

UNIVERSITY OF HERTFORDSHIRE

School of Engineering and Technology

Science and Technology Research Institute

Smart Distributed Processing Technologies

For Hedge Fund Management

Sinnathurai Thayalakumar

A thesis submitted in partial fulfilment of the requirements

for the award of

Doctorate in Engineering

March 2017

i

Abstract

Distributed processing cluster design using commodity hardware and software has

proven to be a technological breakthrough in the field of parallel and distributed

computing. The research presented herein is the original investigation on distributed

processing using hybrid processing clusters to improve the calculation efficiency of

the compute-intensive applications. This has opened a new frontier in affordable

supercomputing that can be utilised by businesses and industries at various levels.

Distributed processing that uses commodity computer clusters has become extremely

popular over recent years, particularly among university research groups and research

organisations. The research work discussed herein addresses a bespoke-oriented

design and implementation of highly specific and different types of distributed

processing clusters with applied load balancing techniques that are well suited for

particular business requirements. The research was performed in four phases, which

are cohesively interconnected, to find a suitable solution using a new type of

distributed processing approaches.

The first phase is an implementation of a bespoke-type distributed processing cluster

using an existing network of workstations as a calculation cluster based on a loosely

coupled distributed process system design that has improved calculation efficiency of

certain legacy applications. This approach has demonstrated how to design an

innovative, cost-effective, and efficient way to utilise a workstation cluster for

distributed processing.

The second phase is to improve the calculation efficiency of the distributed processing

system; a new type of load balancing system is designed to incorporate multiple

processing devices. The load balancing system incorporates hardware, software and

application related parameters to assigned calculation tasks to each processing devices

accordingly. Three types of load balancing methods are tested, static, dynamic and

hybrid, which each of them has their own advantages, and all three of them have

further improved the calculation efficiency of the distributed processing system.

ii

The third phase is to facilitate the company to improve the batch processing

application calculation time, and two separate dedicated calculation clusters are built

using small form factor (SFF) computers and PCs as separate peer-to-peer (P2P)

network based calculation clusters. Multiple batch processing applications were tested

on theses clusters, and the results have shown consistent calculation time improvement

across all the applications tested. In addition, dedicated clusters are built using SFF

computers with reduced power consumption, small cluster size, and comparatively low

cost to suit particular business needs.

The fourth phase incorporates all the processing devices available in the company as a

hybrid calculation cluster utilises various type of servers, workstations, and SFF

computers to form a high-throughput distributed processing system that consolidates

multiple calculations clusters. These clusters can be utilised as multiple mutually

exclusive multiple clusters or combined as a single cluster depending on the

applications used. The test results show considerable calculation time improvements

by using consolidated calculation cluster in conjunction with rule-based load balancing

techniques.

The main design concept of the system is based on the original design that uses first

principle methods and utilises existing LAN and separate P2P network infrastructures,

hardware, and software. Tests and investigations conducted show promising results

where the company’s legacy applications can be modified and implemented with

different types of distributed processing clusters to achieve calculation and processing

efficiency for various applications within the company. The test results have

confirmed the expected calculation time improvements in controlled environments and

show that it is feasible to design and develop a bespoke-type dedicated distributed

processing cluster using existing hardware, software, and low-cost SFF computers.

Furthermore, a combination of bespoke distributed processing system with appropriate

load balancing algorithms has shown considerable calculation time improvements for

various legacy and bespoke applications. Hence, the bespoke design is better suited to

provide a solution for the calculation of time improvements for critical problems

currently faced by the sponsoring company.

iii

Acknowledgements

I would like to thank my supervisors, Dr Lily Meng and Mr Johann Siau, for their

support, constructive comments, and guidance throughout this research. I would also

like to thank internal examiner, Dr Georgious Passandis, for his comments on the

submitted research and reports to ensure that this document complies with the

academic standards set by the University.

I express my appreciation to my industrial supervisor, Mr David Rogers, for his

support, comments on test results and outcomes of the research and their relevance to

the company to confirm that the research conducted has a direct and positive impact

on the company.

I would especially like to thank Professor Kevin Connolly for his guidance on

designing complex financial models for various types of derivative products and his

contributions to implementing highly sophisticated derivative pricing models for the

sponsoring company, Northwest Investment Management (HK) Ltd.

A special thank is given to Northwest Investment Management (HK) Ltd for

facilitating this research, and I would like to acknowledge and thank the company

directors, Mr George Philips and Mr David Rogers, for approving the proposed

research for the Professional Engineering Doctorate programme. I would also like to

thank the Northwest team for their support.

I take this opportunity to express my gratitude to Dr Pandelis Kourtessis for approving

the registration of the proposed research for the Professional Engineering Doctorate

programme.

Finally, I would like to thank all of the staff at the doctoral college for their support in

providing the required information and documents promptly to allow me to pursue my

professional doctorate programme without any delays.

iv

Table of Contents

1 Introduction -- 1

1.1 Introduction ... 1

1.2 Motivation ... 3

1.3 Research Aim .. 4

1.4 Research Methodology .. 6

1.5 Research Contributions ... 8

1.6 Thesis Organisation ... 9

1.7 Chapter Summary .. 11

2 Related Research and Literature Review --- 12

2.1 Introduction ... 12

2.2 Distributed Processing Background .. 13

2.3 Distributed Processing Cluster Development ... 13

2.4 Beowulf-Class Distributed Processing Cluster ... 15

2.5 CPU-GPU Processing ... 15

2.6 Load Balancing ... 16

2.7 Amdahl’s Law and Gustafson's Law... 16

2.8 On-Chip Distributed and Parallel Processing ... 17

2.9 Interconnect Technology ... 18

2.10 Distributed Processing in Investment Banking Industry 18

2.11 Chapter Summary .. 19

3 Distributed Processing Concept and Theory --- 20

3.1 Introduction ... 20

3.2 Concurrency .. 20

3.2.1 Parallel Processing... 21

3.2.2 Distributed Processing ... 21

3.2.3 Hybrid Processing ... 21

3.3 Characteristics of Distributed Processing Systems 21

3.4 Amdahl’s Law ... 22

3.5 Gustafson's Law .. 23

v

3.6 Processing Cluster Building Concepts .. 23

3.7 Load Balancing ... 24

3.7.1 Static Load Balancing.. 24

3.7.2 Dynamic Load Balancing .. 24

3.8 Task Allocation and Granularity ... 25

3.9 Chapter Summary .. 26

4 Distributed Processing Cluster Design Using Network of Workstations ------- 27

4.1 Introduction ... 27

4.2 Northwest Systems .. 28

4.2.1 Northwest CB Pricing Model ... 31

4.3 Bespoke Software Development ... 40

4.4 Implemented Solutions for Company’s Requirements 41

4.5 Application Development Strategy ... 42

4.6 Application Structure .. 43

4.7 MS-Excel Application Implementation .. 45

4.8 MS-Excel Configuration for Distributed Processing 46

4.9 Risk Scenario Calculation System .. 48

4.10 Message Passing Interface for the Calculation Cluster 51

4.11 SQL Database Design for Distributed Processing System 54

4.11.1 SQL Database Table Design .. 55

4.12 Distributed Processing System Design ... 58

4.12.1 Distributed Processing Management Controller .. 59

4.12.2 Calculation Node Setup .. 65

4.12.3 Workstation Usage ... 66

4.12.4 Workstation Security .. 68

4.12.5 Windows 7 Operating System .. 68

4.12.6 Calculation Node Controller... 69

4.12.7 Process Distribution Method .. 74

4.12.8 Total Calculation Time ... 74

4.13 Distributed Processing System Tests .. 77

vi

4.13.1 Workstation Allocation Method ... 78

4.13.2 Calculation Node Test .. 79

4.13.3 Distributed Processing Tests Using CB Financial Model 80

4.13.4 Minimum and Maximum Calculation Time ... 83

4.13.5 Using Simplified Linear CB Financial Model.. 84

4.13.6 Multiple Scenario Calculations on Same Dataset 86

4.14 Chapter Summary .. 88

5 Implementation of Adaptive and Self-Tuning Task Scheduler and Load

Balancing --- 90

5.1 Introduction ... 90

5.2 Load Balancing Software .. 91

5.3 Load Balancing Process .. 92

5.4 Auxiliary Calculation Nodes ... 93

5.4.1 Process and Dataset Mapping ... 95

5.5 Memory Use in Each Calculation Node .. 97

5.6 CPU Use in Each Calculation Node.. 99

5.7 Static Load Balancing Implementation ... 102

5.7.1 Calculation Node’s Performance Index ... 102

5.7.2 Calculation Node’s Usage Index .. 102

5.7.3 Application-Related Parameter .. 103

5.7.4 Binominal Tree-Node Number ... 104

5.7.5 Fixed Step Size Calculation ... 107

5.7.6 Variable Step Size Calculation ... 109

5.7.7 Maturity Date-Based Step Size Calculation ... 110

5.7.8 Hybrid Method ... 111

5.8 Static Load Balancing Techniques Used in Northwest System 112

5.8.1 Task Allocation Based on Fixed Step Size Method 117

5.8.2 Task Allocation Based on Variable Step Size Method 118

5.8.3 Task Allocation Based on Balanced Tree-Node Method 119

vii

5.9 Dynamic Load Balancing Implementation ... 122

5.10 Auxiliary Processing ... 126

5.11 Chapter Summary .. 129

6 Dedicated Calculation Grid Design Using Peer-to-Peer Network for High-

Volume Distributed Processing --- 131

6.1 Introduction ... 131

6.2 Grid Calculation Nodes Configuration ... 133

6.3 NUC Cluster .. 136

6.4 PC Cluster ... 136

6.5 Testing Procedure Configuration .. 138

6.6 Load Balancing ... 141

6.7 CB Theoretical Value Calculation .. 142

6.7.1 Using PC and NUC Cluster for CB Value Calculation 146

6.8 Implied Volatility (IV) Calculation ... 148

6.8.1 Using PC and NUC Cluster for IV Value Calculation 149

6.9 CB Theoretical Value IV Sensitivity Analysis ... 151

6.9.1 Using PC and NUC Cluster for IV Sensitivity Calculation 153

6.10 CB Theoretical Value IR Sensitivity Analysis.. 155

6.10.1 Using PC and NUC Cluster for IR Sensitivity Calculation 157

6.11 Chapter Summary .. 160

7 Hybrid Processing Using Multiple Calculation Clusters ------------------------ 162

7.1 Introduction ... 162

7.2 Hybrid Distributed Processing .. 164

7.3 Cluster Configurations .. 165

7.4 Server Cluster .. 168

7.5 Virtual Server Cluster ... 172

7.6 Distributed Data Processing .. 176

7.7 Distributed Query Processing ... 181

7.7.1 Distributed Data Method .. 182

7.7.2 Link Database Method ... 182

7.8 Multi-Core Distributed Processing ... 187

viii

7.8.1 CPU Core Usage Rule .. 188

7.8.2 CPU Core Testing Application ... 191

7.8.3 CPU Core-Level Auxiliary Processing .. 194

7.9 Distributed Processing Implementation for Dispersion Trading 196

7.10 AH Trading System... 207

7.11 Distributed Query Processing Using SQL Server 210

7.12 Portfolio Calculations Using Distributed Calculation Method 213

7.13 Distributed Processing in a Single Workstation .. 217

7.13.1 Testing Configuration ... 221

7.14 Chapter Summary .. 226

8 Research Evaluation --- 229

8.1 Introduction ... 229

8.2 Distributed Processing Concept Analysis ... 232

8.3 Cluster Configuration Overview ... 237

8.3.1 User Workstation and Virtual Server Cluster ... 237

8.3.2 PC and Conventional Server Cluster .. 238

8.3.3 Small Form Factor (SFF) Computer Cluster .. 239

8.3.4 CPU Core-Based Cluster .. 240

8.3.5 Cluster Security .. 241

8.4 Using MS-Excel Applications for Distributed Processing 241

8.5 Load Balancing Implementation Overview .. 242

8.6 Dedicated P2P-Based PC and NUC Calculation Cluster Analysis 245

8.6.1 CB Theoretical Value Calculation Analysis .. 246

8.6.2 Implied Volatility (IV) Calculation Analysis ... 247

8.6.3 Implied Volatility (IV) Sensitivity Calculation Analysis 248

8.6.4 Interest Rate (IR) Sensitivity Calculation Analysis 249

8.6.5 Calculation Time Improvement Analysis ... 250

8.6.6 Cluster Comparison .. 251

8.6.7 Program Performance Analysis .. 254

ix

8.7 Research Impact Analysis ... 257

8.7.1 Scenario Analysis and Stress Testing ... 257

8.7.2 Derivative Price-Related Data Calculation ... 258

8.7.3 End-of-day Profit and Loss (PL) Calculation ... 258

8.8 Recommendations ... 259

8.8.1 Structured System Design .. 259

8.8.2 Technology and Programming Improvements ... 260

8.8.3 Improvement on Bespoke Design .. 261

8.9 Suggestions for Cluster Improvements ... 263

8.10 Chapter Summary .. 265

9 Conclusion --- 268

Appendix A -- 285

Appendix B -- 301

Appendix C -- 306

x

List of Figures

Figure 1.1: Distributed Processing System .. 7

Figure 2.1: Typical cluster architecture .. 14

Figure 4.1: High-level diagram of hardware configuration .. 28

Figure 4.2: High-level diagram of software configuration ... 29

Figure 4.3: General Binomial-Tree Method ... 31

Figure 4.4: Modified Binomial-Tree Method ... 33

Figure 4.5: Distributed processing application development process 43

Figure 4.6: Distributed processing application execution process 44

Figure 4.7: Typical MS-Excel application configuration for Northwest 45

Figure 4.8: Multiple instances of MS-Excel in a single workstation 47

Figure 4.9: MS-Excel application structure for distributed processing 48

Figure 4.10: Risk calculation system data flow .. 49

Figure 4.11: Message construction methods .. 51

Figure 4.12: Repository construction methods ... 52

Figure 4.13: Workstation message storage repositories ... 53

Figure 4.14: Message and data flow process .. 53

Figure 4.15: Hardware-related entity relationship .. 57

Figure 4.16: Software-related entity relationship ... 57

Figure 4.17: Calculation node configuration .. 58

Figure 4.18: Calculation cluster setup high-level diagram ... 59

Figure 4.19: Workstation selection process .. 61

Figure 4.20: Workstation availability checking process .. 62

Figure 4.21: Message sending process to each calculation node 62

Figure 4.22: Task allocation process to each calculation node 63

Figure 4.23: Calculation node controller process ... 70

Figure 4.24: Calculation node controller message processing 71

Figure 4.25: Application execution process in each node .. 72

Figure 4.26: MS-Excel application’s calculation process .. 73

Figure 4.27: Process distribution as distributed and serial calculations 74

Figure 4.28: Total processing time of each node ... 75

Figure 4.29: Total processing time of cluster ... 76

xi

Figure 4.30: Correlation between number of CBs and total calculation time 79

Figure 4.31: Number of calculation nodes against calculation time 82

Figure 4.32: Minimum and maximum calculation time for each node 84

Figure 4.33: Linear model-based calculation time and calculation node correlation ... 85

Figure 4.34: Linear correlation between calculation time and number of nodes 86

Figure 4.35: Number of nodes used against time for multiple scenario calculations... 87

Figure 5.1: Distributed processing controller design with load balancer 92

Figure 5.2: Task allocation process .. 93

Figure 5.3: Auxiliary nodes process and data mapping ... 96

Figure 5.4: Calculation nodes process and data mapping to a single auxiliary node ... 97

Figure 5.5: Memory usage profile for calculation nodes ... 98

Figure 5.6: Typical memory usage on a working day .. 99

Figure 5.7: Average CPU usage of the calculation cluster ... 100

Figure 5.8: Average CPU usage of heavily used workstation 101

Figure 5.9: Average CPU usage of lightly used workstation 101

Figure 5.10: Tree-node in the binomial tree method .. 104

Figure 5.11: Correlation between step size and tree-node ... 106

Figure 5.12: Fixed step-size calculation processing bypassing intermediate dates 109

Figure 5.13: Calculation time per node using tree-node balanced methods............... 121

Figure 5.14: Minimum and maximum calculation times for failed calculation node 125

Figure 5.15: Minimum and maximum calculation time for each group and task 127

Figure 6.1: Configuration of each cluster node .. 133

Figure 6.2: Northwest P2P logically separated workgroup cluster configuration...... 134

Figure 6.3: LAN and P2P workgroup combined cluster configuration 135

Figure 6.4: NUC grid configuration diagram ... 135

Figure 6.5: CB price profile and technical analysis regions (Source: Northwest) 143

Figure 6.6: Implied Volatility (IV) impact on CB theoretical value 152

Figure 6.7: Yield parallel shift for USD (Data source: Northwest) 155

Figure 6.8: IR impact on CB price and bond floor (Source: Northwest) 156

Figure 7.1: High-level diagram of multiple cluster configurations 168

Figure 7.2: Server cluster configuration ... 169

Figure 7.3: Each node’s calculation time for load imbalanced and balanced 171

Figure 7.4: Northwest’s blade server configuration ... 173

xii

Figure 7.5: Node calculation times of each server for all 560 assert swaps during office

hours (T1) and out-of-office hours (T2) ... 175

Figure 7.6: Node calculation times of each server for distributed loads during office

hours (T1) and out-of-office hours (T2) ... 176

Figure 7.7: Distributed data processing FDF terminal configuration......................... 178

Figure 7.8: Terminal configuration of each FDF ... 179

Figure 7.9: Distributed query processing cluster configuration 185

Figure 7.10: Distributed query processing node configuration 185

Figure 7.11: Physical and logical CPU core grouping: .. 194

Figure 7.12: Using physical processing devices as separate logical CPU clusters 195

Figure 7.13: CPU core-level distributed calculation for first output dataset selected 201

Figure 7.14: CPU core-level distributed calculation for both outputs are equal 201

Figure 7.15: Distribution of dispersion trade using functional decomposition 203

Figure 7.16: Implementation of cluster for domain and functional decomposition ... 203

Figure 7.17: Distributed calculation times for each node for all three clusters 206

Figure 7.18: Distributed processing implementation for the AH trading system 209

Figure 7.19: Linked SQL server interconnection between four SQL servers 211

Figure 7.20: Distributed calculation time for each calculation node 216

Figure 7.21: MS-Excel application multiple instantiation using XML data 220

Figure 7.22: MS-Excel application multiple instantiation using XML data output ... 220

Figure 7.23: Number of MS-Excel application instances against total time 223

Figure 7.24: Number of MS-Excel application instances against for 4-core CPU ... 223

Figure 7.25: Number of MS-Excel application instances against for 12-core CPU . 224

Figure 7.26: Number of MS-Excel application instances against for 24-core CPU. . 225

Figure 8.1: Calculation speed comparison for programming platforms 255

xiii

List of Tables

Table 3.1: Distributed processing attributes and descriptions 22

Table 3.2: Processing cluster attributes and descriptions ... 23

Table 3.3: Task decomposition and granularity methods ... 25

Table 3.4: Task scheduling methods and descriptions ... 26

Table 4.1: Hardware and software technology used in the company 29

Table 4.2: Software systems used in the company and their implementation 30

Table 4.3: Typical server and workstation configuration ... 30

Table 4.4: CB's Maturity Date vs Number of Tree-Nodes ... 36

Table 4.5: Sample Input Parameters ... 38

Table 4.6: Sample Output Parameters .. 39

Table 4.7: Risk calculation process sequence .. 50

Table 4.8: Distributed processing control message descriptions 51

Table 4.9: SQL database table types and their roles .. 54

Table 4.10: SQL table names and their descriptions .. 55

Table 4.11: Calculation node workstation’s selection criteria 60

Table 4.12: Cluster control server data and message repositories 61

Table 4.13: Calculation node data and message repository paths 66

Table 4.14: Workstation usage categorisation.. 66

Table 4.15: Hardware and software configuration of each node workstation 67

Table 4.16: Correlation between number of CBs and total calculation time 79

Table 4.17: Number of calculation nodes against calculation time 82

Table 4.18: Minimum and maximum calculation time for each node 83

Table 4.19: Linear model calculation time and calculation node correlation 85

Table 4.20: Linear correlation between calculation time and number of nodes 85

Table 4.21: Number of nodes used vs time for multiple scenario calculations 87

Table 5.1: Process and data mapping for each calculation node 95

Table 5.2: Auxiliary calculation node process and data mapping 95

Table 5.3: Correlation between step size and tree-node number 105

Table 5.4: Tree-node distribution within a selected CB portfolio 107

Table 5.5: Fixed step size tree-nodes and calculation time .. 118

Table 5.6: Balanced CB-based allocation and calculation time for variable step size118

xiv

Table 5.7: Balanced tree-node-based allocation and calculation time for 119

Table 5.8: Hybrid method CB allocation per node, and time required to complete .. 120

Table 5.9: Distributed calculation time analysis for different calculation types 120

Table 5.10: Distributed calculation times with and without calculation node failure

using the task transfer method .. 125

Table 5.11: Calculation time taken for different calculation scenarios 126

Table 5.12: Calculation time for auxiliary processing using two groups 127

Table 5.13: Distributed calculation times with and without calculation node failure

using the single auxiliary node method .. 128

Table 6.1: Northwest P2P network workgroups for PC and NUC clusters................ 133

Table 6.2: NUC computer hardware and software parameters 136

Table 6.3: PC cluster hardware parameters .. 137

Table 6.4: Parameters used for scenario testing ... 140

Table 6.5: Parameters used for PC and NUC cluster testing 140

Table 6.6: Technical analysis of CB price profile .. 143

Table 6.7: CB price calculation model error in point value with varying parity and

implied volatility .. 144

Table 6.8: CB price calculation model error in $USD value with varying parity and

implied volatility .. 145

Table 6.9: Test parameters of CB theoretical value calculations 145

Table 6.10: Calculation time for each calculation node for CB theoretical value

calculation using PC cluster ... 146

Table 6.11: Calculation time using varying step size for CB theoretical value

calculation using a single NUC computer .. 146

Table 6.12: Distributed calculation time for CB theoretical value calculation using PC

cluster with load imbalanced and balanced conditions .. 147

Table 6.13: Distributed calculation time for CB theoretical value calculation using

NUC cluster with load balanced condition ... 147

Table 6.14: IV calculation test parameters ... 148

Table 6.15: Calculation time for each calculation node for IV value calculation using

PC cluster.. 149

Table 6.16: Calculation time using varying step size for IV value calculation using a

single NUC computer ... 149

xv

Table 6.17: Distributed calculation time for IV value calculation using PC cluster with

load imbalanced and balanced conditions .. 150

Table 6.18: Distributed calculation time for IV value calculation using NUC cluster

with load balanced condition .. 150

Table 6.19: IV impact on test parameters of CB theoretical value calculations 152

Table 6.20: Calculation time for each calculation node for IV sensitivity calculation

using PC cluster .. 153

Table 6.21: Calculation time using varying step size for IV sensitivity calculation

using a single NUC computer ... 153

Table 6.22: Distributed calculation time for IV sensitivity calculation using PC cluster

with load imbalanced and balanced conditions .. 154

Table 6.23: Calculation time profile for IV sensitivity calculation using NUC cluster

under load balanced condition .. 154

Table 6.24: Parameters used for IR impact on CB theoretical value calculation 156

Table 6.25: Calculation time for each calculation node for IR sensitivity calculation

using PC cluster .. 157

Table 6.26: Calculation time using varying step size for IR sensitivity calculation

using a single NUC computer ... 157

Table 6.27: Distributed calculation time for IR sensitivity calculation using PC cluster

with imbalanced and balanced load conditions .. 158

Table 6.28: Calculation time profile for IR sensitivity calculation using NUC cluster

under load-balanced condition ... 158

Table 6.29: Average calculation time analysis for CB theoretical value calculation . 159

Table 6.30: Average calculation time analysis for IV calculation 159

Table 6.31: Average calculation time analysis for IV sensitivity calculation 159

Table 6.32: Average calculation time analysis for IR sensitivity calculation 159

Table 7.1: Server cluster node parameters ... 169

Table 7.2: Calculation time analysis for each server node ... 170

Table 7.3: Distributed calculation time analysis for server cluster 170

Table 7.4: Virtual server names and their roles .. 172

Table 7.5: Calculation times for each server node for the full load, distributed load

without load balancing, and distributed load with load balancing 174

Table 7.6: Virtual server cluster’s calculation time analysis 175

Table 7.7: Distributed processing local database details .. 185

xvi

Table 7.8: Distributed and replicated data query processing time for each node 186

Table 7.9: Processing time analysis for distributed data query for each node 186

Table 7.10: Workstation specification .. 189

Table 7.11: CPU core utilisation and context switching details 189

Table 7.12: CPU core usage profile when operating system manages the program

execution in a single CPU that has four cores .. 192

Table 7.13: CPU core usage profile when psexec.exe executes the program in a single

CPU that has four cores .. 192

Table 7.14: Available CPU cores per calculation node with varying CPU cores 193

Table 7.15: Calculation cluster configuration parameters .. 196

Table 7.16: Process distribution for each cluster using functional decomposition 202

Table 7.17: Calculation requirement for options and shares 204

Table 7.18: Calculation time taken for each dataset in a single workstation 204

Table 7.19: Number of calculations and dataset required for each security type 205

Table 7.20: Distributed calculation times for each cluster type 205

Table 7.21: AH trading system serial and distributed calculation times 209

Table 7.22: Server-side and client-side distributed process time for each node 211

Table 7.23: Time analysis of server-side and client-side distributed calculations 212

Table 7.24: Distributed calculation time for each calculation node 215

Table 7.25: Distributed calculation time analysis .. 215

Table 7.26: Distributed processing steps for using a single workstation 218

Table 7.27: Test workstation's parameters ... 222

Table 7.28: Distributed calculation time analysis for 4-core CPU workstation 222

Table 7.29: Distributed calculation time analysis for 12-core CPU workstation 224

Table 8.1: Distributed calculation time improvements using workstation cluster 234

Table 8.2: CB value calculation time for each PC cluster node 246

Table 8.3: Distributed CB value calculation time for PC cluster with IBL load 246

Table 8.5: Distributed CB value calculation time for NUC cluster with BL load 246

Table 8.6: IV calculation time analysis for each PC cluster node 247

Table 8.7: Distributed IV calculation time analysis for PC cluster BLcondition 247

Table 8.8: Distributed IV calculation time for PC cluster with IBL load condition .. 247

Table 8.9: Distributed IV calculation time for NUC cluster with BL condition 247

Table 8.10: IV sensitivity calculation times analysis for each PC cluster node 248

xvii

Table 8.11: Distributed IV sensitivity calculation times analysis for PC cluster with

imbalanced load condition .. 248

Table 8.12: Distributed IV sensitivity calculation times analysis for PC cluster with

balanced load condition .. 248

Table 8.13: Distributed IV sensitivity calculation times analysis for NUC cluster with

balanced load condition .. 248

Table 8.14: IR sensitivity calculation times analysis for each PC cluster node 249

Table 8.15: Distributed IR sensitivity calculation times analysis for PC cluster with

imbalanced load condition .. 249

Table 8.16: Distributed IR sensitivity calculation times analysis for PC cluster with

balanced load condition .. 249

Table 8.17: Distributed IR sensitivity times analysis for NUC cluster 249

Table 8.18: Calculation time improvements in number of folds for each type of

calculation against the least powerful PC within the PC cluster 250

Table 8.19: Calculation time improvements in number of folds for each type of

calculation against the most powerful PC within the PC cluster 251

Table 8.20: Average calculation time improvement in number of folds for the most

powerful and least powerful PC within the PC cluster... 251

Table 8.21: PC and NUC cluster comparison .. 254

Table 8.22: Programming platform comparison for Northwest 256

xviii

Abbreviations

ASCOT Asset-Swapped Convertible Option Transaction

CB Convertible Bond

CESDIS Centre of Excellence in Space Data and Information Sciences

COM Component Object Model

COP Cluster of PCs

DGC Desktop Grid Computing

DIMM Dual In-Line Memory Module

DLL Dynamic Link Library

DPM Dynamic Power Management

DR Disaster Recovery

DSDM Dynamic System Development Method

FDF Financial Data Feed

FIFO Fist In First Out

FLOPS Floating Point Operations Per Second

GPU Graphic Processing Unit

HFT High-Frequency Trading

HPC High-Performance Computing

IP Internet Protocol

IR Interest Rate

IV Implied Volatility

LAN Local Area Network

MIC Many Integrated Core

MIMD Multiple Instruction and Multiple Data

MISD Multiple Instruction and Single Data

MPI Message Passing Interface

NAS Network Attached Storage

NASA National Aeronautics and Space Administration

NIC Network Interface Card

NoC Network On Chip

NOW Network of Workstations

Northwest Northwest Investment Management (HK) Ltd

NUC Next Unit of Computing

xix

ODBC Open Database Connectivity

P2P Peer To Peer

PCI Peripheral Component Interconnect

PVM Parallel Virtual Machine

RAD Rapid Application Development

RDBMS Relational Database Management System

RISC Reduce Instruction Set Computer

SAN Storage Area Network

SATA Serial Advance Technology Attachment

SC Stock Connect

SFF Small Form Factor

SIMD Single Instruction and Multiple Data

SISD Single Instruction and Single Data

SoC System on Chip

SPM Static Power Management

SQL Structured Query Language

SSD Solid State Drive

TCP Transmission Control Protocol

UDF User-Defined Function

VBA Visual Basic for Application

WAN Wide Area Network

WMI Windows Management Instrumentation

xx

Glossary

A-H Trade Specialised trading strategy using shares

Beowulf Commodity component based on loosely coupled processing

cluster

Blade Server Server chassis housing multiple thin form factor servers

CUDA Parallel computing platform created by NVIDIA

Delta Hedge Trading strategy for hedge portfolio

Dispersion Trade Specialised trading strategy using options and shares

Dolphin High-speed network interconnect implementation

HSI Index Hong Kong stock market index

HT-Condor Specialised task management system for compute jobs

InfiniBand Computer communications standard used in high-

performance computing

Mathematica Technical computing and programming system

MATLAB High-level technical computing language

MPICH1/2 MPI implementations

Myrinet High-performance packet-communication and switching

technology

OPEN-CL Open Computing Language used for distributed processing

Option Derivative financial instrument

PnL Profit and Loss

Position Number of shares that company holds

PxExec Windows-based remote control utility program

QSNet High-speed interconnect designed by Quadrics

Risk Analysis Portfolio risk calculations using various methods

Security Financial instrument such as Share, Option and Warrant

SETI Search for Extra-terrestrial Intelligence

Simulink Graphical programming environment by MathWorks

Stock Financial instrument Share or Equity

Top500 Consortium that ranks the top 500 supercomputers in the

world

Tracking Error Deviation between portfolio and benchmark index

 Chapter 1: Introduction

1

1 Introduction

1.1 Introduction

Distributed processing using commodity-type computers as processing nodes has been

investigated for the last 20 years [1–4] and has been used in various industries for

specific research and development [5, 6]. Most of these types of distributed processing

systems use the Linux platform as the operating system, and a few systems use

Windows-based applications [7, 8]. A specific type of distributed processing cluster

design is based on commodity-type components and a loosely coupled configuration

called the Beowulf-class cluster [9]. This type of cluster configuration method is used

with certain required modifications and with new and specific methods to implement

the distributed processing systems for the sponsoring company. Several advantages of

using the Beowulf-class type distributed processing method are investigated in detail

in this EngD research.

The research conducted in this EngD study is an investigation on distributed

processing that utilises smart technologies for hedge fund management, and this thesis

explains how this new method provides overall benefits to the sponsoring company

and the research contributions made to the distributed processing technologies. The

focus of the research is mainly to successfully implement distributed and parallel

processing systems for compute-intensive calculations for the sponsoring company.

The primary aim is to develop a collection of distributed processing systems that

utilises Windows network topologies, networked workstations, servers, and dedicated

distributed processing clusters formed by small form factor (SFF) computers to

perform time- and data-critical calculations for various applications that are currently

used in the company and for the future development of new trading strategies. The

distributed processing systems have various components that must be incorporated

efficiently to ensure the system performance is maintained at high levels [10]. These

include system reliability, expandability, usability, application support, and so forth.

Hence, each component of the distributed system has to be designed and implemented

depending on the system requirements to ensure that the system operations are

 Chapter 1: Introduction

2

adequate to support the specific applications used in the system. Several factors must

be considered when designing a bespoke-type distributed processing system using first

principle methods, and these are investigated in this EngD research.

In recent years, various systems and applications used by the company have become

highly compute-intensive. One of the complex and compute-intensive systems that is

currently used is the proprietary derivative Convertible Bond (CB) pricing model. Due

to the complexity involved in the financial model calculations, particularly the

derivative models, the calculation time becomes a critical issue [13, 14]. In addition,

multiple scenarios need to be developed for the due diligence requirements by

investors and compliance authorities [15, 16]. The financial models that are currently

used to calculate various parameters for these products have been developed internally

using first principle methods employing binominal and trinomial tree models, and

these are highly compute-intensive [14, 17]. The major problems encountered in

recent years with the systems used in the company are bespoke and legacy types of

systems that require certain hardware and software configurations to work together.

Hence, just replacing current hardware and software to improve the calculation speed

is not a viable as a long-term solution.

Therefore, an alternative approach has been investigated in this research to improve

the calculation efficiency by using existing hardware and software as calculation

clusters and by utilising distributed processing methods [18, 19]. The approach is to

consolidate all the existing hardware as multiple calculation clusters that are managed

by a centralised distributed processing management controller. The research is

conducted in four phases, which each phase investigates a particular research

challenge, and all four phases are cohesively interconnected to find a best possible

distributed process solution for improving the computing efficiency of bespoke and

legacy applications. How these phases are implemented is discussed in detail in the

forthcoming sections.

 Chapter 1: Introduction

3

1.2 Motivation

As hedge fund’s managers are facing increasingly rigorous transparency and reporting

demands, the need for establishing a robust and high quality IT system has never been

higher. In addition to the various regulations that are specifically targeted at hedge

funds, the added complication of an increasing variety of asset classes needs to be

managed by the IT systems. Over the past few years, the environment has been

challenging for the hedge fund management industry with decreasing yields and more

rigid regulation being introduced, which places added pressure on the business [20].

The key challenges faced by smaller hedge fund companies are follows:

 Complying with ever-tightening financial regulations that demand high

standards of IT infrastructure and systems.

 Producing various reports for investors and regulators on a regular and on-

demand basis.

 Generating a range of risk scenario reports for continuously changing investor

requirements.

During the financial crash in 2009 [21], most small fund management companies

disappeared. This was due to various factors, and one of the factors is that they were

unable to function efficiently during disastrous market conditions where the required

IT services were not provided by the IT support companies. Meanwhile, from

inception, Northwest adapted its IT and systems as part of the business by employing

dedicated IT staff and has actively promoted the use of internally developed systems

for day-to-day business activities. As the result, the company can continue trading

under difficult market conditions by rapidly adapting its IT systems to cater to the

business, and this facilitated the company to relocate to different geographical

locations without any interruption to its business. In addition, to keep IT expenditure

low and still maintain a competitive edge, a novel approach of implementing IT

systems is needed in the hedge-fund industry. Thus, the Northwest example has

proven that the bespoke development methods used is highly beneficial to the

company, and this is the primary reason for pursuing this present research to develop a

bespoke distributed processing system for the company.

 Chapter 1: Introduction

4

1.3 Research Aim

The overall aim of the presented research is to implement a distributed processing and

parallel processing system for compute-intensive calculations utilising a combination

of dedicated and non-dedicated workstations, servers and SFF computers. The task is

to design, develop and implement cost-effective and high-performance distributed

processing cluster systems that utilise Windows network topologies, networked

workstations and servers to perform time-critical and data-critical calculations for the

sponsoring company. The research objectives are as follows:

 Design and build a calculation cluster for distributed processing using user

workstations as calculation nodes.

 Design and implement distributed process management SQL database to

capture various data from calculation nodes, hardware and software related

data, cluster performance data and historical data.

 Design and implement distributed process management system and calculation

node’s management system.

 Design and implement the adaptive load balancing systems that allocate tasks

and data to each calculation node based on defined load balancing algorithms.

 Design and build dedicated SFF cluster and PC cluster using P2P network for

testing various legacy applications and bespoke load balancing algorithms.

 Design and build multiple clusters using conventional servers, virtual servers

and blade servers.

 Design and implement multiple clusters as consolidated hybrid cluster for

performing heavy-duty batch processing tasks.

 Design and implement multiple logical clusters using single or multiple

physical clusters for segregated and secure processing.

 Perform various tests to evaluate the calculation time improvements of

distributed process based calculation against serial calculation method for

different types of applications.

 Conduct a feasibility study of real-time trading strategies using distributed

process based calculation methods.

 Chapter 1: Introduction

5

Most of the current applications are MS-Excel-based, and these have been developed

using the Rapid Application Development (RAD) method and the Dynamic System

Redevelopment Method (DSDM) [22, 23]. The methodologies used for application

development have proven to be considerably successful, and the same methods are

used for distributed processing system development. The subject area of investigation

is high-performance computing (HPC), and HPC is generally referred to as

aggregating computing power in a highly organised way such that it delivers far better

performance than a typical computer [24]. For HPC, several systems for distributed

and parallel processing are available from various vendors and from third-party

providers, and these systems utilise a combination of high-end servers, blade servers,

virtualisation techniques, high-speed networks and Storage Area Network (SAN)

technologies [25, 26]. The vendor-provided HPC systems have many advantages; HPC

can be implemented in-house and can be configured to work with varying business

requirements at lower cost than public grid computing in the long term. Even though

these systems are easy to install and maintain in-house, there are initial costs of setting

up the system, and the software and systems provided by the vendors and third-party

providers are highly specific to their own systems. Grid computing is also part of

HPC; it is a powerful concept that has proven to be successful in various industries

[27]. However, to use grid computing, the applications must be compliant with the

particular grid-computing provider, and there are costs related to processing time.

Hence, the utility-based grid computing option is not feasible for the company’s

business model [28]. Meanwhile, it is possible to have a smaller-scale private

calculation grid that operates with the company’s local area network using peer-to-

peer (P2P) network configurations [29].

Therefore, the main aim of the research is to design and implement a highly specific

bespoke distributed processing system that can support the existing legacy and

bespoke applications to improve the calculation efficiency. Moreover, the system must

be complaint with existing design methodologies and technologies used. In addition,

the system must improve the calculation efficiency of various batch-processing tasks

currently used by the company. Furthermore, the system must be able to provide

adequate processing power for the quantitative analysts and researchers in the

company to test the new financial models within acceptable periods.

 Chapter 1: Introduction

6

1.4 Research Methodology

This research consists of four phases of investigations, and all four of them are

interconnected to find the best possible bespoke-type distributed processing solution

for the company using existing hardware and software and utilising technologies that

are currently used in the company. In addition, further investigations have been

performed to identify the possible alternatives and improvements that can be made to

the existing systems and applications to improve the calculation efficiencies. The four

investigation phases are as follows:

1. Build a distributed processing cluster using existing workstations that are used

by company staff and designing cluster management controller and calculation

node’s controller software design.

2. Implement adaptive load balancing and task scheduling techniques for the

distributed processing clusters.

3. Design and build a dedicated calculation cluster using SFF computers and PCs.

4. Build a combination of various types of distributed processing as hybrid

clusters using available processing units in the company and incorporating

conventional server, virtual server and CPU clusters.

The first phase is implementing a distributed processing cluster using an existing

network of workstations that are used by company staff as a calculation cluster. The

design is based on a loosely coupled distributed process system design with a centrally

managed control mechanism [10, 30]. The second phase is implementing adaptive

task-scheduling [31] and load balancing [32] techniques to further improve the

calculation cluster performance. In this phase, efficient task allocation and the load

balancing mechanisms have been introduced, which have reduced the overall

calculation times for nonlinear hardware and software-based calculation clusters. The

third phase is implementing dedicated calculation clusters as private calculation grids

in the company. The designs are based on using SFF computers and spare unused PCs

that are currently available. These clusters are logically separated from the company’s

main LAN using P2P network setups for 24x7 operations for highly compute-intensive

simulations. The fourth phase is implementing hybrid types of clusters that incorporate

 Chapter 1: Introduction

7

all the available processing devices in the company to act as multiple clusters. Figure

1.1 shows the distributed processing high-level diagram. The distributed processing

system has four phases, as described earlier, and must be able to support wide variety

of bespoke and legacy systems. How these applications are used in the distributed

processing system is discussed in detail in the forthcoming chapters.

Figure 1.1: Distributed Processing System

 Chapter 1: Introduction

8

1.5 Research Contributions

The investigations and tests performed have provided the company with new and

significant insights about using bespoke-type calculation clusters for compute-

intensive applications and about task scheduling and load balancing methodologies.

Furthermore, detailed examination and development of new techniques are presented

to apply within the current setups in the company that are most suited to provide

effective solutions to the calculation-intensive application problems. The key research

achievements and contributions of this research work are as follows:

 Implement in-house grid computing and private cloud type of systems for

small companies that have limited resources with a cost-effective approach.

 Create an innovative approach to building a SFF Compute-Grid using

inexpensive off-the-shelf PCs with flexible configurations.

 Design intelligent grid management software based on original concepts of

adapting and self-tuning according to the computational requirements.

 Further knowledge in distributed processing technologies. In addition,

investigations and tests conducted in a controlled environment facilitate the

company improving its practical implementation of existing technologies.

 Achieved a detailed understanding of applicable techniques and methods for

research and development and acquired a substantial body of knowledge in

distributed processing technologies that is relevant in the forefront of academic

discipline and professional practice.

 Conceptualised design, practice-based tests, and implementation have

generated new knowledge in system implementations, application development

applications and understanding of various distributed processing techniques

that facilitates the research designs unforeseen problems.

 Facilitate the company for developing new methods and techniques using

innovative approaches for implementing distributed processing using Windows

networks. In addition, simplify cluster architecture to perform compute-

intensive tasks to be split as process and data parallel tasks for legacy

applications.

 Chapter 1: Introduction

9

1.6 Thesis Organisation

Chapter 2 discusses the related research in distributed processing and correlates or

draws distinctions in various areas of distributed processing applications investigated

in this EngD research.

Chapter 3 outlines the background on distributed processing, theory, and governing

laws related to distributed processing.

Chapter 4 describes the first phase performed to investigate the feasibility of

distributed processing implemented in the current set-up in the company using a

network of workstations, as well as the configuration required and the preliminary

results. The design is based on a loosely coupled distributed process system design

with a centrally managed control mechanism. A group of user workstations are

selected to act as the calculation nodes, and these workstations are grouped to act as a

calculation cluster. To manage the calculation cluster, two types of cluster

management controllers are designed: distributed process management controller

software, which resides in the management server; and calculation node controller

software, which resides in each calculation node.

Chapter 5 describes the second phase, which applies various methods of load

balancing and task allocation techniques that are used within the workstation cluster.

In addition, the chapter discusses how these techniques are performed under different

task allocation and load conditions. Implementation of efficient task allocation and the

load balancing mechanisms have been introduced, which has reduced the overall

calculation times for nonlinear hardware and software-based calculation clusters. The

task allocation and load balancing algorithms are derived using hardware- and

software-related parameters, and application-specific parameters. Hence, the

distributed processing system uses dynamic and static rules depending on various

parameters collected during the operations of the calculation cluster and using fixed

parameters to allocate appropriate tasks and load to each calculation node to yield a

better overall calculation time efficiency for a given batch process.

 Chapter 1: Introduction

10

Chapter 6 describes the third phase, which is the designing and developing dedicated

calculation clusters using SFF computers and PCs for the company as dedicated

calculation gird, and the clusters tests, which is a detailed investigation performed

using derivative technical analysis mathematical models. These clusters are logically

separated from the company’s main LAN and setup as a P2P network for 24x7

operations for highly compute-intensive simulations. These clusters are test clusters

for investigating various parameters that affect the distributed processing

implementations such as cost, power consumption, cluster size, and so forth. Two

types of clusters are built, commodity-type SFF computer-based cluster with linear

hardware and software configurations and PC cluster using spare PCs and

workstations using nonlinear hardware and software configurations. Various tests are

performed using compute-intensive applications to compare the performance matrix of

these clusters.

Chapter 7 describes the fourth phase, which is a hybrid method for building distributed

processing clusters using different types of hardware such as servers, workstations and

SFF computers. These clusters are used to test the existing applications’ performance

under distributed processing conditions and the possibility of using multiple clusters to

perform data- and time-critical calculations for real-time trading applications. In

addition to tests for calculation improvements, various tests performed to reduce the

data processing time using financial data feed terminals and linked SQL servers as part

of the distributed processing system. Furthermore, tests are performed to investigate

how multi-core CPU workstations and servers can be used as distributed processing

devices by using a single CPU core as a calculation node. In addition, how the

physical clusters can be configured as multiple logical clusters using CPU core-based

cluster configurations is investigated.

Chapter 8 discusses the experimental results and analyses the data recorded during

extensive tests and simulations performed on the PC and NUC clusters and during the

application of load balancing techniques. In addition, the chapter discusses how this

research benefits the sponsoring company and discusses the advantages and

disadvantages of the methods used and further recommendations and improvements.

Chapter 9 concludes by presenting the findings, results and research outcomes.

 Chapter 1: Introduction

11

1.7 Chapter Summary

The investigations and test results have shown that it is feasible to build a practical

Beowulf-class distributed system using existing hardware and software within the

company infrastructure. The design approach is based on loosely coupled design with

dedicated or non-dedicated distributed processing system depending on the

requirements that are best suited for the company. Further investigation using adaptive

load balancing techniques and implementing a dedicated calculation cluster using SFF

computers with low power consumption that utilises a logically separated P2P network

has shown considerable improvement in calculation times for various internally

developed applications used in the company. Hence, the bespoke high-throughput

distributed processing cluster computer system that utilises the company’s

workstations, SFF computers, and blade servers in the office and disaster recovery site

as intelligent processing devices are the best possible solution for the company’s

requirements.

Implementing workstation and server virtualisation techniques for logically separating

a single workstation or server as multiple calculation nodes and using parallel

processing in a single workstation using multi-core processing and multi-threading

using logically separated CPU-cores show considerable calculation time improvement

to certain types of applications. Furthermore, improvement in load balancing and task

allocations based on application, hardware, CPU and memory usage-specific

parameters using logical CPU cores and hyper-threading techniques is proved to be

beneficial for application-specific load balancing, in addition to hardware and

software-based load balancing. The test results show that SFF computer cluster is most

suited for the long-term development of a dedicated calculation grid for the company

due to its compact size, high reliability, lower power consumption and considerably

low cost per calculation node. Meanwhile, the PC cluster and server cluster that were

designed using spare PCs and servers are suitable for testing load balancing algorithms

and testing prototype mathematical models for real-time trading algorithms. The

implementation of internally developed bespoke-type distributed processing systems

has a positive impact on hedge fund management technologies.

 Chapter 2: Related Research and Literature Review

12

2 Related Research and Literature Review

2.1 Introduction

This chapter analyses and discusses the research related to distributed processing and

describes how particular research areas are related to the research conducted. The

focus of the subject area is cluster-based loosely coupled distributed processing [9, 19,

30], which is closely related to the research conducted. In addition, this chapter

investigates the available distributed processing techniques and their usage in wider

aspects of research and development. Further analysis is made regarding how these

technologies can benefit the company’s distributed processing systems. Additionally,

this chapter discuss the background of various distributed processing technologies and

how they have progressed, current improvements and developments that are

happening and the future directions of these technologies and techniques [34]. Another

area of interest is the miniaturisation technologies that drive the processing power

higher and keep the cost low; in addition, it facilitates the efficient design of

computing devices with low power consumption, less heat dissipation, and smaller

size compared with conventional designs [35, 36]. In effect, these computing devices

can be used as compute-nodes for small form factor distributed processing clusters

[37, 38]. Various types of implementations are possible, such as network of

workstations (NOW) [39] or cluster of PCs (COP) [40]. All these implementations are

based on the loosely coupled cluster design paradigm called the Beowulf compute

cluster [9]. Furthermore, in distributed computations, load balancing techniques and

task allocations are employed to improve the process efficiency [41]. New methods

are used for the design of the bespoke-type distributed processing systems for the

company that are highly specific to the company’s compute-intensive applications and

that, in addition, comply with the requirements.

 Chapter 2: Related Research and Literature Review

13

2.2 Distributed Processing Background

The research in distributed processing using cluster-based computing has progressed

due to various practical limitations of using conventional and utility-type

supercomputers [42, 43]. Some problems require a high level of computing power, and

no complex algorithms can substitute. Some of examples of these types of problems

are large particle-number physical simulations such as internal reactor simulations and

geophysical simulations, meteorological, weather prediction, high-frequency trading

simulations and fluid dynamics problems [44–46]. The computing power required to

execute these types of programs are far beyond the capability of any workstation or

server; hence, supercomputers seems to be the only solution. However, the use of

supercomputers has many drawbacks, because supercomputers are extremely

expensive, their maintenance cost is high, and they are provided by few companies

with proprietary designs [47, 48]. The distributed process computing approach is

focussed on utilising the idle resources in the network to aid processes that are running

within that network and using commodity type low-cost computers to provide

supercomputer-level processing power using computer clusters [49, 50].

2.3 Distributed Processing Cluster Development

The first attempt for distributed processing based cluster computing was developed in

the 1960s by IBM as an alternative to linking large mainframes to provide a more

cost-effective form of commercial parallelism [19]. In 1977, Attach Resources

Computer Network (ARCNet) was developed by Datapoint using commodity

components, and it was not commercially successful due to its complex design [51].

Clusters that are built using commodity off-the-shelf type hardware components as

well as free or commonly used software have become a major part of high-

performance computing and new concept of supercomputing [52, 53]. Figure 2.1

shows a typical cluster architecture using workstations as cluster nodes.

 Chapter 2: Related Research and Literature Review

14

Figure 2.1: Typical cluster architecture

Distributed and parallel processing technologies have been in development for over 30

years [54] and started with smaller systems with few processing units for localised,

specific implementations, and now they are components of the supercomputing

architecture [55]. However, the processor power is continuously increasing by using

innovative design architectures such as 3D design, composite materials and similar

improvements rather than just increasing the clock speed [56, 57]. In recent years,

distributed processing research and development has focussed on building powerful

supercomputers using cluster architectures [58]. For high-speed interconnect,

InfiniBand [59] and Myrinet [60] are used in certain forms to configure the networks

as a high-speed bus that helps to make the system look like a single many-core

computer. Another type of high-speed interconnect call the n-dimensional torus

topology for high-speed, low-latency networks that are used in certain types of

configurations [61]. The cluster-based supercomputing design provides petaflop

computing power for comparatively lower cost [62] and is expected to be crossing the

exaflop barrier [63] within a few years by using various types of improvements of the

existing design, such as using improved inter-process communications and the

incorporation of multiple and many integrated core processors.

Serial Applications Parallel Applications

Parallel Programming Environment

Cluster Middleware

Cluster Interconnect Network/Switch

PC/Workstation

Operating System

Communication

Software

PC/Workstation

Operating System

Communication

Software

PC/Workstation

Operating System

Communication

Software

 Chapter 2: Related Research and Literature Review

15

2.4 Beowulf-Class Distributed Processing Cluster

The concept of Beowulf clusters originated at the Centre of Excellence in Space Data

and Information Sciences (CESDIS), located at the NASA Goddard Space Flight

Centre [9, 64]. The main goal of building this type of cluster was to create a cost-

effective parallel computing system using mass-market commodity, off-the-shelf

components to satisfy specific computational requirements in the Earth and space

sciences community. The rapid and continuous advancement of microprocessors,

high-speed network interconnects and related computer component technologies have

facilitated many successful deployments of this type of cluster [65–67]. The Beowulf-

class distributed processing clusters have successfully been implemented in various

fields, such as medicine, theoretical physics, data storage, image processing and

climate modelling [68–70]. The Beowulf-class clusters are fully dedicated to

distributed processing, and they are optimised for this purpose; this gives a better

price/performance ratio as a single unit of distributed processing computer [71]. These

type of clusters are mainly based on Linux operating system, but a few Windows

operating systems based cluster designs are available [72].

2.5 CPU-GPU Processing

Another processing method that is used in distributed processing is called GPU-

accelerated computing [73], that is, use of a graphics processing unit (GPU) together

with a CPU. A CPU consists of a few cores optimised for sequential serial processing,

while a GPU consists of thousands of smaller, more efficient cores designed for

handling multiple tasks simultaneously [74] and writing programs such as CUDA or

Open-CL [75]. The recent adaptation of this type of processing method can be seen in

supercomputers [76]. The GPU was originally designed to improve the graphic

rendering for video games, and now this technology is integrated into the

microprocessor chips such as Intel’s Xeon Phi, which is a Many Integrated Core

(MIC) architecture co-processor [77], to improve the overall performance of the

integrated microprocessor design.

 Chapter 2: Related Research and Literature Review

16

2.6 Load Balancing

Load balancing is a technique used to improve cluster performance by fully utilising

computing devices with idle or under-utilised resources [78]. A number of distributed

load balancing schemes for distributed processing clusters have been developed

considering a variety of resources, including CPU, memory, disk I/O or a combination

of CPU and memory [79]. Various methods have been investigated to improve the

load balancing resource management, fault tolerance and scheduling techniques for

different types of cluster configurations [80]. Fundamentally, two main types of load

balancing methodologies exist: static load balancing [81] and dynamic load balancing

[82]. In addition, these two methods can be combined to form a type of hybrid load

balancing method [83] to achieve better performance. Certain systems such as HT-

Condor [84] can integrate both dedicated resources such as rack-mounted clusters and

non-dedicated desktop machines into one computing environment. One of the

techniques used for task scheduling is called pre-emptive scheduling [85], and this

technique is widely used in operating systems. Load balancing is discussed in detail in

section 3.7 in Chapter 3.

2.7 Amdahl’s Law and Gustafson's Law

The effort to quantify the potential for performance increases by means of

parallelisation draws from a series of study that traces its roots to the work of Gene

Amdahl and later, John Gustafson. Amdahl’s law [11] is a formula used to find the

maximum improvement possible by improving a particular part of a system. In parallel

and distributed processing, Amdahl's law is mainly used to predict the theoretical

maximum speed-up for program processing using multiple processors. Meanwhile,

Gustafson's law [12] is a refinement of Amdahl's law, assuming fixed problem size;

Gustafson's law states that massively parallel processing allows computations

previously unfeasible, since they enable computations on very large data sets in a fixed

amount of time. Hence, a parallel system does more than speeding up the execution of

a code, and in addition, it enables dealing with larger problems. These two laws are

discussed in detail in section 3.4 and 3.5 in Chapter 3.

 Chapter 2: Related Research and Literature Review

17

2.8 On-Chip Distributed and Parallel Processing

The recent trends in the semiconductor industry moving towards microprocessors with

large complex cores that emphasise high frequencies are being replaced by

microprocessors composed of multiple simpler cores [86]. Due to various limitations

on manufacturing cost-effective microprocessors, such as heat management, power

consumption, and miniaturisation limits due to quantum tunnelling effects, it becomes

no longer viable to produce microprocessors by employing conventional

manufacturing techniques using silicon wafers [87]. One of the approaches that has

been used to improve speed of a microprocessor is to use multiple cores rather than the

high-speed single core, and this method has been successful in improving processing

power for the last 15 years [88]. The GPU manufacturers have introduced the multi-

core processing method to improve the processing speed by using many simple

processing cores to work as a single processing unit to speed up the graphical

processing for 3D games [89]. Recently, the GPU design architecture was

incorporated with multi-core parallel processing chips such as the MIC architecture

and the tiled Reduced Instruction Set Computing (RISC) processor architecture [90].

In 2007, Intel released an 80-core Terascale processor, and it was the first generally

programmable microprocessor to break the teraflops barrier [91]. In 2009, Intel also

has developed a 48-core IA32 processor called the Single-Chip Cloud Computer

(SCC) because of the way it resembles cloud data centres [92]. The SCC consists of 24

tiles, two IA32 cores and a router per tile creating a mesh network with 256 GB/s of

bandwidth. Various types of designs investigated for multiprocessor system-on-chip

(SoC) platforms for designing multi-core CPUs with on-chip distributed processing

capabilities [93]. To enable these platforms, specific requirements for scalable

communication interconnects such as networks-on-chip (NoC) possess many features

that are particularly useful for multi-core chips that are connected using high-speed

interconnects within the chip architecture [94].

 Chapter 2: Related Research and Literature Review

18

2.9 Interconnect Technology

Interconnect technology plays an important role in high-performance cluster

computing, because it is designed to provide inter-process communication across

various processing devices. The Gigabit Ethernet, which uses the industry-standard

TCP/IP protocol, is currently the most popular choice for many standard cluster

configurations [95]. Specialised cluster interconnects such as InfiniBand, Myricom

Myrinet, Quadrics QsNet and Dolphin SCI provide mechanisms to pass messages in a

highly efficient manner compared with Gigabit Ethernet, thereby providing lower

CPU usage and lower latency than the Gigabit Ethernet interconnect [96]. Meanwhile,

most of the classic supercomputer designs use proprietary interconnect technologies to

achieve high performance [97]. The requirement for an industry-standard interconnect

architecture that provides high-bandwidth and low-latency data transfers initiated the

InfiniBand Trade Association, a consortium of hardware and software vendors, to

develop InfiniBand in the late 1990s [98, 99]. Meanwhile, 100 Gbps Ethernet [100] is

under development, and the next generation of PCI-e supports 100 Gbps; hence, it will

be possible to have high-speed communications within the Ethernet network

framework and not require specialist communication protocols.

2.10 Distributed Processing in Investment Banking Industry

Various development attempts have been made using distributed and parallel

processing for solving complex financial models [101]. Certain companies are

engaged in high-speed trading system developments for high-frequency trading (HFT),

and these companies have integrated the latest technologies for distributed and parallel

processing [102]. When electronic trading using high-frequency trading started in

1998, trade execution time was several seconds; in contrast, the systems can now

execute trades in microseconds [103]. For different types of derivate financial model

calculations, certain methods have been investigated using distributed processing such

as CPU-GPU hybrid utilisation to solve the binomial tree model and parallel

computing in finance [104, 105].

 Chapter 2: Related Research and Literature Review

19

2.11 Chapter Summary

Distributed processing using commodity hardware and software is a technological

breakthrough in the concept of parallel, distributed processing, and is the future of

high-power computing. The important factors in the design of these types of high-level

systems are a scalable, high-bandwidth, low-latency network and a low-overhead

network interface. The important factor of this type of technology is the opportunity

for large-scale computing within an everyday framework of interactive computing. For

the last twenty years, distributed processing research and development has facilitated

many businesses and universities to have an alternative way of implementing

supercomputing for their own requirements at low costs using Beowulf-class

computing clusters at various levels. This type of distributed processing has opened a

new direction of research to improve the computing power for using loosely coupled,

low-cost commodity components and multi-core and many-core single-chip-based

parallel processing. Another factor driving the distributed and parallel design is the

limitation of miniaturisation due to the current physical laws; hence, the chip

manufacturing companies are moving towards distributed processing within a single

physical chip to improve the processing performance. For loosely coupled distributed

processing systems, the improvements on commodity components’ technological

contribution have a greater direct impact than the fabricated technology-based

systems. The detail analysis in the distributed processing literature shows that the

Beowulf type of distributed processing is highly suitable for a loosely coupled

distributed processing system design.

The technical limitation of widely available distributed processing system design

approach is that the software runs on these systems has to be designed to work with

the distributed system concerned. Meanwhile, the research addresses a specific design

methodology that supports legacy software applications that primarily designed for

serial processing. Hence, the distributed processing system implemented in this

research that utilise unique and new methods based on distributed processing

fundamental theories. Chapter 3 discusses the distributed processing concept and

theories in more detail.

 Chapter 3: Distributed Processing Concept and Theory

20

3 Distributed Processing Concept and Theory

3.1 Introduction

This chapter presents an overview of the underlying theories, laws, and technical

background related to distributed and parallel processing applications and their

relationship with the research conducted. In addition to the academic and theoretical

research in distributed and parallel processing, the discussion also addresses the

industrial research and development in various technologies that are closely related to

distributed and parallel processing. Distributed processing and parallel processing are

often referred to interchangeably and are referenced as the umbrella term of parallel

computing. However, there are distinguishable differences between distributed

processing and parallel processing techniques. In some cases, a hybrid of these two is

also called distributed parallel processing systems. The parallel processing model uses

a shared memory within tightly coupled systems, such as a single board with multiple

processes, and the distributed processing model uses distributed memory within

loosely coupled systems such as PCs connected through a gigabit network. The main

discussion in this chapter focuses on a loosely coupled system design with static and

dynamic load balancing and process-termination detection mechanism that is highly

suited for this EngD research. Hence, the rest of this chapter discusses distributed

processing system designs and compute-cluster designs, message-passing interfaces

and task allocation mechanisms.

3.2 Concurrency

Concurrency refers to sharing multiple resources in the same timeframe such as

sharing CPU processing power using context switching, memory and I/O devices at

same time. When the different processing units use separate memory in different

computers, it is referred to as distributed processing [107].

 Chapter 3: Distributed Processing Concept and Theory

21

3.2.1 Parallel Processing

Parallel processing is mainly considered as a process that shares the same memory

resource for all the processes. Certain hardware-based parallel systems use a master

clock across multiple processors, and these types of systems are fully deterministic.

Parallel processing systems are generally considered as tightly coupled systems [107].

3.2.2 Distributed Processing

Distributed processing accelerates processing by distributing the workload to multiple

computers that have been chosen to provide additional processing power. In

distributed processing, each processing unit has its own private memory and

information is exchanged by passing messages between the processing units [107].

3.2.3 Hybrid Processing

Hybrid processing often refers to systems that utilise the combination of distributed

and parallel processing techniques to solve a particular problem in an efficient manner.

Hence, this form of processing takes advantage of the best parts of both parallel and

distributed processing system configurations for computations, and how they are

implemented depends on the system requirements and applications used. Hybrid

processing can consist of multiple physical processors and logical processors working

in a coherent way to improve the overall computation performance of the system.

3.3 Characteristics of Distributed Processing Systems

Distributed processing systems have many differences; however, several common

terms are used to define how the systems are supposed to work coherently to achieve

the maximum benefits from the particular system concerned [107–109]. Table 3.1

shows the distributed processing attributes and their descriptions.

 Chapter 3: Distributed Processing Concept and Theory

22

Table 3.1: Distributed processing attributes and descriptions

Attribute Description

Node A node is an entity on the network that can perform computing

tasks.

Job A job relates to the overall processing work that needs to be

completed to solve a given problem.

Task A task is a logically discrete entity of an overall job.

Synchronisation Each processing node works on the given task to complete the

overall job, and this process involves synchronisation between

nodes and processes as well as maintaining the balance.

Race Condition The race condition is the behaviour of systems where the output is

dependent on the sequence of other uncontrollable events.

Deadlock Deadlock is a condition that occurs when two processes are each

waiting for the other to complete before proceeding, and the result

is that both processes hang.

Bandwidth Bandwidth refers to the data rate, that is, the amount of data that

pass through a communication channel over a given period.

Latency Latency refers to the time between an action being initiated and the

action actually having some effect.

Speedup In distributed computing, speedup describes how many times faster

a job is running on multiple processors rather than a single

processor.

3.4 Amdahl’s Law

The Amdahl's Law [11] suggests that unless the system is 100% efficient, adding more

calculation nodes to the cluster makes the system become less efficient. That is,

increasing the parallelism of the computing environment by some number N can never

increase performance by a factor of N for a given task. Equation (3.1) illustrates the

Amdahl's Law.

N

p
p

S

)1(

1

(3.1)

where

 S Speedup factor

 p Percentage of distributed calculation

 N Number of calculation nodes

 Chapter 3: Distributed Processing Concept and Theory

23

3.5 Gustafson's Law

Gustafson [12] made certain modifications to Amdahl's model by adjusting some of its

underlying assumptions to accurately reflect speedup of parallelising. As computation

resources increased, the problem size also increased, and inherently, the serial portion

became much smaller as a proportion of the overall problem. Gustafson modifies

Amdahl's Law that the overall problem size should increase proportionally to the

number of processors (N), while the size of the serial portion of the problem should

remain constant as N increases. Equation (3.2) illustrates the Gustafson Law.

 NppS)1((3.2)

where

 S Speedup factor

 p Percentage of distributed calculation

 N Number of calculation nodes

3.6 Processing Cluster Building Concepts

There are three main types of clusters: compute clusters, high-availability clusters, and

load-balancing clusters. For applications involving compute-intensive calculations, the

compute clusters are used. Hence, the computation clusters are designed mainly for

providing processing power for compute-intensive tasks. Table 3.2 describes the

common attributes of a processing cluster.

Table 3.2: Processing cluster attributes and descriptions

Attribute Description

Scalability Scalability describes how the cluster can be expanded or reduced

depending on the requirements by adding or removing each compute-

node without affecting the communication process.

Reliability Reliability of the cluster ensures that the system does not experience

degradability or malfunction when unexpected events occur.

Cost/

Performance

Ratio

Cost/Performance ratio is intended to ensure that performance is gained

by utilising the distributed processing cluster. In addition, the effort is

needed to distribute the tasks.

Topology Topology describes how the distributed processing cluster is

constructed using each compute-node and the network infrastructure

used to connect all the nodes together.

 Chapter 3: Distributed Processing Concept and Theory

24

3.7 Load Balancing

Load balancing is a term that describes the method used to distribute the workload

evenly within a system that has multiple processing entities [79, 110, 111]. The term

load balancing is an umbrella term that involves many different techniques for

maintaining a certain balance condition within the system to perform operations in a

uniform manner. The overall load balancing mechanism that is applied to the systems

includes the following parts: perform task decomposition, manage task process

(scheduling) and monitor and manages the resources and process status.

3.7.1 Static Load Balancing

In static load balancing, the assignment of tasks to each calculation node is completed

before the calculation starts [112]. In addition, the estimated calculation times,

resources and distributed processing-associated parameters are assumed to be known

at the time of task allocation. Hence, a task is executed on the selected calculation

node to which it is assigned, that is, in static load balancing methods, calculation

nodes are non-pre-emptive. The main aim of static load balancing methods is to

minimise the overall calculation time while minimising the communication.

3.7.2 Dynamic Load Balancing

Dynamic load balancing is based on the redistribution of tasks among the processing

units during execution time, and this redistribution is performed by transferring tasks

from the heavily loaded processing unit to the lightly loaded processing unit with the

aim of improving the performance of the application [113]. The dynamic load

balancing operations may be centralised in a single controller unit or distributed across

all the processing units that participate in the load balancing process, and many

combination of different policies can be utilised. In addition, it uses auxiliary

calculation nodes to protect against the calculation node failures during execution.

 Chapter 3: Distributed Processing Concept and Theory

25

3.8 Task Allocation and Granularity

The distributed process computation is performed by splitting up a larger task into

smaller chunks of tasks that can be calculated simultaneously and independently. If the

task cannot be separated in a required way to perform the calculations, then the

distributed processing has no benefit, and serial processing is better suited for these

types of tasks [114]. In distributed processing, granularity is a measure of the ratio of

computation to communication time and the computation time. Table 3.3 shows task

decomposition and granularity methods and their descriptions [108, 109, 115]. Table

3.4 shows task scheduling methods and their descriptions [116].

Table 3.3: Task decomposition and granularity methods

Attribute Description

Domain

Decomposition

In this type of partitioning, the data associated with a problem is

decomposed. Each parallel task then works on a portion of the data.

This is also called data parallelism, in which each processor performs

the same task on different data subsets.

Functional

Decomposition

In this type of partitioning, each computation is different, and each task

then performs a portion of the overall work. Functional decomposition

is better suited to problems that can be split into different tasks.

Fine-Grain

Processing

Relatively small amounts of computational works are performed

between communication and synchronisation events.

Coarse-Grain

Processing

Relatively large amounts of computational work are performed

between communication and synchronisation events.

Task Scheduling Task scheduling mechanism assigns tasks to a calculation node

according to different scheduling policies.

Context Switching The state of the execution context of a process or thread is stored and

restored so that the execution can be resumed from the same point at a

later time. This allows one CPU to handle many processes or threads

without conflicts.

 Chapter 3: Distributed Processing Concept and Theory

26

Table 3.4: Task scheduling methods and descriptions

Method Description

First In First Out

(FIFO)

Schedules tasks based on FIFO method regardless of task size,

and this is a basic type of scheduler implementation.

Shortest Job First General scheduling principle can be applied to any system in

which the estimated calculation time per task is determined

before assigning the tasks to the processing units.

Pro-rata Weighted average calculation times are used to allocate the

number of tasks to each processing unit.

Pre-emptive Task can stop/start in the middle of execution to give priority to

another task by using a context switch mechanism, that is,

stopping the running process and starting/resuming another.

Round Robin Instead of executing the tasks to completion, the tasks are

executed in a time-sliced manner.

3.9 Chapter Summary

The development of various types of distributed processing and parallel processing

systems have produced several related theories and implementation methods in this

field. However, some of the approaches were proposed specifically towards large-

scale distributed processing systems and supercomputing-level systems. Hence, most

of the specialised distributed processing concepts such as high-speed networks and

message processing speeds are not applicable to the research conducted in this phase,

which is of a highly specialised bespoke type distributed processing system that uses a

small scale and loosely coupled cluster with multiple processing devices for private

use for a company. Meanwhile, the fundamental principles of distributed and parallel

processing remain the same; therefore, the system is designed based on original design

and in conjunction with other known theories, methods and concepts that are

particularly useful for bespoke-type highly specialised design. For loosely coupled

distributed systems, each processing unit’s performance is a critical factor for the

overall performance of the system.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

27

4 Distributed Processing Cluster Design Using Network

of Workstations

4.1 Introduction

This chapter describes the implementation of distributed processing clusters using a

network of workstations for MS-Excel applications used for calculating hedge funds’

portfolio risk scenarios. This is the first phase of the investigation that explained in

section 1.4 in Chapter 1. The primary aim of the investigation is to examine whether it

is possible to design, develop, and implement a cost-effective and high-performance

distributed processing cluster system that uses Windows network topologies and

existing networked workstations to perform time-critical and data-critical calculations.

Most of the applications used in the company, specifically the derivative pricing

models, are based on MS-Excel and VBA, VBScript, and SQL Server databases and

are developed internally as bespoke systems. Since the distributed processing system

has to be capable of working with existing systems, the methodology used for the

design and development of the distributed processing system is similar to the systems

currently used for their compatibility and ease of use. The distributed processing

system has a number of different modules, and all the modules are designed and

developed to work coherently with each other. Additionally, they are designed in

coordination with existing systems with minimum complexity to reduce the failure

rate and maximise the efficiency to ensure system robustness. The testing and

simulations have shown considerable improvement in calculation times using

distributed processing against using a single server as a serial process for certain batch

processing calculations. However, due to the nonlinear nature of risk calculation

mathematics, complex issues relating to the number of calculation nodes used and the

reduction in calculation time. These complexities can be eliminated or reduced by

introducing efficient task scheduling and resource management algorithms.

Distributed processing system cluster design, database development, cluster controller

design, calculation node’s controller designs, and test results are presented in this

chapter. The task scheduling mechanisms and load balancing are discussed in detail in

Chapter 5.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

28

4.2 Northwest Systems

The applications and systems used within the company have been developed internally

as bespoke systems for the last eighteen years. These systems are designed and

developed to facilitate the processes in every part of the business area, and the systems

have been continuously improved and modified as the business requirements change

with the market conditions, compliance requirements, and management. Moreover, the

systems will continue to be developed, modified, and be enhanced; hence, the

distributed processing system has to be capable of adapting to these changes

accordingly. Compute-intensive applications are used within the distributed processing

system; therefore, these types of compute-intensive applications are modified in

certain ways, hence that the applications can be employed by users in a standard way

and are able to be used within distributed processing systems without major

modifications to the overall systems. Figure 4.1 shows the hardware configurations,

and Figure 4.2 shows software configurations. Table 4.1 lists the general overview of

the technologies used for the company’s applications and systems development, Table

4.2 lists the software implementations, and Table 4.3 lists a typical server and

workstation configuration.

Figure 4.1: High-level diagram of hardware configuration

Workstations

Rack Servers

SAN

Peripherals RAID

NAS

Blade Switch

TAPE

Gigabit Switch

Blade Servers

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

29

Figure 4.2: High-level diagram of software configuration

Table 4.1: Hardware and software technology used in the company

System Type Technology used

Operating system Software MS-Windows 7, MS-Windows Server 8 Enterprise System

Database Software MS-SQL Server 2005/2012, MS-Access 2010

User interface Software MS-Excel 2010, MS-Access 2010

Programming Software VB, VBScript, VBA, T-SQL

Workstations Hardware HP Z400, Z420, Z440, Z820

Servers Hardware BL460C Series G5/G6/G7

SAN Hardware Net-App Series

Data Layer

SQL Database

MS-Access Database

Business Layer

Stored Procedures

VBA

Presentation Layer

MS-Excel Sheets

MS-Excel Forms

MS-Access Forms

MS-Outlook Forms

VB Forms

Web Interface

Metadata

XML, CSV, TXT

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

30

Table 4.2: Software systems used in the company and their implementation

Application Implementation

MS-Excel-based

applications

MS-Excel functions and MS-Excel VBA, charts and reports

MS-Excel forms, Bloomberg data feeds. COM add-ins

SQL data access components

MS-Access-based

applications

Access functions and Access VBA, charts and reports, Access

forms, COM add-ins

SQL data access components

VB applications

EXE, DLL, COM add-ins, SQL data access

System-level monitoring

Management systems

VB6,VBScript,WMI, Batch programming

SQL data access, SQL jobs, Windows-based scheduling,

Application monitoring

Table 4.3: Typical server and workstation configuration

System Type Description

CPU Workstation Pentium Xeon processor

Single CPU with four cores

(2.86 to 3.06 GHz per core)

Memory Workstation 12 GB DIMM

Hard Disk Workstation Primary: 128 GB SSD

Secondary: 500 GB SATA

Operating System Workstation Windows 7 (64)

Applications Workstation Microsoft Office Professional 2010/2013

Bespoke applications, Utility applications

CPU Server Intel Pentium Xeon processor

Dual CPUs with four cores (2.90 GHz per core)

Memory Server 64 GB DIMM

Hard Disk Server Raid: 3 x 500 GB SAS

Operating System Server Windows Server 2008 Enterprise

Applications Server Windows Server Utilities

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

31

4.2.1 Northwest CB Pricing Model

The company has developed number of mathematical models for calculating various

parameters for different type of derivate instruments. These mathematical models are

based on fundamental principle of option pricing mathematics, and in addition, certain

modifications are made to the fundamental mathematics to improve the parameter

accuracy and able to use wider range of derivative instruments such as Convertible

Bond (CB) by introducing company specific modifications [13, 14]. The company

uses three type of lattice (tree): Binomial-Tree, Trinomial-Tree and Multinomial-Tree.

Each type has its own advantages and disadvantages and all of them require high level

of computing power to calculate various parameters. However, the Binomial-Tree

method takes less computing power than the other two methods. To illustrate how the

lattice mathematical model works, Binomial-Tree method is used. Figure 4.3 shows

the general Binomial-Tree method used for derivative pricing. Equations (4.1) to (4.4)

are used for the derivative’s parameter calculations.

Figure 4.3: General Binomial-Tree Method

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

32

du

de
p

NRT

)/(

 (4.1)

 eu (4.2)

5.0)/(NTv (4.3)

 ed (4.4)

where

p Probability number for share price goes up

T Number years to maturity in years

N Number of steps (Time-period)

R Fixed interest rate

v Share volatility

S0 Initial share price

For pricing different type of CBs, number of modifications and enhancements are

made to the basic lattice model. These modifications are highly specific to the

company and designed as proprietary bespoke mathematical models. The binomial

pricing model traces the evolution of the convertible bond’s key underlying variables

in discrete-time. This is done by means of a binomial lattice for a number of time steps

between the valuation and maturity dates. Each tree-node in the lattice represents a

possible price of the underlying at a given point in time. Valuation is performed

iteratively, starting at each of the final nodes those that may be reached at the time of

maturity, and then working backwards through the tree towards the first node, that is,

valuation date. The value computed at each stage is the value of the CB at that point in

time. Figure 4.4 shows the modified Binomial-Tree method for calculation of CB

parameters. Equations (4.5) to (4.9) are used for the CB’s parameter calculations.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

33

Figure 4.4: Modified Binomial-Tree Method

CB price calculation is performed using the following steps:

1. Forward interest rate calculation for each tree-node

2. Up and down share price probability calculation for each tree-node

3. CB’s underlying share price calculation for each tree-node

4. Calculation of CB price at each final node

5. Sequential calculation of the CB price at each preceding node

During the calculation process, there are number of data points are captured at various

stages to calculate Delta, Gamma, Vega and so forth. The whole calculation process

for each CB is highly compute-intensive, and each portfolio can have many hundreds

of CBs. Hence, to perform portfolio level calculation, using a single server will take

few hours to complete. Furthermore, if input parameters need to be changed to view

what-if scenarios for various portfolios calculation, then the calculation time will be

increased to many hours.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

34

),,,,()(vMNYifip (4.5)

),,,()(MNYifiR (4.6)

),,,),(),0(,()(vEMNipSifiS (4.7)

 }){,,),(),(),(,()(' XMNipiSiRifiC (4.8)

 }){,,),(),(),1('),(',()(XMNiSiRiCiCifiC (4.9)

where

p(i) Probability number for share price goes up at tree-node i

R(i) Forward interest rate at tree-node (i, j)

S(i, j) Selected share price at tree-node (i, j) based on defined rules

C(i, j) Selected CB price at tree-node (i, j) based on defined rules

S(0,0) Initial share price at tree-node 0 (current price)

N Number of steps

M Maturity date of the CB

Y Time series yield rates for CB currency

E Redemption price of the CB

v Share’s 90 day volatility

{X} is a data set that depends on the following input parameters:

Parity Volatility Redemption price

Credit spread Bond currency Stock loan fee

Dividend rate Dividend frequency Next dividend date

Coupon rates Coupon frequency Next coupon date

Call dates Call triggers Put dates

Put triggers Put prices Soft put dates

Soft put triggers Soft put prices Re-fix dates

Re-fix triggers Re-fix up Recall spread

Denomination Re-fix down Fixed recall rate

Conversion price Conversion ratio Day count

Bond currency yield rate Short currency yield rate FX rate

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

35

For binomial tree calculation method, the following program structure gives the

number of calculation nodes needed to complete the whole calculation for a CB.

For j = 0 to N
 z=z+1
Next j
For i = N to 0 Step -1

 For j = 1 to i
 z=z+1
 Next j

Next i

where

N Number of steps and depends on each CB’s maturity date.

z Number of calculations nodes needed to complete the whole calculation.

The value of N is calculated as the number of days between maturity date and

calculation date as shown in Equation (4.10).

)(TMINTN (4.10)

where

 M Maturity date

 T Calculation date

 INT Integer number round-down to floor

Thus, at each tree-node, number of calculations is performed and number of tree-node

per CB is depends on CB’s maturity date. Furthermore, each portfolio can have many

hundreds of CBs with different maturity dates; therefore, shorter maturity date CBs

takes less calculation time compared to longer maturity date CBs. In addition, the

portfolio is continuously modified to keep as fully hedged portfolio, that is, in regular

basis, portfolio constituents will change according to set of company specific rules.

This will cause the number of CBs in the portfolio to change and in effect, total

calculation time of the portfolio. The can cause calculation time discrepancies and

further delays. The value of z is exponentially increases with furthering maturity date

as shown in Table 4.4.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

36

Table 4.4: CB's Maturity Date vs Number of Tree-Nodes

Maturity

Years

Number of

Tree-nodes (z)

1 67,161

2 267,546

3 601,156

4 1,067,991

5 1,668,051

6 2,401,336

7 3,267,846

8 4,267,581

9 5,400,541

10 6,666,726

The research conducted herein, addresses various methods of overcoming calculation

time inefficiencies by implementing highly specific distributed processing systems

with appropriate load balancing techniques using tree-node parameters. These methods

are discussed in detail in the forthcoming chapters. For performing various scenario

analysis tests, Equations (4.5) to (4.9) reformulated with certain key parameters as

variables and the rest of the parameters kept as static for each CB. Equation (4.11)

shows the simplified version of CB price calculation formula that used for scenario

analysis tests in the forthcoming chapters.

 }){,,,,,,(XcvrsTNfC (4.11)

where

C CB price

N Number of steps

T Time to maturity in years

s Parity

r Interest rate

v Volatility

c Credit spread

{X} Static parameter set

C=Theoretical value (fair value) when v= 90 day volatility

C= Market price when v= Implied volatility

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

37

During the scenario analysis calculations, number of parameters is calculated. To

illustrate the calculation of one of the parameter called DV01, which is, CB price

impact of 0.01% increase in interest rate of long-term government bond. Equations

(4.12) to (4.14) show the how the parameter DV01 is calculated.

1

1

)()()(]'[01

 jFjKjOCCDV
m

j

(4.12)

}){,,,,,,(XcvrsTNfC

(4.13)

}){,,),0001.0(,,,(' XcvrsTNfC (4.14)

where

O(j) Open position of CB j

K(j) Price multiplier of CB j

F(j) FX rate of CB j

m Number of CBs in the portfolio

{X} Static parameters

The CB model described in this section is used in various supplications tested in forth

coming chapters; however, the input and output data varies according to the

application used. The following is a typical example of input and output parameters

for a single CB that used for scenario calculations. In a single portfolio can have many

hundreds of CBs with different input and output parameters, hence, the portfolio level

calculation has to go through many hundred times to complete all the required

parameters. This process is highly compute-intensive task, requires many hours of

computing time in a single server and in addition, depends on number of CBs,

maturity date and so forth. In similar way, other parameters such as implied volatility,

credit spread and so forth are shifted accordingly to calculate different scenarios for

selected CB portfolio and how these parameter shifts are performed is discussed in

detail in forthcoming chapters.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

38

Table 4.5 shows typical input parameter dataset for a CB.

Table 4.5: Sample Input Parameters

[X] Input Parameter Value

X(0) Ensemble ID 22347

X(1) Fund Code NNW

X(2) Book Code NNW-MV6

X(3) Ensemble Name CRRC 2021

X(4) Security Type CB

X(5) Ticker JV8124077 Corp

X(6) Security ID 17249

X(7) Security CCY USD

X(8) Maturity Date 05/02/2021

X(9) Red Price 100

X(10) Conversion Price 1.21948

X(11) Conversion Ratio 3.2632

X(12) PutDate1 05/02/2018

X(13) PutDate2 05/02/2019

X(14) PutDate3 05/02/2020

X(15) PutPrice1 100

X(16) PutPrice2 100

X(17) PutPrice3 100

X(18) CallDate1 05/02/2020

X(19) CallPrice1 100

X(20) CallTrigger1 130

X(21) Re-fixDate1 05/02/2019

X(22) Re-fixDown1 100

X(23) Coupon Frequency 1

X(24) Coupon 0.04

X(25) Per or Currency 1

X(26) Denomination 250,000

X(27) CDS Price 0.014

X(28) Stock Loan Fee 0.008

X(29) Dividend Pass Thru Y

X(30) Dividend Amount 0.03

X(31) Recall Spread 120

X(32) Put Call P

[X] Input Parameter Value

X(33) Strike 300

X(34) Total Position 10,500,000

X(35) Security Price 105.0916667

X(36) FX Rate 1

X(37) Price Multiplier 0.01

X(38) Cash Exposure -2,898,864

X(39) MV Short -3,013,577

X(40) Short Ticker 1766 HK Equity

X(41) Short Price 7.47

X(42) Short FX 7.7656

X(43) CB Price 105.0916667

X(44) Stub Price 1.07

X(45) Stub Maturity 44232

X(46) Security Name CRRC 2021

X(47) NAV 564,990,000

X(48) Long Market Value 11,034,625

X(49) Stub Market Value 0

X(50) Short Market Value 0

X(51) Long Rate 0.019097

X(52) Short Rate 0.01109

X(53) Credit Spread 0.014

X(54) SLF 0.015

X(55) Parity 78.8806694

X(56) 90 Day Volatility 21.93493

X(57) Dividend Yield 0.023791893

X(58) BDVD_NEXT_EST_EX_DT 05/02/2018

X(59) EQY_DVD_FREQ 1

X(60) DIVIDEND_YIELD 2.379189295

X(61) CDS Price 0

X(62) CDS Price 2 0

X(63) CDS Price 3 0

X(64) CDS Price 4 0

X(65) AH Ticker NNWJV8124077 Corp

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

39

Table 4.6 shows typical output parameter dataset for a CB.

Table 4.6: Sample Output Parameters

[Y] Output Parameter Value

Y(0) Implied Volatility 0.3415379

Y(1) Implied Volatility2 0.3415379

Y(2) BF 94.369855

Y(3) BF CS 94.352438

Y(4) BF DV 94.352438

Y(5) Theo Value 105.09167

Y(6) Delta 105.46738

Y(7) Vega 104.54727

Y(8) CS 105.07709

Y(9) CS2 105.09167

Y(10) DV 105.07556

Y(11) S+V 105.46738

Y(12) Px Delta 0.375713

Y(13) Px Vega -0.5443987

Y(14) Px CS -0.0145766

Y(15) Px CS2 0.00

Y(16) Px DV -0.016106

[Y] Output Parameter Value

Y(17) Px S+V 0.37571298

Y(18) $ Delta 28,988.64

Y(19) $ Vega -57,161.86

Y(20) $ CS -1,530.54

Y(21) $ CS2 0.00

Y(22) $ DV -1.691.13

Y(23) $ S+V 39,449.86

Y(24) Delta bps 0.513082399

Y(25) Vega bps -1.011732397

Y(26) CS bps -0.027089727

Y(27) CS2 bps 0.00

Y(28) DV bps -0.029932083

Y(29) S+V bps 0.698240021

Y(30) $ CDS_CS01 0.00

Y(31) Theta 104.9430816

Y(32) Px Theta -0.148585021

Y(33) $ Theta -15,601.42

Hence, the number of input data and output datasets varies for different type of

calculation performed. However, for testing purpose, number of input and output

dataset is fixed and only the values are changed for each CB. To illustrate the input

and output datasets for a selected CB, Equation (4.15) shows the input dataset and

Equation (4.16) shows output dataset respectively.

)},(),....2,(),1,({)]([nixixixiX

(4.15)

)},(),....2,(),1,({)]([miyiyiyiY (4.16)

where

n Number of input data

m Number of output data

[X(i)] Input dataset for CB i

[Y(i)] Output dataset for CB i

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

40

4.3 Bespoke Software Development

Northwest is a small hedge fund company that is highly specialised in hedge fund

management using complex derivative products as part of its portfolio management

strategies. Due to the nature of the business, no single off-the-shelf product available

in the market currently, that fulfills the overall requirements of the business’ needs.

Hence, to implement third-party software or off-the-shelf type applications require a

number of applications and systems from various vendors to work as coherent

business solutions. This will cause serious complexities and require a considerable

number of technical staff internally and externally to support the systems, and in

effect, it will become a complex and costly system that does not deliver what the

company needed. The company has a policy for developing all the software that is

used for day-to-day business-critical operations that specifies that this software should

be internally developed as bespoke applications that are highly suited for the business’

needs. Hence, the business applications and systems are designed and developed

internally to facilitate the business in every critical business area, and the applications

have been continuously improved and modified as the business requirements change.

The company has the following requirements for system development:

 All the systems that are used for critical business-related activities must be

designed and built in house.

 Use existing well-tested technologies to develop the systems.

 No new technologies are to be used that cost extra time and money.

 For critical business applications, third-party software should not be used.

 Any new system must work with the existing system without interrupting the

current critical systems.

 The system has to be designed and built with minimum complexity. It must be

easy to troubleshoot and fix any problem within the shortest possible period

without affecting business.

 No black-box-type system developments or utilisations are permitted, and the

systems must be transparent and auditable within Northwest’s business.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

41

Advantages of using bespoke systems:

 Designed specifically for particular requirements and it can be tailored to fit in

exactly with the business requirements.

 Various applications and software can be integrated with customised design.

 For users, it is more intuitive to use and easy to operate in the way that they are

used to working.

 Can be modified and changed over time as the requirements and business

change.

 Users can directly interact and communicate with the developers for

improvements and modifications.

 The use of professionally developed bespoke software applications can provide

a significant business advantage.

4.4 Implemented Solutions for Company’s Requirements

Due to the nature of the company’s business, the distributed system that is proposed

has to comply with existing development structures. Hence, the system has to work

with the existing systems without interrupting the day-to-day business, and in addition,

it has to prove that it can considerably improve the calculation time of various systems

that are used within the company. To solve compute-intensive problems, a solution

must be implemented that uses existing technologies in alternative and innovative

ways to design and develop a system based on original concept that facilitates the

business within the current development model rather than using new technologies,

third-party systems, or similar. The solution has to be best suited for the company’s

business requirements, and it can be used fully or partly with similar types of business

environments. The company has a Disaster Recovery (DR) site situated in a different

location from the main office and connected through high-speed network. In case the

company decided to expand the distributed processing capabilities in the future, the

DR site can be utilised for constructing a small cluster farm with minimum cost. The

following steps are used for the development:

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

42

 Develop all the required components for the distributed processing using

existing technologies, software, and hardware.

 Transparent development and use only compliant code for system controllers.

 Applications must have manual overrides for monitoring and troubleshooting.

 Result-oriented based development process.

 Implemented solution must demonstrate considerable improvement compared

with the current systems.

4.5 Application Development Strategy

Distributed processing systems and applications are developed utilising the Rapid

Application Development (RAD) method and the Dynamic Systems Development

(DSDM) method. Due to the nature of the business structure and operations are carried

out within the company, all of the applications used within the company have to be

highly flexible and adaptable to the changing business environment while maintaining

robustness. For the research purpose, the applications used in the distributed

processing system are modified with appropriate changes as prototype applications

with core functionality that is required for testing and investigation under various

conditions, methods, and algorithms. Hence, these applications are not engaged by the

users in a live environment while under development, and once the testing is

completed, then the applications will be further developed as usable robust

applications with appropriate user interfaces, business logic, and validation rules for

the company’s quantitative research and development team. Figure 4.5 shows the

application development process using RAD and DSDM.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

43

Figure 4.5: Distributed processing application development process

4.6 Application Structure

Any application that is used within the distributed processing cluster environment has

to have a certain process flow structure to be executed in the selected calculation node.

Most of the applications that are used by the company can be modified to work within

the calculation cluster by adding extra optional code to comply with the logical data

flow shown in Figure 4.5. Applications can be VBA-based or executable such as

VBScripts, batch commands, or any executable applications. The calculate and

execute process has a sequence of processes depending on the type of application,

every action within the application is logged in the event log table, and the data

collected is used for monitoring the cluster performance and fine-tuning the cluster to

perform efficiently using adaptive algorithms. Figure 4.6 shows the distributed

processing application process structure.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

44

Figure 4.6: Distributed processing application execution process

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

45

4.7 MS-Excel Application Implementation

Excel is the main application platform for most of the applications developed by the

company; hence, every user’s workstation has MS-Excel installed as part the

Microsoft Office professional suite. Some MS-Excel applications are simple, and

some of them are highly complex with external data sources, SQL data feeds, and

COM add-ins. Therefore, these applications need to be modified accordingly to work

with the distributed processing system. For batch processing applications, the data

structure is relatively simple to modify, and for systems that are employed by users on

a daily basis, various methods of modification needed, hence, that the system can be

used in user mode and in distributed processing mode. Figure 4.7 shows a typical

Northwest MS-Excel application configuration.

Figure 4.7: Typical MS-Excel application configuration for Northwest

MS-Excel

Application

Built-in Functions

MS-Excel VBA

UDF

Charts

Reports

Pivot Tables

SQL Database

MS-Access Database

Flat Files (CSV, XML, txt)

Add-Ins

DLL

COM

Finance Data Feeds

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

46

4.8 MS-Excel Configuration for Distributed Processing

Each workstation has the Microsoft Office Professional suite as part of the company’s

software build. The MS-Excel applications that are used for the distributed processing

system are copied to each workstation’s local hard disk, and this process is managed

by the distributed processing controller. MS-Excel has out-of-process instantiation

functionality, that is, many mutually exclusive separate instances of MS-Excel can be

instantiated in a single workstation. For distributed processing, each workstation starts

a separate instance of MS-Excel and opens the appropriate MS-Excel application in

that instance only. Hence, it will not interact with the user-initiated instances. The

cluster node instance of MS-Excel has the following characteristics:

 Stay open while the workstation is in operation.

 Cluster-instantiated MS-Excel instance is not visible to the user interface.

 Users cannot access the cluster-instantiated MS-Excel instance.

 Excel instance operates as a background process.

 Excel instance is managed by the distributed processing controller.

Users can carry on working with their own MS-Excel application; meanwhile, the

cluster instances of MS-Excel can be closed or opened remotely by the distributed

processing management controller and for debugging purposes, the cluster instance

can be switched to visible mode, if needed. Multiple instances of MS-Excel can be

instantiated in a single workstation, and how many can be opened at the same time

depends on the memory availability on the particular workstation. Figure 4.6 show

multiple instances of MS-Excel in a single workstation. Each MS-Excel application

that works with the distributed processing cluster is developed with the following

functionalities:

 Maintain time stamp in the local message repository. This will facilitate the

node controller to query each calculation node to monitor the MS-Excel status.

 Receive and send messages to local message repository.

 Maintain event logs that are continuously monitored by the distributed

processing controllers and SQL database connections retrieve and update data.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

47

Figure 4.8: Multiple instances of MS-Excel in a single workstation

In each workstation, the calculations are performed by the cluster node’s instantiated

MS-Excel object and coordinates with the operating system to perform an efficient

way of calculation depending on the workstation hardware such as number of CPUs,

CPU-core, and memory size. The MS-Excel application executes the

[Object].Calculate command, where [Object] can be an individual cell, worksheet, or

workbook. Once the calculate command is issued, from that point onward, MS-Excel

takes control of the calculation and coordinates with the operating system to manage

the best possible path for calculation algorithms and number of threads to be used for

the calculations. To reduce the memory fill-up, minimum data is stored in the local

MS-Excel application object, and most of the calculation-related data is kept in the

SQL database and is only used when the calculation is performed. Using the MS-Excel

multi-instance method, most of the MS-Excel applications that are used in the

company can be modified to work with the distributed processing system in similar

way. However, only compute-intensive applications need to be configured to work

with the distributed processing system. The configurations for the MS-Excel

applications required are as follows:

 Each workstation has its own local copy of the MS-Excel application.

 Applications have a common add-in that references the business logics,

financial models, and user-defined functions (UDF).

 Applications fetch the data from the SQL server, perform calculations using a

combination of built-in MS-Excel functions and UDF, and write back the

output data to the SQL server database or local XML files.

 In a distributed batch processing scenario, the input and output data sets are

kept as temporary XML files before the SQL batch update.

Operating System

Workstation Hardware

User MS-Excel Instances Cluster MS-Excel Instance

User Applications Cluster Applications

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

48

Hence, any MS-Excel application that has the data flow shown in Figure 4.9 can be

used within the distributed processing system, and using local data files for distributed

batch processing greatly reduces the network traffic-related time delays. The local file

can be of CSV, txt, XML, MS-Excel type, or similar.

Figure 4.9: MS-Excel application structure for distributed processing

4.9 Risk Scenario Calculation System

For testing the MS-Excel application performance in the distributed processing

system, the risk scenario’s calculation system is used. This system is used in the

company for calculating various portfolio risk scenarios and it has a complex CB

pricing model that uses the binomial tree method to calculate various parameters for

risk analysis. The reason for choosing the risk calculation system for testing is that the

application is highly compute-intensive and requires considerable time to complete in

a single workstation. Hence, the risk calculation system is a good candidate for testing

the distributed processing performance against serial calculation methods. The input

data that is used for the risk calculation system is a snapshot of the current data used in

real-time trading. Figure 4.10 shows the risk calculation system data flow.

SQL Database MS-Excel Application

UDFs Add-Ins

XML Output Data

XML Input Data

Distributed

Processing Stored

procedures

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

49

Figure 4.10: Risk calculation system data flow

Number of calculations is performed in the risk scenarios calculation system, and most

of the calculations are simple arithmetic operations that require comparatively little

time to calculate. However, the time-consuming part of the calculation is the CB

pricing model calculations that employ binomial tree methods. Using the current

portfolio, a single risk scenario using a 100-step tree model will take approximately 13

minutes to complete on an HP Z420 workstation with Xeon 3.06 GHz CPU and 12 GB

memory. For certain risk simulation, over 100 scenarios have to be used, and in certain

cases, due to time constraints, linear interpolation methodology is used to produce risk

numbers without calculating. This method is acceptable where the parameter changes

are small; however, for larger parameter changes or combinations of parameter

changes, this method produces inaccurate results. Currently, the system calculates all

the scenarios in similar calculations paths, and the calculations required for different

scenarios vary depending on the number of factors. To implement this, requires

various logics to make the system an adaptive processing system, and this method is

discussed in detail in Chapter 5. To calculate a single risk scenario, the process

sequence is shown in Table 4.7, and this process has to be performed for every

scenario. The number of scenarios to be calculated depends on market conditions and

analysis requirements by fund managers or by investors and auditors. Hence, the time

required to complete the full calculation depends on a number of factors, such as what

type of derivative is in the portfolio, type of scenario, number of calculation steps used

in the mathematical models, and so forth.

Front Office Trading

Systems

Risk Analysis Trading

Systems

Risk Reporting

Systems

SQL Server

Databases

Risk Scenario

Calculation

Systems (MS-Excel)

Derivative Instruments

Financial Models

(VBA)

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

50

Table 4.7: Risk calculation process sequence

Process Description

(1) Acquire Data This process will calculate the data using the SQL stored

procedures and return a result set to the client MS-Excel

application. The SQL stored procedure uses linked servers

to get data from different SQL servers to calculate the

required data. The MS-Excel application then sets the data

for calculation in the input data ranges.

(2) Scenario Selection This process sets the scenario parameters for the

calculation. The scenario data is maintained in the SQL

database.

(3) Calculation

This process is an MS-Excel calculation using MS-Excel

formula and add-on VBA functions that utilise various CB

models to calculate the number of output parameters for

selected scenarios.

(4) Save Calculated output data and corresponding input data are

saved in the SQL database table with timestamp. The saved

data will be used in various systems to produce different

types of reports.

To calculate every scenario for each position, a number of ways of grouping the

process and data. Three types of distributions exist: Data distribution, process

distribution, or a combination of both. The data distribution splits the input data into

smaller groups according to the process requirements and allocates each group of data

to a particular calculation node workstation using algorithms to specify how to group

the data efficiently. The process distribution allocates certain processes to certain

calculation node workstations, and algorithms specifying how to allocate processes to

the calculation node workstations efficiently. However, for testing calculation time

efficiency, the same process is used in each calculation node workstation, and the data

is grouped equally for comparing serial and distributed processing calculation time

improvements. Hence, for testing the distributed process-based calculation efficiency

using a workstation clusters, only data decomposition is used. Implementations of both

data and process decompositions methods are discussed in detail in Chapter 7.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

51

4.10 Message Passing Interface for the Calculation Cluster

The messaging passing interface for the Northwest cluster (MPI-NW) is designed to

facilitate the communication between calculation nodes and the management

controller within the distributed processing cluster. Each calculation node has its own

message repository where the messages are stored and processed. The message

repository is protected, and only the distributed processing management controller or

local workstation has these access rights. Each calculation node has two main types of

message repositories, calculation node-related and application-related, and has

multiple sub-repositories for storing different types of messages. Currently, six

messages used to communicate with calculation nodes, as shown in Table 4.8.

Table 4.8: Distributed processing control message descriptions

Message Description Message

Initialise Workstation WSINI.message

Open MS-Excel Application XLOpenApp.message

Start MS-Excel Calculation XLCalc.message

Execute VBS Application VBSExec.message

Execute EXE Application EXEExec.message

Read Application Parameter AppParam.message

The message object has three methods for message management: Send, Check, and

Delete, and each method has sub-classes. Figure 4.11 shows how the message class is

constructed for each type of message.

Figure 4.11: Message construction methods

Send Message

Check Message

Delete Message

All Nodes

Single Node

Local Node

NW-MPI

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

52

The message object also has three methods for repository management: Create, Check,

and Delete, and each method has sub-classes. Figure 4.12 shows how the message

class is constructed for each type of command.

Figure 4.12: Repository construction methods

The distributed processing system implemented using the workstation cluster in the

company’s infrastructure is mainly intended for reducing calculation time of existing

applications. In addition, it facilitates the future developments of various applications

that require more processing power. A typical scenario is reducing a calculation time

of 60 minutes that is usually required in a single workstation to around 3 to 4 minutes.

Similarly, many hours of batch processing applications could be reduced to under an

hour of batch processing using a distributed calculation cluster with multiple

workstations. Hence, the processing time is considerably high compared with

communication time, and the implemented message passing communication method

that uses the TCP/IP is adequate for the required purpose. Therefore, in this scenario,

communication time delays have negligible or minimal impact on overall

performance. Although it is possible to reduce the calculation time even further by

using inter-process message passing technologies, to implement the inter-process

communication requires complex programming using various languages and involves

modifying the existing applications to work with the inter-process communication

infrastructure. This approach is not feasible for the current state of the applications

used in the company. However, it may be possible in the future developments that

these techniques can be implemented. Figure 4.13 shows workstation message

repositories, and Figure 4.14 shows the message and data flow process.

Create Repository

Check Repository

Delete Repository

All Nodes

Single Node

Local Node

NW-MPI

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

53

Figure 4.13: Workstation message storage repositories

Figure 4.14: Message and data flow process

HD

SSD

RAM

Disk

CPU

Memory

Cache

Workstation (Node)

Message

String

Distributed Process

Management
Controller

Start

End

Send

Message/Data

Execute Process

Gather and

Reduce

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

54

4.11 SQL Database Design for Distributed Processing System

The database is the core part of the distributed processing data management system

and holds the business rules, cluster parameters data, and calculation data. The

database is a part of the cluster controller system; hence, the database resides in the

dedicated cluster controller server. Most of the database entities are designed to

facilitate different types of calculation cluster configurations, and they have the

flexibility to develop further if required in the future. The database is a relational

database; hence, it has a certain order that connects each database object, and different

types of database object can be added when needed. Table 4.9 lists SQL database table

types and their roles.

Table 4.9: SQL database table types and their roles

Table Type Description

Calculation Node

Reference Table

All the calculation node workstation’s details are maintained in

the calculation node’s reference table. This table is the main

driver table, and the data is used for collecting various parameters

in the cluster.

Parameter

Table

Used for maintaining the system parameters and metadata for the

distributed processing systems operations.

Temporary

Tables

A number of temporary data holding tables that used for

collecting each calculation node’s various status data during the

calculation node checking process. The data collected in these

tables are used by the cluster controller for monitoring the cluster

status and operations.

Computer System

Parameter Tables

Used for holding each calculation node’s system-related data.

The data is provided by the Windows operating system’s WMI

classes. Collected data is used by the cluster controller for

monitoring.

Event Log

Table

Used for capturing critical events during the cluster operations;

captured events data is used to analyse and monitor varous events

during the cluster operations.

Historical Data

Tables

Used for capturing historical data; captured data is used for

monitoring and analysing cluster performance and applying

effective scheduling algorithms.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

55

4.11.1 SQL Database Table Design

Each table is designed to represent each entity, and a logical relationship between the

entities corresponds to the relationship between SQL tables. System data tables are

populated using WMI classes to capture the appropriate data from each calculation

node workstation. Some data in the main table (tbl_NW_COMPUTER) is maintained

manually for monitoring purposes, and this table has most of the calculation node

workstation-related data. Table 4.10 shows SQL table names ad their descriptions.

Table 4.10: SQL table names and their descriptions

Table Name Description

tbl_APPLICATION Application-related data

tbl_BATCH_DATA Batch processing-related data

tbl_BATCH_ID Batch ID-related data

tbl_COMPUTER_TEMP Workstation parameters

tbl_CPU Workstation CPU-related data

tbl_CPU_CORE Workstation CPU core-related data

tbl_CPU_TEMP CPU parameters collected by WMI classes

tbl_CPU_USAGE Workstation CPU usage data

tbl_DISK_DRIVE_TEMP Workstation HD-related data

tbl_EVENT_LOG Event/Error-related data for the whole system

tbl_MEMORY Workstation memory-related data

tbl_MEMORY_TEMP Memory parameters collected by WMI classes

tbl_MEMORY_USAGE Workstation memory usage data

tbl_NETWORK_ADAPTER_TEMP Workstation network card-related data

tbl_NW_COMPUTER Workstation data

tbl_NW_COMPUTER_SCAN Workstation status monitoring data

tbl_NW_DP_RISK_DATA_TEST Risk calculation test data

tbl_PARAM_DATA Distributed processing system parameters

The SQL database is mainly used to manage the following:

 Calculation node-related parameters

 Cluster controller-related parameters

 Historical performance data

 Calculation-related data

 Batch processing-related data

 Calculation performance-related data

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

56

The following parameters are collected on demand using WMI classes:

 Workstation hardware and software data

 Memory capacity data

 CPU, CPU-core, and CPU speed data

 Storage devices data

 Network card data

 Network connection speed data

The following parameters are continuously collected using WMI classes:

 Workstation availability related data

 Memory usage data

 CPU usage data

 Calculation start and finish times

 Processing events, warnings, and errors

Collected data is used by the cluster management controller for allocating tasks to

each calculation node to perform a distributed calculation in an efficient way. How

these collected data are used for efficient scheduling and load balancing algorithms is

discussed in detail in Chapter 5. The SQL RDBMS database has sets of rules to which

the data must comply for efficient database operations, and for distributed process

management database, the rules are split into two categories: Hardware-based rules

and software-based rules. Figure 4.15 shows the hardware-related entity relationship,

and Figure 4.16 shows the software-related entity relationship.

The hardware-related entity relationship logical rules are as follows:

Each management controller can have many clusters

Each cluster can have many calculation nodes

Each calculation node can have many CPU units

Each calculation node can have many memory units

Each calculation node can have many network cards

Each calculation node can have many storage devices

Each CPU can have many cores

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

57

The software-related entity relationship logical rules are as follows:

Each application can have many programs

Each program can have many calculations

Each calculation can have may processes

Each process can have many events

Each event can have many time-slots

Figure 4.15: Hardware-related entity relationship

Figure 4.16: Software-related entity relationship

Controller

CPU Unit

CPU-Core

Cluster

Memory Unit Storage Device NIC

Application

Program

Calculation

Process

Event

Time Slot

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

58

4.12 Distributed Processing System Design

The distributed processing system that has been implemented is based on the Beowulf-

class cluster [9, 10]. The cluster consists of a head node, referred to as a management

controller node, and a number of processing nodes, referred to as calculation nodes.

The management controller node acts as the cluster controller and has the full

responsibility of managing the whole cluster and coordinating with the calculation

nodes. The calculation nodes are responsible for acting as calculation engines

according to the commands given by the management controller. Figure 4.17 shows

each calculation node’s configuration, and Figure 4.18 shows the high-level schema of

the distributed processing cluster. The distributed processing system consists of the

following modules:

 Cluster management control server

 Calculation nodes

 Distributed processing management SQL database

 Distributed processing controller software

 Calculation node controller software

 Message-passing interface

 Distributed applications

Figure 4.17: Calculation node configuration

HD Calculation Node

Controller

Distributed Process

Applications

Message Repository

CPU

Memory

NIC

Workstation (Node)

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

59

Figure 4.18: Calculation cluster setup high-level diagram

4.12.1 Distributed Processing Management Controller

The cluster controller node is configured with the SQL server database that is used for

the cluster management system’s data repository. The distributed processing

management software has full access to each calculation node and required network’s

access security settings. The controller node is also used for calculating certain

summary calculations at the end of the distributed processing calculations and

performs intermediate calculation checks during the distributed processing. The

distributed processing controller software is the main part of the distributed processing

system that manages the overall systems. The controller communicates with

calculation nodes and assigns tasks to each calculation node accordingly. The

controller software is designed using Microsoft Access, SQL Server, VBA, VBScript,

and WMI components to comply with the existing technologies used in the company.

The controller application’s user interface is shown in Appendix B. The controller has

the following functionalities:

WS (1) WS (2)

WS (3)

WS (N)

Gigabit Switch

Distributed Processing

Management Server

Northwest LAN

Network

User Workstations as Calculation Nodes

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

60

 Check each workstation for availability.

 Collect hardware, software, and operational data from each workstation.

 Communicate with calculation node’s controller.

 Allocate tasks to each calculation node.

 Send and receive messages from calculation nodes.

 Manage load balancing within the calculation cluster.

 Manage adaptive processing to reduce calculation time.

 Process summary calculations and SQL query processing.

 Monitor the overall performance and collect various data during the operations.

 Perform diagnostic checks on each workstation.

 Calibrate the cluster to maximise the cluster performance.

Table 4.11 lists workstation selection to act as a calculation node based on workstation

status and Table 4.12 lists control server data and message repository paths. Figure

4.19 shows the workstation selection process, and Figure 4.20 illustrates the

workstation availability checking process. Figure 4.21 shows the message send

process, and Figure 4.22 shows the task allocation process.

Table 4.11: Calculation node workstation’s selection criteria

Workstation

Status

Description

Not responding Cluster controller queries each workstation before the allocate

calculation task to check whether the workstation is available.

Workstation may not be available due to fault or being

switched off.

Fully excluded Some workstations are manually excluded from the cluster due

to various reasons such as fault or removed for maintenance.

Excluded during

working hours

Some of the workstations are excluded from participating

within the calculation cluster during working hours. These

workstations are used by fund managers and traders, and these

workstations can be used during out of trading hours.

Usage index Workstation usage index calculated using current, historical,

and point-in-time CPU and memory usage data.

Calculation index Workstation calculation index calculated using historical

calculation speed, CPU speed, number of cores, and memory

size.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

61

Table 4.12: Cluster control server data and message repositories

Repository Path Description

\\WS\NWDP\WS\MSG\ Workstation Messages Repository

\\WS\NWDP\WS\DATA\ Workstation Data Repository

\\WS\NWDP\APP\MSG\ Application Messages Repository

\\WS\NWDP\APP\DATA\ Application Data Repository

\\$SRV\NWDP\CONTROL\MSG\ Controller Messages Repository

\\$SRV\NWDP\ CONTROL\DATA\ Controller Data Repository

\\$SRV\NWDP\ CONTROL \APP\ Controller Applications Repository

Figure 4.19: Workstation selection process

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

62

Figure 4.20: Workstation availability checking process

Figure 4.21: Message sending process to each calculation node

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

63

Figure 4.22: Task allocation process to each calculation node

The calculation index and usage index is not used in the distributed processing tests

conducted that are described in this chapter; however, these are used in load balancing

algorithms that are explained in detail in Chapter 5. Because the distributed process

controller is used across all the calculation clusters, the initial design incorporates all

the required functionalities that are needed for the forthcoming investigations in the

following chapters.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

64

The distributed processing controller has three modes of operations: Manual mode,

Scheduler mode and Auto mode. These operation modes are used depending on what

type of application is used in the distributed processing system. In manual mode, the

controller application’s user interface is used for managing the systems, and it has

many functions for on-demand calculations and testing. The manual mode has the

following functionalities:

 Select application for distributed processing.

 Check workstation status.

 Collect workstation parameters.

 Send messages to workstation.

 Select group of workstations to act as calculation node.

 Execute batch processes.

 Test prototype applications.

In the scheduler mode operation, the system executes predefined tasks at certain time

intervals. These tasks are set as batch processing tasks, and each batch is independent

from each other; hence, even if one batch failed, the system continues to process the

next batch, and so on. During scheduler mode operation, all the available workstations

will be utilised and most of the batch processing is executed during out office hours,

such as during nights or weekends. Hence, maximum processing power is available for

batch processing tasks. The auto-start process is a quick way of initiating the

distributed calculation process as a single command rather than a sequential process.

The auto-start process checks all the workstations that are available for calculation

using defined sets of rules and assigns tasks accordingly. The auto-start is a type of

batch command that starts all required processes in order and at once on demand.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

65

4.12.2 Calculation Node Setup

Certain selected workstations in the company’s network are configured as calculation

nodes for the distributed processing cluster. The workstations are used by the company

staff and categorised by their usage during working hours. Hence, the workstations

that are heavily used will be excluded from participating within the cluster during

working hours, and how the workstations participate within the cluster calculation is

managed by the cluster’s control manager software. The followings are checked by the

cluster controller for each workstation before allocating calculation tasks:

 Workstation is manually excluded.

 Workstation is responding.

 Workstation is excluded during working hours.

Each workstation is configured to act as a calculation node with the following

configurations:

 Cluster access security settings.

 Database access rights for distributed processing database.

 Remote access rights for remote management.

 Protected file share directories for local data and messages.

 Communication protocols for message processing.

 Local copy of distributed processing applications installed.

 Calculation node controller installed.

When the workstation boots up, the calculation node controller starts automatically,

stays in the memory, and listens for messages from the cluster controller. When a

message arrives from the cluster controller, the calculation node controller processes

the message and executes instructions accordingly. Each workstation has a protected

directory with multiple subdirectories for distributed processing applications and

message processing. This directory is protected with required security settings. Table

4.13 lists the calculation node’s message repository paths.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

66

Table 4.13: Calculation node data and message repository paths

Directory Description

C:\NWDP\ Shared distributed processing directory

C:\NWDP\WS\DATA\ Workstation-related data

C:\NWDP\WS\MGS\ Workstation-related messages

C:\NWDP\APP\$AppName$\Data\ Application-related data

C:\NWDP\APP\$AppName$\Msg\ Application-related messages

4.12.3 Workstation Usage

Most of the workstations used in the company can be categorised as shown in Table

4.14, and Table 4.15 lists the hardware and software configuration of each calculation

node workstation.

Table 4.14: Workstation usage categorisation

Usage Status Description

Heavy use These computers are employed by users who perform multi-tasks,

compute-intensive analysis, etc. These computers are used by

financial analysts and traders.

Medium use These computers are mostly used by general staff who rarely use

the computer to full potential. These computers are used by

administrative staff.

Occasional use These computers are for special applications and/or terminal

sessions, etc. This type of computer is occasionally or rarely used.

Never used

These computers are standby, surplus, or older computers. These

computers are not utilised by any users.

Each workstation in the company’s network is maintained at a high standard for 24x7

operations, and the following procedures are carried out frequently by the

infrastructure team to ensure that the workstations are operating at optimal level:

 Hardware diagnostics

 Operating system updates

 Application and utility software updates

 Security software updates

 Password and access rights control

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

67

Table 4.15: Hardware and software configuration of each calculation node workstation

Parameter Description

Model HP Z420

CPU Intel Pentium Xeon processor

Single CPU with four cores (2.86 GHz per core)

Memory 12 GB DIMM

Hard Disk Primary: 128 GB SSD

Secondary: 500 GB SATA

Operating System Windows 7 (64)

Application Microsoft Office Professional

Northwest applications

Utility applications

The company’s network infrastructure is managed and maintained at a high standard

with minimum outage time. Hence, the distributed processing cluster is a part of the

existing network and no need to perform extensive hardware and software tests before

each batch calculation. Only distributed processing-related tests are performed before

the calculation starts. All the workstations are configured for 24x7 operations;

however, in certain situations, users might switch off their workstations or the

workstations may become faulty or be removed for maintenance. Some workstations

are manually excluded from the calculation cluster due to their heavy use, and these

workstations are fully excluded. However, they are used in out-of-office hours when

these workstations not used and are fully available. For example, traders’ and fund

managers’ workstations are not used as calculation nodes during office hours. Each

workstation is continuously monitored for memory and CPU usage, and the collected

data is stored in the SQL database to analyse the workstation usage every 10 minutes.

The collected data is used for calculating each workstation’s usage index and

allocating calculation tasks to each calculation node depending on each workstation’s

usage index. How these indexes are used is described in detail in Chapter 5.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

68

4.12.4 Workstation Security

Workstation security is managed by the company’s IT policy and procedures, and

unauthorised access to the company network is not allowed. Only authorised staffs

have access to the workstation using a network username and password.

 Protected by username and password for each user

 Local administrator rights are restricted

 Group security policy to limit the local access and control

 Physical cover removal alert system

 Restrictions on removal media usage

4.12.5 Windows 7 Operating System

Distributed processing system utilises the operating system for both management and

communication processes, and it employs the WMI libraries for various tasks. The

Windows 7 operating system manages the followings for each workstation at the

operating system level:

 Memory management

 Process management

 Network control and communication

 Multiuser management

 Virtualisation management

 Security management

 User interface

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

69

4.12.6 Calculation Node Controller

The calculation node controller resides in the calculation node workstation and is

responsible for communicating with the cluster controller software, local applications,

and calculation engine. It collects data from the workstation such as hardware

configuration, monitoring software status, and calculation performance. The

calculation node’s controller software is designed using VB6 and VBScript for

consistency with the company’s applications. However, it can be designed using any

suitable programming language. The business logic is a crucial part of the controller

design, and the programming language depends on the business environment that is

used. The calculation node controller is a standalone EXE application that

automatically starts when the workstation boots up. It has a timer-based looping

mechanism and listens for messages from the cluster management controller. When a

message is received from the controller, the calculation node controller executes

appropriate actions accordingly. The application is designed as a standalone EXE

program for simpler implementation and management for ease of implementation;

however, it can be designed as a Windows service. The calculation node controller

performs the following:

 Process messages from cluster controller.

 Collect workstation parameters and submit to the cluster controller.

 Collect CPU and memory usage in predefined interval and save as XML file.

 Collect performance parameters and send to the cluster controller.

 Open MS-Excel-based applications.

 Execute VBS, EXE, and CMD applications.

 Send events, warnings, and errors to cluster controller.

Every workstation in the calculation cluster is continuously monitored for various

parameters, and the cluster management controller and the calculation node controller

coordinate together to collect the parameters from each workstation to maintain them

in a failproof status to maximise the cluster performance. It has the option to process

messages from the cluster management controller to monitor and diagnose the

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

70

calculation node hardware and software. However, these functionalities are fully

utilised in the further investigation that is described in the forthcoming chapters. Every

10 minutes, CPU and memory usage of each workstation is captured by the calculation

node controller and saved in a local XML file. Data is recorded for monitoring

between 6.00AM and 9.00PM and saved as a local XML file. The saved XML file is

used by the cluster management controller for analysing workstation usage. On a daily

basis, the saved data is uploaded to SQL database tables for historical analysis. Figure

4.23 shows the calculation node’s controller process. Figure 4.24 shows the

calculation node’s controller message process.

Figure 4.23: Calculation node controller process

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

71

Figure 4.24: Calculation node controller message processing

The calculation node controller has a five-second delay, and it checks for messages in

the workstation message repository; when a message, it processes the message

accordingly. The cluster management controller sends a metadata XML file and a

separate message to instruct the calculation node controller to read the file. Once the

read message has been received, the calculation node’s controller processes the

message, reads the metadata XML file, and executes processes accordingly. Three

types of messages processed by the calculation node controller:

o Excel application open

o Executable application execute

o Collect parameter or monitor workstation CPU and memory usage.

For MS-Excel applications, the calculation node controller only opens the MS-Excel

application and once the application has been opened, then onwards, the application

takes control of it. For executable applications, the calculation node controller

executes the application using a shell command. If any errors are encountered while

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

72

opening an MS-Excel application or running a shell command to execute, then the

calculation node controller logs the error description to an event log table. Otherwise,

the applications will take control of it once it has been successfully opened or

executed. The distributed processing is performed efficiently by coordination between

the cluster controller, the calculation node controller, and the applications that are

utilised within the cluster. Figure 4.25 shows the application execution process. Figure

4.26 presents the MS-Excel application calculation process.

Figure 4.25: Application execution process in each node

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

73

Figure 4.26: MS-Excel application’s calculation process

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

74

4.12.7 Process Distribution Method

The calculation process is distributed by selecting the appropriate processes that can

be executed as parallel calculations using the domain decomposition method. All other

processes that cannot be parallelised are calculated by the controller node server as

serial calculation. These processes are mostly single calculations that require high

levels of dedicated processing power such as summarising calculations and query

processing. For illustration, if four process A, B, C, and D need to be calculated and

only process B is distributed {B(1), B(2)…B(N)}, where N is number of calculation

nodes in the cluster, the others (A,C,D) are not suitable for distributed calculation.

Figure 4.27 shows how optimised processing can be achieved by a combination of

serial and distributed processing cluster.

Figure 4.27: Process distribution as distributed and serial calculations

4.12.8 Total Calculation Time

The total calculation time required for a given calculation task to complete consists of

several types of time delays. In calculation time only testing, the calculation time is

mainly concerned with the wall clock time for the calculation to be completed.

However, in the real application simulation scenario, a number of factors need to be

considered. For the selected distributed processing test scenario, six separate time

delays are involved per calculation, as shown in Figure 4.28.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

75

Figure 4.28: Total processing time of each node

where

TI Initialising the applications time

TD Fetching input data from database and setting data time

TP MS-Excel processing time (calculation time)

TU Updating calculated data back to SQL database time

TF Finalising the applications time

TM Messaging time (Total time taken for send and receive messages)

In comparison, messaging time (TM) is small compared with calculation time (TP) and

the total calculation time depending on various factors such as network latency, SQL

server calculation time, data transfer time, and in addition, how the distributed

processing is executed. A few scenarios can introduce certain time delays, such as if

an MS-Excel instance is not running on the particular calculation nodes, then the

distributed processing controller sends messages to each calculation node to start and

initialise the MS-Excel application; this will cause initialisation time delay (TI). In

addition, if the MS-Excel application is running on the calculation node and has to be

closed at the end of a calculation, then the distributed processing controller sends

messages to the calculation node to finalise and close the MS-Excel application; this

will cause finalisation time delay (TF). Furthermore, where each batch process of

calculation requires new input and output datasets, then the distributed processing

controller sends messages to each calculation node to fetch the data from the SQL

server for each calculation; this will cause time delay (TD + TU). Figure 4.29 shows the

cluster’s total processing time. Total calculation time for a given task k in a calculation

node n is shown in Equations (4.17) and (4.18).

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

76

))()()()(()(
1

iTiTiTiTnT FIc

N

i

pK

 (4.17)

M

j

cc jtiT
1

)()((4.18)

where

TK (n) Total calculation time taken by node n to complete the task k

Tp(i) Processing time taken by process i

Tc(i) Total communication time taken by process i

tc(j) Discrete communication time for message j

TI(i) Initialising time taken by process i

TF(i) Finalising time taken by process i

N Number of processes required to complete task k

M Number of communications messages required to complete task k

Figure 4.29: Total processing time of cluster

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

77

4.13 Distributed Processing System Tests

For testing and comparing of different parameters under controlled conditions,

equation 4.11 that described in section 4.2.1 is used. In addition, workstations with

similar hardware are selected to act as calculation nodes in the calculation cluster.

With respect to test data, the input dataset is extracted from the current portfolio, and

the current portfolio consists of complex nonlinear datasets; however, for testing, a

suitable dataset is selected with similar data input and output points. The testing

environment is established for investigating the following scenarios:

 Serial and distributed processing-based calculation performance comparison.

 Correlation between numbers of workstations used in the cluster and total

calculation speed improvements.

 Office hours and out-of-office hours batch processing comparisons.

 Analysis of the cluster performance in real-time simulation scenario.

For testing the distributed processing performance, the company’s risk analysis system

is used with appropriate modifications that are needed for work within the distributed

processing cluster. The risk analysis system that is currently used is based on MS-

Excel and it has the following properties:

 Connections to SQL database for input and output data.

 Built-in MS-Excel functions are used for various calculations.

 Company’s proprietary financial models written in VBA are used for

calculations.

 Uses batch processing using schedulers and on-demand-based manual

calculation process for producing risk reports.

The risk calculation system is modified to work within the cluster by implementing

additional programming to perform as a calculation service in the calculation node.

The modified system has the following functionalities that are added to act as a

calculation service within the cluster:

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

78

 Processing distributed processing messages.

 Processing metadata input and output parameters.

 Autonomous data processing and calculations based on system timer loop.

For test data, Japanese CBs (convertible bonds) are selected for calculating various

risk scenarios. The data is extracted from the current portfolio that has many CBs

issued by many countries; however, the Japanese CBs have simpler structures

compared with other countries such as China. Hence, the dataset selected is highly

suitable for various performance comparisons within the controlled test environment.

The test dataset has 75 input parameters, 32 output parameters, and 10 different risk

scenarios. All the tests and experiments performed are under certain controlled

conditions to ensure that the data, applications, techniques, and methods used are

consistent throughout the tests and experiments to guarantee that the results can be

compared accordingly. However, in real-time trading scenarios, the parameters will

continuously change, and these investigations are discussed in detail in Chapter 7. In

addition, further investigations performed on remote process management to make the

system more stable and robust by utilising various control mechanisms and load

balancing techniques, and these are discussed in Chapter 5.

4.13.1 Workstation Allocation Method

Because the workstations used as calculation nodes are employed by the users to

various degrees, all the workstations are continuously screened for availability and

system status. Some workstations are manually excluded due to various factors such as

hardware or software fault or being under maintenance. Some workstations have rule-

based exclusions such as only being available during certain periods to avoid

disruption to certain users as discussed earlier. How these workstations participate in

the calculation cluster is based on various rules that are managed by the distributed

processing controller software. However, the risk scenario test is conducted during

out-of-office hours to ensure that the selected workstations are fully available for

processing.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

79

4.13.2 Calculation Node Test

For testing the performance of each calculation node, local data is used and by using

the local data, the total calculation time measured only includes the MS-Excel

calculation time (TP), that is, the calculation time taken by MS-Excel to complete the

task from start to finish. Hence, the calculation performance is measured against the

number of CBs and the time taken for the calculation to be completed. As expected,

the number of CBs and the calculation time are inversely correlated, as shown in Table

4.16 and Figure 4.30. However, for performing distributed calculation using a number

of calculation nodes, the SQL Server database, and message passing, the calculation

time reduction becomes nonlinear and complex due to various factors.

Table 4.16: Correlation between number of CBs and total calculation time

Calculation Time (sec) Number of CBs

2,663 4,000

1,394 2,000

747 1,000

415 500

195 250

78 125

Figure 4.30: Correlation between number of CBs and total calculation time

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

80

4.13.3 Distributed Processing Tests Using CB Financial Model

Using equation 4.11, the following parameters are used for testing a single risk

scenario, that is, using volatility (v) is equal to 1% and using the domain

decomposition method to distribute the calculation to each calculation node. Test

parameters are as follows:

Number of CBs used: 350

 Number of scenarios: 1 (v=1%)

 Number of calculation nodes: 18

The calculation tests have demonstrated that by increasing the calculation nodes, the

calculation time is reduced substantially. However, the reduction in calculation time is

nonlinear due to the following factors:

 The financial CB model calculation itself is nonlinear in nature.

 Hardware related nonlinearities.

 Network related latencies.

 SQL server data processing and time delays due to updates

 CPU and memory usage is varied for each calculation node workstation.

 Data transfer time delays.

In addition, a minimum calculation time is observed depending on time delays TI, TD,

TU, and TF. Hence, the benefit of using multiple calculation nodes to reduce the

overall calculation time depends on the minimum calculation time limit. Therefore, the

risk scenario’s calculation application, the calculation task distribution, has to be

optimised to get the maximum benefit from the distributed processing implementation.

The efficient task distribution algorithms using load balance methods to reduce the

calculation further are investigated in Chapter 5. Table 4.14 and Figure 4.29 show the

correlation between the number of calculation nodes and total calculation time.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

81

The time delays, TI, TD, TU, and TF are constant for small datasets, and if the dataset is

getting larger, in the range of over 10,000 calculations per node, then these time delays

can be considerably higher. By excluding initialising, finalising time delays, and using

the same hardware configurations, the calculation time reduction is inclined towards

linear reduction. Hence, the calculation reduction is inversely proportional to the

number of calculation nodes for linear types of calculations. Therefore, it is proved

that in practice, calculation time can be reduced further by increasing the number of

calculation nodes. However, a certain limit that calculation time no longer improves

with the increase of calculation nodes. This is due to the minimum calculation time

required to complete each process, and any reduction below this limit will have no

impact on further improvements.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

82

Table 4.17: Number of calculation nodes against calculation time

Number of

Calculation Nodes

Calculation

Time (sec)

Speedup

Factor

1 289 1.00

2 271 1.07

3 115 2.51

4 96 3.01

5 96 3.01

6 83 3.48

7 88 3.28

8 75 3.85

9 75 3.85

10 72 4.01

11 79 3.66

12 76 3.80

13 68 4.25

14 61 4.74

15 79 3.66

16 65 4.45

17 64 4.52

18 62 4.66

Figure 4.31: Number of calculation nodes against calculation time

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

83

4.13.4 Minimum and Maximum Calculation Time

When a group of workstations is selected to execute calculations, the calculation time

varies within the group and depends on various factors mentioned earlier. Table 4.18

and Figure 4.32 show the minimum and maximum calculation time discrepancies. By

observing the minimum and maximum calculation times for calculation-only

execution, that is, excluding initialisation (TI) and finalisation time (TF) delays, the

system behaviour leans towards linear inverse correlation between calculation time

and number of calculation nodes.

Table 4.18: Minimum and maximum calculation time for each node

Number of

Calculation

Node

Minimum

Time (sec)

Maximum

Time (sec)

Minimum

Speedup

Factor

Maximum

Speedup

Factor

1 290 290 1.00 1.00

2 156 160 1.86 1.81

3 102 121 2.84 2.40

4 88 96 3.30 3.02

5 76 91 3.82 3.19

6 71 79 4.08 3.67

7 62 72 4.68 4.03

8 59 69 4.92 4.20

9 54 69 5.37 4.20

10 51 69 5.69 4.20

11 53 66 5.47 4.39

12 44 66 6.59 4.39

13 42 66 6.90 4.39

14 38 60 7.63 4.83

15 24 58 12.08 5.00

16 23 56 12.61 5.18

17 21 57 13.81 5.09

18 19 51 15.26 5.69

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

84

Figure 4.32: Minimum and maximum calculation time for each node

4.13.5 Using Simplified Linear CB Financial Model

For further testing and proving the concept of the process distribution and calculation

time relationship, a linear binomial tree-based CB model is used to calculate gamma

values for varying volatility and parity. However, in real-time trading scenarios, the

gamma calculation is considerably complex and inherently nonlinear. For testing

purposes, the nonlinear parameters are removed and the model is simplified, so that

the testing can be carried out in an environment with controlled parameters. Table 4.19

and Figure 4.33 show the calculation results indicating linearly correlated reduction in

calculation time with number of calculation nodes. Table 4.20 and Figure 4.34 show

the minimum and maximum calculation times for linear model calculations. To test

the linear CB model, the input parameter for the equation 4.11 is changed those

nonlinear parameters in dataset {X} is set to zero values. The test parameters used for

the linear calculation model are as follows:

Number of CBs: 350

 Number of calculation nodes: 16

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

85

Table 4.19: Linear model calculation time and calculation node correlation

Number of

Calculation Node

Calculation

Time (sec)

Speedup

Factor

 1 133 1.0

 2 68 2.0

 4 35 3.8

 8 18 7.4

16 10 13.3

Figure 4.33: Linear model-based calculation time and calculation node correlation

Table 4.20: Linear correlation between calculation time and number of calculation

nodes

Number of

Calculation Node

Minimum

Time (sec)

Maximum

Time (sec)

Minimum

Speedup

Factor

Maximum

Speedup

Factor

 1 290 290 1.0 1.0

 2 156 160 1.9 1.8

 4 88 96 3.3 3.0

 8 59 69 4.9 4.2

16 23 56 12.6 5.2

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

86

Figure 4.34: Linear correlation between calculation time and number of calculation

nodes

4.13.6 Multiple Scenario Calculations on Same Dataset

For testing multiple scenarios on the same dataset, the following is implemented:

 Same data set supplied to each calculation node as local XML file.

 Each node calculates multiple scenarios and saves the data in local XML file.

 Single node calculates all scenarios.

Using equation 4.11, volatility (v) is used as varying parameter for scenario testing:

Number of CBs: 350

 Number of scenarios: 10 (v = 1% to 10% step size=1)

 Number of calculation nodes: 10

The calculation result shows that the multiple scenario calculation on the same dataset

is a more efficient way of reducing calculation time for a given batch and, as expected,

a linear inverse correlation between calculation node and total calculation time is

observed. Table 4.21 and Figure 4.34 show the correlation between calculation time

and number of calculation nodes for the multiple scenario calculation.

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

87

Table 4.21: Number of calculation nodes used vs calculation time for multiple

scenario calculations

Number of

Calculation Nodes

Calculation

Time (sec)

Speedup

Factor

 1 5,726 1.0

 2 3,107 1.8

 3 2,377 2.4

 4 1,983 2.9

 5 1,254 4.6

10 613 9.3

Figure 4.35: Number of calculation nodes used against calculation time for multiple

scenario calculations

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

88

4.14 Chapter Summary

The investigation conducted has demonstrated the original contribution to the

company specific design methods and implementation techniques using workstations

as calculation nodes to form a highly specific calculation cluster for the company

requirements. The aim is to investigate whether it is possible to implement a suitable

solution for improving calculation efficiency for compute-intensive calculations. In

addition, the goal is to be able to use existing technologies in the company to find an

alternative, cost-effective, and optimally efficient way to utilise the workstation cluster

for distributed processing that is easy to use and facilitates functionalities that are

simple to manage. The original aim of the investigation is to set up a distributed

processing cluster using existing workstations that are used by company staff as

calculation nodes and a separate dedicated server as a distributed processing

controller. The tests and investigations have shown promising results that the

company’s compute-intensive applications can be modified accordingly to work with

the bespoke-type distributed process-based calculation system. The test results confirm

the expected calculation time improvements under a controlled environment. This has

proved that it is feasible to design and develop a bespoke-type distributed processing

system using the company’s existing hardware and software to provide a solution for

calculation time limitations problems that are currently faced by the company. Even

though the test results show considerable improvements in calculation time for

particular applications, in real-time trading applications, a number of complex issues

have to be addressed; these issues are investigated, and possible suitable solutions and

recommendations are discussed in detail in Chapter 7 and 8.

The tested distributed processing approach has proved that using a new and innovative

bespoke-type development that is particularly suited for the company’s hardware

infrastructure and the applications used in the company is a better solution rather than

following the standard distributed processing approach that requires specialised

hardware and software configurations. The approach that is taken to design and build a

loosely coupled distributed processing system that uses existing hardware and familiar

software and programming environment has many advantages compared with highly

specific integrated distributed processing that requires specialised hardware, software,

 Chapter 4: Distributed Processing Cluster Design Using Network of Workstations

89

and programming environments. Hence, the bespoke-type loosely coupled designed is

proved to be the most suitable solution for the company in its current situation, and

this approach is used across all the calculation clusters implemented within the

company that are described in detail in the forthcoming chapters.

The calculation time improvements using a bespoke-type distributed processing

system are as expected, and the investigation was performed using a single MS-Excel

application with linear type of datasets. However, most of the applications used in the

company have nonlinear application structures and datasets, and in addition, various

limitations and business regulation-related issues that need to be considered for the

distributed processing system to be fully implemented using live trading scenarios

with different cluster configurations. One of the methods of improving calculation

time for nonlinear dataset applications is to use the suitable load balancing techniques

within the distributed processed calculation cluster, and this is discussed in detail in

Chapter 5. Even though, the tests conducted are under control environment, the

simplified implementation of distributed processing system using existing hardware

and software with appropriate modification has proved to be the most suitable and

innovative solution for the company. In addition, it has demonstrated the possibilities

of further improvements that can be made to the existing system that will considerably

improve the calculation efficiency across all the business areas in the company.

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

90

5 Implementation of Adaptive and Self-Tuning Task

Scheduler and Load Balancing

5.1 Introduction

This chapter describes the original design techniques and methods used for distributed

process load balancing in the distributed processing system that includes scheduling,

resources monitoring and management. This is the second phase of the investigation

that explained in section 1.4 in Chapter 1. A number of techniques, methods, and

algorithms have been researched and successfully implemented in various types of

distributed parallel processing systems for the last 20 years. However, some

techniques are highly specialised and unique to particular systems such as operating

system-level hyper-threading with multiple-core CPUs and parallel threads. For

Northwest’s distributed processing system, the methods have to be simpler, bespoke-

type algorithms using certain types of well-tested robust techniques. Some variations

of existing load balancing techniques have been applied to ensure that the algorithms

are simple to implement and easy to modify for different types of applications that are

used within the distributed processing system. This is a new unique approach to solve

the complex load balancing within the distributed applications.

The static and dynamic balancing techniques were tested on the workstation cluster

with varying hardware- and software-specific parameters. For Northwest’s distributed

processing system, the methods have to be bespoke-type load balancing algorithms

that include some specific application-related parameters as well as hardware- and

software-related parameters. Some variations of static and dynamic load balancing are

applied with task allocations algorithms that are capable of supporting different types

of applications that are currently used. Due to the critical nature of the calculations

involved and the high reliability requirements of the Northwest infrastructure, the

static load balancing algorithms performed well compared with dynamic load

balancing, which is mostly applied to protect from unpredictable events within the

distributed processing cluster. The dynamic load balancing is highly suited for fine-

grained processes, and coarse-grained processes are less suited for efficient dynamic

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

91

load balancing. Hence, for the Northwest systems, the static load balancing is the

primary load balancing system due to its robustness and reliability, and the dynamic

load balancing is used as a secondary load balancing mechanism to safeguard against

calculation node failure during the execution phase. Detailed tests are performed for

certain applications for comparing the performance of various methods and the

techniques that can be applied to the system. These tests are performed to check

different methods that include application-specific parameters to evaluate the best

possible combination that can provide a better solution for the company’s applications.

The test results show the expected improvement in calculation times, and it is possible

to implement an efficient static and dynamic load balancing for the company’s

applications with appropriate data and functional decomposition methods.

5.2 Load Balancing Software

The Northwest distributed processing system is based on bespoke design; hence the

load balancing mechanism has to be a bespoke-type system. Consequently, the

software that controls the load balancing mechanism is designed as part of the

distributed processing controller software. Different types of schemes are implemented

for load balancing and task allocation using the following methods:

 Appropriate control systems used to manage the load balancing systems.

 Current and historical load index measures are used.

 Local and global load balancing with hierarchical system organisations with

local load information.

 Incorporation of a set of tools at the operating system level and implementation

of different load balancing policies depending on the system architecture and

application requirements.

 Hardware, software, and application-related parameters incorporation for the

load balancing algorithms design.

The control systems used for managing the load balancing is explained in Appendix A.

Figure 5.1 shows the distributed processing controller with incorporated load

balancing.

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

92

Figure 5.1: Distributed processing controller design with load balancer

5.3 Load Balancing Process

The load balancing process is managed by distributed process controller in

coordination with load balancing system. Load balancing system allocates tasks to

each calculation node based on defined algorithms. Two type of load balancing system

is used, Static Load Balancing and Dynamic Load Balancing. In addition, two

methods are used for task allocations, Data Decomposition and Process

Decomposition. For dynamic load balancing, two extra calculations are added to each

calculation cluster as auxiliary calculation nodes to protect against the calculation

node failures. These auxiliary nodes are fully capable of replicating any of the nodes

in case of failure of any of the cluster nodes. Static load balancing is used as primary

load balancing and dynamic load balancing is used as a secondary load balancing.

Each calculation node is loaded with calculation node controller that communicates

with distributed process controller to update the status of the calculation node. The

distributed process controller instructs the load balancing systems to allocate tasks to

each calculation node based on various task allocation algorithms. How these

techniques are implemented is discussed in detail in the forthcoming sections. Figure

5.2 illustrates the task allocation process to each calculation node.

Workstation

Controller

Distributed

Process

Controller

Load

Balancing

System

Task

Scheduling

System

Resources

Management

System

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

93

Figure 5.2: Task allocation process

where

n Number of nodes in the calculation cluster

NC Calculation node controller

N(i) Calculation node i

T(i) Task allocated to calculation node i

N(A1), N(A2) Auxiliary calculation node 1 and 2

{T}=[T(1), T(2),(T3)…… T(n-1),T(n)]

5.4 Auxiliary Calculation Nodes

Two methods are implemented to protect against calculation node failures: the task

relocation method that transfers the failed task to another available calculation node,

and the auxiliary calculation node on standby that takes over the failed task. For

dynamic load balancing and improvement of the robustness of the calculation cluster,

two auxiliary calculations are introduced to the calculation cluster. The auxiliary node

is loaded with all the process instructions and associated data for all the processing

nodes; hence, if any of the calculation nodes fail, the auxiliary node will act as the

failed node during the distributed processing execution phase with minimum delays.

Hence, to avoid process transfer delays, two auxiliary workstations are placed on

standby with all the processes and the required data sets loaded, and these

workstations can replicate any of the calculation nodes during the execution phase.

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

94

The setup has the following advantages:

 Greatly reduces the complexity of rescheduling the tasks among the active

calculations nodes.

 Improves the calculation efficiency and overall calculation time.

 Improves the reliability and robustness of the calculation cluster.

However, these workstations will only be used when an unexpected event happens

during the execution phase, and if no disturbance during the processing, then these two

workstations will be in a redundant state. The main purpose of the auxiliary node-

based configuration rather than the rescheduling-based approach is that the reliability

and the robustness of the system are far more important than the cost of maintaining

two extra workstations within the cluster. For testing how the context switching

algorithms transfer the process to the auxiliary calculation node from a failed

calculation node, three types of simulations are used, as follows:

 Using the calculation node controller to send a message to the distributed

processing controller notifying that the local process has exceeded the lapsed

time limit.

 Shutdown one of the calculation nodes randomly by using a VBScript

application; this will trigger a calculation node failed event process by the

distributed process management controller.

 Using a VBScript application in the calculation node to simulate the high CPU

and memory usage and, in effect, slow down all the processes running in the

calculation node. This will cause the allocated task to take longer to complete

and will trigger a process time lapsed event. The process time lapsed event is

captured by the calculation node controller and a message is sent to the

distributed processing controller notifying that the local process has exceeded

the lapsed time limit.

Once the distributed processing controller has received a message from the calculation

node controller, it activates the dynamic load balancing mechanism that will activate

the calculation node’s local task in the auxiliary calculation node.

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

95

5.4.1 Process and Dataset Mapping

Every calculation task has an associated dataset mapped by the distributed processing

controller as part of the static load balancing process, and the mapping may not be

changed during the execution phase. Table 5.1 lists each calculation node’s data and

process mapping, and Table 5.2 lists auxiliary node data and process mapping.

Calculation node set: nNNNN ,......, 21

Process set: nPPPP ,......, 21

Data set: nDDDD ,......, 21

Table 5.1: Process and data mapping for each calculation node

Node Process Data Set

N1 P1 D1

N2 P2 D2

N3 P3 D3

. . .

. . .

. . .

N(n-1) P(n-1) D(n-1)

Nn Pn Dn

Table 5.2: Auxiliary calculation node process and data mapping

Node Process Data Set

Na P1 D1

Na P2 D2

Na P3 D3

Na . .

Na . .

Na . .

Na P(n-1) D(n-1)

Na Pn Dn

For each calculation node: iii DPN ,

For auxiliary calculation node: nna DDDPPPN ,......,,,......, 2121

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

96

For example, if calculation node m failed, then the distributed processing controller

sends a message to the auxiliary calculation node to activate the process m. During this

process, the node m will be redundant and will not be used for any calculation during

the entire batch processing. The time delays caused by a process failure within a single

calculation node for a given batch of calculations is considerably small compared with

the overall calculation time for the batch concerned. However, if the process failure is

more frequent and process rescheduling is activated during the execution phase by the

dynamic load balancing algorithms, then the calculation time delays become more

complex and unpredictable. Due the complex and critical nature of calculations used

within the calculation cluster, the unpredictable behaviour has to be eliminated as

much as possible, and the expected calculation time delays during the operation should

be able to be predicted. Hence, the cluster hardware and software have to be kept in

good working order and maintained routinely to ensure that the failure rate is minimal.

Figure 5.3 shows the auxiliary nodes process and data mapping, and Figure 5.4 shows

the calculation nodes process and data mapping to a single auxiliary node.

Figure 5.3: Auxiliary nodes process and data mapping

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

97

Figure 5.4: Calculation nodes process and data mapping to a single auxiliary node

5.5 Memory Use in Each Calculation Node

The memory usage of the each calculation node is monitored using WMI API in a

predefined interval by the distributed processing control management software. The

interval is set to every 10 minutes, and the collected memory usage data is saved in the

cluster controller’s management database. The collected data is used to analyse the

memory usage profile for each calculation node to monitor the performance and the

calculation efficiency of each node. As expected, three months average memory usage

and randomly selected working day average memory usage have similar profiles, as

shown in Figure 5.5. This is due to certain users employing particular applications as

part of their job function and these applications consuming a certain amount of

memory. However, certain users such as analysts and traders use many types of

memory-consuming applications that consume larger amounts of memory compared

with a typical user. Hence, certain workstations always use high amounts of memory,

and other workstations use smaller amount of memory. The distributed processing

management software has to monitor to ensure that the calculation node has enough

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

98

free memory for processing; otherwise, the workstation concerned should be excluded

from the calculation cluster for particular batch processing. Figure 5.5 shows a typical

memory usage profile for calculation nodes, and Figure 5.6 shows the typical memory

usage on a working day on a single workstation.

The applications used in the calculation cluster are more CPU-intensive than memory-

intensive; hence, the memory capacity has less impact than CPU speed. All the

workstations used within the company have minimum memory of 12 GB and highly

utilised workstations have 32 GB memory; hence, the available memory is always

high enough for the program requirements within the distributed batch processing.

However, due to the operating system’s and software’s utilisation of memory, this may

cause memory overload to fill all the available memory, and this will result in the

workstation freezing for a period of time. These types of scenarios have to be avoided

to ensure that each workstation within the calculation cluster has enough memory to

process a given task without memory bottlenecks.

Figure 5.5: Memory usage profile for calculation nodes

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

99

Figure 5.6: Typical memory usage on a working day (Node ID: NHKWST62)

5.6 CPU Use in Each Calculation Node

All the workstations used in the company have various profiles of CPU usage

depending on how these workstations are used. In most cases, a majority of the

workstations are highly utilised during the working hours, and these workstations are

employed by the users in various capacities. However, certain CPU usage profile

patterns are observed during the working hours, and these patterns are used for static

load balancing algorithms. In addition, they are used for forecasting calculation time

profiles using fuzzy logic rule-based methodologies. The CPU usage data is collected

by the distributed processing management controller using WMI API at predefined

intervals of every 10 minutes, and the collected data is stored in the cluster control’s

manager database for historical analysis and calculating weighted average CPU usage

index. The distributed processing controller will allocate tasks accordingly or exclude

workstations from the calculation cluster depending on the historical CPU usage index

and current CPU usage index. Some of the workstations are permanently excluded

from taking part in the calculation cluster due to their heavy usage during working

hours, and these workstations are used for highly critical operations. However, these

workstations are part of the calculation cluster when they are not employed by the

users, such as during non-working hours.

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

100

Few workstations are used at high-level utilisation with high CPU usage, and these

workstations are employed by analysts, traders, and fund managers for highly critical

day-to-day operations. Hence, these workstations are most likely to be excluded from

the calculation cluster nodes during the working hours by the distributed processing

management software. The distributed processing management software monitors

these workstations continuously to decide whether to include or exclude selected

workstations depending on the workstation’s CPU usage index thresholds values.

Figure 5.7 shows the average CPU usage profile of the cluster, and Figure 5.8 shows

the average CPU usage profile of heavily used workstations. Some workstations are

used at a minimum level with considerably low CPU usage, and these workstations

can be utilised within a distributed processing cluster to achieve maximum processing

power for a given batch of tasks. The distributed processing control manager software

monitors these workstations continuously to allocate more tasks to these workstations

depending on current and historical CPU usage index. Figure 5.9 shows a typical CPU

usage profile of a lightly used workstation.

Figure 5.7: Average CPU usage of the calculation cluster

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

101

Figure 5.8: Average CPU usage of heavily used workstation

Figure 5.9: Average CPU usage of lightly used workstation

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

102

5.7 Static Load Balancing Implementation

The static load balancing techniques were tested on the Northwest system with various

hardware and software configurations using the calculation cluster’s hardware- and

software-related parameters and including application-related parameters. For testing

purposes, the Northwest risk calculation system is used with different portfolios that

have varying calculation times. The calculation cluster-related hardware and software

parameters are generic and are calculated using CPU speeds, memory availability, and

workstation usage-related parameters. The application-related parameters are specific

to company-related applications. Hence, the formulation of static load balancing

algorithms has to incorporate these parameters to facilitate the cluster controller to

allocate calculation tasks accordingly to each calculation node to ensure that the

calculation cluster operates at load-balanced condition based on the calculation node’s

performance index, usage index, and application-related parameters.

5.7.1 Calculation Node’s Performance Index

The calculation node’s performance index is evaluated for each workstation within the

cluster using a calibrating application to measure the time taken to complete the

particular batch of calculations. The index mainly depends on the workstation model,

memory size, and CPU speed. The index is measured when the workstation is in an

idle state to ensure that each calculation node is measured at a similar calibration

point.

5.7.2 Calculation Node’s Usage Index

The node’s usage index is measured by collecting data from each calculation node at a

predefined interval, and the index is calculated using collected CPU and memory

usage data for each calculation node. The usage index has two values for each

calculation node: weighted average usage number and duration-based usage number.

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

103

The weighted average usage number is a single number for each calculation node; in

contrast, the duration-based usage number is based on time duration usage of CPU and

memory, and this can involve daily or hourly intervals. Hence, the availability index

continuously changes for each calculation node depending on various factors such as

how often the workstation is employed by the users and what type of applications are

used. Due to the varying nature of this index, a user workstation may have a weighted

average index of 3 (30% usage); during the peak hours, the duration based index may

be 8 (80% usage); and during out-of-office hours it will be 0 (0% use). Hence, the

weighted average index is an indicator to include or exclude a particular workstation

from the calculation cluster for task allocations. However, the time duration-based

values are used for allocating tasks to each calculation node depending on the time of

the day that the batch process is executed.

5.7.3 Application-Related Parameter

The application-related parameter is based on what type of application is used in the

calculation cluster. In certain applications, no need for the application parameter to be

included in the static load balancing models. However, for the risk calculation

application that is used for testing the static load balancing algorithms, an application-

related parameter called the binomial tree-node number () that is associated with

each CB’s theoretical value calculation using the binomial tree model. The value of

depends on each CB’s maturity date and the theoretical value calculation date; hence,

the CBs that have same maturity dates will have the same values, and CBs with

different maturity dates will have different values. Therefore, a portfolio that has

multiple CBs with different maturity dates will have varying values, and this causes

load imbalance in the number of calculations needed to complete each CB’s

theoretical value calculation. By implementing, each CB’s values in the static load

balancing algorithms reduce the calculation time imbalance between the calculation

nodes. The binomial tree-node number () is calculated using the CB model that

described in section 4.2.1.

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

104

The is a benchmarking number that measures the number of tree-nodes required per

derivative to complete the theoretical value calculation. The application parameter is

an application-specific number that is related to each financial model calculation; for

example, the binominal method and the trinomial method for the same derivative have

different values. The tree-node number is calculated using reference models to find

the number of calculations needed for each security. This number will vary daily and

depends on a number of factors, and the tree-node number is used as part of the task

allocation and load balancing algorithms.

5.7.4 Binominal Tree-Node Number

The binomial tree-node number is an application-specific parameter that is related to

CB theoretical value calculation using binomial tree model. The number depends on

what type of mathematical model is used for calculating the theoretical value for each

CB, and the value is equal to the tree-node points needed for a selected CB to derive a

theoretical value at a given calculation date. At each tree-node point, a number of

calculations are performed, and each tree-node output will decide the next tree-node

data inputs, and so on. Between each tree-node is called a step size. Figure 5.10 shows

the tree-node for the binomial method with two steps.

Figure 5.10: Tree-node in the binomial tree method

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

105

The tree-node value depends on specific parameters; however, for testing purposes,

the following parameters are used: CB’s maturity date, theoretical value calculation

date, and binomial tree model. The binomial tree-based CB pricing model and the tree-

node number calculation are shown in Equations (5.1) and (5.2), respectively.

 }}1:{2{1:{}11:{ IJNINJ (5.1)

)()(
1

1

1

1

jxjx
Ni

i

j

N

j

 (5.2)

where

N Number of steps

x(j) Calculation function at binomial tree-node j

i and j are arbitrary variables

The correlation between step size and the total number of calculation nodes is

exponential; hence, a nonlinear increase in calculation time as the CB’s maturity date

is further from the calculation date. Table 5.3 and Figure 5.11 show the correlation

between step size and tree-node number. This is a simple example that demonstrates

that varying the maturity date can cause a calculation imbalance within the cluster.

Table 5.3: Correlation between step size and tree-node number

Step size (N) Tree-node number ()

100 10,201

200 40,401

300 90,601

400 160,801

500 251,001

600 361,201

700 491,401

800 641,601

900 811,801

1000 1,002,001

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

106

Figure 5.11: Correlation between step size and tree-node

For a given portfolio, the CB maturity date for each CB can vary from a few months to

many years. This will cause calculation time discrepancies for a selected calculation

date, and by implementing the tree-node number within the load balancing algorithms,

the CBs can be distributed accordingly to complete the calculations at the same or

similar time intervals. The distributed processing controller keeps track of each CB’s

tree-node number using static data from the portfolio database and distributed

processing management database. For testing the nonlinear nature of tree-nodes within

a portfolio, a test portfolio selected with 427 CBs, which has varying maturity dates.

This portfolio is used as an input dataset to test the load balancing algorithms that

described in detail in the forthcoming chapters. The CB parameter calculations and

tree-node implementation methods that are used for load balancing tests in this chapter

is described in detail in section 4.21 in Chapter 4. Table 5.4 lists the selected

portfolio’s maturity date distribution.

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

107

Table 5.4: Tree-node distribution within a selected CB portfolio

Years to

maturity

Number of

CBs

Total number

of tree-nodes ()

CBs Tree

nodes

<=1 74 5,118,666 17.33% 0.55%

1 > and <=2 33 12,347,316 7.73% 1.32%

2 > and <=3 35 31,356,539 8.20% 3.34%

3 > and <=4 72 125,001,756 16.86% 13.33%

4 > and <=5 190 527,338,291 44.50% 56.24%

5 > and <=6 5 21,259,220 1.17% 2.27%

6 > and <=7 3 19,355,400 0.70% 2.06%

7 > and <=8 2 16,808,402 0.47% 1.79%

8 > and <=9 0 - 0.00% 0.00%

9 > and <=10 11 126,228,776 2.58% 13.46%

10>= 2 52,900,898 0.47% 5.64%

5.7.5 Fixed Step Size Calculation

In the fixed step size calculations method, each CB theoretical value calculation is

similar regardless of its maturity date. This is due to how the binomial tree is

constructed during the calculation, and the number of tree-nodes needed to derive the

CB price for each CB mainly depends on step size. However, for highly complex CBs

like Chinese CBs, the number of calculation nodes required depends on various factors

and also depends on certain events such as call date that considerably affect the CB

theoretical values. Equation (5.3) shows the calculation of the step size:

N

TM
d

 (5.3)

where

d Number of days in a single step

N Number of steps

M Maturity date

T Calculation date

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

108

Therefore, regardless of the maturity date of each CB, the fixed number of steps

calculation method will adjust the stepping days to match the step size. In this method,

calculation time can be reduced considerably and can be set to calculate using a linear

method by employing batch processing. However, this method has some serious flows

as far as financial mathematics is concerned. For more accurate theoretical value

calculations, the calculation step size must be high enough, and the theoretical value

accuracy increases with increase in the calculation step size. However, in a certain

threshold point at which no improvement to the theoretical value accuracy occurs with

increasing step size; that is, where the calculation step size forces the days in a single

step to be less than 1 day. For example, if a CB has 1,000 days to maturity from the

calculation date, and the calculation step size used is 100, then each step size is 10

days per step; that is, every period of 10 days is treated as a single logical day for

calculation purposes. This will reduce the accuracy of calculation due to certain events

that can happen during the 10-day period, such as put date, call date, or similar events,

and these events can cause a considerable shift in each CB’s theoretical value

calculation. Therefore, to capture these events, the step size must be one day or less.

Hence, the most mathematically suitable step size is one day per calculation step.

Using one day per calculation step will produce the most accurate theoretical value

calculation for a given model.

Currently, the company uses a fixed number of step sizes because of calculation time

constraints, and usually, the step size of 100 is specified for all the CBs. This method

has an advantage of reducing the calculation time for the entire portfolio. Hence, for

fixed step size calculations, using the static load balancing technique is adequate to

produce a desired calculation time reduction using the workstation cluster. For fixed

step size calculations, the CBs are equally divided between calculation nodes using the

average-based pro-rata method. Figure 5.12 shows the fixed step-size calculation

method.

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

109

Figure 5.12: Fixed step-size calculation processing bypassing intermediate dates

5.7.6 Variable Step Size Calculation

In the variable step size calculations method, each CB has its own calculation step size

to calculate the theoretical value based on the CB’s different parameters. Hence, to

complete the full calculation, each CB has to go through each calculation step to

complete the calculation, and the time taken to complete the calculation depends on

the CB’s parameters for simply structured CBs. However, for complex-structured

CBs, the number of steps depends on several factors such as underlying share price

and other parameters. For testing purposes, Japanese CBs are used due to their simpler

structure and ease to set up testing platforms to evaluate and compare the results using

different static and dynamic load balancing techniques.

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

110

5.7.7 Maturity Date-Based Step Size Calculation

The simplest form of variable step size calculation is using the CB’s maturity date and

calculation date to evaluate the number of steps needed to calculate the CB’s

theoretical value. The difference between the maturity date and the calculation date is

calculated as the number of days to maturity, and this is the number that is used to

calculate the number of calculation nodes required to derive the CB’s theoretical value

for the selected calculation date. The calculation of number of days to maturity is

shown in Equation (5.4):

)(TMINTD (5.4)

where

D Number of days to maturity

M Maturity date

T Calculation date

 INT Integer value round-down to floor

Hence, to make the financial models use a single day as each calculation step, the

number of days to maturity is set equal to the calculation step size. The total

calculation step size is calculated as shown in Equation (5.5):

 DN (5.5)

where N is the calculation step size.

By substituting N in Equation (5.3), the value of d becomes equal to 1. Hence, to keep

the single calculation step size equal to one day, the total step size will change

depending on the calculation date and maturity date of the CB concerned. This will

introduce complex nonlinearities for the selected portfolio that has many CBs with

different maturity dates compared with the fixed step size method that is fixed for all

the CBs regardless of their maturity dates, as explained earlier. Hence, the static load-

balancing controller is designed to incorporate the variable steps in the form of an

application parameter, that is, the binomial tree-node number ().

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

111

5.7.8 Hybrid Method

The hybrid method is a way of reducing calculation time by limiting the tree-node

number () for CBs with long maturity date. The following method is applied to

calculate the number of tree-nodes required to calculate the theoretical value per CB.

Using Equations (5.6) and (5.7), the hybrid method rule is set as follows.

 DN (5.6)

 TMD (5.7)

having

If M > Y then N = (Y - T)

If M <= Y then N= D

where

N Number of steps

D Number of days to maturity

M Maturity date

T Calculation date

Y Maturity date limit

The justification for this method is that the behaviour of CBs with long maturity date

is different from that of CBs with short maturity date, and the impact of limiting the

calculation step size is minimal for these CBs. Hence, using the hybrid method greatly

reduces calculation time compared with the variable step size method while keeps the

calculation accuracy to acceptable level.

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

112

5.8 Static Load Balancing Techniques Used in Northwest System

To test the static load balancing algorithms, the risk calculation system is used. This

system uses the domain decomposition method to distribute data across cluster

calculation nodes and uses coarse granularity for task division. Hence, more

processing power is allocated for executing task calculations than for communication

between the calculation node and controller. This method has the advantage of

utilising maximum processing power for a given task; however, it has some

disadvantage in applying particular load balancing algorithms commonly used in

distributed processing clusters such as round-robin, first in first out (FIFO), and

dynamic task allocations or similar. Therefore, the load balancing algorithms have to

be designed in a certain way that is suitable for the particular scenario and application

used in the calculation cluster. The generic form of a bespoke-type load balancing

algorithm for a given scenario can be expressed as in Equation (5.8):

),,,(NAUCfL (5.8)

where

L Load balancing factor

C Node’s calculation speed-related load balancing parameter

U Node’s usage-related load balancing parameter

A Application-related load balancing parameter

N Number of calculation nodes within the selected cluster

The calculation performance index is a benchmarking number that measures the

calculation speed of each calculation node for a given calculation scenario. The

calculation index is evaluated when a workstation is in the idle state using a calibration

program. Hence, the index value is measured to compare the speed of a particular

workstation with other workstations within the cluster in an idle state using local data.

Faster machines have higher calculation index values, and slower machines have

lower index values. The calculation index can be calibrated in periodic intervals. For

each workstation, the index is determined based on the following factors:

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

113

 Model of the workstation used as calculation node.

 CPU speed and number of cores in each CPU.

 Calculation node’s memory size.

 Historical calculation time.

For the risk scenario system, the calculation index is formulated using Equation (5.9):

t

n
c (5.9)

where

c Calculation index

n Number of tree-nodes

t Time required for the calculation to complete

The usage index is a benchmarking number that measures the calculation node

availability for a given period. The usage index is calculated using historical CPU and

memory usage data per workstation. Hence, the usage index value is measured to

compare the availability between each workstation for a given period. The most

available workstations have a lower usage index, which is used as part of the task

allocation and load balancing algorithms. Observation shows that CPU usage and

memory usage in the user workstation are correlated, and this is due to the type of

applications used. Hence, for evaluating usage index, both CPU usage data and

memory usage data are employed. The usage index is calculated using Equation

(5.10):

2

mp
uT

 (5.10)

where

uT Usage index at interval T

p CPU usage percentage averaged over the past 30 days

m Memory usage percentage averaged over the past 30 days

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

114

At each binominal tree-node, a few calculations are performed; however, these

calculations are common for each tree-node. Hence, the time required to calculate the

functions of each tree-node is assumed equal. For example, the calculation time

requirement for a five-year maturity CB is 25 times more than the one-year maturity

CB. Hence, the tree-node calculation number is an important part of the load balancing

algorithms, and the number of CBs allocated to each MS-Excel service is determined

by the tree-node number () in coordination with other appropriate load balancing

parameters. Using the tree-node number, usage index, and calculation index, Equation

(5.8) can be expressed as Equation (5.11):

 (5.11)

where

L(k) Calculation node load balancing factor for node k

C(k) Calculation index for node k

uT(k) Usage index at time range T for node k

(i) Tree-node number for security i

m Number of securities in the batch

N Number of calculation nodes in the cluster

Hence, the load balancing condition can be expressed as shown in Equation (5.12):

)1()(kLkL (5.12)

When the calculation is performed in a similar hardware-based workstation outside the

office hours, the load balance factor becomes as expressed in Equation (5.13):

)(
1

)(
1

i
N

kL
m

i

 (5.13)

where

 1)1()(kuku TT

 1)1()(kCkC

)(
)(

)(1
)(

1

i
kC

ku

N
kL

m

i

T

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

115

In practical implementations, the load balancing condition is shown in Equation

(5.14):

 (5.14)

where e is load balancing error.

The purpose of the load balancer is to make e become zero as in Equation (5.15):

 0e (5.15)

Each node’s calculation time can be expressed as shown in Equation (5.16):

)()()(kkCkT (5.16)

where

T(k) Calculation time for node k

C(k) Calculation index for node k

 Number of binomial tree-node number for node k

Hence, total calculation times for a given batch j of tasks is as shown in Equation

(5.17):

)()()}(),....(),({)(21 jTjTjTjTjTMAXjT FIN (5.17)

where

TI Initialisation time of batch j

TF Finalisation time of batch j

Tk(j) calculation time of batch j at node k

N Number of calculation nodes in the cluster

 MAX Maximum value of the dataset

Number of CBs allocated to each calculation node is determined using Equations

(5.18), (5.19), (5.20) and (5.21):

ekLkL)1()(

)(k

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

116

m

i

iP
0

 (5.18)

N

i

ii

kk
Pkp

1

))}(1()({

))(1()(
)(

 (5.19)

)}(),......2(),1({

)(
)(

NCCCMAX

kC
k (5.20)

)}(),({)(kukuMAXk CT (5.21)

where

uT(k) Historical time based usage index for node k

uC(k) Current usage index for node k

C(k) Calculation index for node k

P Total number of tree-node number within selected batch

p(k) Number of calculations allocated to node k

m Total number of CBs

N Number of calculation nodes in the cluster

λ(k) Rebased calculation index for node k

β(k) Rebased usage index for node k

MAX Maximum value of the dataset

The rebased calculation index values range from 0 to 1, where 1 means the most

powerful workstation within the network or selected set, and 0 is assigned to the

workstation not suitable for calculation. Because the workstations used in the

Northwest network are similar models with similar configurations, the rebased

calculation index ranges from 0.7 to 1.0. The rebased usage index value ranges from 0

to 1, where 1 indicates a fully used workstation that is usually not available for

distributed processing within the network, and 0 is assigned to the workstation that is

fully available for distributed processing. For the out-of-office-hour batch-processing

scenario, all workstation usage indexes are set to zero; that is, all the workstations are

fully available.

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

117

The total number of tree-nodes, P required for a selected batch is calculated using

Equation (5.18), where is an application-related tree-node number for each CB and

m is the total number of CBs in the selected calculation batch. The number of

calculations tasks p(k) allocated to node k is calculated using Equation (5.19), where

λ(k) is the rebased calculation index for node k and β(k) is the rebased usage index for

node k. The rebased calculation index λ(k) for node k is a parameter that has values

between 0 to 1 for calculation node k based on each cluster node’s measured 30-day

moving average calculation index within a selected cluster. The rebased calculation

index λ(k) is calculated using Equation (5.20). The rebased node usage index β(k) for

node k is a parameter that has values between 0 to 1 for calculation node k based on

each cluster node’s measured 30-day moving average usage index uT(k) and current

usage index uC(k) within a selected cluster. The rebased node usage index β(k) is

calculated using Equation (5.21). If every calculation node within the selected cluster

has the same hardware and software configurations, that is, the rebased calculation

index for all calculation nodes is equal to 1 and the calculation nodes are fully

dedicated, the rebased usage index for all calculation nodes is equal to 0. Hence, in

this case, the load will be distributed equally to each calculation node and the number

of calculations allocated to node k (p(k)) is equal to the total number of calculations P

divided by the number of calculation nodes N.

5.8.1 Task Allocation Based on Fixed Step Size Method

In this method, the CBs are divided equally for each calculation node, regardless of the

tree-node number (). Table 5.5 lists the calculation time per calculation node for the

fixed step method. In this method, each calculation node completes its calculation

simultaneously or within a similar timeframe if the hardware of the calculation node is

similar. In this test case, step size is set to 100 for all the CBs in the batch. In this

method, all 427 CBs in the test portfolio divided equally as possible and allocated to

each calculation node. Hence, nine calculations node allocated 43 CBs and one

calculation node allocated 40 CBs.

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

118

Table 5.5: Fixed step size tree-nodes and calculation time

Workstation

Name

Number of

CBs

Total Number of

Tree-Nodes ()

Calculation

Time (min)

NHKWST55 43 438,643 0.124

NHKWST57 43 438,643 0.124

NHKWST60 43 438,643 0.124

NHKWST61 43 438,643 0.124

NHKWST66 43 438,643 0.124

NHKWST75 43 438,643 0.124

NHKWST92 43 438,643 0.124

NHKWST93 40 408,040 0.115

NHKWST97 43 438,643 0.124

NHKWST99 43 438,643 0.124

5.8.2 Task Allocation Based on Variable Step Size Method

In this method, the CBs are divided equally for each calculation node, regardless of

tree-node number (); however, the calculation step size is different for each CB

depending on the CB’s maturity date. Table 5.6 lists the calculation time per

calculation node using the variable step size method. In this method, each calculation

node has different calculation times that cause load imbalance within the system.

Table 5.6: Balanced CB-based allocation and calculation time for variable step size

Workstation

Name

Number

of CBs

Total Number of

Tree-Nodes ()

Calculation

Time (min)

NHKWST55 43 89,500,142 25.2

NHKWST57 43 16,726,252 4.8

NHKWST60 43 110,795,906 31.2

NHKWST61 43 135,947,170 38.4

NHKWST66 43 91,730,109 25.8

NHKWST75 43 88,325,001 25.0

NHKWST92 43 89,689,771 25.4

NHKWST93 40 115,970,501 32.8

NHKWST97 43 77,794,677 22.0

NHKWST99 43 121,235,735 34.2

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

119

5.8.3 Task Allocation Based on Balanced Tree-Node Method

In this method, the CBs are allocated to each calculation node using Equation (5.19)

and based on the tree-node number () per calculation node. Table 5.7 lists the

balanced tree-node number and calculation time for the variable step size with

balanced tree-node method. Hence, in this method, it is possible to achieve a load

balanced condition that provides considerable improvement in calculation efficiency,

and in addition, it improves the theoretical value calculation accuracy per CB. For

imbalanced tree-nodes with variable step size calculation, the calculation index

standard deviation is 9.18, and for the balanced tree-nodes with variable step size

calculation, the calculation index standard deviation is 1.31. Therefore, the tree-node

balanced method has better load balancing performance than the CB balanced method.

Table 5.7: Balanced tree-node-based allocation and calculation time for

variable step size

Workstation

Name

Number

of CBs

Total Number of

Tree-Nodes ()

Calculation

Time (min)

NHKWST55 31 94,289,346 26.6

NHKWST57 82 93,782,160 26.4

NHKWST60 33 95,772,829 27.0

NHKWST61 28 96,715,936 27.2

NHKWST66 43 95,678,562 27.0

NHKWST75 49 95,772,458 27.0

NHKWST92 46 94,663,622 26.8

NHKWST93 26 81,068,088 22.8

NHKWST97 49 96,052,571 27.2

NHKWST99 40 93,919,692 26.4

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

120

To test the hybrid method performance that described in section 5.6.8, Equations (5.6)

and (5.7) are used to allocate an appropriate number of calculation tasks to each

calculation node. Table 5.8 lists the hybrid method CB allocations, and Table 5.9 lists

the calculation time analysis for different methods used for load balancing and task

allocations.

Table 5.8: Hybrid method CB allocation per calculation node, and time required to

complete the calculations

Workstation

Name

Number of

CBs

Total Number of

Tree-Nodes ()

Calculation

Time (min)

NHKWST55 38 9,538,038 2.6

NHKWST57 65 9,523,025 2.6

NHKWST60 38 9,485,062 2.6

NHKWST61 39 9,345,519 2.6

NHKWST66 42 9,514,794 2.6

NHKWST75 48 9,472,377 2.6

NHKWST92 41 9,336,313 2.6

NHKWST93 32 8,032,032 2.2

NHKWST97 46 9,565,989 2.6

NHKWST99 38 9,538,038 2.6

Table 5.9: Distributed calculation time analysis for different calculation types

Calculation Type

Maximum

Time (min)

Minimum

Time (min)

Average

Time (min)

STDEV

Fixed step size

 0.124 0.115 0.123 0.003

Variable step size

CB balanced
38.400 4.800 26.480 9.180

Variable step size

Tree-node balanced
27.200 22.800 26.440 1.310

Hybrid

2.600 2.200 2.560 0.130

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

121

As shown in Figure 5.13, the hybrid method is able to reduce the calculation time

considerably compared to CB-based or tree-node-based load-balancing methods. Even

though fixed step size shows better calculation time performance, the method is an

approximate method and is only suitable for certain type of derivative products.

Figure 5.13: Calculation time per calculation node using hybrid, CB balanced, and

tree-node number balanced methods

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

122

5.9 Dynamic Load Balancing Implementation

For testing dynamic load balancing techniques, most of the hardware, software, and

applications setups are similar to the static load balancing tests. However, for testing

the dynamic load balancing algorithms, some modifications are made to the hardware

and software configurations. The application that used for testing the dynamic load

balancing utilises the CB model that described in section 4.2.1 in Chapter 4. For

testing, six calculation nodes are selected and allocated 10 CBs each; hence, 60 CBs

are used to test the dynamic load balancing algorithms. Two techniques tested for

implementing dynamic load balancing in the Northwest distributed processing system:

process termination detection and context switching. The process termination

detection and context switching algorithms are implemented using adaptive rule-based

methods with task transfer and auxiliary processing. The dynamic load balancing is

only activated after all the tasks are allocated to each calculation node using static load

balancing algorithms and the distributed processing controller sends a message to each

calculation node to start the calculation process. Hence, the dynamic load balancing is

only active while the batch processing is in operation, and the distributed processing

controller manages the dynamic load balancing within the calculation cluster while in

the execution phase. The dynamic load balancing method uses an adaptive rule-based

control, and these rules depend on the system configurations and application

parameters; in addition, this is a logical set of rules and relatively easy to integrate

with load balancing software. The rule set is generally constructed as follows:

[R]: IF [X] = [A] THEN Y= [B]

where

R Rule set

A Input parameter set

B Output parameter set

X Input set

Y Output set

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

123

Thus, m number of rules for n number of datasets is constructed as the following

vector:

R(1): IF

X(1,1)=A(1,1), X(1,2)=A(1,2)….., X(1,n)=A(1, n)

 THEN

Y(1,1)=B(1,1), Y(1,2)=B(1,2)….., Y(1,n)=B(1,n)

R(m): IF

X(m,1)=A(1,1), X(m,2)=A(1,2)….., X(m, n)=A(m, n)

 THEN

Y(m,1)=B(m,1), Y(m,2)=B(m,2)….., Y(m, n)=B(m, n)

Linguistic-type rule sets are constructed as follows:

Rule 1: IF Condition 1 TRUE THEN Activate x(1)

Rule n: IF Condition n TRUE THEN Activate x(n)

Many rule sets [R] for different applications and cluster configurations depend on how

they are implemented under varying conditions, in addition, the input and output

parameters of each rule set are continuously modified by feedback data collection

mechanisms. The adaptation rules are based on each calculation node’s CPU, memory

usage, and calculation performance for each application is used, and these parameters

are captured in the distributed processing management SQL database for historical

analysis. The captured historical data of each calculation node is used to construct the

rule sets depending on the past performance of each calculation node under various

conditions. To test the rule-based context-switched dynamic load balancing, six

workstations are selected as a calculation cluster, and each workstation acts as a

calculation node connected to the distributed processing controller. Each calculation

node is given the same task to complete, and the time required to complete the given

task is measured. Once the tasks are completed, then the task termination time limit is

calculated using the measured calculation time. Using these data, the distributed

processing controller allocates a task to each calculation node and monitors the

performance using timer-based monitoring. If one of the calculation nodes takes more

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

124

than the allocated task termination time limit, then the distributed processing controller

transfers the data and task to another available calculation node depending on the

assigned set of rules. If more than one calculation node available, the distributed

processing controller selects the most powerful calculation node within the available

group and transfers the task to that node. To simulate the delay, a separate CPU and

memory-intensive program is randomly executed while the task is running, and this

will increase the calculation time on that particular calculation node. Eventually, the

task termination time limit will lapse and the distributed processing controller will

transfer the task and data to another available calculation node based on the

established rules. If no calculation node failure, then the calculation time is calculated

using Equation (5.22). If one of the calculation nodes fails, then the calculation time is

formulated according to Equations (5.23), (5.24) and (5.25):

)}(),...,2(),1({ nTTTMAXTC (5.22)

 MDN TTKiTiT])([)((5.23)

)}(),...,1(),(),2(),1({ nTjTjTTTMINTM (5.24)

 xj (5.25)

where

TC Calculation time taken to complete the task

T(i) Time taken to complete the task in calculation node i

TD Time taken to transfer task and data to calculation node

TM Minimum calculation time within given processing group

TN(i) Adjusted new time taken to complete the task in calculation node i

x Failed calculation node

K Task termination time multiplication factor

MAX Maximum value of the dataset

MIN Minimum value of the dataset

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

125

Table 5.10 lists measured values for distributed processing calculation times with and

without calculation node failures using the task transfer method, and Table 5.11 lists

the calculation time taken for different calculation scenarios. Figure 5.14 shows the

minimum and maximum time taken for each failed calculation node. For testing, task

termination time multiplication factor K is set 1.2, that is, if the particular calculation

node crossover the time limit set, which is equal to (T(i) x K), the distributed process

management controller will activate dynamic load balancing algorithms.

Table 5.10: Distributed calculation times with and without calculation node failure

using the task transfer method

Calculation

Node (i)

T(i) (sec) K T(i) x K (sec) TD (sec) TM (sec) TN (sec)

NHKWST68 46 1.2 55 2 36 93

NHKWST63 42 1.2 50 2 36 88

NHKWST66 39 1.2 47 2 36 85

NHKWST65 38 1.2 46 2 36 84

NHKWST62 36 1.2 43 2 36 81

NHKWST61 36 1.2 43 2 36 81

Figure 5.14: Minimum and maximum calculation times for failed calculation node

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

126

Table 5.11: Calculation time taken for different calculation scenarios

Calculation Condition Calculation Time (sec)

Using a single most powerful workstation 216

Using a single least powerful workstation 276

Using cluster with no node failure 46

Using cluster with least powerful node failed 93

Using cluster with most powerful node failed 81

5.10 Auxiliary Processing

In this method, two ways of implementing the auxiliary calculations nodes: having one

node as standby to take over if one of the nodes fails, and having replicated nodes for

each calculation node executing in parallel. In the scenario of one node on standby,

only one extra calculation node is needed, and if one of the main calculation nodes

fails, then the standby calculation node takes over and completes the failed task. This

will cause a certain time delay in the overall processing. In the replicated node

scenario, exactly the same number of nodes is required, all the calculation nodes

execute the tasks at the same time, and a single task is executed in two calculation

nodes at the same time. By doing so, if one of the calculations has failed, it will not

affect the overall calculation depending on how it is implemented. The main

advantage of this method is that the overall failure rate is considerably lower than

when running a single task on a single calculation node. However, for this method, the

number of calculation nodes needed is doubled, for a one-to-two ratio; meanwhile, if

the ratio is one-to-four, then the number of calculation nodes needed is four times

more. This method is highly suited for the calculations that are a combination of time-

critical and data-critical. For high reliability, a ratio of one-to-four is better suited, that

is, the same task is executed in four separate calculation nodes at the same time. These

types of implementations are investigated using CPU-core-level distributed

processing, and they are discussed in detail in Chapter 7. Due to the availability of

lower cost small form factor (SFF) computers, this method is highly feasible and

relatively easy to implement compared with more complex dynamic load balancing

algorithms.

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

127

For testing purposes, a single task executed in two separate calculation nodes at the

same time. Six workstations are selected as calculation nodes, and the job is split into

three parallel tasks that are executed at the same time. For example, if a task failure is

1 in 1,000 in a single calculation node, then, by executing the same task in two

separate calculation nodes at the same time, the failure rate is reduced to 1 in 2 million

for both calculation nodes that are executing same task. For reducing the calculation

time, calculation nodes are paired as the most powerful with the least powerful

calculation nodes within the selected cluster. Table 5.12 lists the calculation time for

each calculation node using auxiliary processing, and Figure 5.15 shows the maximum

and minimum calculation time for each group.

Table 5.12: Calculation time for auxiliary processing using two groups

Calculation Node(i) T(i) (sec) Task ID Group ID

NHKWST68 92 1 1

NHKWST63 84 2 1

NHKWST70 78 3 1

NHKWST66 76 3 2

NHKWST65 72 2 2

NHKWST62 72 1 2

Figure 5.15: Minimum and maximum calculation time for each group and task

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

128

From the collected data, at the normal operating condition, that is, no calculation node

failure, calculation time is 76 seconds; meanwhile, for the worst-case failure, assuming

that two calculation nodes executing the same task that have not failed at same time,

the calculation time is 92 seconds. Hence, the auxiliary processing method proved to

be a very resilient and failproof method for data-critical and time-critical calculations.

For single standby auxiliary node testing, another workstation was selected to act as an

auxiliary node with the calculation time of 29 seconds (TA). Hence, if any of the main

calculation nodes failed, then it will take another 29 seconds to complete the task. In

this case, using Equation (5.23), TD=0, TM=TA, and TN= (T(i) x K +TA). Table 5.13

shows distributed calculation times with and without calculation node failure using the

single auxiliary node method. As can be seen from the data, if no node failures, then

the calculation completes in 46 seconds; meanwhile, if the most powerful node failed,

then it will take 72 seconds to complete, and failure of the least powerful workstation

requires 84 seconds to complete.

Table 5.13: Distributed calculation times with and without calculation node failure

using the single auxiliary node method

Calculation

Node (i)
T(i) (sec) K T(i) x K (sec) TA (sec) TN (sec)

NHKWST68 46 1.2 55 29 84

NHKWST63 42 1.2 50 29 79

NHKWST66 39 1.2 47 29 76

NHKWST65 38 1.2 46 29 75

NHKWST62 36 1.2 43 29 72

NHKWST61 36 1.2 43 29 72

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

129

5.11 Chapter Summary

This chapter has demonstrated the original contribution to the specific design methods

and implementation of load balancing and task allocations techniques for complex

applications. Due to the complex and bespoke nature of Northwest’s software

applications used in the distributed processing cluster, the load balancing techniques

employed have to be highly specific for each application scenario. No single technique

is suitable for all possible scenarios. Hence, the general load balancing algorithms

widely used in known distributed system configurations are not suitable for

Northwest’s distributed processing system. Because of the critical nature of the

calculations, the entire distributed processing has to be completed within the allocated

time limits without any failures or has to operate with minimum failure rates.

Therefore, the static load balancing is a crucial part of the overall load balancing

implementations and must be able to predict the approximate total calculation time for

given batch calculations; meanwhile, the dynamic load balancing acts as a

safeguarding mechanism to improve the distributed processing efficiency.

The applications implemented within the distributed processing systems are mainly

based on coarse-grained task distribution techniques, and coarse-grained processes are

not suitable for efficient dynamic load balancing due to the longer processing time

compared with the fine-grained processes that have shorter processing time. The fine-

grained processes are highly suited for dynamic load balancing and perform well with

different types of dynamic load balancing algorithms. Meanwhile, coarse-grained

processes have very limited performance with dynamic load balancing; hence, very

few dynamic load balancing techniques can be applied. Hence, in the case of

Northwest, the use of a general type of dynamic load balancing has limited advantages

compared with static load balancing. The company’s network configurations and

workstations are highly reliable and continuously monitored for hardware and

software performance, hence, the failure rate of each calculation node is kept minimal.

Therefore, the calculation time for each batch process within the selected workstation

cluster can be predicted with a small margin of error and, in most cases, the static load

balancing algorithms perform well without activating dynamic load balancing

 Chapter 5: Implementation of Adaptive and Self-Tuning Task Scheduler and Load Balancing

130

algorithms. However, the dynamic load balancing acts as a safeguarding mechanism to

protect the system when an unpredictable disturbance within the system. In addition, it

is implemented as a part of the centralised load balancing mechanism and managed by

the distributed processing controller, and is only activated by the controller if

unpredicted events happen within the system.

Even though many techniques and algorithms can be applied for static and dynamic

load balancing for different types of distributed processing systems, these

significantly depend on what type of distributed processing systems are used and their

implementations. Some of them are highly specific and others are generic in nature,

and they depend on what type of applications, the scale of the distributed processing

systems, and hardware and software used within the systems. As far as Northwest’s

distributed processing system is concerned, the load balancing techniques and

algorithms have to be highly specific. It has to be simple to implement, and easy to

manage with minimum disruption to the business. Because of the bespoke nature of

the applications and software programs used within the distributed processing system,

the load balancing algorithms have to be designed to work with the system concerned,

and the fuzzy logic type rule-based algorithms are shown to perform effectively with

these types of systems. The investigation on load balancing techniques has shown that

a number of possible ways of achieving the fine-tuned load balanced condition within

any type of distributed processing system to improve the processing efficiency of the

calculation cluster. However, at the current stage, only a few of the bespoke

techniques are suitable to implement within the company, and going forward, other

techniques will be investigated as part of further research and development.

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

131

6 Dedicated Calculation Grid Design Using Peer-to-Peer

Network for High-Volume Distributed Processing

6.1 Introduction

This chapter describes the original design, development, and testing of a dedicated

distributed process calculator that acts as a calculation grid using SFF computers and

PCs to build P2P network-based clusters with logically separated networks using

Windows workgroups. This is the third phase of the investigation that explained in

section 1.4 in Chapter 1. The purpose of building the dedicated calculation grid is to

facilitate the research and development team and quantitative researchers to test and

simulate various mathematical models and trading scenarios in real time and, in

addition, to execute long-running batch processes as separate processes. These

calculations require considerable amounts of processing power and cannot be

implemented in a single PC or server that take many hours to complete. Hence, a

requirement for a dedicated calculation grid that can be used for performing various

calculations and can be employed 24x7. Unlike the workstation-based calculation

cluster described in Chapter 4 that involves the user workstations, the dedicated

calculation grid is isolated from user access and fully dedicated for certain applications

and mathematical models that require extensive testing before being used in live-

trading environments.

Two separate calculation clusters are built: one with small form factor (SFF)

computers and the other with PCs. The PC cluster uses dedicated PCs as calculation

nodes and these are spare PCs in good working conditions but not in use. The small

form factor computer-based cluster is built using low-cost, single-board computers

that are small in size and low in power consumption. Intel’s NUC computers are used

for this cluster. This is the main cluster that will be expanded by adding more

calculation nodes in future developments. Meanwhile, the PC cluster that consists of

spare PCs will only be used for testing purposes, and it will not be used in the

production environment due to its high power consumption and requirement to be

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

132

located in a larger space. The distributed processing controller software and

calculation node’s controller software are modified accordingly to include a dedicated

calculation grid cluster, and in addition, a number of changes are made to the SQL

server database to incorporate the dedicated cluster nodes within the distributed

processing control system. The message passing between calculation nodes and

distributed processing controller is similar to the technique that is used and described

in Chapter 4 with minor modifications to work with the P2P network.

A number of different tests are carried out on both clusters with and without load

balancing conditions, and calculation time reduction using dedicated calculation

clusters shows considerable improvements for compute-intensive calculations when

used with distributed process-based calculation using both dedicated calculation grids.

The NUC cluster is most suited for long-term development of dedicated calculation

grids for the company due to its compact size, high reliability, lower power

consumption, and considerably low cost per calculation node. Meanwhile, the PC

cluster is most suited for testing load balancing algorithms and prototype mathematical

models for distributed processing due to its nonlinearity. However, the PC cluster is

not suitable for continuous operations due to its high power consumption, space

requirements, noise, and unreliability of the hardware. Further analysis on collected

data is discussed in detail in Chapter 8 where the results and discussions are presented.

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

133

6.2 Grid Calculation Nodes Configuration

The dedicated calculation cluster nodes are configured as a separate network grid

using a P2P network configuration with logically separated clusters by using Windows

workgroups. Two separate clusters are built; a NUC cluster that is built using Intel

NUC computers and a PC cluster that is built using unused spare PCs and workstations

in the company. All the calculation nodes are connected to the same gigabit switch,

but logically grouped as two separate workgroups. Table 6.1 lists the network

grouping for the PC and NUC clusters, Figure 6.1 shows each cluster node’s

configuration, and Figure 6.2 presents the logically separated P2P cluster

configuration. Each dedicated calculation grid node’s configuration procedure is

similar to the workstation cluster configurations explained in Chapter 4. However, the

grid nodes have different hardware and software, and primarily configured for

executing MS-Excel VBA, VBS, CMD, and EXE applications. The NUC cluster

calculation nodes are less powerful than workstations, and the workstations are

optimised to calculate MS-Excel applications; however, the dedicated calculation grid

can also be configured to execute MS-Excel applications if needed in the future with

appropriate modifications.

Table 6.1: Northwest P2P network workgroups for PC and NUC clusters

Workgroup Name Description

NWDP_WG_NUC NUC cluster: 10 NUC PCs are connected as a cluster

NWDP_WG_WS PC cluster: 11 PCs and workstations are connected as a cluster

Figure 6.1: Configuration of each cluster node

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

134

Figure 6.2: Northwest P2P logically separated workgroup cluster configuration

The main advantage of the dedicated calculation grid is that it is fully utilised for 24x7

operations and it is mainly used by a research and development team, and in addition,

by quantitative developers for testing various scenarios and developing new trading

strategies. However, the cluster consists of spare PCs and workstations used for testing

purposes only and setup as a prototype cluster and it is highly useful for testing load

balancing algorithms due to its non-linear hardware and software configurations. Due

to its considerably high level of power consumption, bulkier size, and tendency to

hardware and software failure, the PC cluster should not be used in the production

environment. Hence, for future developments and enhancements of the dedicated

calculation grid, development will be based on NUC-type small form factor computers

due to their advantages mentioned earlier. Currently, the P2P network is physically

separated from the main LAN for testing purposes, and in the future stages of the

development, the dedicated calculation grid will be connected to the company’s

private LAN using two separate network interface cards (NIC) as shown in Figure 6.3.

Figure 6.4 shows the NUC grid configuration diagram.

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

135

Figure 6.3: LAN and P2P workgroup combined cluster configuration

Figure 6.4: NUC grid configuration diagram

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

136

6.3 NUC Cluster

The NUC cluster consists of 10 NUC computers as calculation nodes and has the same

hardware and software configuration as the other computers in the cluster. Each NUC

computer is configured to act as a calculation node for the dedicated distributed

processing cluster. The hardware and operating system for all the calculation nodes are

the same, hence the distributed management controller only checks whether the

particular calculation node is available before sending a message to execute the

specific application. Due to the uniformity of the cluster hardware and software,

hence, no need to check other parameters such as CPU usage and memory usage

compared to the PC cluster. Table 6.2 lists the NUC computer calculation node’s

parameters. NUC cluster pictures are shown in Appendix C (Figure C.3-a, C.3-b).

Table 6.2: NUC computer hardware and software parameters

Parameter Description

Model DE3815TYKHE

CPU 1.46 GHz single-core Atom E3815

RAM 4GB SODIMM

Hard disk 30GB m-SATA

Operating system Windows 7 (64)

Application Microsoft Office Professional 2010

Power supply 35W

6.4 PC Cluster

The PC cluster is built using spare PCs and workstations currently not used by the

company in daily basis. The company has a number of spare and unused PCs and

workstations, and these are currently not used but in fully working condition with

OEM software licenses. These PCs and workstations are refurbished and set as a

separate workgroup cluster that is connected to the same gigabit switch but logically

separated from the NUC cluster. These are the computers have been replaced with

newer workstations and are in perfectly usable condition. In addition, these computers

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

137

are less efficient in various aspects, and their high power consumption makes these

computers are unsuitable for long-term use as cluster nodes. Table 6.3 lists the PC

cluster hardware configuration. For testing the load balancing algorithms, two newer

models (Z400 and Z420) were added to the cluster. All the workstations and PCs are

loaded with Windows 7 (sp1 64Bit) and Microsoft Office 2010. PC cluster picture is

shown in Appendix C (Figure C.3-c)

Table 6.3: PC cluster hardware parameters

PC

Name

PC

Model

CPU

speed

CPU

Type

Number

of Core
RAM HD

Power

Supply

WST35 Z400 2.67GHz Xeon 4 12GB 125GB 600W

WST41 xw4100 3.20GHz P4 2 2GB 80GB 475W

WST44 xw4400 2.67GHz P4 2 2GB 250GB 475W

WST45 xw6200 3.40GHz Xeon 2 4GB 160GB 475W

WST46 xw6200 3.40GHz Xeon 2 4GB 160GB 475W

WST47 dc5800 2.93GHz P4 2 2GB 160GB 240W

WST48 dx7300 1.80GHz P4 2 3GB 250GB 240W

WST69 Z420 2.80GHz Xeon 4 12GB 125GB 600W

WST83 wx6400 1.86GHz Xeon 4 4GB 250GB 575W

WST84 wx6400 1.86GHz Xeon 4 4GB 250GB 575W

WST96 wx6400 1.86GHz Xeon 4 4GB 250GB 575W

As each calculation node in the dedicated calculation grid is configured similar to the

workstation cluster node’s configuration that was explained in Chapter 4. Hence, each

node is configured to act as a calculation node within the cluster, and the following

configuration is implemented:

 Perform regular hardware diagnostics and security settings.

 Regular operating system, application and utility software updates.

 Security software updates and password and access rights control.

 Database access rights for distributed processing database access.

 Remote access rights for remote management.

 Protected file share directories for local data and messages.

 Communication protocols for message passing.

 Local copy of distributed processing applications installed in each node.

 Calculation node controller installed in each node.

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

138

When the dedicated cluster calculation node boots up, the calculation node controller

starts automatically, stays in the memory, and listens for messages from the cluster

controller. When the message arrives from the cluster controller, the calculation node

controller processes the message and executes instruction accordingly. Each

calculation node has a directory path C:\NWDP\ in the local drive for distributed

processing applications. It has subdirectories that store messages and data that are

required for functioning as a calculation node within the cluster. This directory is

protected for security reasons, and each calculation node has a shared directory.

6.5 Testing Procedure Configuration

To test the PC and NUC cluster calculation performance, a single CB from the current

portfolio is used for the CB theoretical value calculation for different scenarios using

Equation (6.1). The CB model that used for testing is described in detail in section

4.2.1 in Chapter 5.

The following configurations are used for testing:

 Single CB is selected from the current portfolio for scenario analysis.

 Financial calculation models used are binomial and trinomial methods.

 Four scenarios are calculated with varying parameters.

 The three programming methods used are Excel-VBA, VBScript, and EXE.

The risk scenario application is used for testing under various conditions and utilises

the CB model that described in section 4.2.1. The following input parameters are used

as variable for testing and the rest of the input parameters are kept as static.

 Parity (s)

 Implied Volatility (v)

 Interest Rate (r)

 Calculation step (N)

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

139

The following calculation scenarios are used for the selected CB:

 CB theoretical value profile

 Implied Volatility

 IV impact on CB theoretical value profile

 Interest Rate impact on CB theoretical value profile

The CB theoretical value calculation model used for testing is shown in Equation

(6.1):

),,,,,(ETrvsNfP (6.1)

where

 P Theoretical value

N Number of steps

s Parity

v Implied volatility

r Interest rate

T Time to maturity

E Redemption price

The test parameter ranges are selected to test the extreme case scenarios to prove that

the distributed processing cluster is capable of calculating highly compute-intensive

calculations within the acceptable timeframes. In addition, different programming

methods are used to test how the existing MS-Excel-based mathematical models can

be modified to improve the calculation speed. To test and analyse the calculation

performance of both PC and NUC clusters using CB theoretical value calculations,

binomial and trinomial tree methods with all VBA, VBS, and EXE programs are used.

For testing the CB model calculations, only certain input parameters are used as

variables and the rest of the input parameters are kept as static input parameters. Table

6.4 lists the input parameters used for scenario testing, and Table 6.5 presents

parameters used for cluster testing.

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

140

Table 6.4: Parameters used for scenario testing

Parameter Description

Parity 10 to 170 (increment size 1)

Maturity 5 years (fixed)

Interest Rate Shift -2%, 0%, +2% and +4.5% (fixed)

Red Price 103 (fixed)

Implied Volatility Varies between 1% to 95%, 45%, 55%, and 65%

Calculation Steps 100 to 1000 (increment size 100)

Table 6.5: Parameters used for PC and NUC cluster testing

Calculation Type Cluster Description

Discrete

calculation at each

node
PC

Step size: 500

Method: Binomial, Trinomial

Program: MS-Excel VBA, VBS, EXE

Number of calculations: 160

Distributed

calculation across

all nodes
PC

Step size: 500

Method: Binomial, Trinomial

Program: MS-Excel VBA, VBS, EXE

Number of calculations: Varies

Discrete

calculation

at each node
NUC

Step size: 100 to 1000

Method: Binomial, Trinomial

Program: MS-Excel VBA, VBS, EXE

Number of calculations: 16

Distributed

calculation across

all nodes
NUC

Step size: 500

Method: Binomial, Trinomial

Program: MS-Excel VBA, VBS, EXE

Number of calculations: 16

Hence, using Equation (6.1), scenario analysis calculations are performed using the

following input parameters as variables: Parity (s), Interest Rate (r), Implied Volatility

(v) and Calculation steps (N). The rest of the input parameters are kept as static

parameters. Furthermore, for each scenario analysis, only one input parameter is used

as variable parameter and the rest of the input parameters are kept as static parameters

and these are explained in detail in forth coming sections. However, the calculation

steps (N) is changed for each scenario calculation to compare calculation performance

between NUC cluster and PC cluster.

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

141

6.6 Load Balancing

Only the PC cluster is used for testing the calculation index-based load balancing

methods, and each calculation node within the PC cluster has a calculation index based

on CPU power and memory capacity as explained in Chapter 5 where the adaptive

load balancing techniques are discussed in detail. The calculation index is calibrated

using a test program to execute under controlled conditions to measure the time taken

to complete the task and that is based on each scenario’s calculations. The NUC

cluster consists of the same hardware and software for each calculation node; hence,

the calculation index for each node is the same, hence the load is equally distributed.

Each NUC cluster calculation node is allocated 16 calculations per scenario because

the total calculations needed are 160 per scenario and the NUC cluster has 10

calculation nodes, hence 16 calculations per node are performed. However, the PC

cluster has 11 calculation nodes, and the number of calculations per calculation node

varies depending on the calculation index of the node concerned.

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

142

6.7 CB Theoretical Value Calculation

Mathematical models used for financial calculations are specifically designed for the

company, and these financial calculation models are continuously modified and

changed according to the need of the business and depending on the market

conditions. For testing, two generally used CB pricing models are selected: the

Binomial-Tree model and the Trinomial-Tree model. These two CB pricing models

are used for various calculations in the company that are used for individual-level

security analysis and for portfolio-level analysis. Fund managers and traders require

different types of information about each security-level analysis and portfolio-level

analysis of data to make trading decisions during trading hours. Any serious delays in

critical analysis can cause unexpected losses due to incorrect data or misleading

information. Therefore, the system that provides critical data that is depended upon for

trading and fund management has to be robust and accurate. One of the methods of

securing data accuracy and reliability is to execute the calculations in two separate

processing units at the same time with the same input data, and this can be achieved by

computing clusters. The trading desk is a highly busy environment, and traders and

fund managers rarely perform detailed technical analysis themselves; most of the

technical analyses are performed by quantitative analysts who provide the data to the

trading desk in a simpler form that can be used with tables, charts, and graphs. The CB

theoretical value profile analysis is based on three main parameters: CB theoretical

value, bond floor, and parity. The CB price and bond floor are calculated using the

company’s own derivative pricing models, and the parity is calculated using a price

feed from a financial feed provider, that is, the market price of the CB’s underlying

equity. Figure 6.5 shows a typical CB theoretical value profile analysis chart used by

trading desks and quantitative analysts. The figure is a simple chart for illustrative

purposes only, and it includes a few different tables and charts for compliance,

reporting, and risk analysis. The trading desk uses various charting tools with a

number of different functionalities; hence, the users have the ability to analyse the data

efficiently and quickly. For visual representation, the chart has five regions for quick

analysis for making trading decisions. A brief description of the regions and the

corresponding technical analysis is shown in Table 6.6.

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

143

Figure 6.5: CB price profile and technical analysis regions (Source: Northwest)

Table 6.6: Technical analysis of CB price profile

Region Primary Technical Analysis

Region 1 Default possibility

Credit spread impact

Interest rate impact

Cheapness comparison

Bond floor

Asset-swapping

Region 2 Put provisions

Cheapness comparison

Upward and downward parity

Bond floor

Volatility impact

Region 3 Upward and downward parity

Hedging parameters

Arbitraging

Volatility impact

Region 4 Conversion possibility

Call provisions

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

144

For illustration, Table 6.7 shows the CB theoretical value differences using different

derivative pricing models, with the difference shown in point value, and Table 6.8

shows the dollar value differences. These data are normally pre-calculated for quick

lookups and analysis using various charts and tables by trading desk users. For

example, if a trade worth 10 million dollars is executed with incorrect CB pricing

calculation against mark-to-market price, it will cause a loss of $43,393 if the parity is

150 and implied volatility is 70%. These types of simplified lookup data constructs are

useful for trading desk users; however, these calculations are compute-intensive and

time-consuming to calculate for all the possible scenarios. Hence, the dedicated

calculation cluster is one way of improving the calculation efficiency. For testing CB

theoretical value calculations, the parameters used are shown in Table 6.9.

Table 6.7: CB price calculation model error in point value with varying parity and

implied volatility

 Volatility

Parity 10% 20% 30% 40% 50% 60% 70%

 10 -0.0002 -0.0002 -0.0002 -0.0006 -0.0017 -0.0010 0.0051

 20 -0.0002 -0.0002 -0.0009 -0.0049 0.0031 0.0000 0.0171

 30 -0.0002 -0.0005 -0.0056 -0.0129 -0.0114 -0.0041 0.0232

 40 -0.0002 -0.0022 -0.0164 -0.0012 0.0179 0.0502 0.0143

 50 -0.0003 -0.0007 -0.0095 0.0250 0.0115 0.1287 -0.0023

 60 -0.0010 0.0021 0.0187 -0.0346 -0.0198 0.1652 0.0981

 70 -0.0059 -0.0024 0.0058 0.0173 0.0169 0.0792 0.2199

 80 -0.0081 0.0136 0.0366 0.0390 0.0757 0.0688 0.1006

 90 -0.0163 -0.0272 0.0100 -0.0172 0.0981 0.1491 0.2379

100 0.0156 0.0129 0.0149 0.0272 0.0579 0.1178 0.2203

110 0.0013 -0.0048 0.0345 0.0479 0.0817 0.1477 0.2611

120 0.0135 -0.0081 0.0354 -0.0139 0.1148 0.2041 0.3269

130 0.0038 0.0269 -0.0016 0.1100 0.0843 0.1016 0.2504

140 0.0018 0.0252 -0.0486 0.0067 0.1603 0.2237 0.3076

150 0.0018 0.0091 0.0414 0.0802 0.0343 0.2402 0.4339

160 0.0026 0.0011 0.0265 0.0044 0.2028 0.1073 0.4263

170 0.0029 -0.0056 -0.0142 0.0800 0.0302 0.2710 0.2613

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

145

Table 6.8: CB price calculation model error in $USD value with varying parity and

implied volatility

 Volatility

Parity 10% 20% 30% 40% 50% 60% 70%

10 -$24 -$24 -$23 -$63 -$174 -$105 $514

20 -$24 -$23 -$90 -$488 $311 -$5 $1,706

30 -$24 -$54 -$561 -$1,289 -$1,138 -$412 $2,323

40 -$24 -$217 -$1,642 -$118 $1,790 $5,016 $1,426

50 -$29 -$72 -$945 $2,503 $1,146 $12,875 -$231

60 -$96 $211 $1,867 -$3,461 -$1,978 $16,523 $9,811

70 -$587 -$243 $578 $1,727 $1,686 $7,922 $21,989

80 -$812 $1,361 $3,661 $3,905 $7,567 $6,884 $10,057

90 -$1,626 -$2,718 $563 -$1,722 $9,811 $14,908 $23,792

100 $1,564 $1,289 $1,491 $2,721 $5,792 $11,777 $22,034

110 $125 -$478 $3,449 $4,788 $8,168 $14,774 $26,108

120 $1,346 -$809 $3,542 -$1,393 $11,484 $20,406 $32,693

130 $378 $2,690 -$163 $11,003 $8,434 $10,164 $25,037

140 $179 $2,522 -$4,858 $673 $16,026 $22,366 $30,763

150 $179 $908 $4,144 $8,025 $3,435 $24,017 $43,393

160 $259 $107 $2,650 $436 $20,276 $10,730 $42,635

170 $287 -$560 -$1,416 $8,002 $3,017 $27,095 $26,131

Table 6.9: Test parameters of CB theoretical value calculations

Parameter Value Description

Parity 10 to 170 Variable (increment 1)

Calculation Step 100 to 1000 Variable (increment 100)

Interest Rate 2.5 % Fixed

Implied Volatility 55% Fixed

Maturity 5 years Fixed

Red Price 103 Fixed

Hence, for CB theoretical value calculation testing, only Parity (s) and calculation

steps (N) are variable inputs to the CB model and Maturity (T), Red Price (E), Interest

Rate (r) and Implied volatility (v) are kept as static parameters. Hence, the Parity (s)

minimum value is 10, and the maximum value is 170. The calculation steps (N)

minimum value is 100, and maximum value is 1000.

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

146

6.7.1 Using PC and NUC Cluster for CB Value Calculation

Table 6.10 lists the calculation times for each calculation node using the PC cluster,

and Table 6.11 lists the calculation times with varying step size using a single NUC

computer. Table 6.12 lists the distributed calculation times using the PC cluster with

imbalanced and balanced load conditions, and Table 6.13 lists the distributed

calculation times using the NUC computer cluster with load balanced condition.

Table 6.10: Calculation time for each calculation node for CB theoretical value

calculation using PC cluster

Calculation

Node

Calculation Time (sec)

Binomial Trinomial

 VBA VBS EXE VBA VBS EXE

WST69 15 22 4 28 35 4

WST35 15 23 4 29 36 4

WST47 18 25 5 35 42 6

WST44 20 28 6 39 46 7

WST96 24 37 9 50 60 10

WST83 24 37 9 54 60 10

WST85 26 37 9 55 64 10

WST48 28 38 10 56 65 11

WST45 28 41 11 59 65 12

WST46 29 42 11 65 66 12

WST54 30 43 12 66 73 14

Table 6.11: Calculation time using varying step size for CB theoretical value

calculation using a single NUC computer

Step

Size

Calculation Time (sec)

Binomial Trinomial

 VBA VBS EXE VBA VBS EXE

100 2 3 1 5 7 2

200 9 13 3 17 24 4

300 20 27 7 36 51 8

400 34 48 14 63 88 14

500 53 76 20 99 138 23

600 77 109 26 141 199 30

700 103 147 33 190 268 40

800 135 194 41 244 351 48

900 169 244 52 323 444 59

 1000 209 300 65 393 544 72

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

147

Table 6.12: Distributed calculation time for CB theoretical value calculation using PC

cluster with load imbalanced and balanced conditions

 Calculation

Node

Calculation Time (sec)

Imbalanced Balanced

Binomial Trinomial Binomial Trinomial

 VBA VBS EXE VBA VBS EXE VBA VBS EXE VBA VBS EXE

WST69 1.4 2.1 0.4 2.6 3.3 0.4 2.1 2.8 0.7 4.0 4.6 0.7

WST35 1.4 2.2 0.4 2.7 3.4 0.4 2.1 2.9 0.7 3.8 4.5 0.7

WST47 1.7 2.3 0.5 3.3 3.9 0.6 2.0 3.0 0.6 4.2 4.7 0.7

WST44 1.9 2.6 0.6 3.7 4.3 0.7 2.0 3.0 0.6 4.1 4.9 0.7

WST96 2.3 3.5 0.8 4.7 5.6 0.9 2.0 3.0 0.6 4.1 4.9 0.7

WST83 2.3 3.5 0.8 5.1 5.6 0.9 2.0 3.0 0.6 4.1 4.9 0.7

WST85 2.3 3.2 0.8 4.8 5.6 0.9 2.0 3.0 0.6 4.1 4.8 0.7

WST48 2.5 3.3 0.9 4.9 5.7 1.0 1.9 2.9 0.6 4.2 4.9 0.7

WST45 2.5 3.6 1.0 5.2 5.7 1.1 1.9 2.8 0.6 4.1 4.9 0.7

WST46 2.5 3.7 1.0 5.7 5.8 1.1 2.0 2.9 0.6 4.1 5.0 0.7

WST54 2.6 3.8 1.1 5.8 6.4 1.2 2.1 3.0 0.7 4.1 4.6 0.7

Table 6.13: Distributed calculation time for CB theoretical value calculation using

NUC cluster with load balanced condition

Calculation

Node

Calculation Time (sec)

Binomial Trinomial

 VBA VBS EXE VBA VBS EXE

NUC01 5.34 7.60 2.00 9.99 13.87 2.31

NUC02 5.32 7.60 2.02 9.96 13.92 2.32

NUC03 5.32 7.61 2.01 9.93 13.88 2.31

NUC04 5.33 7.60 2.01 9.90 13.84 2.31

NUC05 5.34 7.66 2.01 9.92 13.91 2.31

NUC06 5.34 7.65 2.01 10.00 13.89 2.32

NUC07 5.33 7.60 2.01 9.95 13.93 2.31

NUC08 5.33 7.63 2.00 9.98 13.83 2.31

NUC09 5.33 7.61 2.00 9.92 13.82 2.30

NUC10 5.31 7.64 2.01 9.99 13.90 2.30

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

148

6.8 Implied Volatility (IV) Calculation

To calculate the implied volatility, the derivative instrument price has to be calculated

using the theoretical value model for number of times with varying volatility using the

Newton-Raphson method. This process is the most time-consuming process within the

distributed processing systems and can cause serious time delays during the operation.

For testing, a simple static load balancing is used; however, to get the load balancing

mechanism to adapt to the long delays in calculations, some type of approximation

technique has to be used to predict the estimated time. This can be done by collecting

historical data to predict the estimated calculation time. However, small changes in the

derivate prices can cause the number of calculations needed to calculate the implied

volatility to be increased significantly. Hence, to predict the estimated calculation

time, a number of different data sets have to be maintained as lookup tables with fuzzy

logic-based rules to estimate the calculation time during the operation. However, for

distributed process performance testing, the linear type input dataset for the CB

theoretical value model is selected to avoid unexpected financial model-related time

delays that can cause incorrect results. Table 6.14 lists the IV calculation test

parameters.

Table 6.14: IV calculation test parameters

Parameter Value Description

Parity 10 to 170 Variable (increment size 1)

Calculation Step 100 to 1,000 Variable (increment size 100)

Interest Rate 4.5% Fixed

Implied Volatility 1 to 95),(vPf (step varies)

Maturity 5 Years Fixed

Red Price 103 Fixed

Hence, for Implied Volatility calculation testing, only Parity (s) and calculation steps

(N) are variable inputs to the CB model and Maturity (T), Red Price (E), Interest Rate

(r) and Implied Volatility (v) are kept as static parameters. Hence, the Parity (s)

minimum value is 10, and the maximum value is 170. The calculation steps (N)

minimum value is 100, and maximum value is 1000. However, in this scenario is a

recursive calculation, hence, the output data, the Implied Volatility (IV) is also used as

input data for the next calculation, that is, for (i+1)th calculation, v(i+1)=IV(i).

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

149

6.8.1 Using PC and NUC Cluster for IV Value Calculation

Table 6.15 lists the calculation times for each calculation node using the PC cluster,

and Table 6.16 lists the calculation times with varying step size using a single NUC

computer. Table 6.17 lists the distributed calculation times using the PC cluster with

imbalanced and balanced load conditions, and Table 6.18 lists the distributed

calculation times using the NUC computer cluster with load balanced condition.

Table 6.15: Calculation time for each calculation node for IV value calculation using

PC cluster

Calculation

Node

Calculation Time (sec)

Binomial Trinomial

 VBA VBS EXE VBA VBS EXE

WST69 60 28 9 61 73 14

WST35 61 28 8 60 73 18

WST47 73 38 11 73 91 21

WST44 81 42 12 81 101 30

WST96 94 61 18 94 140 30

WST83 95 61 18 95 141 30

WST85 104 57 18 104 138 31

WST48 113 58 18 113 139 35

WST45 113 61 18 113 145 35

WST46 116 60 18 116 147 33

WST54 122 62 19 122 154 39

Table 6.16: Calculation time using varying step size for IV value calculation using a

single NUC computer

Step Size Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

100 25 17 3 28 27 7

200 38 47 6 51 87 13

300 62 99 12 91 189 24

400 94 164 23 147 323 39

500 134 229 34 216 480 57

600 184 334 47 306 687 73

700 244 438 64 410 872 98

800 300 537 84 523 1,183 128

900 396 672 105 698 1,496 151

1000 479 859 129 816 1,787 179

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

150

Table 6.17: Distributed calculation time for IV value calculation using PC cluster with

load imbalanced and balanced conditions

 Calculation

Node

Calculation Time (sec)

Imbalanced Balanced

Binomial Trinomial Binomial Trinomial

 VBA VBS EXE VBA VBS EXE VBA VBS EXE VBA VBS EXE

WST69 5.6 2.6 0.8 5.7 6.8 1.3 7.9 4.0 1.3 8.0 10.0 2.3

WST35 5.7 2.6 0.8 5.6 6.8 1.7 8.0 4.2 1.3 7.9 10.5 2.4

WST47 6.8 3.6 1.0 6.8 8.5 2.0 8.2 4.3 1.2 8.2 10.2 2.4

WST44 7.6 3.9 1.1 7.6 9.5 2.8 8.1 4.2 1.3 8.1 10.1 2.4

WST96 8.8 5.7 1.7 8.8 13.1 2.8 8.2 4.2 1.2 8.2 10.5 2.4

WST83 8.9 5.7 1.7 8.9 13.2 2.8 8.3 4.2 1.2 8.3 10.6 2.4

WST85 9.1 5.0 1.6 9.1 12.1 2.7 7.8 4.3 1.2 7.8 10.4 2.3

WST48 9.9 5.1 1.6 9.9 12.2 3.1 7.8 4.4 1.2 7.8 10.4 2.4

WST45 9.9 5.3 1.6 9.9 12.7 3.1 7.8 4.2 1.2 7.8 10.0 2.4

WST46 10.2 5.3 1.6 10.2 12.9 2.9 8.0 4.1 1.2 8.0 10.1 2.5

WST54 10.7 5.4 1.7 10.7 13.5 3.4 8.4 4.3 1.3 8.4 10.6 2.4

Table 6.18: Distributed calculation time for IV value calculation using NUC cluster

with load balanced condition

Calculation

Node

Calculation Time (sec)

Binomial Trinomial

 VBA VBS EXE VBA VBS EXE

NUC01 13.42 23.12 3.42 21.75 48.04 5.75

NUC02 13.46 23.01 3.42 21.73 48.00 5.76

NUC03 13.50 23.00 3.43 21.81 48.20 5.75

NUC04 13.51 22.94 3.40 21.62 48.09 5.75

NUC05 13.49 22.94 3.40 21.79 48.17 5.74

NUC06 13.53 22.91 3.43 21.79 48.18 5.72

NUC07 13.43 23.00 3.41 21.65 48.09 5.73

NUC08 13.52 23.00 3.43 21.72 48.42 5.75

NUC09 13.46 23.00 3.43 21.66 48.30 5.73

NUC10 13.47 23.11 3.41 21.81 48.34 5.74

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

151

6.9 CB Theoretical Value IV Sensitivity Analysis

CB price is correlated with underlying share price, and the underlying share price

depends on the recorded ninety days volatility. The implied volatility (IV) is

calculated to find the volatility that returns the theoretical value equal to the current

market CB price. By using calculated IV, various scenarios’ analysis is performed on a

particular CB or portfolio as a whole. One of the scenario analyses is to vary the IV

and examine how the CB will behave under various conditions using the current CB

price and calculated theoretical value. The CB’s sensitivity to the IV depends on the

current CB price and in what region the CB is located in the CB price profile chart that

is shown in Figure 6.5. Hence, traders, fund managers, and quantitative analysts

continuously monitor each CB and the whole portfolio to forecast ‘what-if’ scenarios

for changing IV. The IV impact analysis data is also used for risk reporting, trade

decision-making, and portfolio analysis, and quantitative analysts perform various

calculations on saved data such as autocorrelation and cross-correlations. These types

of scenario analyses are highly compute-intensive tasks and require considerable

amounts of processing power. The implementation of the dedicated calculation cluster

improves the overall calculation time considerably for these calculations. Generally,

CB theoretical value increases with increase in IV and vice versa, as shown in Figure

6.6; however, the IV impact on the CB depends on where the CB price is located in

the CB price profile. As expected, the testing results show that using both the PC

cluster and the NUC cluster improved the calculation time considerably for IV impact

analysis compared with using a single workstation or single PC. Table 6.19 lists the

input parameters for the IV impact calculations. Where parity is set 1 to 170 with

increment of 1. Calculation step is set 100 to 1000 with increment of 100. Implied

volatility is set as 3 values, 45%, 55%, and 65%. The interest rate, maturity and red

price are fixed.

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

152

Figure 6.6: Implied Volatility (IV) impact on CB theoretical value

Table 6.19: IV impact on test parameters of CB theoretical value calculations

Parameter Value Description

Parity 10 to 170 Variable (increment size 1)

Calculation Step 100 to 1000 Variable (increment size 100)

Interest Rate 2.5 % Fixed

Implied Volatility 55% ± 10% 65%, 55%, 45%

Maturity 5 Years Fixed

Red Price 103 Fixed

Hence, for IV sensitivity analysis testing, only Parity (s) and calculation steps (N) are

variable inputs to the CB model and Maturity (T), Red Price (E), and Interest Rate (r)

are kept as static parameters. Hence, the Parity (s) minimum value is 10, and the

maximum value is 170. The calculation steps (N) minimum value is 100, and

maximum value is 1000. However, three values 65%, 55% and 45 are used for Implied

Volatility (v) for testing IV sensitivity analysis.

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

153

6.9.1 Using PC and NUC Cluster for IV Sensitivity Calculation

Table 6.20 lists the calculation times for each calculation node using the PC cluster,

and Table 6.21 lists the calculation times using varying step size using a single NUC

computer. Table 6.22 shows the distributed calculation times using the PC cluster with

imbalanced and balanced load conditions, and Table 6.23 lists the distributed

calculation times using the NUC computer cluster with load balanced condition.

Table 6.20: Calculation time for each calculation node for IV sensitivity calculation

using PC cluster

Calculation

Node

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

WST69 36 68 12 85 109 13

WST35 36 68 12 85 109 18

WST47 44 77 17 104 127 21

WST44 49 88 18 115 138 30

WST96 63 110 26 141 175 30

WST83 62 111 27 144 178 30

WST85 62 111 27 148 189 31

WST48 68 113 26 159 195 33

WST45 68 115 27 161 196 36

WST46 69 125 28 164 202 36

WST54 73 131 29 172 219 42

Table 6.21: Calculation time using varying step size for IV sensitivity calculation

using a single NUC computer

Step Size Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

100 9 10 3 15 16 5

200 26 37 10 50 53 12

300 53 82 19 109 114 23

400 89 145 32 190 199 38

500 133 226 50 294 311 57

600 188 329 71 424 443 80

700 251 445 96 576 602 109

800 324 580 124 749 784 140

900 405 732 156 947 989 177

 1,000 496 904 194 1168 1223 218

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

154

Table 6.22: Distributed calculation time for IV sensitivity calculation using PC cluster

with load imbalanced and balanced conditions

 Calculation

Node

Calculation Time (sec)

Imbalanced Balanced

Binomial Trinomial Binomial Trinomial

 VBA VBS EXE VBA VBS EXE VBA VBS EXE VBA VBS EXE

WST69 3.4 6.4 0.4 8.0 10.2 1.1 4.7 9.4 0.7 11.2 13.6 2.0

WST35 3.4 6.4 0.4 8.0 10.2 1.1 4.7 8.9 0.7 11.7 14.3 1.9

WST47 4.1 7.2 0.6 9.8 11.9 1.6 5.0 8.7 0.7 11.7 14.3 1.8

WST44 4.6 8.3 0.7 10.8 12.9 1.7 4.9 8.8 0.7 11.5 14.7 1.8

WST96 5.9 10.3 0.9 13.2 16.4 2.4 4.7 8.9 0.7 11.5 14.2 1.8

WST83 5.8 10.4 0.9 13.5 16.7 2.5 5.0 9.0 0.7 11.7 14.5 1.9

WST85 5.4 9.7 0.9 13.0 16.5 2.4 5.0 9.0 0.7 11.1 14.2 1.9

WST48 6.0 9.9 1.0 13.9 17.1 2.3 5.1 8.5 0.7 11.9 14.6 1.8

WST45 6.0 10.1 1.1 14.1 17.2 2.4 5.1 8.6 0.7 11.1 14.7 1.9

WST46 6.0 10.9 1.1 14.4 17.7 2.5 4.7 8.6 0.7 11.3 13.9 1.9

WST54 6.4 11.5 1.2 15.1 19.2 2.5 5.0 9 0.7 11.8 13.7 1.8

Table 6.23: Calculation time profile for IV sensitivity calculation using NUC cluster

under load balanced condition

Calculation

Node

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

NUC01 13.38 22.81 5.01 29.57 31.32 5.73

NUC02 13.42 22.82 5.03 29.40 31.35 5.72

NUC03 13.35 22.64 5.02 29.60 31.30 5.70

NUC04 13.36 22.69 5.02 29.57 31.25 5.71

NUC05 13.40 22.82 5.04 29.44 31.22 5.76

NUC06 13.31 22.72 5.01 29.41 31.14 5.73

NUC07 13.42 22.71 5.05 29.52 31.17 5.74

NUC08 13.37 22.65 5.05 29.53 31.28 5.73

NUC09 13.43 22.61 5.03 29.65 31.37 5.75

NUC10 13.36 22.67 5.03 29.48 31.34 5.73

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

155

6.10 CB Theoretical Value IR Sensitivity Analysis

CB is highly sensitive to the interest rate (IR) of the CB currency and underlying share

currency. The IR impact analysis data is used for risk reporting, trade decision-

making, and portfolio analysis. The quantitative analysts perform various calculations

on saved data such as autocorrelation and cross-correlations across various CBs and IR

moves. The CB pricing mathematical models use yield curves for analysing IR impact

on CB theoretical value, and two types of IR: risk-free rate and risky rate. The

implementation of IR impact on CB theoretical value is called parallel shifts, that is,

shifting the yield curve by same value as shown in Figure 6.7. For testing purposes,

the risky rate is used, and generally, CB theoretical value increases with reducing

interest rates and vice versa as shown in Figure 6.8.

Figure 6.7: Yield parallel shift for USD (Data source: Northwest)

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

156

Figure 6.8: IR impact on CB price and bond floor (Source: Northwest)

Hence, for IR sensitivity analysis testing, only Parity (s) and calculation steps (N) are

variable inputs to the CB model and Maturity (T), Red Price (E), and Interest Rate (r)

are kept as static parameters. Hence, the Parity (s) minimum value is 10, and the

maximum value is 170. The calculation steps (N) minimum value is 100, and

maximum value is 1000. However, three values -2%, 0% and +2% are used for

Interest rate (r) for testing IR sensitivity analysis. Table 6.24 lists the input parameters

for IR impact on CB theoretical value calculation.

Table 6.24: Parameters used for IR impact on CB theoretical value calculation

Parameter Value Description

Parity 10 to 170 Variable (increment size 1)

Calculation step 100 to 1,000 Variable (increment size 100)

Interest Rate shift ± 2% -2%,0%,+2%

Implied volatility 55% Fixed

Maturity 5 years Fixed

Red Price 103 Fixed

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

157

6.10.1 Using PC and NUC Cluster for IR Sensitivity Calculation

Table 6.25 lists the calculation times for each calculation node using the PC cluster,

and Table 6.26 lists the calculation times using varying step size using a single NUC

computer. Table 6.27 presents the distributed calculation times using PC cluster with

imbalanced and balanced load conditions, and Table 6.28 lists the distributed

calculation times using the NUC computer cluster with load balanced condition.

Table 6.25: Calculation time for each calculation node for IR sensitivity calculation

using PC cluster

Calculation

Node

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

WST69 35 67 11 82 105 13

WST35 37 67 12 85 106 13

WST47 43 76 16 104 123 18

WST44 47 84 18 115 137 21

WST96 61 108 26 140 178 30

WST83 62 109 26 142 180 30

WST85 63 111 26 148 191 31

WST48 66 115 27 159 192 31

WST45 66 115 27 161 192 36

WST46 67 125 28 164 202 36

WST54 71 131 29 172 217 42

Table 6.26: Calculation time using varying step size for IR sensitivity calculation

using a single NUC computer

Step Size Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

100 9 9 3 14 16 6

200 26 36 10 49 52 11

300 53 81 18 107 112 24

400 89 142 33 185 197 38

500 133 223 50 288 305 57

600 190 320 70 414 437 81

700 250 434 96 562 592 109

800 325 567 124 733 773 141

900 405 717 157 925 1,000 177

1000 496 884 194 1,159 1,202 218

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

158

Table 6.27: Distributed calculation time for IR sensitivity calculation using PC cluster

with imbalanced and balanced load conditions

 Calculation

Node

Calculation Time (sec)

Imbalanced Balanced

Binomial Trinomial Binomial Trinomial

 VBA VBS EXE VBA VBS EXE VBA VBS EXE VBA VBS EXE

WST69 3.3 6.3 1.0 7.7 9.8 1.2 4.8 9.2 1.9 11.8 15.1 2.2

WST35 3.5 6.3 1.1 8.0 9.9 1.2 4.9 8.8 1.8 11.2 13.9 2.1

WST47 4.0 7.1 1.5 9.8 11.5 1.7 4.8 8.6 1.8 11.7 13.8 2.1

WST44 4.4 7.9 1.7 10.8 12.8 2.0 4.7 8.9 1.8 11.5 14.6 2.1

WST96 5.7 10.1 2.4 13.1 16.7 2.8 5.0 8.8 1.8 11.4 14.5 2.1

WST83 5.8 10.2 2.4 13.3 16.9 2.8 4.7 8.9 1.8 11.5 14.6 2.1

WST85 5.5 9.7 2.3 13 16.7 2.7 4.7 8.3 1.8 11.1 14.3 2.1

WST48 5.8 10.1 2.4 13.9 16.8 2.7 5.0 8.6 1.9 10.9 14.4 2.1

WST45 5.8 10.1 2.4 14.1 16.8 3.2 5.0 8.6 1.9 11.1 14.4 2.3

WST46 5.9 10.9 2.5 14.4 17.7 3.2 4.6 8.6 1.8 11.3 13.9 2.3

WST54 6.2 11.5 2.5 15.1 19.0 3.7 4.9 9.0 1.8 11.8 13.6 2.1

Table 6.28: Calculation time profile for IR sensitivity calculation using NUC cluster

under load-balanced condition

Calculation

Node

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

NUC01 13.37 22.48 5.05 29.10 30.74 5.76

NUC02 13.33 22.38 5.01 28.85 30.72 5.78

NUC03 13.31 22.62 5.05 29.19 30.60 5.71

NUC04 13.43 22.39 5.04 29.05 30.76 5.72

NUC05 13.41 22.31 5.03 29.08 30.77 5.71

NUC06 13.38 22.37 5.01 29.01 30.64 5.71

NUC07 13.33 22.50 5.07 29.06 30.51 5.77

NUC08 13.33 22.50 5.07 29.11 30.63 5.78

NUC09 13.39 22.58 5.07 28.84 30.52 5.77

NUC10 13.35 22.48 5.06 28.97 30.58 5.75

Table 6.29 to Table 6.32 lists the average calculations time analysis for both PC and

NUC clusters using all four scenarios’ calculations. Test results have shown

considerable calculation time improvements across all the scenario calculations when

the load balanced distributed processing method is used compared with the serial

calculation method.

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

159

Table 6.29: Average calculation time analysis for CB theoretical value calculation

Method

Average Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Serial PC 23.36 33.91 8.18 48.73 55.64 9.09

Imbalanced PC 2.08 3.00 0.72 4.27 4.89 0.80

Balanced PC 2.00 2.93 0.62 4.08 4.81 0.70

Serial NUC 53.00 76.00 20.00 99.00 138.00 23.00

Balanced NUC 5.33 7.62 2.01 9.95 13.88 2.31

Table 6.30: Average calculation time analysis for IV calculation

Method

Average Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Serial PC 93.82 50.55 15.18 93.82 122.00 28.73

Imbalanced PC 8.25 4.48 1.35 8.25 10.78 2.52

Balanced PC 8.01 4.21 1.23 8.01 10.28 2.39

Serial NUC 134.00 229.00 34.00 216.00 480.00 57.00

Balanced NUC 13.48 23.00 3.42 21.73 48.18 5.74

Table 6.31: Average calculation time analysis for IV sensitivity calculation

Method

Average Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Serial PC 57.27 101.55 22.64 134.36 167.00 29.09

Imbalanced PC 5.06 8.96 0.80 11.87 14.68 2.00

Balanced PC 4.89 8.84 0.70 11.47 14.30 1.87

Serial NUC 133.00 226.00 50.00 294.00 311.00 57.00

Balanced NUC 13.38 22.71 5.03 29.52 31.27 5.73

Table 6.32: Average calculation time analysis for IR sensitivity calculation

Method

Average Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Serial PC 56.18 100.73 22.36 133.82 165.73 27.36

Imbalanced PC 5.08 9.11 2.02 12.11 14.96 2.47

Balanced PC 4.83 8.75 1.83 11.39 14.28 2.15

Serial NUC 133.00 223.00 50.00 288.00 305.00 57.00

Balanced NUC 13.36 22.46 5.05 29.03 30.65 5.75

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

160

6.11 Chapter Summary

The main goal of implementing the dedicated calculation grid is to facilitate the

research and development team and the quantitative analysts and researchers to test

and simulate different compute-intensive internally developed financial models and

trading scenarios in real time. Currently, this process is performed by using a single

workstation or a server, and in certain cases, the full analysis takes many hours to a

few days to complete. Hence, some of the analysis is carried out as a batch process

during nights and weekends, and in addition, sampling frequency is reduced to

improve the calculation time. By implementing the dedicated calculation cluster grid

for compute-intensive calculations, the test results have shown considerable

improvement in reducing the overall calculation time. The tests and simulations that

were carried out on the dedicated calculation clusters are similar to the scenario

analysis carried out by the researchers and quantitative analysts, but on a reduced scale

with small sets of test data. The test result has proved that implementing the dedicated

calculation cluster with appropriate application- and hardware-specific load balancing

algorithms greatly improves the calculation efficiency for many of the bespoke

mathematical models used in the company. Hence, this chapter has demonstrated the

original contribution to the design of specific dedicated calculation clusters to improve

the calculation efficiency of particular type of compute-intensive applications.

The advantage of the dedicated calculation cluster grid is that unlike the workstation

cluster that utilises the user workstations, it can be fully utilised 24x7. The dedicated

calculation grid is isolated from user access and fully dedicated for certain applications

that require extensive testing before being used in the live-trading environment. The

test have shown that the NUC cluster has many advantages compared with the PC

cluster; even though the NUC computers are less powerful than the PCs used in the PC

cluster, the NUC computer has various advantages such as low power consumption,

smaller size, and lower cost. However, the PC cluster is useful for testing different

types of load-balancing algorithms due to its nonlinear hardware configurations, but

the PC cluster is not suitable for continuous use in production environments due to its

 Chapter 6: Dedicated Calculation Grid Design using Peer-to-Peer Network

161

high power consumption, requirement for larger space, and higher rate of failure.

Meanwhile, the NUC cluster be expanded and improved by adding more calculation

nodes in the future for long-term research and development in the company. Both

clusters are undergoing continuous improvement to fine-tune their performance for

various calculation scenarios, and more tests and simulations are being performed on

these clusters. A number of changes have been made to the distributed processing

controller software and calculation node’s controller software to include a dedicated

calculation grid cluster, and in addition, there have been a few changes made to the

SQL server database to incorporate the cluster nodes within the distributed processing

control system. However, further improvements required to the distributed processing

controller software and to the SQL server database to incorporate different types of

calculation cluster configurations. Meanwhile, the message passing between

calculation nodes and the distributed processing controller is similar to the technique

used in workstation cluster that explained in Chapter 4 with a few modifications and

proved to be adequately support the communications requirements for coarse-grain

process-based calculations. Further analysis of both PC and NUC clusters using

captured data is presented in Chapter 8 where the results and discussions are presented

in detail.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

162

7 Hybrid Processing Using Multiple Calculation Clusters

7.1 Introduction

This chapter describes the original design and implementation of distributed

processing using multiple physical computing devices and logical CPU cores as

calculation nodes to form a hybrid type of calculation cluster to perform a combination

of distributed processing and parallel processing. This is the fourth phase of the

investigation that explained in section 1.4 in Chapter 1. This method is one of the

approaches to investigate the feasibility of hybrid processing to create multiple

calculation clusters using available processing devices within the company. These

calculation clusters can be configured to work as a single cluster or a combination of

clusters as groups depending on the applications used, and are able to be utilised as a

single cluster with data decomposition-based processing, multiple clusters with

functional decomposition-based processing, or a combination of both depending on

the requirements. The main purpose of the hybrid type of distributed processing

investigation is to design high-throughput distributed processing cluster systems that

utilise all the available processing devices within the company such as servers,

workstations, PCs, and single-board small form factor computers in the main office as

intelligent processing devices to facilitate the complex and time-consuming

calculations. In addition, the goal is to be able to incorporate the disaster recovery

(DR) site’s hardware and software to be integrated as part of the distributed processing

system that facilitates compute-intensive applications to be executed within

manageable time scales and to maximise the processing capacity.

The clusters are designed based on consolidating various processing devices into an

intelligent calculation cluster that can be used for various operations with high

throughput and utilises an adaptive and self-tuning control mechanism that

continuously fine-tunes the cluster’s performance to permit it to function

autonomously. The hybrid cluster is designed in such a way that it can be modified

whenever required with minimum impact to the business. In addition, implementing

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

163

different methods and techniques improves the efficiency of the distributed processing

cluster using a combination of distributed processing and parallel processing with

CPU-core-level program executions and static and dynamic load balancing techniques

employing multi-core processors. For testing the hybrid cluster performance, some of

the currently used applications are employed, and these applications are developed

using Windows-based programming languages. Hence, the testing is performed to

evaluate the suitability and usability of these applications within the distributed system

that have multiple hybrid types of clusters.

Different types of distributed processing approaches are applied to the existing

systems to solve complex and compute-intensive calculations, and some tests are

performed to evaluate the data processing capabilities of the distributed processing

systems that use a combination of workstations, servers, and SQL servers. Two

applications used to test the performance improvements by using distributed

calculation methods: the dispersion trading system that uses the market volatility to

trade certain derivative instruments and the AH trading system that uses security-

pricing discrepancies within different exchanges. Both systems are computationally

intensive and require continuous calculations with high accuracy for executing live

trades during the volatile market conditions. Hence, combinations of distributed

processing methods are tested and the results show considerable improvements in

calculation time. The tests are performed using prototype systems with real-time data

feeds from financial data feed (FDF) providers. However, due to the complex nature

of the trading involved in these types of live-trading systems, it requires further

rigorous testing under stressed conditions to ensure that the proposed distributed

systems are capable of withstanding the highly volatile market conditions.

A number of changes have been made to the distributed process management software

to include different processing devices as calculation nodes. In addition, the required

modifications are made to the distributed processing controller SQL database to

support the database-level changes needed to incorporate the hardware and software as

a single distributed processing unit or logically segregated multiple calculation

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

164

clusters. Further investigations are carried out for implementing dedicated calculation

clusters using small form factor multi-core and many-core computers with lower

power consumption and smaller size with low heat dissipation characteristics.

Alongside that development, small-scale dedicated calculation grid-type clusters are

implemented to facilitate the research and development team and quantitative

researchers to test and simulate financial models and trading scenarios in real time. A

number of tests and simulations are carried out on different types of processing

clusters as a single cluster and also as a combination of clusters to evaluate their

calculation performance with and without load balancing. In addition, the testing also

provides detailed information regarding various parameters that are used for

comparing the cluster performances and their advantages and disadvantages under

different conditions. The test results show that using multiple clusters with varying

configurations coordinated as a hybrid distributed processing cluster has many

advantages for complex and compute-intensive applications. Furthermore, it is

possible to implement these types of clusters for real-time trading applications.

7.2 Hybrid Distributed Processing

The hybrid processing system design is based on utilising both distributed processing

and parallel processing systems using existing hardware within the company. The

consolidation of different processing units such as workstations, virtual servers, spare

PCs, and servers forms a distributed calculation cluster that is capable of processing at

CPU-core-level calculation nodes. Virtualisation and multi-threading techniques are

used in conjunction with discrete CPU-core-level processing to design and build

calculation clusters for research and development in the company. The design

approach is to consolidate various processing units into an autonomous self-managed

calculation cluster that can be used continuously or for on-demand operations with

high throughput. The hybrid system utilises all the processing devices available in the

main office, and in addition it has the capability to incorporate the processing devices

in the disaster recovery (DR) site to form intelligent processing devices to facilitate the

complex and time-consuming calculations to be executed within manageable time

scales and to maximise the processing capacity.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

165

7.3 Cluster Configurations

An alternative approach is made to design a high-throughput distributed processing

cluster computer system that utilises a combination of all the processing devices. It

uses the workstations, PCs, different types of servers, and small form factor computers

as separate, mutually exclusive clusters that can work as intelligent processing devices

to facilitate the compute-intensive calculations to be executed within manageable time

scales and maximise the processing capacity. The calculation clusters are configured

in a way that they can act as a single cluster or as part of a multiple-cluster system

depending on how the distributed processing controller manages these clusters. By

consolidating different clusters into an intelligent calculation cluster that can be used

during out-of-office hours when most the resources are free to be used at full capacity,

this is highly useful for batch processing tasks that take many hours to complete in a

single server. An adaptive and self-tuning control mechanism is implemented that

continuously fine-tunes the cluster performance and is able to function autonomously

with varying parameters. The varying parameters can be hardware, software, or

business rules. The cluster design approach has various degrees of flexibility due its

bespoke-type design; hence, it can be modified with minimum impact to the business.

The consolidated calculation cluster configurations are based on the following:

 Workstations are configured as virtual machines using VMware software.

 Noncritical servers are set up as calculation nodes.

 Surplus conventional servers are set up as calculation nodes.

 Cluster controllers are modified for coordinated process management.

 SQL servers are configured for distributed data and query processing.

 Clusters are designed using adaptive processing for efficient and robust

operation.

 CPU cores are used as calculation nodes with load balancing techniques.

 Historical data are collected for adaptive load balancing and task scheduling.

 Static and dynamic load balancing algorithms are implemented.

 Various methods and techniques are implemented to improve the efficiency of

the distributed processing.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

166

The following tests are performed on consolidated calculation clusters:

 Various applications are used to monitor hybrid cluster performance.

 Various tests are performed, and collected data is used to analyse cluster

performance under different load conditions.

 CPU core-level process executions using different applications and static and

dynamic load balancing.

 Control techniques applied to manage the process execution within calculation

nodes to avoid process deadlocks.

 Virtualisation techniques are used for workstations and servers.

 Multi-core processing and multi-thread techniques are employed.

 Parallel processing is performed in a single workstation using MS-Excel

applications.

 Virtualised servers are used as dedicated calculation nodes.

 Distributed data and query processing are implemented using local SQL

database servers and linked SQL servers.

 A combination of hardware is consolidated as physical and logical calculation

clusters.

The followings are investigated using the consolidated hybrid clusters:

 The systems that are currently used have been developed using VB6, VBA,

VBScripts SQL server, and batch processing systems. How these applications

can be incorporated within the distributed processing system at no extra cost or

at minimal cost is investigated.

 Implementation of reliable, robust, and efficient distributed processing system

for different type of processor-intensive calculations at minimal cost.

Currently, these calculations are performed as batch overnight and weekend

processes.

 Incorporating Disaster Recovery (DR) site hardware and software as part of the

overall distributed processing system.

 Use the distributed processing system in the real-time trading environment.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

167

The Northwest distributed systems must have certain characteristics, hence, the overall

design and development is focused on complying with the following characteristics:

 The system should be scalable with a number of calculation nodes and able to

add extra calculation clusters with minimum disruption to the business

operations.

 The system should be robust enough to any node failures of various types and

should be able to manage the failure gracefully and the system continues to

operate and delivers required critical calculations in the presence of node

failures.

 The system should be extensible for different types of data and applications

that are used within the systems.

 The system should have minimal management overheads and manual

configurations.

 The system should be portable to a variety of applications that are used in the

company and able to upgrade the hardware and software with minimum

disruption to the systems.

 The system should provide low per-node overheads for all scarce

computational resources including CPU, memory, I/O, network bandwidth,

power consumption, and space required.

Figure 7.1 shows the high-level diagram of multiple cluster configurations. The

multiple cluster-based distributed processing systems developed is partly being used

for the following applications, and it will be improved and fully implemented to

various compute-intensive applications that are currently used by the company once

the distributed processing system is fully tested under strict conditions.

 Used for pricing of different types of existing and new derivative instruments.

 Used for calibration of existing financial models and developing new financial

models.

 Used for risk data calculation, stress testing, and scenario analysis.

 Used for valuation of portfolios using varying data for scenarios analysis.

 Used for research and development for bespoke system designs.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

168

Figure 7.1: High-level diagram of multiple cluster configurations

7.4 Server Cluster

The server cluster is built using surplus conventional servers that are not used as part

of the company network servers; these servers were used in the past and replaced with

later versions of blade servers. However, these servers are in fully working condition

with all the required server software licenses. Hence, these servers can be used as a

dedicated calculation cluster for performing batch process tasks. The original proposal

was to build a server-based calculation cluster using servers and the server cluster was

to be located in the disaster recovery site and housed in a separate server rack.

However, test results shows that SFF computers with many cores are highly suitable

for building cost-effective and highly efficient calculation clusters. Meanwhile, the

server cluster is useful for testing static and dynamic load balancing techniques by

utilising various hardware and software configurations and testing the CPU core-level

distributed processing. Hence, the server cluster is used for testing purposes only and

is not to be used in the production environment. For testing, five of these servers are

used as calculation nodes connected via gigabit Ethernet switch to the distributed

processing controller, and each server is configured as a single node. Figure 7.2 shows

the server cluster configuration. Table 7.1 lists the parameters of each server node. All

severs nodes are loaded with the Windows 2008 operating system and Office 2010

software for testing. Server cluster’s pictures are shown in Appendix C (Figures C.1-a,

C.1-b, and C.1-c).

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

169

Figure 7.2: Server cluster configuration

Table 7.1: Server cluster node parameters

Server CPU Memory

(GB)

Size

(H x W x D)

cm

Weight

(Kg)

Power

(Watts)

Cooling

(BTU

Hour)

DL 385
1x AMD 2.6 GHz

Dual core
1 8.59 x 44.54 x66.07 28 575 2,500

DL 380

G5

2x Xeon 3.5 GHz

Dual core
12 8.59 x 44.54 x66.07 27 980 3,350

DL 380

G5

2x Xeon 3.5 GHz

Dual core
12 8.59 x 44.54x 66.07 27 980 3,350

DL 320

G2

1x P4 3.06 GHz

Single core
4 4.24 x 48.30 x 55.6 12 225 1,000

DL 360

G2

1x P3 1.4 GHz

Single core
4 4.19 x 42.55 x 63.5 11.5 200 1,000

To test the server cluster performance, one of the scenario-based calculation systems is

used. For scenario analysis calculations, an asset-swap calculation system is used and

500 asset-swaps are selected from the current portfolio for testing the calculation

speed improvements using the server cluster. Asset-swap is a special type of CB that

behaves like a normal CB with certain constrains and uses the same financial model

that described in the section 4.2.1 in Chapter 4. For all 500 asset-swaps, 15 scenarios

are calculated. Table 7.2 and Table 7.3 list each server node’s calculation time and

server cluster’s calculation time analysis, respectively. Using a single DL360 G2

server, calculating 500 asset-swaps with 15 scenarios takes 6 hours 38 minutes to

complete. Using a single DL360 G5 server, calculating 500 asset-swaps with 15

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

170

scenarios requires 2 hours 8 minutes to complete. Meanwhile, by distributing the

calculation using static load balancing techniques using the domain decomposition

method, the calculation time is reduced to 35 minutes and 15 seconds. Figure 7.3

shows each node’s calculation time for load imbalanced and load balanced conditions.

Table 7.2: Calculation time analysis for each server node

Node Sever Single Node

Calculation

Time (hours)

Distributed

Calculation

Time (min)

Distributed

Calculation Time with

Load Balanced (min)

1 DL 385 3.08 37.67 33.75

2 DL 380 G5 2.21 27.48 34.25

3 DL 380 G5 2.13 26.87 35.03

4 DL 320 G2 2.56 32.14 34.75

5 DL 360 G2 6.64 80.57 35.25

Table 7.3: Distributed calculation time analysis for server cluster

Load Imbalanced

Calculation Time (min)

Load Balanced

Calculation Time (min)

Maximum 80.57 35.25

Minimum 26.87 33.75

Average 40.95 34.61

STDEV 22.57 0.61

Even though the calculation time improvement is considerably high, the practical

implementation of these types of clusters is not a suitable for long-term usage due to

the following reasons:

 Power consumption is high.

 Larger space is required.

 Dedicated server rack is needed.

 Operating noise level is high.

 Dedicated temperature controlled server room is required.

 Cost of spare parts is high and unavailability is common.

 Dedicated hardware and software management is required.

 Cost of operations and maintenance is high.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

171

Figure 7.3: Each node’s calculation time for load imbalanced and load balanced

conditions

Due to various restrictions and limitations of using surplus servers and PC calculation

clusters, these clusters are not viable for long-term use. Hence, these clusters are only

to be used to test the distributed processing methodologies and load balancing

techniques that can be utilised for distributed processing; therefore, these clusters are

set up as prototype test clusters and will not be developed further. Meanwhile, small

form factor computer (SFF)-based clusters will be developed further to improve the

cluster performance by using various distributed processing and load balancing

techniques. In addition, a number of dedicated calculation clusters will be built using

SFF type computers specifically for analysts and researchers.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

172

7.5 Virtual Server Cluster

The virtual server cluster is built using the virtual servers that are currently used in the

company. These servers span across multiple physical servers and share the hardware

resources as a pool, and the company has a combination of physical and virtualised

servers for various dedicated functions. Apart from SQL and application servers, all

other servers consume minimal CPU and memory for their operations. Hence, these

servers are good candidates for use as server-based calculation nodes for logically

separated calculation clusters and can be fully utilised during out-of-office hours.

Because the server hardware is more reliable and powerful than the workstations,

these servers are useful for setting up as logically separated calculation clusters that

are mainly used for calculation-intensive batch processing tasks. The company has a

number of blade servers configured as a blade server cluster within two blade server

cases. These blade servers are connected to two storage area network (SAN) systems.

Currently, 14 virtual servers are running on a blade server cluster and a number of

virtual servers dynamically changeable depending on the requirements. The blade

server cluster consists of 13 HP BL460C G8 blade servers, Table 7.4 lists the server

parameter, and Figure 7.4 shows the blade server configuration as virtual servers.

Virtual server cluster’s picture is shown in Appendix C (Figure C.1-d).

Table 7.4: Virtual server names and their roles

Server Name Server Role Model CPU Memory

NHKSRV02 Email Server BL460C G8 Xeon 2.9GHz 32 GB

NHKSRV04 SQL Server BL460C G8 Xeon 2.9GHz 32 GB

NHKSRV05 File Server BL460C G8 Xeon 2.9GHz 32 GB

NHKSRV06 SQL Server BL460C G8 Xeon 2.9GHz 32 GB

NHKSRV07 Terminal Server BL460C G8 Xeon 2.9GHz 32 GB

NHKSRV08 SQL Server BL460C G8 Xeon 2.9GHz 32 GB

NHKSRV09 Application Server BL460C G8 Xeon 2.9GHz 32 GB

NHKSRV14 SQL Server BL460C G8 Xeon 2.9GHz 32 GB

NHKSRV15 Domain Controller BL460C G8 Xeon 2.9GHz 32 GB

NHKSRV16 FTP Server BL460C G8 Xeon 2.9GHz 32 GB

NHKSRV17 Terminal Server BL460C G8 Xeon 2.9GHz 32 GB

NHKSRV19 Web Server BL460C G8 Xeon 2.9GHz 32 GB

NHKSRV28 Management Server BL460C G8 Xeon 2.9GHz 32 GB

NHKSRV34 Backup Server BL460C G8 Xeon 2.9GHz 32 GB

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

173

Figure 7.4: Northwest’s blade server configuration

For testing the distributed calculation performance on the virtual server cluster, 560

asset-swapped positions are used for distributed calculation. The calculation setup is

similar to the conventional server cluster that was described earlier in section 7.4;

however, the number of scenarios is limited to a single scenario rather than all 15

scenarios. The blade servers are live production servers, and any errors that cause the

servers to slow down or require reboot will cause serious business disruption during

office hours. Therefore, a single scenario is used with all 560 asset-swapped positions,

and the load distribution is based on the number of asset-swaps rather than scenarios

that are implemented in the conventional server cluster. Each server is used for the

calculation of all 560 asset-swapped positions. This is intended to test the server

performance compared to different virtual severs.

 Split the asset-swap positions to different servers on a pro rata based to

evaluate the calculation time reduction by using multiple servers as a cluster.

 Allocate each server an appropriate number of asset-swap positions using static

load balancing techniques.

 Perform calculation tests during office hours and out-of-office hours to

compare server performance.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

174

Table 7.5 lists each server’s node calculation times for full load and distributed load

conditions, and Table 7.6 lists the virtual server cluster’s calculation time analysis.

Figure 7.5 and Figure 7.6 show calculation times using balanced and imbalanced loads

respectively. The behaviour of the virtual server is different from the conventional

server; this is due to the virtualisation software and operating system continuously

monitoring the server CPU and memory usage, and allocating memory and CPU

processing capacity accordingly from a shared pool of memory and CPU cores.

Table 7.5: Calculation times for each server node for the full load, distributed load

without load balancing, and distributed load with load balancing

Calculation

Node

Server Name Single Node

Calculation

Time (min)

Distributed

Calculation

Time (sec)

Distributed

Calculation

Time with Load

Balanced (sec)

 T1 T2 T1 T2 T1 T2

1 NHKSRV02 8.05 7.33 34 31 37 29

2 NHKSRV04 9.45 6.89 40 28 38 29

3 NHKSRV05 8.53 7.85 36 33 38 30

4 NHKSRV06 10.57 6.11 42 25 38 29

5 NHKSRV07 11.2 7.12 48 29 37 29

6 NHKSRV08 10.72 6.57 44 28 37 29

7 NHKSRV09 9.62 7.06 40 30 38 29

8 NHKSRV14 11.68 6.88 48 28 37 29

9 NHKSRV15 7.05 6.91 29 28 38 29

10 NHKSRV16 7.53 6.82 32 28 38 29

11 NHKSRV17 10.73 7.55 46 31 38 29

12 NHKSRV19 8.5 7.43 36 30 38 28

13 NHKSRV28 8.15 7.63 34 32 37 30

14 NHKSRV34 7.25 7.1 31 30 37 29

where

T1 Calculation time during office hours

T2 Calculation time during out-of-office hours

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

175

Table 7.6: Virtual server cluster’s calculation time analysis

Office Hours Calculation

Time (sec)

Out-of-Office Hours

Calculation Time (sec)

 Imbalanced Balanced Imbalanced Balanced

Maximum 48 38 33 30

Minimum 29 37 25 28

Average 38.57 37.57 29.36 29.07

STDEV 6.36 0.51 2.06 0.47

Figure 7.5: Node calculation times of each server for all 560 assert swaps during office

hours (T1) and out-of-office hours (T2)

The calculation time improvement is observed as expected, and the out-of-office hour

(T2) calculation is more stable due to all the hardware and software resources being

fully available for distributed processing. Meanwhile, the office hour (T1) calculation

is less efficient due to the virtualisation software and operating system dynamically

allocating various hardware resources to virtualised servers.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

176

Figure 7.6: Node calculation times of each server for distributed loads during office

hours (T1) and out-of-office hours (T2)

7.6 Distributed Data Processing

Distributed data processing is one of the requirements for the company’s distributed

processing systems to be used to process various data feeds within the shortest time

possible. The primary reason for this requirement is due to the recent data-feed license

changes that were introduced by the financial data feed (FDF) company. The primary

financial data feed provider has introduced various data protection and data usage

terms and conditions. This has had a profound impact on the company’s day-to-day

business and requires some sophisticated solutions to overcome the limitations

imposed by the FDF without violating the terms and conditions of data usage. The

company has 11 FDF terminals, and each costs $20,000 USD per year. These

terminals are used by traders, fund managers, risk and quantitative analysts,

researchers, and back office and middle office staff for various business functions

using the FDF-provided data. In recent years, the FDF has been introducing

continuous changes to its data usage terms and conditions to restrict the use of each

FDF terminal’s data to various degrees. The following two terms and conditions were

recently introduced by the FDF and are main concerns that need to be addressed:

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

177

 Each FDF terminal must be used by the assigned FDF user, and any data used

or downloaded must be kept as local data and must not be shared.

 A defined data download limit for each FDF terminal for each 24-hour period

of use, and in case the data downloaded exceeds the limit, there will be an

extra fee based on the number of data points downloaded.

Hence, due to these current restrictions, downloaded data cannot be saved in the

common database and a limitation on the number of data points can be downloaded

each day. The reason behind these data usage changes is based on each FDF terminal

being licensed to each user, not to the company as a whole. Hence, if the company

wants to do any companywide-consolidated data processing, then another data license

scheme provided by the FDF for the company and that will cost $200K USD per year.

For a small company like Northwest, these types of licenses are not needed in general;

however, for research and development purposes, a need for some type of data

consolidation. Therefore, it is necessary to consolidate the FDF data without violating

the data usage terms and conditions. One method to overcome the data usage problem

imposed by the FDF is to process the data in each FDF terminal and save it in the local

hard disk by using a distributed data processing cluster that consists of all the FDF

terminals as a single cluster. Hence, all the processing that is related to each terminal

is executed on one particular terminal only. In addition, the terminal consolidates the

results using the distributed query method. Due to on-going negotiation with the FDF

regarding data saving and data usage terms and conditions, the distributed data

processing configurations are currently set up as prototypes and only used for testing

purposes. Once the terms and conditions are negotiated, then the systems will be

activated for live trading operations.

For testing, followings setup is used:

Number of security: 700

Number of fields per security: 11

Number of days: 3500

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

178

The FDF terminal service has various data limitations, such as, how long the terminal

applications can be used on a single session, how much historical data can be allowed

per 24-hour period. In addition, FDF applications have their own built-in functions

that are linked to the FDF APIs, and these functions are commonly used with MS-

Excel sheets. The data limitation is calculated depending on various factors such as

whether the data requested is the current data or historical data, direct market feed, or

FDF-calculated data. Hence, each data processing node has to be checked for available

data points before distributing the required calculation data points to each data

processing node. By implementing load balancing, data overload is avoided; data

overload can cause serious problems for the node concerned, and it can lock the FDF

terminal service for the next 24 hours on that particular node. Meanwhile, different

FDF terminals have different data usage profiles depending on type of application is

used and the FDF functions used within the applications. Hence, to avoid data

overload, a limitation factor k is introduced to each data processing node depending on

the criticality of the FDF terminal. For example, traders’ terminals are highly critical

and operation staff members’ terminals are less critical. The value of k is set to 0.5 for

highly critical terminals, that is, only 50% of the available data points will be used,

and for less critical terminals, k is set to 0.8, that is, only 80% of the available data

points will be used. Therefore, by implementing a limitation factor, a safety buffer

zone will be created that protects the data overload scenario. For testing, five user

workstations with FDF terminals are selected to form a data processing cluster with

each workstation set up as a data processing node and connected to the distributed

processing controller. Figure 7.7 shows the distributed data processing cluster

configuration using FDF terminals, and Figure 7.8 shows the configuration of each

FDF terminal.

Figure 7.7: Distributed data processing FDF terminal configuration

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

179

Figure 7.8: Terminal configuration of each FDF

Total number of data points for a historical data analysis is shown in Equation (7.1),

and ticker allocation for each data processing node is evaluated using Equations (7.2)

and (7.3).

 FDTP (7.1)

where

P Total data points needed for calculation

T Number of security tickers

D Number of historical days

F Number of FDF fields per security ticker

N

i

UM

UM

iBiBik

iBiBik

FD

P
iT

1

))()(()(

))()(()(

)(
)((7.2)

N

i

UMA iBiBikB
1

))()(()(

(7.3)

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

180

where

T(i) Number of tickers allocated to node i

BM(i) Maximum usable data points within 24 hours in node i

BU(i) Used data points within 24 hours in node i

BA(i) Available data points within 24 hours in node i

k(i) Data limitation factor for node i

N Number of data processing nodes in the cluster

P Total data points needed for calculation

If BA < P then P = BA and P’= P- BA, where P’ is the reminder of the data points that

will be carried on to the next day, and P’ becomes P on the next day and so on until all

the data points are filled. This process may take a few days for large sets of data

points, and for smaller sets of data points, the entire process can be completed within a

day. The distributed processing controller allocates a number of tickers to each data

processing node based on Equation (7.2). The same method can be used for

distributing data using days or number of data fields per data processing node;

however, for testing purposes, ticker-based distribution is used. Once the ticker-set is

allocated to each data processing node, then the distributed processing controller sends

a message to each data processing node to start the data processing. For each ticker,

three processes are performed:

(1) Fetch data from FDF for given date and field using FDF functions.

(2) Calculate various parameters using fetched data using Northwest programs.

(3) Save the calculated data to local SQL database and local XML file.

These processes repeat until all the tickers have been calculated. By using a set of

tickers to download the data using a single FDF terminal with 100% use, seven days

are required to download all the required data. However, employing distributed data

processing using five FDF terminals with 80% download limits takes 2.5 days, and 11

FDF terminals with 50% download limits only requires 1.5 days. Even though, 4.7

times improvement for 11 terminals used, data feed delays are also involved and that

is not included in the calculations; hence, this will also affect the download speed.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

181

7.7 Distributed Query Processing

Distributed query processing technologies have been implemented in various data

processing centres using processing clusters in different forms. However, Northwest’s

distributed query processing has to be simple to use and easy to implement within the

nodes. The reason for these requirements is that currently all the historical data based

query processing is executed during weekend or out-of-office hours. This is due to the

large amount of saved historical data that is kept in various SQL server databases, and

these data have to be linked using a TCP/IP network to perform complex calculations.

This is causing considerable time delays, SQL server connection timeouts, SQL server

deadlocks, and network traffic delays. To solve these issues, two options are

investigated:

 Consolidate all the historical data into one SQL server database and separate

the historical data in a dedicated SQL server. This will require a major

overhaul of company’s database structures and require considerable time,

developer resources, and redesign costs.

 Use the existing databases and implement distributed query process techniques

to distribute the data across dedicated and non-dedicated calculation nodes and

execute queries on each set of data in parallel.

At the current state, the distributed query processing is most suited for the company

due to a number of constraints in deploying new database systems. The company uses

Microsoft SQL Server Enterprise edition as the main database system, and a number

of different editions of SQL server available with different licensing structures. One of

them is SQL Express edition, and that is free to use. The core part of the SQL server

engine is the same for all the SQL server editions, and only a number of user

limitations and certain add-ons are different for each edition. Therefore, each

calculation node within the distributed processing cluster is installed with SQL Server

Express edition and set up as a data processing node with no extra licensing cost.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

182

Two ways of distributing the data between distributed databases: the distributed data

method and the linked database method. Each has its own advantages and

disadvantages depending on how the query is implemented.

7.7.1 Distributed Data Method

In the distributed data method, the master data is replicated with the distributed

databases. This method is most suited for producing reports using snapshot data from

the master database or historical data analysis.

Advantages:

 Queries execute faster due to the local databse utilisation.

 Minimum network-related delays.

 Most suited for historical data analysis.

Disadvantages:

 Data has to be replicated continously and synchronised with the master

database.

 Possible data discrepancies between replicated data and master data.

 Not suitable for live data processing.

7.7.2 Link Database Method

In the link database method, the master database is linked to each distributed database.

This method is most suited for producing reports using current data from the master

database or live data analysis.

Advantages:

 Direct access to the master data and no need for replication.

 Mostly suited for live data processing.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

183

Disadvantages:

 Queries execute slowly due to network latency and data paging.

 Complex nested subqueries are not suitable due to long delays and timeouts.

 Network-related delays that can cause deadlock on larger datasets.

Currently, most of the processing for various anlysis done by quantitative researchers

is based on historical data, that is, saved data that does not change during the day.

Hence, the distributed data method is most suitable for this type of processing.

However, a number of situations in which live and current data are needed produce

analysis reports for various reasons; for this purpose, up-to-date data are required.

Therefore, each calculation node is set up with a single instance of SQL Server

Express edition and two separate local databases, one with linked tables that is linked

to a master database and another with local tables that are replicas of the master tables.

For a distributed data configuration, another local database is used for the local tables

to be partitioned using the master table for distributed query processing. Table

partitioning can be vertical, that is, spliting table columns, or horizontal, that is,

spliting table rows, or both. The company has many historical data tables that hold

various levels of historical data for the last 18 years; the number of rows exceeds 40

million while the table columns are fewer then 255. Hence, the horizontal partitioning

is the most suitable solution for distributing data across the processing nodes. By using

dynamic SQL views in each processing node, the same SQL stored procedure can be

used in the master database or in the processing node. Dynamic SQL views are

managed by the distributed processing contoller using data structure rules and

metadata tables. For example, a master table data can be divided for distributed

processing by using SQL view to logically divide the data or using partitioned tables

to physically divide the data.

Therefore, by implementing table partitioning and programmable views in each

processing node, it is possible to execute queries and SQL stored procedures that are

currently used within the company without changing the structure of these objects.

This approach has many benefits, such as, no need to alter the exsting SQL server

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

184

objects in the master database and only the distributed processing part of the

development has to be modified to fit the current SQL server applications. Most part

of the distributed query processing is managed by the distributed processing

management controller coordinating with the distributed processing SQL database that

maintains the partitioned tables’ metadata for each processing node. This is a simple

example to illustrate the concept of distributed query processing using replicated and

distributed data. However, for complex queries, the benefit of using distributed data

query processing has better performance enhancement.

To test the time improvements of executing an existing SQL stored procedure in a

distributed query peocessing cluster, 10 workstations are selected and configured as

processing nodes and the distributed process controller database is modified to

maintain the partitioned table metadata details for managing the query processing in

each processing node. Each processing node is installed with SQL Server Express

edition and has three local databases: one is the linked database in which all the tables

are linked to the master database, another has local tables that are copies of the master

tables, and the third one has corresponding partitioned tables and programmable

views. The advantage of keeping a copy of the master tables and all the partitioned

tables in every processing node is that all the processing nodes have an exact copy of

the master tables and corresponding partitioned tables. Hence, the distributed

processing controller can allocate query processing tasks to each processing node

depending on their availability and CPU load parameters regardless of their data

status. The data updates and synchronisation are managed by the distributed

processing controller’s SQL server in coordination with the master SQL database, and

this process is set as a daily overnight scheduler process. However, the data

synchronisation process can be on demand or continous as live synchronisation, and

the data update and synchronisation process replicates the master table’s data for each

processing node. This method is well suited for smaller datasets with few cluster

nodes; however, if the data is considerably large and the number of cluster nodes is

also high, then this method is not a viable solution due to the time taken to update and

synchronise the data across the processing cluster.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

185

Table 7.7 lists distributed processing local database details, Figure 7.9 shows the

distributed query processing cluster configuration, and Figure 7.10 illustrates the

query-processing node’s configuration.

Table 7.7: Distributed processing local database details

Database Name Description

NW_SQL_DB1

Linked database and the data tables are linked to master database.

NW_SQL_DB2
Local copy database and all the data tables are replicated with

master database.

NW_SQL_DB3
Local partitioned table database and all the data tables are

synchronised with master database.

Figure 7.9: Distributed query processing cluster configuration

Figure 7.10: Distributed query processing node configuration

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

186

For testing, three separate SQL databases in the single instance of the SQL Server,

and the security settings for each SQL object are managed by administrator-level

authentications. Table 7.8 and Table 7.9 list the distributed and replicated query

processing times for each processing node and cluster-level analysis, respectively.

For testing the query processing, the following data tables are used:

o Price table with 20 million rows and 12 columns

o Security table with 20,000 rows and 125 columns

o Trade table with 700,000 rows and 182 columns

Table 7.8: Distributed and replicated data query processing time for each node

Partitioned

Table

Data

Year

Processing

Node

Distributed

Processing

Time (sec)

Replicated

Processing

Time (sec)

Table(1) 2004 NHKWST58 252 765

Table(2) 2005 NHKWST59 250 759

Table(3) 2006 NHKWST62 261 777

Table(4) 2007 NHKWST63 263 754

Table(5) 2008 NHKWST65 275 784

Table(6) 2009 NHKWST68 271 785

Table(7) 2010 NHKWST70 289 769

Table(8) 2011 NHKWST77 294 758

Table(9) 2012 NHKWST89 303 763

Table(10) 2013 NHKWST98 309 781

Table 7.9: Processing time analysis for distributed and replicated data query for each

processing node

Distributed

Processing

Time (sec)

Replicated

Processing

Time (sec)

Maximum 309 785

Minimum 250 754

Average 276.70 769.50

STDEV 21.02 11.47

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

187

7.8 Multi-Core Distributed Processing

A new type of CPU core-level distributed processing approach is investigated to find a

solution for implementing multi-core program execution within the single physical

CPU using existing Windows-based technologies. Various ways of utilising multi-core

CPUs for parallel and distributed processing using threaded programming, and these

types of programs require complete redesign of the existing applications and systems.

Hence, this option is not suited for using existing applications and systems that are

currently used in the company. The method that investigated is simple to implement

within the company’s existing infrastructure with minimum change. Hence, no need

for complex programming or using third-party software, and it only uses existing

functionalities within the operating system. The main advantage of this method is that

it is using the existing Windows utilities that are part of the Windows network

infrastructure.

Advantages of using the multi-core processing method:

 Implementation is simple within the existing Windows infrastructure.

 For software implementations, no need for specialised programs.

 Programs are written using tools provided by the operating system with no

extra costs.

 Troubleshooting is easy during its operations.

 It is highly portable within the Windows environment.

 It is highly suitable for coarse-grain-type task processing.

Disadvantages of using the multi-core processing method:

 It is specific for the company’s applications and software.

 It is not suitable for general types of applications and software.

 It can only be used in the Windows network environments.

 It is suitable for fine-grain task-based distributed processing.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

188

A number of modifications are made to the distributed processing controller to

incorporate CPU core-level distributed processing, and the calculation node controller

allocates tasks to each CPU core depending on the following parameters: Number of

physical CPUs, calculation nodes, number of cores in a single CPU, and CPU usage

index.

7.8.1 CPU Core Usage Rule

In a normal program execution scenario, the operating system is responsible for

allocating tasks to each CPU core depending on the availability; context switching and

threads are used. Normally, context switching is activated when all the CPU cores are

fully utilised by executing programs; however, it is possible to activate context

switching by utilising programs that simulate 100% CPU core usage that will cause

the operating system to activate context switching. In the MS Windows operating

system, version 7 onwards, the CPU core allocation for each process is handled in a

sequential manner, and once all the CPU cores are fully utilised then context switching

will be activated by the operating system. Hence, it is possible to segregate each CPU

core for dedicated processing without the complex programming that had been used in

earlier versions of the MS Windows operating system. To test how the operating

system allocates the processes to each CPU core, a VBScript program is used to

simulate a CPU-intensive task and every instance of this program execution will fully

utilise each CPU core; this process is managed by the operating system. To test how

the operating system manages the program execution, the VBScript program is used to

simulate high CPU usage and the use of program memory and hard disk usage is

negligible. Table 7.10 lists the test workstation specification and Table 7.11 lists CPU

core utilisation by operating systems with different numbers of execution instances of

the VBScript program. This shows how the operating system is managing the cores

that are utilised efficiently using thread management and context switching. Where a,

b, c are threads used by the operating system for context switching.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

189

Table 7.10: Workstation specification

Parameter Description

Model HP Z420

CPU Four-core Intel Xeon 2.80 GHz

Memory 12 GB

OS Windows 7 (64)

Table 7.11: CPU core utilisation and context switching details

Program

 Instance

CPU

Utilisation

CPU Core

Utilisation

Context

Switching

1 25% 4 No

2 50% 4 No

3 75% 4 No

4 100% 4 No

5 100% 4(a, b) Yes

6 100% 4(a, b, c) Yes

The test results show that the operating system is managing the program execution

using its own rules. Hence, to execute programs in a particular CPU core, the program

has to be executed using a shell type of program that uses threading and execution

encapsulation or similar. These types of program designs are comparatively complex

and require C++, #.Net, or a similar type of programming environment. Therefore,

need to implement a solution that is simple to use, easy to manage, and able to support

existing applications with minimum changes. Number of third party tools available,

but all of them require some sort of programming and also altering the existing

programs to work with these tools. However, a tool available within the Windows

SDK toolsets called PsTools.exe that is part of the system administration tools. Many

utilities are available with PsTools.exe; particularly, a program called PsExec.exe that

is used for remote execution within a Windows network; this program is mainly used

by network administrators for remote administration. Furthermore, it has a method that

is capable of executing programs in a particular CPU core using the processor affinity

assignments method.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

190

An enterprise-level remote execute utility available called RemoteExec.exe that is an

agent-less software solution allowing the execution of predefined remote actions

through a graphical interface. It can remotely install applications, execute programs

and scripts, and update files and folders on Windows systems throughout the network.

RemoteExec.exe is a feature-rich enterprise software solution that meets the

performance and security requirements of IT professionals managing small to large

Windows networks. Meanwhile, PsExec.exe is a utility that can be useful for

managing a small-sized Windows network and has minimal feature and security

requirements. Hence, for testing CPU core-level execution within a single physical

CPU or within a small-scale distributed processing cluster, PsExec.exe is more

suitable. Thus, by using the PsExec.exe utility, executable programs can be executed

in remote computers or local computers, and the main advantage of using the

PsExec.exe utility is that it is a part of the Windows network infrastructure.

Advantages of using the PsExec.exe utility:

 It is fully supported within the Windows network infrastructure.

 It is easy to implement within the existing network infrastructure.

 It is a lightweight program, can be executed using command line utilities.

 It is a free utility from Microsoft and has no extra cost to implement.

 It executes programs under system accounts.

Disadvantages of using the PsExec.exe utility:

 Designed for administrator-level usage; hence, cannot be employed at user

level.

 Security features are less credible for network usage.

 Only works with Windows network environments.

The security concern of using PsExec.exe is not a serious problem for the company’s

distributed processing cluster, because the cluster network is set up inside the firewall;

hence, no network access to unauthorised users and no remote login from outside the

network. To avoid unauthorised remote execution, the PsExec.exe program is installed

in each calculation node and managed by the calculation node controller using local

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

191

administrator rights. The distributed process management controller allocates tasks to

each calculation node depending on the available CPU cores per calculation node, and

the calculation node controller allocates a single task to each CPU core using the

PsExec.exe program. To test the CPU-level execution, a simple executable program

called CPUCoreText.exe is used.

7.8.2 CPU Core Testing Application

This is a test program designed using VB6 to execute CPU-hogging calculations to

monitor how the CPU performs under stressed conditions and to execute on the

assigned CPU core by using the PsExec.exe program. Initial test results show that

programs can be executed exclusively in a selected CPU core without affecting other

cores. Hence, once the program execution is assigned to a particular CPU core, it will

continuously executed on the assigned core only, does not affect the other CPU cores.

If the distributed processing is activated during office hours when users are employing

their workstations, the operating system will avoid CPU cores already occupied by the

distributed processing programs and use the available CPU cores for user-level

programs. However, if the user-level programs require more CPU power, then the

operating system will activate the context switching to use all the CPU cores, and this

will affect all the programs on that particular node; it will slow down the distributed

processing programs as well as user programs. By utilising the load balancing

technique that incorporates each CPU core usage with its algorithms, it is possible to

allocate tasks depending on the CPU core load parameters. Hence, each CPU core acts

as a single logical calculation node. Consequently, a single workstation that has four

CPU cores can be set up as four separate logical calculation nodes if fully utilised.

However, if a physical workstation is employed by an assigned user, then it depends

on CPU core usage index and how many logical calculation nodes are available for to

be used. The distributed processing controller in coordination with the local

calculation node controller manages this process. Table 7.12 and Table 7.13 list CPU

core utilisation by operating system and using the CPU core usage profile-based

processor affinity assignments method.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

192

Table 7.12: CPU core usage profile when operating system manages the program

execution in a single CPU that has four cores

Program

Instance

CPU

Utilisation

Core 1

Used

Core 2

Used

Core 3

Used

Core 4

Used

1 25% Yes Yes Yes Yes

2 50% Yes Yes Yes Yes

3 75% Yes Yes Yes Yes

4 100% Yes Yes Yes Yes

Table 7.13: CPU core usage profile when psexec.exe executes the program in a single

CPU that has four cores

Program

Instance

CPU

Utilisation

Core 1

Used

Core 2

Used

Core 3

Used

Core 4

Used

1 25% Yes No No No

2 50% Yes Yes No No

3 75% Yes Yes Yes No

4 100% Yes Yes Yes Yes

During office hours, the workstations and servers are continuously used, and the CPU

usage index for each calculation node is employed to evaluate the available CPU cores

per node. When the workstations and servers are not used during out-of-office hours,

all the CPU cores are available for distributed processing. The number of available

CPU cores for distributed processing is calculated using Equations (7.4) and (7.5):

))](1()([)(ipimINTic (7.4)

)}(),({)(ipipMAXip AC (7.5)

where

c(i) Number of available core(s) for distributed processing in node i

m(i) Number of CPU cores in calculation node i

p(i) Selected CPU usage percentage of calculation node i

pA(i) Average CPU usage percentage of calculation node i

pC(i) Current CPU usage percentage of calculation node i

MAX Maximum value of the dataset

INT Integer value round-down to floor

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

193

Table 7.14 lists the calculation node average CPU usage percentage and available

CPU cores for distributed processing. The number of total available CPU cores within

a selected calculation cluster is calculated using Equation (7.6).

Table 7.14: Available CPU cores per calculation node with varying CPU cores

Number of

CPU Core

Average usage of CPU

 20% 30% 40% 50% 60% 70%

2 1 1 1 1 0 0

4 3 2 2 2 1 1

8 6 5 4 4 3 2

12 9 8 7 6 4 3

)(
1

N

i

icn

(7.6)

where

n Total number of available CPU cores within a selected calculation cluster.

N Total number of calculation nodes within a selected calculation cluster.

A simple test is performed to test one of the risk calculation scenarios that described

section 4.2.1 in Chapter 4, using a Zotac Pico computer to illustrate that the CPU core-

level calculation can be performed on small form factor (SFF) computers. The result

shows that using a single core, the calculation time is 83 seconds, and using four cores

as distributed calculation, the time is reduced to 22 seconds. The behaviour of

calculation time reduction for the execution of a particular program is similar to using

discrete PCs and workstations. Hence, the CPU core-level calculation can be utilised

with various hardware such as servers, workstations, PCs, and SFF computers to form

a logical CPU core cluster, and the CPU core cluster can span across the entire

spectrum of hardware. In addition, the CPU core-based logical cluster can be separated

for various calculation requirements, such as 10 four-CPU-core workstations being

used as a single 40-CPU-core node cluster or logically separated clusters such as four

separate clusters with 10 CPU cores each.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

194

7.8.3 CPU Core-Level Auxiliary Processing

The auxiliary processing method is investigated to reduce the failure rates of any given

task per batch execution. Even though the failure rate of a calculation node’s hardware

is considerably low due to its high reliability and continuous maintenance. However,

other factors also involved in distributed processing, such as the network and

operating system that affect the performance. Hence, by implementing the auxiliary

processing using the CPU core coupling method for each process, the task failure rate

per batch process is reduced. The calculation process coupling is done by executing a

single process in two or more logical CPU cores that are located in different physical

calculation nodes, and how the task is allocated to each CPU core is determined by the

distributed process management controller by a defined set of rules. For CPU core-

level task processing, a single physical calculation cluster that consists of multiple

CPU cores can be configured as multiple logical clusters with CPU cores as

processing nodes. Figure 7.11 shows the four workstations with a physical CPU that

has four logical cores in the logical cluster using CPU cores.

(a) (b)

Figure 7.11: Physical and logical CPU core grouping: (a) Four workstations with 16

logical CPU cores, (b) Four logical CPU cores-based auxiliary processing groups

For example, if a single process or a single workstation failure is one in 1,000 per

operation, then for four CPU cores, coupled task failure probability per operation is

one trillion to one, and for a two-CPU core coupled task, failure probability is one

million to one. To get a similar calculation time for each auxiliary task execution, the

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

195

CPU core speeds should be the same, and this is normally true if the chosen

calculation nodes have the same hardware configurations, especially the CPU core

speed. Figure 7.12 shows the use of physical processing devices as separate logical

CPU core clusters.

Figure 7.12: Using physical processing devices as separate logical CPU core clusters

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

196

7.9 Distributed Processing Implementation for Dispersion Trading

Dispersion trading is a type of portfolio management strategy that buys or sells index

options premiums and sells or buys the underlying share’s premiums based on

structured portfolio-level delta hedging. The dispersion trading system that was used

in the past by the company is based on the trading strategy that uses an index and its

constituents’ options for producing a considerable amount of profit against the

benchmark index for a given period. It was designed in a way that the system operates

like a program trading type of system. However, it was a partially automated system

with various manual overrides and facilities for traders to make required adjustments

to trading algorithms when needed. Due to the complex nature of the strategy used and

the computing power needed to calculate all the required parameters for profitable

trading, the system came to a halt after a few months of usage. The system proved to

be highly complicated to use in the conventional serial calculation method using

dedicated servers, especially during high-volatility market conditions. Hence, to solve

the calculation requirement for this system, various tests are performed on the

distributed-process-based calculation method to evaluate whether is it feasible to

calculate all the required parameters for the dispersion trading strategy during highly

volatile market conditions where the data changes occur rapidly. To test the distributed

process-based calculations for the dispersion trading strategy, three types of

calculation clusters are used as a combined hybrid cluster. In addition, both data

decomposition-based and functional decomposition-based calculations are used to

minimise the calculation time for the entire portfolio that used for testing. As shown

in Table 7.15, three separate clusters are configured with 10 calculation nodes for each

cluster: the Virtual server cluster, Workstation cluster, and NUC cluster.

Table 7.15: Calculation cluster configuration parameters

Parameter Server Cluster Workstation Cluster NUC Cluster

Number of Nodes 10 10 10

Node Model HP BL480 HP Z420 Intel NUC

Node CPU Xeon 2.8 GHz Xeon 2.8 GHz Atom 1.4 GHz

Node CPU core 4 4 2

Node Memory 12 GB 12 GB 2 GB

Node Power 120W 270W 35W

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

197

To evaluate the calculation time improvements against different clusters, the following

test scenarios are performed:

 All required calculations in a single calculation node of each cluster.

 Distributed calculations used for static load balancing with data decomposition.

 Distributed calculations used for static load balancing techniques with both

data and functional decomposition.

Different types of calculations need to be performed continuously to facilitate the

traders, fund managers to make trading, and portfolio management decisions. The

calculations are nonlinear, and some of the calculations take longer than other

calculations. Hence, the distribution is done by splitting calculation tasks by

combination of data and functions across multiple clusters to maximise the calculation

efficiency. The following processes are distributed across three calculation clusters:

 Implied Volatility Analysis

 Dispersion Analysis

 Correlation Analysis

 Tracking Error Calculation

 Profit and Loss (P&L) Calculation

 Risk Analysis

 Delta Hedge Calculation

To test the dispersion trade simulation using distributed processing techniques, the

Hong Kong Index (HSI Index) and 50 of its constituent shares as a share basket that

have higher 90-day realised volatility that is considerably higher than the HSI index

90-day volatility are chosen to create a dispersion trade test portfolio. The tests that

carried out are mainly focused on how the automated trading process can be improved

using distributed processing techniques. To test whether the dispersion trading strategy

can produce enough positive cash flow for the portfolio, the program-based

autonomous trading system has to be simulated on the following scenarios.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

198

 Various market conditions are used.

 Different indexes are used.

 Varying share baskets are used.

 Different delta hedging algorithms are used.

 Different dispersion and correlation algorithms are used.

However, these types of simulations are mainly conducted by the quantitative analysts

and researchers. Hence, these simulations can only be carried out when the system is

fast enough to calculate the required parameters for dispersion trading. The test shows

that by using a single HP Z420 workstation to calculate dispersion trade algorithms, it

takes around 11 minutes to complete. Hence, in theory, trades can be placed at 11

minutes intervals, and this is not a suitable solution for a real-time trading

environment. Ideally, a total calculation time of less than 15 seconds per calculation

cycle is the minimum requirement for the dispersion trading strategy to be fully

implemented for the live-trading environment. In addition, calculation reliability,

repeatability, and accuracy are also important factors of the calculation process, and

these can be achieved by distributing the calculation process across many calculation

clusters with auxiliary calculation nodes. The calculation clusters can have

combinations of multiple physical and logical nodes that span across multiple physical

clusters, and this will increase the cluster reliability.

In a typical trading day, the first hour after the market opens and the last hour before

the market close is the most volatile periods of the day, and the dispersion trading

activities are high during these time-periods. Furthermore, during volatile market

conditions, the whole day can be highly volatile and the dispersion trading activity can

be high throughout the day. Hence, to eliminate trade execution delays during highly

volatile markets, every calculation that updates the dispersion trade table keeps the

next 10 consecutive trade execution data values as predictive trading data for

downside move and upside move. In theory, every calculation cycle creates a single

trade execution data set for each security; however, in practical implementation, this

method can cause serious execution order delays due to unforeseen calculation delays.

Therefore, introducing multiple datasets for trade execution is the safest option during

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

199

highly volatile market conditions, and the method used is shown in Equations (7.7)

and (7.8):

)),((),,(jiXfTjiY

(7.7)

At calculation period T, the output dataset is reset as shown in (7.8):

),,(),,(PTjiYTjiY

 (7.8)

where

X Input dataset

Y Output dataset

T Current calculation dataset’s timestamp

TP Previous successfully completed dataset time stamp

m Number of datasets (j= 1, 2, …., m-1, m)

n Number of calculations (i=1, 2, …, n-1, n)

Thus, every calculation cycle, the next 10 (m=10) consecutive trade execution data

values are available for the trade execution engine to process the trades. Currently,

five for downside market move and five for upside market move are used; however,

these can be fixed numbers or can vary based on adaptive methods depending on the

algorithms used. This is a safety protection mechanism to avoid serious trading delays

during highly volatile market conditions, and the trade execution engine is able to

submit the trades to the electronic trading system in case of serious delays in

calculations. Currently, the number is set to 10 for testing; however, this number can

be large or small depending on the calculation time required to complete all the

calculations needed for producing trade execution data sets. Smaller numbers produce

better results in highly volatile market conditions. In low-volatility market conditions,

they have less impact. In highly volatile markets, the number of trades required is

relatively high compare with low-volatility market conditions; hence, the dispersion

trading system must be capable of adapting to changing market conditions. In highly

volatile market conditions, trade execution might be required every 15 seconds, and in

low-volatility market conditions, there will possibly be a few trades per day, and in

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

200

certain days, there will be no trades. Hence, the system has to be capable of adapting

to changing market conditions and able to be fast enough to calculate required datasets

within set time limits. The dispersion trading strategy is more profitable during the

highly volatile market conditions; therefore, the calculation speed is crucial for the

implementation of dispersion trade strategies. For time-critical calculations using

simultaneous calculation methods, the first returned output is selected as a result and

the rest of the data is discarded. Hence, the fastest CPU core result will be used for the

preceding calculations, and so on. The following example shows how four calculation

nodes are used to calculate the same function with the same data sets simultaneously

and the first returned output is used for the calculations. For selecting the appropriate

output datasets, output dataset Y as a function of input dataset X is represented as in

Equation (7.9) as a generic form:

)(XfY (7.9)

Hence, output dataset Y for the calculation node i rewritten as Equation (7.10):

),()(iXfiY (7.10)

The first completed output dataset and selected output dataset are shown in Equations

(7.11) and (7.12), respectively:

))(,,())(,(iTiXfiTiY (7.11)

))(,(iTiYY MS (7.12)

where

)}(),1()....3(),2(),1({)(NTNTTTTMINiTM

N Number of calculation nodes

 T(i) Calculation time taken to complete the calculation in node i

 YS Selected output dataset

 MIN minimum value of the dataset

For data-critical calculations, multiple calculations have to be performed and the

output data compared to each other to ensure that all the calculations’ results are the

same before moving to the next stage of the calculations. Equation (7.13) shows how

the output dataset is selected where p is an arbitrary value that is set to 1 or 0

depending on the resultant datasets:

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

201

)(iYpYS (7.13)

where

 Y(i) Output dataset from calculation node i

 YS Selected output dataset

 p=0 when Y(i) ≠Y(i+1); p=1 when Y(i)=Y(i+1)

To eliminate the time delays due to calculation time discrepancies, the suitable

solution is to use the same speed CPU cores with identical memory allocations. Hence,

all four calculations will be completed at the same time or with minimal time delays,

assuming that no failure during the calculation. Figure 7.13 and Figure 7.14 show the

simultaneous calculations using CPU core as a calculation node and output dataset

selection based on the rules using Equations (7.12) and (7.13), respectively.

Figure 7.13: CPU core-level distributed calculation for first output dataset selected

Figure 7.14: CPU core-level distributed calculation for output dataset selected when

both outputs are equal

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

202

Using input datasets for performing the same calculations that uses eight CPU cores; it

is possible to achieve the minimal requirement for both time-critical and data-critical

scenarios. Using 16 CPU cores gives an optimal performance for both time-critical

and data-critical requirements. However, to implement this level of data- and time-

resilient calculations requires larger numbers of calculation nodes or multiple and

separate calculation clusters working together as a single cluster. Hence, for example,

if a process requires 10 calculation nodes in a conventional distributed processing

cluster, then it requires 160 nodes for data- and time-critical calculations. Therefore,

these types of calculations are better suited for CPU cores set up as each calculation

node; for example, a workstation with a CPU that has 16 cores can be set up as 16

separate calculation nodes where each node is managed by the distributed processing

controller. For complex trading operations, such as dispersion trading that consists of

many hundreds of securities in the basket, more than 1,000 calculation nodes are

required for calculating all the necessary trading parameters within the acceptable time

scales. Even though the calculation node number is high, it is possible to build these

types of calculation clusters using small form factor (SFF) computers with multiple

CPU cores, and the initial cost of these types of computers and the running cost of

these types of clusters are relatively small compared with workstations or server

clusters. Table 7.16 lists the cluster type and allocated calculations types, and Figure

7.15 and Figure 7.16 show functional decomposition methods and both domain and

functional decomposition methods, respectively.

Table 7.16: Process distribution for each cluster using functional decomposition

Cluster Name Cluster Type Calculation Type

CL_1 Server Cluster Risk Analysis

CL_2 Workstation Cluster P&L Calculation

Implied Volatility Analysis

CL_3 SSF Computer Cluster

(NUC Cluster)

Delta Hedge Calculation

Tracking Error Calculation

Dispersion Analysis

Correlation Analysis

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

203

Figure 7.15: Distribution of dispersion trade calculations using functional

decomposition

Figure 7.16: Implementation of distributed calculation cluster for domain and

functional decomposition

Table 7.17 lists calculation requirements for options and shares, and Table 7.18 lists

calculation time for each batch using a single HP Z420 workstation.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

204

Table 7.17: Calculation requirement for options and shares

Table 7.18: Calculation time taken for each dataset in a single HP Z420 workstation

Calculation Type Calculation Time (sec)

Delta Hedge Calculation 15

Tracking Error Calculation 17

Dispersion Analysis 19

Correlation Analysis 27

P&L Calculation 67

Implied Volatility Analysis 128

Risk Analysis 158

For calculation based on distributed processes, both domain and functional

decomposition are used. The domain decomposition is used within each cluster; hence,

the same calculation is used with different datasets for each cluster calculation node.

The functional decomposition is used across different clusters; hence, each cluster is

using same dataset but processing different sets of calculations. The domain and

functional decomposition method is shown in Equation (7.14):

n

i

ji

m

j

XfY
1 1

)((7.14)

where

Xj Input data for dataset j

Y Output data

n Number of processes

m Number of datasets

 i Calculation function for process i

Calculation Type Index Option Share Option Share

Implied Volatility Analysis Yes Yes No

Dispersion Analysis Yes Yes No

Correlation Analysis Yes Yes No

Tracking Error Calculation Yes Yes No

P&L Calculation Yes Yes Yes

Risk Analysis Yes Yes Yes

Delta Hedge Calculation Yes Yes Yes

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

205

To demonstrate to the company the possibility of using multiple clusters for complex

calculations that can be performed within acceptable and specific time limits, the

following parameters are used: One Index option, 50 Share options, and 50 Shares.

The number of securities is selected to ensure that the total calculation time completes

within 15 seconds and that every 15 seconds, the dispersion trade executions data table

is updated. However, if the number of securities increases, then a need for more

calculation nodes to ensure that the total calculation time remains below the acceptable

period of 15 seconds. Hence, a dedicated cluster with a large number of calculation

nodes is the most suitable solution for real-time trading scenarios, and this will be

investigated further once the dispersion trading strategy is finalised by the company.

Table 7.19: Number of calculations and dataset required for each security type

Trade Sec Type Required Data Set (X) Total Data Set (Xn)

Index Option 1 10

Share Option 50 500

 Share 50 500

Table 7.20: Distributed calculation times for each cluster type with load balanced

condition

Calculation

Node

Workstation

Cluster

Calculation

Time (sec)

NUC

Cluster

Calculation

Time (sec)

Server

Cluster

Calculation

Time (sec)

1 10 14 12

2 11 13 14

3 12 13 10

4 11 12 12

5 14 12 13

6 12 13 10

7 13 13 10

8 14 14 13

9 14 14 12

10 12 13 13

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

206

Figure 7.17: Distributed calculation times for each node for all three clusters under

load balanced condition

Implementing three physical clusters with data and functional decomposition methods

to distribute the calculations across each calculation node within each cluster using

static load balancing techniques has reduced the overall calculation time to be within

the 15-second time limit. Even though the test is performed in a prototype

environment, it has proved that it is possible to implement suitable distributed process-

based calculation solutions for time-critical and data-critical real-time applications.

For the real-time trading environment, the better solution is to implement a fully

dedicated cluster with standby auxiliary calculation nodes to cover the node failures,

and in addition, using application-specific static and dynamic load balancing to further

improve the calculation time. Due to successful prototype testing and promising

results, currently, the company is considering to implements dedicated blade server

based calculation clusters for real-time trading systems and various type of cluster

configuration proposals are under investigation.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

207

7.10 AH Trading System

The company has been trading AH shares for more than seven years using a simple

AH trading system. In the past, the number of trades per day was relatively low, and

the full calculation takes up to approximately a minute to complete. Because of the

small number of trades per day, the calculation time was not a critical factor, and the

fund managers were able to use the system in real-time trading. However, the

calculation time became a major issue due to the following factors:

 The introduction of Stock Connect (SC) between Hong Kong and mainland

China: the trade volumes have increased considerably in both the mainland

China and Hong Kong markets.

 Due to the limited number of shares that can be traded per day using the SC,

the volatility of the share prices becomes considerably high compared with

pre-SC.

 The company has increased the number of positions within the AH trading

strategy portfolio.

 The AH trading strategy portfolio now has both Long-Short and Short-Long

AH pair trades in comparison with only Long-Short in the past.

Stock Connect (SC): A new platform introduced by mainland China for trading shares

in the mainland market and in the Hong Kong market using an electronic trading

system with limited quotas per day. Hence, the aforementioned factors have affected

the calculation time, and now it takes more than ten minutes to process all required

calculations to be completed. In addition, the number of trades per day has also risen

considerably to keep up with the high level of market volatility, and this is causing

calculation time constraints. Because the AH trading system was originally designed

to be used within a single workstation and intended for single user-based operation,

hence, its data and programming structure is not suitable for distributed processing

with separated hardware nodes in its current state. However, the program codes, data

structures, and calculations can be modified to use multi-threading techniques, but this

requires major modifications to the existing systems. This type of modification may

be implemented at later stages when the further developments have been approved by

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

208

the company. Therefore, one of the best possible ways of distributing the calculation is

to implement distributed processing within a single workstation using CPU cores as

calculation nodes. The workstation that is used for the AH trading system has a 12-

core CPU, and these CPU cores are used as calculation nodes using VBScript,

Windows Management Instrumentation (WMI), and psExec.exe tools. In addition to

local calculations, a SQL stored procedure that provides data to the AH system on

demand, and this is a single procedure that runs on a single SQL server. This is

another area of improvement made to reduce the calculation time by using four linked

servers to distribute the data processing load across all four servers at the same time.

The AH system is based on MS-Excel and it has the following configurations: MS-

Excel built-in functions, user-defined VBA functions, local XML data storage, and

data from the SQL server.

MS-Excel has built-in functionality to utilise all the CPU cores in parallel to calculate

the entire workbook. However, how MS-Excel distributes the calculations and the

calculation order cannot be controlled by the user, except by writing a sophisticated

operating system-level program to control the threads. Meanwhile, if MS-Excel built-

in functions are used, then the calculations will be managed at the thread level by the

operating system, but if user-defined functions or nested functions are used, and then

the calculations become unpredictable. Therefore, the better solution is to execute the

MS-Excel calculations in a serial mode and to distribute the user-defined function

calculations using distributed processing with CPU cores as calculation nodes. The

advantage of using bespoke-type distributed processing within the single workstations

is that this is fully manageable, unlike threads that are mainly controlled by the

operating system. The efficient way of improving local calculation speed is to use

parallel threads. However, to implement safe threading, the entire application structure

has to be modified, and this is a major development process involving C++, .Net, or

similar programming languages. The challenge is to develop simple and easy-to-use

distributed processing systems that use existing programs and tools provided by the

operating system. One of the major advantages of this method is that the system can be

used in simple serial calculation-based mode or distributed calculation-based mode

without changing the core part of the system. Figure 7.18 shows a distributed AH

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

209

system implementation, and Table 7.21 lists the improvements made to the system

using distributed calculations with CPU cores and distributed data processing using

linked SQL servers. For testing the AH system, the followings are used: a calculated

SQL data table that has 30,000 rows and 87 columns, and an Excel application that has

1500 rows and 155 columns. The SQL table processing is managed by SQL server

RDMS and Excel user-defined functions calculated by VBScript programs.

Figure 7.18: Distributed processing implementation for the AH trading system

Table 7.21: AH trading system serial and distributed calculation times

System Improvement made Serial Method

Time (sec)

Distributed

Method Time

 (sec)

SQL

Stored procedure

Used four linked SQL servers

for distributed data processing
12 4

Local

VBA programs and

MS-Excel functions

Used VBScripts, WMI, and

PsExec.exe tools for

distributed processing within a

single workstation

124 15

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

210

7.11 Distributed Query Processing Using SQL Server

For distributed SQL query processing, four SQL servers linked as distributed SQL

query-processing clusters for SQL server-based applications. However, these servers

are not part of the distributed processing cluster, and these servers are linked at the

SQL server level rather than at the Windows server level. Hence, the security

authentication for executing distributed SQL queries is based on SQL server user-level

security settings, and SQL programs are written using Microsoft Transact-SQL to

perform the distributed SQL query processing across all four servers. The query

execution and load balancing is managed by the SQL server engine; therefore, once

the execution process has started, the SQL server engine is responsible for managing

the CPU and memory management. In database query processing, two types of

distributed processing: SQL server-managed distributed processing and user-managed

distributed processing. In SQL server-managed distributed processing, how the data is

processed is managed by the SQL server’s relational database management system

(RDBMS) engine. This process is managed by the SQL server engine in coordination

with the server operating system for efficiently utilising the CPU, memory, and data

storage access. The efficiency of the RDSMS engine also depends on how the SQL

programs are written to handle the database data; hence, the SQL programs are

structured in particular ways to facilitate the RDBMS engine to perform efficient

operations on the database. The SQL server has various tools to monitor the RDBMS

engine’s performance and to facilitate the fine-tuning of the SQL programs.

Linked SQL servers are extremely useful for data-intensive processing and complex

calculations, and the task distribution is simple to implement where the business data

is highly structured. Because all the applications and databases are internally

developed, and the data structures are well organised to suit the business, modifying

the data structure to work with distributed SQL processing is relatively easy within the

company’s business model. However, this approach may not be suitable for other

businesses that rely on off-the-shelf products that have no access to the internal

workings of the systems. In general, systems cannot be modified; in most cases, these

applications are fully compiled and no access to the code or data structures is possible.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

211

Most of the companies do not allow for linking SQL servers due to security concerns;

however, for Northwest, all the SQL servers are within the Northwest secure network

and only accessed by authorised users. In addition, the network and security are

internally managed. Hence, the security issues are not a serious concern for linked

SQL servers that are located within the Northwest network. In server-side distributed

processing, the linked SQL server RDBMS engines manage the calculation processes

using multiple SQL stored procedures, and the client side only executes a single

command on one of the linked servers; the server that received the client request will

take control of how the process is executed across all linked servers. In client-side

distributed processing, each linked server is connected separately using the

asynchronous SQL connection method. Hence, each linked SQL server is treated as a

separate calculation node, and the client sends commands to each server to execute a

defined SQL stored procedure. This process is managed at the client level in

coordination with the distributed processing SQL database. For testing, same data

tables are used that described in section 7.7. Figure 7.18 shows the SQL server

crosslink method, Table 7.22 lists the server-side and client-side process times, and

Table 7.23 presents the distributed process time analysis.

Figure 7.19: Linked SQL server interconnection between four SQL servers

Table 7.22: Server-side and client-side distributed process time for each node

Processing

Node

Server-side Processing

Time (min)

Client-side Processing

Time (min)

S1 3.8 4.2

S2 4.4 4.6

S3 4.2 4.4

S4 4.1 4.5

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

212

Table 7.23: Time analysis of server-side and client-side distributed process

calculations

Server-Side

Processing Time (min)

Client-Side

Processing Time (min)

Maximum 4.4 4.6

Minimum 3.8 4.2

Average 4.13 4.43

STDEV 0.25 0.17

Because the test data used for processing requires a small set of data, the processing

time difference between server-side and client-side processing is relatively small.

However, certain historical data processing requires large sets of data to be shared

between linked servers; hence, server-side processing is most suited for these types of

distributed processing. Therefore, the implementation of either server-side or client-

side processing depends on the application used for the processing, and some

applications use small amounts of data, whereas other applications use large amounts

of data such as batch processing applications. The tests are carried out to illustrate the

possible implementation techniques within the company using existing SQL servers

and applications as part of the distributed processing clusters. The SQL server is

highly optimised for processing large amounts of relational data. Hence, utilising the

SQL servers as a linked server cluster for data processing has the following

advantages:

 Resources are managed by the SQL server in coordination with the operating

system.

 The Relational Database Management System (RDBMS) engine takes control

of processing data in the most efficient way possible.

 A number of highly optimised built-in functions are available for various

calculations and data processing.

 SQL server security is closely linked with server operating system security.

 Many tools are available for incorporating Microsoft products and

programming languages, such as MS-Excel, Access, VBA, .Net, or similar

types of programming languages.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

213

7.12 Portfolio Calculations Using Distributed Calculation Method

Currently, the company has more than 1,000 security positions within all managed

fund accounts, and these positions are analysed using various calculations at each

position level and at the portfolio level. The number of calculations needed depends on

various parameters that are related to the security types. Some calculations are simple,

and some of them highly complex; the calculation time varies from a fraction of a

second to a few minutes per calculation, and certain portfolio-level calculations can

require more than a few hours. These calculations are performed using multiple

applications at various time intervals. Hence, currently, the portfolio-level calculations

are grouped based on security type, data type, exchange feeds data, and broker feeds

data. The general calculation formula is shown in Equation (7.15), and the sampling

time T varies for different groups of datasets:

))()....(),(),((322211 nn TXTXTXTXfY (7.15)

where

X Input parameter

Y Output parameter

T Sampling frequency

 Calculation function

Ideally, all the input parameters must be sampled at the same time T for accurate

calculations; thus, Equation (7.15) can be reformulated as (7.16) where the sampling

frequency for all the input data is the same:

))()....(),(),((221 TXTXTXTXfY n (7.16)

By implementing distributed process calculations, it is possible capture all the input

and output data at same time at a fixed sampling frequency. In addition, the data can

be saved in the SQL server database for historical analysis and auditing purposes with

calculation date and time stamps. The advantages of using distributed processing for

portfolio-level calculations are as follows:

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

214

 Input and output data is centralised; hence, reduced data discrepancy between

each user performing separate calculations.

 Number of position- and portfolio-level calculations is reduced considerably.

 Data sampling is centralised and uniform across all the portfolios and

calculations.

 User-requested on-demand calculations’ performance is improved.

For implementing a dedicated calculation cluster for portfolio-level calculation that

should be highly effective, a single CPU core is dedicated to each security position

that the company holds. Hence, each CPU core has to be configured as a calculation

node within the dedicated calculation cluster to perform as a series of calculations for

a given position ID. Therefore, to achieve maximum performance for the entire

portfolio, the company requires a 1,000-node dedicated cluster. Even though, in

theory, the number of calculation nodes can be less than the number of positions in the

whole portfolio, the calculation time needed to calculate all the parameters will be

higher, and in some cases, it takes longer to calculate the required parameters and is

not suitable for real-time use. Meanwhile, due to the recent development of multi-core

small form factor (SFF) computers and license-free Windows 10 operating system

available for these types of computers, it is possible to build a 1,000-core calculation

node dedicated cluster that costs approximately $12,500 USD. This improves the real-

time calculation efficiency that can be implemented in the company, and the

recommendation is made to the company. To test the proposed method of distributed

portfolio calculation using distributed processing, the following are used:

 Ten NUC computers set up as a calculation cluster.

 Each computer is configured to act as a calculation node.

 XML files are used as input/output data storage.

 VBScript is used for calculations.

 A calculation node controller is installed on each calculation node.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

215

For testing, 100 existing positions are selected with linear calculations to test the

calculation times using distributed processing with an SFF computer-based calculation

cluster. The primary purpose of testing portfolio-level calculations using distributed

processing is to investigate and demonstrate that it is possible to implement dedicated

and cost-effective calculation clusters to perform real-time calculations for various

position- and portfolio-level calculations. The tests carried out are relatively simple

and just use less complex portfolio positions with simpler data composition. Because

all the NUC computers used in the cluster have similar hardware and software, the

load is distributed evenly to each calculation node. In real-time full-scale calculation,

there will be various challenges to be reckoned with, such as non-linear complex

calculations, time-varying parameters, and large numbers of calculations per portfolio.

In full-scale implementations, adaptive load balancing techniques must be used to

minimise the calculation time using full portfolios for real-time calculations. Table

7.24 lists each node’s calculation time, Table 7.25 lists distributed calculation time

analysis, and Figure 7.20 shows the distributed calculation time for each calculation

node.

Table 7.24: Distributed calculation time for each calculation node

Calculation

Node

Calculation

Time (sec)

NUC-1 32

NUC-2 32

NUC-3 33

NUC-4 32

NUC-5 34

NUC-6 32

NUC-7 34

NUC-8 33

NUC-9 33

NUC-10 32

Table 7.25: Distributed calculation time analysis

Maximum

Time (sec)

Minimum

Time (sec)

Average

Time (sec)

STDEV

34 32 32.70 0.82

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

216

Figure 7.20: Distributed calculation time for each calculation node

For real-time calculations, dedicated calculation services using distributed processing

cloud based computing are provided by various companies for financial institutions.

The service they provide is based on the number of calculations used, how often the

calculations are performed, and the fee structure based on usage parameters. The

major advantage of use these types of utility computing is they are highly powerful

and no need to maintain in-house hardware. All the calculations are performed on the

distributed cloud that is scalable depending on the demand. Hence, the calculation

time is considerably shorter than that of a fixed distributed processing cluster. The

downside of this approach, particularly for Northwest, is the cost and need to change

the applications to those that are compatible with cloud programming languages. Due

to these restrictions, the utility-type computing option is not suitable for the current

situation. Therefore, implementing an internally developed dedicated distributed

processing cluster that is cost-effective with low power consumption using small form

factor (SFF) computers with multiple cores is an alternative approach to improve the

calculation efficiency for portfolio-level calculations.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

217

7.13 Distributed Processing in a Single Workstation

A number of applications are used by the company that employ MS-Excel for

calculating various complex financial algorithms and derivative pricing, and these

applications are developed as bespoke development within the company. Most of these

applications are used by quantitative analysts and researchers, and are continuously

modified to suit the business requirements. These applications have the following

characteristics:

 Applications are self-contained.

 Primarily used by a single user on a particular workstation.

 Input and output data are part of the application and are managed by the users.

 In certain cases, uses FDF to get data in addition to manual data entry.

 Data analysis, charts, and graphs are part of the application.

 User-defined functions are written in VBA.

Hence, these types of applications need different types of distributed processing

methods that require minimum modification to the applications to reduce the overall

calculation time. One of the approaches is to implement a distributed processing

method within a single workstation using multiple instances of MS-Excel applications.

This method is only suitable for multiple-core CPU-based computers, and all the high-

end workstations that are used by analysts and researchers have 12 processing cores in

a single CPU. Hence, these types of workstations are highly suited for distributed

calculation within a single computer using a single CPU core as a calculation node.

However, instantiating multiple MS-Excel applications will consume considerable

memory space, but this is not a serious issue because the high-end workstations have

32 GB memory installed. The distributed processing method that is tested uses

technologies that are simple to implement with minimal modification to the existing

applications that are currently being used. Hence, the method tested has the potential

to be applied to new applications that will eventually be developed by analysts and

researchers in the future as the business grows and the business requirements change.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

218

MS-Excel has a certain type of built-in distributed calculation functionality using

multithreading methods; however, these functionalities only apply to MS-Excel’s own

built-in functions and for user-defined functions (UDF), these methods do not apply.

To implement multithreading within a single MS-Excel application incorporating user-

defined functions, threaded programming is involved and has to be designed as

executable and used as an add-in to each application. Even though employing an

executable solution is the most efficient way of implementing parallel and distributed

processing, this method is time-consuming and requires considerable development

using high-level languages such as C++. Due to continuous changes made by the users

to the MS-Excel applications that are currently used, this method is not suitable in its

current state; instead, a simpler and adaptable distributed processing implementation is

most suited for these types of applications. The method tested is mostly suited for

certain types of MS-Excel applications used within the company and may not be

suitable for other types of applications. Table 7.26 lists the steps needed to implement

the distributed calculation process within a single workstation.

Table 7.26: Distributed processing steps for using a single workstation

Step Process Description

Step 1 Find number of CPU cores in the workstation using WMI

Step 2 Evaluate total number of input and output data using the main MS-Excel

application

Step 3 Create input XML data files in local drive

Step 4 1. Create MS-Excel instances according to the CPU cores

2. Open a distributed calculation application in each instance

3. Allocate appropriate number of input data to each application

instance

4. Calculate each instance of the application

5. Save output data to XML file

6. Close all the MS-Excel instances

Step 5 Read the output data XML and load data to main MS-Excel application

dictionary

The distributed MS-Excel-based calculation method is suitable for implementing

within a single computer with multiple CPU cores, and in addition, it can be modified

to suit the different application types depending on whether domain decomposition or

functional decomposition is possible within the application. In certain application

types, the distributable part of the calculations can be used for distributed processing

and the rest the calculations uses a serial calculation method. Therefore, the

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

219

combination of distributed and serial calculations is the best suited for complex MS-

Excel applications. Equation (7.17) shows the total calculation time taken in a single

MS-Excel application instance. Equations (7.18) and (7.19) show how the load is

distributed across all MS-Excel application instances. Because all the calculations are

the same for each dataset and CPU core speed is the same, the load is distributed

equally as shown in Equation (7.20). Equation (7.21) shows the total distributed

calculation time for a given calculation task.

)(

1

),()(
im

j

jitiT (7.17)

N

i

imM
1

)((7.18)

))(,,()(iLNifim (7.19)

N

M
im)((7.20)

 T = MAX (T(1), T(2)…T(N-1), T(N)) + TD (7.21)

where

T Total distributed calculation time for a given task

M Total number of calculations

N Number of CPU cores

m(i) Number of calculations allocated to MS-Excel instance i

T(i) Time taken to complete the calculations in MS-Excel instance i

TD Read, write, and application load time delays

t(i,j) Time taken to calculate a single dataset (j) in MS-Excel instance i

L(i) Load balancing factor for MS-Excel instance i

MAX Maximum value of the dataset

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

220

Figure 7.21 and Figure 7.22 show how multiple instances of the MS-Excel application

are implemented using local XML data as input and output for the application. The

followings programming methods are used for implementing distributed processing

within a single workstation:

 Windows 7 WMI process

 Command shell process

 VBScript programming

 VBA programming

 MS-Excel (Using the multiple instantiation method)

Figure 7.21: MS-Excel application multiple instantiation using XML data as

input/output

Figure 7.22: MS-Excel application multiple instantiation using consolidated XML data

as input/output

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

221

7.13.1 Testing Configuration

The application used for testing the single workstation-based distributed processing

techniques is called call trigger shudder fixing using propriety design based method.

The application goes through multiple recursive calculations to find the best solution

using binomial and trinomial tree methods. This process is highly compute-intensive

and takes between a few minutes to a few hours depending of the number of CB

positions used. One of the major problems for the CB price profile calculation that has

call provision and these types of CBs can cause undesirable price discontinuity called

‘call shuddering’. This effect is caused by the inherent nature of the binominal and

trinomial tree models used to calculate the CB price and the shuddering effect can be

reduced by increasing the calculation steps. However, increasing the calculation step

will increase the calculation time due to the exponential nature of the binominal and

trinomial tree structures. Meanwhile, another method that developed by the company

uses multiple superimposed trees to calculate the CB price during the call trigger

periods. This method also takes considerable time to calculate compared with the

single binary tree method; however, it requires less time than using the increased step

size method. For testing and comparing the calculation time improvements using

distributed calculation within a single computer, two workstations are used with

different hardware configurations: one with a 4-core CPU and another with a 12-core

CPU. For testing, an Excel application is used that has 120 CBs and the CB model

calculation is explained in section 4.2.1 in Chapter 4.

The workstation parameters are shown in Table 7.27, Table 7.28, and Table 7.29 lists

distributed calculation time analysis for 4-core and 12-core workstations. Figure 7.23

and Figure 7.24 show application instances against calculation time for a 4-core

workstation, while Figure 7.25 and Figure 7.26 show application instances against

calculation time for a 12-core workstation. The test result has shown that if number of

MS-Excel instances exceeds the number of CPU cores in the workstations, the

calculation time reduction is inconsistence due to operating system related context

switching. Hence, to get the optimal calculation time improvement for a given batch of

calculation, the MS-Excel instances must be equal to the number of CPU cores.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

222

Table 7.27: Test workstation's parameters

Workstation

Model
CPU CPU Core Memory OS

HP Z420
1 x Xeon w3520

2.67 GHz
4 12 GB Windows 7 (64)

HP Z820
1 x Xeon E5-2620

2.00 GHz
12 32 GB Windows 7 (64)

The main MS-Excel application that is employed by the users as a user interface-based

application is modified to execute multiple instances of MS-Excel calculation

applications to serve as a calculation service for the main application. This is done by

using the following steps:

 Collect hardware configuration and CPU core details using WMI objects.

 Create VBScript files dynamically based on number of CPU cores.

 Create input/output XML files dynamically.

 Instantiating calculation application instances depending on number of cores.

 Allocating data to each application for distributed calculation.

 Use system timer to monitor calculation completions.

 Consolidate the distributed processing of output data.

Table 7.28: Distributed calculation time analysis for 4-core CPU workstation

Number of

MS-Excel

Instances

Number of

Calculations

Maximum

Calculation

Time (sec)

Minimum

Calculation

Time (sec)

Average

Calculation

Time (sec)

STDEV

2 60 81 80 80.50 0.70

4 30 42 38 40.00 1.82

8 15 36 20 26.75 7.16

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

223

Figure 7.23: Number of MS-Excel application instances against total calculation time

for 4-core CPU

Figure 7.24: Number of MS-Excel application instances against the calculation time of

each dataset for 4-core CPU

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

224

Table 7.29: Distributed calculation time analysis for 12-core CPU workstation

Number of

MS-Excel

Instances

Number of

Calculations

Maximum

Calculation

Time (sec)

Minimum

Calculation

Time (sec)

Average

Calculation

Time (sec)

STDEV

2 60 90 90 90.00 0.00

4 30 47 46 46.50 0.58

8 15 24 23 23.25 0.47

12 10 16 15 15.75 0.45

24 5 34 8 15.71 7.94

Figure 7.25: Number of MS-Excel application instances against total calculation time

for 12-core CPU

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

225

Figure 7.26: Number of MS-Excel application instances against the calculation time of

each dataset for 12-core CPU.

The suitable option for implementing distributed processing in a single computer is to

use multithreading methods by using compiled programs. However, to implement this

method requires careful planning and extensive programming using compiled

programs and necessitates complete redesign of the existing applications. This process

is time-consuming and laborious; therefore, this approach is not suitable for the

following reasons:

 The applications used are prototypes for testing various scenarios and may not

be used in the long term or modified after a few months of usage.

 The applications are mainly used by researchers and quantitative analysts who

continuously add, remove, and modify user-defined functions.

 All the user-defined functions are based on MS-Excel VBA.

 The applications use cross-referenced built-in VBA program libraries.

Meanwhile, the tested approach has the potential to be used in the company for certain

type of MS-Excel based applications and further investigations are in progress.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

226

7.14 Chapter Summary

The results from the application testing using different types of cluster configurations

for compute-intensive tasks have shown that the implementation of different types of

clusters for distributed process-based calculation can improve the overall real-time

calculation times for different types of applications used in the company. Furthermore,

it is possible to implement consolidated hybrid-type calculation clusters for real-time

trading applications and multivariable applications. These types of multi-level

calculation cluster configurations facilitate the analysts, traders, and fund managers to

test the trading algorithms in a real-time environment as well as to perform various

financial model simulations and research. In the traditional way of testing, a single

server or a workstation is used that usually takes a few days to complete the full tests.

If any errors are detected or modifications are needed, it will take even longer to

complete the tests. However, by implementing distributed process-based calculation

using various combinations of calculation cluster configurations, the time taken to

complete the full testing process is reduced to within an hour or less. Further

calculation time reduction is achieved by implementing improvements on static and

dynamic load balancing and, in addition, using separate dedicated calculation clusters.

The advantage of using multiple cluster configurations is that each cluster can act as a

single fully isolated cluster or part of the consolidated cluster and this process is fully

managed by the distributed processing controller. In addition, the clusters can be

physically or logically separated depending on the applications used and the time of

the day they are used, such as during office hours or out-of-office hours. However, the

clusters that are built using surplus unused servers for testing the load balancing

algorithms are not suitable as production systems due to various limitations such

power consumption, space requirements, and maintenance costs. Meanwhile, these

clusters are useful for testing load balancing algorithms due to their nonlinear nature

of software and hardware configurations. Various lessons have been learned about

how to build different types of clusters for distributed calculations using different

types of processing devices. Due to the recent development of power-efficient, cost-

effective small form factor (SFF) computers with highly reliable single-board designs,

these are better suited for dedicated calculation cluster design rather than using

conventional workstations or PCs.

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

227

As far as the company’s application is concerned, certain types of applications are not

suitable for distributed process-based calculations, and some of them are partially or

fully suited for distributed process-based calculations. Hence, to get the maximum

benefit of calculation efficiency for a given system requires the implementation of a

combination of serial, parallel, and distributed processing techniques depending on the

systems used. Most of the MS-Excel-based applications that are developed with SQL

server databases and VBA user-defined functions are relatively easy to modify to work

with the distributed processing systems; in addition, certain user-defined functions can

be converted to VBScript or XLA types of programs that can be used in CPU core-

level logical calculation clusters. However, certain types of MS-Excel applications that

are mostly designed by quantitative analysts and risk analysts require considerable

modifications. Because these types of applications originally designed to be used as

standalone applications for a particular user, no structure or order to the application

concerned. Hence, application usability within the different types of calculation cluster

configurations is also a major factor for consideration regarding cluster operations.

For a certain types of compute-intensive MS-Excel applications that are designed to be

used in a single computer that tested for distributed calculation tests using both 4- and

12-core workstations, the test results show that by implementing memory-ridden MS-

Excel calculation application instances using the MS-Excel object instantiation

technique, it is possible to reduce the overall calculation time. However, the optimum

number of MS-Excel instances must be equal to the number of CPU cores, and if the

MS-Excel instances are more than the number of CPU cores available in the

workstation, then the performance will be reduced due to context switching applied by

the operations system. The main advantage of this technique is that the distributed

calculation is self-contained within a single workstation; in addition, it is simple to

implement compared with network-based distributed processing. Hence, to get the

maximum benefit of the distributed calculation using the multiple MS-Excel

application instantiation technique, the number of MS-Excel application instances

must be equal to the number of CPU cores available in the workstation concerned. For

testing purposes, all the CPU cores are used; however, when the workstation is

employed by users, it is safe to use certain number of CPU cores for distributed

 Chapter 7: Hybrid Processing Using Multiple Calculation Clusters

228

calculation rather than using all the available cores in order to avoid the workstation

freezing due to possible 100% CPU activities at peak. Therefore, in most cases, such

as in a 12-core workstation, it better to utilise 10 cores for distributed calculation and

leave the other two cores for the operating system. By doing so, the users can carry on

using the workstation as normal with minimum interruption while the distributed

calculation is running in the background.

The tested distributed processing methods are only suitable for certain types of

applications and are not suitable for general types of distributed processing methods.

However, these methods are highly suitable for most of the company’s applications

and provide solutions for reducing calculation time for compute-intensive applications.

Furthermore, various tests performed using multiple clusters and different applications

under different conditions have proved that it is feasible to use hybrid-type clusters

within the company by recruiting all of the available processing devices as

consolidated cluster configurations. However, a number of advantages and

disadvantages of using certain types of cluster configurations, and these are discussed

in detail in Chapter 8 where the results and discussions are presented. The hybrid

method is one of the distributed calculation techniques that the company can utilise

along with other types of distributed processing methods for improving number of

applications and maximise the utilisation of processing devices that are available in the

company. Hence, this chapter has demonstrated the original contribution to the design

methods and implementation techniques of hybrid calculation clusters using multiple

processing devices that are available in the company to improve the calculation

efficiency of compute-intensive applications.

 Chapter 8: Research Evaluation

229

8 Research Evaluation

8.1 Introduction

This chapter discusses the experimental results and analyses the data captured during

extensive tests and simulations carried out on distributed processing clusters and the

application of load balancing techniques within Northwest’s applications. The focal

point of the discussion is how the bespoke-oriented design has proved to be a

successful distributed processing approach that facilitates the company to solve highly

complex compute-intensive applications that are currently used in the company.

Furthermore, it will analyse and discuss the use of multiple clusters as hybrid-type

clusters and their advantages in use for possible real-time trading environments. In

addition, this chapter compare the different types of clusters and their advantages and

disadvantages. Different types of comparisons are analysed using captured data for the

dedicated calculation grid clusters under various scenarios and conditions as well as

for the application of load balancing techniques. In addition, discuss the advantages

and disadvantages of different types of hardware and software configurations to build

the calculation clusters and how these differ, from general types of clusters to the

company-specific implementations.

Further investigation of data collected during the testing of phase 1 that described in

Chapter 4 and the improvement in using distributed processing method using MS-

Excel application is discussed in section 8.4. Distributed processing cluster using a

network of workstations for MS-Excel applications show considerable improvements

in calculation time for various MS-Excel applications compared to serial calculation

method. Furthermore, it possible to design, develop, and implement a cost-effective

and high-performance distributed processing cluster system that uses Windows

network topologies and existing networked workstations to perform time-critical and

data-critical calculations. The investigation has demonstrated that it is feasible to

implement batch process-based distributed processing without any major changes to

the existing systems or with minimal change.

 Chapter 8: Research Evaluation

230

Load balancing system that implemented in phase 2 of the investigation the described

in Chapter 5 is further analysed and discussed in detail in section 8.5. Bespoke load

balancing system that applied has proved that it is feasible to implement a certain type

of bespoke type load balancing algorithms for the distributed processing system.

Further investigation on captured data shows that static load balancing technique with

varying hardware- and software-specific parameters are highly suitable for critical

systems. Moreover, the dynamic load balancing system proved to be highly useful for

protecting against calculation node failures during the operation. Hence, for the

Northwest systems, the static load balancing is the primary load balancing system due

to its robustness and reliability; and the dynamic load balancing is used as a secondary

load balancing mechanism to safeguard against calculation node failure during the

execution phase. Furthermore, the test results show that certain applications are

performed better under certain condition such as when application-specific parameters

are incorporated within load balancing algorithms.

Detail analysis on captured data during various tests conducted on dedicated

calculations clusters that described in Chapter 6 has proved that for batch processing

type applications, SFF cluster is highly suitable. However, the PC cluster has certain

advantages, such as testing load-balancing algorithms due its non-leaner nature of

hardware and software configurations. A number of different tests are carried out on

both clusters with and without load balancing conditions, and calculation time

reduction using dedicated calculation clusters shows considerable improvements for

compute-intensive calculations when used with distributed process-based calculation

using both dedicated calculation grids. The results are analysed using different

categories such as cluster overall performance, size, cost, power consumption, and

reliability. The test results have proved that the dedicated clusters have improved the

calculation efficiency of complex mathematical calculations consistently and both PC

and NUC clusters have their own advantages that are useful for future research and

development. Detail analysis of SFF cluster and PC cluster comparisons are presented

in section 8.6.

 Chapter 8: Research Evaluation

231

The hybrid cluster design described in Chapter 7 that based on consolidating various

processing devices into an intelligent calculation cluster that can be used for various

calculation intensive operations. Further analysis on test results show that it is a highly

suitable solution to maximise the processing power within the network. Furthermore,

it is a high throughput cluster design and utilises an adaptive and self-tuning control

mechanism that continuously fine-tunes the cluster’s performance to permit it to

function autonomously and designed in such a way that it can be modified whenever

required with minimum impact to the business. The test results show that using

multiple clusters with varying configurations coordinated as a hybrid distributed

processing cluster has many advantages for complex and compute-intensive

applications and it is possible to implement these types of clusters for real-time trading

applications.

In section 8.8, a number of recommendations are made related to how to make

improvements and enhancements to these clusters and the improvements required for

the applications that are used in the distributed processing system based on the

company’s business point of view. Finally, some critical points are discussed

regarding the long-term benefits of utilising the bespoke-type distributed processing

system using cost-effective hardware components with loosely coupled design that

facilitate the company to move forward with appropriate enhancement to the system in

the future. Hence, this approach will help the company to be consistent with

developments in hardware and software that continuously improve the processing

efficiency of the systems used.

 Chapter 8: Research Evaluation

232

8.2 Distributed Processing Concept Analysis

In general, distributed processing is a method of distributing tasks to multiple

processing units to reduce the overall processing time. This is the simplest form of

task distribution. However, for practical applications, a number of factors determine

how efficient the distributed processing is compared to serial processing methods. In

distributed process-based calculations, reducing the overall calculation time for a

given task is the critical factor. Thus, the general form of calculating the distributed

process-based calculation time is shown in Equations (8.1) and (8.2):

)()(iT
N

T
iT S

(8.1)

)}(),....2(),1({ NTTTMAXTD
(8.2)

where

T(i) Time taken to complete the calculation task in node i

TS Serial process-based calculation time

TD Distributed process-based calculation time

N Number of calculation nodes

)(iT Distributed process-based calculation time delay in node i

MAX Maximum value of the dataset

In an ideal situation where all the calculation nodes are equal, T becomes 0;

however, due to load imbalance, network delays, and hardware and software

inconsistencies, T always has some nonzero value. In its simplest form, to improve

the distributed processing efficiency, that is reducing the overall distributed processing

time; two parameters need to be improved: Increase the calculation nodes N and

reduce the calculation time delay T . The number of calculation nodes N can be

increased by adding more calculation nodes to the calculation cluster, and the

calculation time delay can be improved by implementing efficient load balancing

algorithms and linear hardware configurations for each calculation node in the cluster.

Increasing the calculation nodes will not achieve further improvements in calculation

 Chapter 8: Research Evaluation

233

time after a certain value due to management process overhead. However, these limits

are only applicable to large-scale distributed systems. The system used in the company

is comparatively small, and these limitations are not applicable. However, the

applications tested have minimum calculation time related limitations that discussed in

Chapter 4. As far as calculation time delay is concerned, the best possible way to

improve is to implement a cluster with similar hardware and software configurations,

and in effect, this reduces the load balancing complexity. Therefore, further

developments regarding distributed processing within the company will be highly

focused on these factors. Meanwhile, if the company decided to expand and

incorporate the latest technologies as part of its IT infrastructure, then it will be

possible to expand the cluster configurations further to incorporate fast

communications technologies. These can be, MPI, PVM, Infiniband, and 100GbE, and

in addition, fibre-optic cluster interconnects can be considered and dedicated multiple

rack-based clusters can be used as private calculation clouds.

The initial phase that described in Chapter 4 was carried out to investigate the

distributed processing implementation possibilities within the company’s network

using existing workstations has proved that not only is it feasible to set up a distributed

process-based calculation cluster using available workstations, but also that this

considerably improves the calculation speed for compute-intensive applications. The

investigation’s test results and collected data show that the cluster performance is

highly acceptable for use as a batch processing calculation cluster for various MS-

Excel-based applications. Even though the calculation cluster was only tested with risk

scenario and gamma calculations with appropriate modifications, the concept is

proved that employing the users’ workstations, as a calculation cluster for the

company is feasible. Furthermore, the tested applications use one of the company’s

most compute-intensive derivate financial models; hence, other similar types of

compute-intensive MS-Excel-based applications can modified to be utilised within the

distributed processing cluster. The tests conducted using the workstation cluster have

proved that distributed process-based calculation considerably reduced the calculation

times for certain compute-intensive applications; the wall clock calculation time

improvements are shown in Table 8.1.

 Chapter 8: Research Evaluation

234

Table 8.1: Distributed calculation time improvements using workstation cluster

 Number of

Calculation

Nodes

Risk Scenario

Calculation

(Nonlinear)

Risk Scenario

Calculation

(Linear)

Gamma

Calculation

Serial 1 289 seconds 133 seconds 67 minutes

Distributed 16 65 seconds 10 seconds 5.38 minutes

Improvement X 4.45 times 13.30 times 12.58 times

Further investigation carried out on the workstation cluster to test the bespoke-type

load balancing and task allocation algorithms has shown calculation time

improvements and a certain way of protecting against calculation node failures during

the cluster operation phase. In addition, it has proved that it is possible to include

company-specific parameters as part of the load balancing algorithm alongside general

hardware- and software-related parameters as discussed in Chapter 5. By using

application-related parameters as a part of the static load balancing algorithm, the

distributed calculation time is reduced to 27.2 minutes from 38.4 minutes, and the

standard deviation from 9.2 to 1.3. Furthermore, applying the hybrid method reduced

the calculation time to 2.6 minutes and standard deviation to 0.13. The fixed step size

method is the fastest; however, this method is an approximate calculation method, and

for long-maturity date derivative products, this calculation method is less accurate than

other variable step size methods. Meanwhile, the hybrid method is the most suitable

method for long-maturity date derivate products due to its calculation accuracy and

time taken to calculate. The most accurate calculation method is variable step size

calculation, and the step size is related to each derivative product’s maturity date;

however, this method is also the most time-consuming method as far as calculation is

concerned.

The dedicated distributed processing clusters using separate P2P network, PCs, and

small form factor (SFF) computers that explained in Chapter 6 show the benefits of

having a dedicated calculation cluster for certain types of applications that mostly

require 24x7 operations and, in addition, time-critical and data-critical applications.

Furthermore, detailed tests conducted by investigating different parameters between

NUC clusters and PC clusters have proved that certain types of calculation cluster

configurations are highly suited for particular applications. The main finding of these

 Chapter 8: Research Evaluation

235

investigations shows that the most efficient way of building dedicated calculation

clusters is to use cost-effective compute nodes with uniform hardware and software

configurations. Even though the clusters that were constructed using SFF computers

are less powerful than those built from PCs, the overall benefit they offer outweighs

the PC cluster in many aspects.

The investigation carried out on the hybrid type of clusters using multilevel cluster

setups employing workstations, PCs, virtual servers, and CPU cores as calculation

nodes has the potential to be utilised in the company for heavy-duty applications and

batch processing tasks that require as much power as possible from all the processing

devices. The hybrid clusters are mostly useful for time-critical and data-critical

applications that require failproof and robust operations. These clusters can be used for

real-time trading systems; however, from the test data collected and various analyses

assessed on cluster performance, it is highly advisable to utilise well-designed and

fully dedicated calculation clusters for critical applications rather than using hybrid

types of calculation clusters for real-time trading systems. These approaches are still

under investigation to evaluate the cost-benefit analysis and the regulatory and

compliance issues that are associated with live-trading systems. While these

investigations are underway to decide, what types of hardware should be used as

calculation nodes, various tests are carried out to investigate whether the proposed

distributed processing system is capable of handling extreme market conditions during

its operations. The simulation and tests are conducted using historical data and

captured market conditions; however, the real market conditions in the future cannot

be predicted. Hence, the behaviours of these systems have to be controlled under such

a condition based on different types of logical rules and using circuit breaker type

control mechanisms to shut down the system completely in case of emergency

situations.

 Chapter 8: Research Evaluation

236

Due to the nature of the company’s business, the distributed system has to comply

with existing infrastructure and systems. Hence, the system has to work with the

existing systems without interrupting the day-to-day business and has to prove that it

can considerably improve the calculation time of various systems that are used in the

company. To satisfy the company’s requirements, a solution must be implemented that

uses existing technologies in alternative and innovative ways to design and develop

systems that will facilitate the business within the current development model rather

than using new technologies or third-party systems. The solution has to be best suited

for the company’s current requirements, and in addition, must be able to adapt to the

business changes in the future. The bespoke-type development approach can be used

fully or partly with similar or other types of business environments. The implemented

distributed processing system has the following characteristics:

 All the required components for the distributed processing were developed

using existing technologies that are currently used in the company.

 The calculation clusters were built using existing hardware and software in the

company.

 Dedicated calculation clusters are built using cost effective SFF computers.

 A transparent development method was used, and complied codes are only

used for system controllers; the business logic parts of the programs are fully

transparent.

 Distributed processing applications have manual overrides for monitoring and

troubleshooting or switching back to manual operations in case of emergency.

The company has a dedicated disaster recovery (DR) site situated in a different

location than the main building and connected through a high-speed network. In case

the company decided to expand the distributed processing capabilities in the future,

the DR site can be utilised for constructing cluster farms for distributed processing

with minimum cost. Currently, the DR site’s hardware is used for prototype clusters

testing and eventually, these clusters become part of the consolidated hybrid cluster

for various application developments and testing.

 Chapter 8: Research Evaluation

237

8.3 Cluster Configuration Overview

Tests were performed on various types of clusters, and the data collected show that

different types of cluster configurations are possible to implement within the

company’s requirements and within hardware and software constraints. However, the

different distributed processing clusters that were designed and tested have shown that

some types of clusters are more suitable compared to others depending on their usage.

In addition, the applications used, data criticality, time criticality, and usability also

influence how these clusters are utilised within the company. The implemented

distributed processing systems consist of multiple types of cluster configurations as

shown below, and each of them has its own advantages and disadvantages.

 Workstation cluster based on employing the users’ workstations.

 Server cluster based on using virtual servers.

 P2P network-based dedicated cluster using small form factor computers.

 P2P network-based dedicated cluster using PCs.

 P2P network-based dedicated cluster using conventional servers.

 Hybrid clusters using all the processing devices within the company.

 Logical clusters using CPU cores as nodes across multiple processing devices.

8.3.1 User Workstation and Virtual Server Cluster

Using existing workstations and servers as calculation nodes for distributed processing

clusters has many advantages. However, a few disadvantages due to the fact, these

workstations and servers are part of the company’s network infrastructure and are

utilised for various functions. Furthermore, these workstations and servers are

continuously used by company staff and system-level operations. The advantages of

distributed processing using existing servers and workstations include:

 No specific hardware and no specific software required.

 Existing bespoke software can easily be adopted with little or no modifications.

 Using of already existing servers and workstations as calculation nodes.

 Chapter 8: Research Evaluation

238

 Different types of cluster configurations flexibility.

 Loosely coupled cluster design that can be modified or improved with

minimum effort.

 The parallel virtual machines can run on the workstations and servers to act as

calculation nodes.

 No extra hardware and software cost.

 Combinations of dedicated and non-dedicated workstations and servers can be

used.

The disadvantages of distributed processing using existing servers and workstations

include:

 Full capacity usage is limited due to continuous use by users and systems.

 Certain workstations and servers cannot be used as calculation nodes due to

their usage for system-level critical applications.

 Need to implement complex load balancing algorithms due to the nonlinear

nature of hardware, software, and usage parameters.

8.3.2 PC and Conventional Server Cluster

The clusters that are built using spare, unused PCs and conventional servers as

calculation nodes for dedicated distributed processing clusters have a few advantages.

These clusters are only used as prototype for testing different types of load balancing

algorithms and distributed processing controllers. These clusters are not suitable for

continuous operations due to many disadvantages as shown below.

The advantages of using spare PCs and servers for dedicated calculation clusters

include:

 No cost for hardware and software that is used.

 Existing bespoke software can easily be adopted with little or no modifications.

 Different types of cluster design configuration flexibility.

 Loosely coupled cluster design that can be modified or improved with

minimum effort.

 Chapter 8: Research Evaluation

239

The disadvantages of using spare PCs and servers for dedicated calculation cluster are:

 Considerably high power consumption.

 Require dedicated temperature-controlled environment.

 Require large space to house the cluster.

 Operating noise levels are considerably high.

 Cluster overall weights are considerably high.

 Reliability is low due to the employed hardware and high level of failure rates.

 Need to implement complex load balancing algorithms.

8.3.3 Small Form Factor (SFF) Computer Cluster

Using SFF computers for building dedicated calculation clusters has many advantages

compared with dedicated calculation clusters built from spare unused PCs and servers;

however, a few disadvantages as shown below.

The advantages of using SFF computers for dedicated calculation clusters include:

 Fully integrated design provides high reliability.

 Low cost, smaller size, and no audible noise.

 Considerably low power consumption.

 Considerably low heat dissipation.

 Cluster weight is considerably low.

The disadvantages of using SFF computers for dedicated calculation clusters are:

 Processing power is low compared with workstations or servers.

 Network interconnect is slower than workstations or servers.

 Chapter 8: Research Evaluation

240

8.3.4 CPU Core-Based Cluster

The CPU core-based cluster that utilises a single CPU core as a processing node is

another approach tested that has many advantages to be used as a calculation cluster

for certain types of applications; however, a few disadvantages as shown below.

The advantages of using CPU core clusters are:

 Single hardware device such as workstation or server that has many-core CPUs

that can be used as multiple calculation nodes.

 Multiple logical clusters can be configured using various processing units, such

as servers, workstations, and SFF computers.

 Clusters can be set up as mutually exclusive to each other.

 Cluster nodes’ configuration flexibilities are based on requirements.

 Possible to set up robust and resilient calculation clusters using multiple

auxiliary nodes.

 Different type of hardware can be utilised partially.

The disadvantages of using CPU core clusters are:

 Processing power is low compared with workstations or server-based clusters.

 Need to implement complex load balancing algorithms.

 Require certain modifications to the applications to work with the logical

calculation cluster.

 Chapter 8: Research Evaluation

241

8.3.5 Cluster Security

Cluster security is governed by the company network’s access security policies; hence,

no need for separate security setups for the cluster security management. The network

is protected by multiple firewalls and external access through VPN connections with

three-level password protections. Only the workstations that are used as calculation

nodes can be accessed by users under the user access policy, and the dedicated

calculation clusters have only administrator-level access rights. In addition, a process-

level security policy to protect the cluster management and process control to isolate

the user interface from cluster operations within each calculation node.

8.4 Using MS-Excel Applications for Distributed Processing

Most of the compute-intensive applications used in the company are based on MS-

Excel, and these applications were originally designed many years ago and

continuously modified according to the business requirements. Hence, these

applications have certain types of system and data structures that are not optimised and

not suitable for structured operations such as distributing data or processing at the

current state. However, by implementing certain types of add-on programs, these

applications can be modified with minimum changes to be used as part of the

distributed processing systems that are managed by the distributed processing

controller and used as the user interface mode; that is, the users can employ the

application in the usual way they are accustomed to. Therefore, no need for the

complete redesign of these applications, and in addition, the company can

continuously develop prototype applications using MS-Excel for testing various

trading strategies and portfolio analyses. These applications can utilise the distributed

processing functionality available in the company for speeding up the calculation

process. In the financial industry, specifically in small hedge fund management

companies like Northwest, the use of MS-Excel for developing various applications is

a common practice. Hence, MS-Excel usage in the business application development

will continue within the company. Therefore, a few structural changes are in place to

ensure that the applications are capable of adapting to the distributed processing

 Chapter 8: Research Evaluation

242

system with minimal changes. The advantages of using MS-Excel for application

developments include:

 Many built-in functions are available for various business-related calculations.

 Able to implement UDFs using VBA, or add-ins such as DLL, ActiveX EXE,

or similar types of COM-compliant add-ins.

 Able to instantiate mutually exclusive multiple instances of using a single

license.

 Object hierarchy is highly compatible with all the Microsoft products.

 Data partitioning is easy to perform due to grid-based data structures.

 Rapid Application Development (RAD) tools can be used to develop business-

specific applications on shorter time scales.

8.5 Load Balancing Implementation Overview

The Northwest infrastructure has high efficiency with minimum failure rates due to

high levels of maintenance by dedicated network administrative staff. Hence, the

individual workstation failure or network failure rate is low, and the hardware and

software used are highly reliable for day-to-day financial management of business

operations. Due to its high reliability, a considerably low probability of calculation

node failure at any point in time, and the auxiliary calculation node configuration is

capable of handling two calculation node failures simultaneously. In most cases,

whether a calculation is executed during office hours or out-of-office hours, the crucial

factor that dictates the load balancing is the static load balancing algorithms, and most

of the time, the dynamic load balancing is on standby mode, in case of any unexpected

events happening during the execution phase. Hence, due to the highly specific and

bespoke nature of applications used within the calculation clusters and the high

reliability of the network infrastructure, and in addition, the tightly coupled control

systems used within the calculation cluster, adaptive static load balancing is more

suitable compared with dynamic load balancing, especially when critical financial

calculations are involved. However, for particular systems, dynamic load balancing is

more suited than static load balancing, and both static and dynamic load balancing

techniques have advantages and disadvantages depending on how they are being

 Chapter 8: Research Evaluation

243

implemented and what type of system is used. This investigation has also proved that

the system reliability and calculation node uniformity are the crucial components

when predicting the expected calculation time for each batch of calculations prior to

the distributed processing calculation starts.

For fine-grained processes, the dynamic load balancing is well suited, and the process

of transferring from one processor to another is efficient and fast due to the process

time and communication time ratio being small. Various methods are available for

these types of implementations. However, for coarse-grained processes like Northwest

applications that are more complex than just a simple calculation, any disruption

during the distributed processes’ execution can introduce serious time delays in the

overall calculation time. Hence, the dynamic load balancing within the Northwest

calculation cluster acts as a secondary load balancing mechanism to protect the

distributed processing system from unexpected events that might cause the distributed

processing system to experience a deadlocked state, which can cause serious delays.

Further investigations are being carried out for the multiple auxiliary process approach

to reduce the process failure rates in order to maximise the calculation efficiency for a

given application. This approach is implemented using a multi-core CPU with

segregated processing within a single workstation; that is, the same calculation process

be executed in parallel, in two separate CPU cores in different workstations

simultaneously. Hence, both processes failing simultaneously are low compared to a

single process failure within a single workstation, and this will greatly improve the

calculation efficiency of the overall distributed processing cluster. Various load

balancing techniques and algorithms are under investigation using real-time risk

calculation data under different conditions. This may introduce possible challenges

that have to be addressed, and solutions to be found and work-around must be put in

place to ensure that the system is stable and robust. A few implementation-related

challenges that need to be fixed that are related to certain complex derivative-product

models. Three known problems need to be addressed: the first one is that for some

convertible bonds such as Chinese CBs, the number of calculations per CB depends on

 Chapter 8: Research Evaluation

244

various factors beyond from the maturity date. This will cause some challenges to

incorporate the number of calculations per CB to allocate the number of CBs per

calculation node based on the load-balanced condition. Hence, a need for multivariate

types of task allocation systems that can cater to these types of complex derivative

models.

The second problem is that to calculate the implied volatility of a derivative

instrument product, the derivative instrument price has to be calculated number of

times using varying volatility. This is the most time-consuming process within the

distributed processing systems that use risk analysis applications and can cause serious

time delays during the operation. To get the load balancing mechanism to adopt a

strategy to compensate for the long delays in calculations, some type of approximation

techniques have to be used to predict the estimated calculation time. This can be

performed by collecting historical data to predict the estimated calculation time.

However, small changes in the derivate prices or underlying prices can cause the

number of calculations needed to calculate the implied volatility to be increased

significantly. Hence, to predict the estimated calculation time, a number of different

data sets have to be maintained as lookup tables with fuzzy logic-based rules to

estimate the calculation time during the operation.

The third problem is that the financial feed-enabled workstations have poor

performance as calculation nodes while users are logged into the workstations.

However, if the workstations are not employed by users, then the workstation

performance is normal as expected. Even though memory and CPU usage are low

while using financial feed software, the calculation performance is relatively poor.

This is caused by background processes using various resources to maintain the live-

data feed from financial data feed applications. This can cause bottleneck scenarios

during other processes trying uses the same resources. Hence, for financial feed-

enabled workstations, it is possible to introduce another load balancing parameter that

is related to each workstation and that can be included in the task allocation formula

discussed in Chapter 5.

 Chapter 8: Research Evaluation

245

8.6 Dedicated P2P-Based PC and NUC Calculation Cluster

Analysis

The data collected during the tests conducted on the PC cluster and the NUC cluster

that were described in Chapter 6 shows that the implementation of a P2P network

dedicated distributed process-based calculation cluster has considerably improved the

calculation time for different types of compute-intensive applications. Further

analysis performed on the collected data shows that a consistent improvement for all

the scenario calculations. The PC cluster is more powerful than the NUC cluster;

however, the PC cluster has calculation nodes that have nonlinear hardware and

software configurations and require load balancing using hardware and software

parameters. Meanwhile, the NUC cluster has uniform calculation nodes; hence, the

calculation tasks are split equally. The analysis is based on calculation time data

collected for the calculation step size of 500 with the following categorisations:

 Cluster type: PC cluster and NUC cluster

 Program type: MS-Excel VBA, VBS, and EXE

 Financial model type: Binomial and Trinomial

 Calculation type: CB value, Implied volatility (IV), IV impact, and IR impact

Table 8.2 to Table 8.5 list distributed calculation time analysis for CB theoretical

value calculations. Table 8.6 to Table 8.9 list distributed calculation time analysis for

implied volatility (IV) calculations. Table 8.10 to Table 8.13 list distributed

calculation time analysis for implied volatility (IV) sensitivity calculations. Table 8.14

to Table 8.17 list distributed calculation time analysis for interest rate (IR) sensitivity

calculations.

 Chapter 8: Research Evaluation

246

8.6.1 CB Theoretical Value Calculation Analysis

Table 8.2: CB value calculation time for each PC cluster node

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 30 43 12 66 73 14

Minimum 15 22 4 28 35 4

Average 23.36 33.91 8.18 48.73 55.64 9.09

STDEV 5.54 7.87 2.93 13.76 13.35 3.36

Table 8.3: Distributed CB value calculation time for PC cluster with imbalanced load

condition

Imbalanced

Condition

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 2.6 3.8 1.1 5.8 6.4 1.2

Minimum 1.4 2.1 0.4 2.6 3.3 0.4

Average 2.13 3.07 0.75 4.41 5.03 0.84

STDEV 0.45 0.65 0.25 1.14 1.09 0.28

Table 8.4: Distributed CB value calculation time for PC cluster with balanced load

condition

Balanced

Condition

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 2.1 3.0 0.7 4.2 5.0 0.7

Minimum 1.9 2.8 0.6 3.8 4.5 0.7

Average 2.01 2.94 0.63 4.08 4.79 0.70

STDEV 0.07 0.08 0.05 0.11 0.16 0.00

Table 8.5: Distributed CB value calculation time for NUC cluster with balanced load

condition

 Balanced

Condition

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 5.3 7.7 2.0 10.0 13.9 2.3

Minimum 5.3 7.6 2.0 9.9 13.8 2.3

Average 5.33 7.62 2.01 9.95 13.88 2.31

STDEV 0.01 0.02 0.01 0.04 0.04 0.01

 Chapter 8: Research Evaluation

247

8.6.2 Implied Volatility (IV) Calculation Analysis

Table 8.6: IV calculation time analysis for each PC cluster node

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 62 122 19 122 154 39

Minimum 28 60 8 60 73 14

Average 50.55 93.82 15.20 93.82 122.00 28.73

STDEV 13.76 22.24 4.24 22.24 31.00 7.77

Table 8.7: Distributed IV calculation time analysis for PC cluster with imbalanced

load condition

Imbalanced

Condition

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 10.7 5.7 1.7 10.7 13.5 3.4

Minimum 5.6 2.6 0.8 5.6 6.8 1.3

Average 8.47 4.56 1.38 8.47 11 2.6

STDEV 1.79 1.18 0.37 1.79 2.62 0.65

Table 8.8: Distributed IV calculation time for PC cluster with balanced load condition

Balanced

Condition

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 8.4 4.4 1.3 8.4 11 2.5

Minimum 7.8 4.0 1.2 7.8 10 2.3

Average 8.05 4.22 1.24 8.05 10.30 2.39

STDEV 0.21 0.11 0.05 0.21 0.23 0.05

Table 8.9: Distributed IV calculation time for NUC cluster with balanced condition

Balanced

Condition

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 13.5 23.1 3.4 21.8 48.4 5.8

Minimum 13.4 22.9 3.4 21.6 48.0 5.7

Average 13.48 23.00 3.42 21.73 48.18 5.74

STDEV 0.04 0.07 0.01 0.07 0.14 0.01

 Chapter 8: Research Evaluation

248

8.6.3 Implied Volatility (IV) Sensitivity Calculation Analysis

Table 8.10: IV sensitivity calculation times analysis for each PC cluster node

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 73 131 29 172 219 42

Minimum 36 68 12 85 109 13

Average 57.30 102.00 22.60 134.00 167.00 29.10

STDEV 13.60 22.40 6.55 31.80 39.20 8.55

Table 8.11: Distributed IV sensitivity calculation times analysis for PC cluster with

imbalanced load condition

Imbalanced

condition

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 6.4 11.5 1.2 15.1 19.2 2.5

Minimum 3.4 6.4 0.4 8.0 10.2 1.1

Average 5.18 9.19 0.84 12.20 15.10 2.05

STDEV 1.11 1.81 0.28 2.57 3.18 0.56

Table 8.12: Distributed IV sensitivity calculation times analysis for PC cluster with

balanced load condition

Balanced

Condition

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 5.1 9.4 0.7 11.9 14.7 2.0

Minimum 4.7 8.5 0.7 11.1 13.6 1.8

Average 4.90 8.85 0.70 11.50 14.30 1.86

STDEV 0.17 0.25 0.02 0.29 0.38 0.07

Table 8.13: Distributed IV sensitivity calculation times analysis for NUC cluster with

balanced load condition

Balanced

Condition
Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 13.4 22.8 5.1 29.7 31.4 5.8

Minimum 13.3 22.6 5.0 29.4 31.1 5.7

Average 13.38 22.71 5.03 29.52 31.27 5.73

STDEV 0.04 0.08 0.02 0.08 0.08 0.02

 Chapter 8: Research Evaluation

249

8.6.4 Interest Rate (IR) Sensitivity Calculation Analysis

Table 8.14: IR sensitivity calculation times analysis for each PC cluster node

Calculation time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 71 131 29 172 217 42

Minimum 35 67 11 82 105 13

Average 56.2 101.0 22.4 134.0 166.0 27.4

STDEV 13.10 23.00 6.74 32.20 40.30 9.72

Table 8.15: Distributed IR sensitivity calculation times analysis for PC cluster with

imbalanced load condition

Imbalanced

Condition

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 6.2 11.5 2.5 15.1 19 3.7

Minimum 3.3 6.3 1.0 7.7 9.8 1.2

Average 5.08 9.11 2.02 12.1 15.0 2.47

STDEV 1.06 1.86 0.58 2.61 3.31 0.83

Table 8.16: Distributed IR sensitivity calculation times analysis for PC cluster with

balanced load condition

Balanced

 Condition

Calculation Time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 5.0 9.2 1.9 11.8 15.1 2.3

Minimum 4.6 8.3 1.8 10.9 13.6 2.1

Average 4.83 8.75 1.83 11.4 14.3 2.15

STDEV 0.14 0.25 0.05 0.3 0.44 0.08

Table 8.17: Distributed IR sensitivity times analysis for NUC cluster

 Balanced

 Condition

Calculation time (sec)

Binomial Trinomial

VBA VBS EXE VBA VBS EXE

Maximum 13.4 22.6 5.1 29.2 30.8 5.8

Minimum 13.3 22.3 5.0 28.8 30.5 5.7

Average 13.36 22.46 5.05 29.03 30.65 5.75

STDEV 0.04 0.10 0.02 0.11 0.13 0.03

 Chapter 8: Research Evaluation

250

8.6.5 Calculation Time Improvement Analysis

The calculation time analysis shows that considerable improvements in calculation

time for both balanced and imbalanced load conditions compared with the serial

calculation method. In addition, as expected, the balanced load condition shows

further improvements consistently for all the test conditions used for all applications.

Table 8.18 lists the calculation time improvement in number of folds against the least

powerful PC within the PC cluster for different types of scenario calculations. Table

8.19 lists the number folds calculation time improvement against the most powerful

PC within the PC cluster for different types of scenario calculations. In both cases,

considerable improvement in calculation time is accomplished using the PC cluster for

distributed process calculation. Table 8.22 list the average calculations time

improvements for the most powerful and least powerful PCs within the PC cluster.

Notations used:

BL Load balanced condition

IBL Load imbalanced condition

 VBA Excel VBA program

 VBS VB Script program

 EXE Executable (compiled) program

Table 8.18: Calculation time improvements in number of folds for each type of

calculation against the least powerful PC within the PC cluster

Test Type Binomial Trinomial

 VBA VBS EXE VBA VBS EXE

 IBL BL IBL BL IBL BL IBL BL IBL BL IBL BL

CB Price 12 14 11 14 11 17 11 16 11 15 12 20

IV 11 15 11 14 11 15 11 15 11 15 11 16

IV Impact 11 14 11 14 12 15 11 14 11 15 11 17

IR Impact 11 14 11 14 12 15 11 15 11 14 11 18

 Chapter 8: Research Evaluation

251

Table 8.19: Calculation time improvements in number of folds for each type of

calculation against the most powerful PC within the PC cluster

Test Type Binomial Trinomial

 VBA VBS EXE VBA VBS EXE

 IBL BL IBL BL IBL BL IBL BL IBL BL IBL BL

CB Price 6 7 6 7 4 6 5 7 5 7 3 6

IV 6 7 5 6 5 6 6 7 5 7 4 6

IV Impact 6 7 6 7 5 6 6 7 6 7 4 5

IR Impact 6 7 6 7 4 6 5 7 6 7 4 6

Table 8.20: Average calculation time improvement in number of folds for the most

powerful and least powerful PC within the PC cluster

 PC Cluster Node IBL BL

Low-power PC 11 15

High-power PC 5 7

8.6.6 Cluster Comparison

During the various tests conducted on the PC cluster that was built from PCs and

workstations, a number of issues were encountered, particularly with power

consumption and heat dissipation. Hence, most of the testing was carried out during

the weekends when the office overall power consumption is low. This is a major

downside for using the PC cluster as a viable long-term distributed processing

solution; therefore, the PC cluster is only to be used for testing and applying various

load balancing algorithms. The PC cluster is a suitable candidate for load balancing

algorithm testing due to its nonlinear nature of hardware configurations. Even though

the PC cluster is being used during the testing phase, it will not be used in the

production environment due to its high power consumption and requirement of a large

amount space to set up the cluster. Meanwhile, the NUC cluster is uniform with low

power consumption and is compact in size; it has considerable advantage against the

PC cluster, and it will be used in the production environment. Further improvements

and enhancements will be implemented to improve the cluster performance in future

developments.

 Chapter 8: Research Evaluation

252

Due to its compact size, comparatively low cost, low power consumption, and high

reliability, it is also possible to have multiple clusters using NUC-type SFF computers

for dedicated user groups or application groups. Hence, more emphasis will be placed

on building clusters using NUC-type SFF computers for future distributed processing

developments for company-wide applications. The total power consumption of the PC

cluster is considerably high, as expected; the NUC cluster’s power consumption is

low, and each NUC computer consumed the same amount of power because all the

NUC computers have similar hardware specifications. Meanwhile, the PC cluster

consists of various old PCs and workstations, and the power consumption of each node

varies depending on the computer model. The total cluster power consumption during

the peak performance is a crucial factor for calculating the energy efficiency of the

cluster and the PC cluster’s energy efficiency is relatively poor compared with the

NUC cluster. The NUC cluster is the most energy-efficient cluster for the company,

and for future cluster implementations, NUC-type computers are highly recommended

due to their better performance on heat management and power consumption. The

NUC computer’s idle measured power is 5.5 watts and measured peak power is 7

watts for each calculation node.

 Chapter 8: Research Evaluation

253

The cluster operating noise levels are measured using Decibel Meter; the PC cluster

produces more noise during the operations, and no measurable noise for the NUC

cluster. For the PC cluster, most of the noise comes from PC fans, as each PC has

multiple fans for cooling the CPU and power supply. Because the PCs used within the

PC cluster are a few years old and due to possible mechanical faults, some PCs are

noisier than other ones, and in addition, due to the high level of heat dissipation, all the

fans operate at optimum levels to keep the system cool enough to operate

continuously. Hence, the PC cluster is considerably noisier than the NUC cluster that

has no noise because no moving parts in the NUC computer. The NUC cluster’s

measured noise level is 35 dB that consists of the ambient noise.

The space requirement to set up the cluster is also an important consideration due to

the operational cost of the space per year per square metre. The space required to set

up the PC cluster is considerably large compared with the NUC cluster, and this is one

of the major advantages of SFF type computer clusters. The PC cluster requires

approximately 24 times more space than the NUC cluster; however, due to heat

dissipation and ventilation requirements for the PC cluster, it may require around 50

times more space than the NUC cluster in a production environment.

Heat dissipation data is calculated using the computer specification provided by the

manufacturer, and each computer’s heat dissipation is defined by thermal design

power (TDP) and measured in watts. Maximum and minimum TDP ratings are

assigned depending on how the computer is used. For workstations and PCs, the TDP

values are considerably higher than small form factor (SFF) computers such as NUCs.

The NUC TDP is only 5 watts maximum, and the PC cluster calculation node PC TDP

varies depending on the model. Heat produced by the overall cluster is one of the

important factors when setting up the cluster. Due to the cooling requirements and

dedicated space required for managing the heat, the PC cluster requires a dedicated

and temperature-managed environment; however, for the NUC cluster, no need for

cooling due to its considerably low heat dissipation. Hence, the NUC cluster can

operate at room temperature.

 Chapter 8: Research Evaluation

254

The total weight of the cluster is one of the important factors for setting up an

appropriate server rack or computer table rack, and in addition, it is important for ease

of relocation of the cluster. The PC cluster is considerably heavier than the NUC

cluster at 20 times the weight of the NUC cluster, and the weights are calculated using

the computer manufacturer’s data. Table 8.21 lists PC and NUC cluster comparison.

Table 8.21: PC and NUC cluster comparison

Parameter
PC

Cluster

NUC

Cluster
Notes

Idle power (watts)

1,060 55 Measured

Maximum processing

power (watts)
1,570 70 Measured

Idle noise (dB)

46 35 Measured

Maximum processing

noise (dB)
51 35 Measured

Space required (m3) 0.2890 0.0122
Calculated using manufacturer-

provided parameters

Heat dissipation

(watts)
890 50

Calculated using manufacturer-

provided parameters

Weight (Kg)

139.5 7

Calculated using manufacturer-

provided parameters

8.6.7 Program Performance Analysis

For testing different program platforms to investigate the calculation time taken to

complete the CB theoretical value, the same mathematical functions are used for

testing with same input parameters with minor changes in the programming code to

match with each platform-specific programming instance. Currently, MS-Excel-based

mathematical models are used by Northwest; however, these models can be modified

to work with scripting languages such as VBS or any executable programs like .NET

languages, C++, or similar. The speed tests were carried out using the CB theoretical

value calculation model using the binomial method. The results show that for small

calculation steps, the calculation time difference is small for each platform compared

with large step size, and this is due to the exponential nature of the mathematical

 Chapter 8: Research Evaluation

255

model that uses the binomial method. For speed comparison testing, the following

three programming platforms are used: MS-Excel 2010 (VBA + MS-Excel functions),

VBScript (VBS), and VB6 (EXE). Figure 8.1 shows calculation times for varying step

sizes using MS-Excel-VBA, VBS, and EXE programs and Table 8.22 lists

programming platform comparisons. As expected, VBS is the slowest in the group;

however, VBS has many advantages such as system-level programming and simple

programming interface. VBS is not suitable for heavy program executions compared

with fully compiled EXE-type programs. Meanwhile, the MS-Excel and EXE program

shows a small difference within small step size ranges, and for larger step size

calculations, the fully compiled EXE program has better calculation performance

compared with MS-Excel and far better calculation performance than VBS. Hence, for

compute-intensive financial calculation models, compiled software development is

better suited, and this is under investigation as part of the software development

strategies within the company that are in progress.

Figure 8.1: Calculation speed comparison for programming platforms

 Chapter 8: Research Evaluation

256

Table 8.22: Programming platform comparison for Northwest

Platform Advantages Disadvantages

Excel

VBA
 Fully integrated with business

suites and applications

 Users are familiar with MS-

Excel applications

 Advanced users and quant

developers can write programs

using VBA

 Many business-related built-in

functions

 Used as Rapid Application

Development Tool

 Changes can be made quickly

 Easy to troubleshoot

 Can make changes on the fly

 Supports DLL and ActiveX

 Unsecure programs

 Prone to coding and logical

errors

 Pseudo-compiled code

 VBA has various limitations

 Program has limited portability

 Nonuniform and discrepancy

programming

 No programming structure

 Difficult to audit the code

 Slow execution time compared

with fully compiled EXE

programs

EXE Execution speed is high

 Structure programming

 Auditable code

 Secure code

 Securely distributable

 Run as a standalone application

 Highly portable

 Requires VB programming

knowledge

 Cannot make changes on the

fly

 Difficult to troubleshoot

 Compiled code

VBS Fully integrated with Windows

operating system

 Easy to program

 Many system-level management

built-in functions

 Used as scheduling, monitoring,

and administration tool

 Changes can be made quickly

 Easy to troubleshoot

 Can make changes on the fly

 Highly portable

 Requires VBScript

programming knowledge

 Unsecure programs

 Prone to coding and logical

errors

 Code not compiled

 Various coding limitations

 Slow execution time compared

with fully compiled EXE

programs

 Chapter 8: Research Evaluation

257

8.7 Research Impact Analysis

The research conducted is to investigate and implement an innovative and suitable

distributed process-based calculation cluster within the company’s network

infrastructure to facilitate the company in using compute-intensive systems and

applications. The investigation and test results have shown that it is feasible to

implement a bespoke-type distributed processing system within the company using

different types of processing devices such as workstations, PCs, conventional servers,

and virtual servers. In addition, investigation of small form factor (SFF)-based

computers has proved that these types of computing devices are the most effective

solution for dedicated calculation clusters due to their small size, low cost, low power

consumption, and high reliability. Hence, these types of clusters are better suited for

dedicated calculations and testing, especially for research and development that

requires large amounts of dedicated computing power for 24x7 operations. Different

types of tests are performed using the company’s compute-intensive applications that

are used for various scenario analyses and stress testing. The test results show that

consistent improvement in calculation time can be achieved by using distributed

calculation rather than using a single server or workstation to calculate the same

datasets. Currently, the following applications are benefited by using distributed

calculations.

8.7.1 Scenario Analysis and Stress Testing

This application is used for various calculations on managed portfolios at the fund

level, book level, and position level. In addition, it is used for predicting “what-if”

scenarios based on expected market condition movements and using certain derivative

products to see what effect they will have on the company’s managed portfolios.

Hence, the calculation time varies depending on the type of analysis performed, and

by using a single HP Z420 workstation; it usually takes around one to three hours. By

introducing workstation cluster-based calculation, the total calculation time has been

reduced to in the region of 5 to 15 minutes. Even better performance is observed if the

calculations are performed as a batch process during out-of-office hours.

 Chapter 8: Research Evaluation

258

8.7.2 Derivative Price-Related Data Calculation

This application is used for calculating different types of derivative price-related

calculations during the trading hours to facilitate the traders, fund managers, and

analysts. Hence, this application calculates the required data every 2 hours using a

system timer and the full calculation takes just over an hour using a single HP Z420

workstation; the calculation time depends on the portfolio size. By introducing the

workstation cluster, the calculation time has been reduced to 5 minutes or less

depending on the time of the trading day. Furthermore, now it is possible to reduce the

calculation frequency, and in effect, the data accuracy is improved by using up-to-date

data from different financial feeds.

8.7.3 End-of-day Profit and Loss (PL) Calculation

This process is performed by a group of applications in coordination with various data

sources. Each trading day, various end-of-day processes have to be completed as part

of the business functions, and one these processes is the calculation of daily, weekly,

monthly, and yearly profit and loss for all the managed funds. This process is a highly

time-consuming task, and using the HP Z420 workstation, the total calculation time is

around an hour. The calculation process is only performed after the close of the

trading day when the market is closed, that is, after 4:30 PM. Hence, if any errors are

found in price marking or trade booking, the PL calculations have to be recalculated,

and this will cause further delays in daily reporting. Implementing the workstation

cluster in coordination with the server cluster has linked SQL servers, and in addition,

due to some changes made to the PL calculation systems, the overall calculation time

has been reduced to less than 3 minutes. Hence, even if any erroneous data is

identified after the calculation, the recalculation process is within the acceptable time

limits to complete the end-of-day process.

 Chapter 8: Research Evaluation

259

8.8 Recommendations

A few recommendations are made to the company based on the investigations carried

out during this research. These recommendations are mainly focussed on the possible

improvements that can be made to the existing IT infrastructure and systems and what

can be done to improve the calculation efficiency of future development of compute-

intensive applications and systems. Some recommendations are made based on

practical improvements. How these improvements can be brought to the systems

currently used, and in addition, to future developments of the systems.

8.8.1 Structured System Design

All the applications and systems that are used in the company have been developed

using Rapid Application Development (RAD) and the Dynamic System Development

Method (DSDM). These applications and systems are developed as bespoke propriety

systems. Some of the applications were developed by quantitative analysts for their

use as prototype systems using MS-Excel, and these systems are continuously

modified and employed as live systems. Furthermore, these systems are intended to be

used as prototype systems for short time periods for testing. Hence, no structure is in

place within the systems to support larger datasets or other critical functionalities that

are required for live systems. Therefore, it is highly recommended that the users

should closely work with the IT team before they start to work on the applications or

systems that they are supposed to use for their day-to-day work or for the purpose of

analysis and research. The systems used and the business models are highly specific

to the company; hence, the distributed processing system that was developed is

specifically tailored to the company’s business model. The IT infrastructure and

systems are designed in such a way that the company can expand the business if the

market conditions are favourable and able to downsize to run the business profitably

during stressed market conditions. This type of flexibility is a crucial part of the

business’ success and continuity during stressed business and market conditions.

 Chapter 8: Research Evaluation

260

8.8.2 Technology and Programming Improvements

Most of the current applications are based on the VBA programming model and are

limited to certain Microsoft applications such as MS-Excel and MS Access. Even

though it is relatively easy to implement, this method has a major downside, that is, it

has various programming limitations on improving the programs to utilise the latest

programming techniques available for parallel processing or to incorporate specific

hardware like GPUs for improving the processing speed. Hence, for high-speed

processing models, it is highly advisable to use the programs that are capable of

supporting the parallel processing method using threads and multi-core processing,

and incorporating specific hardware such as co-processors and GPUs. The following

implementations will improve the development process and facilitate the company’s

business operations:

 Using programming languages such as the .Net framework and C++ for

develop specific parallel applications.

 Using specific packages for research and developments, such as MATLAB,

Simulink, and Mathematica or similar. These software packages have built-

in parallel processing libraries that can be used for development.

 Converting user-defined VBA codes to compiled binary code programs

that can be used as add-ins to MS-Excel applications. This can facilitate

that the compiled program to be used with different software development

environments such as .Net framework programs.

 Replace servers and workstations with multi-core and many-core CPUs

with lower power consumption. By replacing the hardware with low power

consumption and less powerful CPU cores configured as multi-core and

many-core architectures, the cost will also be reduced compared with the

hardware featuring more powerful CPUs.

 Building a larger-scale dedicated cluster with more than 100 calculation

nodes using low-cost and low power consumption SFF computers that have

multi-core CPUs for research and development. The cluster can be housed

in the company’s remotely located disaster recovery site with high-speed

internet links and can be available for 24x7 operations.

 Chapter 8: Research Evaluation

261

8.8.3 Improvement on Bespoke Design

When the company’s business started 18 years ago, in the early days, there were

several attempts made to use the third-party systems, especially using derivative

pricing models for various scenario calculations and risk profile analyses. However,

the solutions supplied by the third-party providers had the following problems:

 The models used were generic and not suited for certain specific

instruments that were traded by the company. Building these types of

financial models takes time, and in addition, costs extra, and these types of

specialised models have to be designed by the providing company and to

be incorporated within their systems.

 The cost structure of using third-party systems was complex and expensive

for a small company like Northwest.

 Implementations and modifications were highly complex and time-

consuming, and have to comply with the provider’s methods and data

structures.

 Often, the expected results are not consistent or are incorrect and require

multiple calculations to produce an acceptable result set, which adds extra

cost and time.

Hence, the company decided to build its own financial models and scenario analysis

system using existing technologies such as MS-Excel and VBA that are familiar to

most of the analysts and researchers. Bespoke-type proprietary financial models have

various advantages as follows:

 Financial models and their applications are particularly designed for the

business requirements and unique to the company’s business model.

 Used existing and familiar technologies to design and develop required

financial models and applications that are needed for day-to-day analysis.

Hence, the development process, improvements, and maintenance are less

complex to manage.

 Chapter 8: Research Evaluation

262

 Financial models and applications are used in the company, and no need to

pass the sensitive data to a third-party company; hence, higher levels of

data security and business process security.

 Due to the use of RAD and DSDM methodology for the development

process, it is comparatively faster to implement new solutions compared

with solutions provided by third parties.

Having numerous advantages of using bespoke-type systems that are developed

internally with required business logics, a serious downside to this approach is that the

internally developed financial model-based applications are highly compute-intensive

and more difficult to scale. This is due to the financial models being based on multiple

layers of nested interactive loops and being inherently nonlinear. Hence, to overcome

the time limitations, reduced sampling periods and minimal scenarios are used to

manage the calculation time requirements. To improve the calculation speed, the

applications require a faster and more powerful server, and this is not a suitable

approach for long-term operations due to increasing cost and power limitations. This is

one of the primary reasons for the initiation to investigate the possible alternatives;

that is, the bespoke-type distributed processing system that can be used to improve the

calculation speed of these applications.

Another area of business operations is executing batch-type processing to calculate

certain numbers that are used for business-wide internal reporting and external reports

for investors and brokers on a daily basis. This is a number crunching process using a

number of SQL databases, financial feeds from various providers, and CSV, TXT, and

XML files. The entire process takes a few hours to complete, and the batch process is

executed at night by the schedulers. Because many of the processes in the batch are

interdependent, if one of them fails, then all of the dependent processes have to be

recalculated the full batch process to be completed. This is a highly time-consuming

task and causes serious delays. This is another business-critical process that needs to

be improved and that is benefited by implementing distributed process-based batch

processing.

 Chapter 8: Research Evaluation

263

8.9 Suggestions for Cluster Improvements

The results from the application testing data have shown that the implementation of

various clusters for distributed calculation can improve the overall real-time

calculation time. This will facilitate the analysts, traders, and fund managers to test the

trading algorithms in real-time environments. The traditional way of testing is to test

certain scenarios with limited parameters; it usually takes a few days to complete the

full test, and if any errors are detected or modifications are needed, then it will take

even longer to complete the test. However, by implementing distributed calculation

using various calculation cluster configurations, the time taken to complete the testing

process is reduced to within an hour or less. Further calculation time reduction can be

accomplished by implementing static and dynamic load balancing and in addition,

using dedicated calculation clusters. Even though the calculation clusters using

workstations, servers, and SFF computers are highly suitable for testing and batch

processing scenario analysis types of applications, for real-time trading scenario

calculations, the current distributed processing setup is not suitable due to the

following reasons:

The clusters are nonlinear and require complex load balancing algorithms.

 Cannot be reset or calibrated during trading hours.

 Clusters are part of the company network and can cause calculation delays.

 Server cluster resources continuously change due to server virtualisation.

 Network traffic will affect the calculation time.

Hence, for the real-time trading environment, it is highly advisable to have a dedicated

calculation cluster with the following characteristics:

 Cluster must be fully separated from the user networks.

 Cluster must be fully available 24x7.

 Cluster must have redundancy-cover calculation nodes (auxiliary nodes).

 Cluster must be built using the same hardware and software configurations for

all the calculation nodes.

 Each calculation node must have a multi-core CPU.

 Chapter 8: Research Evaluation

264

Building a fully separated dedicated calculation cluster for real-time trading is the

most suitable and cost-effective solution for the company. The following

recommendations are made for building the dedicated cluster:

 Use low-cost SFF-type computers to design systems with multi-core CPUs.

 Use exactly the same hardware and software configurations for the calculation

cluster to achieve hardware and software uniformity that in effect reduces the

load balancing complexities.

 Configure the cluster in a separate network setting with tightly controlled

security settings.

 Configure multiple logical clusters within a single physical cluster with

multiple auxiliary calculation nodes for high reliability and improved

robustness.

General types of distributed computing systems that use various devices as computing

nodes across multiple networks introduce many new challenges that are not usually

considered an issue in a single machine or a private network. The following are some

of the concerns:

 Security is the main concern in widely distributed systems.

 Node failure rates are higher than in a dedicated parallel machine.

 Nodes may not be consistent and can vary.

 Nodes and their connections in the processing network may not be

homogeneous.

 Some algorithms simply do not scale well over slower networks.

For distributed process communications, even gigabit-speed networks are slower in

speed in comparison with processors existing on a purposely-built bus. This limitation

is requires serious consideration when designing a distributed computing system and

one has to take account of the nature of the computing job that will be executed within

the system. However, the aforementioned issues have less impact in the case of

Northwest’s distributed processing system due to its full integration with the

company’s network as dedicated computer clusters on a private network.

 Chapter 8: Research Evaluation

265

8.10 Chapter Summary

Number of advantages and disadvantages are found when using the different types of

calculation clusters. The dedicated calculation cluster grid that described in Chapter 6

has an advantage that it can be fully utilised for 24x7 operations. Unlike the

workstation cluster that was described in Chapter 4, it utilises the user workstations,

and the dedicated calculation grid is isolated from user access and fully dedicated for

certain applications. The NUC cluster has many advantages compared with the PC

cluster; even though the NUC computers are less powerful than the PCs that are used

in the PC cluster, the NUC computer features low power consumption, smaller size,

and lower cost. However, the PC cluster is useful for testing different types of load

balancing algorithms due to its nonlinear hardware configurations, but the PC cluster

is not suitable for continuous use in production environments due to its high power

consumption, requirement for larger space, and higher rate of failure. Hence, the SFF

type of computer-based clusters will be expanded and improved by adding more

calculation nodes, and in addition, building separate clusters in the future for long-

term research and development within the company.

The main purpose of the dedicated calculation grid is to facilitate the research and

development team and quantitative researchers to test and simulate different types of

financial models and trading scenarios in real time. Currently, this process is done by

quantitative analysts and researchers using single workstations or servers, and in

certain cases, the full analysis takes many hours to a few days to complete. Hence,

some of the analysis is carried out as batch processes during nights and weekends and

sampling frequency is reduced to improve the calculation time. Regarding the

implementation of the dedicated calculation cluster grid for processor-intensive

calculations, the test results have shown considerable improvement in reducing the

overall calculation time for different scenario calculations. The tests and simulations

that were carried out on the dedicated calculation cluster are similar to the scenario

analysis carried out by the researchers and quantitative analysts. The test results have

proved that implementing the dedicated calculation cluster with appropriate software-

and hardware-specific load balancing algorithms greatly improves the calculation

 Chapter 8: Research Evaluation

266

efficiency for many of the bespoke mathematical models used in the company. Both

clusters are undergoing continuous improvement to fine-tune their performance for

various calculation scenarios, and more tests and simulations are being carried out;

these results and analyses show possible alternatives for calculation cluster designs. A

number of changes have been made to the distributed processing controller software

and calculation node controller’s software to include dedicated calculation grid cluster

nodes, and in addition, a few changes are made to the SQL server database to

incorporate the cluster nodes within the distributed processing control system. The

message passing between calculation nodes and distributed processing controller is

similar to the technique that was used in Chapter 4 with a few modifications.

The load balancing algorithms tested have proved that it is possible to incorporate

company-specific application-related parameters with the general hardware- and

software-related parameters that were investigated in Chapter 5. In addition,

implementing a calculation index and usage index for each calculation node has also

proved that the bespoke design-based distributed processing controller software is

capable of handling different types of calculation clusters with varying calculation

node parameters. Furthermore, the controller software is capable of selecting clusters

as physical clusters, logical clusters, or both depending on process requirements and

calculation time criticality. Even though the controller software efficiently manages

both static and dynamic load balancing algorithms, the implementation of dynamic

load balancing algorithms is in its simplest forms by using a set of well-defined rules.

However, for static load balancing, the controller software works in coordination with

the SQL server database to collect various data continuously from each calculation

node for adaptively fine-tuning the static control algorithms.

The load balancing algorithm tests that were evaluated on the different calculation

clusters show that the static load balancing is well suited for the company-wide

applications compared with dynamic load balancing. However, dynamic load

balancing has its own benefits regarding protecting the calculation cluster in case of

node failures and unexpected calculation delays. Hence, dynamic load balancing acts

 Chapter 8: Research Evaluation

267

as a safety protection mechanism and only be activated by the distributed processing

control manager software if any problems are detected during the calculation phase

based on a given set of rules. The static load balancing is the primary load balancing

mechanism that is used to allocate calculation tasks to each calculation node based on

various parameters. Some of the parameters are static and others vary with the

applications used and time of the day that the calculation is executed. Using

distributed processing systems for critical applications, the complexities must be

reduced to the minimum to avoid serious errors or calculation delays. Hence, using

dedicated clusters with each calculation node having the same hardware and software

configurations is the preferable option for critical applications; in addition, this will

reduce the static load balancing complexity due to uniform calculation nodes used in

the cluster.

The server cluster configuration that uses the spare conventional servers has the same

problems encountered that are similar to the PC cluster using spare PCs, such as high

power consumption, higher-level noise, larger space requirements, the requirement of

a dedicated cooled room, and low reliability. Hence, this type of server cluster has the

same problems faced by the PC cluster as mentioned earlier. However, these types of

server clusters are useful for testing the load balancing algorithms due their nonlinear

nature of hardware and software similar to the PC cluster. Therefore, the spare PC-

based and spare server-based clusters are used for testing the various load balancing

algorithms and distributed processing control software. Hence, due to the

aforementioned problems are related to these types of clusters, the original proposal to

include these types of clusters as part of the company’s distributed processing system

will not be examined further. Meanwhile, users’ workstations and virtual servers

continue to be used as multiple calculation clusters, especially for out-of-office-hour

batch processing tasks and on-demand compute-intensive tasks, and for building

dedicated clusters, SFF computers should be used. The recent development in multi-

core and many-core architecture microprocessors for smaller devices such as mobile

phones is driving the processing power improvements and, going forward, these

devices will power the small form factor computers with multi-core and many-core

architectures that, in effect, improve the processing power.

 Chapter 9: Conclusion

268

9 Conclusion

The investigations conducted in this research have demonstrated the original

contribution to the distributed processing technologies that uses highly specific design

methods of building hybrid types of calculation clusters as distributed processing

based calculation systems. The research conducted herein is an innovative and original

research by investigating distributed processing technologies that contribute to the

sponsoring company, their practical implementations in the company, and detailed

understanding of applicable techniques. Furthermore, a substantial body of knowledge

is acquired in distributed processing technologies that are relevant in the forefront of

this academic discipline and in the area of professional practice. In addition, the

original approach of system design is presented that utilises different types of

hardware and software in the company as an intelligent distributed processing system

that is unique to the company. However, this new approach has the potential to be

implemented in any company that has multiple processing devices such as servers,

workstations, and laptops or similar processing devices. Furthermore, the new

methods of hybrid cluster implementation that demonstrated are unique and adaptable

to changing business requirements. This unique method is based on bespoke design

that is capable of incorporating existing legacy applications as well as supporting new

application developments.

The development and implementation of new methods and approaches that are based

on the original concept of distributed and parallel computing to implement a

distributed processing system for the company proved to be considerably successful.

Furthermore, using Windows network topologies with simplified cluster architecture

to perform compute-intensive calculations proved that it is feasible within the business

environment and applications used in the company. This approach has greatly reduced

the computing time for a number of compute-intensive applications used in the

company, and performing various simulations using proprietary mathematical models.

It has also proved that the bespoke-type distributed processing approach has the

potential to be implemented in the real-time trading and risk calculation and portfolio

management scenarios within the company. In addition, it is highly useful for

 Chapter 9: Conclusion

269

facilitating the company’s internal research and development and for developing

proprietary financial mathematical models for testing new trading strategies. The

distributed processing-based calculation system implemented is relatively simple to

adopt with minimal changes to the existing systems and applications and with little or

no extra cost.

The initial investigation to test the calculation time improvements by using a

workstation cluster for certain types of MS-Excel applications has shown that it is

possible to build a simple and easily manageable distributed processing cluster

utilising existing hardware and software without complex programming or third-party

software. The test results have proved that it is feasible to build a practical Beowulf-

class distributed processing system using existing hardware and software within the

company and also it is possible to design and develop bespoke-type software for

managing the cluster. In addition, the distributed processing cluster system is

compatible with existing applications and systems that are used in the company. The

workstation cluster is based on loosely coupled design and can be used as a dedicated

or non-dedicated distributed processing system depending on the requirements, and it

can easily be configured accordingly. Another advantage of the loosely coupled design

is that since it uses the existing network infrastructure technologies, no need for

specialised networks or interconnects; hence, the calculation nodes can be added or

removed by just attaching to or removing from the existing network. It is also possible

to allow individual workstations to join dynamically as cluster nodes and leave the

cluster without disruption to the overall operations; this whole process is managed by

the distributed processing controller. The main advantage of this type of loosely

coupled cluster design is the ease of the configuration, as well as the management of

the cluster hardware and software, and it has been proved that any company that has a

number of PCs or workstations can set up these types of loosely coupled clusters with

minimum effort.

 Chapter 9: Conclusion

270

The detailed investigations have shown some promising results that the company’s

bespoke applications can be modified and implemented with the developed distributed

processing system. The test results confirm that the new and original approach has

provided the expected calculation time improvements within a controlled environment.

In addition, it has proved that it is possible to continuously design and develops a

bespoke-type distributed processing system using the company’s existing hardware

and software to provide solutions for calculation time limitations problems currently

faced by the company. Even though the test results show considerable improvement in

calculation time for particular applications, in the real-time trading applications, many

complex issues have to be addressed; these issues are under investigation, and suitable

solutions need to be implemented. However, the initial investigations have

successfully demonstrated the possibility of implementing a solution for improving

calculation efficiency for compute-intensive calculations using existing technologies

in the company. In addition, this research aimed to find an innovative, cost-effective,

and most efficient way to utilise the workstation cluster for distributed processing with

easy-to-use and simple-to-manage functionalities for long-term research and

development.

During the various investigations carried out to modify the existing application to

work with the designed distributed processing clusters, fundamental problems have

been identified regarding data structures, programming structures, and input and

output methods. These are due to the fact that the applications were never intended to

be used in parallel or distributed processing environments in the first place, and were

only meant be used in a single server or workstation. Some of these applications were

created as prototype applications with small datasets, and the applications were

developed by quantitative analysts and risk analysts for their own use with MS-Excel

and VBA. Eventually, these applications became production applications with

continuous modifications occurring with many years of usage, and the data

consumption became large. All these factors have a serious impact on the application

performance due to inconsistent data and programming structures.

 Chapter 9: Conclusion

271

While investigating performance analysis of different types of cluster configurations, a

few undesirable effects were found for certain types of clusters such as large amounts

of power consumption, heat dissipation, and space requirements, and these clusters are

built using spare workstations, PCs, and servers. It was proposed to the company in

the early stages of the investigations that these clusters would be part of the distributed

processing systems; however, due to many disadvantages, these types of clusters are

not suitable to be used in a production environment and should only be used as part of

the testing and prototyping clusters. Meanwhile, the clusters that are built from SFF

computers show considerable advantage over other types of clusters such as

workstations and virtual server clusters in terms of cost, power consumption, and the

overall cluster size. Even though the workstation and server clusters have more

processing power per calculation node compared with SFF computer calculation

nodes, for building a dedicated calculation cluster, SFF computers are the most

suitable option. Because of recent developments in SFF computers with more

processing power and, in addition, utilising multi-core and many-core architectures

with less power consumption, smaller size, and reduced cost, it is possible to build

multiple dedicated calculation clusters for specific use. It is also possible to upgrade

the clusters with newer and improved computers as technology progresses.

The investigation on hybrid clusters was performed by using a combination of

multiple cluster configurations utilising various processing devices that are available

in the company such as currently used workstations, servers, and unused spare PCs

and servers and additionally utilising SFF computers as dedicated clusters in P2P

networks; this has shown considerable improvement in compute-intensive

applications. The resultant data collected from various applications testing using a

combination of clusters shows that the implementation of a combination of various

clusters for distributed process calculations can improve the overall real-time

calculation time. This will eventually facilitate the analysts, traders, and fund

managers to test the trading algorithms in real-time environments. In the traditional

way of testing, the tests are performed on certain scenarios with limited parameters,

and it usually takes a few days to complete the full test, assuming that no errors, and if

any errors occur, or modifications are needed, then it will take longer to complete the

 Chapter 9: Conclusion

272

test. However, by implementing distributed process-based calculations using a

combination of cluster configurations and static and dynamic load balancing, the time

taken to complete the full testing process is reduced to within an hour or less. In

addition, the test results show that consolidating various processing units into an

intelligent hybrid calculation cluster that can be used for 24x7 operations with high

throughput is another possible way of improving batch-processing operations.

An application used in the company that is used for risk scenario calculation on a daily

basis to process various calculations at each position level and portfolio level. It is

usually takes between two to three hours when used in a single server depending on

the number of open positions and type of derivative products in the portfolio, and the

calculation process is performed as an overnight process. Hence, the calculated data is

available for users before the market opens. However, if any errors in the calculation

are due to incorrect data or to software or hardware failure, the whole calculation has

to be repeated, and this is a time-consuming task during office hours. Hence, the

previous day’s data will be used, and this is not an ideal solution. Using the distributed

process-based calculations method with domain decomposition has reduced the

calculation time to between 10 and 15 minutes. This is a considerable time

improvement regarding overall calculation time, and if any errors occur during the

overnight calculation process, then the whole calculation process can be completed

within 20 minutes during office hours. This is one of the major improvements made to

an existing application using distributed processing.

The calculation clusters using workstations, servers, and SFF computers are highly

suitable for testing purposes of internal research and development, various types of

batch processing, and scenario analysis. However, for real-time trading scenarios, the

current distributed processing setup is not suitable due to tighter controls being in

place by compliance and regulation to safeguard against program-based trading errors.

Meanwhile, these clusters are used to calculate various parameters in real time using

trading support applications that facilitate the traders to make trading decisions under

highly volatile market conditions. Furthermore, when the company decides to embark

 Chapter 9: Conclusion

273

on a program trading strategy, then it is possible to build highly efficient and dedicated

distributed process-based calculation clusters from what has been learned from this

research. For real-time trading environments, it is highly advisable to have dedicated

calculation clusters with multiple standby calculation nodes for safeguarding against

possible calculation node failures. In addition, for high-speed trading situations, using

dedicated multiple auxiliary calculation clusters will minimise the calculation delays

and data inconsistencies.

The distributed processing cluster usually has many processing nodes, and these

processing nodes are bound to have a component failure or become temporarily

inaccessible across a network at some point during their operational lifetime. The

probability of a single node failure relatively is high compared with multiple node

failures simultaneously; hence, need to have a certain type of redundancy protection

such as task migration techniques and using auxiliary standby nodes. In the case of

Northwest, the workstation and server hardware is highly reliable and maintained at a

high standard as part of the regular IT infrastructure management. In addition,

operating systems and software used are also maintained with appropriate updates and

security checks. Hence, the processing node failure is kept minimal by regular checks

and maintenance procedures.

In recent years, small hedge fund management companies like Northwest have been

facing serious challenges in attracting larger institutional investors for long-term

investments due to the negative effects caused by the serious financial crises that

happened during the last eight years. During this period, most of the small hedge fund

management companies were closed down and all or most of the investments were

lost, and even some of the larger investment banks also closed down with billions of

dollars lost. Hence, in recent years, after 2008, the financial regulatory bodies and the

institutional investors have introduced tightly controlled compliance tests and due

diligence investigations to ensure the hedge fund management companies are fully

compliant with current regulations and restrictions. This has initiated various internal

processes within the company to comply with newly introduced compliance

 Chapter 9: Conclusion

274

requirements and regulations. One of the due diligence processes that were introduced

as part of this, is the IT due diligence that is used in larger organisations where the IT

and systems are usually managed by dedicated internal departments or by specialised

third-party companies. However, due to the recent introduction of cyber security

procedures by various government organisations, the IT due diligence procedures is

applied across the entire investment finance industry regardless of company size. This,

in effect, provides strong indications to the investors and compliance authorities that

the companies concerned fall within the strict compliance requirements and

recommends these companies accordingly.

Hence, the company has to maintain the IT infrastructure and systems at a high

standard with appropriate supporting documents to satisfy the routine compliance and

due diligence tests. Another area of investigation conducted by investors and

prospective investors on a regular basis is to check whether the company has adequate

measures to protect the investments under stressed market conditions, investment

strategies used, and “what-if” scenarios used to predict the outcomes using various

financial models. This process is laborious and is spread across all the business areas;

in larger companies, these types of processes are outsourced to highly specialised

third-party companies with confidentiality agreements. However, for a small company

like Northwest, using third-party companies is far too expensive; hence, all the

analyses are performed using bespoke-type financial models and scenario calculations

that are highly compute-intensive and take a long time to complete on a single

workstation or server. Consequently, this is one of the main areas of improvement

made by implementing bespoke-type distributed processing technologies in the

company. Therefore, the implementation of distributed processing has positive impact

on the hedge fund management technologies, particularly for small to medium sized

hedge funds that have limited IT resources. It facilitates the business to perform

various compute-intensive calculations that are impossible to perform within the

required timeframes using serial calculation methods, and in addition, provides the

opportunity to carry out in-house business-specific quantitative research and

development. Furthermore, it promotes the competitive edge to small hedge fund

management companies like Northwest to attract larger institutional investors.

 Chapter 9: Conclusion

275

Distributed processing research and development over the past 20 years has facilitated

many businesses and universities to have a new way of implementing supercomputing

for their own requirements at lower cost compared with traditional supercomputers.

Distributed processing methods have opened up a new direction of research to

improve the computing power using loosely coupled low-cost commodity components

and multi-core single-chip-based parallel processing. Another factor that is driving

parallel design is the limitation of miniaturisation due to the current physical laws;

hence, chip-manufacturing companies are moving towards distributed processing in a

single physical chip using many-core architectures. For loosely coupled distributed

processing systems, the improvements in technology related to commodity

components have a greater direct impact than the fabricated technology-based

systems. The primary focus of the conducted research is based on designing

distributed processing systems using loosely coupled processing nodes. Hence, this

will have the advantage of replacing the processing nodes easily and adding more

nodes when required with minimal alteration to the existing systems. This research

provides an alternative approach to designing distributed processing systems that

utilise the existing hardware and software that are used in the company at no

additional cost or at minimal cost. Therefore, the outcome of the research directly

benefits the sponsoring company by providing extra computing power for many

calculation-intensive financial software programs and applications that are currently

used and for future developments.

Another concern regarding innovative technology implementation within the

investment finance industry is that the industry is highly regulated with various

compliances both internally and externally. Due to this type of tighter regulatory

compliance, the investment finance industry is slow to catch up with technology

advancements and implementations; as a result, a high level of legacy systems are

used in the investment finance industry compared with other industries. In addition,

the investment finance industry tightly controls its internal research and development

and rarely shares its research with other researchers in the field or other businesses. In

comparison to larger investment banks, smaller hedge fund management companies

like Northwest have more flexibility in technology and system implementations;

 Chapter 9: Conclusion

276

however, any changes made to the IT and systems, especially related to trading,

portfolio management, risk management, and similar types of critical systems, have to

be rigorously tested and fully documented for auditing. Even small companies like

Northwest has undergo regular inspections and due diligence checks by investors and

external compliance authorities. Hence, certain investigations are carried out in this

research, such as dispersion trading and data processing using finance data feeds that

were described in Chapter 7; these are not to be implemented until fully tested with

tightly controlled test environments. Meanwhile, some internal applications used in the

company that are compute-intensive have already started to be used within the

distributed processing cluster in various forms and have shown considerable

calculation time improvement compared with using a serial method. The most

improved applications are batch process applications that are executed during out-of-

office hours where all the processing units are fully available for use as calculation

nodes and calculation time reduction from a few hours to a few minutes is achieved by

utilising all the calculation nodes.

Most of the research in distributed and parallel processing is moving towards

supercomputing-level implementations, and most of the recent supercomputer designs

are based on certain types of combinations of distributed processing and parallel

processing technologies. Hence, various improvements are made in using

combinations of multi-core and many-core processors with co-processors for vector

calculations, and in addition, a number of improvements have been made to

processors, network interconnects, and high-speed data access technologies to improve

the overall system speed. Because of the complexities involved in interconnects and

data access in large-scale clusters, new methods of building cluster-based

supercomputers that use a small-scale cluster as a single processing node. Hence, each

cluster acts as a processing node and it has its own management systems that control

the processing, communications, data storage, and memory management. Furthermore,

large-scale cluster computing systems use large amounts of power and produce large

amounts of heat; hence, need for efficient power management, air-cooling, and

utilisation of power-aware processing techniques. Meanwhile, many areas of research

utilise the custom-built Beowulf type loosely coupled clusters using commodity

computers for their own research and development; in particular, most universities

 Chapter 9: Conclusion

277

take advantage of these types of clusters for their research. However, most of these

types clusters are specifically built for certain types of research-oriented utilisation and

use Linux platforms. In industry-based custom-built cluster utilisation, the benefits to

the business are rarely published in the public domain due to safeguarding the business

interests and business competitive edge. However, as demonstrated in this research, it

is possible to utilise an original concept with a business-specific design that uses a new

and original approach for a highly specific distributed processing system.

Distributed processing using commodity hardware and software has proved be a

technological breakthrough and the concept of parallel and distributed computing is

here to stay and is the future of computing. The key factors in the design of these types

of supercomputing level of systems is that these are scalable, high-bandwidth, low-

latency networks with low-overhead network interfaces. In addition, tightly coupled

with the global operating system layer, the high-speed network allows users to see the

resources on the network like processors, memory, and storage device disks as shared

devices within a single system. The most important part of this technology is the

opportunity for large-scale computing within everyday commodity components-based

framework of interactive computing. The distributed processing system designed in

this research is based on the bespoke-type first principle approach that is particularly

suited for the company’s infrastructure; hence, it can be modified as and when

required with minimum impact to the business. Furthermore, bespoke-type utilisation

of adaptive and self-tuning control mechanisms continuously fine-tunes the cluster

performance and is able to function autonomously with varying parameters, and these

parameters can be hardware, software, or business rules. The fundamental method and

approach that is used in this research can be adopted by other small to medium-sized

companies for their own distributed processing, regardless of the business type or area

of business.

 Chapter 9: Conclusion

278

To implement successful and efficient distributed processing cluster systems, fault

tolerance, load balancing, and resource management techniques are important

components of the system implementation to ensure its robustness. Distributed

processing using multiple processing devices that are available in the company such as

processing nodes to configure company-specific processing clusters has positive

impact on the hedge fund management technologies. This approach can facilitate the

business to perform various compute-intensive processes that are currently impossible

to perform within the required timeframes and in addition, provide the opportunity to

carry out in-house business-specific quantitative research. Furthermore, it promotes

the competitive edge for small hedge fund management companies like Northwest to

attract larger investors by proving that they have the required computing capacity to

produce the required financial analysis demanded by investors, prospective investors,

and compliance authorities. Distributed process-based computing research holds

significant promise, and much potential for researchers and businesses that can harness

these technologies to reap the benefits it offers at various levels.

 Appendix

279

Bibliography

1. Kronenberg, N.P., H.M. Levy, and W.D. Strecker, VAXcluster: a closely-

coupled distributed system. ACM Transactions on Computer Systems (TOCS),

1986. 4(2): p. 130-146.

2. Leblang, D.B. and R.P. Chase Jr. Computer-aided software engineering in a

distributed workstation environment. in ACM Sigplan Notices. 1984. ACM.

3. Baker, M. and R. Buyya, Cluster computing: The commodity supercomputing.

SOFTWARE—PRACTICE AND EXPERIENCE, 1988. 1(1): p. 1-4.

4. Kung, H., et al. Network-based multicomputers: An emerging parallel

architecture. in Proceedings of the 1991 ACM/IEEE conference on

Supercomputing. 1991. ACM.

5. Dolezal, R., et al., HPC cloud technologies for virtual screening in drug

discovery, in Intelligent Information and Database Systems. 2015, Springer. p.

440-449.

6. Fischer, J., et al. XCBC and XNIT-Tools for Cluster Implementation and

Management in Research and Training. in Cluster Computing (CLUSTER),

2015 IEEE International Conference on. 2015. IEEE.

7. Yeo, C.S., et al., Cluster computing: high-performance, high-availability, and

high-throughput processing on a network of computers, in Handbook of

nature-inspired and innovative computing. 2006, Springer. p. 521-551.

8. Luther, A., et al. Alchemi: A. NET-based Enterprise Grid Computing System.

in International Conference on Internet Computing. 2005.

9. Becker, D.J., et al. BEOWULF: A parallel workstation for scientific

computation. in Proceedings, International Conference on Parallel

Processing. 1995.

10. Sterling, T.L., Beowulf Cluster Computing with Windows. 2002: MIT Press.

11. Amdahl, G.M. Validity of the single processor approach to achieving large

scale computing capabilities. in Proceedings of the April 18-20, 1967, spring

joint computer conference. 1967. ACM.

12. Gustafson, J.L., Reevaluating Amdahl's law. Communications of the ACM,

1988. 31(5): p. 532-533.

13. Cox, J.C. and S.A. Ross, The valuation of options for alternative stochastic

processes. Journal of financial economics, 1976. 3(1-2): p. 145-166.

14. Connolly, K.B., Pricing convertible bonds. 2001: Wiley.

15. Opera_Report. Opera_Report. [cited 2016 March 16]; Available from:

http://www.theopenprotocol.org/top/home

16. SFC. Securities and Futures Commission (SFC). [cited 2016 March 2016];

Available from: http://www.sfc.hk/web/EN/index.html.

17. Connolly, K. and T. Kumar, CB Financial Model Development 2012:

Northwest Investment Management (HK) Ltd.

18. Baker, M. and R. Buyya, Cluster computing: the commodity supercomputer.

Software-Practice and Experience, 1999. 29(6): p. 551-76.

19. Buyya, R., High Performance Cluster Computing: Architecture and Systems,

Volume I. Prentice Hall, Upper SaddleRiver, NJ, USA, 1999. 1: p. 999.

20. HFSB. Hedge Fund Standards Board. 2016 [cited 2016 June 2016]; Available

from: http://www.hfsb.org/.

http://www.theopenprotocol.org/top/home
http://www.sfc.hk/web/EN/index.html
http://www.hfsb.org/

 Appendix

280

21. Elliott, L. Global financial crisis: five key stages 2007-2011 2011 [cited 2016

March 2016]; Available from:

http://www.theguardian.com/business/2011/aug/07/global-financial-crisis-key-

stages.

22. Beynon-Davies, P., et al., Rapid application development (RAD): an empirical

review. European Journal of Information Systems, 1999. 8(3): p. 211-223.

23. Stapleton, J., DSDM, dynamic systems development method: the method in

practice. 1997: Cambridge University Press.

24. Faulk, S., et al., Measuring high performance computing productivity.

International Journal of High Performance Computing Applications, 2004.

18(4): p. 459-473.

25. Dell. Dell HPC. 2016 [cited 2016 March 2016]; Available from:

http://www.dell.com/learn/us/en/25/business~solutions~whitepapers~en/docu

ments~hpc-right-choice.pdf.

26. HP. HP HPC. 2016 [cited 2016 March 2016]; Available from:

http://www8.hp.com/us/en/products/servers/scalable-

systems/clusterplatform.html?jumpid=go/clusterplatforms&404m=rt404Mb.

27. Buyya, R. and S. Venugopal, A gentle introduction to grid computing and

technologies. database, 2005. 2: p. R3.

28. Buyya, R., et al., Cloud computing and emerging IT platforms: Vision, hype,

and reality for delivering computing as the 5th utility. Future Generation

computer systems, 2009. 25(6): p. 599-616.

29. Kim, J.-S., et al. Creating a robust desktop grid using peer-to-peer services. in

Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE

International. 2007. IEEE.

30. Sterling, T., D.J. Becker, and D.F. Savarese, How to Build a Beowulf: A Guide

to the Implementation and Application of PC Clusters (Scientific and

Engineering Computation). 1999.

31. Qin, X., et al., Dynamic load balancing for I/O-intensive tasks on

heterogeneous clusters, in High Performance Computing-HiPC 2003. 2003,

Springer. p. 300-309.

32. Shi, J., C. Meng, and L. Ma. The Strategy of Distributed Load Balancing

Based on Hybrid Scheduling. in Computational Sciences and Optimization

(CSO), 2011 Fourth International Joint Conference on. 2011. IEEE.

33. Liang, S., V. Holmes, and I. Kureshi. Hybrid Computer Cluster with High

Flexibility. in Cluster Computing Workshops (CLUSTER WORKSHOPS), 2012

IEEE International Conference on. 2012. IEEE.

34. Assunção, M.D., et al., Big Data computing and clouds: Trends and future

directions. Journal of Parallel and Distributed Computing, 2015. 79: p. 3-15.

35. Corp, I. Small Form Factor Computers. [cited 2016 March 2016]; Available

from: http://www.intel.co.uk/content/www/uk/en/nuc/overview.html.

36. Ltd, Z. Small Form Factor Computers. [cited 2016 March 2016]; Available

from: http://www.zotac.com/en/z-zone/zbox-pico.html.

37. Cusick, J.J., et al., Design, Construction, and Use of a Single Board Computer

Beowulf Cluster: Application of the Small-Footprint, Low-Cost, InSignal 5420

Octa Board. arXiv preprint arXiv:1501.00039, 2014.

38. Abrahamsson, P., et al. Affordable and Energy-Efficient Cloud Computing

Clusters: The Bolzano Raspberry Pi Cloud Cluster Experiment. in Cloud

Computing Technology and Science (CloudCom), 2013 IEEE 5th International

Conference on. 2013. IEEE.

http://www.theguardian.com/business/2011/aug/07/global-financial-crisis-key-stages
http://www.theguardian.com/business/2011/aug/07/global-financial-crisis-key-stages
http://www.dell.com/learn/us/en/25/business~solutions~whitepapers~en/documents~hpc-right-choice.pdf
http://www.dell.com/learn/us/en/25/business~solutions~whitepapers~en/documents~hpc-right-choice.pdf
http://www8.hp.com/us/en/products/servers/scalable-systems/clusterplatform.html?jumpid=go/clusterplatforms&404m=rt404Mb
http://www8.hp.com/us/en/products/servers/scalable-systems/clusterplatform.html?jumpid=go/clusterplatforms&404m=rt404Mb
http://www.intel.co.uk/content/www/uk/en/nuc/overview.html
http://www.zotac.com/en/z-zone/zbox-pico.html

 Appendix

281

39. Anderson, T.E., D.E. Culler, and D.A. Patterson, A case for NOW (networks of

workstations). Micro, IEEE, 1995. 15(1): p. 54-64.

40. Ridge, D., et al. Beowulf: harnessing the power of parallelism in a pile-of-PCs.

in Aerospace Conference, 1997. Proceedings., IEEE. 1997. IEEE.

41. Brunner, R.K. and L.V. Kalé. Adapting to load on workstation clusters. in

Frontiers of Massively Parallel Computation, 1999. Frontiers' 99. The Seventh

Symposium on the. 1999. IEEE.

42. Milutinovic, V., et al., Guide to DataFlow Supercomputing: Basic Concepts,

Case Studies, and a Detailed Example. 2015: Springer.

43. Cook, J.S. and N. Gupta, History of Supercomputing and Supercomputer

Centers. Research and Applications in Global Supercomputing, 2015: p. 33.

44. Andrews, C., The future of weather forecasting [Communications Met Office

Supercomputer]. Engineering & Technology, 2015. 10(2): p. 65-67.

45. Wang, B., et al., Modern Gyrokinetic Particle-In-Cell Simulation of Fusion

Plasmas on Top Supercomputers. arXiv preprint arXiv:1510.05546, 2015.

46. Tian, X., et al., Latency critical big data computing in finance. The Journal of

Finance and Data Science, 2015. 1(1): p. 33-41.

47. CRAY. Supercomputing. [cited 2016 March 2016]; Available from:

http://www.cray.com/.

48. IBM. Supercomputing. [cited 2016 March 2016]; Available from:

www.IBM.com.

49. Korpela, E., et al., SETI@ HOME—massively distributed computing for SETI.

Computing in science & engineering, 2001. 3(1): p. 78-83.

50. Anderson, D.P. Boinc: A system for public-resource computing and storage. in

Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop

on. 2004. IEEE.

51. Yigitbasi, M.N., Understanding and Improving the Performance Consistency

of Distributed Computing Systems. 2012: TU Delft, Delft University of

Technology.

52. TOP500. TOP500. [cited 2016 March 2016]; World Top 500

Supercomputers]. Available from: http://www.top500.org/.

53. Kogge, P.M. and T.J. Dysart. Using the TOP500 to trace and project

technology and architecture trends. in Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and

Analysis. 2011. ACM.

54. Booth, G.M. Distributed information systems. in Proceedings of the June 7-10,

1976, national computer conference and exposition. 1976. ACM.

55. Woodward, P.R., Perspectives on supercomputing: Three decades of change.

Computer, 1996. 29(10): p. 99-111.

56. Emma, P.G. and E. Kursun, Is 3D chip technology the next growth engine for

performance improvement? IBM journal of research and development, 2008.

52(6): p. 541-552.

57. Loh, G.H., Y. Xie, and B. Black, Processor design in 3D die-stacking

technologies. Ieee Micro, 2007(3): p. 31-48.

58. Strohmaier, E. 20 Years Supercomputer Market Analysis. in International

Supercomputer Conference. 2005.

59. Coulter, S.K. and J.E. Martinez, Introduction to InfiniBand. 2015.

60. Boden, N.J., et al., Myrinet: A gigabit-per-second local area network. IEEE

micro, 1995(1): p. 29-36.

http://www.cray.com/
http://www.ibm.com/
http://www.top500.org/

 Appendix

282

61. Upadhyay, J., V. Varavithya, and P. Mohapatra. Routing algorithms for torus

networks. in Intl. Conf. On High Performance Computing. 1995. Citeseer.

62. Barker, K.J., et al. Entering the petaflop era: the architecture and performance

of Roadrunner. in Proceedings of the 2008 ACM/IEEE conference on

Supercomputing. 2008. IEEE Press.

63. Ia, V., Supercomputing’s exaflop target. Communications of the ACM, 2011.

54(8).

64. Sterling, T., et al. An assessment of Beowulf-class computing for NASA

requirements: initial findings from the first NASA workshop on Beowulf-class

clustered computing. in Aerospace Conference, 1998 IEEE. 1998. IEEE.

65. Feng, W.-c., M. Warren, and E. Weigle. The bladed beowulf: A cost-effective

alternative to traditional beowulfs. in Cluster Computing, 2002. Proceedings.

2002 IEEE International Conference on. 2002. IEEE.

66. Adams, J.C. and T.H. Brom. Microwulf: a beowulf cluster for every desk. in

ACM SIGCSE Bulletin. 2008. ACM.

67. Barczak, A.L., C.H. Messom, and M.J. Johnson, Performance characteristics

of a cost-effective medium-sized beowulf cluster supercomputer, in

Computational Science—ICCS 2003. 2003, Springer. p. 1050-1059.

68. Love, P., et al., Parallel processing of radiotherapy Monte Carlo simulations

on a remote Beowulf cluster, in The Use of Computers in Radiation Therapy.

2000, Springer. p. 409-410.

69. Yang, C.-T., et al. Using a Beowulf cluster for a remote sensing application. in

Paper presented at the 22nd Asian Conference on Remote Sensing. 2001.

70. Dmitruk, P., et al., Scalable parallel FFT for spectral simulations on a Beowulf

cluster. Parallel Computing, 2001. 27(14): p. 1921-1936.

71. Bennett III, F.H., et al. Building a Parallel Computer System for $18, 000 that

Performs a Half Peta-Flop per Day. in GECCO. 1999.

72. Microsoft_Research. Microsoft HPC Servers. [cited 2016 March 16];

Available from: http://www.microsoft.com/hpc/en/us/product/cluster-

computing.aspx.

73. Wilbertz, B., GPGPUs in computational finance: Massive parallel computing

for American style options. Concurrency and Computation: Practice and

Experience, 2012. 24(8): p. 837-848.

74. Owens, J.D., et al., GPU computing. Proceedings of the IEEE, 2008. 96(5): p.

879-899.

75. Sanders, J. and E. Kandrot, CUDA by Example: An Introduction to General-

Purpose GPU Programming, Portable Documents. 2010: Addison-Wesley

Professional.

76. Yang, X.-J., et al., The TianHe-1A supercomputer: its hardware and software.

Journal of Computer Science and Technology, 2011. 26(3): p. 344-351.

77. Chrysos, G., Intel® Xeon Phi™ Coprocessor-the Architecture. Intel

Whitepaper, 2014.

78. Casavant, T.L. and J.G. Kuhl, A taxonomy of scheduling in general-purpose

distributed computing systems. Software Engineering, IEEE Transactions on,

1988. 14(2): p. 141-154.

79. Xu, C., Load balancing in parallel computers: theory and practice. 1997:

Springer.

80. Choi, S., et al. Volunteer availability based fault tolerant scheduling

mechanism in desktop grid computing environment. in Network Computing and

http://www.microsoft.com/hpc/en/us/product/cluster-computing.aspx
http://www.microsoft.com/hpc/en/us/product/cluster-computing.aspx

 Appendix

283

Applications, 2004.(NCA 2004). Proceedings. Third IEEE International

Symposium on. 2004. IEEE.

81. Kim, C. and H. Kameda, An algorithm for optimal static load balancing in

distributed computer systems. IEEE Transactions on Computers, 1992(3): p.

381-384.

82. Overeinder, B.J., et al., A dynamic load balancing system for parallel cluster

computing. Future Generation Computer Systems, 1996. 12(1): p. 101-115.

83. Yan, K.-Q., et al., Towards a hybrid load balancing policy in grid computing

system. Expert Systems with Applications, 2009. 36(10): p. 12054-12064.

84. Litzkow, M.J., M. Livny, and M.W. Mutka. Condor-a hunter of idle

workstations. in Distributed Computing Systems, 1988., 8th International

Conference on. 1988. IEEE.

85. McLaughlin, D., S. Sardesai, and P. Dasgupta. Preemptive scheduling for

distributed systems. in 11th International Conference on Parallel and

Distributed Computing Systems. 1998.

86. Borkar, S. Thousand core chips: a technology perspective. in Proceedings of

the 44th annual Design Automation Conference. 2007. ACM.

87. Keyes, R.W., Fundamental limits of silicon technology. Proceedings of the

IEEE, 2001. 89(3): p. 227-239.

88. Gepner, P. and M.F. Kowalik. Multi-core processors: New way to achieve high

system performance. in Parallel Computing in Electrical Engineering, 2006.

PAR ELEC 2006. International Symposium on. 2006. IEEE.

89. Kruger, J. and R. Westermann. Acceleration techniques for GPU-based volume

rendering. in Proceedings of the 14th IEEE Visualization 2003 (VIS'03). 2003.

IEEE Computer Society.

90. Seiler, L., et al. Larrabee: a many-core x86 architecture for visual computing.

in ACM Transactions on Graphics (TOG). 2008. ACM.

91. Mattson, T.G., R. Van der Wijngaart, and M. Frumkin. Programming the Intel

80-core network-on-a-chip terascale processor. in Proceedings of the 2008

ACM/IEEE conference on Supercomputing. 2008. IEEE Press.

92. Howard, J., et al., A 48-core IA-32 processor in 45 nm CMOS using on-die

message-passing and DVFS for performance and power scaling. Solid-State

Circuits, IEEE Journal of, 2011. 46(1): p. 173-183.

93. Wolf, W., A.A. Jerraya, and G. Martin, Multiprocessor system-on-chip

(MPSoC) technology. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 2008. 27(10): p. 1701-1713.

94. A network on chip architecture and design methodology. in VLSI, 2002.

Proceedings. IEEE Computer Society Annual Symposium on. 2002. IEEE.

95. Feng, W.-c., et al. Optimizing 10-Gigabit Ethernet for networks of

workstations, clusters, and grids: A case study. in Proceedings of the 2003

ACM/IEEE conference on Supercomputing. 2003. ACM.

96. Liu, J., et al. Performance comparison of MPI implementations over

InfiniBand, Myrinet and Quadrics. in Supercomputing, 2003 ACM/IEEE

Conference. 2003. IEEE.

97. Alverson, B. Cray high speed networking. in Proceedings of the 20th Annual

Symposium on High-Performance Interconnects (HOTI). 2012.

98. Pfister, G.F., An introduction to the infiniband architecture. High Performance

Mass Storage and Parallel I/O, 2001. 42: p. 617-632.

99. InfiniBand. InfiniBand Trade Association. 2016]; March 2016]. Available

from: http://www.infinibandta.org/.

http://www.infinibandta.org/

 Appendix

284

100. Gutiérrez-Castrejón, R., L. Schares, and M. Duelk, SOA nonlinearities in 4×

25 Gb/s WDM pre-amplified system for 100-Gb/s Ethernet. Optical and

quantum electronics, 2008. 40(13): p. 1005-1019.

101. Zenios, S.A., High-performance computing in finance: The last 10 years and

the next. Parallel Computing, 1999. 25(13): p. 2149-2175.

102. Menkveld, A.J., High frequency trading and the new market makers. Journal of

Financial Markets, 2013. 16(4): p. 712-740.

103. Wood, R., J. Upson, and T.H. McInish, The flash crash: Trading

aggressiveness, liquidity supply, and the impact of intermarket sweep orders.

Liquidity Supply, and the Impact of Intermarket Sweep Orders (July 2013),

2013.

104. Zhang, N., et al. Cpu-gpu hybrid parallel binomial american option pricing. in

Proceedings of the International Multiconference of Engineers and Computer

Scientists. 2012.

105. Suo, S., et al. GPU option pricing. in Proceedings of the 8th Workshop on

High Performance Computational Finance. 2015. ACM.

106. V., A.Y. Grama, and N.R. Vempaty, Scalable load balancing techniques for

parallel computers. Journal of Parallel and Distributed Computing, 1994.

22(1): p. 60-79.

107. Wilkinson, B. and M. Allen, Parallel programming. Vol. 999. 1999: Prentice

hall Upper Saddle River, NJ.

108. Kshemkalyani, A.D. and M. Singhal, Distributed computing: principles,

algorithms, and systems. 2011: Cambridge University Press.

109. Hwang, K., J. Dongarra, and G.C. Fox, Distributed and cloud computing: from

parallel processing to the internet of things. 2013: Morgan Kaufmann.

110. Lee, S.-Y. and C.-H. Cho. Load balancing for minimizing execution time of a

target job on a network of heterogeneous workstations. in Job Scheduling

Strategies for Parallel Processing. 2000. Springer.

111. Shirazi, B., A.R. Hurson, and K. Kavi, Introduction to scheduling and load

balancing. Scheduling and Load Balancing in Parallel and Distributed

Systems, 1995.

112. Leland, R. and B. Hendrickson. An empirical study of static load balancing

algorithms. in Scalable High-Performance Comput. Conf. 1994.

113. Schlagenhaft, R., et al. Dynamic load balancing of a multi-cluster simulator on

a network of workstations. in ACM SIGSIM Simulation Digest. 1995. IEEE

Computer Society.

114. Hsu, T.-S., et al., Task allocation on a network of processors. Computers,

IEEE Transactions on, 2000. 49(12): p. 1339-1353.

115. Sinnen, O., Task scheduling for parallel systems. Vol. 60. 2007: John Wiley &

Sons.

116. Tørresen, J. and K.A. Vinger. High Performance Computing by Context

Switching Reconfigurable Logic. in Esm. 2002.

 Appendix

285

Appendix A

A.1 Control Systems for Load Balancing

To maintain the stable load balancing mechanism in the distributed processing system,

three types of control methods were investigated. These methods are simplified

models of complex control systems that are widely used within various industries. A

number of load balancing algorithms are used for static and dynamic load balancing

within numerous distributed processing systems, and these methods are highly suited

for particular types of distributed systems. However, the Northwest distributed

processing system, which is designed as a bespoke type system, requires bespoke type

load balancing algorithms and control mechanisms, and has to be simple to implement

and easy to manage. In addition, it must be robust during the system’s operation. The

control system is based on a discrete sampling method to capture various data during

system execution; hence, the sampling frequency is also crucial for fine-tuning the

control mechanism. For fine-grained processing, this method is not suitable, and for

Northwest’s system that utilises coarse-grained batch processing type task

calculations, the sampling frequency can be lower depending on the application used.

A.1.1 Linear Model-Based Control

The linear control method used for static load balancing is similar to the open-loop

controller and uses existing data, current state, and the defined model of the system to

compute its input parameters into a system using only the current state. The

characteristic of the open-loop controller is that it does not use feedback to determine

whether its output has achieved the desired target of the input. This means that the

open-loop system does not observe the output of the processes that it is controlling.

Hence, the linear open-loop controller method is most suitable for static load

balancing and simpler to implement within the known calculation cluster systems.

Meanwhile, various parameters are collected during the system’s operation, and these

parameters are used to refine the static algorithms employed to allocate tasks to each

 Appendix

286

processing unit. Therefore, the static algorithms will continuously adapt to perform

better for the next process execution within the system concerned. However, during

the process execution, the model remains static, and all the input parameters remain

the same. Hence, the linear open-loop controller method is most suitable for

implementing within the known systems. Figure A.1 and Figure A.2 show the liner

model-based control system schematic and implementation diagrams.

Figure A.1: Linear control system schema

Figure A.2: Linear control system implementation

A.1.2 Self-Tuning Model-Based Adaptive Control

Self-tuning model-based adaptive control is used for dynamic load balancing, and it is

similar to the feedback control system. It uses the defined models and current state of

the system, as well as the feedback data from the output parameters and continuously

changes the input parameters during the process execution. A characteristic of the

closed-loop controller is that it continuously changes the input parameters using

various feedback parameters and model-based parameters to determine whether its

output has achieved the desired target of the input. Hence, the system has to observe

the output of the processes that it is controlling, and this makes the system slower than

static load balancing. Similar to the static load balancing system, the dynamic load

balancing system also collects data continuously, and the collected data are used by

the distributed processing controller to fine-tune the load balancing algorithms. Figure

 Appendix

287

A.3 and Figure A.4 show the Self-Tuning Model-Based Adaptive Control system

schematic and implementation diagrams.

Figure A.3: Self-Tuning Model-Based Adaptive Control system schema

Figure A.4: Self-Tuning Model-Based Adaptive Control implementation

A.1.3 Fuzzy Logic Control

In comparison with conventional control techniques, fuzzy logic is best used for

complex processes that can be controlled by a rule-based controller without prior

knowledge of their underlying dynamics. The fundamental idea behind the fuzzy logic

control technique is to incorporate the past performance of a system. The design of the

controller involves controlling a process the input/output relationship of which is

described by collection of fuzzy control rules involving weighted mean value-based

variables rather than complicated dynamic models. The utilisation of weighted mean

variables, fuzzy control rules, and approximate reasoning provides a means to

incorporate logical reasoning in designing the controller. The controller is strongly

based on the concepts of fuzzy sets, weighted mean variables, and approximate

 Appendix

288

reasoning. This type of rule-based fuzzy logic algorithm is used in Northwest’s

distributed processing system as a part of dynamic load balancing algorithms. Figure

A.5 and Figure A.6 show the Fuzzy Logic-based control system schematic and

implementation diagrams.

Figure A.5: Fuzzy logic-based control system schema

Figure A.6: Fuzzy logic-based control implementation

where

 x(i) Input parameter for node i

 K(i) Load balancing parameter for node i

y(i,T) Output status for node i at sampling time T

m(i) Model parameter for node i

R(i) Control rule set for node i

T Sampling period

 Appendix

289

A.2 Termination Detection

Termination detection is a component of task allocation and load balancing

mechanisms, and is used for detecting when a computation is completed. Termination

detection becomes a significant issue when the computation is distributed and various

algorithms have to determine whether a distributed computation being performed in a

system has terminated. The distributed computation being performed is known as the

basic computation, and the inter-process messages used for implementing it are known

as the basic messages. For termination detection, an additional computation known as

the control computation is superimposed on the basic computation, and the messages

used to implement the control computation are known as the control messages. A

process is in the active state if it is currently performing the basic computation or in

passive otherwise. Hence, an active process can send or receive basic messages, create

other processes, or become passive. Meanwhile, a passive process can only receive

basic messages, and become active-state. Therefore, the distributed computation is

said to have terminated when all of its live processes are in the passive state. This is

called the distributed termination condition (DTC), and the control computation

performed by the processes for detecting the termination is called the termination

detection algorithm. The implementation of termination detection algorithms depends

on the types of distributed processing systems, such as:

 Tightly coupled distributed processing systems.

 Loosely coupled distributed processing systems.

 Centrally controlled distributed processing systems.

 Model-based distributed processing systems.

 Mixed-mode based distributed processing systems.

Depending on what type of distributed processing system is implemented, the

complexity of the termination detection process varies accordingly. The Northwest

distributed processing system mainly consists of a loosely coupled system, and the

termination detection is managed by the distributed processing management controller.

 Appendix

290

A.2.1 Process Completion Time Limits

Each process submitted to the calculation node has a calculation completion time limit

parameter, and the parameter is an estimated value that is calculated based on the

following factors:

 Past calculation-time based on the same calculation node or another that has

similar hardware and software configurations.

 CPU and memory use parameters of the calculation node that are based on

current data and saved historical data.

 Application parameters mainly depend on each application used within the

distributed processing system.

Hence, the process completion time limit is used by the distributed processing

management controller to make decisions based on these parameters regarding

whether the process terminated and whether it should be assigned to another available

calculation node.

A.2.2 Termination Rules

The process termination is determined by the following three conditions: Process

completed, Process calculation time lapsed, and Calculation node is not responding.

Process Completed: This condition is met when the allocated calculation process

completed by the calculation node and the calculation node controller send a message

to the distributed processing controller. Once the ‘process completed’ condition

message has been received, the distributed processing controller allocates another

process to the calculation node, and so on. This is a seamless process assuming no

disruption to the calculation node and that the calculation node performs as expected

by the static control algorithms.

 Appendix

291

Process Time Lapsed: This condition only happens when the calculation process

exceeds the predefined time limit for the calculation node concerned. When this

condition is met, the calculation node controller sends a message to the distributed

processing controller to notify the status of the calculation process. At this point, the

distributed processing controller activates the dynamic load balancing algorithms to

relocate the processes to another calculation node or to activate the standby node using

the context switch method. This will cause time delays in the overall calculation due to

various processes involved in transferring calculations from one calculation node to

another calculation node dynamically.

Node Error: This condition happens when no response from the calculation node

concerned, and this is mainly due to hardware or software error. In this case, no

communication between the distributed processing controller and the calculation node

controller, and the calculation node is permanently excluded from the calculation

cluster by the distributed processing controller. In this case, the distributed processing

controller activates the dynamic load balancing algorithms to reassign the processes to

another active or standby calculation node using the context switch method. Figure

A.7 shows task messages and times related to termination processes. Equations (A.1)

and (A.2) formulate the calculation times for process terminations.

Figure A.7: Task termination process time limits and associated messages

 Appendix

292

 TP(i) = TC(i) + TI(i) + TF(i) (A.1)

 TL(i) = K(i) x TP(i) (A.2)

where

TP(i) Allocated total process time for node i

TC(i) Total calculation time taken by node i

TI(i) Initialisation time for node i

TF(i) Finalisation time for node i

TL(i) Lapsed time for node i

MS(i) Process start message for node i

MC(i) Process complete message for node i

MT(i) Process terminate message for node i

The value of TP depends on the applications and types of batch processes used within

the calculation cluster. The calculation node controller sends messages to the

distributed processing management controller to notify the status of the calculation

process. Each calculation process has different TP values depending on various factors

such as the application used, calculation node’s hardware parameters, and historical

data. The estimated TP values are maintained in the distributed processing

management controller SQL database, and TP is continuously modified by adaptation

algorithms to reduce the TP using rule-based fuzzy logic techniques. Figure A.8 shows

the task termination and relocation process. Here, T1 and T2 are arbitrary values for

time delays, and the values depend on each batch process.

 Appendix

293

Figure A.8: Task termination and relocation process

 Appendix

294

A.3 Distributed Processing Time Delays

Various time delays within the system will affect the calculation speed and increase

the calculation time. These time days have to be reduced to a minimum to achieve a

better performance from the system. The network latency-related time delays are also

important in the distributed processing systems; however, for the system that is used

within Northwest’s network, the network-related time delays are small compared with

application- and data-related time delays. However, in the Northwest distributed

processing system, time delays that are part of the communication and

synchronisations are small compared with the overall computing time. This is because

the applications used for distributed calculations are based on the coarse-grained

method, and the calculation time for each distributed segment is considerably higher

than the communication and synchronisation time, which has been observed to be in

the range of 1,000 to 1 ratio. Hence, communication and synchronisation time delays

are not considered in any analysis and only calculation times are used, that is,

calculation time that includes other types of time delays. The current applications used

in the distributed processing system are highly compute-intensive and this is one of the

reasons that the communication and synchronisation times become comparatively

small. However, if the company decided to use different types of applications in the

future, then communication and synchronisation time delays have to be included in the

distributed processing calculation analysis.

 Appendix

295

A.4 MS-Excel Usage in the Financial Industry

Microsoft Office MS-Excel is widely used in the financial industry and especially by

the small organisations and hedge fund management industries. For a small company

like Northwest, MS-Excel has become the core component of the applications within

the business. The primary reason for the success of using MS-Excel applications is

related to its many advantages compared with other similar products. It has been a

widely adopted spreadsheet application, and it has replaced Lotus 1-2-3 as the industry

standard for spreadsheets. MS-Excel is a valuable tool for portfolio managers, traders,

and analysts. Various management reports and risk management tools can be created

and executed in MS-Excel with simple implementations. MS-Excel has created useful

functionalities, especially for the finance and accounting industries, and some

companies fully manage their entire range of business operations just using MS-Excel

applications. Accordingly, it is a useful tool for financial use in small to medium

organisations. The main drivers for using MS-Excel in small organisations that it is

relatively cost effective, easy to use, easy to learn, and provides most of the solutions

to the various needs of an organisation. However, MS-Excel has limitations in terms

of performance, security, and consistency, and these all depend on the size, needs, and

nature of the business. However, MS-Excel is used by 90% of financial applications,

and the reason for this is that it provides reliable financial application software design.

A.4.1 Advantages

Financial usage: MS-Excel is a customised financial application. All necessary

financial formulas are installed with it, and specialised financial functions are

available those are provided by Microsoft or through various third-party vendors.

High usage rate: The high usage rate, which is around 90% in the industry, and all

external devices being compatible with Windows, and consequently with MS-Excel,

have resulted in growing demand. Using MS-Excel increases the chances of

 Appendix

296

accomplishing effective understanding between users or organisations, making

communication easier.

Prototyping Tool: MS-Excel can be used for developing applications within shorter

time scales using Rapid Application Development (RAD) methods, and can be

improved and adapted according to the business requirements using Dynamic System

Development Methods (DSDM).

Highly Integrated: MS-Excel highly integrated with other Microsoft applications.

Hence, the data manipulation and data flow are easier to perform.

Upgradability: MS-Excel is upgraded regularly, which improves it and makes it more

consistent with the needs of organisations.

Cost-Effective: Off-the-shelf software is relatively cheaper for smaller organisations.

Easy to Use: MS-Excel’s features and structure make the usage experience user-

friendly, despite a steep learning curve for first-time users.

Security: MS-Excel can be password-protected with various levels of access rights,

making it more secure for organisations.

Portability: MS-Excel is a portable application; its documents can be sent through e-

mail and can be synchronised with other applications and matched with different

devices.

 A.4.2 Disadvantages

Viruses: The greatest risk with MS-Excel is the possibility of spreading viruses that

can be costly for organisations.

Possible Data Loss: Data could be lost when the application is broken down into

many files. To avoid data inconsistency and data loss, the data has to be regularly

managed.

 Appendix

297

Non-scalability: MS-Excel is a file-based application, and it tends to bloat and corrupt

when it becomes larger with large amounts of data.

Security: Built-in security features are weak and limited data and code security is

available.

A.5 Distributed Processing Using MS-Excel Applications

Since MS-Excel version 2007, MS-Excel has supported multithreading workbook

calculation functions that act as parallel thread calculations. MS-Excel uses

multithreaded recalculation (MTR) of worksheets; this can be configured to use up to

1,024 concurrent threads when recalculating, regardless of the number of CPUs or

CPU-cores in the computer. If the computer has multiple CPU or CPU-cores, the

operating system takes responsibility for allocating the threads to the processors in the

most efficient way. An operating system overhead associated with each thread, hence

a trade-off between number of threads and operating system resources. However,

parallel thread calculation of MS-Excel workbooks is not well integrated with the MS-

Office system, and it is not a seamless process, but the possibility to be utilised still

remains. For simple applications that use built-in MS-Excel functions, it is possible to

achieve better performance in a single computer that has a multi-core CPU. The MS-

Excel application itself is not capable of executing tasks in parallel. Hence, external

applications and frameworks are required to implement distributed processing using

MS-Excel applications. Typically, these external applications are computational grids,

like Microsoft HPC Server, Platform Symphony, or similar platforms.

 Appendix

298

A.5.1 Microsoft HPC Server

Several solutions are available from Microsoft to run distributed MS-Excel on HPC,

and has no generic framework, because every user should implement his or her own

user-defined functions (UDF) using a preferred language. The custom UDFs have

many advantages, including effective parallelisation, using API or HPC server

directly, and programming environments such as .NET or C++ instead MS-Excel's

VBA. The second approach, which allows computing with MS-Excel workbooks on

the cluster, is represented by HPC MS-Excel services. To make this solution work,

SharePoint MS-Excel services must be installed on every compute-node on the cluster.

This solution uses an MS-Excel add-in to specify job information, input data, and

output data mappings. HPC MS-Excel services support only lists as input values for

parallelisation and lists for output values. Documentation is extensive, and sample

models are described well. An interesting feature of the solution is that it supports

submitting models from the SharePoint portal. However, implementing these types of

solutions for the company’s distributed processing requires various changes to existing

systems and necessitates the purchase of certain hardware and software products.

Hence, this approach is not a suitable solution for the company given its current

requirements. Figure A.9 shows the Microsoft HPC Cluster configuration.

 Appendix

299

Figure A.9: Microsoft HPC Cluster configuration (Source: Microsoft)

A.5.2 Platform Symphony

This platform also supports both approaches using UDFs, which implement actual

parallelisation logic, and computing MS-Excel workbooks on compute-nodes. No

generic-purpose framework for this, and everything should be customised for MS-

Excel models. Useful for heavy MS-Excel calculations and grid vendor support

available to distributed MS-Excel to some extent. Several approaches available to run

MS-Excel workbooks on a grid, from using MS-Excel just as UI and accessing a grid

using an API from UDFs, to calculating actual workbooks with VBA code on compute

nodes. However, this approach also require extra work on IT hardware and software to

implement this method; hence, this approach not a suitable solution for the company

given its current requirements.

 Appendix

300

A.5.3 Bespoke Design

Another approach is to execute MS-Excel worksheets themselves on the specifically

designed cluster. In this case, a workbook contains both UI and computation logic in

cell formula or VBA as UDF. Almost all solutions support distributing a workbook by

data (domain decomposition). The framework is to split these values into equal parts,

copy MS-Excel documents with partial inputs to a cluster, execute documents on

compute nodes on a cluster, and return the results to a main document that had

initiated the computation. The computation logics can be implemented in the MS-

Excel workbook itself with formulas or VBA functions. This approach is a general-

purpose framework and can be used in certain application scenarios.

A.5.4 Northwest Implementation of MS-Excel

No specific approaches are available to utilise the MS-Excel applications as part of

distributed processing systems. Hence, a bespoke method has been used to implement

a distributed processing system for the company’s applications that employs existing

MS-Excel built-in functionalities. MS-Excel has the following functionalities that are

useful for implementing distributed processing:

 Grid type of data structure can easily be portioned vertically and horizontally.

 Able to use user-defined functions (UDF) using VBA.

 Able to use various COM add-ins such as DLL, Active-X EXE.

 Able to create mutually exclusive MS-Excel instances using a single MS-Excel

license.

By using these functionalities, it is possible to build a distributed processing cluster

that can use MS-Excel applications as MS-Excel services to improve the calculation

time for compute-intensive applications. This approach is discussed in detail in

Chapter 4.

 Appendix

301

Appendix B

B.1 Cluster Groups

The cluster grouping is included in the cluster management controller’s software for

selecting different cluster groups for particular batch process calculations. Calculation

nodes physically and logically are separated for grouping as separate calculation

clusters, and these clusters are managed by the management controller software.

Depending on which cluster is selected for the given calculation, all of the available

nodes within the selected cluster will be used by the management controller to allocate

tasks. Table B.1 lists the calculation cluster groups.

Table B.1: Calculation cluster groups

Cluster Name Description

NUC_Grid Workgroup NUC PC cluster

PC_Grid Workgroup PC cluster

WS_Office Office network user workstations

SRV_Office Office network servers

SRV_DRSite Disaster recovery site network servers

VWS_DRSite Disaster recovery site virtual workstations

Cluster_A NUC_Grid + WS_Grid

Cluster_B WS_Office + SRV_Office

Cluster_C UC_Grid + WS_Grid + WS_Office

Cluster_D UC_Grid + WS_Grid + WS_Office + SRV_Office

Cluster_E VWS_DR-Site

Cluster_F VWS_DR-Site + SRV_DR-Site

 Appendix

302

B.2 Distributed Process Controller Interface

Figures B.1 to B.6 show the distributed processing management controller’s user

interface.

Figure B.1: Main control panel

 Appendix

303

Figure B.2: Calculation node’s parameter form

Figure B.3: Each calculation node’s parameter form

 Appendix

304

Figure B.4: Calculation node controller status monitoring form

Figure B.5: Calculation node controller message processing panel

 Appendix

305

Figure B.6: Calculation node process monitoring form

 Appendix

306

Appendix C

This section presents the pictures of the server clusters, PC cluster, and NUC cluster

configurations.

(a) Front view

(b) Back view

(c) Side view

(d) Blade server cluster

Figure C.1: Server Clusters

Figure C.2: P2P workgroup-based PC and NUC clusters

 Appendix

307

(a) Front view

(b) PC cluster

(c) Back view

(d) Rack-based cluster

Figure C.3: PC and NUC clusters

