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Abstract 
 

This work uses state-of-the-art Global and Regional Climate Models to assess present 

and future changes in climate extremes over India. India has the world’s largest population and 

many of the people there are extremely vulnerable to future changes in Climate extremes.  

The fidelity of general circulation models (GCMs) from the Coupled Model 

Intercomparison Project version 6 (CMIP6), to simulate temperature and precipitation over 

India. The period of study is split into three parts, historical (1984-2014), near-future (2030-

2060) and far-future (2070-2100). The models are found to have varying biases, and the 

computation of a multi-model mean shows an improvement upon these biases. Future 

projections make use of the newest Shared Socioeconomic Pathways (SSPs), which generally 

show an increase in both mean and extreme climate variables. This increase is most extreme 

under the high emission scenario SSP5-8.5 for both temperature and precipitation. 

Due to the coarse resolution of GCMs, dynamical downscaling (at 25 km resolution) is 

applied with the use of the Regional Climate Model version 4.7 (RegCM4.7) from The Abdus 

Salam International Centre for Theoretical Physics (ICTP). Sensitivity experiments have been 

carried out to better tune RegCM4.7 to the Indian domain. Orography representation, cumulus 

convection schemes and land surface schemes are tested, and the best schemes are selected for 

the purpose of model parameterisation. A better representation of moisture transport, surface 

fluxes and soil moisture are shown to improve the simulation of temperature and precipitation 

extremes in the RCM. Envelop orography treatment (i.e. increasing orography from model 

mean height) by 10%, the use of the Grell over land and Emanuel over ocean cumulus schemes 

and the Community Land Model land surface scheme are found to give the best results over 

the Indian domain. 



 

 
 

The aforementioned RCM is found to improve upon all tested GCMs in the simulation 

of temperature and precipitation over India. For future simulations, heat waves are found to 

increase in both frequency and duration when compared to the present climate. The areas most 

affected by this increase are along the Indo-Gangetic plane, where most of the Indian 

population resides. Future temperature extremes projected by the RCM are greater than those 

of the GCMs and heat wave frequency and duration is more severe in RCM simulations. 

Precipitation intensity is greater in the RCM than the GCM for the PR, however most regions 

(CNE, HR, NE and NW) are shown to have a decrease in mean precipitation. The areas most 

impacted by this increase are along the Westcoast of India, where most of the monsoon rainfall 

occurs. Extreme precipitation is greater during the near future in the RCM for all SSPs and the 

increase from near to far future is lesser than what is shown by the GCMs. The increases in 

both climate extremes are found to be worsened when using the high emission scenario SSP5-

8.5 and are shown to improve when using the sustainable scenario SSP1-2.6 towards the end 

of the century.  

Overall, this study highlights the importance of dynamical downscaling as an important 

tool for predicting climate extremes over India and understanding the impacts of climate 

change over this region. These results emphasise the importance of sufficient mitigation 

strategies to lessen the impact of climate extremes over India and the urgent need to act sooner 

rather than later. 
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 1.1 Background 

There is high confidence that climate change has caused irreversible damage to terrestrial, 

freshwater, and coastal and open marine ecosystems. A warming of approximately ~0.85°C has 

occurred globally in the last 40 years and without sufficient mitigation strategies global surface 

temperatures will continue to rise. It is extremely likely that human influence is responsible for 

the rise in global temperature as well as an increase in extreme events such as warm temperature 

extremes (IPCC, 2022). 

South Asia is one of the most vulnerable regions in the world to the impacts of climate 

change (Sivakumar and Stefanski, 2010) with signs of warming trends and a consistent increase 

in temperature extremes (IPCC, 2022). Climate change has been shown to affect the food 

production, putting this region at risk of a food shortage by 2030 and creating food security 

concerns in the future (Acharya et al. 2014; Bandara and Cai, 2014). Extreme temperatures, 

heavy rainfall, flooding, and droughts negatively affect agriculture and can sometimes even 

destroy harvests (Gornall et al., 2010). Generally, both extreme precipitation (Almazroui et al., 

2020, Mondal et al., 2022, Shahi et al., 2021) and extreme temperature (Almazroui et al., 2020, 

Dong et al. 2021, Meehl and Tebaldi 2004) have been shown to increase in the future more 

with continued warming. India’s population is particularly vulnerable to extreme temperatures 

and an increase in heat wave severity has been linked to an increase in heat-related mortality 

over India (Mazdiyasni et al., 2017). 

Agriculture in India relies on the Indian summer monsoon (ISM) and is an important part 

of the Indian economy, which many people rely on for their livelihood (Krishna Kumar et al., 

2004). Rice is one of the main crops grown in the region and is highly susceptible to changes 

in rainfall (DeFries et al., 2016). Changes to the amount of rainfall can have a damaging effect 

on the population, with too much or too little rainfall leading to events such as flooding, 

landslides, droughts and crop failure (Shonk, 2022, Webster et al., 1998).  Historically, it has 
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been shown that global monsoon land precipitation has been decreasing, with the South Asian 

monsoon being one of the primary causes (Zhou, Zhang and Li, 2008). There has been an 

increase in extreme precipitation over most of India in the past 120 years, with urbanisation 

correlating to an increase in the intensity of these extreme events (Falga and Wang, 2022).  

1.2 Characteristics of Summertime Circulation and Associated 

Temperature and Precipitation 

1.2.1 General Circulation 

The general circulation of the atmosphere (Fig. 1.1) is important to study how the 

surface climate may change in the future and the past, as well as to assess the effects on 

meteorology, weather and on the lives of the human population (Schneider 2006). George 

Hadley was the first scientist with early works on the features of the atmospheric flows. While 

looking for an explanation for the trade wind circulation he noticed that the solar heating might 

produce a direct meridional cell in each hemisphere (Holton 2004) (Lorenz 1967).  

The atmosphere receives heat by incoming short wave (SW) radiation and loses heat 

by outgoing long wave (LW) radiation. To reach thermal equilibrium the net radiative heating 

of the Earth-Atmosphere system as whole must best zero. This only happens globally, but not 

regionally (Holton 2004) (Salby 2012). 

During winter the low latitudes experience radiative heating which is seen from the 

observed net radiation. This means that they receive more energy by absorbing more SW 

radiation than the LW radiation they emit. The mid and high latitudes experience radiative 

cooling at this time, which is most noticeable in the winter hemisphere, meaning they will emit 

more LW radiation than the SW radiation they absorb. These local imbalances are compensated 

by a poleward transfer of heat which preserves thermal equilibrium. This is achieved by the 

general circulation of the Earth-Atmosphere system. The heat transfer is made by a steady 
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circulation between the equator and poles, which is driven by the atmospheric heating in the 

tropics and cooling in the extratropics. Atmospheric heating at low latitudes is caused by latent 

heat releasing inside centres of convection. This paired with the radiative cooling at high 

latitudes forces vertical motions across isentropic surfaces. This is compensated by a horizontal 

motion called the Meridional Overturning Circulation. Hadley Circulation occurs at lower 

latitudes. The heating at these low latitudes causes air to flow poleward and sink at around 30° 

in both hemispheres. Between the mid to high latitudes lies the Mid-Latitude Cell. The hot air 

transferred from the Hadley Cell is slightly cooler, which sinks and flows poleward inside the 

Mid-Latitude Cell. Cold air from the Polar Cell flows south inside the same cell. The warm and 

Fig. 1.1 - General circulation. Hadley Cells are between the equator and a latitude of 30◦, Mid-

latitude cells are between 30◦ and 60◦, and polar cells at higher latitudes. North-easterly and south-

easterly trade winds occur in the lower parts of the Hadley Cells, which meet in the Inter Tropical 

Convergence Zone (ITCZ). Air rises to form frequent thunderstorms and heavy rainfall. 

Source: The Atmosphere, 8th edition, Lutgens and Tarbuck, 8th edition, 2001. 
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cold air meet forcing the warm air to rise over the denser cold air and then cools down, causing 

precipitation (Holton 2004) (Salby 2012) (Peixoto et al. 1992).  

1.2.2 Regional Circulation 

South Asia receives significant warming towards the end of Spring as the northern 

hemisphere summer approaches. This leads to increased sea surface temperatures in the 

northern hemisphere and cooler temperatures in the southern hemisphere, creating temperature 

pressure gradients between the north and south. Most of the year India receives strong westerly 

winds (fig. 1.2a), but during the monsoon season the pressure gradient causes a shift from west 

to east in the lower troposphere (fig. 1.2b). These easterly winds then transport vast amount of 

water vapor over India causing the Indian summer monsoon, which then continue through parts 

of southeast Asia. 

 

 

 

Fig. 1.2 – Precipitation, SST and wind speed over South Asia for winter (1.2a) and summer (1.2b). 

Precipitation and SST are shown over land and ocean respectively.  

Source: https://www.rmets.org/metmatters/indian-monsoon-changing-climate 
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1.2.3 Temperature Extremes 

Heat waves have caused many deaths over India in the last 100 years (De et al., 2005). 

Mortality related to heat waves in India has increased between 1970-2019. The impact of heat 

waves compared to other extreme weather events varies per state. For instance, Andhra Pradesh 

is the most affected where the mortality rate due to heat waves increased by 60% followed by 

Odisha with an increase of 20% (Ray et al., 2021). Most of the heat waves in India usually 

occur in the pre-monsoon season (April, May and June) and can cover a large portion of the 

country (Pai et al., 2013). However, the high temperatures can still persist during the summer 

monsoon (June, July and August, JJA) season and therefore it is critical to estimate such 

occurrences as there is possible climate shift in future scenarios. For example, the monsoon 

precipitation which occurs actively during JJA over India exhibits a temporal shift in onset 

Fig. 1.3 – Observed (CRU) mean temperature (1901-2014) during JJA over the 

Indian temperature homogenous regions. 
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dates as well as the precipitation maxima under RCP 8.5 (Ashfaq et al., 2021, Shahi et al., 

2021).  The dryness induced in the future could inculcate extreme temperature conditions over 

India during summer monsoon season. 

1.2.4 Precipitation Extremes 

The Indian summer monsoon (ISM) falls between June, July, August, September (JJAS) 

and provides about 80% of the total annual rainfall over India (Kripalani et al., 2003).  There 

are many factors that can affect the ISM such as the topography of the region (Medina et al., 

2010) and soil moisture (Asharaf et al., 2012) making it a very complex system to model and 

understand. It has been shown that increasing the orography in the model leads to an increase 

in ISM precipitation, and a decreasing the orography shows a decrease in ISM precipitation 

(Sinha et al., 2010, Song et al., 2009). This has also been shown by Tiwari et al., (2016) for 

winter precipitation over India. This means that the model’s ability to correctly represent the 

Himalayas has a significant impact on precipitation results. The Asian Monsoon shows a higher 

sensitivity to global warming when compared to other monsoon domains (Kitoh et al., 2013) 

meaning an increase in greenhouse gas (GHG) emissions could lead to a more intense ISM in 

the future. Various studies have been conducted reflecting monsoon rainfall and its simulation 

over South Asia and India (Almazroui et al., 2020, Asharaf and Ahrens, 2015, Katzenberger et 

al., 2021, Menon et al., 2013, Sharmila et al., 2015). Global and regional climate models have 

been used to look at future changes in precipitation over India until the end of the century with 

a general agreement that precipitation will increase during this time period.  
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 1.3 Climate Modelling 

Table 1.1 - Summary of efforts to study climate extremes using GCMs and RCMs and the 

associated human health impacts of these extremes. 

 

Reference Study Period Models Used Significant Findings 

Giorgi et al. 1999 1994-1995 RegCM Model predicts 

precipitation over the 

east Asian domain, 

however it over predicts 

the intensity of the east 

Asian monsoon. 

Highlights the 

importance of cloud 

radiation processes in 

models. 

 

Fig. 1.4 - Observed (CRU) mean precipitation (1901-2014) during JJAS 

over the Indian precipitation homogenous regions. 
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Pal et al. 2000 1986-1990 and 

1993 

RegCM Model better represents 

mean and extreme 

precipitation over 

North America with the 

added cloud and 

precipitation scheme 

coupled to RegCM. 

 

Li and Xie, 2012 1970-1999 CMIP3 and CMIP5 

ensemble 

Two types of biases 

found for SST over the 

tropics using CMIP. 

One is linked to cloud 

cover and the other is 

the thermocline depth. 

 

Im, Pal, and Eltahir, 

2017 

2017 MIT Regional 

Climate Model 

(MRCM) 

Wet-bulb temperature is 

shown to increase most 

over India under 

RCP8.5 in the far future 

and is shown to exceed 

35˚C. The increase is 

smaller under RCP4.5.  

 

 

Zhao, Bollasina, and 

Stevenson, 2019 

 

2019 

 

 

Community Earth 

System Model 

Large Ensemble 

(CESM-LE) 

 

 

Changes to heatwave 

magnitude are mostly 

caused by greenhouse 

gases, however aerosol 

reductions have a 

significant impact over 

the northern 

hemisphere. 

 

Sousa et al. 2020 2020  Reduced soil moisture 

promotes warming and 

future extreme heat 

episodes could be 

further intensified by 

the increasing severity 

of drought events. 

 

Zhang, Held, and 

Fueglistaler, 2021 

2021 22 CMIP5 ensemble Slowing the effects of 

global warming will 

also slow the maximum 

wet-bulb temperature 

over the tropics. 
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1.3.1 Coupled Model Intercomparison Project (CMIP) 

The Coupled Model Intercomparison Project (CMIP) models are global climate models 

(GCMs) created by modelling groups around the world and are useful tools for assessing 

changes in past, present and future climate. CMIP first began in 1995 and CMIP models have 

received various improvements over the years with CMIP6 (Eyring et al., 2016) being the 

newest iteration of these models.  

The earliest form of climate models where simple energy balance models, which didn’t 

consider climate system dynamics and only considered ingoing and outgoing radiation at the 

Earth’s surface. One of the earliest examples of future climate predictions is from Sawyer, 

1972, who predicted that the Earth would receive 0.6˚C warming between 1969 and 2000. The 

observed warming during this period was around 0.54˚C, putting Sawyers estimate very close 

to the actual value. His estimate for CO2 concentrations was higher than the actual value. This 

overestimation of CO2 concentrations is also seen in the IPCC First Assessment Report (FAR). 

The FAR estimated a climate sensitivity of 2.5˚C for doubled CO2, which is close to the 3˚C 

which is used today (IPCC, 1992).  

The IPCC Third Assessment Report [TAR (IPCC, 2001)] and IPCC Fourth Assessment 

Report [AR4 (IPCC, 2007)] made use of new socioeconomic emission scenarios (SRES) which 

included four different future emission pathways. These SRES were included in the newer and 

more sophisticated GCMs and were ways to look at future warming for different possible 

futures. CMIP5 models were used in the IPCC AR5 report (IPCC, 2014) and replaced SRES 

with newer Representative Concentration Pathways (RCPs) which are four scenarios with 

different concentrations of greenhouse gases. 

CMIP5 and CMIP6 models have been used in the latest IPCC AR6 report (IPCC, 2022) 

when looking at past and future climate. In CMIP models, the bigger challenges are to simulate 
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variables at a regional to local scale accurately. They struggle to accurately represent processes 

such as clouds which occur on a smaller scale than the GCMs resolutions, which in turn lead 

to larger uncertainties between models (IPCC, 2014).  

CMIP6 models incorporate the newest form of future emission scenarios called Shared 

Socioeconomic Pathways (SSPs). There are five different SSPs that represent different 

challenges to both mitigation and adaption. SSP1 is the best-case scenario and represents a 

sustainable future. Here the world is more focused on human well-being and a lower resource 

and energy requirement. This scenario shows low challenges to both adaption and mitigation. 

SSP2 is a middle road scenario with medium challenges to adaption and mitigation. Here 

progress towards a sustainable future is slower and not all countries are progressing at the same 

rate. SSP3 is the worst-case scenario with high challenges to mitigation and adaption. This 

scenario sees climate change as a low priority and priorities security and conflict, with large 

material consumption. SSP4 represents low challenges to mitigation but high challenges to 

adaption. This scenario focuses on inequality where part of the population is progressing 

rapidly leaving the rest of the population behind. SSP5 represents a fossil-fuelled future, with 

high challenges to mitigation and low challenges to adaption. The world progresses rapidly on 

a global scale and quality of life generally improves; however, the consumption of fossil fuels 

persists. 

1.3.2 Regional Climate Modelling 

Climate modelling is an important tool for increasing our understanding of the Earth’s 

climate and climate change. However, there are limitations to GCMs, mainly due to their course 

resolution. This means they fail to capture smaller scale processes (IPCC 2013) leading to a 

less accurate representation of the Earth’s climate. Downscaling is a way to create high 
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resolution simulations over a smaller region. There are two types of downscaling, dynamical 

and statistical downscaling.  

1.3.2.1 Dynamical Downscaling 

RCMs are used to create high resolution simulations on a local scale. Dynamical 

downscaling can better represent small-scale processes due to the increased resolution. 

Generally, an RCM is scaled over a specified region (known as nesting) at an increased 

resolution and is driven by initial and time-dependant lateral boundary conditions of either 

GCM or observed datasets (Giorgi, 2019), however this uses considerable computing power. 

The reliance on GCM data means that it is important that a good performing GCM must be 

selected to get more reliable RCM results. The increased resolution gained by dynamical 

downscaling is an important tool for better understanding regional climate.  

There are a number on institutions that have created RCMs for better understanding 

regional climate events. For example, RegCM from the Abdus Salam International Centre for 

Theoretical Physic (ICTP, Elguindi et al., 2017), COSMO-CLM from the Climate Limited-area 

Modelling Community (CLM-Community, Rockel and Geyer, 2008), REMO from the Max 

Planck Institute for Meteorology (MPIfM, Jacob and Podzun, 1997), HadCM3 from the UK 

Met Office (Gordon et al., 2000) and the HIRHAM Regional Climate Model from the Danish 

Meteorological Institute (Bøssing et al., 2007) 

It is commonly accepted that GCMs struggle to capture the ISM, particularly over north 

India which has more complex topography (Mishra et al., 2018). Dynamical downscaling has 

been shown to improve ISM simulations (Agrawal et al., 2021, Dobler and Ahrens 2010, 

Lucas-Picher et al., 2011, Seo et al., 2023), however these models still show biases over this 

region. 
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1.3.2.2 Statistical Downscaling 

Another way to create higher resolution simulations using GCMs is the use of statistical 

downscaling. Here a statistical relationship between observed and GCM variables is formed 

during the historical period using methods such as multiple linear regression, artificial neural 

networks, multi-model ensemble, stepwise regression etc. and is often paired with bias 

correction techniques. The GCM is then used to simulate future climate, with the statistical 

relationships being used to better represent smaller-scale processes that the GCMs cannot 

capture. 

1.4 Objective and Scope 

This thesis aims to find a better understanding on how the characteristics of climate 

extremes will change in the future over India and its relevant homogenous regions due to 

human induced climate change and how these changes will affect the population of this region. 

The objectives of this project are: 

• Utilise state-of-the-art climate model CMIP6 simulations to assess how climate 

extremes and climate extreme events will change in the future. 

• Assess the role of physical processes through various sensitivity experiments (cumulus 

scheme, land surface scheme and orography representation). 

• Undertake high-resolution climate model simulations (CORDEX framework) to 

examine the extent, severity, and probability of climate extreme episodes in India and 

how they will respond to future changes in emission pathways. Connect the changes in 

extremes in line with possible emission pathways and assess the associated human 

health risk over the region of interest. 
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Chapter 2 uses thirteen of the latest Coupled Model Intercomparison Project phase 6 

(CMIP6) models have been used to model mean, maximum, and minimum temperature over 

the 7 homogenous temperature regions of India for both annual and summer season consisting 

of months June, July and August (JJA) time periods. The fidelity of these models was assessed 

by comparing them with observed temperature from the Climate Research Unit (CRU) dataset. 

A multi-model mean of the thirteen CMIP6 models was found to reduce temperature biases 

and was used to assess future changes in temperature extremes and heatwave characteristics 

using SSPs.  

The ability of twelve CMIP6 models to represent the Indian summer monsoon (ISM) 

precipitation, vertically integrated moisture transport and windspeed over the Indian 

precipitation homogenous zones during June, July, August and September (JJAS) is shown in 

chapter 3. To test the fidelity of these models, they were compared to observed values from the 

CRU dataset and a multi-model mean was used for future analysis.  Changes in future 

precipitation and extreme precipitation variables are then shown for future periods using SSPs. 

Sensitivity experiments were used to assess the role of physical processes in chapter 4 with 

the addition of some machine learning techniques. 

Dynamical downscaling for both temperature and precipitation extremes is shown in 

chapter 5. Here the RegCM4.7 regional climate model is used at a 25km resolution, driven by 

the HadGEM3-GC31-LL global climate model. The RCM was compared to its driving model 

for the historical period and then used to assess future changes in temperature and precipitation, 

as well as heat wave duration and intensity and extremely wet days.  
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and their future projections under different SSP scenarios from CMIP6 models. 
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Abstract 

The multi-model ensemble (MME) mean of 13 CMIP6 models was calculated for present 

(1984–2014), near (2030-2060) and far (2070-2100) future scenarios and the models showed 

larger warm biases during the JJA time period. Although the models could simulate the spatial 

variability of the mean and maximum temperature over most of the homogeneous regions, they 

do not compare well for representing the temporal variability. We have found that CNRM-CM6 

is comparably the best performing model for spatial temperature trends over India although all 

models struggle with representing temperature characteristics over the east coast of India. 

HadGEM3-GC31-LL, KACE-1-0G and UKESM1-0-LL are comparably the best performing 

models for temporal temperature trends over India. The annual maximum temperature during 

the far-future (FF) period is projected to increase by 1.5°C, 2.3°C and 4.1°C for the FF Shared 

Socioeconomic Pathways (SSPs) SSP1-2.6, SSP2-4.5 and SSP5-8.5 respectively. The JJA 

mean temperature for SSP5-8.5 shows an increase of 3.8°C for Interior Peninsula (IP), 5.6°C 

for Western Himalaya (WH), 3.9°C for North West (NW), 3.6°C for West Coast (WC), 3.6°C 

for East Coast (EC), 3.6°C for North East (NE) and 3.8°C for North Central (NC) in FF 

compared to present period implying WH being more sensitive to climate change. The 

frequency of heat waves is also projected to increase, with the most affected areas showing 

more than three heat waves per summer season when compared to historical values. The 

northern territory of India consisting of NW, NC, NE and part of IP are found to be the most 

affected regions, where week-long heat wave duration is expected at higher emission scenario 

affecting larger portion of population (~ 50% of India’s population). Such unprecedented 

impacts seem to be less profound in case of abatement scenarios such as the SSP1-2.6. Our 

findings support the urgent need for more ambitious mitigation and adaptation strategies to 

minimize the public health impacts of climate change. 
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2.1 Introduction 

A rise in temperature can be seen globally and it is likely that heat waves have increased 

in large parts of Asia (IPCC, 2022). Heat waves are a type of extreme weather event, generally 

defined as an extended period of extreme temperature (Perkins and Alexander, 2013). The 

frequency, intensity and duration of extreme heat events have increased globally (Perkins and 

Alexander, 2013) in South Asia (Dong et al., 2021), which is likely caused by an increase in 

anthropogenic emissions (Collins et al., 2013, Pattnayak et al., 2017, Meehl and Tebaldi, 2004). 

Zhao et al., (2019) suggest that these extreme heat events will continue to increase into the 

future under the RCP 8.5 scenario. They have a significant impact on human health (Arbuthnott 

and Hajat, 2017, Haines et al., 2006, Patz et al., 2005, Zeng et al., 2016) and have caused many 

deaths globally, with a greater impact on the elderly, women, and those suffering from chronic 

respiratory disorders (Dippoliti et al., 2010). This poses a risk to the world’s population, 

especially those in developing countries who will struggle to mitigate this increase in heat wave 

severity. 

There is a link between the warming of the Indian Ocean and El-Nino events with heat 

waves over India (Rohini et al., 2016). The surface temperature of the Indian Ocean is projected 

to continue to rise in the future (Pattnayak et al., 2017) increasing the likelihood of heat waves 

over India in the near future. India has a population of over 1.3 billion putting a large portion 

of the world’s population at risk to an increase in extreme temperature events. The most densely 

populated parts of India are in the Indo-Gangetic plain where approximately half the population 

lives.  

Considering such risks to the large population over a vulnerable region like south Asia, 

it becomes important to investigate the utility of the available modelling tools for understanding 

the present and future climate change. To aid this, a wide range of climate model simulations 

are produced through the coordinated efforts worldwide. Coupled Model Intercomparison 
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Project (CMIP) has been around since the mid 1990’s and makes use of General Circulation 

Models (GCMs) simulations to improve our understanding of the climate system (Stouffer et 

al., 2017). CMIP models have received many improvements over the years such as improved 

resolution, improvements in the representation of the physical processes and different climate 

forcings. Representative Concentration Pathways (RCPs, Moss et al., 2010) were introduced 

in CMIP5 (Taylor et al., 2012) to explore different future scenarios for different radiative 

forcing pathways. In the present work we will be using the latest Coupled Model 

Intercomparison Project 6 (CMIP6; Eyring et al., 2015) dataset over India which has been used 

in many studies globally looking at both temperature and precipitation (Almazroui et al., 2021, 

Maharana et al., 2018, Pattnayak et al. 2019, You et al. 2016). One of the most notable additions 

compared to CMIP5 are the Shared Socioeconomic Pathways (SSPs, Riahi et al., 2017) which 

represent five different narratives for future socioeconomic scenarios (O’Neill et al., 2017). 

The main aim of this chapter is to study present and future changes (near and far future) in 

mean, max, min temperature over India's homogeneous temperature regions using state-of-the-

art CMIP6 models. 

2.2 Methodology 

2.2.1 Indian Temperature Homogenous Regions and Observed Data 

Thirteen CMIP6 models (see Table 2.1) are used in investigating the maximum, mean 

and minimum temperature over India and its 7 homogeneous temperature regions (Fig 2.1). 

The Indian Institute of Tropical Meteorology at Pune has defined these 7 homogenous regions 

which are specified based on spatial and temporal variations of surface air temperature (Dash 

and Mamgain, 2011). The 7 homogenous temperature regions are the Western Himalaya (WH), 

North West (NW), North Central (NC), North East (NE), West Coast (WC), East Coast (EC) 

and Interior Peninsula (IP) regions. Similar homogenous regions have been used when 

assessing temperature over India (Dileepkumar et al., 2018). The CMIP6 data used in this work 
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can be found from the CMIP6 database (https://esgf-node.llnl.gov/search/cmip6/). All models 

have been re-gridded to the observed grid (Climatic Research Unit (CRU) data, Harris et al., 

2017) which has resolution of 0.5° using the bilinear interpolation method. CRU has been used 

in various studies over India (Dileepkumar, et al. 2018, Kumar et al. 2013, Ullah et al. 2022).  

2.2.2 CMIP6 Experiments 

The historical analysis is from 1984–2014 and this time period is used to examine the 

performance of the models in representing different characteristics of temperature variations 

over the region. Besides the individual experiment, we also compute the multi-model ensemble 

(MME) from the 13 experiments. Daily data is required for the temperature variables seen in 

Table 2. Due to limited data availability only 9 models are used for the daily MME. The models 

Fig. 2.1 - Study area and different temperature homogenous regions over India  

https://esgf-node.llnl.gov/search/cmip6/
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used in the daily data MME are CMCC, CNRM, GFDL, HadGEM, INM, KACE, MIROC6, 

MPI and UKESM. The method for projecting these extreme temperatures is shown in figure2.2. 

Table 2.1 - CMIP6 GCMs used in this work 

Model Country Horizontal 

Resolution  

(lon and lat) 

ACCESS-CM2  

CANESM5-CanOE 

CMCC-ESM2  

CNRM-CM6-1 

FIO-ESM-2-0  

GFDL-ESM4 

GISS-E2-1-H 

HadGEM3-GC31-LL  

INM-CM5-0  

KACE-1-0-G  

MIROC6 

MPI-ESM1-2-LR 

UKESM1-0-LL 

Australia 

Canada 

Italy 

France 

China 

USA 

USA 

UK 

Russia 

South Korea 

Japan 

Germany 

UK 

192 x 144 

128 x 64 

288 x 192 

362 x 294 

192 x 288 

360 x 180 

144 x 90 

192 x 144 

180 x 120 

192 x 144 

256 x 128 

192 x 96 

192 x 144 

The monthly maximum, mean and minimum near-surface air temperature from CRU 

(Harris et al., 2017) at a resolution of 0.5°×0.5° is used to evaluate the individual model and 

their MME. CRU is a well trusted source of historical observations (Mitchell and Jones, 2005) 

and has been used in many previous studies (Maharana et al., 2018, Pattnayak et al., 2017a, 

Panda et al. 2020).  
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2.2.3 Shared Socioeconomic Pathways 

We first evaluate the models in terms of their capabilities in representing the 

climatological mean annually and during the summer season (June, July, and August), mean 

annual cycle, Taylor’s metrics and representation of the probability distribution over individual 

temperature homogeneous regions over India. To further understand the model’s capabilities in 

representing the mean patterns spatially, we compute the differences of the mean for the present 

climate (with respect to observation) and future climate (with respect to present climate). To 

assess the changes during the future, we make use of three different Shared Socioeconomic 

Pathways namely: SSP1-2.6, SSP2-4.5 and SSP5-8.5 where SSP1-2.6 represents a “green 

road”, SSP5-8.5 represents fossil-fuelled development and SSP2-4.5 represents a middle road 

(Riahi et al., 2017). The SSPs used represent low (SSP1-2.6), medium (SSP2-4.5) and high 

(SSP5-8.5) emission scenarios making SSP5-8.5 the most aggressive scenario in terms of 

emissions. To highlight the spatial heterogeneity in the differences, we compute the 

significance of differences in the mean by applying the student t-test and have identified the 

areas having significant differences at 95% level. All SSPs represent the future time period 

2015-2100 and have been split into near-future [NF (2030-2060)] and far-future [FF (2070-

2100)] to evaluate future changes in maximum, mean and minimum temperature over India. 

We looked at projected changes in annual and seasonal temperatures. To analyse future changes 

in temperature distribution over India and different homogeneous regions, we used spatial, time 

series and probability density function (PDF) figures using the SSP scenarios. Further we have 

used CDO (Schulzweida et al. 2021) to compute different heat wave variables which is shown 

in Table 2.2. 
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Table 2.2 - Heat wave variables calculated using CDO (Schulzweida et al. 2021) 

Consecutive 

summer days 

index per summer 

season 

 

Warm days percent 

wrt 90th percentile of 

the summer season 

Warm spell days 

index wrt 90th 

percentile of the 

summer season 

Heat waves per summer 

season 

Heat wave duration 

index wrt the mean of 

the summer season 

The largest 

number of 

consecutive 

summer days per 

summer season. In 

this case a 

summer day is 

where Tmax > 

31°C (31°C is the 

mean of Tmax for 

the historical 

period).  

The percentage of 

time where Tmean > 

Tmean90. Tmean90 

is the 90th percentile 

of daily Tmean for a 

five-day window 

centered on each 

calendar day for the 

historical period. 

The number of 

days where 

Tmean > 

Tmean90 in 

intervals of 6 

consecutive 

days.  Tmean90 

is the same as 

warm days 

percent. 

The number of heat 

waves equal to, or 

longer than n days per 

summer season.  In this 

case a heat wave is 

where Tmax > 

TmaxNorm + 5°C for n 

consecutive days.  

TmaxNorm is the mean 

of Tmax of a five-day 

window centered on 

each calendar day for 

the historical period. We 

calculated results for 

n=3, 5 and 7 days. 

 

Number of heat wave 

days equal to, or 

longer than n days 

per summer season. 

Uses the same heat 

wave definition as 

heat waves per 

summer season. 

Near and far future analysis using 

ensemble means for SSP1-2.6, SSP2-4.5 

and SSP5-8.5 

Download CRU and monthly and daily 

CMIP6 data for tas, tasmax, tasmin 

Regrid CMIP6 model output to 0.5˚ x 

0.5˚ resolution 

Calculate daily and monthly ensemble 

mean for tas, tasmax, tasmin 

Historical analysis of individual and 

ensemble mean of CMIP6 models and its 

comparison with CRU data 

Calculate heat wave variables (Table 2) 

with CMIP6 daily data 

Fig. 2.2 - Schematic diagram showing the methodology used for the analysis 
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2.3 Results and Discussion 

2.3.1 Temperature Biases of CMIP6 Models 

Figures 2.3 and 2.4 show the biases in MME and individual CMIP6 models in 

simulating annual and JJA mean temperatures over the homogenous temperature regions of 

India. The annual Tmean show large variation of hot and cold biases for individual models. 

MIROC6 (Fig 2.3n) has a very high warm bias most notably over the NW region, whereas 

CNRM (Fig 2.3e) and GFDL (Fig 2.3i) have a cold bias over almost all of India compared to 

the observations. For JJA Tmean (Fig 2.4) there are larger warm biases in most models when 

compared to annual Tmean (Fig 2.3). MIROC6 consistently shows the largest warm bias again 

in the NW region. The CANESM and GISS models have a much higher warm bias to the east 

of the NC and IP regions compared to their annual counterparts. These models are likely 

contributing to the biases of the MME and there is large inter-model variability over the 

different homogenous regions. Using the MME reduces the biases overall, especially when 

studying long-term climate trends for both annual and JJA time periods. 

The observed climatology of annual maximum, mean and minimum (Tmax, Tmean and 

Tmin) over the homogenous temperature regions of India is shown in Fig. 2.5 (a, d, g) and 

MME (Fig. 2.5b, e, h). The annual temperature ranges from below 5°C to 37°C for the entirety 

of India, with the highest temperatures being from the NW (37°C) and IP (36°C).  The 

difference between the MME and observed data can be seen in Fig. 2.5c, f, i. Generally, the 

models are good at representing the temperature over India as there are significant values (at 

95% significance level) in all regions. The NC region results are mostly significant for annual 

Tmax and Tmean but show much less significant values when looking at Tmin.  There is a 

large cold bias (> 5°C) from the models over the northernmost regions for Tmax (Fig. 2.5a, b, 

c), Tmean (Fig 2.5d, e, f) and Tmin (Fig. 2.5g, h, i). This might be related to the snow cover, 
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the aspect, slope and complex topography of these regions, and the coarser resolution of these 

GCMs cannot capture (Das et al. 2021, Tiwari et al .2016, Tiwari et al .2017). A larger warm 

bias (up to 3°C) from the models can be seen in the Tmax mostly over the NC, NW, and NE 

regions, whereas the Tmin has mostly a cold bias over these. There is a high aerosol load over 

the Indo-Gangetic plains which stretches over these three regions (Dey and Di Girolamo, 2010) 

and could explain the warm biases seen which are not considered in these set of CMIP6 models. 

Fig. 2.3 - Annual mean near surface temperature difference of models compared to observation for the period 1984-

2014. Ensemble mean of 13 CMIP6 models (a) and individual CMIP6 models used in ensemble (b-n). The dots 

represent the grid points with significant differences at 95% significance level. 
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A similar analysis for the JJA period (Fig. 2.6) shows much larger warm biases for Tmax, 

Tmean and Tmin. This further suggests that the MME are substantially overestimating both hot 

and cold temperatures in the present.  

 

Fig. 2.4 -JJA mean near surface temperature difference of models compared to observation for the period 1984-2014. 

Ensemble mean of 13 CMIP6 models (a) and individual CMIP6 models used in ensemble (b-n). The dots represent the 

grid points with significant differences at 95% significance level. 
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Fig. 2.5 - Annual maximum (a, b, c), mean (d, e, f) and minimum (g, h, i) temperature (°C) over the 

temperature homogenous regions of India for the historical period (1984-2014). Column (a, d, g) shows 

observed temperature, column (b, e, h) shows the ensemble mean of CMIP6 models and column (c, f, i) 

shows the difference between the models and observed temperature. The dots represent the grid points with 

significant differences at 95% significance level. 
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2.3.2 Statistical Analysis of CMIP6 Models 

A Taylor diagram (Taylor, 2001) is presented in Figure 2.7. In this diagram, the 

performance of individual models in simulating Tmax, Tmean and Tmin during the annual (Fig 

2.7a, b, c) and JJA (Fig 2.7d, e, f) periods in terms of the correlation coefficient (CC), root 

mean square error (RMSE) and normalised standard deviation (SD) is shown. A model that is 

closest to a SD of 1 and CC of 1 is closest to the observed values. Models perform reasonably 

Fig. 2.6 - JJA maximum (a, b, c), mean (d, e, f) and minimum (g, h, i) temperature over the temperature 

homogenous regions of India for the historical period (1984-2014). Column (a, d, g) shows observed 

temperature, row (b, e, h) shows the ensemble mean of CMIP6 models and column (c, f, i) shows the difference 

between the models and observed temperature. The dots represent the grid points with significant differences at 

95% significance level. 
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well when capturing Tmax, Tmean and Tmin for both time periods and the models tend to give 

results closer to observation for annual compared to JJA. There is more of a spread in CC and 

SD values for JJA compared to annual which highlights the inter-model differences. Almost all 

models have a CC of over 0.95 for the annual period and over 0.9 for JJA. The SD is generally 

between 1 and 1.4 for all models for both annual and JJA. Most models have an RMSE of less 

than 0.4 for the annual period but have a larger RMSE of between 0.4 and 0.8 for JJA. For JJA 

Tmin, RMSE is smallest for all models. The MME outperforms the individual model 

experiments and is closer to the observed values in most cases. The FIO and CMCC models 

perform comparatively better during the JJA period with the FIO model outperforming the 

MME. The performance of CANESM5 and MIROC6 models in simulating temperature over 

India is poor compared to the rest of the CMIP6 models used in this study. 

Fig. 2.7 - Taylor diagram showing the annual (a, b, c) and JJA (d, e, f) maximum (a, d) mean (b, e) and minimum (c, f) 

temperature over India. The correlation coefficient and normalised standard deviation for 13 CMIP6 models compared to 

observations are shown. The grey curved lines show the root mean square error (RMSE). 
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The models do well at simulating temperature spatially however, they struggle much 

more temporally for JJA tas and tasmax (Fig 2.8). When looking at the spatial patterns of 

temperature (Fig 2.8a, b), models show good CC (0.7+) for the WH, NW, WC, NC, and NE 

regions. The IP shows slightly lower CC of 0.5 compared to other regions. All models appear 

to struggle with the EC region with the lowest values being from the CanESM, KACE and 

GISS models with a correlation of -0.5 for both tas and tasmax. Moving onto temporal 

correlations, almost all models give low values for all regions. The only models that give CC 

values over 0.5 are the HadGEM, KACE and UKESM models. This is the same for both 

temporal tas and tasmax. These results suggest that the models are much better at representing 

the temperature spatially as opposed to temporally when looking at the individual temperature 

homogenous regions. 

Fig. 2.8 - Diagonal correlation matrix for JJA tas (a, c) and tasmax (b, d) over the Indian temperature 

homogenous regions. Correlation is shown for the individual models (columns 2-14) and the ensemble mean of 

these models (column 1) compared to observed values for the historical period (1984-2014). Fig a and b show 

the spatial correlation and fig c, and d show the temporal correlation.   
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2.3.3 Future Changes in Temperature 

The PDF distributions of the Tmean over India using present and three different SSP 

scenarios for both annual and JJA periods is shown in figure 2.9. The MME underestimates the 

annual Tmean with a difference of 0.5°C and overestimates the JJA Tmean with a difference 

of 2.1°C when compared to observed values. SSP1-2.6, SSP2-4.5 and SSP5-8.5 are split into 

near-future (NF) and far-future (FF), with a shift in annual Tmean of 0.8°C, 0.9°C and 1.2°C 

for NF respectively and 1.1°C, 2°C and 4°C for FF respectively compared to observed values. 

FF SSP5-8.5 shows the largest shift in Tmean and a noticeably higher temperature distribution 

compared to all other scenarios. The difference between NF and FF SSP5-8.5 is also very large 

Fig. 2.9 - Annual (a) and JJA (b) mean near surface temperature over India. The solid grey line shows observed 

temperature, and the dashed grey line shows the present ensemble mean temperature for the historical period 

(1984-2014). The green, blue and red lines represent SSP1-2.6, SSP2-4.5 and SSP5-8.5. For the SSPs a solid 

line represents the NF (2030-2060), and a dashed line represents the FF (2070-2100). 

 



Chapter 2 
 

31 

 

compared to other scenarios with a difference of 2.8°C compared to 0.3°C for SSP1-2.6 and 

1.1°C for SSP2-4.5. This suggests that under SSP5-8.5 there will be much more warming 

towards the end of the century. Similarly, when comparing JJA Tmean with observed values, a 

shift of 2.1°C, 2.2°C and 2.4°C can be seen for NF and 2.3°C, 3.2°C and 4.9°C can be seen for 

FF SSP1-2.6, SSP2-4.5 and SSP5-8.5 respectively. Both annual and JJA show similar increases 

in Tmean between NF and FF SSP1-2.6, SSP2-4.5 and SSP5-8.5 with FF SSP5-8.5 showing a 

noticeably warmer climate compared to present day. The JJA shift in Tmean is larger for both 

NF and FF compared to the annual period. The NF SSP5-8.5 distribution shows a warmer 

climatology than FF SSP1-2.6 for both annual and JJA periods suggesting that with sufficient 

mitigation we can significantly reduce the amount of warming by the end of the century.  

Further, the PDF over individual homogeneous regions is discussed in Fig. 2.10 for the 

JJA and Fig. 2.11 for annual season.  For JJA Tmean, the regions with the highest observed 

Tmean are the NW (30.3°C) and EC (29.5°C). The coldest region is the WH with a Tmean of 

11.8°C. For annual Tmean the regions with the highest observed Tmean are the EC (27.6°C) 

and IP (26.9°C). The coldest region is the WH with a Tmean of 2.4°C. For most regions the 

historical values from the MME during the annual period are very close to observed values, 

NW and EC show negligible temperature bias, IP shows a cold bias of 0.2°C, WC shows a 

warm bias of 0.2°C, NC shows a cold bias of 0.4°C and NE shows a cold bias of 1.4°C. The 

WH region has a much larger cold bias of 4.3°C. During JJA there are slightly higher warm 

biases across most regions of 1.0°C (IP), 2.1°C (NW), 0.5°C (WC), 0.6°C (EC) and 2.5°C 

(NC). The WH and NE have a cold bias of 2.8°C and 0.3°C respectively. Both for annual and 

JJA periods there is an increase in Tmean between NF and FF for all SSPs over all regions. 

There is a small increase between NF and FF SSP1-2.6 and SSP2-4.5. The difference between 

NF and FF SSP5-8.5 is larger than the other two scenarios and FF SSP5-8.5 shows the highest 

shift in Tmean compared to observed values. The largest increases in Tmean are shown by FF 
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SSP5-8.5, with an annual increase of 4.3°C (IP), 5.6°C (WH), 4.8°C (NW), 4.0°C (WC), 3.7°C 

(EC), 4.3°C (NE) and 4.6°C (NC) when compared to the historical Tmean of the MME. This 

means that the largest shift in Tmean can be seen over the WH region with the NW being close 

behind. JJA FF SSP5-8.5 compared to the historical Tmean of the MME shows an increase of 

3.8°C (IP), 5.6°C (WH), 4.0°C (NW), 3.6°C (WC), 3.6°C (EC), 3.6°C (NE) and 3.8°C (NC). 

When looking at NF Tmean changes the WH, and NW regions show the largest shift from both 

annual and JJA Tmean of 2.3°C and 1.9°C (annual) and 2.5°C and 1.5°C (JJA) respectively 

under SSP5-8.5. 

Fig 2.10 - JJA mean near surface temperature for each temperature homogenous region over India. The solid grey line 

shows observed temperature, and the dashed grey line shows the present ensemble mean temperature for the historical 

period (1984-2014). The green, blue and red lines represent SSP1-2.6, SSP2-4.5 and SSP5-8.5. For the SSP scenarios a 

solid line represents the NF (2030-2060), and a dashed line represents the FF (2070-2100). 
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The MME of NF and FF changes in JJA Tmax for all the scenarios over India compared 

to the present is shown in Fig 2.12. The difference in temperature ranges from <1°C to >6°C 

over different regions under various scenarios. The regions that show strong differences are the 

WH, east of NW, west of NC, west and central IP and parts of EC and NE regions. All SSPs 

over all regions show warming compared to the present Tmax and there is warming when 

comparing NF SSP1-2.6, SSP2-4.5, SSP5-8.5 and FF SSP1-2.6, SSP2-4.5, SSP5-8.5 

respectively, with the increase in temperature being the largest between NF and FF SSP5-8.5. 

Fig. 2.11 - Annual mean near surface temperature for each temperature homogenous region over India. The solid 

grey line shows observed temperature, and the dashed grey line shows the present ensemble mean temperature for 

the historical period (1984-2014). The green, blue, and red lines represent SSP1-2.6, SSP2-4.5 and SSP5-8.5. For 

the SSP scenarios a solid line represents the NF (2030-2060), and a dashed line represents the FF (2070-2100). 
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Under FF SSP5-8.5 parts of the Western Himalaya region are projected to warm by over 6°C 

and all other regions show a warming of 4-6°C when compared to present day temperatures. 

The warming is much lower for FF SSP1-2.6 and SSP2-4.5 with an increase over India of 1-

3°C and 2-5°C respectively. NF SSP5-8.5 shows similar warming to FF SSP1-2.6 meaning that 

SSP5-8.5 is projected to reach the same temperature increase as FF SSP1-2.6 30 years earlier. 

Fig. 2.12 - The difference in JJA Tmax for each SSP1-2.6 (a, b), SSP2-4.5 (c, d) and SSP5-8.5 

(e, f) compared to the historical period from the ensemble mean. The first column (a, c, e) 

shows the NF difference, and the second column (b, d, f) shows the FF difference. 
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In order to further investigate the rising temperatures, we analysed the JJA, and annual 

time series averaged over India for all the variables as shown in Fig. 2.13 and 2.14 respectively. 

Comparing the observed series for the period 1984-2015, the MME series are consistently 

warmer than the observation for all the present years. This is due to the fact that MME are 

warmer over major parts of India as discussed previously. However, for the annual timeseries 

(Fig. 2.14) the MME annual means are colder than the observation. However, such differences 

are not much profound for the annual series. Annual Tmean is projected to increase by 1.3°C, 

1.4°C and 1.7°C for NF and 1.6°C, 2.5°C and 4.5°C for FF. The annual Tmax is projected to 

increase by 1.1°C, 1.2°C and 1.6°C for NF and 1.5°C, 2.3°C and 4.1°C for FF. The annual 

Tmin is projected to increase by 1.4°C, 1.6°C and 2.0°C for NF and 1.7°C, 2.7°C and 5°C for 

FF. The above values are for SSP1-2.6, SSP2-4.5 and SSP5-8.5 respectively and compare the 

mean of the NF and FF temperatures to the mean of the historical period. The SSPs show 

relatively similar temperatures till around 2040. The temperature rises for SSP1-2.6 levels off 

at around 2060 and the temperature rise for SSP2-4.5 decreases, almost levelling off by 2100, 

however the temperature for SSP5-8.5 continues to steadily rise until the end of the century. A 

similar plot was created using the JJA period (Fig 2.10). During the JJA period the MME over 

predicts the temperature for Tmax, Tmean and Tmin. JJA Tmean is projected to increase by 

1.2°C, 1.3°C and 1.5°C for NF and 1.4°C, 2.3°C and 4°C for FF. The JJA Tmax is projected to 

increase by 0.9°C, 1.1°C and 1.3°C for NF and 1.3°C, 2.1°C and 3.7°C for FF. The JJA Tmin 

is projected to increase by 1.2°C, 1.4°C and 1.7°C for NF and 1.4°C, 2.3°C and 4.1°C for FF. 

The above values are for SSP1-2.6, SSP2-4.5 and SSP5-8.5 respectively. Annual and JJA 

periods show similar temperature increases for all SSPs. As expected, SSP5-8.5 shows the 

greatest increase in temperature by the end of the century for all temperatures for both annual 

and JJA periods. All SSPs show a higher temperature than present day showing that warming 
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is inevitable, but the amount of warming can be reduced significantly with sufficient mitigation 

strategies. Similar increases in annual Tmean over India can be seen in Almazroui et al. (2020). 

 

Fig. 2.13 - JJA maximum (a), mean (b) and minimum (c) near surface temperature over India for historical (1984-

2014) and future (2015-2100). The magenta line is the observed temperature, and all others are an ensemble mean 

of 13 CMIP6 models. Near future (NF) is shown from 2030-2060 and far future (FF) is shown from 2070-2100. 

Grey represents the historical time period, and the green, blue and red lines represent SSP1-2.6, SSP2-4.5 and 

SSP5-8.5 respectively. 
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Fig 2.14 - Annual maximum (a), mean (b) and minimum (c) near surface temperature over India for historical 

(1984-2014) and future (2015-2100). The magenta line shows the observed temperature, and all others are an 

ensemble mean of 13 CMIP6 models. Near future (NF) is shown from 2030-2060 and far future (FF) is shown 

from 2070-2100. The black line shows the historical time period, and the green, blue and red lines represent 

SSP1-2.6, SSP2-4.5 and SSP5-8.5 respectively. The shaded regions show the 95% confidence interval using 

the student-t test. 
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2.3.3.1 Extreme Temperature Analysis 

The changes in the consecutive summer days are projected to decrease for the NF and 

increase for the FF over India for all SSPs when compared to the historical period (Fig 2.15). 

In the near future, the NC, east of NW, and west of NE regions show the largest decrease of 

around 30-40 consecutive summer days for all SSPs. Parts of the IP and EC also show a slightly 

lower decrease of around 10-20 days. The bottom of the UP and the west of the NW regions 

show a slight increase in consecutive summer days, with SSP5 showing the largest increase of 

5-20 days. The WH, west of the NE and WC regions appear to be unchanged for the NF. When 

looking at the FF period there is mostly an increase over India, with FF SSP5-8.5 showing the 

largest increase in consecutive summer days when compared to the historical period. The 

regions that see the largest increase are north of the NC, parts of NW and northeast of NE 

across all SSPs, however FF SSP5-8.5 shows much higher areas of increased days in the EC 

and IP (60-80 days) compared to the other SSPs. A higher concentration of increased 

consecutive summer days seems to follow the Indo-Gangetic plains for FF. FF SSP1-2.6 and 

SSP2-4.5 show a slight decrease in parts of the NC and IP regions. 

There is little change to the warm day’s percent (Fig 2.16) during NF and an increase 

during the FF period for all SSPs when compared to the historical period. The WC shows the 

largest increase (1%) in warm days for all NF SSPs. There is a slight decrease in warm days 

for IP, NC, NW and west of NE regions and a slight increase for WH, east of NE and EC 

regions. All regions during FF SSPs show an increase in warm days percent. The most affected 

regions for FF SSP1-2.6 and SSP2-4.5 are the WH, NE and NW regions with SSP2-4.5 

showing a larger percentage increase (2-3%) when compared to SSP1-2.6. FF SSP5-8.5 shows 

the largest increase in warm days percent with most regions showing a 3+% increase. East of 

the NC shows a slightly smaller increase (2.5-3%) when compared to the other regions. The 

difference in warm spell days index (Fig 2.17) show very similar spatial patterns as described 



Chapter 2 
 

39 

 

above in figure 2.16. Again, there is only a small change during the NF and a much larger 

increase during FF. The largest increase is seen in FF SSP5-8.5 which shows around 90 more 

warm spell days when compared to the historical period. FF SSP1-2.6 shows an increase of 30-

60 days and FF SSP2-4.5 shows an increase of 50-70 days. 

Fig. 2.15 - Consecutive summer days index per summer season difference compared to 

the ensemble mean of the historical period (1984-2014) for SSP1-2.6 (a, b), SSP2-4.5 

(c, d) and SSP5-8.5 (e, f). The first column shows the difference over the NF period (a, 

c, e) and the second column shows the difference over the FF period (b, d, f). 
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Fig. 2.16 - Warm days percent with reference to the 90th percentile of the summer season 

difference compared to the ensemble mean of the historical period (1984-2014) for SSP1-2.6 

(a, b), SSP2-4.5 (c, d) and SSP5-8.5 (e, f). The first column shows the difference over the NF 

period (a, c, e) and the second column shows the difference over the FF period (b, d, f). 
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Fig. 2.17 - Warm spell days index with reference to the 90th percentile of the 

summer season difference compared to the ensemble mean of the historical period 

(1984-2014) for SSP1-2.6 (a, b), SSP2-4.5 (c, d) and SSP5-8.5 (e, f). The first 

column shows the difference over the NF period (a, c, e) and the second column 

shows the difference over the FF period (b, d, f). 
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Both the heat wave frequency (Fig 2.18, 2.19 and 2.20) and duration (Fig 2.21, 2.22 

and 2.23) are projected to increase by the end of the century over most parts of India. We have 

shown the number of heat waves per summer season for 3 (Fig 2.19), 5 (Fig 2.20) and 7 (Fig 

2.18) consecutive days when compared to the historical period. When looking at 3 consecutive 

days, during the NF most regions (NC, NE, WC, IP, and EC) show no change in the number of 

heat waves for all SSPs. The WH region is most affected during the NF with around one more 

heat wave per summer season for all SSPs. There is a slight increase in parts of the NW where 

the coverage increases from SSP1-2.6 (least coverage) to SSP5-8.5 (most coverage). The same 

regions are affected for 5 and 7 days with the number of heat waves reducing slightly from 3 

(1 day increase) to 7 (0.5-day increase) days. Moving onto the FF the increase in number of 

heat waves is much greater. The most affected regions for FF SSP1-2.6 are the WH, NW and 

NC where parts of these regions project around 3 more heat waves per summer season. Other 

parts of the NW, NC NE, IP and EC show an increase of 2 heat waves per summer season. The 

least affected regions are the WC, southeast of the NE and southwest of the IP. The number of 

heat waves increases when comparing SSP1-2.6 to the other two SSPs. FF SSP2-4.5 shows an 

increase in number of heat waves over most regions, with more parts of the NW, WH, NC and 

northeast of the NE being the most affected (approx. 3 more heat waves per summer season). 

For FF SSP5-8.5 almost all regions show a coverage of 3+ more heat waves and the northeast 

of the NE shows the highest increase approaching 4 more heat waves. The WH region shows 

less of an increase (1-2 days) when compared to FF SSP1-2.6 and SSP2-4.5. The same patterns 

emerge with 5 and 7 consecutive day heat waves; however, the number of heat waves reduces 

with 3 consecutive day heat waves showing the highest increase (up to 4 more days), 5 

consecutive heat wave days being in the middle (up to 2.5 more days) and 7 consecutive day 

heat waves showing the lowest increase (up to 2 more days) in heat wave days. Heat wave 

duration index (HWDI) is also shown for 3 (Fig 2.22), 5 (Fig 2.23) and 7 (Fig 2.21) consecutive 
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day heat waves, although there are negligible differences between these figures. All regions 

except the WH show no increase in HWDI for all NF SSPs and the WH shows an increase of 

up to 15 more days. Larger increases are seen for all SSPs in the FF with SSP5-8.5 showing 

the largest increases. The WH region is the most affected with 55, 65 and 70 more days for 

Fig. 2.18 - Heat waves per summer season (where TX > TXnorm + 5°C for 7 consecutive 

days) difference compared to the ensemble mean of the historical period (1984-2014) for 

SSP1-2.6 (a, b), SSP2-4.5 (c, d) and SSP5-8.5 (e, f).  The first column shows the difference 

over the NF period (a, c, e) and the second column shows the difference over the FF period 

(b, d, f). 



Chapter 2 
 

44 

 

SSPs 1, 2 and 5 respectively. The next most affected regions are the NW, NC and NE which 

affect the most populated areas of India. These regions see an increase of 20, 30 and 50 more 

days for SSPs 1, 2 and 5 respectively. Whilst the EC, WC and parts of the IP and NE are mostly 

Fig. 2.19 - Heat waves per summer season (where TX > TXnorm + 5°C for 3 consecutive 

days) difference compared to the ensemble mean of the historical period (1984-2014) for 

SSP1-2.6 (a, b), SSP2-4.5 (c, d) and SSP5-8.5 (e, f).  The first column shows the 

difference over the NF period (a, c, e) and the second column shows the difference over 

the FF period (b, d, f). 
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unaffected for SSPs 1 and 2, SSP5-8.5 shows that all of India except the WC will have an 

increase in HWDI. 

 

Fig. 2.20 - Heat waves per summer season (where TX > TXnorm + 5°C for 5 

consecutive days) difference compared to the ensemble mean of the historical period 

(1984-2014) for SSP1-2.6 (a, b), SSP2-4.5 (c, d) and SSP5-8.5 (e, f).  The first column 

shows the difference over the NF period (a, c, e) and the second column shows the 

difference over the FF period (b, d, f). 
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Fig. 2.21 - Heat wave duration index with reference to the mean of the summer season (where 

TX > TXnorm + 5°C for 7 consecutive days) difference compared to the ensemble mean of 

the historical period (1984-2014) for SSP1-2.6 (a, b), SSP2-4.5 (c, d) and SSP5-8.5 (e, f).  The 

first column shows the difference over the NF period (a, c, e) and the second column shows 

the difference over the FF period (b, d, f). 
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Fig. 2.22 - Heat wave duration index with reference to the mean of the summer season (where 

TX > TXnorm + 5°C for 3 consecutive days) difference compared to the ensemble mean of the 

historical period (1984-2014) for SSP1-2.6 (a, b), SSP2-4.5 (c, d) and SSP5-8.5 (e, f).  The first 

column shows the difference over the NF period (a, c, e) and the second column shows the 

difference over the FF period (b, d, f). 
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Overall, the analysis suggests that spatial temperature trends over India, CNRM-CM6 

is the best performing GCM, although a lot of the GCMs (CMCC-ESM2, FIO-ESM-2-0, 

GFDL-ESM4) perform almost as well.  When looking at the temporal temperature trends over 

India HadGEM3-GC31-LL, KACE-1-0G and UKESM1-0-LL perform much better than other 

GCMs. Our work has shown that the largest increase in future heat wave duration, intensity 

and frequency is from FF SSP5-8.5. This is comparable to other studies over South Asia who 

have shown similar results using CMIP5 (Yang et al. 2020) and CMIP6 models (Hamed et al. 

2022, Salehie et al. 2022, Ullah et al. 2022, 2023)  

2.4 Conclusion 

The fidelity of 13 CMIP6 models have been assessed for simulating the temperature over the 

Indian temperature homogenous regions. A new addition for CMIP6 models compared to 

previous version is the addition of SSP scenarios which were used to simulate the mean, 

maximum and minimum temperature up to the end of the century. Our results indicate that: 

• CMIP6 models do well at modelling the spatial distribution of temperature over Indian 

homogenous temperature regions, although they struggle with the colder temperatures 

of the Western Himalaya and Northeast regions due to the topographic complexity, 

snow cover and reduced observed values which the coarse resolution of the models fails 

to capture. 

• CNRM-CM6 performs best comparably to other models for spatial temperature over 

India. HadGEM3-GC31-LL, KACE-1-0G and UKESM1-0-LL are comparably the best 

performing models for temporal temperature trends over India. 

• The MME tends to have a larger warm bias during the JJA period compared to the 

annual period for mean, maximum and minimum temperature. This could suggest that 

the models are overestimating warm temperatures during JJA. There is more variation 
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in the warm and cold biases of the MME per region for the annual period. The IP region 

has mostly a cold bias for annual temperatures. NC shows a warm bias for Tmax and 

Tmean but more of a cold bias for Tmin. NW shows a warm bias for Tmax and mostly 

a cold bias for Tmean and Tmin. The WH and NE show a large cold bias for all 

temperatures during annual and JJA periods.  

• MME outperforms the individual models in terms of the mean biases for different 

temperature metrics. 

•  Both annual and JJA temperatures are shown to increase in the NF and FF for mean, 

maximum and minimum temperatures. The annual maximum temperature is projected 

to increase by 1.1°C, 1.2°C and 1.6°C for NF and 1.5°C, 2.3°C and 4.1°C for FF SSP1-

2.6, SSP2-4.5 and SSP5-8.5 respectively. 

• All SSP scenarios project a higher mean, maximum and minimum temperature by the 

end of the century suggesting that even with mitigation in place, warming is inevitable. 

• The mean, maximum and minimum temperature increase for both SSP1-2.6 and SSP2-

4.5 seem to level off by the end of the century, whereas SSP5-8.5 continues to rise 

steadily. This suggests that with sufficient mitigation strategies we can significantly 

limit the amount of warming over this region by the end of the century. 

• Both the frequency and duration of heat waves are shown to increase in the FF with the 

most populated areas of India being the most affected. The increase shown by SSP1-

2.6 is significantly less than what is seen by SSP5-8.5, meaning that effective mitigation 

can reduce both the frequency and duration of heat waves seen over India by the end of 

the century.  
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Abstract 

Monsoons are a vital part of the agriculture and economy of India which most of its 

population rely on for their livelihoods. It still is not clear how climate change will impact 

precipitation events over India due to the complexity of accurately modelling precipitation. 

Using twelve Coupled Model Intercomparison Project Six models, we compared their 

performance to observed data taken from CRU as well as looking at the future changes in 

precipitation until the end of the twenty first century for the six precipitation homogenous 

regions over India. The individual models showed varying degrees of wet and dry biases and 

the ensemble mean of these models showed relatively lesser bias and improved spatial 

correlation. Out of 12 models, NorESM and MIROC6 models outperform other models in 

terms of capturing the spatial variability of precipitation over the Indian region. It is also found 

that due to lesser moisture transport from the adjoining seas represented through vertically 

integrated moisture transport (VIMT) analysis, there is consistent dry bias across the models. 

Shared Socioeconomic Pathways (SSPs) were used for future projections and a slight increase 

in June, July, August, and September (JJAS) precipitation until the end of the century with 

SSP5-8.5 showing the largest increase. We found an increase in precipitation of 0.49, 0.74 and 

1.4mm/day under SSP1-2.6, SSP2-4.5 and SSP5-8.5 in the far future. The northeast region was 

shown to receive the largest increase in precipitation (2.9 mm/day) compared to other 

precipitation homogenous regions and northwest will experience largest shift in precipitation. 

Interestingly, the number of wet days is expected to increase in the northwest region implying 

more VIMT towards the region. Our results indicate that monsoon precipitation extremes 

across all the homogenous regions will increase into the future with a higher severity under 

fossil-fuelled development, although the models still show large biases lowering confidence in 

our results. 
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3.1 Introduction 

Monsoons affect two thirds of the world’s population and are essential for sustainable 

agriculture and economic development, with a larger impact on lesser developed countries 

(Zhou et al. 2016).  Almazroui et al., (2020) shows that annual mean precipitation is projected 

to increase into the future, with a greater increase under SSP5-8.5, although there is a relatively 

large uncertainty due to variations between models. The warming of the Indian Ocean is a 

likely cause for increased precipitation over India (Turner, 2022). It is difficult to assess how 

much of the projected increase in precipitation is due to anthropogenic factors and not natural 

variability (Wang et al., 2013), however later studies generally seem to agree that monsoon 

rainfall will increase in the future because of a warmer climate caused by GHG emissions (Lau 

et al., 2013, Menon et al., 2013, Asharaf and Ahrens, 2015, Sharmila et al., 2015). The El Niño-

Southern Oscillation (ENSO) has been shown to affect ISM precipitation (Goswami, 1998, 

Yang and Huang, 2021). The warming of sea surface temperature (SST) is known as El Niño 

which have been linked to reduced monsoon rainfall (Goswami, 1998, Rasmusson and 

Carpenter, 1983) and the cooling of SST is known as La Niña which have been linked to 

increased monsoon rainfall (Halpert and Ropelewski, 1992, Mujumdar et al., 2012). However, 

there are still gaps in our understanding of these relationships (Rajeevan and Pai, 2007). The 

Indian Ocean Dipole (IOD) occurs on a local scale (Webster et al., 1999) and has been shown 

to influence the ISM, with a strong IOD leading to a wetter ISM (Ratna et al., 2020). 

CMIP6 models have been shown to better represent clouds and water vapour over 

tropical oceans (Jiang et al., 2021) although precipitation biases still exist in CMIP6, with a 

larger overestimation over higher altitudes (Lun et al., 2021). Another addition to CMIP6 is the 

inclusion of Shared Socio-economic Pathways (SSPs, Riahi et al., 2017) compared to the 

Representative Concentration Pathways (RCPs, Moss et al., 2010) used in CMIP5. SSPs 

represent future changes by considering different future emissions and societal changes for five 
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different future scenarios. CMIP6 has been shown to add value to ISM simulations when 

compared to CMIP5, with reduced model biases during ISM precipitation (Dutta et al., 2022, 

Gusain et al., 2020). Although models are improving there are large biases between models 

when simulating precipitation (Gusain et al., 2020).  

The aim of this chapter is the look at the performance of 12 CMIP6 models in simulating 

precipitation over the 6 India precipitation homogenous regions and the future changes in 

precipitation over these regions. Large spatial and temporal variability in precipitation exists 

over all of India which is why we will also be looking at the 6 precipitation homogenous 

regions, which have been used to represent rainfall in other studies (Dash et al., 2009). Future 

changes are shown using the latest SSP scenarios added in CMIP6. In addition to the changes 

in precipitation, the dynamics associated are also presented. Section 2 goes over the 

methodology and data used, section 3 discusses the results for historical and future time periods 

and section 4 concludes our results. 

3.2 Methodology 

3.2.1 Indian Precipitation Homogenous Regions and Observed Data 

The six rainfall monsoon homogenous regions have been used in this study (Fig. 3.1), 

namely the North West (NW), West Central (WC), Central North East (CNE), Peninsular 

Region (PR), North East (NE) and Himalayan Region (HR). The observed precipitation data is 

taken from CRU at a resolution of 0.5°x0.5° which has been used to evaluate the fidelity of 

these 12 CMIP6 models. The CRU dataset has been used in many studies and represents 

precipitation over Indian and South Asian landmass well. ERA5-reanalysis data has been used 

as the observed dataset when analysing windspeed, humidity and vertically integrated moisture 

transport over South Asia. 
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3.2.2 CMIP6 Experiments 

 

Precipitation over the India precipitation homogenous regions were modelled using 12 

CMIP6 models, the details of these models are shown in Table 3.1. We tested the 

performance of 17 models originally, however only 12 were chosen for the analysis due to 

poor performance and data availability. The 12 models mentioned were all chosen due to their 

positive correlation with the observed data. The CMIP6 data used in this work can be found 

from the CMIP6 database website (https://esgf-node.llnl.gov/search/cmip6/). 

 

Fig. 3.1 – Six precipitation homogenous regions of India. 

https://esgf-node.llnl.gov/search/cmip6/
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Table 3.1 - CMIP6 models used in study 

Model Country Horizontal 

Resolution (lon and 

lat) 

CANESM5 Canda 128x64 

CESM2 USA 360x180 

CMCC-ESM2 Italy 288x192 

CNRM-CM6-1 France 362x294 

EC-Earth3 Europe 360x180 

GFDL-ESM4 USA 360x180 

HadGEM3-GC31-LL UK 192x144 

INM-CM5-0 Russia 180x120 

KACE-1-0-G South Korea 192x144 

MIROC6 Japan 256x128 

NorESM2-MM Norway 192x96 

UKESM1-0-LL UK 192x144 

All models have been re-gridded to match the respective observed grid using the 

bilinear interpolation method with the Climate Data Operator (CDO, Schulzweida, 2021) for 

carrying out the analysis. The historical period is considered from 1984 to 2014 for evaluating 

all the models. CDO was used to calculate the multi-model mean (MME) for all 12 models to 

reduce biases from individual models (Evans et al., 2000). The MME is the simple mean of all 

12 models in this case. To test the fidelity of the models the performance of both the individual 

models and their MME were compared to the observed precipitation. We calculated the 

difference between the individual models and MME to the observed data during the historical 

time period to find the biases of the models and MME. Statistical tests have been carried out at 

95% significance using the student-t test. 

3.2.3 Future Scenarios and Extreme Precipitation Variables 

Three scenarios i.e., SSP1-2.6, SSP2-4.5 and SSP5-8.5 are considered for investigating 

future changes in the precipitation characteristics during the Indian summer monsoon season. 

Briefly the SSP1-2.6 represents a sustainable future, SSP5-8.5 represents fossil-fuelled 

development and SSP2-4.5 represents a middle road (Riahi et al., 2017). The SSPs used 

represent low (SSP1-2.6), medium (SSP2-4.5) and high (SSP5-8.5) emission scenarios making 
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SSP5-8.5 the most aggressive scenario in terms of emission.  All SSPs represent the future time 

period 2015-2100 and have been split into near-future (2030-2060) and far-future (2070-2100) 

to evaluate future changes in precipitation over India. We looked at the projected Indian 

summer monsoon precipitation for both historical and future time periods. Along with the 

future changes in the mean precipitation, extreme precipitation indices such as R95, R99, 

number of consecutive wet days period and wet day index have been examined. The details of 

the indices are provided in Table 3.2. Further, diagnosis have been carried out to explain the 

observed future changes in precipitation from dynamic point of view such as changes in winds 

at 850 hPa and vertically integrated moisture transport (VIMT).  

                                 𝑉𝐼𝑀𝑇 = −
1

𝑔
∫ (𝑞𝑢 + 𝑞𝑣) 𝑑𝑝

100ℎ𝑃𝑎

1000ℎ𝑃𝑎
,  

Where 𝑔 is the acceleration due to gravity, 𝑞 is the specific humidity and 𝑢 and 𝑣 are 

the horizontal and vertical components of the windspeed respectively. The winds at 850 hPa is 

chosen due to its ability to carry the moisture from adjoining seas i.e., Arabian Sea and Bay of 

Bengal towards the Indian landmass and VIMT calculates the amount of moisture transported 

from 1000 to 100 hPa. 

 

Table 3.2 - Extreme precipitation indices definitions calculated using CDO (Schulzweida et al. 2021) 

 

Extremely wet days 

with reference to the 

99th percentile of the 

reference period 

 

Precipitation percent 

due to R95p days 

Number of consecutive 

wet days with more 

than 5 days per time 

period 

Wet days index per 

time period 

The percentage of wet 

days where the amount 

of daily precipitation > 

99th percentile of the 

daily precipitation 

during the historical 

period. 

The percentage where 

daily precipitation 

amount > the 95th 

percentile of daily 

precipitation during the 

historical period when 

compared to the sum of 

the total precipitation. 

 

The number of 

consecutive wet days 

with ≥1mm of daily 

precipitation that lasts 

for 5 or more days per 

JJAS. 

The number of days 

where daily 

precipitation amount is 

≥1mm. 
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3.3 Results and Discussion 

3.3.1 CMIP6 Performance in Capturing ISM Characteristics 

 

The spatial features of JJAS precipitation over India in the observed data portray a 

maximum over the Western Ghats, Northeast India, Central and Eastern Indian regions, and 

Himalayan Foothill regions (Fig. 3.2a), There is varying success between the models in 

representing the historical JJAS precipitation climatology over South Asia (Fig. 3.2). Many of 

the models can represent these broad spatial features, however a few of them are too dry over 

the Indian landmass. Although a few of the models do not represent the precipitation hotspots 

such as the Western Ghats, Himalayan foothills and even the central Indian region, the MME 

in general outperforms the individual experiments in terms of the spatial distribution. This is 

also seen in figure 3.3 where we show the biases of the models compared to observations. EC-

Earth, HadGEM and NorESM appear to be the best performing models individually and 

computing the MME of all models shows the best performance. Most models show a dry bias 

over India, with CanESM5 giving the strongest dry bias (7-9 mm/day) among all the models. 

The dry bias for JJAS precipitation over India is a known issue with CMIP models, however 

these biases are shown to improve in CMIP6 compared to CMIP5 (Choudhury et al. 2021, 

Guilbert et al. 2023). Some models show a large wet bias which is seen mostly over the 

Himalayan foothills (CESM2, CMCC, MIROC6). The dots in these figures show areas of high 

confidence which can be seen over the whole region for most figures, except the Northeast of 

India for the MME and NorESM. The strong dry biases in most of the models affect the MME 

and major parts of Northern and Northwestern India have dry biases of the order of 3-5 mm/day 

in them. 
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Further, we investigate the model performance for the JJAS daily mean precipitation 

for individual homogeneous regions using the spatial correlation between the models and the 

observation. Most of the regions of the Indian precipitation homogenous regions (Fig. 3.1) 

show a good spatial correlation when comparing the models and MME to observed values (Fig. 

3.4). Most models show a good correlation over CNE with the highest values being 0.8-0.9. 

CNRM is much worse over this region compared to other models. The models do well across 

the board when representing the HR. Over half of the models have a correlation between 0.8-

Fig. 3.2 – JJAS precipitation over South Asia (1984-2014) for observed (a), MME (b) and individual models 

(c-n).  
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0.9. The NE is the worst represented region by all the models where CanESM5 and CMCC 

give the lowest values of 0.1-0.2. The NW shows the highest correlation between models and 

observed with the MME, CESM2, CMCC, GFDL, MIROC6 and NorESM performing the best 

over this region. CanESM5 shows the lowest correlation over this region. The PR is another 

well represented region by the chosen models. EC-Earth3 has the highest correlation and INM 

has the lowest. Finally, the WC is poorly represented and GFDL performs the worst over this 

region, however EC-Earth is the only model that does very well over this region. The MME 

consistently performs well over all regions when compared to the individual models 

highlighting the value of the MME. In general, the MME can capture the spatial patterns of 

Fig. 3.3 – JJAS precipitation bias over South Asia (1984-2014) for observed (a), MME (b) and individual 

models (c-n). The dots represent the grid points with significant differences at 95% significance level. 
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precipitation over multiple regions with reasonable skill, despite the large spatial variability in 

the precipitation patterns across the country. Moreover, a general pattern of poor correlation 

over high rainfall regions such as the NE, and larger correlation values over scanty rainfall 

regions, is prominent across models. It is important to note that, although the long-term 

correlations appear robust, there may be differences in the correlation values depending on the 

period and region under consideration. This variability may indicate interannual to decadal-

scale variability in the model results, which might be captured differently across models.  

 

Fig. 3.4 – JJAS precipitation spatial correlation for MME and individual models compared to 

observed data over each Indian precipitation homogenous region. 
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We further explore the model’s performance in terms of their ability to capture the 

spatial variability of JJAS precipitation with respect to the observation. Fig. 3.5 illustrates the 

Taylor diagram comprising of the spatial correlation and normalised standard deviation of the 

seasonal precipitation. The spatial correlation of seasonal precipitation across the models varies 

largely with CanESM5 (<0.4) to EC-Earth3 (0.77) and others lying in this broad range. 

Comparing the standard deviation across models, the model experiments again show a large 

range of spatial variability compared to the observation. Overall, the NorESM and MIROC6 

models outperform other models in terms of capturing the spatial variability of precipitation 

over the Indian region.  

Fig. 3.5 – Taylor diagram for precipitation over India landmass compared to 

observed data for 17 CMIP6 models. 
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In terms of simulating dynamic field, we also evaluated spatial distribution of wind at 

850 hPa also known as monsoon low level jet. In general, it is one of the semi-permanent 

features of Indian summer monsoon season. Over South Asia the models generally show a 

positive bias over most of the region and a negative bias with the south-westerly winds at 

850hPa (Fig. 3.6). Some models do not show data over the mountainous regions (Fig. 3.6c, e, 

g, h, j, k, m) at 850hPa which is why areas such as the Tibetan Plateau are masked. The direction 

of the South Asian monsoon is captured by the models with varying biases. Over India all 

models show a positive windspeed bias and in most cases the south-westerly wind shows the 

most noticeable negative bias, with CanESM5 showing the most extreme negative bias. The 

MME for specific humidity (Fig. 3.7) shows a mostly negative bias over land and positive bias 

over the ocean, and the landmass east of India.  

Fig. 3.6 - JJAS windspeed (850hPa) bias over South Asia (1984-2014) for MME (a) and individual models (b-m) 

compared to observed values from CRU. Arrows show absolute values. 
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Since the moisture transport mechanism from the adjoining seas towards Indian 

landmass during the Indian summer monsoon season is important, we also checked the 

vertically integrated moisture transport (VIMT).  The models underestimate the larger values 

of the VIMT which suggests an underestimation of monsoon rainfall over this region during 

the monsoon season (Fig. 3.8). All models show a negative bias over most of India and a 

positive bias over the Himalayas. The negative bias over the ocean matches that of the negative 

bias from the windspeed, although over land VIMT and windspeed biases don’t match. The 

models with a larger negative bias for specific humidity also appear to have a larger negative 

VIMT bias over India. The negative bias in the VIMT could be the reason for having 

precipitation dry bias over central part of India. CanESM5 (Fig. 3.8b) shows the largest positive 

and negative biases compared to all other models for VIMT. The most extreme negative bias 

Fig. 3.7 - JJAS specific humidity (850hPa) bias over South Asia (1984-2014) for MME (a) and 

individual models (b-m) compared to observed values.  
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is to the southwest of India and this is the case for most of the models. MIROC6 (Fig. 3.8k) is 

the only model that shows a positive bias over this area. CMCC (Fig. 3.8d) is the best 

performing individual model, however there is a relatively large positive bias over northeast 

India and the surrounding countries comparatively. The MME appears to reduce the magnitude 

of both positive and negative biases over this region and gives the best VIMT representation 

overall.  

3.3.2 Future Changes of ISM Characteristics over South Asia 

The spatial changes in the near and far future precipitation during the Indian summer 

monsoon are shown in Figure 3.9. All SSPs show an increase in precipitation in the NF and FF 

and FF SSP5-8.5 shows the largest increase overall in the South Asian region (Fig. 3.9). All 

Fig. 3.8 – Vertically integrated moisture transport bias compared to ERA5 for MME (a) and individual models 

(b-m) over South Asia. The arrows show the absolute values, both bias and absolute values are shown from 

1000-100hPa. 
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figures show a very similar coverage in precipitation changes across most of South Asia where 

most of the precipitation in the region will increase. When comparing the NF SSPs to the 

present period, there is not much difference between them. SSP5-8.5 (Fig. 3.9i, j, k, l) has 

slightly higher extremes than the other two scenarios. Moving to the FF and the changes are 

much more dramatic. FF SSP5-8.5 (Fig. 3.9l) shows the largest increase, with the West Coast 

of India, Bangladesh, Nepal, Bhutan and Myanmar receiving over 3mm/day more precipitation 

in the monsoon season. The west coast of India sees most of the South Asian monsoon 

precipitation, and this increase suggests that the South Asian monsoon will be more extreme in 

the far future, with the most extreme scenario being FF SSP5-8.5. This increase in Indian 

summer monsoon rainfall was also shown by Katzenberger et al. (2021), where all CMIP6 

models used in their study as well as the MME showed significant increases in precipitation 

Fig. 3.9 – Mean precipitation difference over South Asia for SSP1-2.6 (a, b, c, d), SSP2-4.5 (e, f, g, h) and SSP5-8.5 (I, 

j, k, l). The first and second columns show the absolute values for NF (a, e, i) and FF (b, f, j) respectively. The third 

and fourth columns show the precipitation difference for NF (c, g, k) and FF (d, h, l) respectively when compared to 

the historical period. The dots represent the grid points with significant differences at 95% significance level. 
 



Chapter 3 
 

66 

 

during FF SSP5-8.5. They also linked this increase in precipitation to an increase in global 

mean temperature.  

The changes in the VIMT in near and far future under various SSP scenarios are shown 

in Figure 3.10. The FF SSP5-8.5 shows the largest increase in VIMT compared to other SSP 

scenarios.  During the NF (Fig. 3.10 a, c, e) there is little difference between the SSPs. However, 

in the FF (3.10b, d, f) all SSPs show at least a minor increase in VIMT. The large increase from 

FF SSP5-8.5 could explain why there is a large increase in precipitation seen in figure 3.9l.  

 

Fig. 3.10 – Vertically integrated moisture transport difference compared to the historical 

period from 1000-1hPa over South Asia. SSP scenarios SSP1-2.6 (12a, b), SSP2-4.5 

(12c, d) and SSP5-8.5 (e, f) are used. The SSPs are split into NF (a, c, e) and FF (b, d, f). 
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An increase in precipitation can be seen over all India precipitation homogenous 

regions when comparing the present climate to the SSP scenarios using a gamma distribution 

(Fig. 3.11) which represents precipitation data well (Wilks, 2011).  The MME for the historical 

period underpredicts precipitation for all regions (Fig. 3.11a, c, d, f) as well as the entirety of 

India (Fig. 3.11g) except for the PR region (Fig. 3.11e) which is the best represented and the 

HR region (Fig. 3.11b) where the MME overpredicts precipitation. The SSPs over all regions 

show an increase in precipitation when compared to the historical period and except for FF 

SSP5-8.5 there is little difference between the NF and FF SSPs. FF SSP5-8.5 shows the largest 

shift in precipitation for all regions, the largest shift can be seen over the NE region. For the 

Fig. 3.11 – PDF distribution of precipitation over Indian precipitation homogenous regions (a-f) 

and India landmass (g). The black lines represent the historical period (1984-2014). The solid 

and dashed black lines show observed and MME data respectively. For the SSP scenarios green, 

blue, and red represent SSP126, SSP245 and SSP585 respectively. For the SSPs a solid line 

shows the NF time period, and a dashed line shows the FF time period. 
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regions CNE, HR, NE, NW, PR, WC and India, FF SSP585 compared to the historical period 

shows an increase in precipitation of 1.28, 1.12, 2.9, 0.84, 1.36, 1.63 and 1.4mm/day 

respectively. FF SSP126 shows an increase of 0.53, 0.03, 0.71, 0.23, 0.56, 0.66 and 

0.49mm/day respectively.  

There is an increase in precipitation over all the precipitation homogenous regions of 

India when comparing NF SSP2-4.5 and SSP5-8.5 to FF SSP2-4.5 and SSP5-8.5 respectively 

(Table 3.3). All percentage increases are compared to the historical period. SSP1-2.6 doesn’t 

follow this pattern as over the CNE, NW, PR and WC there is a decrease in percent precipitation 

when comparing NF to FF. The NW will see the largest increase in precipitation going from 

10.8% and 20.9% for NF SSP2-4.5 and SSP5-8.5 respectively to 25.8% and 44.6% for FF 

SSP2-4.5 and SSP5-8.5 respectively. This means that under SSP5-8.5, the NW will see a 23.7% 

increase when going from NF to FF as well as the largest increase of 44.6% when compared to 

the historical period. Comparing NF and FF SSP5-8.5 there is an increase of 10.8%, 13.51%, 

16.66%, 23.7%, 11.4% and 15.1% for the CNE, HR, NE, NW, PR and WC respectively. 

3.3.2.1 Future Changes in JJAS Extreme Precipitation 

All SSP scenarios show an increase in extreme wet days (EWD) when compared to the 

historical period (Fig. 3.12). During the NF, SSP2-4.5 (Fig. 3.12c) shows the smallest increase 

in EWD’s, where most of the NW, WC, and the lower half of the CNE regions show no increase 

at all. NF SSP5-8.5 (Fig. 3.12e) has the largest increase in EWD compared to the other SSPs, 

but not by much. The area that sees the largest increase is the southern part of the PR. When 

Table 3.3 - Precipitation increase (%) per region compared to historical period (1984-2014) 

 CNE HR NE NW PR WC 

NF_SSP126 9.40 6.53 5.52 18.2 11.6 12.9 

NF_SSP245 6.58 5.59 5.33 10.8 10.1 8.94 

NF_SSP585 10.6 8.39 8.84 20.9 12.4 12.4 

FF_SSP126 9.00 6.94 6.35 10.4 9.77 11.0 

FF_SSP245 11.9 10.3 8.59 25.8 13.6 16.9 

FF_SSP585 21.4 21.9 25.5 44.6 23.8 27.5 
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comparing NF and FF SSP1-2.6, there is little difference. The NW region sees a slight decrease 

in EWD. FF SSP2-4.5 shows an increase over all regions except the northern part of the HR. 

Now all regions show a minimum 4% increase. Under this scenario, the most affected region 

is the southern PR with a 14% increase. FF SSP5-8.5 shows the largest increase in EWD. All 

regions will see an increase in EWD with the most affected regions being the west coast of the 

Fig. 3.12 – Extremely wet days with reference to the 99th percentile of 

reference period (1984-2014). The first column (a, c, e) shows the NF 

and the second column (b, d, f) shows the FF for SSP126 (a, b), 

SSP245 (c, d) and SSP585 (e, f). 
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WC, the west and south coast of the PR and the east of the NE. These regions are showing a 

>20% increase in EWD. Table 3.4 shows the percentage increase in EWD per region when 

compared to the historical period. There is very little change between NF and FF SSP1-2.6 for 

all regions and there is an increase in EWD when comparing NF SSP2-4.5 and SSP5-8.5 to FF 

SSP2-4.5 and SSP5-8.5 respectively. The largest increase for all regions is from FF SSP5-8.5. 

When comparing the increase from NF to FF for this scenario, we see a 3.2%, 4.27%, 6.57%, 

3.02%, 4.85% and 4.13% for the CNE, HR, NE, NW, PR and WC respectively. This means that 

the NE will receive the largest increase in EWD from both historical and NF to the FF. When 

going from the historical to the NF, the PR sees the largest increase in EWD of 6.75%. 

 

 

Similarly, to the previous figure, a much larger increase in precipitation percent due to 

R95p days can be seen from FF SSP5-8.5 (Fig. 3.13). All NF SSPs show a similar precipitation 

percent to each other (3.13a, c, e). There is negligible change between NF and FF SSP1-2.6 

(3.13a and b respectively). FF SSP2-4.5 shows an approx. 5% increase which seem to affect 

the same areas. FF SSP5-8.5 shows a dramatic increase in precipitation percent with the most 

affected regions increasing by over 40%. The most affected regions are the same as figure 3.12 

which are also the regions in India that receive the most rainfall per monsoon season.  

Table 3.4 - Extreme wet days difference (%) per region compared to historical period (1984-2014) 

 CNE HR NE NW PR WC 

NF_SSP126 4.47 4.48 4.67 4.16 5.80 4.72 

NF_SSP245 4.23 4.52 4.65 3.86 5.89 4.19 

NF_SSP585 4.71 5.13 5.63 4.50 6.75 4.68 

FF_SSP126 4.35 4.47 4.63 3.87 5.68 4.68 

FF_SSP245 5.21 5.29 5.62 5.14 7.13 5.77 

FF_SSP585 7.91 9.40 12.2 7.52 11.6 8.81 
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Although extreme precipitation has been shown to increase, the consecutive wet days 

(CWD) do not follow this trend for most regions (Fig. 3.14). When looking at the NF SSP2-

4.5 and SSP5-8.5 show an increase in CWD over the CNE region whereas under SSP1-2.6 this 

Fig. 3.13 – Precipitation percent due to R95p days. The first 

column (a, c, e) shows the NF and the second column (b, d, f) 

shows the FF for SSP126 (a, b), SSP245 (c, d) and SSP585 (e, f). 
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region shows a slight decrease. Most regions show no change or a decrease in CWD, however 

the NW region shows the largest increase for all SSPs. This could be possible due to larger 

transport in moisture towards the region as discussed in Fig. 3.10 NF SSP5-8.5 has more 

extreme increases and decreases in CWD compared to the other NF SSPs. There is little change 

between NF and FF SSP1-2.6. FF SSP2-4.5 shows a similar pattern compared to its NF 

Fig. 3.14 – Percentage difference compared to the historical period for the 

number of cwd periods with more than 5 days per JJAS season. The first column 

(a, c, e) shows the NF and the second column (b, d, f) shows the FF for SSP126 

(a, b), SSP245 (c, d) and SSP585 (e, f). 
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counterpart, but with more extreme values. The CNE however changes from a majority 

increase in CWD in the NF to a slight decrease by the FF. The difference between NF and FF 

SSP5-8.5 shows similar patterns to SSP2-4.5. FF SSP5-8.5 shows the most extreme increases 

and decreases in CWD. The most affected region appears to be the NW for an increase in CWD. 

The southeast of NW, east of PR and HR show the largest decrease in CWD.  

Small changes in emissions appear to have a very large effect on consecutive dry days 

(CDD) and consecutive wet days (CWD) which can be seen in tables 3.5 and 3.6 respectively. 

The CDD decrease when comparing the NF to FF SSP5-8.5 for the CNE, HR, NE and NW and 

increase for the PR and WC. For CWD the CNE, HR, NE, PR and WC decrease and the NW 

increases. There is a big difference in CDD over the NE and PR for the different SSPs. For 

CDD in the PR, from NF SSP1-2.6 to SSP2-4.5 we go from a 5.99% decrease to a 35.7% 

increase. This is also seen over the NE where we see a 55.7% decrease and then a 57.6% 

increase for SSP1-2/6 and SSP2-4.5 respectively. This is also seen with CWD for these regions. 

The NE goes from a 9.97% increase to a 26.4% increase and the PR goes from a 15% decrease 

to a 2.69% decrease for NF SSP1-2.6 and SSP2-4.5 respectively. This suggests that these 

regions are highly sensitive to changes in emissions.  

 

 

Table 3.5 - Consecutive dry days difference (%) per region compared to historical period 

(1984-2014) 

 CNE HR NE NW PR WC 

NF_SSP126 -1.24 -0.814 -55.7 -8.84 -5.99 7.03 

NF_SSP245 -2.20 -3.38 57.6 -6.41 35.7 4.56 

NF_SSP585 -15.9 -9.32 -3.32 -14.6 -20.0 -5.96 

FF_SSP126 8.75 3.81 -47.2 -6.63 4.55 8.24 

FF_SSP245 -4.51 6.55 -9.96 -14.3 55.0 12.1 

FF_SSP585 -18.6 -17.0 -41.0 -19.8 31.2 13.9 
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Table 3.6 - Consecutive wet days difference (%) per region compared to historical period 

(1984-2014) 

 CNE HR NE NW PR WC 

NF_SSP126 -2.97 -8.45 9.97 -3.31 -15.0 -8.73 

NF_SSP245 11.5 -5.11 26.4 1.16 -2.69 -2.29 

NF_SSP585 7.03 -13.2 12.6 4.17 -8.56 -7.11 

FF_SSP126 0.876 -9.80 6.71 -1.46 -9.34 -6.04 

FF_SSP245 0.750 -10.2 6.05 1.23 -8.93 -10.4 

FF_SSP585 4.32 -18.4 1.65 6.45 -12.6 -10.3 

Fig. 3.15 – Wet days Index per JJAS season over India. The first column 

(a, c, e) shows the NF and the second column (b, d, f) shows the FF for 

SSP126 (a, b), SSP245 (c, d) and SSP585 (e, f). 
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The NW region sees a much larger increase in wet days index (WDI) compared to the 

other regions (Fig. 3.15). There is little change in most regions in the NF except the NW, HR 

and west of the CNE regions. For NF SSP5-8.5 the PR sees more of an increase in WDI 

compared to the other two SSPs. When comparing NF and FF SSP1-2.6 there is little change 

and FF SSP1-2.6 shows a slight reduction in WDI overall, with the PR decrease being the most 

noticeable. For FF SSP2-4.5 and SSP5-8.5 the NW and HR see an increase in WDI and SSP5-

8.5 shows a much larger increase in comparison. All FF SSPs show the WDI in the PR decrease 

and the largest decrease is from FF SSP5-8.5. 

3.4 Conclusion 

In this chapter we compared the performance of 12 CMIP6 models in simulating 

precipitation over South Asia and the precipitation homogenous regions of India. Using the 

new SSPs implemented in CMIP6, SSP1, 2 and 5 were used to look at future changes in 

precipitation. The key findings of this study are listed below: 

• CMIP6 models struggle to capture precipitation over India accurately, with large variations 

between models. However other studies have shown that CMIP6 models improve 

precipitation simulations when compared to CMIP5 (Choudary 2021, Gusain et al. 2020). 

• The MME of the models improves the skill when compared to individual models, 

improving model results as well as reducing the overall biases compared to individual 

models. There is still a slight dry bias over India and a wet bias to the east of India.  

• All SSPs show an increase in precipitation in the future over India with the largest increase 

from FF SSP5-8.5 of 1.4mm/day, suggesting that fossil-fuelled development will increase 

precipitation in the coming century over India. There is a smaller increase in precipitation 

of 0.49 and 0.74mm/day under FF SSP1-2.6 and FF SSP2-4.5. The NE region will receive 
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the largest increase in precipitation (2.9mm/day) compared to other precipitation 

homogenous regions. 

• Extreme precipitation has also been shown to increase most dramatically under SSP5-8.5 

as well as the VIMT. The most affected regions of India are the PR, WC and NE. The 

number of wet days will increase over the NW region. This suggests that continued fossil-

fuelled development will lead to a more extreme South Asian monsoon approaching the 

end of the century. 

• SSP1.2.6 and SSP2-4.5 increases in precipitation are much less dramatic than SSP5-8.5 

meaning that it is possible to lessen the impact given sufficient mitigation strategies are put 

in place.  

Our work only uses CMIP6 models at a coarse resolution which leads to difficulties in 

simulating the Indian summer monsoon. Applying downscaling and bias correction have been 

shown to improve precipitation simulations (Konda et al. 2023) and we will be implementing 

them in our future work. 
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Abstract 

This chapter explores the sensitivity of the ICTP Regional Climate Model (RegCM4) 

to various configurations designed to enhance the simulation of meteorological features in the 

Indian region. To accomplish this, three sets of sensitivity experiments were conducted over 

nine distinct years, categorized into wet, normal, and dry conditions. These experiments 

employed a fine horizontal resolution of 25 km, ensuring detailed and precise modelling. The 

first set of experiments focused on evaluating the impact of nine different representations of 

Himalayan orography. This approach was implemented to understand how variations in the 

orographic features of the Himalayas affect the model's accuracy in simulating precipitation 

and temperature patterns. The results revealed a direct correlation between orographic height 

and seasonal mean precipitation, highlighting the critical role of accurate orographic 

representation in climate modelling. Specifically, a 10% increase in height (P10) led to a 15% 

rise in precipitation, while a 10% decrease (M10) resulted in a 32% reduction compared to 

control simulations. The second experiment evaluated four cumulus parameterization 

schemes—Kuo-AS (SC1), Grell-AS (SC2), Grell-FC (SC3), and Grell-Emanuel (SC4), when 

simulating precipitation and temperature patterns. Findings indicated that the SC4 

outperformed the others, effectively capturing precipitation intensity and distribution in closer 

alignment with IMD observations. The third experiment compared two land surface 

parameterization schemes, BATS and CLM, for simulating precipitation and temperature 

during the JJAS period. The CLM scheme demonstrated superior performance, primarily due 

to its enhanced representation of soil moisture and surface fluxes. Overall, RegCM4 effectively 

simulates seasonal meteorological features and upper-air circulations during varying 

precipitation years. This study highlights the significance of the CLM scheme for improved 

accuracy in simulations over the Indian region, suggesting a need for future downscaling 
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experiments to investigate finer-scale physical processes and understand climate extremes 

under different emission scenarios. 

4.1 Introduction 

 

South Asia is among the most vulnerable regions globally to the impacts of climate 

change, as highlighted by Norgate et al. (2024). Recent evidence indicates a warming trend 

coupled with a consistent rise in temperature extremes. The prevalence of extreme weather 

events—such as intense heat, heavy rainfall, flooding, and droughts—negatively impacts 

various sectors (IPCC 2022). India has a population of over 1.4 billion and is particularly 

susceptible to climate extremes. Given the critical nature of these challenges, the need for 

precise climate predictions is paramount. This emphasises the importance of sensitivity in 

regional model parameterization, as accurately representing local climatic conditions can 

enhance predictions of climate extremes. Improved parameterization in regional climate 

models will facilitate better preparedness and adaptive strategies, thereby supporting climate 

resilience in India amidst a changing climate. 

 The most significant instruments for generating predictions on a monthly to decadal scale 

in advance are coupled general circulation models (GCMs). However, these GCMs generally 

have a coarse horizontal resolution ranging from approximately 100 to 250 km (Tiwari et al. 

2014), which are insufficient for accurately representing detailed physical processes and the 

unique land surface characteristics of particular regions. As a result, they fail to capture the 

complexities and nuances that are essential for a precise understanding and simulation of local 

environmental dynamics. Tiwari et al. (2014) conducted an in-depth analysis of the 

performance of five advanced General Circulation Models (GCMs) in their ability to simulate 

the interannual variability of precipitation in the Northern Indian (NI) region. Their study 

revealed that these models displayed a range of proficiency levels, indicating differing degrees 
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of accuracy and skill in capturing the complex patterns of precipitation variability over this 

area. This finding underscores the necessity of investigating small-scale physical processes that 

significantly influence short-term climate fluctuations over the Indian region through the use 

of regional climate models (RCMs). RCMs, which operate at comparatively higher resolutions, 

are capable of representing sub-grid scale physical processes at a regional level more 

effectively. Consequently, these high-resolution regional models are better suited than GCMs 

for reproducing finer scale information (Giorgi et al., 2012). 

 It is widely recognized that general circulation models (GCMs) exhibit significant 

limitations in their representation of orography due to their coarse resolution. This coarse 

resolution hampers the ability of these models to capture the complex details of mountainous 

regions, resulting in considerable inaccuracies. Numerous modelling studies have 

demonstrated that accurately representing orography is essential for determining the spatial 

distribution of precipitation across various regions globally (Abe et al., 2003; Namias, 1980). 

Kasahara and Washington (1968) provided an in-depth analysis of the thermal and dynamical 

effects of orography within the framework of a general circulation model, underscoring the 

critical importance of precise orographic representation for reliable climate modelling. Their 

work highlighted the significant impact that mountains and other topographical features have 

on atmospheric circulation patterns and precipitation distribution. However, these studies 

predominantly focused on GCMs, leaving a gap in our understanding of how regional climate 

models (RCMs) perform at sub-grid scales. It is essential to thoroughly examine the role of the 

Himalayan orography in RCMs for simulating meteorological fields. Such an examination will 

help to determine whether RCMs, with their higher resolution, can better represent the complex 

terrain and its influence on local climate, particularly in the context of the Himalayas. This 

understanding is vital for improving the accuracy of climate predictions and for developing 

more effective strategies for managing climate-related risks over the Indian region. 
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 Additionally, the cumulus parameterization scheme is a crucial element in numerical 

models, significantly influencing the representation of sub-grid scale convective processes. The 

impact of cumulus parameterizations on the precipitation process depends on the specific 

convective schemes chosen and the domain of interest (Giorgi et al., 2012). Despite its 

importance, there has been limited research on the sensitivity of different cumulus 

parameterization schemes using regional climate models (RCMs) to simulate various 

meteorological fields over the Indian region. Therefore, this study has been undertaken to 

conduct a comprehensive analysis of this aspect. 

 Pielke et al. (1990) highlighted the pivotal role that land surface characteristics play in 

shaping regional and local climates. These characteristics are instrumental in governing the 

exchanges of heat, momentum, and water between the land and the atmosphere. Such 

regulation significantly alters the structure of moving synoptic systems, initiates convective 

activity, and organizes mesoscale circulations. The influence of the land surface extends to a 

myriad of atmospheric processes. For example, the heat exchange between the land and the 

atmosphere can modify temperature and humidity profiles, thereby affecting weather patterns 

and climate. This dynamic interaction underscores the importance of accurately representing 

land surface characteristics in climate models to enhance our understanding and prediction of 

climate and weather phenomena. Momentum exchange impacts wind patterns and the 

movement of air masses. Water exchange, through processes like evaporation and transpiration, 

can influence precipitation patterns and cloud formation. Given the pivotal role of land surface 

interactions, advanced land surface parameterization schemes (LSPS) within climate models 

can potentially enhance prediction accuracy, especially in the Indian region which has complex 

terrain due to the presence of Himalayas. These advanced schemes aim to more accurately 

represent the physical processes at the land-atmosphere interface, improving the model's ability 

to simulate local climate dynamics. Consequently, incorporating sophisticated LSPS into 
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regional climate models (RCMs) may significantly enhance their skill in predicting climate 

variations and weather patterns over mountainous areas. Therefore, in this study we have 

looked into detail about the sensitivity of land surface schemes to study its role on 

meteorological fields over the Indian region. 

 Overall, in this chapter, the main objective is to investigate how different representations 

of orography, convection, and land surface schemes influence the outcomes of the Regional 

Climate Model version 4.7 (RegCM4), with a specific focus on the Indian region. The 

sensitivity experiments are conducted across nine distinct years, categorized into wet, normal, 

and dry conditions, and are performed at a spatial resolution of 25 km. Regarding orography, 

we explore nine different configurations by adjusting the model's representation of terrain 

elevation, aiming to understand how these variations impact model performance. The Regional 

Climate Model is driven by the Hadley Centre Global Environment Model (HadGEM3) from 

the UK Met Office to simulate meteorological fields over India. Section 4.2 provides a concise 

overview of the models utilized in this study, while section 4.3 details the datasets used, and 

the experimental setups employed. The findings and discussions are presented in section 4.4, 

where we analysed the results derived from the experiments. Finally, section 4.5 offers 

conclusions drawn from this comprehensive study.  

4.2 Methodology 

4.2.1 Hadley Centre Global Environment Model Version 3 (HadGEM3) 

 

The global climate model utilized in this study is the UK Met Office’s Hadley Centre 

Global Environment Model (HadGEM3). This model features a coupled atmosphere-ocean 

configuration, extending vertically to incorporate a well-resolved stratosphere. Moreover, the 

Earth-System configuration of HadGEM3 encompasses dynamic vegetation, ocean biology, 

and atmospheric chemistry. The atmospheric component boasts a horizontal resolution of 1.4˚ 
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and includes 38 vertical levels. The ocean model's resolution is 1˚ by 1˚, which increases to 

1 3⁄ ˚ at the equator, and it comprises 40 depth levels. Further details of the model can be found 

at William et al. (2017) and Kuhlbrodt et al. (2018). 

 

4.2.2 Regional Climate Model 

 

The Regional Climate Model version 4.7 (RegCM4) has been developed at The Abdus Salam 

International Centre for Theoretical Physics in Italy. It is built around a hydrostatic dynamical 

core that is similar to the Mesoscale Model MM5 (Grell et al., 1993).  RegCM4 consists of 24 

vertical sigma levels and five of these levels are situated in the lower troposphere as per its 

standard configuration (Elguindi et al., 2017; Giorgi et al., 2012). Several studies (Tiwari et al. 

2016; Pattnayak et al. 2017b) have indicated that RegCM4, utilizing these standard vertical 

levels, effectively simulates the primary characteristics of the climate, as well as the 

atmospheric circulations and precipitation patterns over India. RegCM4 includes five main 

convective parameterization schemes to account for convective precipitation: the modified Kuo 

scheme (Anthes, 1977), the Grell scheme (Grell, 1993), the MIT-Emanuel scheme (Emanuel, 

1991), and a mix scheme that employs the Grell scheme over land and the Emanuel scheme 

over the ocean (Emanuel and Zivkovic-Rothman, 1999). Detailed descriptions of these 

schemes are available in the respective references cited. Additionally, this work utilises two 

land surface schemes, the Community Land Model (CLM; Oleson et al., 2008) and Biosphere-

Atmosphere Transfer Scheme (BATS; Dickinson et al., 1993). Table 4.3 shows a concise 

comparison of these two land surface parameterization schemes. 
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4.3 Experimental Framework and Data 

 

In this chapter, three meticulously designed sets of sensitivity experiments are presented to 

investigate how different representations of Himalayan orography, cumulus convection, and 

land surface schemes affect the simulation of meteorological fields over the Indian region using 

the RegCM4 model. These experiments are detailed as follows: 

• Role of Himalayan Orography Representations: This set of experiments examines the 

influence of nine Himalayan orography representations. This is done by adjusting the 

orography in the model through increasing and decreasing orography from mean 

elevation.  

• Sensitivity to Convection Schemes: This set of experiments focuses on the sensitivity 

of various cumulus convection schemes that are included with the RegCM4 model.  

• Impact of Land Surface Schemes: This set of experiments investigates the role of two 

different land surface schemes in RegCM4. 

The model domain of interest covers the area from 15˚E to 128˚E and from 30˚S to 

56˚N. Over this domain, it consists of 496 (384) grid points along the longitude (latitude). 

Model integrations are conducted from May 1st to September 30th each year, covering nine 

distinct years categorized into three wet, normal, and dry years, all at a 25 km resolution. The 

initial and boundary conditions are derived from the UK Met Office’s Hadley Centre Global 

Environment Model (HadGEM3) with a resolution of 1.4˚. The results simulated by the model 

are validated against ERA-5 data (Hersbach et al., 2020) and Indian Meteorological 

Department (IMD) gridded precipitation data (0.25˚ × 0.25˚) (Pai et al., 2014). Additionally, 

apart from the HadGEM3 initial and boundary conditions, the model is also driven with 

ECMWF reanalysis (ERA5), and similar results were observed. The JJAS seasonal rainfall data 

for each year is constructed by averaging the rainfall of June, July, August, and September 
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months. From the seasonal mean precipitation anomalies, extreme years (wet/dry) are selected 

based on the observed precipitation data from the Indian Meteorological Department (IMD), 

where years with a standardized precipitation anomaly greater than 10% are classified as wet, 

and those with less than 10% are classified as dry. Out of the 31 years (1984-2014) of IMD 

data analysis, a total of 9 distinct years were selected for this study: three wet years (1988, 

1995, 1998), three dry years (1986, 2000, 2002), and three normal years (1991, 1996, 2005). 

 In the first set of experiments, sensitivity studies have been conducted to assess the 

impact of various Himalayan orography representations on the simulation of precipitation and 

temperature over the Indian region. These representations include adjustments to the orography 

by ±5%, ±10%, ±15%, and ±20%, labelled as M5, M10, M15, M20, CNTRL, P5, P10, P15, 

and P20. Here M (minus) represents a decrease in height and P (plus) represents an increase in 

height. The second set of experiments focuses on the sensitivity to different convective 

parameterization schemes within the RegCM4 model. The final set of experiments examines 

the sensitivity to two different land surface schemes, namely the Biosphere-Atmosphere 

Transfer Scheme (BATS) and the Community Land Model (CLM). The experiments were 

conducted over the targeted region at a horizontal resolution of 25 km. The model domain and 

configurations utilised in these sensitivity tests are depicted in Figure 4.1 and described in more 

detail in Table 4.1.  Figure 4.2 depicts the differences in topography between the HadGEM3 

and RegCM4 models, highlighting the clearer distinction of the northwest to southeast oriented 

Himalayan ranges in the RegCM4 model. This model captures the peaks and valleys more 

distinctly compared to the HadGEM3 model, where these features appear to be less defined. 

Additionally, Figure 4.3 shows the difference in Himalayan height after increasing the height 

by 5% (P5), 10% (P10), 15% (P15), and 20% (P20) from the mean (CNTRL) height of the 

model (Figure 4.1). 
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Table 4.1 – The RegCM4 configuration used. 

Dynamics   Hydrostatics 

Convective parameterization  

 

(a) Mix99- Grell over land and Emanuel over 

ocean 

(b) Grell with Arakawa and Schubert (Grell-AS) 

closure  

(c) Kuo with Arakawa and Schubert (AS) closure 

(d) Grell with Fritch & Chappell clouser (Grell-

FC) closure 

 

Model domain Resolution =25 km 

Planetary Boundary Layer 

parameterization 

Holtslag 

Envelop topography treatment Envelop orography with an increase/decrease from 

model height of 5%, 10%, 15% and 20% 

Radiation parameterization NCAR/CCM3 radiation scheme 

Main Prognostic Variables    u,v t,q and p 

Map projection    Rotated Mercator  

Vertical co-ordinate  24 sigma levels with terrain-following sigma co-

ordinate  

Land Surface parameterization • Community Land Model (CLM) 

• Biosphere-Atmosphere Transfer Scheme (BATS) 

  

Horizontal grid system Arakawa B 



Chapter 4 
 

87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 – Model domain and orography (m) as used in RegCM4. 

Fig. 4.2 – Model orography (m) from HadGEM3 (a) and RegCM4 (b) models. 
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The statistical metrices Equitable Threat Score (ETS), Index of Agreement (IOA), Hit 

Rate (HR) and False Alarm Rate (FAR) are calculated to evaluate the performance of the model 

with different orography representations. The formulas for the different statistical techniques 

are described below:  

Equitable Threat Score (ETS): ETS is described as a useful skill metric for estimating 

model performance (Wilks, 1995) which is defined as: 

                  𝐸𝑇𝑆 =
𝐻−𝐻𝑟

𝐻+𝐹+𝑀−𝐻𝑟
 , where 𝐻𝑟 =

(𝐻+𝐹)(𝐻+𝑀)

𝑁
            

 

 𝐻 represents the hits, 𝐻𝑟 represents the hits expected by chance, 𝐹 represents false 

alarms, 𝑀 represents misses and 𝑁 is the total number of events. ETS varies from −1
3⁄  to 1. 

An ETS value equal to 0 indicates no skill and an ETS value equal to 1 indicates perfect skill.  

 

Fig. 4.3 – Difference in height (m) over the Himalayan region between RegCM4 model mean height 

and a 5% (P5), 10% (P10), 15% (P15), 20% (P20) increase in mean height. There is a contour 

interval of 100m. 
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Index of Agreement (IOA): Willmott (1982) stated that the ratio between RMSE and 

observed climatology are unstable for near zero values. IOA was proposed by Willmott (1982) 

as an alternative, to correct this issue. IOA (d) is defined as: 

                      𝑑 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (|𝑃𝑖−𝑂̅|+|𝑂𝑖−𝑂̅|)2𝑛
𝑖=1

 

 

  𝑂𝑖 is the obsered value, 𝑃𝑖 is the forecast value for the 𝑖𝑡ℎ year  and 𝑂̅ is the average of 

observation values. IOA is measured between 0 and 1 (0 ≤ 𝑑 ≤ 1) with a value of closer to 1 

indicating a better forecast from the model.  

Hit Rate (HR): This metric gives the fraction of correctly forecasted events. HR is defined as: 

𝐻𝑅 =  
𝐻

𝐻 + 𝑀
 

       

𝐻 represents the number of hits and 𝑀 represents the number off misses. HR ranges 

from 0 to 1, with a HR equal to 1 indicating perfect prediction skill.    

False Alarm Rate (FAR): The fraction of false alarms that occur during the total number of 

forecasts. This is defined as: 

𝐹𝐴𝑅 =
𝐹

𝐹 + 𝑇
 

                                                                                                                                    

Where 𝐹 represents the a false positive, and 𝑇 represents a true negative. FAR ranges 

for 0 to 1, with a FAR equal to 0 indicating perfect prediction skill. 
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4.4 Results and Discussion 

 

The results of this chapter are split into three sections which look at the sensitivity of 

RegCM4 simulations, driven by HadGEM3 to different parameterization schemes in 

simulating temperature and precipitation over India.  Himalayan orography representation, 

sensitivity experiments with four different cumulus convective parameterization schemes and 

two different land surface schemes.    

4.4.1 Himalayan Orography Representation 

4.4.1.1 Zonal Moisture Transport 

 

 Figure 4.4 shows the seasonal (JJAS) mean differences of zonal moisture transport 

between wet and dry years at 500hPa. Observed values have been compared to different 

Himalayan orography representations (M20, M15, M10, M5, CNTRL, P5, P10, P15, P20) 

that indicate an increase (P) or decrease (M) in orography. There is a significant increase in 

moisture transport when reducing orography representation, and M20 records the highest 

values over most of the region. Increasing orography representation appears to reduce 

moisture transport and produces values that are closer to the observation. This is most 

noticeable over the middle longitudes which are hugely overestimated by the M experiments. 

P10 is found to be the best scenario here which is the closest to observed values as further 

increasing orography representation leads to an underprediction of moisture transport.   

4.4.1.2 Precipitation 

 When comparing the JJAS precipitation of the different orography representations to 

observed values (Fig. 4.5), P10 shows the best precipitation simulation and is closest to 

observation. The model simulated the JJAS mean precipitation over nine season (three wet, 

dry and normal) using the nine different orography representations. It is found that all 

decreases to orography representation (M5-20) as well as the control and P5 underestimate 
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precipitation. M20 is shown to give the largest underestimation, and P20 the largest 

overestimation of precipitation. Here even the control experiment underpredicts precipitation 

by a significant amount.   

 JJAS mean precipitation has been averaged over the Western Himalayan region of 

India (71˚E-84˚E and 28˚N-38˚N) with the nine different orography representations (Fig. 

4.6). It can be seen that increasing the height by 10% (P10) increases the precipitation by 

around 15% and decreasing the height by 10% (M10) decreases the precipitation by around 

32% from the control experiment. A reduction in height would allow a strong prevailing 

westerly wind to carry more moisture on the leeward side of Himalayas, resulting in less 

precipitation over the relevant domain. 

Fig. 4.4 – JJAS differences between wet and dry years for zonal moisture transport at 

500hPa. Observation and different Himalayan orography representations (M20, M15, 

M10, M5, CNTRL, P5, P10, P15, P20) are shown. 
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Fig. 4.5 – JJAS precipitation over India using observed and RegCM4 simulations with 

different Himalayan orography representations (M20, M15, M10, M5, CNTRL, P5, P10, P15, 

P20) for nine distinct years (three years each for wet, normal and dry). 

Fig. 4.6 – Western Himalayan (71°E-84°E; 28°N-38°N) area averaged JJAS mean precipitation 

for different Himalayan orography representations (M20, M15, M10, M5, CNTRL, P5, P10, P15, 

P20) using RegCM4. The y-axis shows precipitation (mm/day). 
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 The Hit Rate (HR) and False Alarm Rate (FAR) are compared for the nine different 

orography representations in figure 4.7. A HR of one and a FAR of zero is considered to be 

the best possible forecast, and it is seen that this varies greatly between the different 

orography representations. P10 is the best experiment here with a HR of around 0.53 and 

FAR of around 0.25. It can be seen that decreasing the orography representation lowers the 

HR and increases the FAR and gets worse the more orography height is reduced. This is 

worst with the largest reduction in orography (M20). Increasing orography representation is 

shown to improve upon HR and FAR, however P15 and P20 yield worse results than P10 

showing that too large of an increase can negatively impact results.  

 The Equitable Threat Score (ETS) is calculated for the nine different orography 

representations in figure 4.8. The ETS has been calculated for days where observed 

precipitation if greater than 3mm/day. ETS ranges from -0.3 to 1, with 1 being the best 

possible outcome. M10, M15 and M20 all show an ETS below zero and is worst with the 

M20 experiment, recording an ETS of -0.24. Increasing the height also increases the ETS and 

improves up the control height. Once again P10 is the best performing experiment with an 

ETS of 0.53 and increasing the height beyond this lowers the ETS. 

 Orography representation is shown to be an important factor to consider with regards 

to precipitation simulation using RegCM4 over India. Increasing the orography height by 

10% (P10) yields the best results and shows improved results in precipitation simulation 

when compared to the default orography representation in the model.  
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Fig. 4.7 – Hit Rate (y-axis) versus False Alarm Rate (x-ais) for nine different 

Himalayan orography representations (M20, M15, M10, M5, CNTRL, P5, P10, P15, 

P20). 

Fig. 4.8 – Equitable Threat Score (ETS) for nine different Himalayan 

orography representations (M20, M15, M10, M5, CNTRL, P5, P10, P15, P20). ETS is 

considered for days where the observed precipition is greater than 3mm/day. 
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4.4.2 Convective Parameterization Schemes 

4.4.2.1 Circulation Features 

 

The RegCM4 simulations have been analysed to study the various meteorological fields 

and associated patterns for nine different years. The upper air and surface fields are compared 

with IMD observed data. The sensitivity of convective parameterization scheme experiments 

are shown in table 4.2. 

Vertical pressure velocity (omega) is an important upper air circulation parameter and 

plays an important role in model dynamics for precipitation simulation. This makes it important 

to consider the simulations of omega with different cumulus schemes. For this purpose, omega 

Fig. 4.9 – JJAS mean vertical pressure velocity (Pa/s) at 500 hPa pressure level of 

Obs (a), RegCM4 simulations at 25km resolution using SC1 (b), SC2 (c), SC3 (d) 

and SC4 (e) cumulus schemes for a composite (wet-dry) precipitaiton year. 
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at 500 hPa obtained from observation and RegCM4 simulations are analysed for composite 

precipitation years (Fig. 4.9). SC1 and SC2 show a large estimation of omega in the northwest 

and underestimation of omega in the northeast regions. Observed values show that a negative 

omega (sinking motion) is stronger over the southwest and northeast regions which is well 

represented by SC4 and SC3 schemes. Although both of these schemes represent omega well, 

SC4 is shown to be closer to observation of omega when compared to SC3 over this region. 

     

 

 

 

 

 

 

Table 4.2 – Different cumulus scheme experiments with RegCM4 simulations at 

a 25 km resolution. 

Lateral boundary 

condition 

RegCM4 

 

Hadley Centre Global 

Environment Model 

version 3 (HadGEM3) 

 Kuo cumulus scheme with Arakawa Schubert closure 

(SC1) 

 Grell cumulus with Arakawa Schubert closure (SC2) 

Grell cumulus scheme with Fritsch Chappell closure 

(SC3) 

Mix99- Grell over land and Emanuel over ocean (SC4) 
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4.4.2.2 Precipitation 

4.4.2.2.1 Precipitation Distribution 

 

The cumulus scheme SC4 is shown to most closely match observations when 

simulating precipitation for dry, normal and wet years over India (Fig. 4.10). Here the four 

cumulus schemes (SC1, SC2, SC3 and SC4) are tested against observed values for dry, normal 

and wet years over the Indian domain. The difference between observed values and SC4 is 

much smaller than the other schemes, showing the ability of SC4 to capture both precipitation 

intensity and distribution over India. This is possibly due to the better representation of 

moisture convergence seen in SC4 when compared to the other schemes. 

 

 

 

Fig. 4.10 – JJAS mean precipitation over India from observed values and SC1, SC2, SC3, 

and SC4 cumulus schemes for wet, normal and dry precipitation years.       
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4.4.2.2.2 Statistical Analysis of Precipitation Simulation in RegCM4 

  

 The ability of the four cumulus schemes to represent precipitation over India is shown 

through the use of a Taylor diagram (Fig. 4.11) and Equitable Threat Score (Fig. 4.12). When 

comparing the different cumulus schemes, SC4 is shown to perform better in terms of 

correlation coefficient, root mean square error and standard deviation that the other cumulus 

schemes. SC3 performs quite well and is not too far away from SC4, whereas SC1 and SC2 

perform considerably worse. SC4 is also shown to perform better than the other cumulus 

schemes through the use of ETS (Fig. 4.12). ETS values are shown for dry, normal and wet 

years, with an ETS equal to one being the best possible outcome. SC2 struggles the most with 

precipitation simulations as it is the only cumulus scheme to produce a negative ETS, which 

is the same for all scenarios. SC4 has the best ETS for all scenarios and performs best during 

a normal precipitation year with an ETS of 0.54.  

 

Fig. 4.11 – Taylor diagram showing the correlation coefficient, normalised 

standard deviation and root mean square error for SC1, SC2, SC3 and SC4 

when compared to observed values for JJAS precipitation. 
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4.4.3 Land Surface Schemes 

 

Two Land Surface Parameterization Schemes (LSPS) are used to evaluate the 

sensitivity of land surface when simulating temperature and precipitation over India. The two 

LSPS used are the Biosphere-Atmosphere Transfer Scheme (BATS) and the Common Land 

Model version 4.5 (CLM). Details of these two LSPS are shown in table 4.3. The following 

section compares these two LSPS for use with RegCM4. 

 

 

Fig. 4.12 – Equitable threat score (ETS) for precipitation simulations using 

RegCM4 with SC1, SC2, SC3 and SC4 schemes for dry, normal and wet 

years. 
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Table 4.3 – Land Surface Parameterisation Schemes (CLM and BATS) 

Category CLM BATS 

Treatment of heat and 

roughness length 

Values are updated over bare soil 

and snow with values from the 

stability functions 

Heat and water vapor 

roughness lengths are 

fixed 

Soil temperature 

calculation 

The soil temperature is calculated 

through the use of a ten-layer soil 

model  

It uses a two-layer 

force-restore model  

Land cover/ 

Vegetation classes 

24 vegetation types  20 vegetation types 

Vegetation canopy  The canopy is divided into sunlit 

and shaded fractions as a function 

of leaf area index 

All vegetation in the 

canopy is treated the 

same 

Surface 

representation 

One vegetation later with a canopy 

photosynthesis-conductance model, 

ten unevenly spaced soil layers and 

five snow layers 

One vegetation layer, 

one surface soil layer 

and one snow layer 

Calculation of 

stomatal conductance 

and photosynthesis 

rate 

The stomatal conductance is 

calculated separately for sunlit and 

shaded fractions, and 

photosynthetic rates are determined 

within this scheme 

No calculation for 

stomatal conductance 

or photosynthesis 

rate 

 

 

4.4.3.1 Analysis of Soil Moisture and Sensible Heat Flux 

 

 Soil moisture during the JJAS period for observed (ERA5) and RegCM4 simulations 

using BATS and CLM are shown over India (Fig. 4.13). Both RegCM4-BATS and RegCM4-

CLM are shown to capture the spatial distribution of soil moisture over India, however 

RegCM4-CLM values are much closer to observations and RegCM4-BATS shows large 

underestimations in soil moisture over the region.  
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Sensible heat flux for observed and RegCM4 simulations using BATS and CLM are 

show in figure 4.14. Comparison between the LSPS shows clear spatial difference among the 

schemes compared to observation. Due to a greater number of vegetation cover/category the 

RegCM4-CLM is able to capture the fluxes more realistically compare to RegCM4-BATS. 

This reliable representation of the fluxes helps in better prediction of temperature and 

precipitation over the Indian region with RegCM4-CLM compared to RegCM4-BATS 

combination. 

Fig. 4.13 – JJAS average soil moisture for composite precipitation years using 

observed (a), BATS (b) and CLM (c) schemes. 

Fig. 4.14 – JJAS sensible heat flux difference for composite precipitation 

years obtained for observed (a), BATS (b) and CLM (c) schemes. 
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Table 4.4 – Root mean square error (RMSE) and correlation for wet, dry and 

normal precipitation years when compared to observed values using BATS and 

CLM schemes. 

4.4.3.2 Precipitation Statistical Evaluation  

 

 The correlation coefficient (CC) and root mean square error (RMSE) for both BATS 

and CLM are computed during wet, dry and normal precipitation years (table 4.4). The CLM 

LSPS outperforms BATS in terms of RMSE and CC for wet, dry and normal years. CLM has 

a lower RMSE for all scenarios when compared to BATS and the lowest RMSE (1.13) for 

CLM is seen during a dry precipitation year. CLM also has a high CC for all scenarios 

compared to BATS and the highest CC (0.46) is during a normal precipitation year.  

 

 

          Wet       Dry       Normal 

 

RMSE 

BATS 2.14 1.29 2.52 

CLM 1.98 1.13 2.06 

 

Correlation 

coefficient 

BATS 0.29 0.23 0.31 

CLM 0.34 0.37 0.46 

 

 

Table 4.5 - Skill scores for wet, normal and dry precipitation years over India (where 

rainfall ≥2 mm/day for a wet day). 

 

Year 

Land Surface    

Scheme 

 IOA  

  (0 to 1) 

   Bias  

    (0 to ∞) 

  ETS  

(−1
3⁄  to 1) 

 

Wet 

  BATS 0.67 1.39 0.14 

  CLM 0.78 1.03 0.34 

 

Normal 

  BATS 0.79 1.43 0.24 

  CLM 0.87 1.26 0.36 

 

Dry 

  BATS 0.53 1.64 0.18 

  CLM 0.61 1.51 0.27 
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The Index of Agreement (IOA), bias and Equitable Threat Score (ETS) have 

calculated for RegCM4-BATS and RegCM4-CLM during wet, normal and dry years over 

India (table 4.5). Here a wet day is classified as a day that is greater than or equal to 2 

mm/day. The IOA is better (closer to one) in CLM for wet (0.78), normal (0.87) and dry 

(0.61) compared to BATS and performs best during the normal precipitation year. Model 

biases are lower with the CLM scheme for wet (1.03), normal (1.26) and dry (1.51) compared 

to BATS and shows the lowest bias during the wet precipitation year. ETS is better (closer to 

one) for wet (0.34), normal (0.36) and dry (0.27) compared to BATS and has the best 

performance during the normal precipitation year.  

These results highlight the improvement in precipitation simulation with the addition 

of the CLM LSPS and the importance of land surface in precipitation simulation over India.  

 

4.5 Conclusion 

 

  This chapter has conducted three different sensitivity experiments with the ICTP 

Regional Climate Model (RegCM4) at a 25km resolution. The first sensitivity experiment 

utilises nine different orography representations and their influence on JJAS precipitation 

simulation. The second sensitivity experiment compares four different cumulus convective 

schemes in simulating JJAS precipitation. The third sensitivity experiment looks at two 

different land surface schemes for JJAS temperature and precipitation simulation. The key 

findings are as follows: 

• RegCM4 does well at simulating JJAS mean precipitation over India. Increasing the 

orography height in the model is shown to also increase precipitation, and decreasing 

the orography height appears to have the inverse effect. A 10% increase in height (P10) 

increases precipitation by 15% and a 10% reduction in height (M10) reduces 
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precipitation by 32% when compared to the control height. P10 is found to best 

represent precipitation for wet, normal and dry years as increasing orography height 

further results in leads to an over estimation of JJAS precipitation and lower scores 

from statistical metrics such as Hit Rate and Equitable Threat Score. 

• The Grell over land and Emanuel over ocean cumulus convection scheme (SC4) is 

found to best represent precipitation. This scheme is best able to reproduce vertical 

pressure velocity at 500hPa compared to the other tested schemes. JJAS mean 

precipitation is considerably closer to observations when using SC4 and is able to 

capture variability between wet, normal and dry precipitation years. Statistical analysis 

also shows SC4 as the best performing scheme when compared to the three convection 

schemes. 

• Out of the two land surface schemes tested, the Common Land Model version 4.5 

(CLM) is considered the better performing scheme. CLM is closer to observed values 

when simulating soil moisture and sensible heat flux, the latter of which is poorly 

represented by the Biosphere-Atmosphere Transfer Scheme (BATS). Statistical 

analysis when simulating JJAS precipitation for wet, normal and dry years shows CLM 

as being the best performing for all metrics over India.  

The importance of orography representation, cumulus convection and land surface has been 

demonstrated in this chapter. The best performing parameterizations from each of the three 

sensitivity experiments have been applied to the RegCM4 simulations in the following chapter 

to allow for a better representation of climate extremes over India.  
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Abstract 

 Global Climate Models are useful tool for simulating future climate, however their 

coarse resolution leads to smaller scale processes not being well represented. Dynamical 

downscaling through the use of Regional Climate Modelling aims to better represent these 

small-scale processes and give a more accurate representation of regional climate. Here the 

RegCM4.7 model was used, driven by HadGEM3-GC31-LL Global Climate Model. 

Sensitivity experiments were carried out to better fit this model to the Indian region with the 

addition of orography treatment which adds a 10 % increase from model mean height. The 

regional model is compared to its driving model during the historical period (1984-2014). For 

June, July and August maximum, mean and minimum temperature, it was found that the 

regional model had an improved spatial correlation over all Indian temperature homogenous 

regions with correlation coefficients as high as 0.99. There was a large improvement over the 

east coast from HadGEM3 to RegCM4.7 for all temperature variables (0.17 to 0.69 

respectively).  For June, July, August and September mean precipitation the regional model 

improved correlation over all regions except for the Himalayan region. Future projections show 

that maximum temperature is due to increase the most in the far-future when using the Shared 

Socioeconomic Scenario (SSP), SSP585. Indian is shown to experience more frequent three-, 

five- and seven-day heat waves, which will have a greater impact on the northern regions. 

Future mean precipitation changes vary per region with the PR and WC showing the largest 

increase and the CNE and eastern HR showing the largest decrease. Extremely wet days are 

shown to increase over all regions, the most impacted being the west coast of the PR and WC. 

These results show the importance of lowering emissions to prevent a dramatic increase in both 

extreme temperature and precipitation over India by the end of the century. 

 



Chapter 5 
 

107 

 

5.1 Introduction 

 

The previous chapters highlight the importance of being able to accurately model both 

temperature and precipitation over India and assess future changes in these variables. These 

chapters used GCMs which showed valuable insights into future changes in extremes, however 

due to their coarse resolution, also had relatively large biases. This coarser resolution leads to 

the GCMs being unable to represent smaller scale processes and this is a known issue in the 

community (Lun et al., 2021, Tiwari et al., 2014, Zhou et al., 2013,). 

This chapter uses dynamical downscaling to try an address the drawbacks of GCMs 

through the use of the regional climate model RegCM4.7. Various sensitivity experiments were 

carried out in chapter 4 to try and tailor this model to the Indian region and ultimately better 

understand the changes in climate extremes over India. Dynamical downscaling uses a 

reanalysis data or a GCM to drive the RCM and models regional climate at a higher resolution 

(Giorgi, 2019). RCMs have been used in many studies over many different regions and are 

valuable tools for assessing regional climate (Ahmadi et al., 2020, Carvalho et al., 2016, Chen 

et al., 2018, Rajczak et al., 2017, Turco et al., 2017). 

CMIP6 models are still relatively new and using them as the driving model for an RCM 

provides downscaled SSP data which is not readily available. An effort has been made to 

address the known issues with the more mountainous regions over India with the addition of 

orography treatment during the parameterization of the RCM. This chapter aims to improve 

upon the GCM simulations with the use of the newest versions of both GCM and RCMs to 

give a better understanding of extreme temperature and precipitation over India. 
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5.2 Methodology 

5.2.1 RCM Configuration 

 

The RegCM4.7 regional climate model is used for this chapter over the Indian domain 

and its relevant temperature and precipitation homogenous regions (described in chapters 2 and 

3 respectively). This RCM is from the Abdu Salam International Centre for Theoretical Physics 

(Elguindi et al., 2017, Giorgi et al., 2012). The configuration used for this model is shown in 

table 5.1. 

Table 5.1 - Configuration of RegCM4.7 model used in the present study 

Dynamics Hydrostatics 

Main Prognostic Variables  u, v, t, q and p 

Horizontal grid distance 25 km 

Map projection  Rotated Mercator map projection 

Vertical co-ordinate  Terrain-following sigma co-ordinate  

Cumulus parameterization  Grell over land and Emanuel over ocean (SC4) 

Land surface scheme Community Land Model (CLM4.5) 

Orography treatment Envelop orography (10 % increase from model 

mean height) 

Radiation parameterization  NCAR/CCM3 radiation scheme 

PBL parameterization  Holtslag  

Simulation period  1980-2099 

Analysis period  1984-2014, 2030-2060, 2070-2099 

Emission pathway Shared Socioeconomic Pathways (SSPs)- 

SSP126, SSP245, SSP585 

Driving CMIP6 model Hadley Centre Global Environment Model 

version 3 (HadGEM3-GC31-LL) 
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5.2.2 Observed Data and Future Temperature and Precipitation 

Simulations 

 

The analysis periods are split into three groups, historical (1984-2014), near-future 

(2030-2060) and far-future (2070-2099). For temperature we only consider JJA periods per 

year which are the hottest months of the year over India. For precipitation we only consider 

precipitation during JJAS which is during the ISM and when most heavy precipitation occurs. 

The RCM was run from 1980-2099 which allowed a spin-up time of 4 years. Allowing a spin-

up time removes inconsistencies that are present at the start of RCM model runs (Jerez et al., 

2020). For the historical period, the ability of the RCM to simulate maximum, mean and 

minimum temperature as well as mean precipitation is shown. The observed data used for all 

temperature variables is from the Climatic Research Unit (CRU, Harris et al., 2017) which has 

a resolution of 50km. For precipitation the Indian Meteorological Department (IMD, Pai et al., 

2014) observed dataset is used, which has a resolution of 25km (the same as the RCM). Both 

the CRU and HadGEM3 grid size was changed to 25km to match the grid size of the RCM 

using the CDO (Schulzweida et al., 2021).  

Future simulations use Shared Socioeconomic Pathways (Riahi et al., 2017) SSP126, 

245 and 585 which represent low, medium and high emission scenarios respectively. For the 

future time period the variables maximum temperature, mean precipitation, number of 

consecutive heat waves (3, 5 and 7 consecutive days), heat wave duration index and extremely 

wet days are shown. Definitions of these variables (except tasmax and pr) are shown in tables 

2.2 (heat wave variables) and 3.2 (EWD). These were calculated in CDO using the daily tasmax 

and daily mean precipitation datasets.  
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5.3 Results and Discussion 

5.3.1 Temperature Extremes using RCM Simulations 

5.3.1.1 HadGEM and RegCM4 Historical Analysis 

 

The historical RCM simulations do a good job of capturing tasmax, tas and tasmin 

over most of the Indian temperature homogenous zones (Fig. 2.1). The models struggle with 

the WH which shows a large cold bias, which is likely due to the complex topography of this 

region. For tasmax there is a general cold bias over most regions. A slight warm bias is seen 

in the NE and a larger warm bias at the south of the EC and IP. When looking at tas, there is 

also a general cold bias over most regions, however parts of the NW, NE and the 

southernmost point of the EC do have a small warm bias. tas has less significant grid points 

Fig. 5.1 – JJA tasmax (a, b, c), tas (d, e, f) and tasmin (g, h, i) for observed (a, d, g), 

RCM (b, e, h) and RCM bias (c, f, i) during the historical period (1984-2014). The 

dots represent the grid points with significant differences at 95% significance level. 
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than tasmax and tasmin, most noticeably in the NC region. Different from the previous two 

variables, tasmin shows a warm bias over most regions, except the WH and the WC. 

The RCM sees an improvement in CC with the observed dataset for all temperature 

variables over all homogeneous regions when compared to the CC of the CMIP6 driving 

model (HadGEM3-GC31-LL). For tasmax (fig. 5.2a), the RCM CC is between 0.9 and 1 for 

the WH, NW, WC, NE and NC regions. HadGEM3 appears to struggle most over the EC with 

a CC of 0.17 and the RCM shows a significant increase in CC (0.69) over this region. 

Similarly, for tas (fig. 5.2b) the RCM is between 0.9 and 1 for most regions, except EC which 

is still very high at 0.84. Once again there is a significant improvement in the RCM CC (0.84) 

over the EC when compared to HadGEM3 (-0.078), which is HadGEM3s worst performing 

region. The RCM only shows a CC between 0.9 and 1 for tasmin (fig. 5.2c) and once again 

improves upon HadGEM3 over every region. Overall, the RCM shows a large improvement 

compared to HadGEM3 over all temperature homogenous regions for all temperature 

variables with the largest improvements being over the EC, which HadGEM3 has the most 

difficulty with. For tasmax and tas, the RCM shows the best performance over the NC and 

worst over the EC, this is almost the same for tasmin, however the WC is tied with the NC 

for the best CC. Even though the RCM performs best over the NC, the other regions are not 

for behind and the RCM does an excellent job at representing temperature over the Indian 

homogenous regions. 
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5.3.1.2 RegCM4 Future Projections over India 

 

FF SSP585 shows the largest rightward shift in temperature when compared to all over 

SSPs and time periods over all homogenous regions (fig. 5.3). The RCM underestimates 

tasmax during the historical period for all homogenous regions, with the largest bias being seen 

in the WH (fig. 5.3b) which has a difference of 6˚C. The NE is closest to observed values with 

a difference of 0.3˚C. All SSPs over all regions show an increase in tasmax when compared to 

the present climate, suggesting that warming in inevitable. For all regions FF SSP126 appears 

to have a lower tasmax when compared to all NF and FF SSPs. This could suggest that 

sufficient mitigation strategies can reduce the increased tasmax by the end of the century. FF 

SSP585 shows the largest increase in temperature for all regions, with increases of 4.4˚C (IP), 

8.8˚C (WH), 7.9˚C (NW), 3.4˚C (WC), 4.9˚C (EC), 6.4˚C (NE) and 7.8˚C (NC) when 

compared to the present climate. This makes the WH the most impacted region with regards to 

Fig. 5.2 – Spatial correlation coefficient for both the HadGEM3-GC31-LL (1st row) and RCM 

(2nd row) compared to the observed (CRU) dataset for JJA tasmax (a), tas (b) and tasmin (c) over 

the Indian temperature homogenous zones for the historical period. 
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increased tasmax, however there are large temperature biases in this region. The NW and NC 

are also among the regions that see a large shift in tasmax and the biases for these regions are 

much smaller. 

5.3.1.2.1 Future Changes in Heat Wave Characteristics 

 

The number of heat waves per summer season is shown to increase in the future, with 

FF SSP585 showing the largest increase over the entirety of India (Fig. 5.4, 5.5, 5.6). When 

looking at 7 consecutive day HWs (Fig. 5.4) the WH and the north of the NW is most 

affected during the NF, receiving up to 3 more HWs per summer season. The NW, NC and 

Fig. 5.3 – PDF for JJA tasmax over the Indian temperature homogenous regions during the 

historical, NF and FF periods using SSP1-2.6 (green), SSP2-4.5 (blue) and SSP5-8.5 (red). The 

historical period shows both observed values (solid black) and RCM values (dashed black). SSPs 

show solid lines for NF and dashed lines for FF. 
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NE are shown to receive between 1 and 2 more HWs when compared to the present climate. 

The WC is the least affected region showing mostly no increase except a small section near 

the top of the WC. The IP is least affected during NF SSP585 which is surprising. When 

looking at the FF, SSP126 sees a reduction in HW coverage when compared to its NF 

counterpart and is most noticeable over the NE and NW. SSP245 sees an increase in HW 

number when comparing NF to FF. The WH and north of the NW are most impacted here 

showing up to 3 more HWs per summer season. FF SSP585 shows the largest increase in HW 

number. All regions are shown to increase receive more HWs per summer season. The NW, 

NE and WH are most affected here and have an almost complete coverage of 3 more HWs. 

Areas that don’t receive 3 more HWs are projected to receive an increase of 2 HWs. The IP is 

now shown to receive 1 more HW and the north of this region is shown to receive 2 more 

HWs and is now showing more HWs that the other SSPs. The WC which previously showed 

almost no increase is now showing 1-2 more HWs. 

HWs for 5 consecutive days (Fig. 5.5) show a similar trend to the previous figure (Fig. 

5.4), but with regions receiving more HWs. Once again NF SSP585 shows the largest increase 

in HWs compared to other SSP scenarios for most regions, the only exception is the IP.  The 

WH, NW, NC and NE are most affected here with the most impacted areas seeing up to 4 more 

HWs per summer season. During the FF period SSP126 sees a slight reduction in HW number. 

Areas in the NC and NE that were seeing 4 more HWs have reduced to 3 and the area of the 

NW that was most impacted is reducing slightly. SSP245 sees an increase in HW number 

compared to the NF. The most increase is most noticeable in the NC, NW and WH which now 

have a larger area showing 4 more HWs and there are some small parts of the WH and NW 

showing 5 more HWs. FF SSP585 shows the largest increase, especially over the northern 
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regions. The NE is the most impacted showing a large area with an increase of 5 HWs. Most 

of the northern regions are now showing an increase of 4 HWs. 

Fig. 5.4 – Heat waves per summer season (where TX > TXnorm + 5°C for 7 consecutive days) 

difference compared to the present climate for SSP1-2.6 (a, b), SSP2-4.5 (c, d) and SSP5-8.5 (e, 

f).  The first column shows the difference over the NF period (a, c, e) and the second column 

shows the difference over the FF period (b, d, f). 
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3 consecutive day HWs (Fig. 5.6) show the largest increase when compared to the 

present climate, and once again the largest increase is from FF SSP585. All of India is shown 

to receive some amount of HW increase. The most impacted regions in the NF are the NE and 

Fig. 5.5 – Heat waves per summer season (where TX > TXnorm + 5°C for 5 consecutive days) 

difference compared to the present climate for SSP1-2.6 (a, b), SSP2-4.5 (c, d) and SSP5-8.5 

(e, f).  The first column shows the difference over the NF period (a, c, e) and the second 

column shows the difference over the FF period (b, d, f). 
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NW under SSP126 and SSP245 and show an increase of 7+ HWS. This is the same for SSP585, 

however a large part of the NC is most impacted here too. Moving onto the FF and SSP126 

once again shows a reduction in HW number. There are hardly any more regions receiving 7+ 

HWs, except a very small part of the NE and WH. The most notable increase for FF SSP245 is 

over the NC and is shown to increase over all regions. FF SSP585 shows the largest increase 

over all of India, except the north of the NC which sees a larger increase in FF SSP245. The 

NC sees a decrease in the north, areas that were shown to have 7+ HWs are now down to 6. 

Fig. 5.6 – Heat waves per summer season (where TX > TXnorm + 5°C for 3 consecutive 

days) difference compared to the present climate for SSP1-2.6 (a, b), SSP2-4.5 (c, d) and 

SSP5-8.5 (e, f).  The first column shows the difference over the NF period (a, c, e) and the 

second column shows the difference over the FF period (b, d, f). 
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This could be because of the increase in longer duration HWs under FF SSP585 as seen in 

figures 5.4 and 5.5, meaning less of the shorter duration HWs. The NE is the most impacted 

region and sees a very large coverage of 7+ HWs under FF SSP585. 

Overall FF SSP585 shows the largest increase in HW number over all of India, as well 

as an increase in HWs with a longer duration. The NE is generally the most impacted region, 

but all northern regions show quite a large increase. This is also where the Indo-Gangetic plane 

is, which is where a large portion of the Indian population resides, meaning this increase in 

HW frequency and duration will impact a large portion of the Indian population. 

The heat wave duration index (HWDI) for 7 consecutive day HWs is shown in figure 

5.7 for NF and FF SSP126, 245 and 585. The HWDI for 3 and 5 consecutive days are not 

shown as they have the same spatial coverage as figure 5.7 with slightly increased values. 

During the NF there is little different between the SSPs, although SSP245 and SSP585 appear 

to have a slightly higher HWDI than SSP126. During the NF, the WH is the most impacted 

region with regards to HWDI. During the FF SSP126 sees very little change. There is a slight 

increase over the northwest of the NC region. FF SSP245 and SSP585 show an increase 

compared to their NF counterparts, however the latter is much more significant. The NW, NC, 

NE and WH are now showing a HWDI of 55+ compared to FF SSP126 which has a maximum 

value of around 45. The most impacted region is the WH and NW which show values reaching 

70 and over.  
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Fig. 5.7 – Heat wave duration index with reference to the mean of the summer season 

(where TX > TXnorm + 5°C for 7 consecutive days) difference compared to the present 

climate (1984-2014) for SSP1-2.6 (a, b), SSP2-4.5 (c, d) and SSP5-8.5 (e, f).  The first 

column shows the difference over the NF period (a, c, e) and the second column shows the 

difference over the FF period (b, d, f). 
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5.3.2 Precipitation extremes using RCM simulations 

5.3.2.1 HadGEM and RegCM4 Historical Analysis 

 

The RCM mostly does well at representing precipitation over the Indian precipitation 

homogenous regions (Fig. 3.1) with varying wet and dry biases (Fig. 5.8).   The NW region 

has the lowest biases out of all the regions. This region has a slight wet bias to the north and 

small areas of a slight dry bias. Conversely The NE and HR show quite a large wet bias. 

These are the more mountainous regions which suggests why the model struggles. The 

northwest of the HR shows a slight dry bias but is well represented. All other regions have a 

small wet bias, except the west coast of the WC and PR which is showing a dry bias. This is 

also where most of the ISM rainfall occurs in India. 

 

Fig. 5.8 – JJAS mean precipitation over the Indian precipitation homogenous regions for observed (a), 

RCM (b) and RCM bias (c) for the historical period (1984-2014). Here the observed data is taken from 

IMD. The dots represent the grid points with significant differences at 95% significance level. 
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 The RCM outperforms all CMIP6 models when compared to the IMD mean 

precipitation dataset (Fig. 5.9). The correlation coefficient (CC) of the RCM improves upon 

all CMIP6 models. The CC of HadGEM3 (the driving model of the RCM) is 0.66, the best 

performing CMIP6 model (EC-Earth3) has a CC of 0.77 and the CC of the RCM is 0.82. The 

RCM also has an improved standard deviation (SD) when compared to most CMIP6 models 

and improves up the SD of HadGEM3.  This is once again the same for root mean square 

error (RSME). Most of the CMIP6 models have an RSME of over 0.8 whereas the RCM has 

an RSME of 0.6. This figure highlights the importance of downscaling when simulating JJAS 

mean precipitation over India. 

 

Fig. 5.9 – Taylor diagram showing JJAS mean precipitation over India for the historical period (1984-

2014) for 17 CMIP6 models and the RCM compared to the IMD observed dataset.  
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5.3.2.2 Future Changes in Precipitation 

 

Future changes in mean precipitation vary per region and different SSPs seem to have 

less of an impact on future precipitation (Fig. 5.10 and table 5.2). The CNE shows a large 

reduction in mean precipitation for all SSPs and the largest reduction (-30.4%) is from FF 

SSP585. From NF to FF, both SSP126 and 245 increase slightly, whereas SSP585 precipitation 

reduces further. The HR precipitation change is mixed between SSPs. There is a slight decrease 

in the NF for SSP126 and 245 and a slight increase for SSP585. During the FF both SSP126 

and 245 increase and SSP585 decreases. The NE shows a large decrease for both NF and FF 

for all SSPs and there is only a small difference between the SSPs. The NW also shows a 

decrease for all SSPs during the NF and FF. FF SSP585 shows a larger decrease (-28.5%) 

compared to other SSPs which don’t appear to change as dramatically. The PR shows the largest 

increases out of all regions. During the NF there is a small difference between the SSPs, with 

SSP585 showing a slightly greater increase (29.1%). During the FF SSP126 decreases by 7.8%, 

SSP245 stays almost exactly the same (0.1% decrease) and SSP585 increases by 1.5%. The 

WC also sees increase in precipitation, the largest being from NF SSP585 (17%). Precipitation 

changes vary dramatically from region to region and it’s unclear if the different SSPs have a 

significant effect on mean precipitation.  

 

Table 5.2 – JJAS mean precipitation increase (%) per region compared to historical period 

(1984-2014). Positive (negative) values show an increase (decrease) in precipitation. 

 CNE HR NE NW PR WC 

NF_SSP126 -24.8 -2.44 -36.4 -18.4 24.4 11.9 

NF_SSP245 -27.4 -4.93 -36.0 -16.9 25.4 10.4 

NF_SSP585 -23.1 1.76 -33.7 -14.1 29.1 17.0 

FF_SSP126 -19.6 5.53 -31.9 -13.0 16.6 10.9 

FF_SSP245 -23.4 -1.77 -37.4 -11.0 25.3 14.9 

FF_SSP585 -30.4 -11.6 -39.5 -28.5 30.6 10.8 
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Generally, mean precipitation is shown to decrease over India and most of the 

precipitation homogenous regions (Fig. 5.11). The RCM for the historical period does a good 

job of capturing mean precipitation for most regions but struggles with the HR where is shows 

a large dry bias. The CNE shows a decrease in precipitation and FF SSP585 shows a slightly 

larger decrease than the other SSPs. This is the same for the HR and NW. The NE shows a 

decrease in precipitation, however, there appears to be no difference between the SSPs for NF 

and FF. The PR shows an increase in precipitation and FF SSP585 shows a slightly larger 

increase than the other SSPs. FF SSP126 shows a slight decrease. The WC also shows an 

increase in precipitation; however, the largest increase is from NF SSP585. Over the entirety 

of India there appears to be a slight decrease in precipitation overall, with FF SSP585 showing 

a slightly large decrease. 

Most of India is shown to experience more extreme wet days (EWDs), however there 

is little difference between SSPs in the NF and FF (Fig. 5.12). For all SSPs during NF and FF 

the west coast of the PR and WC and parts of the WH receive the most EWDs (10% and over). 

There is little difference between the SSPs during the NF, the most noticeable difference is the 

slight increase in EWDs in the WC for NF SSP585. During the FF SSP126 shows a slight 

increase in the NW although differences between the two are small. For FF SSP245 the largest 

increase is seen to the west of the WC. This increase is also seen in FF SSP585 and is slightly 

greater. It seems that areas that receive the most precipitation during JJAS are projected to 

receive more EWDs, with SSP585 increasing these EWDs even more.  

 

 



Chapter 5 
 

124 

 

 

 

 

Fig. 5.10 – JJAS mean precipitation difference over Indian precipitation homogenous 

regions for SSP1-2.6 (a, b), SSP2-4.5 (c, d) and SSP5-8.5 (e, f). The first and second 

columns show the precipitation difference for NF (a, c, e) and FF (b, d, f) respectively 

when compared to the historical period.  
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5.3.2.1.1 Extreme Precipitation 

 

Most of India is shown to experience more extreme wet days (EWDs), however there 

is little difference between SSPs in the NF and FF (Fig. 5.12). For all SSPs during NF and FF 

the west coast of the PR and WC and parts of the WH receive the most EWDs (10% and over). 

There is little difference between the SSPs during the NF, the most noticeable difference is the 

slight increase in EWDs in the WC for NF SSP585. During the FF SSP126 shows a slight 

increase in the NW although differences between the two are small. For FF SSP245 the largest 

Fig. 5.11 – PDF for JJAS mean precipitation over the Indian precipitation homogenous regions during the 

historical, NF and FF periods using SSP1-2.6 (green), SSP2-4.5 (blue) and SSP5-8.5 (red). The historical period 

shows both observed values (solid black) and RCM values (dashed black). SSPs show solid lines for NF and 

dashed lines for FF. 
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increase is seen to the west of the WC. This increase is also seen in FF SSP585 and is slightly 

greater. It seems that areas that receive the most precipitation during JJAS are projected to 

receive more EWDs, with SSP585 increasing these EWDs even more.  

 

Fig. 5.12 – Extremely wet days with reference to the 99th percentile of reference period 

(1984-2014). The first column (a, c, e) shows the NF and the second column (b, d, f) 

shows the FF for SSP126 (a, b), SSP245 (c, d) and SSP585 (e, f). 
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5.4 Conclusion 

 

RegCM4, driven by HadGEM3-GC31-LL, was used to assess future changes in 

extreme temperature and precipitation over India during JJA and JJAS respectively, using 

SSP126, 245 and 585. The performance of the RCM was also compared to HadGEM3-GC31-

LL for the historical period. The key findings are as follows: 

• The RCM shows a mostly cold bias for tasmax and tas, and a warm bias for 

tasmin. The biases are relatively small, except for the WH region which shows 

a large cold bias for all temperature variables. 

• Precipitation is well represented by the RCM during the historical period over 

most regions. There is a large wet bias in the NE and the east part of the HR, 

which are also the most mountainous regions of India.  

• When compared to HadGEM3, the RCM shows an improvement in correlation 

over all homogenous regions for temperature. For the temperature variables, 

HadGEM3 struggled with the EC and the RCM showed large improvements 

over this region.  

• The RCM is shown to have an improved correlation coefficient, standard 

deviation and root mean square error compared to 17 CMIP6 models when 

simulating mean precipitation over India. This highlights the benefits of 

downscaling for JJAS precipitation simulation over this region. 

• For all temperature homogenous regions, FF SSP585 shows the largest increase 

in tasmax. All SSPs show an increase in tasmax when compared to the present 

climate. For FF SP126 all regions except for the NC show a lower increase in 

tasmax compared to all other NF and FF SSPs. This suggests that although 
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warming is inevitable, sufficient mitigation strategies could lower this increase 

by the end of the century. 

• All of India is shown to experience more 3-day HWs, with the NE and parts of 

the Indo-Gangetic plane being most affected. The most affected regions are 

shown to experience 7 and more HWs per summer season. FF SSP585 does 

show a slight reduction over the NC, however this could be because FF SSP585 

will lead to longer duration HWs in the future. 5-day and 7-day HWs are most 

extreme with FF SSP585, with the most impacted regions being all the northern 

regions (NE, NC, NW and WH). FF SSP126 for 3-day and 5-day HWs shows a 

lower increase in HW frequency compared to the NF. 

• From NF to FF there is no change in HWDI when looking at SSP126. There is 

a small increase in HWDI for SSP245 over the NW and NC. SSP585 shows a 

large increase in HWDI in the FF over all northern regions (WH, NW, NC, NE). 

• Future changes in mean precipitation vary per region. Regions that already 

receive most of the ISM rainfall (west coast of the WC and PR) are projected to 

receive the largest increase in precipitation, however this is not true for the NE. 

The CNE, NE and eastern HR show large reductions in mean precipitation. All 

regions except for the PR and WC see a decrease in precipitation for all SSPs. 

There is less of a difference between SSPs for mean precipitation, however FF 

SSP585 appears to show the biggest difference when compared to the present 

climate. The only region this does not apply to is the WC where NF SSP585 

shows the largest increase. 

• Extremely wet days show an increase over almost all of India. The most affected 

regions are the IP, WC and the western part of the HR. Here the SSPs appear to 
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have a clearer influence, with FF SSP585 showing a larger increase, particularly 

over the IP and WC. 

This chapter demonstrates the benefits of dynamical downscaling for both 

temperature and precipitation. The RCM is shown to better represent both variables 

during the historical period when compared to its driving model. However, there 

are some large biases, most notably over the Himalayas which the RCM still 

struggles with. In the future it would be beneficial to look at precipitation on a larger 

scale, as well as exploring the dynamics (windspeed and VIMT) of the ISM using 

the RCM.  
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The main focus of this thesis is to look at future changes in temperature and 

precipitation over India and its relevant homogenous regions. The fidelity of GCMs was tested 

for both temperature and precipitation, however the coarse resolution leads to large biases in 

places, most notably over the Himalayas. This led to the use of RCMs through dynamical 

downscaling to increase model resolution and better capture small scale processes which the 

GCMs neglect. The RCM used is the RegCM4.7 from ICTP and RCM data only considers JJA 

(temperature) and JJAS (precipitation) to look at future changes in these variables when they 

are most extreme using SSP126, SSP245 and SSP585. All experiments consider three time 

periods, the historical period (1984-2014), near-future (2030-2060) and far-future (2070-2100). 

Far-future for the RCM simulations is from 2070-2099.  

Chapter 2 evaluates the performance of thirteen state-of-the-art GCMs for annual and 

JJA temperatures as well as the future changes using different SSP scenarios. A MME of the 

GCMs was created and has been found to reduce biases overall when compared to observed 

values, as temperature biases between models vary dramatically. The MME does a good job of 

capturing tasmax, tas and tasmin over India, but struggles with the Western Himalaya and 

Northeast regions due to the topographic complexity and snow cover of these regions. These 

regions are shown to have large cold biases for all temperatures during annual and JJA periods. 

Spatially CNRM-CM6 is found to be the best performing model, and temporally HadGEM3-

GC31-LL, KACE-1-0G and UKESM1-0-LL are found to be the best performing. When 

looking at the MME, there is a larger warm bias during JJA compared to annual temperature 

variables, suggesting that models are overestimating summertime temperatures. The annual 

period shows more variation in biases depending on the region and temperature variable. 

Annual and JJA temperatures have been shown to increase in the NF and FF for all temperature 

variables, with the annual maximum temperature showing an increase of 1.1°C, 1.2°C and 

1.6°C for NF and 1.5°C, 2.3°C and 4.1°C for FF SSP1-2.6, SSP2-4.5 and SSP5-8.5 
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respectively. The results of this chapter suggest that warming is inevitable as all SSP scenarios 

project a higher temperature at the end of the century compared to the present climate. SSP126 

and 245 values begin to level off in the FF, whereas SSP585 continues to steadily rise which 

suggests that sufficient mitigation can limit warming over this region by the end of the century. 

The frequency and duration of heat waves have been shown to increase in the future and the 

most impacted areas are also some of the most densely populated regions of India along the 

Indo-Gangetic plane. This increase in heat wave characteristics is significantly worse when 

using SSP585, showing the impact of fossil fuels on future heat waves. 

Chapter 3 assesses the fidelity of twelve state-of-the-art CMIP6 models and uses the 

MME of these models to look at future changes in precipitation during JJAS. This period is 

during the ISM when most precipitation occurs. This chapter considers both the South Asian 

domain and precipitation homogenous regions of India. Once again there are large variations 

in biases between models and the MME was shown to decrease these biases. The MME showed 

a dry bias over most of India, and a wet bias to the east of India. Windspeed and VIMT are also 

assessed here as they are important components of the ISM. The models can accurately capture 

the movement of the ISM, however, seem to largely underestimate windspeed and VIMT over 

the Arabian sea where these variables are strongest, which could explain the dry bias seen by 

the MME when simulating precipitation. During the future periods, all SSPs showed an 

increase in mean precipitation over India and this increase is most extreme for FF SSP585 and 

the Northeast region is found to be most affected. Extreme precipitation variables were also 

considered and were also found to increase the most for the FF SSP585 scenario and much 

lower for the other SSPs. 

Chapter 4 looks at the customisation of RegCM4.7 through three sensitivity 

experiments that consider orography representations, cumulus convection schemes and land 
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surface schemes. The first experiment uses nine different sets of Himalayan orography 

representations. Here it was found that increasing the height increases mean precipitation and 

decreasing height has the inverse effect. An increased height of 10% (P10) yields the best 

results for precipitation representation.  The second experiment looked at four different 

cumulus convection schemes. RegCM4.7 was able to simulate the mean pattern of upper air 

circulation well and can capture the contrasting features of circulation patterns during wet and 

dry years. The Grell over land and Emanuel over ocean (SC4) performed best over the Indian 

region with regards to precipitation simulation.  The final experiment considers two different 

land surface schemes. CLM was found to be the better land surface scheme for both 

temperature and precipitation simulation over India. When performing long period simulations, 

the customisation of the RCM was shown to improve temperature and precipitation 

representation over India. These three experiments lead to a customised and improved RCM to 

better predict future changes in temperature and precipitation over India. 

Chapter 5 uses the customised RCM to assess future changes in temperature and 

precipitation over India with a focus on extremes. The RCM is compared to CMIP6 models 

and was found to improve simulations in all regards however biases still remain, most notably 

over the Himalayan region. Maximum temperature was shown to increase in the future and is 

most extreme when using the SSP585 scenario in the far-future. SSP126 however, showed a 

decrease in maximum temperature in the far-future for all regions except for the NC when 

compared to the near-future. This shows that sufficient mitigation can lessen the impacts of 

climate change by the end of the century. India was shown to experience longer and more 

frequent heat waves in the near and far future, with the Indo-Gangetic plane being most 

affected. This is where most of India’s population resides, putting a large amount of people at 

risk. The increase in heat waves was worse when using SSP585. Future changes in precipitation 

appear to vary per region. The areas that receive most of the monsoon rainfall along the 
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Westcoast of India are projected to receive more mean and extreme precipitation in the near 

and far future. Other parts of the country (CNE, NE and HR) showed a reduction in 

precipitation and in the far future, SSP585 shows the largest decrease over these regions. 

Extreme precipitation was shown to increase over most of India for all SSPs and there was a 

larger increase in the far future over the PR and WC regions using SSP585. While biases still 

remain in the RCM, a customised RCM is shown to improve temperature and precipitation 

simulations over India, adding robustness to the future projections. When comparing the results 

from chapters 2 and 3 to the results from chapter 5, GCMs are found to underpredict heat wave 

severity and over predict extreme precipitation.  

This work emphasises the importance of sufficient mitigation strategies and the urgent 

need to act sooner rather than later. Actions made in the present day can have a large impact on 

the end of the century. Climate extremes are shown to worsen when using a high fossil fuel 

consumption scenario and this impact is lessened with the use of a more sustainable scenario. 

These climate extremes are shown to impact the most densely populated regions of India. A 

better understanding of these extremes and better action against these extremes is crucial to 

lessen the impact of climate change. 

A continuation of this work would benefit from the use of ultra-high-resolution 

modelling over district level to give a more detailed look at increases in extreme temperature 

and precipitation in the most vulnerable zones. The use of machine learning approaches should 

be explored to apply downscaling techniques which require significantly less computational 

resources than dynamical downscaling.  This would also allow for ISM simulation over a larger 

domain and higher resolution to better understand monsoon characteristics in models and 

further reduce these biases. Data assimilation should be used for short range, high impact 

climate events.
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Appendix 

Python Code 
 

Time Average Computation 

def jjas(month): 

    return (month >= 6) & (month <= 9) 

def time_av(sst, month): 

    data = sst.sel(time = month(sst['time.month'])) 

    av = data.groupby('time.year') 

    av = av.mean('time') 

    av = av.mean('year')  

    av = av.values.ravel() 

    av = av[~np.isnan(av)]  

    return av 

 

Probability Density Function  

def plot (model, label, colour, line): 

    sort = np.sort(model) 

    ax.plot(sort, norm.pdf(sort, sort.mean()), colour, lw=2, alpha=0.6, label=label, 
linestyle = line) 

    ax.set_ylim([0,0.42]) 

    ax.tick_params(labelsize = 14) 

    ax.grid(True, color='grey', linestyle='--', alpha=0.5) 

    return() 
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Spatial Map  

def create_plot(model_av, model_ds, cru, model_tas, sig, model_name, subplot_number, 
xticks, yticks, domain, label, ytitle,  

                colour, bounds, x_label, y_label): 

    proj =  ccrs.PlateCarree()    #ccrs.Robinson() or ccrs.PlateCarree()  

    ax = fig.add_subplot(3, 3, subplot_number, projection=proj) 

    # Add cyclic point to data 

    model_av, lons = add_cyclic_point(model_av, coord = model_ds['lon']) 

    # Make a filled contour plot 

    global cs 

    cs = ax.contourf(lons, model_ds['lat'], model_av, transform = ccrs.PlateCarree(), 

                     cmap=colour, levels=bounds, extend = 'both')     

    #Lon and Lat ticks 

    if x_label == True: 

        ax.set_xticks(xticks, crs=ccrs.PlateCarree(), minor = True) 

        ax.tick_params(labelsize = 'x-large') 

        lon_formatter = LongitudeFormatter(zero_direction_label=True) 

        ax.xaxis.set_major_formatter(lon_formatter) 

    if y_label == True: 

        ax.set_yticks(yticks, crs=ccrs.PlateCarree(), minor = True)  

        ax.tick_params(labelsize = 'x-large') 

        lat_formatter = LatitudeFormatter()  

        ax.yaxis.set_major_formatter(lat_formatter) 

    #Define region 

    ax.set_extent(domain, crs=proj) 

    #Plot Shapefiles 

    shape(India_sf) 

    ax.set_title(model_name, fontsize = 'xx-large') 

    plt.ylabel(ytitle, fontsize = 'xx-large') 
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    #Add subplot labels 

    trans = mtransforms.ScaledTranslation(0/72, 5/72, fig.dpi_scale_trans) 

    ax.text(0.0, 1.0, label, transform=ax.transAxes + trans, 

            fontsize='x-large', va='bottom', fontweight = 'bold') 

    if sig == True: 

        stat, p = ttest_ind(cru, model_tas, axis=0, nan_policy='omit')  

        plot=p < 0.05 

        ax.contourf(model_tas['lon'], model_tas['lat'], plot, 1, hatches=['','..'],  alpha=0.06) 

    return ax, cs 

 

Time Series  

def create_plot(subplot_number, label, time_obs, time_rcm, time_cmip, tas_obs,  

                tas_rcm, tas_cmip, min_rcm, min_cmip, max_rcm, max_cmip, title,xlabel, ylabel): 

    ax = fig.add_subplot(1, 1, subplot_number) 

    plt.title(title, fontsize = 23) 

    ax.grid(True, color='k', linestyle='--', alpha = 0.5, zorder = 10) 

    ax.plot(time_obs, tas_obs, label = 'Obs', color = 'k', linewidth = 1.7) 

    ax.plot(time_rcm, tas_rcm, label = 'RCM', color = 'b', linewidth = 1.7) 

    ax.plot(time_cmip, tas_cmip, label = 'CMIP6', color = 'r', linewidth = 1.7) 

    plt.ylim(tas_cmip.min() - 1, tas_obs.max() + 1)  #remove +-0.5 for pr 

    plt.xlim(1984, 2014.1) 

    plt.xticks(np.arange(1984, 2014.1, 2)) 

    plt.xlabel(xlabel, fontsize = 'xx-large')  

    plt.ylabel(ylabel, fontsize = 'xx-large') 

    plt.tick_params(labelsize = 'xx-large')  

    ax.fill_between(time_rcm, min_rcm, max_rcm, color='b', alpha=0.15, linewidth = 0.6) 

    ax.fill_between(time_cmip, min_cmip, max_cmip, color='r', alpha=0.15, linewidth = 0.6) 

    ax.plot(time_rcm, min_rcm, color = 'b', linewidth = 0.7, alpha=0.5) 

    ax.plot(time_rcm, max_rcm, color = 'b', linewidth = 0.7, alpha=0.5) 

    ax.plot(time_cmip, min_cmip, color = 'r', linewidth = 0.7, alpha=0.5) 

    ax.plot(time_cmip, max_cmip, color = 'r', linewidth = 0.7, alpha=0.5) 
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Diagonal Correlation Matrix 

def corr_calc(models, models_name, var_cru): 

    results = {} 

    a, b = 0, 0 

    for i in models: 

        for j in regions: 

            hom = hom_region(i, j) 

            value = time_av(time_slice(hom), jja) 

            key = models_name[a] + "_" + regions_names[b] 

            results[key] = [] 

            results[key].append(value) 

            b += 1 

        a += 1 

        b = 0 

    corr = {} 

    for key in results:   

        if re.search("^"+var_cru, key): 

            continue 

        else: 

            if re.search("IP$", key): 

                IP_corr = float(xr.corr(results[key][0], results[var_cru+"_IP"][0])) 

                key_corr = key + "_corr_IP" 

                corr[key_corr] = [] 

                corr[key_corr].append(IP_corr) 

            elif re.search("WH$", key): 

                WH_corr = float(xr.corr(results[key][0], results[var_cru+"_WH"][0])) 

                key_corr = key + "_corr_WH" 

                corr[key_corr] = [] 

                corr[key_corr].append(WH_corr) 

            elif re.search("NW$", key): 

                NW_corr = float(xr.corr(results[key][0], results[var_cru+"_NW"][0])) 
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                key_corr = key + "_corr_NW" 

                corr[key_corr] = [] 

                corr[key_corr].append(NW_corr) 

            elif re.search("WC$", key): 

                WC_corr = float(xr.corr(results[key][0], results[var_cru+"_WC"][0])) 

                key_corr = key + "_corr_WC" 

                corr[key_corr] = [] 

                corr[key_corr].append(WC_corr) 

            elif re.search("EC$", key): 

                EC_corr = float(xr.corr(results[key][0], results[var_cru+"_EC"][0])) 

                key_corr = key + "_corr_EC" 

                corr[key_corr] = [] 

                corr[key_corr].append(EC_corr) 

            elif re.search("NE$", key): 

                NE_corr = float(xr.corr(results[key][0], results[var_cru+"_NE"][0])) 

                key_corr = key + "_corr_NE" 

                corr[key_corr] = [] 

                corr[key_corr].append(NE_corr) 

            elif re.search("NC$", key): 

                NC_corr = float(xr.corr(results[key][0], results[var_cru+"_NC"][0])) 

                key_corr = key + "_corr_NC" 

                corr[key_corr] = [] 

                corr[key_corr].append(NC_corr) 

    array = [[0 for col in range(7)] for row in range(2)] 

    i, j = 0, 0 

    for x in corr.values(): 

        array[j][i] = x[0] 

        i += 1 

        if i == 7: 

            i = 0 

            j += 1     
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    array = np.transpose(array) 

    m_names = ["HadGEM3", "RCM"] 

    data = pd.DataFrame(array, index = regions_names, columns = m_names) 

    data = data.transpose() 

    return data 

     

def heatmap(data, sub_no, c_bar, axcb, params, title, fig_label): 

    colour = sns.color_palette("Spectral", 11) 

    ticks = np.arange(-0.1, 1.1, 0.1) 

    res = sns.heatmap(data, cmap = colour, vmin = -0.1, vmax = 1, linewidths = 0.01, ax = sub_no, 
cbar=c_bar, cbar_ax=axcb, 

                linecolor = 'black', annot = True, cbar_kws={"ticks":ticks, "label":'Correlation', 
'drawedges':True}) 

    res.figure.axes[-1].yaxis.label.set_size(14) 

    res.set_yticklabels(res.get_ymajorticklabels(), fontsize = 14) 

    res.set_title(title) 

    res.text(0.0, 0.0, fig_label, horizontalalignment='left', 

            fontsize=12, va='bottom', fontweight = 'bold') 

    if params == True: 

        res.tick_params(bottom=False) 

 

Vertically Integrated Moisture Transport Calculation 

def vimt_calc(q, u, v, QU, QV, VIMT): 

    a = 0 

    b = 1 

    n = len(q['plev'])  

    for i in range(n-1): 

        q2 = q.isel(plev = i+1) 

        u2 = u.isel(plev = i+1) 

        v2 = v.isel(plev = i+1) 

        q1 = q.isel(plev = i) 
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        u1 = u.isel(plev = i) 

        v1 = v.isel(plev = i) 

        p2 = float(q['plev'][b]) 

        p1 = float(q['plev'][a]) 

        qu = (((u1*q1 + u2*q2)/2) * (p1-p2)) 

        qv = (((v1*q1 + v2*q2)/2) * (p1-p2)) 

        vimt =  (((u1*q1 + u2*q2)/2) * (p1-p2)) + (((v1*q1 + v2*q2)/2) * (p1-p2)) 

        QU.append(qu) 

        QV.append(qv) 

        VIMT.append(vimt) 

        b+=1 

        a+=1 

    QU = np.nan_to_num(QU) 

    QU_sum = 1/9.81*sum(QU) 

    QV = np.nan_to_num(QV) 

    QV_sum = 1/9.81*sum(QV) 

    VIMT = np.nan_to_num(VIMT) 

    VIMT_sum = 1/9.81*sum(VIMT) 

    return QU_sum, QV_sum, VIMT_sum 
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