
Using software Development Progress Data to Understand Threats to

Project Outcomes

Tracy Hall
University of

Hertfordshire

United Kingdom

t.hall@herts.ac.uk

Austen Rainer
University of

Hertfordshire

United Kingdom

a.w.rainer@herts.ac.uk

Dorota Jagielska
University of

Hertfordshire

United Kingdom

d.jagielska@herts.ac.uk

Abstract

 In this paper we describe our on-going

longitudinal study of a large complex software

development project. We discuss how we used
project metrics data collected by the

development team to identify threats to project

outcomes. Identifying and addressing threats to

projects early in the development process should

significantly reduce the chances of project

failure. We have analysed project data to
pinpoint the sources of threats to the project. The

data we have used is embedded in the project’s

fortnightly progress reports produced by the

project team. The progress reports are part of

the software measurement program this company

operates. The company has highly mature
development processes which were assessed at

CMM level 5 in 2004. Our analysis shows that

standard project progress data can generate rich

insights into the project; insights that go beyond

those anticipated when the metrics were
originally specified. Our results reveal a pattern

of threats to the project that the project team can

focus on mitigating. The project team is already

aware of some threats, for example that

communication with the customer is a significant

threat to the project. But there are other threats
the team is not aware of, for example that people

issues within the software team are not a

significant threat to the project.

1 Introduction

 In this paper we show that secondary
analysis of software project data can yield rich
insights into the threats to a successful project
outcome. In particular we show how project data
can be used to identify the nature and scale of
threats to the project. In this paper we describe
our on-going longitudinal study of progress and
outcomes in a large complex embedded software

development project (LEDS1). We show how we
re-analysed project metrics data, collected by the
software development team, to identify and
quantify threats to the success of the project.
 There remains a compelling case for
building an understanding of what impacts on
project outcomes. Many software project failures
continue to be reported in the press. Indeed the
Standish Group reports that in 2000 only 28% of
U.S. projects were completed successfully (ie, on
time and on budget with all features and
functions that were originally specified). This
means that 72% of projects were either
challenged (completed and operational, but over
time, over budget or with fewer features or
functions than originally specified) or end as a
failure (cancelled before completion or never
implemented). Furthermore the Standish Group
reports that 137,000 projects were late and/or
over budget in 2000, while another 65,000 failed
completely [32].
 Examples of projects with less than
satisfactory outcomes are commonplace.
Microsoft’s search engine, Search Beta,
experienced technical problems which made it
unavailable for consumers on its first day
(Computer Weekly, 16/11/04). Microsoft is also
expected to drop several features from the update
to its Windows 2003 Server so that it can be
released in 2005 (Computer Weekly, 16/11/04).
In July and August 2004 mobile network
operator O2 sent about 1.5 million incomplete
bills to its customers due to problems with a new
multimillion-pound integrated billing system
managed by IBM Global Services (Computer
Weekly, 05/10/04). The £390m Libra project, the
fourth attempt in fifteen years to build a unified
case management system for magistrate’s courts
across England and Wales, is drastically over
budget and time, and its final date of
implementation still remains unknown

1 Pseudo name used for reasons of commercial
confidentiality

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

(Computer Weekly, 16/11/04; Computing
06/02/03; Computing 05/10/04). Libra was
called “a shocking waste of money” by Public
Accounts Committee chairman Edward Leigh, as
it has already cost nearly three times more then
originaly expected (Computer Weekly 29/01/03).
 It is therefore critical that software
development companies are able to identify and
control threats to software project outcomes.
Furthermore, it is critical that the project we
discuss in this paper, LEDS, is successful. The
project is both safety and business critical. LEDS
is a safety critical embedded defense system, the
success of which is critical to the continued
success of the development company. The
company is a large UK defense contractor and
the project is a novel multidisciplinary
development project. We are studying the
development of the software component of the
project. The software development team has high
maturity development processes which were
assessed at CMM level 5 in 2004.
 In this paper we report on an approach to
identifying the threats to this project by re-
analysing existing project data. This is an on-
going longitudinal study of LEDS, the
development of which has a planned duration of
60 months. Currently the project is at the end of
month 24 having completed requirements
capture and started design. During this study we
have used a combination of qualitative and
quantitative research methods within a
triangulated research strategy [29]. However in
this paper we present our analysis only of the
project progress data produced fortnightly by the
software team as part of their metrics program.
These progress reports contain a wide variety of
qualitative and quantitative data which track a
range of project factors. We have re-analysed the
data contained within the first 34 progress
reports over a period of 18 months with the
objective of identifying threats to the project.
Overall in the study we are investigating the
following research questions:

RQ1: What impact do a variety of technical
factors have on project outcomes?

RQ2: What impact do a variety of social
factors have on project outcomes?

 In section 2 we provide some background to
this work. In section 3 we present our approach
to collecting and analyzing the data. In section 4
we outline our findings and in section 5 we

discuss the implications of our findings. In
section 6 we draw conclusions and summarise.

2 Background

2.1 Success factors
 There are many factors that are reported to
impact on the outcomes of software
development. Goldenson and Herbsleb [10]
identify a set of six project success indicators:
meeting budget commitments, meeting schedule
commitments, product quality, customer
satisfaction, staff productivity and staff morale.
El Emam and Birk [7] specifically add satisfying
specified requirements to this list of indicators.
The Standish Group’s2 “Recipe for Project
Success” presents ten factors for project success
[32,33] Each factor has been weighted according
to its influence on a project’s success and
assigned an appropriate number of points. The
factors are summarised in Table 1.

Table1. Factors for project success

FACTOR
IMPORTANCE

WEIGHT

Executive Support 18

User Involvement 16

Experienced Project
Manager

14

Clear Business Objectives 12

Minimized Scope 10

Standard Software
Infrastructure

8

Firm Basic Requirements 6

Formal Methodology 6

Reliable Estimates 5

Other * 5

* Other factors include small milestones, proper
planning, competent staff and ownership.

 The Standish Group found that projects do
not require all ten factors, but the more factors
present, the higher the level of confidence in a
successful project outcome. Table 1 shows that
the Standish Group identifies lack of executive
support as the number one contributor to project
success or failure. User Involvement closely
follows as a critical factor to a successful
outcome [32,33]. It is clear that underlying these
factors are a complex range of technical and
social issues that will impact on the ability of
companies to satisfy these success factors. In our

2
It is important to note the concerns that Molokken

and Jorgensen [20] report regarding the nature of the
data reported by Standish

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

previous work we discuss various approaches to

evaluating the success of a software project [30].

 Three “pillars” of project success are
identified by the Standish Group: project size,
project duration and team size. The group
believes the smaller each pillar the more likely
the project is to succeed. In 1996 the Standish
Group recommended 6 people over 6 months and
not more than $750,000 [32,33]. In year 2000
they suggested the need for a further reduction of
resources to only 4 people, over 4 months and at
a cost of less than 500,000 [32,33]. They
recommend “growing” software rather than
“developing” it (shorter timeframes, with the
delivery of software components early and often)
as key to raising success rates [32,33]. Clearly
such an approach is not always feasible and this
implies that many projects are at risk of failure.

2.2 Risks
 Risk analysis is used extensively by
companies to control and manage risks to
projects. In many companies risk management is
a large part of the software development process.
A study conducted by Keil et al [16], in which
experienced software project managers reported
and ranked the most important risks to the
project, revealed a list of 11 risks to projects. The
three most important risks are highly related to
the success factors reported by the Standish
Group. The top three risks are: lack of top
management commitment to the project, failure
to gain user commitment and misunderstanding
the requirements. The two rated as the most
important to the project are risks that the
project’s management has little or no direct
control over.
 Keil et al [16] also grouped risks into four
factors and placed these factors on two
dimensions: perceived importance in relation to
the other factors and perceived level of
management control over them, creating the
following grid:
 Quadrant 1: Customer Mandate includes
the two top risks mentioned above. The success
of the project often depends on the commitment
of people outside the development team, such as
senior management and the customer. The risks
in this quadrant cannot be directly controlled by
management, only indirectly influenced.

1

Customer

Mandate

2

Scope and

requirements

4

Environment

3

Execution

 Quadrant 2: Scope and Requirements
focuses on risks related to ambiguity and
uncertainties which arise whilst establishing the
project’s scope and requirements. For example
misunderstanding the requirements or not
managing the scope of the project properly. The
threats from this quadrant can be reduced by
educating customers about the impact of
requirements changes and skillfully managing
ambiguity and change.
 Quadrant 3: Execution concentrates on
risks connected with actually carrying out the
project, such as whether there are enough people
and whether they are skilful enough to execute
the project. Examples of risks are: insufficient
staffing, lack of effective development process
methodology and poor estimation. Risks from
this quadrant fall generally within the control of
the project’s managers.
 Quadrant 4: Environment includes risks
coming from the project’s environment (internal
or external to the organization). Examples of
these are conflicts between user departments,
changes in the competitive environment or
changes in senior management. These risks are
the most difficult to predict and they can be very
dangerous to the project. However the likelihood
of their occurrence is low.
 In this paper we look in detail at the threats
to the LEDS project. These threats are the factors
that contribute to the high level risks reported in
the literature. Our analysis of threats to project
outcomes is at a finer level of granularity than is
typically reported in the literature. Our findings
identify clusters of lower level issues that lead to
higher level risks.

Perceived
relative
importance

of risk

High

Moderate

 Low High

 Perceived level of control

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

3 Methods

 In this paper we present our analysis of
longitudinal metrics data from 34 project
progress reports. These reports track progress
over an 18 month period on the LEDS project.
These reports are used by software and project
managers to track the progress of the project and
to support project management. The objective of
this longitudinal study is to investigate factors
impacting on the outcomes of the LEDS project.
We are tracking a range of technical and social
factors over time and relating these to interim
project progress and final project outcomes. This
is an on-going study the logistics of which are
now described (the methods used are described
in more detail in [12]).

3.1 Longitudinal studies
 Longitudinal studies consist of collecting
data at a number of points in time from the same
data source [4, 27]. They combine the benefits of
field studies, ie studying the phenomenon in the
complexity of its natural environment, with
benefits related to time, ie capturing the dynamic
nature of the phenomenon and observing
changes over time [27]. Longitudinal studies also
allow the direction of causal relationships
between investigated variables to be identified
[4].
 Extensive use of longitudinal studies has
been made in a number of disciplines, for
example medicine (e.g. [27]) and organizational
psychology (e.g. [15]). Longitudinal studies have
also been used in a few software engineering
research studies. Waltz, Elam and Curtis [34]
undertook longitudinal studies to investigate
knowledge acquisition, sharing and integration in
a single software design team at MCC.
Maximilien and Williams [19] conducted a year-
long study with an IBM software development
group to examine the efficiency of test-driven
development. Porter et al [23] used longitudinal
studies to observe variation over time in the
effectiveness of software inspections. We have
previously used longitudinal studies to
investigate progress in two software projects at
IBM Hursley Park [25]

3.2 LEDS
 LEDS is a complex and novel engineering
product which is being developed for the defense
industry. The overall project is multidisciplinary
involving the development and integration of a
range of sophisticated hardware and software. In

this study we track the development and
integration of the software component of the
project. Software development on the LEDS
project is highly mature. In 2004 the software
department was assessed as operating at CMM
level 5. The department operated at level 4 for
the previous 2 years.
 The success of LEDS is very important. The
company considers LEDS to be a prestigious
project with a high internal and external profile.
Managers have set up the project to show-case
the high quality work of the company.
Consequently managers have carefully selected
highly skilled and experienced developers for
this project. The project team is made up of 10
developers who are led by a software project
manager. The software team is one of 4 teams in
the overall project. During the project the team
remains part of the software department.
 The software project started in 2003 and is
scheduled to complete in 2008. The software
requirements specification is now complete and
design is underway. LEDS development uses a
waterfall approach to software development.

3.3 The logistics of the study
In this study we analyse project metrics data

collected on a fortnightly basis. Project progress
reports are produced by the software team as part
of their normal high maturity development
process. The reports provide low-level data
relating to the day-to-day progress of the project.
These reports are not produced specially for this
study and so there is no incentive for the data to
have been sanitised for our benefit (though
clearly we do not know whether it has been
sanitised for other purposes). Figure 2 provides
an example outline of such a project progress
report.

3.4 Project progress metrics data
 The data in these reports covers all aspects
of the projects’ technical progress. Most of the
data is quantitative and includes: full schedule
data, effort data, risk data and inspection data.
However the reports also contain a variety of
free flowing qualitative data relating to technical,
personnel and project management issues that
have arisen during the previous two weeks. We
have used conventional statistical analysis to
analyse the quantitative data, mostly simply
using frequency counts and measures of central
tendency. We used content analysis [18] to
analyse the free flowing qualitative data to
identify every threat reported. One author read

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

through every progress report and identified all
issues reported that may threaten the project. We
then identified categories of threats in the project
using a grounded approach [3]. This means that
we grouped all similar threats together to identify
themed categories. One researcher then classified
each threat according to a single category. Each
threat has not been classified in multiple
categories. This could be considered a limitation
to this analysis. We then performed an informal
inter rater reliability test to ensure repeatability
to the classification of threats.

Figure 2. Outline of progress reports

Software Progress Report

1. Progress & Schedule Data
2. Process Improvements
3. Dependencies & Coordination
4. Resources
5. Risks
6. Actions taken this session
7. Effort & Cost
8. Requirements, Size & Critical Computer Resources
9. Reviews
10. Quality Assurance

4 Findings

4.1 Overview of threats to LEDS
 We analysed each project progress report to
identify a total of 81 unique threats to project
progress reported in the 34 progress reports.
Many of these threats were resolved quickly and
the risk to the project by such threats was
dissipated. Consequently we analysed only those
29 threats that were on-going for more than 3
sequential reports (ie more than 6 weeks). We
assumed that these were the threats that put the
project in most danger. However we did not rate
the severity of each threat, this may be a
limitation to our findings as we have no evidence
at this stage that threats going on for more than 6
weeks are the most dangerous to the project.
Indeed it may be that threats were left unresolved
for long periods as they were considered minor
threats. This aspect of threats will be further
analysed later in the project.
 We used a grounded approach to identify
the categories which describe the origin of the
threat. Table 2 shows the classifications we
derived from the data.
 Table 3 shows the number of threats
according to each category. Table 3 clearly

shows that problems in requirements pose most
threats to LEDS.
 Table 3 suggests that the majority of threats
to the project are related to requirements capture.
There are significantly more requirements threats
than any other threats and requirements threats
go on for prolonged periods. This may be
expected given that the majority of the work on
the project so far has been on requirements. The
nature and substance of requirement threats is
discussed in more detail in the next section.
 Table 3 also suggests a low occurrence of
other types of threat. Technical and tool based
threats are the next biggest threats followed by
threats from external entities3.
 Organisational and people issues have
relatively low occurrences. This is contrary to
what the software team expected. The team
anticipated that people issues would pose a more
significant threat to the project than our analysis
of the data suggests. It may be that all people
issues are not recorded fully in the project
progress reports (though there is no evidence to
suggest this). It may be that there are many
minor people-related threats which have been
factored out of this analysis. Alternatively it may
be that the two people-related threats shown in
Table 3 are seriously problematic. The first
people threat relates to a key developer leaving
the company and exposing an experience gap in
the team. The second people threat relates to the
seconding of 2 members of the software team to
another project team. This was to stop that team
falling further behind schedule and thereby
impacting on the software team’s ability to
progress.

Table 3. Scale and distribution of threats

Unique threat

occurrences

Mean

duration

of each

threat

Threat

number percentage weeks

Requirements 12 41 14

Tool 5 17 10

Technical 5 17 11

External 3 10 15

Organisational 2 7 8

People 2 7 9

Total 29 100 13

3
Many of the ‘requirements’ threats are related to the client

and so could also be classified as external threats

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Table 2. Categories of threats

Threat Description Example threats from progress reports

External These threats emanated from outside the project. These
included threats from other departments or from external
contractors. Such threats are largely beyond the control of
the software team.

“Permission to progress” letter not

signed by senior manager in development

organisation

Organisational These threats were issues from within the company
developing LEDS. Such threats are largely beyond the
control of the software team.

Funding to an element of the project not

released

Requirements These threats related directly to problems in requirements
collection. Many of these threats were, in practice, beyond
the control of the software team.

Changed requirements will have a knock-

on impact on two important elements of

the system.

People These issues related to any people or human issues that
were threatening the progress of the project.

Experienced developer left the company

and left an experience gap

Tool Threat related to the tool use of the development team. A
wide variety of sophisticated tools are used which are new
to the team

Problems running a version control tool
on a secure network

Technical Any threat that is of a technical nature related to
developing the system. Includes overcoming system
limitations and implementation difficulties associated with
the novelty of the application.

Software needs to be made more efficient

Table 4 shows the pattern of threats over time. It
shows a large block of requirements-related
threats in the first 19 progress reports. After this
these requirements threats seem to be resolved
and drop off the threats agenda. Section 4.2
discusses the reality of the pattern of
requirements threats in more detail. Table 4 also
shows that there is a regular pattern of technical
and tool related threats throughout the project.
Similarly there are a number of regular external
and organizational threats shown. A few of these
threats appear to be resolved, only to re-appear
several months later.

4.2 Requirements-related threats
 Tables 3 and 4 clearly show the significant
threat that requirements-related issues pose to the
successful outcome of LEDS. The first 6 months
of the project seems to be in crisis because of
various problems with requirements. Most of
these requirements problems relate to the client
company not engaging with the developers to

identify the requirements for the software. In
particular the client company:

Did not respond to requirements queries
from the software team
Did not provide the software team with
critical information
Did not seem to understand how critical they
are to the success of the project
Provide apparently random pieces of
requirements information
Provide a critical requirements document 18
months later than originally agreed

 The requirements threats reported in the
progress reports strongly suggest that the
developers and the client are unable to
understand each other. The data also suggests
that the working methods of the two
organizations are not highly compatible. This
means that a critical high profile project has got
off to a worrying start.

Figure 1. The relationship between the software team and the client

A provisional outline requirements specification is received from the client
The project starts quite well with the software team really motivated
Problems emerge establishing, querying and confirming requirements with the client

Software raises these problems with the client
Software continues raising these problems with the client
Software escalates these problems with the client
Software tries to solve the problems by establishing the requirements themselves
The problems appear to be ignored by the client
Despondency sets into the software team
The project gets significantly behind schedule

The client delivers a draft requirements document 18 months late
The team is relieved and progress re-starts

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

 Motivated by the progress data indicating
that there was a severe problem in requirements
we investigated the project documentation more
thoroughly. We looked at all the interactions the
software team had with the client company and
Figure 1 shows that the reality of the relationship
with the client company was a major threat to the
project. Figure 1 suggests that this cycle of poor
communication between the developers and the
client may put the outcome of LEDS in jeopardy.
If this cycle is repeated the project is probably in
severe jeopardy. It is not currently clear how
much additional interaction is required with the
client and therefore what level of risk the project
is currently in. This will become clear as our
longitudinal study progresses.

4.3 Response from the software team on

our analysis of the metrics data

 In this section we outline the explanations
and responses from the software team on being
presented with this analysis of their progress
data. We presented our findings to members of
the team during a formal feedback presentation
session. Their reflections add context to the
results we present.
 Overall the software team was not surprised
by the pattern of threats we identified. They
interpreted most threats as being related to the
team perceiving a ‘lack of control’ in the project.
The team had the following specific comments:
 Requirements threats. The software team
were not surprised that requirements was the
most significant threat to the project. However

they were relieved to see the problem clearly
emerge in a quantified analysis. They also
explained that the dramatic reduction in reports
of requirements threats at month 7 was not
entirely due to the requirements problems easing.
Reports had also reduced because of a reduction
in expectations. Under the circumstances, the
software team decided not to continually record
these requirements problems in the project
reports. This may be a limitation to our study
given that long standing important threats
stopped being reported.
 The team also reported that they were still
not happy with the relationship they had with the
client. They believe the client does not
understand the software team. They also believe
that the client’s working methods are difficult to
work with. They believe that the situation will
improve when they have completed requirements
and are able to ‘cut off’ from the client.
 Tools/technical threats. The software team
explained that there were more of these types of
threats in the LEDS project than they normally
experience. This was because a new toolset had
recently been introduced. Consequently the team
is still on a learning curve. In addition the project
was breaking new technical ground and a variety
of unexpected technical issues had arisen but had
been resolved.
 People threats. The software team reported
that subsequent to our analysis more people
problems had occurred. This had resulted in
people being moved to other projects to make
room for new people on LEDS to fill skill and
experience gaps.

Table 4. Pattern of threats over time

(projec(project progress reports)

34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Occurrence Threat

1 External

2

3

1 Organisation

2

1 People

2

1 Requirement

2

3

4

5

6

7

8

9

10

11

12

1 Technical

2

3

4

5

1 Tools

2

3

4

5

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

5 Discussion

 The findings we present here occur midway
through a longitudinal study of LEDS. As such
we can report only preliminary findings on
interim project progress. However we speculate
on some preliminary answers to our research
questions:

RQ1: What impact do a variety of technical

factors have on project outcomes?

 Requirements is the major technical
process that is currently threatening the success
of LEDS. This threat can be located in the
second quadrant of Keil et al’s [16] grid, it is
therefore perceived as bringing a high risk to the
project. However we suggest that social and
communication problems motivate and underpin
many of the problems in this technical process.
Other technical issues so far in the project are
one-offs that do not seem to pose a significant
threat to the project. Most threats seem to be
short term technical or tool-based problems that
the software team is able to resolve. This may
change as the project progresses and we will
particularly monitor the proportion of
requirements threats we report in this paper with
threats that emerge in subsequent development
phases.

RQ2: What impact do a variety of social factors

have on project outcomes?

 Most of the threats to LEDS have some
roots in the social and communication aspects of
the project. We argue that the root causes of
many of the requirements threats are related to
social, organisation and political issues. Again
the balance of social as opposed to technical
issues may change as we continue to track the
progress of LEDS and move into phases of
technical implementation.
 Our findings confirm many of the critical
success and risk factors reported in the literature.
In particular our findings confirm those
presented by Keil et al [16], in which they report
that the three most significant risks are: lack of
top management commitment to the project,
failure to gain user commitment and
misunderstanding the requirements. Our findings
show that failing to secure all of these poses a
serious danger to the project. Top management
commitment, even when supported by
experienced project management, is unable to
make up for deficiencies in the other two areas.

Our findings also suggest that some of the
significant threats to the success of LEDS are
beyond the control of the software team.
Successful software development may be
dependent on external entities, in particular the
client organization. However an alternative
explanation could be that the software team is
more likely to worry about threats beyond their
control, and therefore unnecessarily emphasise
those threats.
 In addition our findings throw light on
client behaviour during requirements. In this
study the LEDS’ client organisation does not
seem to appreciate the important role that they
play in determining a successful project
outcome. Using Keil et al’s [16] grid categories
the project is featuring in risk quadrants 1 and 2:
the project does not seem to have a clear
customer mandate and the requirements of the
project are problematic. Furthermore there is no
evidence to suggest that the client organisation
understands their role in the identification of
requirements. However it may be that the client
organisation is unable to participate in
requirements in the way the software team
expect. This might be a common problem
underpinning the plethora of requirements
problems reported in the literature.
 Our findings also raise other issues related
to how the software team interacts with the client
organization. We suspect the software team has
very high expectations of the client organization.
Expectations that may, or may not, be realistic.
The software team’s high expectations are
probably related to their high process maturity.
Their software processes operate at a very high
level of maturity and the software team seems to
expect other entities to be able to interact with
them on the same basis. This may be very
threatening to external entities which are not at
this high process maturity. The software team is
rightly proud of their CMM level 5 status. But
this may make the team highly demanding of
other entities. The software team seems to
perceive the lower maturity entities that they
interact with, as a threat to their ability to
optimize software development. Certainly the
delay to software development caused by the
slow responses from the client organisation was
perceived as damaging to the high maturity
status of the software team. These high
expectations of others may need to be managed
more explicitly by high maturity companies as
they are potentially counter-productive and
damaging to projects.

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

 The high maturity status of the company
may also explain the pattern of threats we report.
Most threats to the LEDS project have social,
organisational or communication underpinnings.
Such issues are largely outside the scope of the
CMM. The CMM addresses the design of
development processes and the management and
control of those processes. Our findings suggest
that this high maturity team has their
development processes well under control. Issues
that the team perceive as most threatening to
them are beyond their control and therefore
beyond the scope of their high maturity process.
Our findings suggest that high maturity does not
insulate projects from external influences. Indeed
these external influences may be most
threatening to a successful project outcome.
 The high maturity status of the software
team means that, as a part of their process, the
team collected a comprehensive set of project
metrics data. Our findings show the immense
value of the metrics data collected. In particular
we have shown that there is additional value in
the data collected when it is re-analysed from
other perspectives. Furthermore our findings
complement the formal risk management process
the software team operates. The data we
analysed emanates from another process yet this
data could be used to populate and validate the
risk process. We did not investigate the software
team’s risk assessment process as it was not part
of the week-to-week management of the progress
of the project. Data used in the risk process was
said to be less dynamic than the threats data we
used. Our data was also at a lower level of
granularity than that used in the risk process.
However we plan to compare our findings on
threats to the formal risk assessment later in the
study.

6 Summary and conclusions

 In this paper we show our analyses of
metrics data that was collected by software
developers to track project progress in the LEDS
project. We show how re-analysing existing data
can be used to identify and quantify threats to
progress and outcomes in software projects. We
also confirm that the comprehensive metrics
collected as part of a high maturity software
process provide rich insights into aspects of the
project that are otherwise difficult to understand.
Furthermore it may be that companies are not
using the data collected as effectively as they
might.

 Overall our analysis of the progress data
suggests that requirements problems and
maintaining an effective relationship with the
client pose significant threats to the successful
outcome of the LEDS project. This is the type of
problem frequently reported in the requirements
literature, but not what might be expected from a
high maturity company. Our findings suggest
that high maturity companies may not be
correspondingly performing in their
requirements process. We are currently planning
the next phase of this study where we will be
talking to the client to understand their
perception of requirements. This will generate a
rich context for the issues reported by the
software team.
 Problems with requirements overwhelm,
and may ultimately cancel out, the many
strengths of the LEDS project. The project was
designed to be staffed by highly experienced and
skilled developers, there is strong senior
management support for the project and the
project is meant to show-case the high quality
work that can be done by the company. Despite
these important critical factors being in place the
team has no control over the responsiveness of
the client regarding requirements. This lack of
control seems to be a major worry to the
software team who are used to having control
over their development processes.
 Our findings suggest that there might be
weaknesses in the way high maturity processes
interface with external lower maturity processes.
This is especially important in an
interdisciplinary project such as LEDS where
extensive liaison with other entities is necessary.
We speculate that high maturity may encourage
teams to try and operate in a high maturity
‘bubble’. They do not know how to relate their
high maturity processes to other project entities
and the interface between processes at different
levels of maturity may be problematic.
Furthermore high maturity teams seem to have
high expectations of others. These demanding
expectations of others may need to be managed
more explicitly as they are potentially counter-
productive and damaging to project outcomes.
This is another factor we are planning to
investigate later in this longitudinal study.

References

[1] Baddoo N, Hall T, Motivators of Software Process
Improvement: An Analysis of Practitioners' Views"
Journal of Systems & Software, 62(2), 85-96, 2002

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

[2] Baddoo N, Hall T, Practitioner roles in Software
Process Improvement: An analysis using Grid
Technique Journal of Software Process Improvement
and Practice, 7(1), 17-31, 2002

[3] Bernard, H. (2000). Social Research Methods,
Sage

[4] Carver J, Jaccheri L, Morasca S, Shull F, Issues in
using students in empirical studies in software
engineering education, Software Metrics Symposium,
Proceedings. Ninth International , 3-5 Sept. 2003

[5] Denzin N, The Research Act: a theoretical
introduction to sociological methods, Englewood
Cliffs, NJ, Prentice-Hall, 1989

[6] Dyba T, Kitchenham BA, Jorgensen M. Evidence
Based Software Engineering for Practitioners,
Software, IEEE,22(1), 2005

[7] El Emam K, Birk A (2000) “Validating the
ISO/IEC 15504 measure of software requirements
analysis process capability” IEEE T Soft Eng 26(6)

[8] Gielbert N (Ed.), Researching Social Life, SAGE
Publications, 2001

[9] Giele J, Elder G, Life Course Research.
Development of a Field. in: Giele, J., Elder, G. (Ed.),
Methods of Life course research. Qualitative and
Quantitative Approaches. SAGE Publications: 1998

[10] Goldenson DK, Herbsleb JB (1995) “After the
appraisal: A systematic survey of process
improvement” CMU/SEI-95-TR-009-ESC-TR-95-009

[11] Greene JC, Caracelli VJ, Graham WF, Towards
conceptual Framework for Mixed Method Evaluation
Designs, Education Evaluation and Policy Analysis,
11(3), 1989

[12] Hall T, Baddoo N, Rainer A, Jagielska D (2005)
“Longitudinal Studies in Evidence-based Software
Engineering” IEEE ICSE Workshop, Realising
Evidence-based software engineering, in review

[13] Hall T, Rainer A, Baddoo N, Implementing
Software Process Improvement: An Empirical Study,
Software Process Improvement and Practice, 7(1), 3-
15, 2002

[14] Harrison R, Baddoo N, Barry E, Biffl S, Parra A,
Winter B, Wuest J, Directions and Methodologies for
Empirical Software Engineering Research. Empirical
Software Engineering 4(4), 1999

[15] Houkes I, Janssen P, de Jonge J, Bakker A,
Specific determinants of intrinsic work motivation,
emotional exhaustion and turnover intention: A
multisample longitudinal study. Journal of
Occupational & Organizational Psychology, 76(4),
2003

[16] Keil, M., Cule, P.E., Lyytinen, K., Schmidt, R.C.
(1998), A framework for identifying software project
risks, Communications of the ACM, Vol.41, No.1

[17] Kitchenham BA, Pfleeger SL, Pickard LM, Jones
PW, Hoaglin, DC, El Emam K, Rosenberg J,
Preliminary guidelines for empirical research in
software engineering, IEEE Transs on, 28(8), 2002

[18] Krippendorff, K. (1980). Content Analysis – An
Introduction to Its Methodology. Sage Publications.

Krueger RA and Casey MA, Focus Groups: A
Practical Guide For Applied Research. Sage, 2000

[19] Maximilien E, Williams L, Assessing Test-driven
Development at IBM, International Conference of
Software Engineering, Portland, OR, 2003

[20] Molokken, K.; Jorgensen, M.; A review of
software surveys on software effort estimation, IEEE
Proceedings International Symposium on Empirical
Software Engineering. Sept, 2003, 223 - 230

[21] Morgan DL Krueger RA, When To Use Focus
Groups And Why, in Successful Focus Groups:
Advancing The State Of The Art (Morgan DL ed),
Sage, 1993

[22] Pettit B, Western B, Mass imprisonment and the
Life Course: Race and Class Inequality, Incarceration.
American Sociological Review, 69, 2004

[23] Porter AA, Toman CA, Siy HP, Votta LG, An
Experiment To Assess The Cost-Benefits Of Code
Inspections In Large Scale Software Development,.
IEEE Transactions on Soft Eng,. 23(6), 1997

[24] Preece J, Rogers Y, Sharp H, Interaction Design,
John Wiley, 2002

[25] Rainer AW, An Empirical Investigation of
Software Schedule Behaviour, Doctoral thesis. Depart
of Computing, Bournemouth University: UK. 1999

[26] Rainer A, Hall T, Key success factors for
implementing software process improvement: a
maturity-based analysis Journal of Systems &
Software, 62(2), pp71-84, 2002

[27] Remsberg K, Siervogel, A life span approach to
cardiovascular disease risk and aging: The Fels
Longitudinal Study. Mechanisms of Aging &
Development, 124(3), 2003

[28] Sarantakos S, Social Research, Macmillan 1998

[29] Seaman C, Qualitative Methods in Empirical
Studies of Soft Eng, IEEE Trans Soft Eng, 25(4), 1999

[30] Shah M, Hall T, Rainer A, Baddoo N, Software
engineering projects: How to evaluate success?,
University of Hertfordshire Technical Report,
Computer Sciences Department, number 349, 2003

[31] Stewart V, Stewart A, Fonda N, Business
Applications of Repertory Grid, McGraw Hill, 1981

[32] The Standish Group International Inc., ed.,
Extreme Chaos Report (2001), sourced from
http://www.standishgroup.com.

[33] The Standish Group International Inc., ed.,
Chaos: Recipe for Success (1999), sourced from
http://www.standishgroup.com.

[34] Waltz D, Elam J, Curtis B, Inside the software
design team: knowledge acquisition, sharing and
integration. Communications of the ACM, 36, 1993

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

