchange information. We showed that there is a transition from
cooperation (species share information) to indifference (species do not share information, we
called this “antagonism” in Chapter 3, but now that we have defined a proper antagonist (the
troll) we change terminology) when resources become scarce. We used a game-theoretical
model with dynamical payoffs, which depended on several factors, but mainly on the resource
density. When resources are scarce, they become valuable, and species are better off not
sharing information with the other species. On the other hand, in abundance of resources,
there is no competition, and sharing environmental information cannot decrease the growth
rate of a species, while it may be beneficial for the sender species. In other words, a species
may increase its growth rate by sharing information with the other species, but only if the
latter shares back. However, there is no risk of having its growth rate decreased in any
circumstance for this scenario.
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We then place organisms in a cooperative scenario to focus purely on the communicational
aspects of the population. That is, we assumed a scenario where there are no conflicts related
to resources. Here, the more environmental information organisms have, the higher the growth
rate of the population will be. However, an organism’s ability to interpret information will
depend on the universality of the codes used by its sources in the population. This follows
from dropping the assumption that an organism knows the identity of the source. This novelty
allows us to model communication in an information-theoretic way when the code is unknown
to the receiver.

We showed that, in well-mixed populations, universal representations (encodings) of the
environment emerge for organisms maximising their mutual understanding, which is an infor-
mation theoretic measure which does not need direct access to the environmental variable. If
population structures, i.e. the selection of which agent communicates with which, are varied,
this affects the evolved representations, but the main characteristic we have obtained is that,
for any organism, the sources of messages are homogeneous in their representation of the
environment.

The developed model enabled us to obtain a population whose structure and representa-
tions of the environment are a product of evolution. We optimised the mutual understanding
and, when an equilibrium is reached, further changes in the environment representations (via
their codes) of the organisms would not improve their growth rate. So far, the interpretation
of shared information by an organism was implicitly computed via Bayes-inverse over the
environment. Then, we incorporated in the model the way in which the population interprets
encodings, by modelling explicit decoding rules. We assumed a “freezing” of the decoding
rules once an equilibrium was reached in a population. We took this as the starting point to
study conflicts in communication. This was done by introducing a parasitic agent into the
population. We adopted two cornerstones of non-cooperative behaviour: namely, an agent
which assumes one of two types of parasitic behaviour to maximise conflict. We studied a
disruptive parasite (a troll) and a manipulative parasite (a puppetmaster), and characterised
their behaviour when interacting with the population.

We also studied how the organisation of a population influences how robust and adaptive a
population is against parasites. We have shown how some organisational aspects can mitigate
the influence of parasites. The first one is the use of synonyms for decoding representations,
which diminishes the amount of encodings a parasite can adopt that minimises the mutual
understanding. The second one was adopting a centralised population structure: here, or-
ganisms are less constrained to find new encodings of the environment that will allow them
to maintain their prediction accuracy. Finally, we showed two configurations of a population
that are both immune to one type of parasite but not to the other. To be immune against the
puppetmaster, one needs to avoid using shared information to make predictions (basically, an
organism needs to be communicationally isolated). To be immune against trolls, a population
can adopt a bipartite configuration, where both types of organism encode the environment
using the same alphabet.

In the framework we developed, we defined an information-theoretic way of evolving a
system’s dynamics. The rules of the system are established as the outcome of an evolutionary
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process, and these same rules are those that allows the exploitation of the system by malicious
agents.

6.2 Horizontal Gene Transfer and the evolution of the genetic
code

One of the main inspirations for the work done in this thesis had been Carl Woese’s concepts
on the evolution of the genetic code (also discussed in Sec.3.6.2 and Sec. 4.6) [Woese, 2002,
Woese, 2004]. He argues against the reductionist approach widely adopted by biologists in
the second half of the 20th century, where “the organism was stripped from its environment,
separated from its history [...] and shredded into parts to be studied mostly in isolation”
[Woese, 2004]. Instead, he proposes to put the emphasis on holistic, “nonlinear”, emergent
biology, and to consider the emergence of the genetic code with non-Darwinian dynamics.
This means putting aside theories that explain the universality of the code either as following
from common descent or as a “frozen accident” [Vetsigian et al., 2006].

Woese imagines that, in the remote evolutionary past of the RNA world, there must have
been an evolutionary saltation where the capacity to represent symbolically amino acid se-
quences developed. This would bring about new levels of organisation facilitated by the ability
to communicate innovations. This is a common theme in the major evolutionary transitions
[Szathmáry et al., 1995], where each of them came about with new types of information stor-
age, use and transmission. In these transitions, lower-level units form the medium, a complex,
sophisticated network of interactions, on which the new level of organisation comes into exis-
tence [Woese, 2004]. Examples of these are the origin of the genetic code in prokaryotic cells,
eukaryotic cells, multicellularity, and societies with natural languages [Szathmáry, 2015].

Considering the evolution of the genetic code in primitive cells, there are two factors of
strong influence: horizontal gene transfer (HGT) and the constraints imposed by a primi-
tive translation apparatus of primitive cells (protocells) [Woese, 2004]. Different translation
apparatus among the information sharing protocells will produce, for any given gene, not a
unique protein, but a family of related protein sequences, a “statistical protein” [Vetsigian
et al., 2006].

We wish to argue that these concepts relate to the models developed in this thesis. Our
first model sets the stage for the evolution of a code: it states that an organism’s growth rate
would not decrease if it shares information in a scenario of abundance of resources. In such a
scenario, cooperative organisms (those that share information) would have an advantage over
those that do not. On the other hand, in scarce resources communication does not give an
advantage, and therefore a common code would not be evolved.

In our second model, we looked specifically at the evolution of codes. Although our model
is intentionally kept general, here we draw parallels with the concepts of cellular evolution.
We can assume that a protocell, like any organism, lives in an environment and thus will
have some perception of it. This allows them, for instance, to express an adequate protein
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for the corresponding environmental state, that is, to prepare themselves to survive in those
conditions. We further assume that the proteins are expressed via a code that is particular
to each protocell. This is a symbolic representation of the protein, for instance, by a nucleic
acid sequence.

The genetic code then plays a dual role in evolution: it is both a protocol for encoding
amino acid sequences, and an innovation-sharing protocol [Vetsigian et al., 2006]. We give
protocells the possibility of sharing this encoding with other protocells according to a pop-
ulation structure, which in the simplest case is well-mixed. In the first model, an organism
encodes the environment (it is actually its perception of the environment that is encoded,
but let us assume for simplicity that it directly encodes the environment, which we assume
to define its perception in its raw form) via a conditional probability, the code. At the same
time, the organism has the ability to interpret encodings that are shared by other organisms.
We have not made any assumptions regarding how an organism decodes shared encodings,
the only assumption we made is that the shared encoding is interpreted contextually by the
recipient. Specifically, the context of the recipient comprises all of the protocells that share
their encoding with it.

Protocells receiving messages from other protocells can potentially increase their certainty
about the environmental state, which would translate into an increase in their growth rate.
How much information an organism can extract from a message, averaging over all of its
sources, will depend on the universality of the sources’ codes. Universal codes among sources
allows a protocell to have one interpretation for each message, and is the only solution for
maximising the information about the environment when the sources cannot be identified.
However, if the sources of a recipient cell have heterogeneous encodings of the environment,
then this will produce a distribution of proteins when decoded. In these cases, adapting
a cell’s decoding mechanism in favour of popular codes gives the advantage of having the
“correct” interpretation “most of the time”. This is a way in which the genetic code of donor
cells can indirectly affect the genetic code of the recipient.

A way of increasing this trend is for organisms to assort into communities that share
related codes. This was the case in the experiment where we allowed updates of the population
structure. Also, codes that can distinguish more environmental states will be favoured, since
they would provide higher growth rates, creating a positive feedback in the popularity of
better codes during evolution. This stage of evolution, which is in essence communal and not
individual [Woese, 2004], ends when the optimisation of the codes is achieved.

For this model, we did not explicitly include the translation rules of the encodings. Instead,
the decoding was implicit in the model via the Bayesian inverse probability of the environment
given an organism’s own encoding together with shared encodings. This assumes a best case
scenario for interpreting information without knowing the identities of the sources. Once the
optimisation is complete, we fixed the decoding by explicitly modelling the Bayesian inverse
probability.

We have postponed the analysis of parasitism until we incorporated explicit decoding rules
into the model. However, one of the defined parasites, the troll, does not even make use of the

114



decoding rules of the invaded population. This type of parasite can be present in all stages
of evolution of the genetic code, although in early stages, when the mutual understanding is
low, it will be inefficient. On the other hand, for the puppetmaster, manipulation requires
a certain degree of universality in the decoding rules. Having many sub-populations, each
with their own decoding rules, will make more difficult, if not impossible, for the parasite to
manipulate all organisms of a population. We didn’t model the learning of the rules, and
instead it was incorporated in the optimisation function.

Parasitism in the context of the evolution of the genetic code must have played a major
role. The evolution of the genetic code would not only have been driven by agreement
in how to encode their common environment, but also by “choosing” an encoding that is
robust and adaptable. We explored these interactions in a simplified manner in order to
validate the parasite definitions. We showed which parasite characteristics arise, sometimes
depending on the context. For instance, both parasites blended in the invaded population,
which makes them indistinguishable from other members of the population. The troll behaves
like a contrarian, while we showed that the puppetmaster “steal identities”, if there are any,
or make use of the dog-whistling effect. The emerging characteristics highlight the social
aspect in the evolution of codes, and are by no means exhaustive.

We have also shown that the evolved structures of the population, as well as the use of
synonyms in the decoding rules, can enhance the population’s adaptation in the presence
of parasites. For instance, we showed that centralised populations can incorporate parasites
without decreasing their growth rate. We have also showed which configurations are immune
to different parasites, although the one immune to disruption is vulnerable to manipulation
and vice versa.

To summarise, we have taken a measured step with a minimal information-theoretic model
that captures some aspects of the evolution of the genetic code. Some of these are a consensus-
driven representations of the environment highly influenced by the population structure, the
establishment via evolution of a semantic interpretation of information, and the vulnerabilities
this creates to parasitic agents.

6.3 Conclusions and future work

This thesis has focussed on the social aspects of biological systems, with a particular em-
phasis on communication between organisms. In retrospective, one of the most important
contributions of this thesis has been the development of a model, in an information-theoretic
framework, where entities are able to communicate with each other without assuming a priori
a shared code between them. The key insight which allowed to capture this idea in a model
is that organisms do not know the identity of who is talking, thus not being able to choose a
suitable interpretation for the message.

An organism that cannot identify sources of messages is forced to interpret all of its
sources in the same way. The interpretation of the messages was explicitly included in our
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latest model, although we considered the same interpretation for each member of the pop-
ulation. We have assumed this to simplify our study of parasitism. However, it is possible
to consider agent-centric decoding rules. In this case, each agent/organism would have its
own way of interpreting messages. One may think that, a priori, this would add difficulty to
a parasite’s strategy, since now not every organism would respond in the same way to the
parasite’s messages. This could be a possible avenue for studying vulnerabilities and robust-
ness in systems. The vulnerabilities can be identified by introducing a parasite in the system:
now, the parasite would “choose” more carefully its interactions, since it will not be able to
troll/manipulate all agents effectively, because they respond to different “stimuli”.

We have formally defined in Chapter 5 a manipulative parasite that optimises a function
similar to empowerment. We mentioned that this function, unlike empowerment, does not
consider the reaction of the population to the agent’s actions. In other words, our parasite
maximises its influence over the decisions of the population’s agents, but not over what the
parasite would perceive once the population reacts to it by re-encoding the environment.
The puppetmaster’s optimisation function does not consider how the population reacts to its
actions, but, for being able to do this, one may need particular properties in the population.

In order for a simple parasite to compute an empowerment-like function, the ways in
which the environment, the population in this case, reacts, needs to be constrained to a few
attractors. In our model, letting the population respond can lead to possibly many attractors.
It is difficult to contemplate a parasite with the ability to relate its actions to one or several of
the many outcomes of a population’s response. The environment would need to be simplified
first, in the sense that a population’s possible responses are unique or a few, to allow such
computation.

Whether a simplification of the environment would result by following a simple manipu-
lation strategy as the one defined was inconclusive in our experiments. We have seen in the
example where we introduced the puppetmaster in a centralised population that, after several
rounds of optimisation, an equilibrium was found. Here, neither a re-encoding of the pop-
ulation will improve their environmental information, nor a re-encoding of the parasite will
improve its influence in the population’s predictions. This is indeed a simplified environment,
but one that does not allow further evolution.

We should recall that we used toy environments of small uncertainty in the experiments.
Environments with more states and more uncertainty may produce more interesting results,
but are expensive to optimise. In any case, an interesting aspect to capture in the experiments
would be the Red Queen dynamics, which none of ours did. The simplest case of such
dynamics would be to have two attractors, and having the population go back and forth
between them, avoiding the parasite, in a cat-and-mouse type of dynamics.

Another consideration is the role that metabolic cost, or information processing cost,
would play in the evolution of organisms or agents. Agents capable of distinguishing more
environmental information by themselves would realise more costly encodings. On the other
hand, this cost can be avoided by reading other agents already processing the needed in-
formation for making predictions. This suggests that agents will try to maximise their en-
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vironmental information, while minimising their information processing cost. Considering
this, we can imagine that in early stages of an evolutionary process, where organisms have
not yet developed communication protocols and live in isolation rather than in a community,
there would be a pressure on agents to capture most of the information they need about the
environment by themselves.

This follows from the unlikelihood of evolving, at first instance, a “division of labour”
type of configuration in an unstructured population, where all interacting agents capture
different aspects of the environment, and read from the other agents the information they
lack. As a consequence, at first stages we would have agents capturing the information they
need, possibly having a high overlap, if they depend on common environmental condition, in
the captured aspects among them. Once we have this, agents can proceed to reduce their
information-processing cost by taking advantage of reading other agents. Thus, this first set
of agents can be considered the “building blocks” of a (yet) undetermined process. For the
next generation of agents, one could picture agents capturing the information they cannot
obtain by reading the others. Therefore, an agent can minimise its information processing cost
by maximising the information contained in a coarse-grained description of the information
provided by the agents it interacts with.

The described phenomenon suggests a hierarchical organisation of the system, and its
study could shed light on the topic of major evolutionary transitions [Szathmáry et al., 1995],
where the building blocks provide the lower-level units forming the medium in which a higher
level of organisation could emerge [Woese, 2004].
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Appendix A

Method of types

A.1 Efficient representation of the states of a population

In a population of n individuals, where each of them can take 2 states, the number of possible
states that the population can take is 2n. Let s1, . . . , sn be the states of individuals 1, . . . , n,
where si ∈ S is the state of individual i, with 1 ≤ i ≤ n. The probability of the population
to be in state s1, . . . , sn given some environmental conditions e is given by p(s1, . . . , sn|e) =
p(s1|e) . . . p(sn|e). Considering that conditional probabilities among individuals of the same
species are equal (see Eq. 3.2 and 3.3), then p(s1, . . . , sn|e) depend solely on the number of
occurrences of each state in S. For instance, if S = {0, 1}, then p(0, 0, 1|e) = p(0, 1, 0|e) =
p(1, 0, 0|e) = p(0|e)2p(1|e)1. In this way, the number of states of the population grows linearly
with population size (see [Cover and Thomas, 2002] for a proof). Below, we show how to
compute Pr(S|E) (where S represents the state of the population as a unit) by using the fact
that individuals are indistinguishable.

Let s1, . . . , sn (or alternatively s) be a sequence of n states, where si ∈ S is the state
of individual i of species X, with 1 ≤ i ≤ n. The type Ps of a sequence s is a probability
distribution given by Ps(a) = N(a|s)/n for all a ∈ S, where N(a|s) is the number of times
state a occurs in the sequence s. The type class of a type P is defined as the set

T (P ) = {s ∈ Sn : Ps = P}

and the size of T (P ) is the number of ways of arranging N(s1|s), . . . , N(s|S||s) individuals
in a sequence, which is

|T (P )| =
(

n

N(s1|sx), . . . , N(s|S||sx)

)
=

n!

N(s1|sx)!× . . .×N(s|S||sx)!
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Since s1, . . . , sn given some environmental conditions e are drawn i.i.d according to Eq.
3.2 for species X and according to Eq. 3.3 for species Y , the probability of s depends only
on its type and is given by

p (s | e) = 2−n
(
H(Ps)+D(Ps||Pr(Si|e))

)
(A.1)

(see [Cover and Thomas, 2002] for a proof). However, we are interested in the probability
of types of sequences rather than sequences:

p (Ps | e) = |T (Ps)| 2−n
(
H(Ps)+D(Ps||Pr(Si|e))

)
(A.2)

The number of states of the random variable S representing a population of n individuals
is given by the cardinal of the set of types,

|Pn| =
((
|S|
n

))
=

(
n+ |S| − 1

n

)

which is the number of n-multisubsets of the set S, i.e. the total number of combinations
of the states of n individual random variables, where each one can take any state of S, counting
permutations only once. In our case, where S = {0, 1}, the number of states of the random
variable S is n+ 1.

A.2 Interpolation of conditional probabilities

Population densities in our model are represented by a value in the range [0, 1], and this value
is mapped to the actual number of individuals in the population, for instance for species X
this value is n = pt ×Xt × 15. If n is an integer, then we proceed as explained in appendix
A.1. For other cases, let us assume the states of bnc individuals are represented in a sequence
sbnc, where each state is in S. As our model requires conditional probabilities for continuous
sequences, we define a surrogate sequence which adds a proportion λ of state b ∈ S to sequence
sbnc as s′(sbnc, b, λ), which we denote s′ for shortness when the arguments can be deduced
from context. Thus, we have |sbnc| ≤ |s′| ≤ |sbn+1c|, or equivalently bnc ≤ |s′| ≤ bn+ 1c. We
define the type of a sequence when adding a proportion λ of state b to the sequence sbnc as

Ps′(sbnc,b,λ)(a) =


N(a|sbnc)+λ
bnc+λ a ∈ S, a = b

N(a|sbnc)
bnc+λ a ∈ S, a 6= b

(A.3)
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For λ = 0 one has Ps′ = Psbnc , and for λ = 1 one has Ps′ = Psbn+1c .

We should note that when 0 < λ < 1, the total number of states of the population is
|S| × |Pn|. Let us illustrate the states of a population when 0 < λ < 1 for a population that
consists of two individuals, where each individual can be in a state 0 or 1. The possible states
of this population are 3: 00, 01, and 11 (with type size 1, 2, 1, respectively). Now, if we add
a proportion 0 < λ < 1 of a state to each possible state of the population, then we multiply
by |S| the number of states (before shrinking when λ = 1, see Fig. A.1).

0100 11

000λ 001λ 010λ 011λ 110λ 111λ

000 111

λ = 0

0 < λ < 1

λ = 1 001 011

Figure A.1: States of a population in the transition from two to three individuals. We denote
a sequence s′(s, b, λ) as sbλ for shortness. For instance, (00,1,λ) is denoted 001λ.

We could consider the type size of each sequence by

|T (Ps′(sbnc,b,λ))| :=
(

bnc+ λ

N(s1|sx), . . . , N(sb|sx) + λ, . . . , N(s|S||sx)

)

where the factorial is approximated by using the gamma function Γ (x) =
∞∫
0

tx−1e−tdt,

with (bnc+ λ)! = Γ(bnc+ λ+ 1). However, when counting the unique ways of arranging the
states, for instance, 001λ and 010λ, we would not be considering the overlap between these
two states. In other words, we would be counting more than once some sequences. This
depends on the sequences and the value of λ, for example 000λ and 001λ fully overlap when
λ = 0, but there is no overlap when λ = 1. On the other hand, 001λ and 010λ do not overlap
when λ = 0, but fully overlap when λ = 1.

Then, some sequences (such as 001λ and 010λ) are always counted twice, independently
of the value of λ: they either overlap with one sequence or the other (this is because we are
considering |S| = 2). However, the sequences 000λ and 111λ (those such that |T (P000λ)| =
T (P111λ)| = 1) are counted twice when λ = 0, but only once when λ = 1. In Fig. A.2 we
show some values of the sizes of types as λ increases.

Taking this into account, we approximate the conditional probability by

p(Ps′(sbnc,b,λ)|e) =


1+λ
|S| 2−(bnc+λ)

(
H(Ps′ )+D(Ps′ ||Pr(S′|E))

)
if |T (Ps′)| = 1

|T (Ps′ )|
|S| 2−(bnc+λ)

(
H(Ps′ )+D(Ps′ ||p(S′|E))

)
otherwise

(A.4)
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Figure A.2: Sizes of types for sequences in the transition from two to three individuals in a
population. The sizes are corresponded with the sequences shown in Fig. A.1, and the values
when 0 < λ < 1 show how they change from λ = 0 to λ = 1.
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Appendix B

Sensitivity analysis

B.1 Parameters sensitivity and results generality

The parameter settings used in Sec. 3.5 were specially chosen to show the transition from
cooperation to antagonism in species sharing environmental information. These were α =
1.05, N = M = 15, together with the conditional probabilities shown in Eq. 3.2 and Eq. 3.3.
Here, we analyse the sensitivity of the parameters by introducing changes in each one of them
and showing how this affects the results. Instead of computing the dominant strategies for
the same subset of X ×Y ×R (as we have done in Sec. 3.5), we show results for a fixed value
of resources, R = 1.8, which clearly shows all the possible volumes (see Fig. 3.5f).

Parameter Description

Pr (Sxi | E)
This conditional probability defines the amount of information that

an individual cell i of species X captures from sensing the environment.

Pr
(
Syj

∣∣ E) This conditional probability defines the amount of information that

an individual cell j of species Y captures from sensing the environment.

N Carrying capacity of the population of species X.

M Carrying capacity of the population of species Y .

α Growth rate of resources.

Table B.1: List of parameters used by the model with their description.

In Table B.1, we show the used parameters by the model with their descriptions. First,
let us consider parameter α, the growth rate of resources. In Fig. B.1b, we show the results
we obtain when we change to α = 1.25, instead of its original value, α = 1.05, whose results
are shown in Fig. B.1a. This change extends the volume where sharing information is weakly
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dominant such that it includes initial values with relatively lower resources, while the other
volumes will be shifted in such a way that they are composed of initial values with lower
values for resources. Additionally, the amount of initial values composing the other volumes
is smaller. The reason for this is that, since resources grow at a higher rate, higher populations
can be supported, and thus the regime in which antagonism is dominant is reduced.

X
p
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p
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ti
o
n

d
e
n
si
ty

Y population density

(a) α = 1.05

Y population density

(b) α = 1.25

Y population density

(c) Pr(SXi
|E) (3.2),

Pr(SYj
|E) (3.3)

Y population density

(d) Pr(SXi
|E) (B.1),

Pr(SYj
|E) (B.2)

Figure B.1: (see in colour) We analyse the payoff matrix from 2502 initial values of population
densities of species X and Y uniformly distributed in X × Y, with the amount of resources
R = 1.8 fixed. See Fig. 3.5 for an explanation of what colors represent. Each subcaption
shows the parameter whose effect is being exemplified.

Let us consider now the conditional probabilities Pr(SXi |E) and Pr(SYj |E). They deter-
mine how much environmental information each individual captures, I(E;SXi) = I(E;SYj ) =
0.39016 bits, which is a low amount of the total environmental uncertainty, H(E) = 2 bits.
Together with N and M , the conditional probabilities determine the different curves shown
in Fig. 3.3. A property of the defined conditional probabilities is that populations achieve
a fast increase in environmental information when population densities are low, with small
increases for high population densities. Lower values of I(E;SXi) and I(E;SYj ) would have
a slower growth for low population densities, and species will not acquire high amounts of
environmental information for high population densities (see Fig. B.2 for an example).

Therefore, the two conditional probabilities together with N and M will define the total
environmental information when species communicate. This amount is
I(E;SX1 , . . . , SXn , SY1 , . . . , SYm) (see the curve in Fig. 3.3 and in Fig. B.2), and the gain
in environmental information for a species receiving the shared information from the other
species (assuming equal population densities) is the difference between the two mentioned
curves. This difference is high for our chosen conditional probabilities since the species were
meant to capture different aspects of the environment (see Fig. 3.2 and 3.3), but if the
aspects of the environment that species capture intersect, then this difference decreases (see,
for instance, Fig. B.2).

In Fig. B.1c and Fig. B.1d, we show how changing the conditional probabilities Pr(Sxi |E)
and Pr(SYj |E) affect the results. Instead of the probabilities defined in Eq. 3.2 and in Eq.
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3.3, we used the ones defined in Eq. B.1 and in Eq. B.2, where the intersection of the
acquired environmental information from sensors between two individuals of different species
is I(SXi ;SYj ) = 0.151452 bits, while the amount of environmental information each individual
captures is roughly the same as before, I(E;SXi) = I(E;SYj ) = 0.389767 bits. However, how
the amount of environmental information changes in relation to the population densities is
different from the original definitions, as shown in Fig. B.2.

In this case, a species by itself is able to capture more information about the environment
(roughly 1.5 bits while before it was close to 1 bit). Therefore, higher populations will
consume more resources than before even when they do not exchange information, and, as a
consequence, the area where species always get extinct (the black area) now includes initial
conditions where before they could survive by not sharing information (see Fig. B.1c and B.1d,
initial conditions that were dark red are now black). Similarly, the area where not sharing
information is strictly dominant now also contains initial values that originally were classified
as not sharing weakly dominant. The reason for this is the same as mentioned: species by
themselves capture more information than before, and therefore the consumption of resources
is higher even when species share information only in the first time-step (such situations are
exemplified in Table 3.2). Another consequence of the defined conditional probabilities is that
the area where species cooperate was slightly extended. This happens because the amounts
of consumed resources for high population densities decreased in comparison to our original
parameters, since high population densities now possess less environmental information.

To summarise, changes in the parameters can extend or reduce the initial conditions where
species cooperate, and they also can extend or reduce the initial conditions where species get
extinct independently of their strategies. These changes also affect the initial conditions where
there is no dominant strategy, where not sharing is strictly dominant, and where not sharing
is weakly dominant. However, in the results there is always a transition from cooperative
strategies to antagonistic strategies, and the parameters we chose are ones that clearly show
it.

B.2 Different dynamics for resources

In the model, we defined a dynamics for resources such that they grow at a rate of α unless
they are exhausted, in which case they remain in that state. Here, we consider a periodic
replenishment of resources which is independent of the current amount available for bacteria.
The dynamics are shown in the following equation:

Rt+1 := Rt − (Xt + Yt) + β (B.3)

In this equation, resources are consumed proportionally to the sum of the population
densities, and they are replenished by an amount β. We would like to test whether this change
affects the observed transition from cooperation to antagonism in information exchange. For
this purpose, we re-run the experiments of Sec. 3.5, but instead of using Eq. 3.24 in the
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model, we use the one defined in this section, Eq. B.3, with a value β = 0.05 (this value has
been chosen particularly to show the transition of regimes from cooperation to antagonism).

The plots shown in Fig. B.3 are very similar to the ones shown in Fig. 3.5, the latter
corresponding to the figures obtained from the original simulations. The difference that stands
out between the two experiments happens for population densities close to their carrying
capacity. In the original simulations, such population densities went extinct independently
of their actions. In the current consideration, not sharing information is weakly dominant.
Before, large populations would exhaust resources, and, since they were never replenished,
both species would die out. Now, resources are may be fully consumed, but they would be
replenished in any case.
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Figure B.2: Total amount of environmental information for different scenarios (using con-
ditional probabilities B.1 and B.2): I(E;SXi) and I(E;SYj ) correspond to the case where
an individual cell i of species X and an individual cell j of species Y acquire information
from their sensors only, respectively. I(E;SX1 , . . . , SXn) is the total amount of information
of each cell of species X when n cells communicate; in the same way I(E;SY1 , . . . , SYm)
is the total amount of information of each cell of species Y when m cells communicate.
I(E;SX1 , . . . , SXn , SY1 , . . . , SYm) is the total amount of environmental information each cell
of both population have when n cells of species X and m cells of species Y communicate.
Finally, H(E) is the uncertainty of the environment.

Pr (SXi | E) :=


s1 s2

e1 0.95 0.05
e2 0.65 0.35
e3 0.35 0.65
e4 0.05 0.95

 (B.1) Pr (SYi | E) :=


s1 s2

e1 0.05 0.95
e2 0.35 0.65
e3 0.65 0.35
e4 0.95 0.05

 (B.2)
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Figure B.3: (see in colour) We analyse the payoff matrix from 2502 initial values of population
densities of species X and Y uniformly distributed in X ×Y, with the amount of resources R
fixed. Green points corresponds to sharing information being a weakly dominant strategy for
species X. Grey points corresponds to initial values where there is no dominant strategy for
species X. Red points represent values for which not sharing information is strictly dominant
for species X. Dark-red points corresponds to values where not sharing information is weakly
dominant for species X. Finally, black points represent values where species X goes extinct
regardless of its strategy.
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Appendix C

Numeric computations

C.1 Environmental information computations

In this section, we show the computations for the mutual information values shown in Sec.
3.4.5. The conditional probabilities for the species’ sensors are the ones defined in Eq. 3.2
and Eq. 3.3. The mutual information I(E ; SX1) depends solely on the joint probability
distribution p(e, sx), which is computed by

p(e, sx) = p (sx | e) p(e) (C.1)

For example,

p(e1, sx1) = p (sx1 | e1) p(e1) = 0.85× 0.25 = 0.2125

p(e1, sx2) = p (sx2 | e1) p(e1) = 0.15× 0.25 = 0.0375

The environmental probability p(E) is uniformly distributed, and p(sx) is computed by

p(sx) =
∑
e

p (sx | e) p(e) (C.2)

Then,
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p(sx1) =
∑
e

p (sx1 | e) p(e)

= 2× (0.85× 0.25 + 0.15× 0.25)

= 0.5

p(sx2) =
∑
e

p (sx2 | e) p(e)

= 2× (0.15× 0.25 + 0.85× 0.25)

= 0.5

In a similar way, we have that p(sy1) = p(sy2) = 0.5. The computation of the mutual
information between the environmental variable and the sensor variable of one individual cell
of species X is computed by

I(E ; SX1) =
∑
e,sx

p(e, sx) log2

(
p(e, sx)

p(e)p(sx)

)
= p(e1, sx1) log2

(
p(e1, sx1)

p(e1)p(sx1)

)
+ p(e2, sx1) log2

(
p(e2, sx1)

p(e2)p(sx1)

)
+ p(e3, sx1) log2

(
p(e3, sx1)

p(e3)p(sx1)

)
+ p(e4, sx1) log2

(
p(e4, sx1)

p(e4)p(sx1)

)
+ p(e1, sx2) log2

(
p(e1, sx2)

p(e1)p(sx2)

)
+ p(e2, sx2) log2

(
p(e2, sx2)

p(e2)p(sx2)

)
+ p(e3, sx2) log2

(
p(e3, sx2)

p(e3)p(sx2)

)
+ p(e4, sx2) log2

(
p(e4, sx2)

p(e4)p(sx2)

)
= 0.2125 log2

(
0.2125

0.25× 0.5

)
+ 0.0375 log2

(
0.0375

0.25× 0.5

)
+ 0.2125 log2

(
0.2125

0.25× 0.5

)
+ 0.0375 log2

(
0.0375

0.25× 0.5

)
+ 0.0375 log2

(
0.0375

0.25× 0.5

)
+ 0.2125 log2

(
0.2125

0.25× 0.5

)
+ 0.0375 log2

(
0.0375

0.25× 0.5

)
+ 0.2125 log2

(
0.2125

0.25× 0.5

)
= 0.2125 log2 (1.7) + 0.0375 log2 (0.3)

+ 0.2125 log2 (1.7) + 0.0375 log2 (0.3)

+ 0.0375 log2 (0.3) + 0.2125 log2 (1.7)

+ 0.0375 log2 (0.3) + 0.2125 log2 (1.7)

= 4× (0.2125× 0.765534746363 + 0.0375×−1.73696559417)

= 0.390159695

In a similar way, we have that I(E ; SY1) = 0.390159695. The joint probability of sensors
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of an individual of species X and an individual of species Y are given by

p(sx, sy) =
∑
e

p (sx | e) p (sy | e) p(e) (C.3)

Because of our definitions of the conditional probabilities p (sx | e) and p (sy | e), we have
the property that p(sx, sy) = p(sx)p(sy), and thus we have

I(SX1 ; SY1) = D (p(sx, sy)||p(sx)p(sy)) = 0 (C.4)

Now, let us compute the mutual information about the environment when individuals
from different species share their information:

I(E ; SX1 , SY1) = I(E ; SX1) + I (E ; SY1 | SX1) (C.5)

We know the value of I(E ; SX1), thus we just need to compute the following conditional
mutual information:
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I (E ; SY1 | SX1) =
∑
e,sx,sy

p(e, sx, sy) log2

(
p(e, sy|sx)

p(e|sx)p(sy|sx)

)

= p(e1, sx1 , sy1) log2

(
p(e1, sy1 |sx1)

p(e1|sx1)p(sy1 |sx1)

)
+ p(e2, sx1 , sy1) log2

(
p(e2, sy1 |sx1)

p(e2|sx1)p(sy1 |sx1)

)
+ p(e3, sx1 , sy1) log2

(
p(e2, sy1 |sx1)

p(e3|sx1)p(sy1 |sx1)

)
+ p(e4, sx1 , sy1) log2

(
p(e2, sy1 |sx1)

p(e4|sx1)p(sy1 |sx1)

)
+ p(e1, sx2 , sy1) log2

(
p(e1, sy1 |sx2)

p(e1|sx2)p(sy1 |sx2)

)
+ p(e2, sx2 , sy1) log2

(
p(e2, sy1 |sx2)

p(e2|sx2)p(sy1 |sx2)

)
+ p(e3, sx2 , sy1) log2

(
p(e2, sy1 |sx2)

p(e3|sx2)p(sy1 |sx2)

)
+ p(e4, sx2 , sy1) log2

(
p(e2, sy1 |sx2)

p(e4|sx2)p(sy1 |sx2)

)
+ p(e1, sx1 , sy2) log2

(
p(e1, sy2 |sx1)

p(e1|sx1)p(sy2 |sx1)

)
+ p(e2, sx1 , sy2) log2

(
p(e2, sy2 |sx1)

p(e2|sx1)p(sy2 |sx1)

)
+ p(e3, sx1 , sy2) log2

(
p(e2, sy2 |sx1)

p(e3|sx1)p(sy2 |sx1)

)
+ p(e4, sx1 , sy2) log2

(
p(e2, sy2 |sx1)

p(e4|sx1)p(sy2 |sx1)

)
+ p(e1, sx2 , sy2) log2

(
p(e1, sy2 |sx2)

p(e1|sx2)p(sy2 |sx2)

)
+ p(e2, sx2 , sy2) log2

(
p(e2, sy2 |sx2)

p(e2|sx2)p(sy2 |sx2)

)
+ p(e3, sx2 , sy2) log2

(
p(e2, sy2 |sx2)

p(e3|sx2)p(sy2 |sx2)

)
+ p(e4, sx2 , sy2) log2

(
p(e2, sy2 |sx2)

p(e4|sx2)p(sy2 |sx2)

)
= 0.180625 log2

(
0.36125

0.425× 0.5

)
+ 0.031875 log2

(
0.06375

0.425× 0.5

)
+ 0.031875 log2

(
0.06375

0.075× 0.5

)
+ 0.005625 log2

(
0.01125

0.075× 0.5

)
+ 0.031875 log2

(
0.06375

0.075× 0.5

)
+ 0.005625 log2

(
0.01125

0.075× 0.5

)
+ 0.180625 log2

(
0.36125

0.425× 0.5

)
+ 0.031875 log2

(
0.06375

0.425× 0.5

)
+ 0.031875 log2

(
0.06375

0.425× 0.5

)
+ 0.180625 log2

(
0.36125

0.425× 0.5

)
+ 0.005625 log2

(
0.01125

0.075× 0.5

)
+ 0.031875 log2

(
0.06375

0.075× 0.5

)
+ 0.005625 log2

(
0.01125

0.075× 0.5

)
+ 0.031875 log2

(
0.06375

0.075× 0.5

)
+ 0.031875 log2

(
0.06375

0.425× 0.5

)
+ 0.180625 log2

(
0.36125

0.425× 0.5

)
= 4× 0.031875 log2 (0.3) + 4× 0.031875 log2 (1.7)

+ 4× 0.005625 log2 (0.3) + 4× 0.180625 log2 (1.7)

= 4 ∗
(
− 0.055365778− 0.009770431 + 0.02440142 + 0.138274714

)
= 0.390159698

Then, we have
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I(E ; SX1 , SY1) = I(E ; SX1) + I (E ; SY1 | SX1)

= 0.390159 + 0.390159

= 0.780318

Finally, we show the increase in environmental information when we consider two individ-
ual cells from the same species:
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I (E ; SX2 | SX1) =
∑

e,sx,sx′

p(e, sx, sx′) log2

(
p(e, sx′ |sx)

p(e|sx)p(sx′ |sx)

)

= p(e1, sx1 , sx′1) log2

(
p(e1, sx′1 |sx1)

p(e1|sx1)p(sx′1 |sx1)

)
+ p(e2, sx1 , sx′1) log2

(
p(e2, sx′1 |sx1)

p(e2|sx1)p(sx′1 |sx1)

)

+ p(e3, sx1 , sx′1) log2

(
p(e3, sx′1 |sx1)

p(e1|sx1)p(sx′1 |sx1)

)
+ p(e4, sx1 , sx′1) log2

(
p(e4, sx′1 |sx1)

p(e2|sx1)p(sx′1 |sx1)

)

+ p(e1, sx1 , sx′2) log2

(
p(e1, sx′2 |sx1)

p(e1|sx1)p(sx′2 |sx1)

)
+ p(e2, sx1 , sx′2) log2

(
p(e2, sx′2 |sx1)

p(e2|sx1)p(sx′2 |sx1)

)

+ p(e3, sx1 , sx′2) log2

(
p(e3, sx′2 |sx1)

p(e1|sx1)p(sx′2 |sx1)

)
+ p(e4, sx1 , sx′2) log2

(
p(e4, sx′2 |sx1)

p(e2|sx1)p(sx′2 |sx1)

)

+ p(e1, sx2 , sx′1) log2

(
p(e1, sx′1 |sx2)

p(e1|sx2)p(sx′1 |sx2)

)
+ p(e2, sx2 , sx′1) log2

(
p(e2, sx′1 |sx2)

p(e2|sx2)p(sx′1 |sx2)

)

+ p(e3, sx2 , sx′1) log2

(
p(e3, sx′1 |sx2)

p(e1|sx2)p(sx′1 |sx2)

)
+ p(e4, sx2 , sx′1) log2

(
p(e4, sx′1 |sx2)

p(e2|sx2)p(sx′1 |sx2)

)

+ p(e1, sx2 , sx′2) log2

(
p(e1, sx′2 |sx2)

p(e1|sx2)p(sx′2 |sx2)

)
+ p(e2, sx2 , sx′2) log2

(
p(e2, sx′2 |sx2)

p(e2|sx2)p(sx′2 |sx2)

)

+ p(e3, sx2 , sx′2) log2

(
p(e3, sx′2 |sx2)

p(e1|sx2)p(sx′2 |sx2)

)
+ p(e4, sx2 , sx′2) log2

(
p(e4, sx′2 |sx2)

p(e2|sx2)p(sx′2 |sx2)

)

= 0.180625 log2

(
0.36125

0.425× 0.745

)
+ 0.031875 log2

(
0.06375

0.425× 0.255

)
+ 0.031875 log2

(
0.06375

0.075× 0.255

)
+ 0.005625 log2

(
0.01125

0.075× 0.745

)
+ 0.180625 log2

(
0.36125

0.425× 0.745

)
+ 0.031875 log2

(
0.06375

0.425× 0.255

)
+ 0.031875 log2

(
0.06375

0.075× 0.255

)
+ 0.005625 log2

(
0.01125

0.075× 0.745

)
+ 0.005625 log2

(
0.01125

0.075× 0.745

)
+ 0.031875 log2

(
0.06375

0.075× 0.255

)
+ 0.031875 log2

(
0.06375

0.425× 0.255

)
+ 0.180625 log2

(
0.36125

0.425× 0.745

)
+ 0.005625 log2

(
0.01125

0.075× 0.745

)
+ 0.031875 log2

(
0.06375

0.075× 0.255

)
+ 0.031875 log2

(
0.06375

0.425× 0.255

)
+ 0.180625 log2

(
0.36125

0.425× 0.745

)
= 4× 0.031875 log2 (3.333333333) + 4× 0.031875 log2 (0.588235294)

+ 4× 0.005625 log2 (0.201342282) + 4× 0.180625 log2 (1.140939597)

= 4 ∗
(
0.0553658− 0.0244014− 0.0130066 + 0.0343589

)
= 0.209267
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C.2 Indistinguishable sources of messages computations

In this section, we show the computations for the mutual information values shown in Sec.
4.4.1. We assume p(µ = 1) = p(µ = 2) = 1

2 , that Θ′ can take values from the set {2, 3}, and
that p(Θ′ = 2) = p(Θ′ = 3) = 1

2 , and ε = 0.01. The rest of the probabilities are defined as
follows:

Pr (Y1 | µ) :=

( y1 y2

µ1 1− ε ε
µ2 ε 1− ε

)
(C.6)

Pr
(
Y ′
∣∣ µ,Θ′) :=


y′1 y′2

θ′2, µ1 1− ε ε
θ′2, µ2 ε 1− ε
θ′3, µ1 1− ε ε
θ′3, µ2 ε 1− ε


(C.7)

Pr
(
X ′
∣∣ Y ′,Θ′) :=


x′1 x′2

θ′2, y
′
1 1 0

θ′2, y
′
2 0 1

θ′3, y
′
1 1 0

θ′3, y
′
2 0 1

 (C.8) Pr
(
X ′
∣∣ Y ′,Θ′) :=


x′1 x′2

θ′2, y
′
1 1 0

θ′2, y
′
2 0 1

θ′3, y
′
1 0 1

θ′3, y
′
2 1 0

 (C.9)

We want to compute the following mutual information:

I
(
µ ; Y1, X

′) =
∑
µ,y,x′

p(µ, y, x′) log2

(
p(µ, y, x′)

p(µ)p(y, x′)

)

For this, we need to compute the following joint probabilities:

p(µ, y, x′) =
∑
y′,θ′

p
(
x′
∣∣ y′, θ′) p(θ′)p (y′ ∣∣ µ, θ′) p (y | µ) p(µ) (C.10)

p(y, x′) =
∑
y′,θ′,µ

p
(
x′
∣∣ y′, θ′) p(θ′)p (y′ ∣∣ µ, θ′) p (y | µ) p(µ) (C.11)

The mutual information between the environmental variable and the sensors of individual
1, together with messages of individuals 2 and 3, which are produced according to the coding
scheme in Eq. C.8, is given by:
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I
(
µ ; Y1, X

′) =
∑
µ,y,x′

p(µ, y, x′) log2

(
p(µ, y, x′)

p(µ)p(y, x′)

)

= p(µ1, y1, x
′
1) log2

(
p(µ1, y1, x

′
1)

p(µ1)p(y1, x′1)

)
+ p(µ1, y1, x

′
2) log2

(
p(µ1, y1, x

′
2)

p(µ1)p(y1, x′2)

)
+ p(µ1, y2, x

′
1) log2

(
p(µ1, y2, x

′
1)

p(µ1)p(y2, x′1)

)
+ p(µ1, y2, x

′
2) log2

(
p(µ1, y2, x

′
2)

p(µ1)p(y2, x′2)

)
+ p(µ2, y1, x

′
1) log2

(
p(µ2, y1, x

′
1)

p(µ2)p(y1, x′1)

)
+ p(µ2, y1, x

′
2) log2

(
p(µ2, y1, x

′
2)

p(µ2)p(y1, x′2)

)
+ p(µ2, y2, x

′
1) log2

(
p(µ2, y2, x

′
1)

p(µ2)p(y2, x′1)

)
+ p(µ2, y2, x

′
2) log2

(
p(µ2, y2, x

′
2)

p(µ2)p(y2, x′2)

)
= 0.49005 log2

(
0.49005

0.5× 0.4901

)
+ 0.00495 log2

(
0.00495

0.5× 0.0099

)
+ 0.00495 log2

(
0.00495

0.5× 0.0099

)
+ 0.00005 log2

(
0.00005

0.5× 0.4901

)
+ 0.00005 log2

(
0.00005

0.5× 0.4901

)
+ 0.00495 log2

(
0.00495

0.5× 0.0099

)
+ 0.00495 log2

(
0.00495

0.5× 0.0099

)
+ 0.49005 log2

(
0.49005

0.5× 0.4901

)
= 0.489977869 + 0 + 0− 0.000612943− 0.000612943 + 0 + 0 + 0.489977869

= 0.978729852

Now, we conmpute the same mutual information, but this time using the coding scheme
defined in Eq. C.9:
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I
(
µ ; Y1, X

′) =
∑
µ,y,x′

p(µ, y, x′) log2

(
p(µ, y, x′)

p(µ)p(y, x′)

)

= p(µ1, y1, x
′
1) log2

(
p(µ1, y1, x

′
1)

p(µ1)p(y1, x′1)

)
+ p(µ1, y1, x

′
2) log2

(
p(µ1, y1, x

′
2)

p(µ1)p(y1, x′2)

)
+ p(µ1, y2, x

′
1) log2

(
p(µ1, y2, x

′
1)

p(µ1)p(y2, x′1)

)
+ p(µ1, y2, x

′
2) log2

(
p(µ1, y2, x

′
2)

p(µ1)p(y2, x′2)

)
+ p(µ2, y1, x

′
1) log2

(
p(µ2, y1, x

′
1)

p(µ2)p(y1, x′1)

)
+ p(µ2, y1, x

′
2) log2

(
p(µ2, y1, x

′
2)

p(µ2)p(y1, x′2)

)
+ p(µ2, y2, x

′
1) log2

(
p(µ2, y2, x

′
1)

p(µ2)p(y2, x′1)

)
+ p(µ2, y2, x

′
2) log2

(
p(µ2, y2, x

′
2)

p(µ2)p(y2, x′2)

)
= 0.2475 log2

(
0.2475

0.5× 0.25

)
+ 0.2475 log2

(
0.2475

0.5× 0.25

)
+ 0.0025 log2

(
0.0025

0.5× 0.25

)
+ 0.0025 log2

(
0.0025

0.5× 0.25

)
+ 0.0025 log2

(
0.0025

0.5× 0.25

)
+ 0.0025 log2

(
0.0025

0.5× 0.25

)
+ 0.2475 log2

(
0.2475

0.5× 0.25

)
+ 0.2475 log2

(
0.2475

0.5× 0.25

)
= 4 ∗ 0.243911357− 4 ∗ 0.01410964

= 0.919206868
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d’interprétation du. Insectes sociaux, 6:41—-80.

[Griffin et al., 2004] Griffin, A. S., West, S. a., and Buckling, A. (2004). Cooperation and
competition in pathogenic bacteria. Nature, 430(7003):1024–7.

[Haldane, 1949] Haldane, J. (1949). Disease and Evolution.

[Hamilton, 1964] Hamilton, W. (1964). The genetical evolution of social behaviour. I. Journal
of theoretical biology.

[Hardin, 1968] Hardin, G. (1968). The tragedy of the commons. the population prob-
lem has no technical solution; it requires a fundamental extension in morality. Science,
162(3859):1243–1248.

[Heil and Karban, 2010] Heil, M. and Karban, R. (2010). Explaining evolution of plant com-
munication by airborne signals. Trends in ecology & evolution, 25(3):137–44.

[Henke and Bassler, 2004] Henke, J. M. and Bassler, B. L. (2004). Bacterial social engage-
ments. Trends in cell biology, 14(11):648–56.

140



[Heylighen, 2011] Heylighen, F. (2011). Stigmergy as a generic mechanism for coordination:
definition, varieties and aspects. pages 1–23.

[Hillis, 1990] Hillis, W. D. (1990). Co-evolving parasites improve simulated evolution as an
optimization procedure. Physica D: Nonlinear Phenomena, 42(1-3):228–234.

[Hinegardner and Engelberg, 1963] Hinegardner, R. T. and Engelberg, J. (1963). Rationale
for a universal genetic code. Science, 142(3595):1083–1085.

[Jablonka, 1994] Jablonka, E. (1994). Inheritance systems and the evolution of new levels of
individuality. Journal of theoretical Biology, 170(3):301–309.

[Jablonka and Lamb, 2005] Jablonka, E. and Lamb, M. J. (2005). Evolution in four dimen-
sions: Genetic. Epigenetic, Behav.

[Keller, 1999] Keller, L. (1999). Levels of selection in evolution. Princeton University Press.

[Keller and Surette, 2006] Keller, L. and Surette, M. G. (2006). Communication in bacteria:
an ecological and evolutionary perspective. Nature reviews. Microbiology, 4(4):249–58.

[Kelly, 1956] Kelly, J. (1956). A new interpretation of information rate. IEEE Transactions
on Information Theory, 2(3):185–189.

[Kitano, 2004] Kitano, H. (2004). Biological robustness.

[Klyubin et al., 2005a] Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2005a). All else being
equal be empowered. In European Conference on Artificial Life, pages 744–753. Springer.

[Klyubin et al., 2005b] Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2005b). Empower-
ment: A universal agent-centric measure of control. In 2005 IEEE Congress on Evolutionary
Computation, volume 1, pages 128–135. IEEE.

[Krakauer and Johnstone, 1995] Krakauer, D. C. and Johnstone, R. a. (1995). The evolu-
tion of exploitation and honesty in animal communication: a model using artificial neural
networks. Philosophical transactions of the Royal Society of London. Series B, Biological
sciences, 348(1325):355–361.

[Krebs and Dawkins, 1984] Krebs, J. and Dawkins, R. (1984). Animal signals: mind-reading
and manipulation. Behavioural Ecology: an evolutionary . . . .

[Kussell and Leibler, 2005] Kussell, E. and Leibler, S. (2005). Phenotypic diversity, popu-
lation growth, and information in fluctuating environments. Science (New York, N.Y.),
309(5743):2075–8.

[Lachmann et al., 2000] Lachmann, M., Sell, G., and Jablonka, E. (2000). On the ad-
vantages of information sharing. Proceedings. Biological sciences / The Royal Society,
267(1450):1287–93.

[Lee et al., 2011] Lee, S., Holme, P., and Wu, Z.-X. (2011). Emergent Hierarchical Structures
in Multiadaptive Games. Physical Review Letters, 106(2):028702.

[Leisner et al., 2008] Leisner, M., Stingl, K., Frey, E., and Maier, B. (2008). Stochastic switch-
ing to competence. Current opinion in microbiology, 11(6):553–9.

141



[Levin, 1995] Levin, M. (1995). The evolution of understanding: A genetic algorithm model
of the evolution of communication. BioSystems, 36(3):167–178.

[Levins, 1962] Levins, R. (1962). Theory of fitness in a heterogeneous environment. I. The
fitness set and adaptive function. American Naturalist, pages 361–373.

[Libby et al., 2007] Libby, E., Perkins, T. J., and Swain, P. S. (2007). Noisy information
processing through transcriptional regulation. Proceedings of the National Academy of
Sciences of the United States of America, 104(17):7151–6.

[Lion et al., 2006] Lion, S., Van Baalen, M., and Wilson, W. G. (2006). The evolution of
parasite manipulation of host dispersal. Proceedings of the Royal Society of London B:
Biological Sciences, 273(1590):1063–1071.

[Lopez et al., 2009] Lopez, D., Vlamakis, H., and Kolter, R. (2009). Generation of multiple
cell types in Bacillus subtilis. FEMS microbiology reviews, 33(1):152–63.

[Lorenzi et al., 2014] Lorenzi, M. C., Azzani, L., and Bagnères, A. G. (2014). Evolutionary
consequences of deception: Complexity and informational content of colony signature are
favored by social parasitism. Current Zoology, 60:137–148.

[Macy and Flache, 2002] Macy, M. W. and Flache, A. (2002). Learning dynamics in social
dilemmas. Proceedings of the National Academy of Sciences, 99(suppl 3):7229–7236.

[May, 1976] May, R. M. (1976). Simple mathematical models with very complicated dynam-
ics. Nature, 261(5560):459–467.

[Maynard Smith et al., 1988] Maynard Smith, J., Bellig, R., and Stevens, G. (1988). The
evolution of sex.

[Mian and Rose, 2011] Mian, I. S. and Rose, C. (2011). Communication theory and multicel-
lular biology. Integrative biology : quantitative biosciences from nano to macro, 3(4):350–67.

[Michod, 1999] Michod, R. E. (1999). Darwinian Dynamics, volume 60. Princeton University
Press.

[Miller and Bassler, 2001] Miller, M. and Bassler, B. L. (2001). Quorum sensing in bacteria.
Annual Reviews in Microbiology.

[Moller and Polani, 2008] Moller, M. and Polani, D. (2008). Common concepts in agent
groups, symmetries, and conformity in a simple environment. Artificial Life XI.

[Nash et al., 1950] Nash, J. F. et al. (1950). Equilibrium points in n-person games. Proc.
Nat. Acad. Sci. USA, 36(1):48–49.

[Nemenman, 2011] Nemenman, I. (2011). Information theory and adaptation. 30322:1–12.

[Neumann et al., 1944] Neumann, J. V., Morgenstern, O., and Rubinstein, A. (1944). Theory
of games and economic behavior. Princeton University Press, 2(9904):625.

[Nolfi and Floreano, 1998] Nolfi, S. and Floreano, D. (1998). Coevolving predator and prey
robots: do ”arms races” arise in artificial evolution? Artificial life, 4(4):311–335.

142



[Nowak et al., 2010] Nowak, M. A., Tarnita, C. E., and Wilson, E. O. (2010). The evolution
of eusociality. Nature, 466(7310):1057–1062.

[Ochman et al., 2000] Ochman, H., Lawrence, J. G., and Groisman, E. a. (2000). Lateral
gene transfer and the nature of bacterial innovation. Nature, 405(6784):299–304.

[Oudeyer, 2005] Oudeyer, P. (2005). The self-organization of speech sounds. Journal of
Theoretical Biology.

[Oudeyer, 1999] Oudeyer, P.-y. (1999). Self-organization of a lexicon in a structured society
of agents. In European Conference on Artificial Life, pages 725–729. Springer.

[Paredis, 1995] Paredis, J. (1995). Coevolutionary computation. Artificial life, 2(4):355–375.

[Parker and Smith, 1990] Parker, G. and Smith, J. M. (1990). Optimality theory in evolu-
tionary biology.

[Parunak, 2006] Parunak, H. V. (2006). A survey of environments and mechanisms for
human-human stigmergy. Environments for Multi-Agent Systems II, (2005).

[Pearl et al., 2000] Pearl, J. et al. (2000). Models, reasoning and inference.

[Perkins and Swain, 2009] Perkins, T. J. and Swain, P. S. (2009). Strategies for cellular
decision-making. Molecular systems biology, 5(326):326.

[Platt and Bever, 2009] Platt, T. G. and Bever, J. D. (2009). Kin competition and the evo-
lution of cooperation. Trends in ecology & evolution, 24(7):370–7.

[Platt and Fuqua, 2010] Platt, T. G. and Fuqua, C. (2010). What’s in a name? The semantics
of quorum sensing. Trends in microbiology, 18(9):383–7.

[Polani, 2009] Polani, D. (2009). Information: currency of life? HFSP journal, 3(5):307–16.

[Polani et al., 2006] Polani, D., Nehaniv, C. L., Martinetz, T., and Kim, J. T. (2006). Rele-
vant information in optimized persistence vs. progeny strategies. In Artificial Life X Pro-
ceedings of the Tenth International Conference on the Simulation and Synthesis of Living
Systems, pages 337–343. Citeseer.

[Poulin, 2010] Poulin, R. (2010). Parasite manipulation of host behavior: an update and
frequently asked questions. Advances in the Study of Behavior, 41:151–186.

[Poundstone, 1992] Poundstone, W. (1992). Prisoner’s dilemma: John von neuman, game
theory, and the puzzle of the bomb.

[Rapoport and Chammah, 1965] Rapoport, A. and Chammah, A. M. (1965). Prisoner’s
dilemma: A study in conflict and cooperation, volume 165. University of Michigan press.

[Redfield, 2002] Redfield, R. J. (2002). Is quorum sensing a side effect of diffusion sensing?
Trends in microbiology, 10(8):365–70.

[Requejo and Camacho, 2011] Requejo, R. J. and Camacho, J. (2011). Evolution of cooper-
ation mediated by limiting resources: connecting resource based models and evolutionary
game theory. Journal of Theoretical Biology, 272(1):35–41.

143



[Requejo and Camacho, 2012] Requejo, R. J. and Camacho, J. (2012). Coexistence of Coop-
erators and Defectors in Well Mixed Populations Mediated by Limiting Resources. Physical
Review Letters, 108(3):038701.

[Rhee et al., 2012] Rhee, A., Cheong, R., and Levchenko, A. (2012). The application of
information theory to biochemical signaling systems. Physical biology, 9(4):045011.

[Rivoire and Leibler, 2011] Rivoire, O. and Leibler, S. (2011). The value of information for
populations in varying environments. Journal of Statistical Physics, pages 1–32.

[Robbins, 1994] Robbins, P. (1994). The Effect of Parasitism on the Evolution of a Commu-
nication Protocol in An Artificial Life Simulation. Evolution of Communication.

[Rosin and Belew, 1997] Rosin, C. D. and Belew, R. K. (1997). New methods for competitive
coevolution. Evolutionary computation, 5(1):1–29.
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