
UNIVERSITY OF HERTFORDSHIRE

Adaptive Mid-term and Short-term

Scheduling of Mixed-criticality Systems

Saverio Iacovelli

A thesis submitted to the University of Hertfordshire in partial

fulfillment of the requirements of the degree of

Doctor of Philosophy

in Computer Science

September 2018

Abstract

A mixed-criticality real-time system is a real-time system having multiple tasks clas-

sified according to their criticality. Research on mixed-criticality systems started to

provide an effective and cost efficient a priori verification process for safety critical

systems. The higher the criticality of a task within a system and the more the sys-

tem should guarantee the required level of service for it. However, such model poses

new challenges with respect to scheduling and fault tolerance within real-time systems.

Currently, mixed-criticality scheduling protocols severely degrade lower criticality tasks

in case of resource shortage to provide the required level of service for the most critical

ones. The actual research challenge in this field is to devise robust scheduling protocols

to minimise the impact on less critical tasks.

This dissertation introduces two approaches, one short-term and the other medium-

term, to appropriately allocate computing resources to tasks within mixed-criticality

systems both on uniprocessor and multiprocessor systems.

The short-term strategy consists of a protocol named Lazy Bailout Protocol (LBP)

to schedule mixed-criticality task sets on single core architectures. Scheduling decisions

are made about tasks that are active in the ready queue and that have to be dispatched

to the CPU. LBP minimises the service degradation for lower criticality tasks by

providing to them a background execution during the system idle time. After, I refined

LBP with variants that aim to further increase the service level provided for lower

criticality tasks. However, this is achieved at an increased cost of either system offline

analysis or complexity at runtime.

The second approach, named Adaptive Tolerance-based Mixed-criticality Proto-

col (ATMP), decides at runtime which task has to be allocated to the active cores

according to the available resources. ATMP permits to optimise the overall system

utility by tuning the system workload in case of shortage of computing capacity at

runtime. Unlike the majority of current mixed-criticality approaches, ATMP allows to

smoothly degrade also higher criticality tasks to keep allocated lower criticality ones.

iv

Acknowledgements

First of all, I would like to thank the University of Hertfordshire for providing me

the funding and infrastructure for my PhD and for giving me the opportunity to do

research in Computer Science. Doing research in computing is now a dream that I

have realised.

I would like to thank my two supervisors. Firstly, my gratitude goes to my principal

supervisor, Dr. Raimund Kirner, for his constant feedback, encouragements and for all

what I have learnt so far. Then, I would like also to thank my second supervisor, Dr.

Olga Tveretina, for her timely feedbacks and suggestions.

I also thank Dr. Catherine Menon for her useful contributions to my work with her

support about safety in mixed-criticality systems.

I also want to thank and remember all my previous colleagues in my office, for lunch

and fun in the discussion room, conversations with them about silly as well as technical

stuff. An intense part of my life is with them. I thank also all other researchers and

students that I have known so far. They all have contributed to enrich the knowledge

of my research field, of related areas and of the world in general.

Lastly, but just for order, I thank all my family, irreplaceable reference point of

my life. No achievement would had been possible in my life without it.

v

vi

Contents

Abstract iii

Acknowledgements v

List of Figures xii

List of Tables xiii

Acronyms xv

1 Introduction 1

1.1 Mixed-Criticality Real-Time Systems 1

1.2 Mixed-Criticality Scheduling . 2

1.3 Research Question . 4

1.4 Contributions . 7

1.5 Evaluation of Mixed-Criticality Protocols 8

1.6 Publications . 9

1.7 Structure of the Dissertation . 9

1.8 Chapter Summary . 11

2 Background 13

2.1 Real-Time Systems . 13

2.1.1 The WCET Estimation . 14

2.1.2 Hard Real-Time Systems 15

2.1.3 Soft Real-Time Systems 16

2.1.4 Task Models for Real-Time Scheduling 17

2.1.5 Schedulability Analysis . 19

2.1.6 Sustainable Schedulability Test 21

2.1.7 Processor Utilisation Factor 22

2.2 Scheduling on Uniprocessor Systems 23

2.2.1 Preemption and Priority Assignments 23

vii

Contents viii

2.2.2 Fixed Priority Scheduling 24

2.2.3 Dynamic Priority Scheduling 27

2.2.4 Scheduling with Utility Functions 27

2.2.5 Complementary Scheduling Techniques 29

2.2.6 Techniques for Soft Real-Time Systems 31

2.3 Scheduling on Multiprocessor Systems 32

2.3.1 Classification of Multiprocessor Systems 32

2.3.2 Taxonomy of Multiprocessor Scheduling Algorithms 34

2.3.3 Partitioned Scheduling . 35

2.3.4 Global Scheduling . 36

2.3.5 Hybrid Scheduling Approaches 37

2.4 Chapter Summary . 38

3 Related Work 39

3.1 Mixed-Criticality Scheduling . 39

3.2 Extensions and Applications of Mixed-Criticality Model 41

3.3 Interpretations of Criticality . 42

3.4 Criticisms to the Mixed-Criticality Scheduling 43

3.5 Standard Real-Time Scheduling and Criticality Inversion Problem 44

3.6 Fixed-Priority Mixed-Criticality Scheduling 46

3.7 The AMC-rtb Analysis . 50

3.8 Dynamic-priority mixed-criticality systems 51

3.9 Mixed-Criticality Systems on Multiprocessor Architectures 53

3.10 Mixed-Criticality Systems with Soft Deadlines 56

3.11 Utility-based Optimisation of Mixed-Criticality Systems 58

3.12 Chapter Summary . 60

4 The LBP Protocol 61

4.1 System model . 61

4.2 The LBP Protocol . 63

4.3 SLBP: An LBP Variant with Soft Deadlines 68

4.4 Integration of LBP and SLBP with Complementary Scheduling

Techniques . 69

4.5 Chapter Summary . 71

5 Formal Comparison of Variants of BP and LBP 73

5.1 Predicates and Comparison Criterion 74

5.2 Comparison of BP-based protocols 76

5.2.1 Comparison between BP and BPG 76

Contents ix

5.2.2 Comparison between BP and BPS 79

5.2.3 Comparison between BPG and BPS 82

5.2.4 Comparison between BP and BPSG 84

5.3 Comparison of LBP with Related Protocols 85

5.3.1 Comparison between BP and LBP 85

5.3.2 Comparison between BPG and LBPG 88

5.3.3 Comparison between BPS and LBPS 90

5.3.4 Comparison between BPSG and LBPSG 93

5.3.5 Comparison between LBP and BPS 93

5.3.6 Comparison between LBP and SLBP 95

5.4 Chapter Summary . 99

6 The Adaptive Tolerance-based Mixed-Criticality Protocol 101

6.1 System Model . 102

6.1.1 Utility Function . 103

6.1.2 System Adaptation . 104

6.2 Optimisation Method . 105

6.2.1 Criticality Aware Allocation 106

6.2.2 The ATMP Utility Optimisation 107

6.3 Safety Implications of Scheduling 110

6.4 Chapter Summary . 111

7 Experimental Evaluation 113

7.1 Evaluation of Lazy Bailout Protocols 113

7.1.1 Setup of Experiments . 114

7.1.2 Performance Metrics and Evaluation Scenarios 115

7.1.3 Discussion of Results in Hard Real-Time Settings 117

7.1.4 Comparison of LBP with SLBP in Soft Real-Time Settings 120

7.2 Experimental Evaluation of ATMP 124

7.3 Chapter Summary . 128

8 Conclusions 131

8.1 Summary of Dissertation . 131

8.2 Research Impact and Application Areas 134

8.3 Outlook . 136

Contents x

List of Figures

2.1 Characterisation of utility according to deadline strictness [1] . . . 14

2.2 Sufficient, necessary and exact schedulability tests [2] 20

2.3 Types of scheduling algorithms [3] 24

2.4 Types of scheduling algorithms [3] 34

2.5 Multiprocessor system with partitioned scheduling [4] 36

2.6 Multiprocessor system with global scheduling [4] 37

3.1 Criticality inversion example: job A0 overruns its optimistic

WCET, it is preempted by the higher priority LO job B1 and

misses its deadline. 45

3.2 Example of TRTCM utility function for throughput 59

4.1 LBP architecture . 64

4.2 Execution mode changes in LBP 65

4.3 Comparison between BP and LBP: LBP schedules more LO jobs

than BP . 67

4.4 LBP aborts LO job B2 while SLBP allows for its late completion. 70

5.1 (Proof of Theorem 5.1) The gain time collection does not increase

the worst-case system load in Normal mode 77

5.2 (Proof of Theorem 5.2.2) BPG schedules more LO jobs than BP . 79

5.3 (Proof of Theorem 5.2.5, Part 2) BPS schedules more LO jobs

than BP. 81

5.4 (Proof of Theorem 5.2.7, Part 1) BPS schedules more LO jobs

than BPG . 83

5.5 (Proof of Theorem 5.2.7, Part 2) BPG schedules more LO jobs

than BPS . 84

5.6 (Proof of Theorem 5.3.2) Example in which LBP successfully ex-

ecutes LO jobs that are abandoned by BP. 87

xi

List of Figures xii

5.7 (Proof of Theorem 5.3.5) Example in which LBPG successfully

schedules LO jobs that are abandoned by BPG. 90

5.8 (Proof of Theorem 5.3.9) LBPS schedules more jobs than BPS by

provided a delayed execution for LO jobs relased in Bailout mode 92

5.9 (Proof of Theorem 5.3.11, Part 1) BPS schedules more LO jobs

than LBP . 95

5.10 (Proof of Theorem 5.3.11, Part 2) LBP schedules more LO jobs

than BPS . 96

5.11 (Proof of Theorem 5.3.13) LBP schedules more LO jobs than SLBP 98

6.1 Utility function for relative utility calculation based on chosen period103

6.2 Service utility adaptation: tolerance range versus tolerance utility 105

7.1 BP and LBP variants: schedulability in HC-LP scenario 122

7.2 BP and LBP variants: schedulability in HC-MP scenario 122

7.3 BP and LBP variants: schedulability in HC-HP scenario (as pri-

ority and criticality values have the same order, this is essentially

a standard real-time scheduling problem) 122

7.4 BP and LBP variants: LO jobs scheduled per task set in HC-LP

scenario . 123

7.5 BP and LBP variants: LO jobs scheduled per task set in HC-MP

scenario . 123

7.6 BP and LBP variants: LO jobs scheduled per task set in HC-HP

scenario . 123

7.7 LBP and SLBP derivatives: comparison between LBP and SLBP

in soft real-time settings . 125

7.8 LBP and SLBP derivatives: distribution of LO jobs completed . . 126

7.9 Absolute utility achieved by each task with SAMP and ATMP . . 128

8.1 (Remote surgery) A physician that gets images about the patient

via network and then moves a robot for the operation [5] 135

List of Tables

7.1 BP and LBP variants: comparison of task set schedulability (%) . 120

7.2 BP and LBP variants: comparison of jobs scheduled within their

deadline (%) . 121

7.3 LBP and SLBP derivatives: comparison of task set schedulability

(%) . 124

7.4 LBP and SLBP derivatives: average of completion rates of jobs (%)124

7.5 Overall comparison between ATMP and SAMP 127

xiii

List of Tables xiv

Acronyms

AMC Adaptive Mixed-Criticality

AMC-rtb Adaptive Mixed-Criticality - Response Time Bound

ATMP Adaptive Tolerance-based Mixed-criticality Protocol

BP Bailout Protocol

BPG Bailout Protocol with Gain time

BPS Bailout Protocol - Slack time

BPSG Bailout Protocol - Slack and Gain time

CAPA Criticality As Priority Assignment

DM Deadline Monotonic

E-MC Elastic Mixed-Criticality

EDF-VD Earliest Deadline First with Virtual Deadline

ER-EDF Early Release Earliest Deadline First

LBP Lazy Bailout Protocol

LBPG Lazy Bailout Protocol with Gain time

LBPS Lazy Bailout Protocol - Slack time

LBPSG Lazy Bailout Protocol - Slack and Gain time

RM Rate Monotonic

RTA Response Time Analysis

SIL Safety Integrity Level

SLBP Soft Lazy Bailout Protocol

SLBPG Soft Lazy Bailout Protocol with Gain time

SLBPS Soft Lazy Bailout Protocol - Slack time

SLBPSG Soft Lazy Bailout Protocol - Slack and Gain time

TRTCM Tolerance-based Real-Time Computing Model

xv

TUF Time/Utility Function

UA Utility Accrual

WCET Worst-Case Execution Time

Chapter 1

Introduction

This chapter introduces and motivates my research work. It contains introduc-

tory descriptions about the research field, my contributions and about how the

assessment has been made.

Section 1.1 introduces the research field and background. Section 1.2 de-

scribes the new challenges arising with the mixed-criticality scheduling both on

uniprocessor and multiprocessor platforms. Section 1.3 contains my research

question together with the motivations that justify my research work. Section 1.4

lists and summarises the contributions contained in this dissertation. Section 1.5

describes how the improvement of each contribution has been measured with re-

spect to the state-of-the-art. Section 1.6 lists the papers already published and

in writing stage. Finally, Section 1.7 and Section 1.8 contain respectively the

structure of the dissertation and the summary of this chapter.

1.1 Mixed-Criticality Real-Time Systems

Real-time computer systems are systems in which the correctness of the system

behaviour depends not only on the logical results of computations but also on

the physical time at which such results must be provided [2]. As all other com-

puting systems, real-time systems typically provide different services according

to their specifications. Such services could consist of one or more tasks that

might generate an unbounded sequence of instances, each has to be processed

and completed within a specific temporal deadline. Different tasks can be ranked

according to different criticality. A mixed-criticality system is a system in which

multiple functionalities of different criticalities are implemented and integrated

on the same platform. In such systems the real-time properties indicated by the

tasks’ urgency can lead more critical tasks to not complete within their temporal

1

Chapter 1. Introduction 2

deadlines in case of resource shortages.

The task’s criticality can be derived from different aspects. One possibility

is to express the relative importance or relative utility of different services in a

system as their criticality [6]. The term criticality is also very commonly used

in the context of functional safety, e.g., to express the relative level of assurance

of a system functionality dictated by different development standards for safety

critical systems, like DO-178C [7] in the avionics domain, ISO26262 [8] in the

automotive domain or IEC 61508 [9] in the automation, as different levels of

criticality. Another interpretation of criticality is to indicate the importance of

a task related to the strictness of its deadline [10]. The meaning of criticality is

still sometimes subject of discussion, however this dissertation does not mandate

to any specific procedure for defining criticality levels, as this is an orthogonal

issue to the mixed-criticality scheduling itself.

Specific research on mixed-criticality scheduling started in 2007 by Vestal et

al. to provide a safe and cost effective a priori verification process for systems

with increasingly integration of services on the same platform [11]. The key

idea underlying is to construct multiple models of the same platform, each of

which true to a different level of confidence. Then, tasks with different criticality

are verified at different levels of assurance [12]. Such modular approach allows

to avoid the usage of excessively conservative models for verifying less critical

tasks, thus reducing the resource under-utilization and the overall verification

cost. The system model proposed by Vestal consists of a set of tasks, each may

have a set of alternative Worst-Case Execution Time (WCET) estimates assured

to a different level of confidence. The final aim was that to guarantee the correct

completion of highly critical tasks.

1.2 Mixed-Criticality Scheduling

The mixed-criticality scheduling aims to bring the fault handling into real-time

scheduling by ensuring a correct completion of higher criticality tasks in case

some parts of the system do not conform to the behaviour assumed in the a

priori verification. In fact, mixed-criticality scheduling approaches are built on

the key concept that tasks should be prioritised not only according to their timing

requirements or urgency but also according to the impact that they could have

on the overall system in specific situations based on some predefined criterion like

importance or safety, usually referred to as criticality. Typically, such situations

occur when the resource shortages make not possible to schedule all the task

Chapter 1. Introduction 3

instances according to the predefined scheduling policy and it becomes necessary

to choose which instance to keep running and which to abandon by actually

changing their priorities.

As an example, system engineers usually design systems to have task instances

that complete within their WCET estimates and that are processed according to

real-time scheduling protocols that give priority to task instances with stricter

timing requirements, that are mainly represented by arrival rates or deadlines.

This approach works well as long as it can be assured that enough resources are

available to schedule all tasks. However, in cases where availability of enough

resources cannot be guaranteed, traditional real-time scheduling methods miss

the flexibility to prioritise the resources to certain tasks. In fact, if some pro-

cessing elements or memory resource suddenly become unavailable or if some

communication line is temporary busy or occupied, some instances could exceed

their time threshold. In case highly critical task instances do not complete their

execution within it, this situation can lead to a phenomenon called criticality

inversion in which new incoming low-criticality instances have higher scheduling

priority than currently running high-criticality instances [13].

Mixed-criticality scheduling protocols on uniprocessor platforms are de-

signed to manage such resource shortage situations, also referred to as transient

faults [14], and hence they are inherently fault tolerant. The active research

challenge is that to find ways to effectively combine the resource prioritisation

based on criticalities with the scheduling priorities based on real-time constraints

in order to minimise the impact on less critical tasks. The basic functioning of

mixed-criticality scheduling so far is that as long as enough resources are avail-

able, the scheduling priorities are defined by a real-time scheduling protocol. In

case of a resource shortage, e.g., a critical instance overrunning its WCET [15],

the tasks’ criticalities are used as primary criterion to allocate resources.

Most of work on mixed-criticality scheduling on uniprocessor platforms deals

with dual-criticality systems, i.e., systems in which there are two levels of criti-

cality, frequently labelled as LO (low criticality) and HI (high criticality). This

interest in dual-criticality systems is based on the fact that they represent a rea-

sonable simplification of more complex systems that permit to devise scheduling

methods suitable also for systems with multiple criticality by just using only two

levels of WCET estimates. The usual approach is to assume for LO tasks only

the knowledge of easy to derive optimistic WCET estimates while for HI tasks

also a higher level of assurance based on safe upper WCET bounds is assumed.

The research has produced many mixed-criticality scheduling protocols but

they mostly degrade very severely the service provided to LO tasks. Such degra-

Chapter 1. Introduction 4

dation results from dropping a significant amount of their corresponding in-

stances. A form of advanced and adaptive fixed-priority protocol to schedule set

of tasks having two criticality levels is the Bailout Protocol (BP) [16, 17]. As

all previous mixed-criticality protocols, the BP acts as a standard fixed-priority

scheduler since enough resources are available and then switches to a restricted

execution mode in which the HI tasks are prioritised and the LO task instances

are abandoned. The contribution of BP is that to provide an effective and fast

recovery mechanism to switch back to the starting execution mode in which all

instances can be scheduled. However, the main weakness of BP is that it com-

pletely aborts the service provided to LO tasks during resource shortages and

such behaviour is not tolerable to make mixed-criticality protocols suitable for

industry and acceptable for system engineers.

Furthermore, the increasingly adoption of multi-core computing architectures

is leading the mixed-criticality research community to devise systems in which

tasks having different criticality can be allocated to different processing elements.

Researchers have been working to appropriately manage such systems by devis-

ing both ad hoc multi-core hardware architectures [18, 19] and novel scheduling

protocols [20, 21]. Multiprocessor platforms raise new issues with regard to

mixed-criticality scheduling since the system should minimise the impact of fail-

ures of one or more cores at run-time by guraanteeing adequate service first to

tasks of higher criticality. A way to handle the sudden unavailability of com-

puting resources is to employ the spatial redundancy. However, the hardware

replication should consider the Size, Weight and Power (SWaP) constraints of

the embedded systems [14]. Another solution to manage such type of faults

is via a criticality-aware reallocation of tasks in which the available computing

resources have to be assigned first to higher criticality tasks.

1.3 Research Question

Research about optimal allocation of computational resources to mixed-criticality

tasks has produced different approaches that sometime are not integrated among

them to provide a broader architecture.

A concrete model for mixed-criticality optimisation is the Tolerance-based

Real-Time Computing Model (TRTCM) [1, 22]. The key idea underlying the

TRTCM model is that the utility of services provided by a real-time system

can be beneficial even at a degraded level rather than being aborted as long as

the smooth degradation occurs within an acceptable minimum threshold. With

Chapter 1. Introduction 5

regard to this, TRTCM introduces the notion of operational ranges for real-

time service requirements of reduced but still acceptable service utility. In case

of unexpected resource shortage, such tolerance intervals give to the system a

means to decide at runtime what service to degrade or even abort. The TRTCM

allows for runtime reconfiguration based on multiple performance parameters

and for utility optimisation on both uniprocessor and multiprocessor platforms.

However, the current mixed-criticality scheduling approaches on single core

architectures focus on guaranteeing the adequate service level for high criticality

tasks in all operating conditions, including the worst-case scenarios, always by

degrading lower criticality tasks. With regard to this, an effective fixed-priority

mixed-criticality scheduling protocol on uniprocessor platforms is represented by

the Bailout Protocol (BP) [16, 17]

The aim of my research has been to optimise the utility of mixed-criticality

real-time systems in case of resource shortages. TRTCM as well as existing

mixed-criticality scheduling protocols represent two different means to achieve

such objective. TRTCM achieves this by finding a useful compromise between

the high and low critical services according to the goal function and to the sys-

tem and resource constraints while BP and the related protocols always abandon

lower criticality instances that have less impact on the overall system in case of

transient faults. However, the TRTCM does not specify any concrete mixed-

criticality scheduling protocol while the scheduling methods devised so far are

basically short-term strategies that do not consider the usage of mid-term plan-

ning. In fact, the TRTCM consists of a model together with a related optimisa-

tion problem that specifies, at a high level, what parameters and utilities should

be set but currently there is no algorithm to connect the optimisation model to

the underlying scheduling protocol. On the other hand, currently no existing

mixed-criticality scheduling algorithm is integrated into a higher level model for

utility-based mid-term planning.

The research question that has motivated and guided my research is the

following:

Is it possible to improve the state of the art of fixed-priority mixed-

criticality scheduling and then combine such protocols with the

TRTCM model to optimise the utility of mixed-criticality real-time

systems in case of resource shortages?

This question can be formulated more precisely by the following three sub-

questions:

1. Is it possible to increase the robustness of existing fixed-priority

Chapter 1. Introduction 6

mixed-criticality scheduling protocols?

Currently, real-time mixed-criticality task models are based on the usage

of different estimates of one ore more task parameters, e.g., inter-arrival

time or worst-case execution time. The higher is the criticality and the

more conservative is the task parameter estimate. Most of such scheduling

protocols consider set of tasks having two criticality levels, indicated by HI

and LO with HI being more critical than LO.

Under such assumptions, the existing fixed-priority mixed-criticality

scheduling protocols always assure the correct completion of HI tasks in

all operating conditions at the expense of the remaining ones. This can

lead to a large amount of LO tasks being abandoned or aborted.

As a result, to increase the robustness of current mixed-criticality methods

it is necessary to devise algorithms that allow to successfully schedule more

LO tasks.

2. Is it possible to connect the TRTCM optimisation problem with

the mixed-criticality scheduling protocols?

The optimisation problem formulated in [6] allows to degrade also high-

criticality services to permit to as many low-criticality instances as possible

to complete their execution and to not be interrupted. On the other hand,

currently mixed-criticality scheduling protocols like the Bailout Proto-

col (BP) solve a different problem since they always degrade low-criticality

tasks to allow to higher critical ones to always meet their deadlines. My

research has investigated the possibility to integrate the mixed-criticality

scheduling protocols based on fixed prioritisation of higher criticality tasks

in case of resource shortage with the higher level TRTCM model in which

each service has a tolerance interval to exploit in case of failure of some

computing resources to keep as many services functioning as possible.

3. Are the utility functions and tolerance ranges of TRTCM a useful

means to increase the amount of tasks scheduled in real-time

systems with mixed-criticality services?

The TRTCM is based on modeling the system behaviour by means of util-

ity functions. The key idea is that to use a tolerance interval in which

performing a graceful degradation of services instead of interrupting them.

Such performance decrease is utility driven and each task has a least ac-

ceptable service utility under which it should be aborted. Therefore, to

Chapter 1. Introduction 7

justify the usage of protocols built upon the TRTCM model, there is the

need to find and study cases where using the tasks’ tolerange ranges allows

to increase the amount of tasks that are successfully scheduled, consider-

ing first tasks with higher criticality, such that the overall system utility is

maximised.

1.4 Contributions

My research has focused on two main directions. On one side, I focused on study-

ing, comparing, evaluating and improving the state-of-the-art of fixed-priority

mixed-criticality scheduling protocols on uniprocessor platforms to increase the

amount of LO task instances that successfully complete their execution. Sub-

sequently, I further refined the TRTCM model to allow the integration with

the underlying scheduling protocols to maximise the overall system utility. My

contributions are listed below:

• Introducing the Lazy Bailout Protocol (LBP), a BP refinement that allows

for a temporary resource denial to LO tasks in case of resource shortage.

The key principle of LBP is instead of immediately abandoning LO in-

stances after a HI instance overruns its optimistic WCET estimate, to put

them in a low-priority queue for background execution during the system

idle instants. The initial BP protocol has subsequently been extended

with integration of two complementary techniques that allow to increase

the amount of LO instances successfully processed without affecting the

schedulability of HI tasks. As a result, I also further refined LBP with

such additional techniques and this led to devise the LBPG, LBPS and

LBPSG protocols.

• I introduced the Soft Lazy Bailout Protocol (SLBP), an LBP variant in

which LO tasks have soft deadlines, i.e., they are allowed to have a tardy

completion. Like for LBP, I have also integrated the SLBP with the addi-

tional strategies that exploit the CPU spare capacity in order to increase

the amount of instances scheduled. This led to devise the SLBPG, SLBPS

and SLBPSG protocols.

• Definition of a formal criterion to compare different mixed-criticality

scheduling protocols on uniprocessor platforms in hard real-time settings

with priority given to schedulability of HI tasks. This criterion represents a

way to check the impact a particular mixed-criticality scheduling protocol

Chapter 1. Introduction 8

has within a system. It measures the quality and quantity of the comple-

tion rate of task instances generated per scheduling method by comparing

first the amount of HI and then that of LO instances scheduled within their

deadlines.

• Introducing the ATMP protocol, a framework to integrate the short-

term mixed-criticality scheduling protocols with the TRTCM optimisation

method to maximise the overall system utility in case of resource shortages

via smooth service degradation.

• Comparing and analysing the lazy bailout protocols with the state-of-the-

art mixed-criticality fixed-priority scheduling method on single-core archi-

tectures. In particular, I compared LBP and SLBP with the existing BP

protocols in a hard real-time settings. Furthermore, I also compared and

evaluated LBP and SLBP in a soft real-time settings.

• Finally, I showed that the ATMP protocol performs better than standard

heuristics in which tasks have no tolerance range to exploit. A multi-core

architecture is taken as target to make experiments and results showed that

the TRTCM optimisation allows to keep allocated more tasks to cores than

the approaches in which some tasks allocated are removed when their over-

all load are above the manageable threshold of the underlying processing

element.

1.5 Evaluation of Mixed-Criticality Protocols

A robust protocol for resource allocation should guarantee that system perfor-

mances degrade gracefully at runtime in case its behaviour does not conform to

the model assumed during the a priori verification. In other terms, it should

minimise the amount of task instances that are abandoned or aborted in case of

resource shortage.

The existence of the assumption that tasks within a system might have dif-

ferent criticality necessarily leads to devise algorithms that, in case of resource

shortage, assure the correct completion or allocation of higher criticality task

instances while trying to minimise the service degradation for lower criticality

tasks.

As a result, the enhancement of the contributions has been evaluated by

considering the increase in the amount of lower criticality instances that complete

Chapter 1. Introduction 9

within their deadlines or that are kept allocated. Firstly, I considered the fixed-

priority mixed-criticality scheduling methods on uniprocessor platforms and then

the ATMP protocol.

1.6 Publications

The work related to the TRTCM has been published with the two following

papers:

• Raimund Kirner, Saverio Iacovelli and Michael Zolda. Optimised Adap-

tation of Mixed-Criticality Systems with Periodic Tasks on Uniform Mul-

tiprocessors in Case of Faults. The 18th IEEE International Symposium

On Real-Time Computing (ISORC) Workshop. Auckland (New Zealand),

April 2015.

• Saverio Iacovelli, Raimund Kirner and Catherine Menon. ATMP: An Adap-

tive Tolerance-based Mixed-criticality Protocol for Multi-core Systems The

13th International Symposium on Industrial Embedded Systems (SIES)

2018. Graz (Austria), June 2018.

The following journal paper about the LBP protocol has been accepted and

is under minor revision process:

• Saverio Iacovelli and Raimund Kirner. A Lazy Bailout Approach for Dual-

Criticality Systems on Uniprocessor Platforms. MDPI Designs Journal.

1.7 Structure of the Dissertation

The remainder of this dissertation is structured as follows:

• Chapter 2 provides background information on standard real-time

scheduling theory both on uniprocessor and on multiprocessor systems.

First, I provide an introductory description on the main concepts involved

in real-time systems development. Particular attention is given to the

WCET problem, difference between hard and soft real-time systems,

schedulability and sustainability. Then, there is a description about the

main scheduling approaches on uniprocessor platforms such as scheduling

with static and dynamic priority assignments or the usage of utility

functions. I also describe two techniques to integrate within the scheduling

algorithms to increase the number of task instances completed within their

Chapter 1. Introduction 10

deadlines. Finally, I provide a detailed review on scheduling on multicore

architectures.

• Chapter 3 introduces the motivations and the context in which the mixed-

criticality scheduling has been developed. It describes the limitations of tra-

ditional priority-based scheduling algorithms in case of resource shortages

and the motivation for the need of novel robust scheduling protocols. Then,

this chapter summarises the work produced on mixed-criticality scheduling

both on uniprocessor and multiprocessor architectures. Finally, it describes

how a utility-based approach, the TRTCM, was designed to include the in-

dication of criticality to optimise specific performance parameters in case

of resource shortages.

• Chapter 4 introduces the LBP protocol, a fixed-priority method to sched-

ule mixed-criticality task sets on single core architectures. It contains the

system and task model used for such protocol together with a detailed

explanations of its functioning in its execution modes. This chapter also

introduces the Soft Lazy Bailout Protocol (SLBP), a LBP variant in which

low criticality task instances overunning their optimistic WCET estimates

are treated as soft real-time tasks. It is also provided an example of how

such LBP variant works.

• Chapter 5 introduces formal predicates to assess and compare perfor-

mances among different mixed-criticality protocols in hard real-time set-

tings. Such formal predicates and criteria aid to evaluate in which case a

mixed-criticality scheduling algorithm outperforms another one. Further-

more, it also contains formal comparisons among different mixed-criticality

protocols.

• Chapter 6 introduces the Adaptive Tolerance-based Mixed-criticality Pro-

tocol (ATMP), a novel criticality and utility aware partitioning and alloca-

tion algorithm. Such method is built upon the TRTCM model and permits

to integrate the higher level mixed-criticality optimisation with the under-

lying mixed-criticality scheduling. This chapter describes the task model

used for TRTCM, the partitioning and allocation of tasks to cores and the

reconfiguration at runtime. Finally, there is a discussion about the advan-

tages deriving from using ATMP with respect to the safety perspective.

• Chapter 7 contains the results of experiments made with the LBP ap-

proaches and ATMP protocols. This chapter is divided in two sections.

Chapter 1. Introduction 11

Section 7.1 describes the model, the experiments and the outcome with

the scheduling protocols on uniprocessor platforms. Section 7.2 describes

and evaluates the results of comparison between the ATMP protocol with a

standard policy for allocation and reconfiguration of mixed-criticality task

sets on multiprocessor platforms.

• Chapter 8 concludes the dissertation. It contains a brief summary of each

chapter and also the potential application areas of my research. Finally, a

outlook about future work and perspective is provided.

1.8 Chapter Summary

In this chapter, I provided an overview about my dissertation and an introductory

description of my contributions.

The first sections introduce the topic that is studied in the next chapters

together with the motivations that make this field relevant for research and

the main challenges to face. Then, Section 1.3 describes my research question

and Section 1.4 lists my contributions. Finally, Section 1.7 contains the structure

of the dissertation.

Chapter 1. Introduction 12

Chapter 2

Background

This chapter contains the basic knowledges about real-time scheduling both on

single and multi-core architectures. Most of them is recalled afterwards through-

out this dissertation.

First of all, Section 2.1 introduces the preliminary knowledges about real-

time scheduling, e.g., the WCET estimation, the schedulability analysis and the

processor utilisation factor. Section 2.2 introduces the main fixed and dynamic

priority strategies used in single-core architecture. Then, it also describes the

additional scheduling techniques usually used both in hard and soft real-time

systems. Finally, Section 2.3 describes the main scheduling approaches utilised

in multiprocessor platforms.

2.1 Real-Time Systems

A real-time system can be defined as a computing system in which computational

activities must be performed within predefined timing constraints. A system is

real-time if the correctness of its behaviour depends not only on the computa-

tional results but also on the timeliness of the computed action, i.e., the correct

value must be computed at the right time. In many real-time applications, the

recurrent activities represent the major computational demand in the system.

Such activities typically arise from sensory data acquisition, low-level servoing,

control loops, action planning and system monitoring and need to be cyclically

executed at specific rates which can be derived from the applications require-

ments. When a control application consists of such several concurrent tasks

with individual timing constraints, the operating system has to guarantee that

each recurrent instance is regularly activated at its proper rate and is completed

within its temporal deadline.

13

Chapter 2. Background 14

Therefore, the fundamental timing metrics to specify real-time requirements

is the deadline that represents the instant at which a result must be produced.

A real-time system consists of a set of tasks that could be hard, firm or soft

according to the severity (or conversely the usefulness) represented by a comple-

tion within or after a technical deadline. If a result of a task instance has utility

even if it completes after its deadline, then the deadline is named soft, otherwise

it is firm. In case severe or even catastrophic consequences could occur if a firm

deadline is overrun, then the deadline is called hard [2]. Hence hard deadlines

have always to be met, otherwise a critical failure may occur in the system. On

the other hand, if a soft deadline is missed, the system keeps working at a de-

graded level of performance. To exactly evaluate the performance degradation

caused by a soft deadline missed, a value function can be associated with each

soft task. As showed in [1], Figure 2.1 represents the utility provided by a result

when it is produced within its deadline or after by different types of tasks.

Figure 2.1: Characterisation of utility according to deadline strictness [1]

It is possible to notice as the timing constraint of a hard real-time task is

purely deadline-based and a service provides a value to the whole system only if

it completes within its technical deadline.

2.1.1 The WCET Estimation

In real-time systems, a prerequisite for the application of any analysis technique

to guarantee that each computational activity completes within its deadline is the

knowledge about the Worst-Case Execution Time (WCET) estimate of all time-

critical tasks [2]. In fact, the completion within the technical deadline can only

be guaranteed if the WCET of all application tasks and communication actions

that are part of the real-time transaction are known a priori. The WCET of a

task is a guaranteed upper threshold for the time between task activation and

Chapter 2. Background 15

task termination. Such WCET must be valid for all possible input data and

execution scenarios of the task and should be a tight bounds.

Over years, different WCET estimation tools have been developed. The more

conservative are typically based upon static analysis of code, which generates

WCET bounds that can be very large but that are trustworthy to a very high

level of assurance. The analysis of source code identifies the longest path and

computing time needed to execute on the specific processor platform. On the

other hand, less conservative WCET estimation tools are typically measurement

based and tend to obtain smaller estimates but these estimates may be trustwor-

thy to lower levels of assurance since the true worst-case system behaviours may

not have become revealed during the measurements. The experimental WCET

estimation is done by measuring the maximum execution time of each task over

a large amount of input data.

Once all computation times are evaluated, the feasibility of the system can

be analysed using several guarantee algorithms proposed in the literature for

different scheduling algorithms and task models.

2.1.2 Hard Real-Time Systems

Historically, the real-time computing technology has been primarily developed

to support safety-critical systems or industrial systems that have to guarantee

certain performance requirements with a limited degree of tolerance. Within the

so-called hard real-time systems, most computational activities are characterised

by critical timing requirements that have to be met in all operating conditions

in order to guarantee the correct system behaviour. In such context a deadline

missed is not tolerated, either because it could have catastrophic effects on the

controlled environment or because it could jeopardise the guarantee of some

stringent performance requirements. In such cases, a task finishing after its

deadline is considered not only late, but also wrong, since it could jeopardise

the whole system behaviour. A hard real-time system must execute a set of

recurrent real-time tasks such that all time-critical tasks meet their specified

deadlines. Every task needs computational, data and input/output resources to

be processed.

In order to guarantee a predefined performance, hard real-time systems are

designed under worst-case scenarios, derived by making pessimistic assumptions

on the system behaviour and the environment. In this case, all resources are

statically allocated to tasks based on their maximum requirements.

Such systems are often modelled as a set of computational tasks to be exe-

Chapter 2. Background 16

cuted concurrently on the selected hardware platform by a real-time scheduler.

The computational tasks are characterised by a WCET and are recurrently ac-

tivated by input stimuli with a certain activation pattern.

2.1.3 Soft Real-Time Systems

In many cases, although the timeliness in processing and completing recurrent

task instances is required because of the sensitivity to delay and jitter, the

scheduling methodologies devised for the hard real-time systems are not suited

since deadline misses may decrease the Quality of Service (QoS) but do not

cause critical system faults. Therefore, over years, the real-time systems tech-

nology used to develop systems with safety-critical requirements has been ex-

tended to support novel application domains characterised by less critical timing

requirements, scarce resources and more dynamic behaviour such as multimedia

systems, monitoring apparatuses, telecommunication networks, mobile robotics,

virtual reality and interactive computer games. In such systems, also called soft

real-time systems, task instances missing a deadline do not cause catastrophic

consequences on the environment but only a performance degradation, often

evaluated through some QoS parameter [23].

The soft real-time systems may allow for some deadline to be missed by no

more than a certain amount. In these cases, a late completion could be still useful

and better than no completion at all. As an example, tasks within an embedded

multimedia player that reproduces a movie at a predefined regular periodic rate

could miss some deadlines. This would cause a degradation of the perceived ser-

vice provided but no catastrophic consequence would happen. However, the fact

that a soft real-time application may tolerate a certain degree of performance

degradation does not mean that timing constraints can be completely ignored.

In general, a certain quality of service level needs to be enforced on the computa-

tional tasks to satisfy a desired performance requirement. If too many deadlines

are missed, and especially if they are consecutive, then there is no way to keep

the system performance above a certain threshold.

Furthermore, real-time systems often could consist of a mixture of hard and

soft real-time tasks. Such systems should guarantee that hard real-time tasks

meet their deadlines while trying to maximise the completion rate for soft real-

time tasks. In such cases, the guarantees for hard tasks are based on their

Worst-Case Execution Time (WCET) estimates while those relative to soft tasks

could be based on the mean execution times of each of their task instances. As

an example, in 1998, Abeni and Buttazzo described a server-based mechanism

Chapter 2. Background 17

for scheduling soft multimedia tasks without jeopardizing the a priori guarantee

of hard real-time activities [24]. The hard tasks were scheduled by the EDF

while each soft task was handled by a dedicated server, the Constant Bandwidth

Server (CBS), with the aim to minimize their mean execution after the deadline.

The CBS server is seen as a hard task providing a desired level of service to soft

tasks.

2.1.4 Task Models for Real-Time Scheduling

In real-time systems, the workload is typically characterised as being generated

by a finite collection of recurrent tasks or processes. Each task generates a

potentially unbounded sequence of jobs. Therefore, the workload is modeled as

being comprised of basic units of work known as jobs. Various models have been

proposed for representing tasks; some of the more widely used models include

the Liu and Layland model [25] and the three-parameter model [26].

The Liu and Layland task model is the simplest model for representing re-

curring processes executing upon a shared platform. In this model, a task τi is

characterised by just an ordered pair of two parameters as follows:

τi = 〈Pi, Ci〉

in which Pi represents both period and deadine of the task and Ci represents

the WCET requirement. Such a task generates a potentially infinite sequence

of jobs that are invoked at each non-negative integer multiple of Pi. Task in-

vocations are also called job releases or job arrivals. Each invocations requires

at most Ci units of processor time and must complete its execution within Pi

time units. The first job may arrive at any instant and the arrival times of any

two successive jobs are at least Pi time units apart. The task arrival time is

the instant when a request for a task execution is made. Depending on the ar-

rival times, it is possible to distinguish between the three different following task

types:

1. periodic task: a task is periodic if all future arrival times are known a priori

by adding multiples of the known period to its initial arrival time.

2. sporadic task: a task is sporadic if there is no arrival time known a priori

but it is assumed a minimum inter-arrival time between any two request

times of such task.

3. aperiodic task: a task is defined aperiodic if there is no constraint on the

arrival times of task activations.

Chapter 2. Background 18

A collection of periodic tasks is referred to as a periodic task set or periodic

task system and is usually denoted as τ . A task system τ consists of a set of

tasks as follows:

τ = {τ1, τ2, . . . , τn}

If the arrival time of each first task instance in τ occurs at time t = 0, then the

task set is referred to as synchronous, otherwise it is referred to as asynchronous.

The three-parameter task model was proposed to represent tasks in which the

relative deadline is different from the related period. A three-parameter sporadic

task denoted by τi is thus represented by the following tuple:

τi = 〈Pi, Di, Ci〉

Such a task generates a potentially infinite sequence of jobs. The first job may

arrive at any instant and the arrival time of two successive jobs are at least Pi time

units apart. Each job has a WCET indicated by Ci and a relative deadline that

occurs Di time units after its arrival time. A three-parameter task set consists of

a finite number of such three-parameter tasks executing upon a shared platform.

By allowing for the specification of a relative deadline parameter in addition

to a period, such model offers a means of specifying recurrent workloads that

may occur infrequently, i.e., large periods, but that are urgent because of small

deadlines. Depending upon the relationship between the value of the relative

deadline and period parameters of the tasks in it, a task set could be classified

as follows:

1. implicit deadline task set: the relative deadline of each task is equal to the

task’s period:

∀ τi ∈ τ.Di = Pi

It is worth to notice that the implicit deadline task sets are those expressed

by the Liu and Layland model.

2. constrained deadline task set: the relative deadline of each task is no larger

than the task’s period:

∀ τi ∈ τ.Di ≤ Pi

3. arbitrary deadline task set: each task can have a deadline that is smaller,

equal or even larger than its period:

∀ τi ∈ τ.Di ≤ Pi ∨Di > Pi

Chapter 2. Background 19

Furthermore, given that a job ji with deadline Di completes at time Fi, the

timing parameter that usually describes and quantifies the relationship between

completion time and deadline in a job is the lateness, formally represented as

below:

latenessi = Fi −Di (2.1)

The lateness is the algebraic summation between the finishing time and dead-

line. Note that if a task completes before its deadline, its lateness is negative.

Moreover, the formula 2.1 allows to obtain two metrics usually used to measure

performances in soft real-time systems, i.e., the exceeding time and the amount

of time left from the job completion to its deadline:

tardinessi = max(0, latenessi) (2.2)

earlinessi = max(0, −latenessi) (2.3)

In particular, the tardiness represents the completion delay of a task with

respect to its deadline and is useful because represents the time a task instance

stays active after its deadline. It is worth to notice that hard real-time tasks

must have tardiness equal to zero while for soft real-time tasks it is important

that the tardiness is usually reasonably bounded or minimised.

2.1.5 Schedulability Analysis

The scheduling theory is concerned with the efficient allocation of computational

resources, which may be available in limited amounts, among competing demands

in order to optimise specified objectives. In particular, the real-time scheduling

theory deals with resource allocation in real-time computer systems.

The timing constraints within which results must be provided are expressed

as deadlines and thus the schedulability of a task set implies that all deadlines

are satisfied if the system behaves according to its parameterized specification.

A task set is schedulable with respect to a specified scheduling policy if all jobs

produced by it will complete within their deadline when executed on its target

platform with that scheduling policy.

To guarantee that all tasks within a system will be successfully scheduled,

it is necessary to apply a test that is appropriate for the dispatching policy of

the execution platform. A test that determines whether a set of tasks can be

scheduled such that each task instance will meet its deadline is called a schedu-

Chapter 2. Background 20

Exact	
schedulability	test	

If	the	sufficient	schedulability	test	is	positive,	
then	the	set	of	tasks	is	schedulable	

If	the	necessary	schedulability	test	is	negative,	
then	the	set	of	tasks	is	not	schedulable	

Sufficient	
schedulability	test	

Necessary	
schedulability	test	

Figure 2.2: Sufficient, necessary and exact schedulability tests [2]

lability test. It is possible to distinguish between exact, necessary and sufficient

schedulability tests.

In particular, a schedulability test for some specific scheduling algorithm is

referred to as sufficient, if all the task sets and priority orderings that are deemed

schedulable according to the test are in fact schedulable under the scheduling

algorithm. Similarly, a schedulability test is referred to as necessary, if all the

task sets and priority orderings that are deemed unschedulable according to the

test are in fact unschedulable under the scheduling algorithm. A schedulability

test that is both sufficient and necessary is referred to as exact [27]. Clearly

sufficiency is critically important for most hard real-time systems. Figure 2.2

describes the relationship between the three types of tests explained above [2].

The schedulability analysis must be performed offline; in order to do so,

parameters characterizing the run-time workload such as WCET and period must

be estimated prior to run-time. The system designer performs an offline analysis

to guarantee that the system is able to achieve a minimum desired performance

in all operating conditions that have been predicted in advance.

Schedulability tests play an important role in the verification of safety-critical

real-time systems in which a deadline missed may lead to catastrophic con-

sequences. Hence, within hard real-time systems, the schedulability test is a

instrument to guarantee that every deadlines will always be met. However, a

guarantee test based on worst-case scenarios could lead to a significant waste

of resources, especially in systems characterised by a highly dynamic behaviour.

Therefore, the consequence of such worst-case design methodology is that high

predictability is achieved at the price of a very low efficiency in resource utili-

sation and of an increase of the overall system cost. Such a waste of resources

could be justified for critical applications in which a single deadline miss may

cause catastrophic consequences but it does not represent a good solution for ap-

plications in which several deadline misses can be tolerated as long as a average

jobs completion is guaranteed offline.

In soft real-time systems, it is required to estimate the number and frequency

Chapter 2. Background 21

of missed deadlines. In this case, the schedulability test can give useful indica-

tions about the number of deadlines missed or about the maximum extent of

execution after the deadline has expired. This problem is addressed by adopt-

ing a probabilistic framework to rigorously characterise a soft real-time system.

Hence, the analysis for hard real-time systems is extended to cope with statisti-

cally distributed execution and/or interarrival times. The aim is that to perform

a probabilistic schedulability analysis of real-time task sets to provide a relaxed

form of guarantee for systems with highly variable execution behaviour. The ob-

jective of the analysis is to derive a probability for each task to meet its deadline

or, in general, to complete its execution time within a given interval of time.

2.1.6 Sustainable Schedulability Test

The notion of sustainability was introduced in 2006 by Baruah and Burns to

formalise the expectation that a system that is schedulable under its worst-

case specifications should remain schedulable when one or more properties of at

least one task in a task set (e.g., inter-arrival time or execution time) are less

pessimistic than predicted [28]. Baruah argues that a sufficient and sustainable

schedulability test is more important than a sufficient and necessary one and

that, generally, it should be a good engineering practice to use sustainable tests

if possible and classify common uniprocessor schedulability tests according to

whether they are sustainable.

A scheduling algorithm is said to be sustainable with respect to a task model,

if and only if schedulability of any task set compliant with the model implies

schedulability of the same task set modified by decreasing execution times, in-

creasing periods or inter-arrival times and increasing deadlines. Similarly, a

schedulability test is defined to be sustainable if any task set deemed schedu-

lable by the test remains so if it behaves better than mandated by its system

specification. More precisely, a schedulability test for a scheduling policy is sus-

tainable if any task set deemed schedulable by the schedulability test remains

schedulable when the parameters of one or more individual jobs are changed in

decreased execution requirements, later arrival times, smaller jitter and larger

relative deadlines. A schedulability test may be sustainable with respect to

some, but not all, task parameters. Baruah and Burns showed that all sufficient

schedulability tests for fixed-priority preemptive scheduling are sustainable with

respect to execution time requirement but no exact schedulability test for the

fixed-priority preemptive scheduling of periodic task systems can be sustainable

with respect to jitter.

Chapter 2. Background 22

It is worth to notice that declaring a schedulability test to be sustainable

represents a stronger claim than simply declaring that a set of tasks deemed

schedulable by the test would remain schedulable with better parameters (e.g.,

with larger periods or relative deadlines or with smaller execution time or jit-

ters) since a sustainable system must continue to meet all deadlines even if the

parameters change occurs at run-time and such parameters could change back

and forth arbitrarily many times.

Intuitively, the sustainability requires that schedulability be preserved in sit-

uations in which it should be easier to ensure the same task set being feasible.

From this point of view, sustainability is the opposite property of robustness.

A robust system retains schedulability even when it operates beyond the worst-

case assumptions used in its schedulability test, e.g., when jobs arrive earlier

than expected or have greater execution requirement than permitted. Clearly

a system can never be fully robust since at some point the system will become

so overloaded that it will fail. However, it is not ruled out that a system could

in principle be fully sustainable because no amount of under-load need forces

failure.

2.1.7 Processor Utilisation Factor

For each task τi within a task set, it is possible to compute the amount of time

such task uses the processor. As a consequence, the utilisation of a task set is

defined as sum of the utilisations of all tasks in it. Therefore, given a set of

n periodic tasks, the processor utilisation factor U is the fraction of processor

time spent in the execution of the task set [25]. The utilization factor of each

individual task τi denotes the percentage of time such task requires service from

the processor. Since Ci/Pi is the fraction of processor spent executing task τi,

the utilisation factor for n tasks is given by:

U =
n∑
i=1

Ci
Pi

(2.4)

The processor utilisation factor provides a measure of the computational load

on the CPU due to the periodic task set. Although the CPU utilisation can be

improved by increasing tasks’ computation times or by decreasing their periods,

there exists a maximum value of U below which τ is schedulable and above which

τ is not schedulable anymore. Such a limit depends on the task set and on the

algorithm used to schedule the tasks. Let Uub(τ, A) be the upper bound of the

processor utilisation factor for a task set τ under a given algorithm A. When

Chapter 2. Background 23

U = Uub(τ, A), the set τ is said to fully utilise the processor. In this situation, τ is

schedulable by A but an increase in the computation time in any of the tasks will

make the set infeasible. For a given algorithm A, the least upper bound Ulub(A)

of the processor utilisation factor is the minimum of the utilisation factors over

all task sets that fully utilise the processor:

Ulub(A) = minτ Uub(τ, A) (2.5)

Ulub defines an important characteristic of a scheduling algorithm useful for

easily verifying the schedulability of a task set. In fact, any task set whose

processor utilisation factor is less than or equal to this threshold is schedulable

by the algorithm. Lastly, if the utilisation factor of a task set is greater than 1.0,

the task set cannot be scheduled by any algorithm.

2.2 Scheduling on Uniprocessor Systems

2.2.1 Preemption and Priority Assignments

Real-time scheduling algorithms can be classified according to different criteria.

One criterion might consider when preempt and interrupt a job that is executing

to allocate computing resources to the next job. Once established that an in-

stance running on a CPU can be preempted and then resumed later at runtime.

Another categorisation could consider the way the priorities are assigned to jobs.

According to the dispatching policy, the scheduling algorithms could be dis-

tinguished as follows:

• Non-preemptive: once a job begins execution, it continues to execute until

it has completed. The preemption is totally forbidden and if a job with

stricter timing requirements needs computing resources, it will wait that

the current one terminates.

• Fully preemptive: the current executing job can be interrupted by the sched-

uler whenever a more urgent one requests service to be resumed at a later

point in time.

• With deferred preemption: the preemption is allowed only at specified times

and points during the execution. Such systems are also referred to as

systems with limited preemption.

Within systems in which preemption is allowed, it is typically assumed that

the cost for preemption and context switch of jobs is zero.

Chapter 2. Background 24

The scheduling algorithms could also be differentiated according to how they

assign priority and according to the complexity of the priority scheme as below:

1. Static priority: a unique priority is associated with each task and all jobs

generated by a task have priority associated with that task. Thus, if task τ1

has higher priority than task τ2, then whenever both have active jobs, the

τ1’s job will have higher priority over τ2’s job. An example of a scheduling

algorithm in this class is the RM algorithm [25].

2. Dynamic priority: an instance generated by a task can have a priority that

is sometime higher and other times smaller than an instance generated

by a second task. Examples of such category are the Earliest Deadline

First (EDF) [25], for which the priority is given by the absolute deadlines,

and the Least Laxity First (LLF) [3], for which the job priority is computed

according to its current laxity.

Figure 2.3 shows the main static and dynamic priority assignment schemes

and algorithms.

Scheduling	Algorithms	for	Uniprocessors	

Dynamic	Priority	 Fixed	Priority	

EDF	 LLF	 RM	 DM	

Figure 2.3: Types of scheduling algorithms [3]

2.2.2 Fixed Priority Scheduling

The Rate Monotonic (RM) scheduling is a simple rule that assigns priorities to

tasks according to their request rates. Specifically, tasks with higher request

rates, i.e., with shorter periods, will have higher priorities. Since periods are

constant, RM is a fixed priority assignment: a priority is assigned to the task

Chapter 2. Background 25

before execution and does not change over time. Moreover, RM is intrinsecally

preemptive: the currently executing job is preempted by a newly arrived job with

shorter period. In 1973, Liu and Layland showed that RM is an optimal priority

assignment policy for synchronous periodic or sporadic task sets with implicit

deadlines in the sense that no other fixed-priority algorithms can schedule a task

set that cannot be scheduled by RM [25]. Liu and Layland also derived the least

upper bound of the processor utilisation factor for a generic set of n periodic

tasks. Therefore, for an arbitrary set of periodic tasks, the least upper bound of

the processor utilisation factor under the RM scheduling algorithm is

Ulub = n(21/n − 1) (2.6)

A sufficient condition for the RM schedulability is the following:

n∑
i=1

Ci
Pi
≤ n(21/n − 1) (2.7)

However, Kuo and Mok provided a potentially superior utilisation bounds

for task systems in which the task period parameters are harmonically related.

Let ñ denote the number of harmonic chains in the task set, then a sufficient

condition for such task set to be RM-schedulable is that:

n∑
i=1

Ci
Pi
≤ ñ(21/ñ − 1) (2.8)

Such a result was also later confirmed by Buttazzo [29].

The Deadline Monotonic (DM) priority assignment weakens the period equals

deadline constraint within a static priority scheduling scheme. This algorithm

was first proposed in 1982 by Leung and Whitehead as an extension of RM,

where tasks can have relative deadlines less than or equal to their period (i.e.,

constrained deadlines) [30]. The DM priority assignment is optimal for task sets

with constrained deadlines [30]. However, DM is not optimal for task sets with

arbitrary deadlines [31] or for asynchronous periodic task sets. According to DM

algorithm, each task is assigned a fixed priority inversely proportional to its rel-

ative deadline. Thus, at any instant, the task with the shortest relative deadline

is executed. Since relative deadlines are constant, DM is a static priority assign-

ment. As RM, DM is normally used in fully preemptive mode: the currently

executing job is preempted by a newly arrived job with shorter relative deadline.

The feasibility of a task set with constrained deadlines could be guaranteed using

Chapter 2. Background 26

the utilisation based test, by reducing tasks’ periods to relative deadlines:

n∑
i=1

Ci
Di

≤ n(21/n − 1) (2.9)

However, such a test would be quite pessimistic, since the workload on the

processor would be overestimated. A less pessimistic schedulability test can be

derived by noting that

• the worst-case processor demand occurs when all tasks are released simul-

taneously, i.e., at their critical instants;

• for each task τi, the sum of its processing time and the interference imposed

by higher priority tasks must be less than or equal to Di;

To find a sufficient and necessary schedulability test for DM, the exact inter-

leaving of higher priority tasks must be evaluated for each process. In general,

this procedure is quite costly since, for each task τi, it requires the construction

of the schedule until Di. Audsley et al. proposed [32, 33] an efficient method

for evaluating the exact interference on periodic tasks and derived a sufficient

and necessary schedulability test for DM, called Response Time Analysis (RTA).

According to the method proposed by Audsley et al. the longest response time

Ri of a periodic task τi is computed, at the critical instant, as the sum of its

computation time and the interference Ii of the higher priority tasks:

Ri = Ci + Ii (2.10)

where

Ii =
i−1∑
j=1

⌈
Ri

Pj

⌉
Cj (2.11)

Hence,

Ri = Ci +
i−1∑
j=1

⌈
Ri

Pj

⌉
Cj (2.12)

A further necessary and sufficient test for checking the schedulability of con-

strained deadline task sets in fixed priority systems is named Workload Analy-

sis (WA) and was proposed by Lehoczky, Sha, and Ding [34]. The test is based

on the concept of Level-i Workload Wi(t). The Level-i workload Wi(t) is the

cumulative computation time requested in the interval (0, t] by task τi and by

all the tasks with higher priority.

Chapter 2. Background 27

The Level-i workload for a set of synchronous periodic tasks can be computed

as follows:

Wi(t) = Ci +
i−1∑
h=1

⌈
ti
Ph

⌉
Ch (2.13)

A set of fully preemptive periodic tasks τ can be scheduled by a fixed priority

algorithm if and only if

∀i = 1, . . . , n ∃t ∈ (0, D].Wi(t) ≤ t

2.2.3 Dynamic Priority Scheduling

The Earliest Deadline First (EDF) algorithm is a dynamic scheduling rule that

selects task instances according to their absolute deadlines. Specifically, tasks

with earlier absolute deadlines will be executed at higher priorities. Therefore,

EDF is a dynamic priority assignment. Moreover, it is typically executed in pre-

emptive mode, thus the currently executing job is preempted whenever another

periodic instance with smaller deadline becomes active. It is necessary to notice

that EDF does not make any specific assumption on the periodicity of the tasks;

hence, it can be used for scheduling periodic as well as aperiodic tasks. EDF is

an optimal scheduling algorithm for sporadic task sets regardless of the deadline

constraints [35]. The schedulability of a periodic task set handled by EDF can

be verified through the processor utilisation factor. In this case, however, the

least upper bound is one; therefore, tasks may utilise the processor up to 100%

and still be schedulable. Therefore, a set of periodic tasks is schedulable with

EDF if and only if

n∑
i=1

Ci
Pi
≤ 1 (2.14)

2.2.4 Scheduling with Utility Functions

There have been approaches to extend the pure deadline-based real-time speci-

fication by a generic function to measure or optimise the system utility. As an

example, to overcome the difficulty with deadlines in radar scheduling problems,

Jensen et al. proposed a real-time driven scheduling model [36]. The time-driven

scheduling was the first attempt to extend the classical model and to provide a

tool to enhance the effectiveness of real-time scheduling by exploiting the fact

Chapter 2. Background 28

that the job completion has a value provided to the system which can be ex-

pressed as a function of time and such value could be positive also after the

chosen deadline [36]. The authors simulated a real-time system in which each

task instance has a value for completing at any time and then the system is

rewarded with the value determined by that function when the instance termi-

nates. The sum of the resulting values for all tasks to be performed provides the

metrics for determining the system performance according to each scheduling

algorithms.

The research about value functions for adaptive resource management in

dynamic time-critical systems has been afterwards formalised as TUF/UA

paradigm [37, 38]. A Time/Utility Function (TUF) generalises the standard

deadline constraint since it specifies the utility provided to the system by the

completion of an action at a specified time. Then, the optimality criterion is

specified by the collective value provided by each task as summed utilities and

it is named Utility Accrual (UA). From this point of view, the classical deadline

can be represented as a binary-valued step function that has full utility till the

chosen deadline and no utility after. In general, a TUF is application dependent

and adds more expressiveness to specify the semantics of soft time constraints.

Then, such approach has been extended and developed to optimise parame-

ters such as energy consumption that is critical in mobile and portable, battery-

powered systems and to improve memory management in embedded systems.

The utility accrual via time-utility functions overcomes the shortcomings of stan-

dard deadline-based real-time scheduling whenever a late completion has still a

decreased but still acceptable utility for the overall system correctness.

The TUF/UA paradigm adds more flexibility to the pure deadline-based

scheduling since it allows to evaluate the utility of the output for any latency

and makes possible to express also negative utility. On the other hand, it does

not remove nor change the basic limitation, i.e., the critical latency after which

utility is not positive anymore and the assigned technical deadline are not ex-

plicitly specified nor distinguished. This still represents a mismatch with the

engineering practices. The first usage of utility functions to practically specify-

ing how to overcome the limits of traditional deadline-based scheduling is due

to Kirner [22, 1]. His work points out that real-time services have a technical

deadline chosen by system engineers as maximum latency to provide the output

that differs from the critical latency imposed by the environment after which

the service utility becomes zero or even negative. Therefore, the standard real-

time model represents a simplification since the deadline is used to determine

both the critical latency and the technical deadline used as design parameter.

Chapter 2. Background 29

Kirner proposed a further refinement called Tolerance-based Real-Time Com-

puting Model (TRTCM) that makes explicit the difference between the latency

where the resulting utility could become zero and the latency chosen as technical

deadline.

2.2.5 Complementary Scheduling Techniques

Adaptive and dynamic behaviour is seen as one of the key characteristics of the

modern real-time systems. The fixed priority preemptive scheduling is usually

used in such real-time systems but it is inflexible in its purest form. Provided

that in a task set deemed feasible by schedulability analysis all hard jobs must

always complete within their deadlines, it is inevitable that the processor and

other resources will be under-utilised at run-time. This occurs for many reasons,

including jobs not taking worst case execution paths, sporadic jobs not arriving

at their maximum rate and hardware speed-ups such as caching and pipelining,

which could not be predicted by worst-case execution time analysis. Furthermore,

generally, with modern processors it is becoming increasingly difficult to produce

tight upper bounds on the worst-case execution times of real-time tasks without

incorporating excessive pessimism [39].

The resources not required at run-time are usually termed as spare capac-

ity [40]. Such spare resources instead could be profitably exploited by other jobs,

either hard or soft. Davis has classified the spare capacity within a real-time sys-

tem into the three following groups [41]:

• Extra capacity: it is the capacity which is not allocated for real-time tasks

during the design phase. This can be identified off-line.

• Gain time: it is the processor time guaranteed to a task off-line but not

required at run-time. It is produced when the real-time task instances

execute in less than their worst-case execution time estimations. This may

only be reclaimed at run-time since it depends on the actual executions of

tasks [41].

• Spare time: it is the capacity produced in situations in which sporadic tasks

do not arrive at their maximum rate.

Most flexible scheduling algorithms are mainly focused on reclaiming the

extra capacity of the system, usually called slack time. Only a few research

approaches have discussed how to reclaim gain time [40, 42, 43]. Both strategies

Chapter 2. Background 30

allow to increase the amount of jobs scheduled. However, the former approaches

are performed offline while the latter check if there is spare capacity at run-time.

Schedulability tests provide no indication of the extent to which the WCET

estimates of tasks of feasible systems may be increased without causing dead-

lines to be missed. Punnekkat et al. provided a general approach to the sensi-

tivity analysis of task sets regardless of the priority assignment algorithm that

is used [44]. In this domain, sensitivity analysis refers to the study of the per-

missible changes of temporal task characteristics which still lead to a feasible

task set. Such approach aids system developers in incorporating changes to the

system while ensuring that the schedulabitity guarantees remain intact. Most of

metrics consider changes in the WCETs [45].

With regard to this, it is important the definition of critical scaling factor

α∗. In particular, given a task set in which it is possible to identify spare CPU

capacity prior to runtime and where each task τi could be represented as below:

τi = 〈Pi, Ci〉

then the critical scaling factor α∗ is the largest possible factor for each task’s

worst case execution time Ci above which some task instance will miss its deadline

at the critical instant phasing. Conversely the task set remains schedulable for

all α ≤ α∗. Katcher et al. utilise the concept of scaling factor α∗ to increase the

utilisation factor of each task within a task set as follow [46]:

∀τi ∈ τ.
n∑
i=1

α∗ · Ci
Pi

However, to increase the overall system load till the maximum point at which

it remains schedulable, it is possible also to consider the maximum permissible

change in the WCET of just a single task or of one module contained in one or

more tasks.

On the other hand, the online method reclaims the gain time collection at

runtime. The gain time is defined by noting that an invocation of task τi will

produce a job ji that very likely will have an execution time et(ji) smaller than the

WCET. Therefore, the gain time refers to the difference between the execution

time actually used by a job and the execution time budget that was allocated.

The most important property of any scheme for exploiting the gain time is that

the schedulability of hard tasks must not be affected. A number of mechanisms

exist that can make this gain time available for usage by other jobs without

affecting the schedulability. The gain time is defined as follows:

Chapter 2. Background 31

gi = Ci − et(ji)

where et(ji) is the execution time of job ji and Ci is the related assigned

time threshold. At runtime, it is likely that many jobs will complete in less than

their optimistic execution time threshold estimates. In a fixed priority scheme

such unused resource will become available to background or lower priority tasks.

The gain time gi is added to the execution time budget of the next lower priority

active job, i.e., the next job in the ready queue. It is worth to note that gi can

never be negative. Passing the gain time from one job to another makes less

likely that jobs requiring more execution time than expected will actually exceed

their execution time budgets.

2.2.6 Techniques for Soft Real-Time Systems

To provide appropriate support to soft real-time systems, new methodologies

have been investigated to achieve more flexibility in handling task sets with

dynamic behaviour as well as higher efficiency in resource exploitation. An offline

analysis of the system is required to estimate the number and frequency of missed

deadlines. It is necessary to check at runtime the amount of deadlines missed.

Typically, there are three types of requirements for soft real-time tasks [23]:

1. Bounds on the number of deadline misses in an interval of time. It is

usually required that at most m job deadlines over n instances could be

missed.

2. Bounds on the tardiness of a task. Task’s instances can complete after

their deadlines, but the delay must be bounded.

3. Having probabilistic bounds, e.g., it is possible to look for upper bounds

on the probability of having a deadline missed. From this point of view, a

probabilistic analysis needs a probabilistic characterisation of the execution

time of a task.

Another way to address the system’s unpredictability is to use some kind of

feedback to dynamically adapt the scheduler behaviour so that some selected

QoS metric is kept under control even in the presence of overload situations.

Since, it is not possible to prevent overloads but it is possible to minimise their

effects, the feedback mechanism creates a reactive system. The feedback mech-

anism uses information about the actual behaviour of a scheduling system to

dynamically adapt the scheduling algorithms such that the intended behavior is

Chapter 2. Background 32

achieved [2]. The feedback scheduling is based on the observation of relevant

performance parameters of the scheduling system. As a result, by looking at the

scheduling and control problems in an integrated fashion, better overall results

can be achieved in many control scenarios. To apply feedback techniques to real-

time scheduling, it is necessary first to select a QoS index to control, the so-called

feedback variable, and then to select a scheduling parameter to be adapted. For

example, the arrival rate of a task can be dynamically adjusted based on the

observed average of the deadlines missed.

2.3 Scheduling on Multiprocessor Systems

Since the beginning of this century the computer chip market has experienced

what has been named as multicore revolution, that is pushing all major chip

producers to switch from single to multicore platforms. Companies building em-

bedded real-time systems are driven by a profit motive. To succeed, they aim

to meet the needs and desires of their customers by providing systems that are

more capable, flexible and effective than their competitors and by bringing these

systems to market earlier. This desire for technological progress has resulted

in a rapid increase in both software complexity and the processing demands

placed on the underlying hardware. To address demands for increasing proces-

sor performance there is now an increasing trend towards using multiprocessor

platforms for high-end real-time applications. As a result, motivated by the

vastly increased computational demand of real-time workloads and by the trend

in hardware toward multicore and multiprocessor CPUs, real-time systems are

increasingly coming to be implemented upon multiprocessor platforms. A large

body of research has been performed addressing the various issues, challenges and

opportunities arising from this move towards multiprocessor platforms [47]. The

multiprocessor real-time scheduling theory is concerned with the development

of techniques and methodologies that enable the correct and resource-efficient

implementation of real-time systems upon multiprocessor platforms.

2.3.1 Classification of Multiprocessor Systems

In multiprocessor computing platforms there are several processors available

upon which jobs may execute. To completely specify a multiprocessor plat-

form it is necessary to know various details, e.g., the number of processors that

comprise the platform, the computing capabilities of such processors and wheter

they are connected to each other. In addition, it is necessary to know wheter the

Chapter 2. Background 33

platform supports preemption and inter-processor migration.

Scheduling theorists distinguish between at least three different kinds of mul-

tiprocessor machines (identical, uniform or unrelated) according to the relative

computing capabilities of the different processors:

• Identical parallel machines: these are multiprocessors in which all the pro-

cessors are identical, in the sense that they have the same computing power.

Hence the rate of execution of all tasks is the same on all processors.

• Uniform parallel machines: each processor in a uniform (or related) parallel

machine is characterised by its own computing capacity, with the interpre-

tation that a job that executes on a processor of computing capacity s for

t time units completes in s × t units of execution. In this case, the rate

of execution of a task depends only on the speed of the processor. Thus

a processor of speed 2 will execute all tasks at exactly twice the rate of a

processor of speed 1. It is worth to notice that identical parallel machines

are a special case of uniform parallel machines, in which the computing

capacities of all processors are equal.

• Unrelated parallel machines: in such machines, there is an execution rate

ri,j associated with each job-processor ordered pair 〈ji, cj〉 with the inter-

pretation that job ji completes in ri,j× t units of execution by executing on

core cj for t time units. Hence, in an unrelated multiprocessor a different

execution rate may be specified for each job upon each processor. In this

case, since processors are different, the rate of execution of a task depends

on both the processor and the task. Furthermore, not all tasks may be able

to execute on all processors.

Observe that identical multiprocessor are a special case of uniform multipro-

cessors and uniform multiprocessors are a special case of unrelated multiproces-

sors. Much of multiprocessor real-time theory has focused upon identical multi-

processor platforms. However, there is an increasing trend in industry towards

heterogeneous multicore CPUs containing specialised processing elements such

as Digital Signal Processing (DSP) cores, Graphics Processing Units (GPUs), in

addition to general-purpose processing cores.

Chapter 2. Background 34

2.3.2 Taxonomy of Multiprocessor Scheduling Algo-

rithms

Given a set of tasks to be processed, the multiprocessor scheduling can be viewed

as attempting to solve two problems:

• Allocation: on which processor a task should execute.

• Priority assignment: when and in what order each job should execute with

respect to other jobs.

In designing scheduling algorithms for multiprocessor environments, it is pos-

sible to distinguish between two main approaches: partitioned and global. In

partitioned scheduling, each task is allocated to a processor and no task nor job

migration is permitted. Conversely, the global scheduling permits both task level

migration (i.e., different jobs of a task may execute on different processors but

each job can only execute on a single processor) as well as job level migration

(i.e., an individual job that is preempted may resume execution upon a processor

different from the one upon which it had been executing prior to preemption).

Finally, there are also some hybrid class of algorithms that combine characteris-

tics of both previous approaches. Figure 2.4 summarises the existing approaches

to multiprocessor scheduling.

Scheduling	Algorithms	for	Multi-processors	

Partitioned	 Global	 Hybrid	

Semi-Partitioned	 Clustered	

Figure 2.4: Types of scheduling algorithms [3]

The majority of research into global scheduling algorithms has focussed on

models where arbitrary migration (job-level migration) is permitted. It has been

proven by Leung and Whitehead that the partitioned and global approaches to

static-priority scheduling on identical multiprocessors are incomparable [30], in

the sense that:

Chapter 2. Background 35

1. there are task sets that are feasible on m identical processors under the par-

titioned approach but for which no priority assignment exists which would

cause all jobs of all tasks to meet their deadlines under global scheduling

on the same m processors.

2. there are task sets that are feasible on m identical processors under the

global approach but which cannot be partitioned into m distinct subsets

such that each individual partition is feasible under a static priority policy

on a single core.

Such a result provides a very strong motivation to study both the partitioned

and the non-partitioned approaches to static-priority multiprocessor (identical

as well as uniform) scheduling, since it is provably true that neither approach

is strictly better than the other. However, in 2006, Baker made an empiri-

cal comparison between the global and partitioned EDF scheduling algorithms

available [48]. The empirical performance metrics used to compare the two ap-

proaches was the number of randomly generated task sets that were schedulable

according to each algorithm. The conclusion of this study was that although the

two approaches are incomparable, the partitioned approach appeared to outper-

form the global approach on this metric by a significant margin.

A multiprocessor scheduling algorithm is said to be work conserving, if the

algorithm never idles a processor while there is some active job awaiting execution

which may legally execute upon this processor [49]. Unlike global scheduling, the

partitioned scheduling algorithms are not work-conserving, as a processor may

become idle but cannot be used by ready tasks allocated to a different processor.

With regard to sustainability properties, while EDF and fixed priority

scheduling are sustainable algorithms with respect to uniprocessor scheduling

for both synchronous periodic and sporadic tasksets, the same is not true of

global EDF and global fixed task priority multiprocessor scheduling. The sus-

tainability of schedulability tests for global EDF has been investigated by Baker

and Baruah [50].

2.3.3 Partitioned Scheduling

Partitioned scheduling has the following advantages compared to global schedul-

ing:

1. If a task overruns its worst-case execution time budget, then it can only

affect other tasks on the same processor.

Chapter 2. Background 36

2. As each task only runs on a single processor, then there is no overhead

in terms of migration cost. In fact, a job that is started on one processor,

then pre-empted and resumed on another must have its context restored on

the second processor. This can result in additional communication loads

and cache misses that would not occur in the partitioned scheme where

migration is not allowed.

3. Partitioned approaches use a separate run-queue per processor, rather than

a single global queue. For large systems, the overheads of manipulating a

single global queue can become excessive.

Figure 2.5 shows the architecture of a system in which it is implemented the

partitioned scheduling.

Local	Ready	Queues	
Per-Processor	
Scheduler	 Processors	

Figure 2.5: Multiprocessor system with partitioned scheduling [4]

Furthermore, by using a partitioned approach to multiprocessor scheduling,

once an allocation of tasks to processors has been achieved, a wealth of real-time

scheduling techniques and analyses for uniprocessor systems can be applied. On

the other hand, the main disadvantage of the partitioned approach to multi-

processor scheduling is that the task allocation problem is analogous to the bin

packing problem and is known to be NP-Hard [51].

2.3.4 Global Scheduling

Global scheduling has the following advantages compared to partitioned schedul-

ing:

1. There are fewer context switches and pre-emptions when global scheduling

Chapter 2. Background 37

is used, this is because the scheduler will only pre-empt a task when there

are no processors idle [52].

2. Spare capacity created when a job executing for less than its WCET can

be utilised by all other jobs, not just those on the same processor.

3. Global scheduling is more appropriate for open systems, as there is no need

to run load balancing or task allocation algorithms when the set of tasks

changes.

Figure 2.6 shows the architecture of a system with a global scheduler that

dispatches jobs to the appropriate core.

Global	Ready	Queue	 Global	Scheduler	

Processors	

Figure 2.6: Multiprocessor system with global scheduling [4]

In the whole, depending on the hardware architecture, the overheads incurred

by global scheduling can potentially be very high. The fact that jobs can migrate

from one processor to another can result in additional communication loads and

cache misses, leading to increased worst-case execution times that would not

occur in the fully partitioned case. However, fully partitioned approaches suffer

from the drawback that the available processing capacity can become fragmented,

such that although in total a large amount of capacity is unused, no single pro-

cessor has sufficient capacity remaining to schedule further tasks. In fact, with

regard to partitioned scheduling, the maximum utilisation bounds is just 50% of

the total processing capacity.

2.3.5 Hybrid Scheduling Approaches

The hybrid approaches combine elements of both partitioned and global schedul-

ing and are respectively the clustered and semi-partitioned strategies.

Chapter 2. Background 38

The clustered approach first partitions the cores within multiprocessor plat-

form into clusters and then each task is mapped on to a single cluster. Migration

of a task’s jobs is only allowed within the cluster to which the task is mapped.

Clustering can be thought of as a form of partitioning with the clusters effectively

forming a smaller number of faster processors to which tasks are allocated. In

such case, capacity fragmentation represents less an issue if compared with par-

titioned approaches while the small number of processors in each cluster reduces

global queue length and has the potential to reduce migration overheads. For

example, processors in a cluster may share the same cache, reducing the penalty

in terms of increased worst-case execution time of allowing tasks to migrate from

one processor to another.

The semi-partitioned scheduling algorithms place various forms of restriction

upon migration without forbidding it outright. Such algorithms are commonly

called semi-partitioned or limited migrative scheduling algorithms. They may,

for example, specify that no individual task is allowed to migrate between more

than two processors or they may restrict the total number of migratory tasks in

a system.

2.4 Chapter Summary

This chapter surveys various aspects of the standard real-time scheduling both

in uniprocessor and multiprocessor platforms.

Section 2.1 contains a general introduction about real-time systems which

consists of a discussion on the main concepts to devise real-time scheduling

software. Section 2.2 reviews the main scheduling approaches on uniproces-

sor platforms. More precisely, it describes static and dynamic scheduling but

also complementary techniques to increase the amount of jobs successfully pro-

cessed, completed after their deadlines or to optimise some specific performance

criterion. Lastly, Section 2.3 contains a review about the most used scheduling

approaches on multiprocessor architectures.

Chapter 3

Related Work

This chapter review the main related work produced on mixed-criticality schedul-

ing that is related to my research.

First of all, the chapter introduces the mixed-criticality task model with its

successive extensions. Then, it presents the main fixed and dynamic priority

scheduling both on uniprocessor and multiprocessor platfotms. Lastly, it also

describes mixed-criticality scheduling with soft real-time tasks and that based

on utility optimisation.

3.1 Mixed-Criticality Scheduling

Research on mixed-criticality scheduling was started by Vestal in 2007 to man-

age the challenge of accomplishing an effective and resource efficient a priori

verification of safety-critical real-time systems with an increasingly integration

of multiple functionalities [11, 12].

The mixed-criticality scheduling is built upon a novel approach to the a-

priori estimation of tasks’ properties in which multiple models are constructed

for a task system, each of which true to a different level of assurance. The

successive verification of functionalities is made at the level of assurance appro-

priate for the specific level. The initial task model consists of a set of periodic

tasks that perform functions having different criticalities and requiring differ-

ent levels of assurance [11]. Each task may have a set of different Worst Case

Execution Time (WCET) estimates, each assured to a different level of confi-

dence. The more confidence one needs in a task execution time bound, the

larger and more conservative that bound tends to become in practice. The final

aim was that to guarantee that safety-critical task instances do not miss their

deadlines. The mixed-criticality approach allows the system developer to avoid

39

Chapter 3. Related Work 40

the usage of excessively conservative models to verify less critical functionalities

and thus reduces the over-approximated estimates. Applying such modular cer-

tification enables to design systems that are verified correct, that make a more

efficient usage of platform resources during runtime and that would have other-

wise been deemed unschedulable using conventional analysis techniques. Guan

et al. showed that such approach can be beneficial also in reducing cost and

energy consumption [53].

The mixed-criticality task and system model permits to deal with multiple

criticality levels. However, for simplicity, most of research work studies dual-

criticality systems, i.e., systems with tasks having just two criticality levels,

indicated in this dissertation as LO (low criticality) and HI (high criticality)

with HI being more critical than LO. Since the HI task instances execution has

to be guaranteed at a higher level of assurance than LO jobs, a common approach

is to assume for LO tasks only the knowledge of easy to derive optimistic WCET

estimates while for HI jobs also a higher level of assurance based on safe upper

WCET bounds is assumed.

Therefore, the research regarding the mixed-criticality approach was initially

developed to address fundamental questions regarding a priori verification. How-

ever, the Vestal model presents new challenges with regard to scheduling and fault

tolerance. In fact, well designed mixed-criticality scheduling methods should seek

to satisfy two, sometime contradictory, ultimate goals [54]:

1. Guaranteeing the execution of higher criticality jobs at the required level

of assurance, even under very conservative assumptions.

2. Achieve high resource utilization during run-time.

Successive work has been done on extending the applicability of such approach

to address also issues about run-time robustness.

The mixed-criticality scheduling protocols aim to overcome the limitations

of standard priority based scheduling algorithms [55]. The active research chal-

lenge is to find ways to effectively combine the resource prioritisation based on

criticalities with the scheduling priorities based on real-time constraints. The

basic idea of mixed-criticality protocols is that as long as enough resources are

available, the scheduling priorities are defined by a real-time scheduling proto-

col. In case of a resource shortage, e.g., a highly critical job overrunning its

estimated WCET [15], the tasks’ properties referred to as criticalities are used

as the primary criterion to allocate resources.

Chapter 3. Related Work 41

3.2 Extensions and Applications of Mixed-

Criticality Model

After the Vestal seminal work, research on mixed-criticality approach has evolved

to generalise the initial system model in order to make the solutions proposed

suitable for industry.

On one side, extensions to the classical mixed-criticality task model have

been proposed. Baruah, Burns and Davis have presented generalizations to the

standard 3-parameter sporadic task model in which multiple estimates are pro-

vided for one or even for each of the three task parameters [56, 57, 58]. As an

example, in many cases, the minimum inter-arrival time of tasks is not known

precisely a priori but it must be estimated and hence it makes sense in a mixed-

criticality settings to specify multiple periods for tasks in which smaller values

represent safer and more conservative estimates. Baruah studied this issue for

the first time upon preemptive uniprocessor platforms by providing a task model

for dual-criticality systems [54]. He devised a system model in which each task

might have more than one estimate for its period but only one estimate for

its WCET. Schedulability analysis techniques were provided afterwards first for

fixed-priority [59] and then for EDF-based dynamic priority systems [60]. Burns

and Davis also considered the scheduling of streams of real-time traffic char-

acterized by multiple period parameters at different levels of pessimism within

Controller Area Network (CAN) [61]. Their work investigated what form of

mixed-criticality support should be integrated within CAN technology. Lastly,

they defined mixed-criticality protocols that could form the basis of a Trusted

Network Component (TNC) for CAN and derived a sufficient response-time anal-

ysis for such protocols and an optimal priority assignment scheme. Other system

models consist of tasks that might have multiple relative deadlines with smaller

(or sometime larger) relative deadlines for increasing criticality levels [62, 57].

It is also possible to apply similar generalisations to system resources, even

different from processor capacity; for instance, it could be possible to make a

priori predictions about the run-time energy usage of a system by modeling

the likely energy consumption of components differently at different levels of

assurance and using the appropriate models to validate functionalities of different

criticalities. Other resources such as communication bandwidth or memory usage

could be similarly considered.

Alan Burns and Robert I. Davis provided a historical overview and a general

introduction about the mixed-criticality scheduling that also contains the gener-

Chapter 3. Related Work 42

alisations to the initial Vestal model and the most recent applications [56]. The

key question raising from their work is how to reconcile the conflicting require-

ments of partitioning for safety and sharing for efficient resource usage.

Crespo et al. studied the possibility to use virtualisation as basis for building

mixed-criticality partitioned software architectures [63]. Their work reviewed the

challenges connected to systems with virtual partitions having different criticality

that are executed in an independent way. Such systems are based on a hypervisor

that provides temporal, spatial and fault isolation among partitions that contain

components that have to be guaranteed at different assurance levels and on

hierarchical scheduling as strategy to process jobs.

Cros et al. have studied how to manage criticality level information in ether-

net networked systems [64]. In fact, a modern networked system can be thought

as a system for interconnected applications of different criticalities. Nowadays,

real-time industrial networks providing timing guarantees for applications of dif-

ferent criticalities often are built in separate physical infrastructures, one for

each type of network at the price of cost, weight and energy consumption. The

authors presented a criticality-change protocol in a clock synchronized switched

ethernet network, in the case of two criticality levels. The main goal of the crit-

icality management in such networked systems consists in providing Quality of

Service (QoS) guarantees in terms of worst case end-to-end transmission delays,

particularly for high critical messages.

3.3 Interpretations of Criticality

Despite the fact that research on mixed-criticality has already produced a con-

siderable amount of work, the ultimate and definitive meaning of criticality is

still subject of discussion within the scheduling community.

In fact, a task’s criticality can be derived from different aspects. One possi-

bility is to express the relative importance or relative utility of different services

in a system as their criticality [6]. Another possibility is to express the rela-

tive level of assurance, for example, dictated by different development standards

for safety critical or relevant systems, like DO-178C [7] in the avionics domain,

ISO26262 [8] in the automotive domain, or IEC 61508 [9] in the automation do-

main as different levels of criticality. Lastly, Buttazzo defines the criticality as

importance based on consequence of missing a deadline, that could be hard, firm

or soft [10].

Ernst and Di Natale provided an explanation about the meaning of criticality

Chapter 3. Related Work 43

and a review about the mixed-criticality model in current real-time research [65].

They highlight how functional safety standards usually provide the basis to de-

sign industrial mixed-criticality systems. Each safety or design assurance level

involves a certain likelihood to perform successfully the required functions un-

der certain conditions and within a stated period of time. The definition of

criticality levels is often obtained as a result of a Failure Modes, Effect and

Criticality Analysis (FMECA) process. However, these standards focus on the

safety targets while engineers normally focus on metrics such as Size, Weight

and Power (SWaP) specifications. Such contrast grows with the autonomous

driving and with the integration challenges derived from cyber-physical systems

and Internet of Things (IoT).

3.4 Criticisms to the Mixed-Criticality

Scheduling

The mixed-criticality scheduling is encountering growing attention and interest.

However, after a great initial excitement from practitioners there has been also

some apprehension regarding the real practical relevance of the mixed-criticality

scheduling [66, 67].

First of all, such concerns pointed out how the mixed-criticality scheduling

methods do not reflect the current practice with regard to ensuring robustness in

safety-critical systems. From this point of view, the safety standards require that

functions at any criticality level should not be affected by timing errors in other

criticality levels. Conversely, the mixed-criticality protocols on uniprocessor ar-

chitectures always guarantee the correct completion of higher criticality tasks

at the expense of lower criticality ones. Moreover, most research efforts within

mixed-criticality community are currently dedicated to the usage of scheduling

methods for ensuring graceful degradation after timing faults while the main

concern derived from safety standards remains the sufficient independence of

components while optimizing design efficiency. Ernst and Di Natale also notice

that the idea of representing a system using multiple models to validate different

parts of it appears to currently be antithetical to the authorities and entities

responsible for certification. In other words, it is not clear the reason for cer-

tification authorities to accept two WCET values for a task and two different

processes for measuring them. However, Baruah noticed that, even if the most

significant shortcoming is the incompatibility of the current mixed-criticality

scheduling methods with current certification standards in safety-critical sys-

Chapter 3. Related Work 44

tems, this seems to be especially a social and cultural problem, rather than a

technical one. In fact, [66] and [67] pointed out various parts of current stan-

dards that do not permit to represent a system as consisting of parts that have to

be validated at different levels of assurance. However, they do not indicate any

technical reasons that could prevent to incorporate such modeling approaches

within the standards in the future.

A further criticism to some work produced by researchers in mixed-criticality

scheduling is about the ambiguity of the criticality meaning. The word critical-

ity is sometime used to represent several related but different concepts such as

importance, confidence, safety integrity levels or even consequence related to a

deadline missed. However, the term criticality has a specific technical meaning

in the safety and certification community which does not always correspond to

importance nor to the severity of the consequences of a failure in a function but

that is the result of a more complex assessment and design process [67]. An

analysis of the current mixed-criticality scheduling models from the safety assur-

ance perspective is provided in [68]. It highlights how the key assumption behind

most of mixed-criticality task models is the WCET confidence monotonicity, i.e.,

the higher the level of guaranteed assurance and the larger the relative WCET

estimate shoud be.

3.5 Standard Real-Time Scheduling and Criti-

cality Inversion Problem

The classical real-time scheduling community usually represent a task τi by using

three-parameters as follows [26]:

τi = 〈Pi, Di, Ci〉

in which Pi represents the period, Di the deadline and finally the Ci is the

WCET. In such model, the scheduling decisions are made not considering the

criticality of jobs but only the requirements indicated by a priority to determine

what job has to be executed next. The priorities are usually assigned with

the purpose of maximizing the schedulable utilization in order to respect the

deadlines of all jobs within a job set. The utilization maximization approach of

traditional real-time scheduling typically makes two important assumptions [13]:

1. All tasks are equally important and consequently also all jobs are equally

important;

Chapter 3. Related Work 45

2. The utilization never goes beyond the allowable thresholds.

A remarkable way that scheduling analysis has been extended in the recent

years considers the removal of assumption that all tasks and jobs that have to

be scheduled have the same level of criticality [57, 13]. Moreover, the second as-

sumption does not hold as there is the possibility that some jobs go beyond their

specified Ci. The presence of criticality as task property has led to devise novel

and more appropriate models in which one or more task paramaters can change

according to the required level of assurance. Most of time, such models deal

with systems having tasks that could be of high criticality or of low criticality,

indicated in this dissertation as HI or LO tasks. The HI tasks have two WCET

estimates, one optimistic and the other more conservative, indicated respectively

by CLO and CHI . Within mixed-criticality systems, if there is ever a situation

where it is possible satisfying the deadline of only one job, it is always expected

to meet first the one of the higher criticality job. When high criticality jobs go

beyond their optimistic allowable threshold, then it is possible to have incoming

non critical jobs that have higher scheduling priority. This usually leads to tran-

sient faults and to a phenomenon named criticality inversion [13] in which high

priority non critical jobs preempt low priority jobs that have a higher impact on

the overall system correctness, e.g., with regard to safety, potentially leading the

latter to miss their deadlines.

A very simple way to eliminate the criticality inversion is to simply assign

priorities to tasks first according to their criticalities and then according to their

timing requirements. This strategy is named Criticality Monotonic (CM) or

Criticality As Priority Assignment (CAPA) [13]. This approach eliminates the

criticality inversion in case a HI job overruns its CLO but it can lead to a very poor

utilization if the resulting task order turns out to be contrary to the best priority

assignment to maximize utilization and it can generate priority inversions.

P	 D	 et	 CLO	 CHI	 L	
A	 8	 8	 5	 2	 5	 HI	

B	 5	 5	 2	 2	 ---	 LO	

A0	

B0	
Time	

Tasks	
A0	misses	its	deadline	

5	

The	HI	job	A0	overruns	its	CLO	

B1	

Figure 3.1: Criticality inversion example: job A0 overruns its optimistic WCET,
it is preempted by the higher priority LO job B1 and misses its deadline.

Figure 3.1 shows an example of a mixed-criticality task set with implicit

Chapter 3. Related Work 46

deadlines which is scheduled with a standard real-time fixed-priority scheduler.

Tasks A has criticality HI while task B has criticality LO. Priorities are assigned

to tasks according to deadlines and jobs are processed using the the Deadline

Monotonic (DM) algorithm. No jobs would miss their deadlines as long as they

complete within their CLO estimates. However, the lack of a runtime protection

mechanism to ensure the completion of highly critical instances that exceed their

optimistic time thresholds leads to a deadline missed. It is possibile to notice

that the HI job A0 exceeds its optimistic WCET at time t = 4 and is preempted

by the higher priority LO job B1 at time t = 5. Because of this, A0 does not

complete within its deadline.

The final aim of mixed-criticality scheduling protocols is mainly that to pro-

tect the HI jobs execution from the interference of higher priority LO jobs due to

resource shortages. The current status of the art is that to prevent LO instances

from preempting jobs with higher impact on the system correctness by aban-

doning the first ones whenever the timeliness of latter in meeting their deadline

is endangered. This approach guarantees that high criticality jobs meet their

deadlines and complete their execution. However, LO tasks are still relevant and

simply abandoning their instances means decreasing too much their service level.

Therefore, deciding how to solve the criticality inversion problem basically means

deciding how to degrade lower criticality tasks in favour of the most critical ones.

3.6 Fixed-Priority Mixed-Criticality Schedul-

ing

This section reviews the work that has been produced on the field of mixed-

criticality scheduling algorithms that use fixed-priority assignment strategies on

uniprocessor platforms.

In 2011, Baruah et al. extended the Vestal’s model by proposing the Adap-

tive Mixed Criticality (AMC) together with response-time analysis techniques for

constrained deadline dual-criticality task sets [69]. Such techniques have been

recently extended to manage also sets of tasks with arbitrary deadlines [70]. The

AMC scheduling algorithm requires a monitor to check how long each individ-

ual job executes. The scheduling protocol works in two execution modes, high

criticality and low criticality that are indicated respectively with HI and LO, as

described below:

1. There is a criticality level indicator Γ, initialized to LO.

Chapter 3. Related Work 47

2. While Γ = LO, at each instant the waiting job generated by the task with

highest priority is selected for execution.

3. If the currently executing job does not complete within its optimistic

WCET estimate, then the system changes execution mode and Γ = HI.

4. Once Γ = HI, all low criticality jobs will not be executed. Henceforth, at

each instant the waiting job generated by the highest priority HI task is

selected for execution.

5. An additional rule can specify the circumstances when Γ gets reset to LO,

e.g., if no HI jobs are active at some instant in time.

In 2013, Li et al also extended the response time bound techniques and the

AMC protocol to work with multiple criticality levels [71]. In 2017, Guo et al.

studied the sustainability of various mixed-criticality scheduling tests both in

uniprocessor and in multiprocessor systems and found that AMC-rtb is sustain-

able with regard to all parameters, including the criticality level [72]. The AMC

protocol assumes that once the system goes into the HI mode, then all LO task

instances will be abandoned and the system will remain in that mode. However,

the sudden discard of LO jobs during the HI mode can cause serious service in-

terruptions and significant performance loss, especially for control systems where

the performance of controllers is mainly affected by the execution frequency and

period of control tasks [73]. To reduce the impact on lower criticality tasks,

the AMC protocol switches back to the initial execution mode as soon as an

idle instant occurs and all LO jobs can be processed again with their timely

execution [69].

Going back to the LO starting mode only in case of idle instants leads to a

high amount of jobs interrupted or abandoned and this is still not satisfactory.

Different complementary ways of guaranteeing a higher level of service for LO

tasks have been proposed, e.g., extending their periods and/or deadlines like in

the elastic task model [74] or reducing their execution times by switching to a

simpler version of the software [75].

The Priority May Change (PMC) strategy has been proposed to better man-

age the situations in which higher priority LO tasks could preempt lower priority

HI tasks in case of transient faults [76]. The AMC algorithm assigns a single pri-

ority to each task by considering together both LO and HI criticality modes

whereas PMC computes priorities in two steps. Firstly, priorities are assigned

to the tasks according to some predefined policy like deadline monotonic as they

would in a regular task system [32]. These priorities are used by the runtime

Chapter 3. Related Work 48

dispatcher while the system is in LO execution mode. Once the system switches

to HI mode, HI task priorities are re-assigned according to a priority ordering

policy that is optimal for tasks with release jitter [77].

In 2014 Fleming and Baruah proposed a scheme in which the system designers

can assign to lower critical functionalities a utility that is used to decide in which

order their instances have to be suspended during the HI mode [78]. Such method

allows to the system designer to control how non-critical functionalities degrade

after the critical ones overrun their optimistic time threshold. The utility value

is assigned as an ordinal scale [79] to provide a predefined order in which LO

task instances will be dropped, least important task instances will be dropped

first. The authors adapt the Audsley’s priority assignment technique [80] to

assign lower priority to lower utility LO tasks. Such protocol allows to increase

performances for LO tasks and to process them for a significantly increased

amount of time.

Somehow, the former methods considered so far allow for LO task invocations

to execute after a criticality mode change but they are mainly best effort and

do not have a predefined minimum threshold guaranteed for lower critical tasks.

Since most hard real-time systems could miss some deadlines provided that it

happens in a known and predictable way, the Adaptive Mixed Criticality with

Weakly-Hard constraints (AMC-WH) was introduced in 2015 [81] and represents

an extension of AMC [69] that integrates the notion of weakly-hard constraints.

The definition of weakly-hard real-time system was given in 2001 [82] to indicate

systems in which hard real-time tasks are permitted to miss some deadlines as

long as the number of missed deadlines is strictly bounded. This work was based

also on research on soft real-time systems [83, 84]. The AMC-WH is a scheduling

policy that allows a number of consecutive instances per LO task to be skipped

during the HI execution mode. This reduces the overall system load, frees more

resources for safety-critical tasks and provides a degraded but guaranteed mini-

mum quality of service for LO tasks upon a criticality mode change. The number

of skips permitted and the number of subsequent deadlines that must be met can

be a requirement deduced either from the design of a control algorithm[85] or

from physical properties of the system. Empirical evaluations demonstrated that

AMC-WH outperforms previous policies and accommodate the continued execu-

tion of LO tasks without compromising the assurance requirements for HI tasks.

However, as all former AMC-based methods, AMC-WH does not provide a

fast recovery from the HI criticality mode since it is still necessary to wait for

idle instants to go back to the starting LO execution mode.

Restoring the normal system execution mode avoids the abandonment of

Chapter 3. Related Work 49

new incoming LO jobs but the amount of instances aborted in case of resource

shortage could be still very high since there is no control on when the idle instant

will be. The Bailout Protocol (BP) improves AMC with the introduction of

a fast and effective control mechanism to speed up the entering of the initial

LO execution mode, called Normal mode [16, 17]. BP still has a HI execution

represented by the Bailout and Recovery modes. The protocol aims to restore

the Normal mode as soon as possible to minimize the number of LO jobs that

miss their deadlines or are not executed at all. The Normal mode is restored

not only at the occurrence of an idle instant but also according to the value of a

Bailout Fund (BF) variable. The actual number of lower critical instances that

will not be started depends on the size of BF, on number and execution time

of LO instances and eventually on time needed for recovery. Once the system

is back to the starting mode, all less critical functionalities start again to be

processed with their full timely behavior. The strength of this protocol is that

to speed up the entering of LO criticality mode, where all jobs can start and

being processed. As a result, BP enlarges the duration of the Normal execution

mode where all jobs can be processed with their full timely behaviour but still

abandons LO jobs released during the execution of high criticality execution

modes. Furthermore, BP allows to LO jobs released in Normal mode to continue

to execute in Bailout and Recovery modes, even after their deadline as long as

they do not exceed their CLO .

The main weakness of BP is that to immediately drop low-critical instances

after a HI job overruns its CLO . Because of this, the percentage of LO jobs

that miss their deadlines is still high. In the whole, abandoning lower critical-

ity instances in case of resource shortage does not give the robustness required

since some level for LO services should be maintained as they are still important

for mission completion. There are two complementary strategies that help to

reduce the number of times that a given system enters into Bailout mode, and

the amount of time that it spends in such mode, hence reducing the number

of LO instances that miss their deadlines or are abandoned. An approach to

increase the amount of jobs scheduled was introduced by Santy et al [86]. Burns

and Baruah have further refined it and adapted it to work with mixed-criticality

protocols [75]. Such method exploits the system slack time by scaling up the CLO

of HI tasks without making the system unschedulable. This method effectively

increases the execution time budgets while ensuring that the system remains

provably schedulable according to AMC-rtb analysis [69]. If used together with

the BP, the resulting protocol is named Bailout Protocol - Slack (BPS). More

recently, Bate et al. have also integrated BP with a second complementary tech-

Chapter 3. Related Work 50

nique [17]. Such approach consists of an online update of the optimistic time

budget that is made by exploiting the CPU spare capacity at runtime. These

techniques allow to reduce both the number of times and the duration the system

executes in HI modes. The most important property of any scheme for exploiting

gain time is that the schedulability of HI tasks must not be affected. A number

of mechanisms exist that can make this gain time available for use by other jobs

without affecting the schedulability. The method used with BP operates only

during the Normal mode and the gain time gi of a LO job ji is defined as follows:

gi = CLO − et(ji) (3.1)

Passing the gain time from one job to the successive makes less likely that

jobs requiring more computing time than expected will actually exceed their CLO

budgets. On one side this increases the probability that LO jobs complete suc-

cessfully instead of being dropped. On the other hand, it makes less likely that

the system enters the Bailout mode because of the HI jobs overrruns. It is worth

to note that in Bailout mode, the gain time mechanism is not used, since the

BP effectively makes use of gain time to hasten recovery. The Bailout Protocol

with Gain time (BPG) is derived from the integration of BP with the gain time

collection at runtime. By combining simultaneously both complementary meth-

ods with BP, the authors have also introduced the Bailout Protocol - Slack and

Gain Time (BPSG). The benefit of using such complementary techniques results

in the increase of the overall service quality for lower critical tasks, provided by

increasing the number of LO task instances correctly processed.

3.7 The AMC-rtb Analysis

The schedulability analysis used to create task set that have to be processed with

AMC and BP consists of a three step verification process that guarantees the

schedulability of each mixed-criticality constrained deadline task at the required

level of assurance in each execution mode [69]. The analysis has the following

three steps, each employs the appropriate test:

1. Verifying the schedulability of every task during the low-criticality execu-

tion mode:

RLO
i = CLO +

∑
j∈hp(i)

⌈
RLO
i

Pj

⌉
CLO ,j (3.2)

Chapter 3. Related Work 51

2. Verifying the schedulability of HI tasks during the high-criticality execution

mode:

RHI
i = CHI +

∑
j∈hpH(i)

⌈
RHI
i

Pj

⌉
CHI ,j (3.3)

3. Verifying the schedulability of HI tasks during the criticality change itself:

RHI
i = CHI +

∑
j∈hpH(i)

⌈
RHI
i

Pj

⌉
CHI ,j +

∑
k∈hpL(i)

⌈
RLO
i

Pk

⌉
CLO ,k (3.4)

where hpH(i) is the set of HI tasks with priority higher than that of task

τi and hpL(i) is the set of LO tasks with priority higher than that of task τi.

Furthermore hp(i) is the union of hpH(i) and hpL(i).

As showed above, to verify the first two steps the standard response time

analysis is applied while for the third assumption a new analysis named Adaptive

Mixed Criticality - Response Time Bound (AMC-rtb) was introduced in [69]. The

third phase checks the schedulability of the progress of criticality change. If an

instance of a HI task τi exceeds its optimistic WCET, a change to the Bailout

mode must occur at or before RLO
i which delimits the maximum interference

from higher priority LO jobs. If, for any HI task, RHI
i ≤ Di during the switch to

the high criticality execution mode, then the task will remain schedulable once

such execution mode is fully established.

3.8 Dynamic-priority mixed-criticality systems

The mixed-criticality protocols in which priorities are assigned dynamically are

based on adaptations of the standard EDF to schedule tasks having multiple

timing parameters per criticality level.

The Earliest Deadline First with Virtual Deadlines (EDF-VD) was introduced

as a generalisation of standard EDF to manage sets of mixed-criticality sporadic

tasks with implicit deadline upon preemptive uniprocessor platforms [87, 88]. A

sufficient test was also provided to check whether a task set is feasible with EDF-

VD. If a task set is deemed schedulable, then an additional period parameter P̂i

is computed for each HI task, with P̂i ≤ Pi. The EDF-VD works in two criticality

execution modes, LO and HI, indicated by the value of a variable Γ.

The scheduling protocol works as specified below:

1. There is a criticality level indicator Γ, initialised to LO.

Chapter 3. Related Work 52

2. While Γ = LO:

• At each instant, the waiting job with the earliest absolute deadline is

selected for excution. Deadlines are computed considering the period

Pi for LO jobs or the modified period P̂i for HI jobs.

• If the current-executing job executes for more than its optimistic

WCET without signaling completion, then the system switches to

HI criticality mode and Γ = HI.

3. Once Γ = HI:

• HI jobs are scheduled considering their initial periods (and relative

deadlines) Pi.

• LO jobs are abandoned.

4. An additional rule could be specified to speed up the switch back to the

starting LO mode, e.g., this could happen if no HI job is active at some

instant in time.

In 2013, Su et al. introduced the Elastic Mixed-Criticality (E-MC) [89] to

address the issue of abrupt service interruption experienced with mixed-criticality

scheduling policies and to provide minimal service guarantees for low-criticality

tasks. The main idea underlying such model is that to have tasks with variable

periods as in the Elastic Task Model [90]. The major difference between the

E-MC and other mixed-criticality task models is in the way of representing low-

criticality tasks. Within E-MC, low-criticality tasks have a couple of periods that

are associated respectively with the desired period and the minimum service level

required for that task. Specifically, the largest period of a low-criticality task

represents its minimum service requirement. The same work also introduced a

novel EDF variant to handle mixed-criticality tasks, the Early-Release Earliest

Deadline First (ER-EDF), which allows to release early and more frequentently

the LO tasks to improve their service level. With ER-EDF, low criticality tasks

can be released earlier than their largest periods without sacrificing the timeliness

of high criticality tasks. Compared with the EDF-VD scheduling algorithm, the

simulation results show that the ER-EDF can successfully schedule much more

task sets.

Chapter 3. Related Work 53

3.9 Mixed-Criticality Systems on Multiproces-

sor Architectures

The current trend towards the integration of cores into multi-core architectures

allows to tasks having different criticalities to run on the same platform. This

raises new challenges due both to potential task interference among mixed-

criticality tasks and to verification and certification of platform subsystems.

On multi and many-core platforms that run applications of different mixed-

criticality, all applications have to be certified to the highest level of critical-

ity, unless they are sufficiently isolated. Isolation enables individual certification

of applications and cost-efficient re-certification of single applications after an

update.

However, a holistic architecture for the seamless mixed-criticality integration

encompassing distributed systems, multi-core chips, operating systems and hy-

pervisors is still an open research problem. Obermaisser et al. have described the

state-of-the-art of mixed-criticality systems, ranging from distributed to multi-

core chips, and discussed the ongoing research within the European project

DREAMS on a hierarchical mixed-criticality platform with support for strict

segregation of subsystems, heterogeneity and adaptability [91].

The Integrated Dependable Architecture for Many Cores (IDAMC) plat-

form [18, 19] was introduced to run multiple mixed-critical applications on a

single multi-core platform. IDAMC is a Network on Chip (NoC) tiled archi-

tecture that provides spatial and temporal isolation. It supports safe sharing

of resources, a transparent mapping of applications to available resources and

isolation of mixed-criticality applications on a shared platform. The IDAMC

monitoring mechanism allows to isolate a possible faulty low critical applica-

tion/tile to guarantee the timing of high critical applications running on other

tiles. IDAMC allows to isolate highly critical tasks against faulty low critical

tasks and, by guaranteeing the timing of mixed-critical applications, to reduce

their cost for certification and re-certification.

Su et al. analysed the performances of the Elastic Mixed-Criticality (E-MC)

approach on multicore systems with identical cores that can share different levels

of on/off-chip caches [20]. E-MC was first introduced together with the Early-

Release EDF (ER-EDF) on uniprocessor systems to improve the service level

provided for low-criticality tasks. The authors first investigated the schedula-

bility of E-MC tasks under various well-known task-to-core mapping heuristics

and then compared ER-EDF with the Global EDF-VD scheduler. Results show

Chapter 3. Related Work 54

that the proposed E-MC with the early-release scheme can significantly improve

the service levels of low-criticality tasks while Global EDF-VD may severely

and negatively affect them by canceling most of their task instances at runtime,

especially for systems with more cores.

Legout et al. proposed the LPDPM-MC approach to reduce the energy con-

sumption of multiprocessor mixed-criticality embedded systems by continuining

to guaranteeing that high-criticality tasks meet their deadlines [21]. LPDPM-

MC reduces energy consumption by increasing the amount of low-criticality jobs

that miss their deadlines. Since task instances may not use entirely their WCET

estimates and low-criticality tasks are assured at a lower level, such approach

uses part of the time budget of low-criticality tasks to find an appropriate trade-

off between the number of missed deadlines of low-criticality jobs and energy

consumption. The LPDPM-MC reserves offline only a percentage of the entire

WCET of low-criticality tasks. Then, the spare time generated can be used on-

line by other low-criticality tasks to meet their deadlines. The approach uses the

LPDPM to minimize the static energy consumption via linear programming [92].

The percentage of deadline misses must be chosen by the system designer as an

input parameter and depends on the criticality level of tasks, i.e., the lower the

criticality level is, the higher this percentage can be. The designer can control

the aggressiveness of the solution depending on whether the focus should be on

reducing the energy consumption or on low-criticality deadline misses.

Thekkilakattil et al. proposed a fault tolerant approach to mixed-criticality

real-time scheduling that considers the recommendations given by the reliability

studies, e.g., hardware reliability studies like Functional Hazard Analysis (FHA)

and Zonal Hazard Analysis (ZHA), to improve the overall system reliability and

safety [93]. FHA and ZHA are usually used for safety critical systems to ensure

that the proposed redundancies on the hardware components, e.g., wires and

communication sub-systems, indeed exist. The authors consider a distributed

real-time architecture with identical multi-processors that communicate over a

reliable communication media and that are synchronized via software. Such

approach aims to provide real-time guarantees for the critical tasks offline and

to ensure flexibility for the non-critical tasks.

Yun et al. proposed a software-based memory throttling mechanism to bound

the task interference in multicore mixed-criticality systems with shared mem-

ory [94]. Such work is of particular interest because the existing research on

multicore mixed-criticality scheduling ignores the effects of resource sharing on

the response times of applications. If tasks on different cores access simultane-

ously, e.g., to a memory bus, timing interference among applications of different

Chapter 3. Related Work 55

criticalities cannot be avoided. Yun proposed a protocol in which the cores

where low-criticality tasks are executed are assigned a limited memory budget

so that schedulability of the high-criticality tasks is guaranteed and meanwhile

the impact on the low-criticality tasks is kept under control. Furthermore, Gi-

annopoulou et al. introduced a scheduling policy for resource-sharing multicores

that prevents timing interference among applications of different criticality lev-

els [95]. This is achieved by allowing only a statically known set of applications

of the same criticality to be executed across the cores at any time. This enables

timing isolation despite resource sharing without any need for hardware support.

A successive work discussed how to combine the Flexible Time-Triggered and

Synchronisation (FTTS) mixed-criticality scheduling policy with an optimiza-

tion method to partition tasks to cores and to statically map memory blocks,

i.e., task data and communication buffers, to the banks of a shared memory

architecture [96]. The authors presented a heuristic approach to partition and

schedule mixed-criticality task sets on a multi-core architecure together with a

annealing-based algorithm to statically map the task data and the communica-

tion buffers to global memory banks, such that the effect of bank sharing on the

task response times is minimized. Lastly, since the above two optimization prob-

lems are interdependent, they propose two possible approaches for integrated

design optimization.

Burns et al. adapted the traditional cyclic executive scheduling on multi-core

systems to handle tasks having up to five criticalities [97]. The authors consid-

ered both partitioned and global scheduling schemes and criticality monotonic

as priority assignment. They used a strategy in which, at any given instant in

time, all the processors are only allowed to execute code of the same criticality

level as this rules out the possibility that less critical code interferes with the

execution of more critical code in accessing shared resources [95]. For parti-

tioned scheduling, no optimal polynomial-time algorithms can be devised since

the problem is NP-hard in the strong sense [98]. Therefore the authors have

investigated the usage of common heuristics like best-fit and worst-fit to effec-

tively map application tasks to the multi-core cyclic executives. Conversely, for

global scheduling, it was proposed a sufficient schedulability test that determines

whether a given mixed-criticality system is feasible together with an algorithm

that actually constructs a schedule in case of schedulability. Lastly, they also

estimated the reduction in schedulability that arises from the requirement that

only code of the same criticality executes at the same time.

Izosimov and Levholt presented a new metric to design and assess mixed-

criticality multi-core systems without changing the development flow and prac-

Chapter 3. Related Work 56

tice [99]. The primary goal in development of such metric was to provide a tool

for engineers and safety managers in taking decisions with respect to the mixed-

criticality and help to justify and judge a particular solution for safety-critical

system design. Safety standards usually focus on reduction in severity of faults.

However, due to the increasing systems integration and to the presence of multi-

core platforms, complexity and performance should also be considered in taking

design decisions about modern systems. Thus, the proposed mixed-criticality

metric balances the reduction in severity of faults together with the implications

on reduction in performance and increase in system complexity.

3.10 Mixed-Criticality Systems with Soft Dead-

lines

In many real-time applications, the consequences of missing a deadline vary in

severity from task to task. As an example, in RTCA DO-178B a system safety

analysis assigns to each task a criticality level (ranging from A to E) [100] and

erroneous behavior of a level A task might cause loss of a critical function required

to fly and land safely with possible catastrophic consequences while an erroneous

behavior by a level E task might at worst cause inconvenients with no impact on

safety nor on aircraft operations.

Within such systems, a deadline miss of tasks at different criticality levels

leads to different consequences for the system functioning. Generally, the higher

the task criticality level, the higher the impact on the system safety or correctness

caused by the deadline missed. Conversely, for lower criticality levels it can

be possible to have some deadlines missed with no impact on system safety.

Because of this, it can be also possible to allow to a predefined amount of LO

jobs to complete after their deadlines as long as such exceeding time is reasonably

bounded.

The mixed-criticality scheduling methods on uniprocessor platforms use dif-

ferent task parameters estimates at different level of assurance with higher crit-

icality tasks guaranteed under more conservative assumptions. Such methods

ensure the correct completion of HI jobs in all operating conditions and always

at the expense of lower criticality instances. As a result, the mixed-criticality

scheduling protocols on uniprocessor platforms are emerging as protocols de-

signed to handle all tasks as hard real-time tasks but that, in case of resource

shortages, lead to a degradation of service provided to lower criticality tasks.

This approach guarantees that HI jobs never miss their deadlines. However,

Chapter 3. Related Work 57

ensuring the correct system functioning by guaranteeing the correct completion

for all highly critical jobs by just abandoning lower criticality instances does not

allow to control the amount of abandoned instances [23].

Part of the research work that has been produced to address the sudden

degradation of LO tasks adopts strategies used for soft real-time systems to

reduce the impact on less critical tasks by maximising the amount of LO jobs

scheduled.

A strategy to avoid the abrupt degradation of lower criticality services is to

adjust at runtime the arrival rates of LO tasks to provide a reduced but still

acceptable level of service. With this regard, as stated in Section 3.8, Su et

al. introduced the Elastic Mixed-Criticality (E-MC) task model together with

the Early-Release EDF (ER-EDF) scheduling algorithm [101]. The E-MC model

treats HI tasks as hard tasks with not modifiable and strict timing parameters

that have to be scheduled on time and always meet their deadlines while LO

tasks are treated as tasks with flexible arrival rates. The key idea underlying

such model is that to have variable periods for LO tasks where the minimum

service requirements are represented by their largest periods.

Schneider et al. proposed a multi-layered scheduling scheme for cyber-physical

systems that consist of a mix of hard and soft real-time tasks [102, 103]. Time-

critical applications have hard deadlines that have to be always guaranteed while

applications not strictly related to deadlines are rather scheduled considering

the Quality of Control (QoC). Traditional scheduling policies such as deadline

monotonic can guarantee timing deadline constraints but do not allow for QoC

optimized schedules. The authors presented a scheduling algorithm that ensures

both that all hard real-time constraints are met and that the overall QoC for

the remaning applications is maximized. The multi-layered scheduling scheme

introduced implement the appropriate scheduling strategies for each type of crit-

icality present in the system, i.e. mixed-criticality task sets are scheduled at

different layers. In particular, time-critical real-time tasks are scheduled accord-

ing to the worst-case assumptions to complete within their deadlines while the

remaining tasks are scheduled with respect to optimized QoC. Results show that,

compared with the standard deadline monotonic scheduling, this approach sig-

nificantly improves the overall QoC while guaranteeing schedulability for tasks

with hard deadlines.

Moreover, Mollison et al. developed an architecture to schedule periodic

mixed-criticality real-time tasks on multiprocessor platforms in which tasks at

each criticality level are scheduled according to different scheduling policies [104].

The cyclic executives and partitioned EDF schedulers are used to schedule tasks

Chapter 3. Related Work 58

at the highest criticality levels which perform safety-critical operations. Global

EDF containers are used for tasks at medium criticality levels in charge of mis-

sion critical operations. Lastly best effort scheduling is used for lowest criticality

level tasks. Their architecture proposes a system in which the higher criticality

tasks are hard real-time tasks and their jobs must never miss their deadlines

while lower criticality tasks are soft real-time tasks and for such instances some

deadline misses or even a controlled completion after the deadline are tolerable.

A mixed-criticality architecture in which tasks are scheduled according to

their criticality was also introduced by Selicean [105]. They proposed a simu-

lated annealing based algorithm for the optimization of time-partitions for mixed-

criticality real-time distributed embedded systems. Applications are represented

by tasks, each with its own criticality assigned according to Safety-Integrity

Level (SIL) [9]. The algorithm considers that the applications are separated us-

ing a temporal and spatial-partitioning scheme. Safety-critical applications are

scheduled using static-cycling scheduling while the non-critical applications are

scheduled using fixed-priority preemptive scheduling. Although their work ad-

dressed hard real-time applications, the authors explicitly state that non-critical

tasks, i.e., those corresponding to the lowest SIL levels, can also be represented

by soft real-time tasks that are handled by the CBS server.

3.11 Utility-based Optimisation of Mixed-

Criticality Systems

In chapter 2, I presented the utility functions approaches in the context of the

standard real-time scheduling. However, the first usage of how to use utility

functions to optimise predefined performance parameters within mixed-criticality

systems is due to Kirner by means of the Tolerance-based Real-Time Comput-

ing Model (TRTCM) [1, 22]. His work outlines how to optimise the Quality of

Service (QoS) by maximising the overall system utility in case of standard and

mixed-criticality real-time services. Such model could also be used to optimise

a number of criteria such as latency, throughput and jitter within systems in

which tasks have different criticality requirements. Then, the TRTCM has been

further analysed and developed for adaptation of mixed-criticality systems with

periodic task sets on uniform multiprocessors [6].

The TRTCM differs from the traditional utility accrual via Time/Utility

Functions (TUF) mainly because it specifies a tolerance range in which pre-

defined service parameters could be degraded till the least point for which it

Chapter 3. Related Work 59

is still acceptable. The tolerance interval is necessary to smoothly degrade the

service quality provided to each individual task in a task set. Each task in the

system, regardless of its criticality, has got a tolerance interval. First of all, it is

necessary to choose what performance parameter to optimise, then the Quality

of Service (QoS) provided according to those parameters could be adjusted at

runtime. To optimise the overall system utility in case of resource shortages,

the TRTCM allows also for an acceptable and smooth degradation of HI tasks.

Such feature is not supported by the majority of existing mixed-criticality ap-

proaches. In fact, currently, the scheduling of mixed-criticality task sets is built

upon a static service guarantees at different certification levels and this leads to

drastically reduce the amount of LO jobs scheduled whenever the correct comple-

tion of HI instances must be assured. On the other hand, TRTCM is based on a

system utility optimisation in presence of faults that aims to find the right trade-

off between higher and lower criticality tasks by exploiting their tolerance range.

As a result, the TRTCM allows for reconfiguration of mixed-criticality systems

in case of runtime failures. The resource shortage is a necessary condition to

take advantage from TRTCM and for its applicability.

Figure 3.2: Example of TRTCM utility function for throughput

The utility functions of TRTCM are not limited to latency but it is possible

to describe multiple functional properties such as throughput, jitter and energy

consumption. As an example, Figure 3.2 shows an example of TRTCM util-

ity function usage to model the throughput of each service within the system.

The key idea is to use a simplified two-point function identified by the interval

[pps,tptol , . . . , pp
s,tp
prim] that is called tolerance range (with pps,tpcrit < pps,tptol < pps,tpprim).

The aim is to maximise the system utility according to the constraints given

by the application requirements and by the available resources. Equation 3.5

Chapter 3. Related Work 60

represents the objective function corresponding to the Figure 3.2:

SU tp
tol =

∑
s∈Services

CRITs · utils,tp. (3.5)

in which the coefficients CRITs are positive real numbers and utils,tp are the

throughput service utilities. The system and resource constraints are respectively

showed below:

∑
s∈Services

ets · pps,tpbound ≤
∑

pi∈Cores

Ci (3.6)

pps,tpbound≥pp
s,tp
tol (3.7)

utils,tp≤1 (3.8)

utils,tp≤pps,tpbound · k
s,tp + qs,tp (3.9)

The inequation 3.6 bounds the total workload by the total computing capacity

of all processing elements pi ∈ Cores. The remaining inequations represent the

minimal acceptable throughput of pps,tptol and the utility constraints.

3.12 Chapter Summary

In this chapter, I reviewed the related work of this dissertation. I provided an

historical introduction which explains the issues about the a priori verification,

the current challenge in providing run-time robustness and the motivations that

led to devise different and novel task models.

Then, I explained the problem of criticality inversion arising when the stan-

dard real-time scheduling techniques are used to process set of tasks having

different criticality. In such cases the standard priority driven scheduling al-

gorithms, that give precendence to most urgent jobs even in cases of resource

shortages, lead the most critical ones to miss their deadlines. I also considered

the work produced in the field of fixed and dynamic priority systems both on

single and multi-core architectues, including also mixed criticality systems with

soft real-time tasks.

Lastly, I reviewed the recent TRTCM advances and its integration with the

mixed-criticality systems to optimise system performance parameters such as

latency, throughput and jitter.

Chapter 4

The LBP Protocol

This chapter introduces the Lazy Bailout Protocol (LBP), which is a mixed-

criticality protocol to schedule set of tasks having two criticality. Compared with

the former Bailout Protocol (BP), LBP increases the amount of low criticality

jobs that are scheduled. In fact, low criticality jobs that are released during the

high criticality execution modes or those that exceed their WCET estimates are

inserted in a low-priority queue instead of being abandoned. Such jobs will be

scheduled during the system idle time. This allows to rescue and to execute a

considerable larger amount of jobs and to reduce the impact of resource shortage.

Section 4.1 presents the task and system model together with the assumptions

under which the protocol works correctly. Section 4.2 shows the LBP architecture

and explains what are its execution modes. It also contains a detailed description

of each of its execution mode. Section 4.3 introduces an LBP variant, the Soft

Lazy Bailout Protocol (SLBP), that treats lower criticality jobs as soft real-time

jobs. SLBP can be used in cases for which a reasonable late completion for

lower criticality jobs is better than no result at all. Section 4.4 explains how to

integrate LBP and SLBP with scheduling techniques to increase the number of

LO jobs scheduled. Finally, Section 4.5 concludes and summarises the chapter.

4.1 System model

In the following it is described the system model used for task sets. It is assumed

a dual-criticality system, which consists of multiple tasks, where each task has

a criticality l ∈ {LO ,HI } with HI being of higher criticality than LO . As

discussed in Chapter 3, the criticality of a task can be derived by different means

but no specific interpretation of criticality is assumed, as this is orthogonal to

the scheduling method. Furthermore, it is assumed that the processor is the only

61

Chapter 4. The LBP Protocol 62

resource that is shared among tasks, and that the overheads due to the scheduling

operations and context switches can be bounded by a constant included within

each task worst-case execution times. The system schedules sets of independent

and periodic tasks τ on uniprocessor platforms and each task set consists of two

sub sets:

τ = τLO ∪ τHI (4.1)

with

τLO = {τi ∈ τ | li = LO} (4.2)

τHI = {τi ∈ τ | li = HI } (4.3)

where τHI is the subset of tasks that are highly critical and τLO is the subset

of tasks that are not highly critical within the system.

The tasks represent scheduling units that the system has to perform. An

individual task τi ∈ τ is represented by the following tuple:

τi = 〈P,D,CLO , CHI , L〉

where P is the period, D is the relative deadline, CLO and CHI are respectively

the optimistic and the pessimistic worst case execution time estimates and L ∈
{LO ,HI } refers to the criticality.

A job is an instance of a task at runtime, i.e., a job represents the actual

object processed by the scheduler and inherits almost all properties from the

task that generates it plus the arrival time A as below:

ji = 〈A,D,CLO , CHI , L〉

The LO tasks and, as a consequence, their relative jobs do not have a known

safe WCET bounds CHI , since safe worst-case execution times are rather costly

to obtain and thus provided only for HI tasks. Once it finishes its execution,

each job ji has got a computation time et(ji) that can vary for each specific job

of the same task. The job set produced by an individual task τi is indicated by

J(τi) while J(τ) is the job set produced by all tasks belonging to the task set

τ . Therefore, τ represents the set of activities that have to be performed by the

system while J represents the set of concrete process instances that have to be

considered by the scheduler.

Chapter 4. The LBP Protocol 63

The jobs produced via the task set are scheduled according to the standard

fixed-priority fully pre-emptive real-time scheduling. However, the traditional

fixed-priority scheduling is unaware of criticality of task instances and schedul-

ing decisions are only made according to priority that indicates the job timing

requirements. Therefore, it is also used a protocol that considers the task’s crit-

icality to meet the mixed-criticality requirements. The following assumptions

are made about the task set and the underlying real-time scheduler, i.e., fixed

priority fully pre-emptive scheduling:

Assumption 1: all HI and LO jobs together are schedulable with the underlying

real-time scheduling method with respect to their CLO .

Assumption 2: all HI jobs alone are schedulable with the underlying real-time

scheduling method with respect to their CHI . Since CHI is a safe WCET

bound, i.e., et ≤ CHI , this assumption also implies that the HI jobs alone

are schedulable with respect to their actual execution time.

Assumption 3: all HI jobs are schedulable with respect to their CHI , while also

assuming the execution of all LO jobs with respect to their CLO having

arrived before any HI job jj overruns its CLO ,j.

Note that Assumption 3 is required so that while LO tasks are allowed to run

within their CLO , it is still ensured that all HI tasks are still schedulable within

their CHI . Assumption 3 is based on jobs rather than tasks as it covers the

moment in time when a HI task overruns its CLO . Also note that Assumption 2

is just a weaker case of Assumption 3, without the LO tasks considered.

4.2 The LBP Protocol

The standard BP is an adaptive protocol to schedule mixed-criticality job sets.

The strength of BP is that to provide an effective and fast control mechanism to

go back to the LO criticality mode, where all jobs can start and being processed.

However, the main weakness of BP is that to immediately abandon LO jobs in

case of resource shortage and this leads to a high percentage of jobs that miss

their deadline.

The Lazy Bailout Protocol (LBP) is built upon BP and inherits from it the

following three execution modes that work as specified below:

1. Normal: it is the starting system execution mode. It corresponds to a

low-criticality mode where all jobs within the system are supposed to be

processed correctly according to the CLO threshold.

Chapter 4. The LBP Protocol 64

2. Bailout: it is the emergency mode that is entered whenever a HI job over-

runs its CLO .

3. Recovery: it is the emergency mode that is entered to allow to the last

pending lowest priority HI job to complete before to go back to Normal

mode.

LBP	Filter	

ET-MonLO	

ET-MonHI	

high-priority	queue	

low-priority	queue	

FP	Preemptive	Scheduler	

SHI	

SLO	

New	job	

SM	

Figure 4.1: LBP architecture

Figure 4.1 shows the components of LBP. The LBP filter is responsible for

changing the execution modes. The system has two ready queues for jobs:

the high-priority queue represents the standard ready jobs queue while the low-

priority queue keeps the LO jobs that have been released during emergency modes

or that have exceeded their CLO . In both queues, jobs are sorted according to

Deadline Monotonic (DM), i.e., instances of tasks with smallest relative dead-

lines are considered first. The DM policy has been preferred over the Rate Mono-

tonic (RM) since it represents its generalisation and it is still possible to process

tasks generated according to the three assumptions introduced in Section 4.1.

Furthermore, there are two job monitors to check respectively LO and HI jobs

that overrun their CLO . ET -MonLO signals to the real-time scheduler the LO

jobs that have to be inserted within the low-priority queue while ET -MonHI

communicates to the LBP filter when a HI job exceeds its optimistic WCET to

switch the execution mode to Bailout.

LBP inherits from BP the control mechanism that is in charge of the execution

mode changes that permits a fast recovery from the emergency modes back to

the Normal mode. Such mechanism is based on the detection of idle instants

and on the value of a decision variable named Bailout Fund (BF). The Figure 4.2

shows how the execution mode changes in the scheduling protocol. It contains

the events that trigger the switch to a different execution mode together with the

related update of the BF value. The system starts in Normal mode and then,

Chapter 4. The LBP Protocol 65

if any HI job overruns its CLO , then the BF variable is initialised and there is

a change to Bailout mode. Once the system is in this mode, the BF variable is

updated with the earlier completion of jobs, the release of new LO jobs or the

HI jobs overrunning their CLO . If an idle instant occurs, then Normal mode is

entered whereas if the BF becomes zero then Recovery mode is entered. After

the lowest priority pending HI job completes its execution in Recovery mode, the

system goes back to Normal mode.

Normal Bailout

Recovery

HI job overruns its CLO
[BF is initialised]

HI job overruns its CLO
[BF is updated]

Pending HI job needs
to complete its execution

[BF is reset]

HI job completes
its execution

There is an idle instant
[BF is reset]

HI job overruns its CLO
[BF is updated]

Figure 4.2: Execution mode changes in LBP

The difference between LBP and BP is that LO jobs released in Bailout and

Recovery modes or exceeding their CLO are inserted into the low-priority queue

instead of being abandoned. Such jobs run afterwards when the high-priority

queue is idle. LO jobs released in Normal mode can continue to execute in both

Bailout and Recovery modes and they could even overrun their deadlines as long

as they do not exceed their CLO . Below is a detailed description of LBP in each

of its execution modes:

Normal mode:

• While all HI jobs execute for no more than their CLO values, the system

remains in this mode.

• If any HI job overruns its CLO without signalling completion, then the

system switches into the Bailout mode and the BF is initialised to BF =

CHI − CLO .

• LO jobs that overrun their CLO are interrupted and inserted into the low-

priority queue.

Chapter 4. The LBP Protocol 66

• LO jobs that have been inserted in the low-priority queue are executed

during idle instants. If they do not complete within their deadlines, then

they are removed from the low-priority queue.

Bailout mode:

• If any HI job executes for its CLO without signalling completion, then the

bailout fund is updated by its maximum extra time budget: BF = BF +

(CHI − CLO).

• If any HI job completes with an execution time e, with e ≤ CLO , then its

time left is donated to the bailout fund: BF = BF − (CLO − e).

• LO jobs released in Normal mode that complete with an execution time of

e, with e ≤ CLO , donate their time left to the bailout fund: BF = BF −
(CLO − e).

• If any HI job that already exceeded its CLO completes with an execution

time of e, with CLO < e ≤ CHI , then it donates its extra time left, reducing

the bailout fund: BF = BF − (CHI − e).

• LO jobs released in Bailout mode are not started but inserted in the low-

priority queue to be executed during idle instants in Normal mode. Fur-

thermore, when the scheduler would otherwise have dispatched such a job,

the job’s budget of CLO is donated to the bailout fund: BF = BF − CLO .

• If the BF becomes zero, then the lowest priority HI job that did not com-

plete its execution (let this job be jk) is recorded and the Recovery mode

is entered.

• If an idle instant occurs, then a transition is made to Normal mode, and

BF is reset to zero.

Recovery mode:

• LO jobs released in this mode are not started but inserted within the low-

priority queue to be executed during idle instants in Normal mode.

• If any HI job executes for its CLO value without signalling completion, then

the system switches back to Bailout mode and BF is initialised: BF =

CHI − CLO .

• When the job jk noted at the point when Recovery mode was last entered

completes, then the system swicthes to Normal mode.

Chapter 4. The LBP Protocol 67

A0	

B0	

A1	

Tasks	

Time	

Normal	 Bailout	 Normal	

10	 20	

P	 D	 et	 CLO	 CHI	 L	

A	 19	 19	 11	 3	 13	 HI	

B	 6	 6	 2	 2	 ---	 LO	 B3	

A1	overruns	its	CLO		

30	

A0	overruns	its	CLO		

Bailout	

B1	is	
abandoned	

B2	is	
abandoned	

B4	is	
abandoned	

B5	is	
abandoned	

(a) BP abandons all LO jobs released in Bailout mode

A0	

B0	

A1	

Tasks	

Time	

Normal	 Bailout	 Normal	

10	 20	

P	 D	 et	 CLO	 CHI	 L	

A	 19	 19	 11	 3	 13	 HI	

B	 6	 6	 2	 2	 ---	 LO	 B3	

A1	overruns	its	CLO		

30	

A0	overruns	its	CLO		

Bailout	

B2	

B1	is	abandoned	 B4	is	abandoned	

(b) LBP rescues the LO jobs B2 and B5 while B1 and B4 are abandoned after they miss their
deadlines

Figure 4.3: Comparison between BP and LBP: LBP schedules more LO jobs
than BP

Figure 4.3 shows a mixed-criticality task set that is scheduled according to

the standard and the lazy bailout approaches. The task set consists of two tasks,

the HI task A and the LO task B. The scheduling starts at time t = 0 as soon

as the first jobs arrive. As it is possible to notice, jobs are sorted according

to the DM priority assignment. Priorities are set to indicate the urgency of

a job that in my work is dictated by the relative deadline of the task from

which that job is generated. However, the ordering of jobs according to their

timing constraints does not reflect the impact their completion has on the system

functioning or on the system safety. Such impact is represented by the criticality,

indicated with HI and LO in Figure 4.3. At times t = 5 and t = 23, jobs A0

and A1 unexpectedly exceed their CLO but they should be preempted by the

higher priority LO jobs generated by task B. Since task A has criticality HI,

the completion of its instances has to be guaranteed in all operating conditions.

Therefore the optimistic WCET overruns of jobs generated by task A determines

the entering of the Bailout mode that allows them to complete.

Figure 4.3 shows that the standard BP abandons all the LO jobs released

during the Bailout modes while LBP allows to recover and schedule more LO

jobs. In Figure 4.3.b) jobs B1 and B4 are released respectively at times t =

6 and t = 24 and they have the highest priority. Such jobs are inserted in

Chapter 4. The LBP Protocol 68

the low-priority queue to be removed respectively at times t = 12 and t = 30

when they miss their deadlines and the next instance of the same task arrives.

Furthermore, the LO jobs B2 and B5 released respectively at times t = 12 and

t = 30 are executed aftewards in Normal mode since there are idle instants

to exploit before their deadlines. Such example highlights how LO jobs that are

delayed, instead of being abandoned, are executed during idle instants in Normal

mode to not influence the real-time behaviour of jobs in the high-priority queue.

In the whole, compared with LBP, the standard BP results in a decrease of the

system utilisation because whenever there is interference among HI and LO jobs

released in Bailout or Recovery modes, then LO jobs are simply abandoned. On

the other hand, LBP increases the processor utilisation by exploiting the system

idle time and, by doing this, it improves the overall service provided to LO tasks

and this is achieved by increasing the number of LO jobs that are processed.

4.3 SLBP: An LBP Variant with Soft Deadlines

The Soft Lazy Bailout Protocol (SLBP) represents an extension of LBP to use in

cases in which a LO job completion after the deadline still has some utility. This

can be the case, for example, for some multimedia and image processing tasks

with constrained deadlines. In such systems it can be useful that some jobs are

completed even after their deadlines, as long as this happens before the arrival

of next frame to process or of the next instance of the same task. In such cases,

a late result is still useful and better than no result because it can contribute to

keep the service quality provided above a predefined threshold.

SLBP works like LBP with the only difference that LO jobs inserted in the

low-priority queue are treated as soft real-time jobs that have a bounded tardi-

ness. The extent of the tardiness for a LO job depends on the amount of system

idle time available till the arrival of next instance of the same task. In contrast,

with LBP LO jobs not completing within their deadline are aborted and the idle

time made available is used to schedule new incoming LO jobs in the low-priority

queue. The SLBP protocol deals with LO jobs as follows:

1. If a LO task has a deadline smaller than its period, then SLBP allows to its

jobs within the low-priority queue to overrun their deadline till the arrival

of next instance of the same task.

2. If a LO task has deadline equal or greater than period, then no deadline

overrun is allowed for its instances.

Chapter 4. The LBP Protocol 69

Therefore, any LO job in the low-priority queue with a deadline smaller than

period can exploit the idle time between its deadline and the release of its suc-

cessive instance to complete. From this point of view, SLBP permits LO jobs

in the low-priority queue to have a bounded tardiness without interfering with

successive instances of same task.

Figure 4.4.a) shows a task set scheduled with LBP while Figure 4.4.b) rep-

resents the schedule generated by SLBP. The task set consists of two tasks with

constant computing time. Jobs of LO task B always have an execution time

of et = 2 while instances of task A have a constant execution time of et = 9.

The first instance of HI task A overruns its CLO at time t = 9 and the system

switches to Bailout mode. The example reveals the difference in how LO jobs

within the low-priority queue are scheduled with the two protocols. With LBP,

the jobs within the low-priority queue that do not complete within their deadline

are abandoned. On the other hand, the SLBP always treats the HI tasks as hard

real-time tasks but tries to increase the overall completion rate of LO jobs by

allowing to those inserted in the low-priority queue to have a bounded tardiness.

As showed in Figure 4.4a), with LBP, the job B2 is relased during the Bailout

mode at time t = 10 and suddenly inserted in the low-priority queue. B2 starts

its execution at time t = 13 but it is interrupted and abandoned at time t = 14

since it misses its deadline. Conversely, as showed in Figure 4.4b), SLBP allows

to B2 to overrun its deadline and to run till the arrival of next instance of the

same task. B2 completes on time at time t = 15.

It is worth to notice that if task B has a deadline equal to its period, then

the schedules generated by LBP and SLBP are exactly the same with job B2

that would complete within its deadline at time t = 15 in both cases.

4.4 Integration of LBP and SLBP with Com-

plementary Scheduling Techniques

The LBP and SLBP protocols can be further enhanced by means of scheduling

strategy to increase the amount of LO jobs completed within their deadlines.

The first technique uses an offline analysis to check how much it is possible

to increase the task set utilisation factor without making the system unschedula-

ble [44, 106, 17]. It increases the worst-case system load till the maximum point

for which the task system is still schedulable according to the three assumptions

stated in Section 4.1. Since the aim is to increase the amount of LO jobs suc-

cessfully scheduled, the offline scaling up of the optimistic WCET estimates is

Chapter 4. The LBP Protocol 70

B3	

A0	

B0	

A0	

Tasks	

Time	

Normal	 Bailout	 Normal	

5	 10	

B2	is	delayed	and	then	removed	after	
it	overruns	its	deadline	

B2	

P	 D	 et	 CLO	 CHI	 L	

A	 15	 15	 9	 5	 9	 HI	

B	 5	 4	 2	 2	 ---	 LO	

A0	overruns	its	CLO		

15	
B1	

(a) LBP aborts the execution of job B2 after its deadline

B3	

A0	

B0	

A0	

Tasks	

Time	

Normal	 Bailout	 Normal	

5	 10	

B2	is	delayed	and	complete	after	
its	deadline	in	Normal	mode	

B2	

P	 D	 et	 CLO	 CHI	 L	

A	 15	 15	 9	 5	 9	 HI	

B	 5	 4	 2	 2	 ---	 LO	

A0	overruns	its	CLO		

15	
B1	

(b) SLBP allows to B2 to overrun its deadline till the arrival of next instance of same task

Figure 4.4: LBP aborts LO job B2 while SLBP allows for its late completion.

made only for the HI tasks. This allows to enlarge the duration of the Normal

mode. This technique consists of the following two steps:

1. The CLO of each HI task is increased by the upper value α∗ that still

preserves schedulability as follow:

∀τi ∈ τHI .
k∑
i=1

α∗ · CLO,i
Pi

2. Then, if possible, the CLO of each individual HI task is enlarged in order of

increasing deadline. This is done because some CLO could be still increased

without making the system unschedulable.

The scheduling protocols resulting from the integration of this technique with

LBP and SLBP are named respectively LBPS and SLBPS.

The second technique is based on the exploitation of the amount of computing

time budget of a job that is estimated offline but not required at runtime because

of its earlier completion. Such time budget left is usually named gain time [40,

41, 17]. The gain time gi is defined as follows:

gi = et(ji)− CLO

Chapter 4. The LBP Protocol 71

where et(ji) represents the execution time of job ji, with et(ji) < CLO . It is

worth to notice that the gain time is never negative. The budget gi is passed

from a job to the next lower priority job if there are no idle instants and only

during the Normal mode. Furthermore, the gain time collection at runtime is

made only for jobs in the high-priority queue. The exploitation of the gain time

in LBP and SLBP led to devise LBPG and SLBPG protocols.

Finally, by integrating both techniques described above in LBP and SLBP, I

also introduced two further refinements that are named LBPSG and SLBPSG.

4.5 Chapter Summary

In this chapter, I introduced the LBP protocol, a BP refinement that allows to

further increase the amount of LO jobs scheduled.

Section 4.1 describes the task and system model together with the schedula-

bility assumptions used with the LBP protocol. A detailed description of how

LBP works in each of its execution modes is provided in Section 4.2. Section 4.3

introduces and describes the SLBP, an LBP variant that treats LO jobs as soft

real-time jobs. With SLBP, LO jobs in the low-priority queue can overrun their

deadline as long as they complete before the arrival of next instance of the same

task. Hence, LBP allows to LO jobs to run during idle time till they reach their

absolute deadline while SLBP permits a reasonably bounded tardy completion.

Finally, Section 4.4 shows how to enhance LBP and SLBP with complementary

scheduling techniques.

Chapter 4. The LBP Protocol 72

Chapter 5

Formal Comparison of Variants

of BP and LBP

This chapter contains a formal evaluation of BP, LBP and their derivatives

scheduling protocols. The system model considers set of tasks having two criti-

cality, HI and LO (with HI being more critical than LO), as defined in Chapter 4.

HI tasks have two WCET estimates, the former more optimistic and the latter

more conservative, indicated respectively with CLO and CHI . Conversely, for LO

tasks only the knowledge of easier to derive CLO estimates is assumed.

Section 5.1 introduces a formal criterion to compare different mixed-criticality

scheduling methods within hard real-time settings. This criterion considers and

compares jobs scheduled at different criticality levels and, for each level, jobs

successfully scheduled are those completed within their deadlines. The correct

completion of tasks with highest criticality is considered first. The best mixed-

criticality performance will be that of the scheduling protocol in which the largest

amount of highest criticality level jobs are successfully scheduled. With regard

to the dual-criticality systems considered, such metrics considers feasibility of

HI tasks as most important. If two protocols lead to the same amount of HI

jobs completing within their deadlines, then it is also considered the LO tasks

schedulability. Section 5.2 assesses the BP protocol with its derivatives (BPG,

BPS and BPSG). Section 5.3 compares LBP with the remaining protocols, both

BP and LBP based, including SLBP.

The outcome highlights how LBP always schedules more LO jobs than BP

and each LBP-based method behaves better than the corresponding BP-based

protocol. Finally, due to difference in the system idle-time exploitation, LBP has

a better LO tasks success rate than SLBP.

73

Chapter 5. Formal Comparison of Variants of BP and LBP 74

5.1 Predicates and Comparison Criterion

In this section I formalise a criterion to compare two different mixed-criticality

systems. Below are defintions and predicates used to prove the theorems after-

wards.

STS, τ , JS:

STS is a set of task sets τ . τ is an individual scheduling problem consisting

of tasks. JS is a set of jobs created at runtime by scheduling a task set.

Method:

This is the scheduling method applied, e.g., BP, BPG, BPS, BPSG or LBP.

HI(τ), LO(τ): τ → τ :

HI(τ) is a subset of τ containing only tasks of HI criticality. LO(τ) is a

subset of τ containing only tasks of LO criticality.

Scheduled(mtd, τ): Method × τ → JS:

The job set generated from a task set τ , which is successfully scheduled

with method mtd, i.e., jobs which completed within their deadline.

ScheduledHI(mtd, τ): Method × τ → JS:

This includes only those jobs from Scheduled(mtd, τ) which are derived

from tasks with HI criticality.

ScheduledLO(mtd, τ): Method × τ → JS:

This includes only those jobs from Scheduled(mtd, τ) which are derived

from tasks with LO criticality.

Failed(mtd, τ): Method × τ → JS:

The job set generated from a task set τ , which is not successfully scheduled

by method mtd, i.e., jobs which were not completed within their deadline.

Abandoned(mtd, τ): Method × τ → JS:

This predicate returns the set of jobs generated from a task set τ , which

were never forwarded by the mixed-criticality scheduling method mtd to

its underlying real-time scheduler. This is a special case of failed jobs:

Abandoned(mtd, τ) ⊆ Failed(mtd, τ)

Abandoned jobs are also different from dropped jobs, which are jobs that

failed after having started their execution with the underlying real-time

scheduler.

Chapter 5. Formal Comparison of Variants of BP and LBP 75

LORated(mtd, τ): Method × τ → JS:

This predicate returns the set of LO jobs, which were re-queued from the

default high-priority queue to the low-priority queue. This method is not

defined for BP and its derivatives.

IsBetterMCS(mtd1,mtd2, τ):

Method2 × τ → Bool: This predicate tests whether a scheduling method

mtd1 is better than method mtd2 for a task set τ with respect to mixed-

criticality scheduling, which is formally defined as:

IsBetterMCS (mtd1,mtd2, τ)⇒

True if (ScheduledHI (mtd1 , τ) ⊃

ScheduledHI (mtd2 , τ)) ∨

(ScheduledHI (mtd1 , τ) ==

ScheduledHI (mtd2 , τ) ∧

(ScheduledLO(mtd1 , τ) ⊃

ScheduledLO(mtd2 , τ)))

False otherwise

This tests whether mtd1 has a better performance than mtd2 for HI jobs,

or equal performance for HI jobs but better performance for LO jobs.

IsBetterMCS(mtd1,mtd2):

Method2 → Bool: This predicate tests whether a scheduling method

mtd1 is better than method mtd2 for all task sets with respect to mixed-

criticality scheduling, which is formally defined as:

IsBetterMCS (mtd1,mtd2)⇒

∃τ ∈ STS. IsBetterMCS (mtd1,mtd2, τ)

∧

6 ∃τ ∈ STS.IsBetterMCS (mtd2,mtd1, τ)

It is worthwhile to note that IsBetterMCS (mtd1,mtd2, τ) and

IsBetterMCS (mtd1,mtd2) are transitive:

IsBetterMCS (mA,mB) ∧ IsBetterMCS (mB,mC)⇒ IsBetterMCS (mA,mC)

Chapter 5. Formal Comparison of Variants of BP and LBP 76

5.2 Comparison of BP-based protocols

This section compares the standard BP protocol with its variants derived by using

the offline sensitivity analysis [44, 17] and the online gain time collection [17].

5.2.1 Comparison between BP and BPG

Theorem 5.2.1 BPG has the same success rate of HI tasks than BP, which can

be formally written as:

∀ τ ∈ STS. ScheduledHI (BP , τ) == ScheduledHI (BPG , τ)

Proof (Theorem 5.2.1) BPG differs from BP only for the exploitation of avail-

able computing resources not used during execution in Normal mode. The online

gain time collection made in Normal mode does not affect the task sets schedu-

lability [17].

The gain time collection mechanism allows to adjust at runtime the opti-

mistic WCET of jobs. Jobs that complete before their CLO give the amount of

time budget left to the next job only when there is no idle time among them.

Because of this, the worst-case response time computed according to Assump-

tion 1 is not increased and the system continues to be schedulable. In fact, the

increase of the utilisation of a job for which the optimistic WCET has been in-

creased is compensated by the decrease of the same amount in utilisation of the

higher priority job that donated its gain time. As a result, the worst-case system

load during Normal mode remains constant and the first and third assumptions

checked offline are still true. Figure 5.1 shows an example in which it is possible

to notice how the gain time collection at runtime does not increase the worst-case

response time in Normal mode. In particular, Figure 5.1.a) shows the schedule

generated by the BP protocol when each LO job uses all its time budget CLO to

complete while Figure 5.1.b) shows that generated by BPG with jobs B0 and B1

completing earlier than their CLO . By comparing them, it is possible to notice

that in both cases the system switches to Bailout mode at time t = 9. As a

consequence, the worst-case response time of the HI task A in Normal mode is

not increased and the third assumption continues to guarantee that no HI job

misses its deadline.

Therefore BPG has the same performances than BP with regard to HI jobs:

∀τ ∈ STS. ScheduledHI (BP , τ) == ScheduledHI (BPG , τ)

Chapter 5. Formal Comparison of Variants of BP and LBP 77

B3	
B2	is	

abandoned	

P	
	

D	 et	 CLO	 CHI	 L	

A	 15	 15	 10	 5	 10	 HI	

B	 5	 5	 2	 2	 ---	 LO	

A0	

5	 15	10	

Tasks	

Time	

A0	

Normal	 Bailout	

A0	overruns	its	CLO		

B0	 B1	

Normal	

(a) Schedule generated by BP when each LO job execute till its CLO

B3	

P	
	

D	 et	 CLO	 CHI	 L	

A	 15	 15	 10	 5	 10	 HI	

B	 5	 5	 1	 2	 ---	 LO	

A0	

5	 15	10	

Tasks	

Time	

A0	

Normal	 Bailout	

A0	overruns	its	CLO		

B0	 B1	
B2	is	

abandoned	

Normal	

gain	time	+	1	 gain	time	+	1	

(b) Schedule generated by BPG when each LO job completes earlier then its CLO

Figure 5.1: (Proof of Theorem 5.1) The gain time collection does not increase
the worst-case system load in Normal mode

Theorem 5.2.2 BPG can have a better success rate of LO tasks than BP, but

never worse, which can be formally written as:

∀ τ ∈ STS. ScheduledLO(BP , τ) ⊆ ScheduledLO(BPG , τ)

∃ τ ∈ STS. ScheduledLO(BP , τ) ⊂ ScheduledLO(BPG , τ)

Proof (Theorem 5.2.2) The proof consits of two parts:

1. Showing that for all possible task sets τ it holds that

ScheduledLO(BPG , τ) ⊇ ScheduledLO(BP , τ)

2. Showing by example that there exists a task set τ such that

ScheduledLO(BPG , τ) ⊃ ScheduledLO(BP , τ)

Part 1:

The gain time collection at runtime allows to reduce the number of times the

Chapter 5. Formal Comparison of Variants of BP and LBP 78

system goes in Bailout mode and the amount of time the system remains in such

mode [17]. The enlargement of the Normal mode rescues more LO jobs from

being abandoned. Hence, it reduces the amount of LO jobs that do not complete

within their deadlines. Therefore BPG can never have worse performances with

respect to scheduling LO jobs:

∀τ ∈ STS. ScheduledLO(BPG , τ) ⊇ ScheduledLO(BP , τ)

Part 2:

Figure 5.2 shows the existence of a task set with two tasks having implicit dead-

lines in which all jobs meet their deadlines if scheduled with BPG while one LO

job fails with BP. In the example, jobs of HI task A have an execution time

of et = 3, except for A0 for which et(A0) = 5. Furthermore, CLO(A) = 4 and

CHI (A) = 7. The jobs of LO task B have an execution time of et = 2, except for

B0 for which et(B0) = 1 (written as 2−1 in Figure 5.2).

As shown in Figure 5.2.b), BPG schedules all HI and LO jobs successfully and

never enters into HI criticality mode. However, as shown in Figure 5.2.a), BP

fails to schedule the LO job B1 successfully. In fact, with BP the job A0 overruns

its CLO(A0) at time t = 5 and the scheduler enters Bailout mode. The LO job B1

arrives at time t = 6 during the Bailout mode. B1 is abandoned and the bailout

fund is decreased but it remains still positive. Then, the system experiences an

idle instant and the scheduler switches back into Normal mode. In case of BPG

the shorter execution of B0 increments the gain time by 1, which is then added to

CLO(A0). Thus, job A0 with et(A0) = 5 does not cause an overrun of CLO(A0),

as CLO(A0) had been increased by a gain time of 1, originating from job B0.

The system never switches to Bailout mode and job B1 can start its execution

as soon as it is released.

Hence, the task set τ of this example is an instance fulfilling the property to

be shown:

∃ τ ∈ STS.ScheduledLO(BPG , τ) ⊃ ScheduledLO(BP , τ)

From Theorem 5.2.1 and Theorem 5.2.2 follow that:

Corollary 5.2.3 BPG has a better mixed-criticality performance than BP,

which can be formally written as:

IsBetterMCS (BPG ,BP)

Chapter 5. Formal Comparison of Variants of BP and LBP 79

5	 15	10	
B0	

P	
	

D	 et	 CLO	 CHI	 L	

A	 10	 10	 3+2	 4	 7	 HI	

B	 6	 6	 2-1	 2	 ---	 LO	

Tasks	

Time	

A0	

Normal	 Bailout	

B1	is	
abandoned	

Normal	

A1	

Normal	

A0	overruns	its	CLO		

B2	

A1	

(a) With BP the LO job B1 is abandoned

5	 15	10	
B0	

P	
	

D	 et	 CLO	 CHI	 L	

A	 10	 10	 3+2	 4	 7	 HI	

B	 6	 6	 2-1	 2	 ---	 LO	

Tasks	

Time	

A0	

Normal	

Normal	

A1	

B3	

A1	

B2	

gain	time	+	1	
A0	does	not	overrun	anymore	its	CLO	

gain	time	-1		

(b) With BPG all LO and HI jobs are scheduled successfully

Figure 5.2: (Proof of Theorem 5.2.2) BPG schedules more LO jobs than BP

Proof (Corollary 5.2.3) Theorem 5.2.1 proves that BP and BPG have the same

success rate for HI tasks while Theorem 5.2.2 demonstrates that the usage of gain

time collection at runtime increases the amount of LO jobs completed within their

deadlines. As a result, it follows that:

IsBetterMCS (BPG ,BP)

5.2.2 Comparison between BP and BPS

Theorem 5.2.4 BPS has the same success rate of HI tasks than BP, which can

be formally written as:

∀ τ ∈ STS. ScheduledHI (BPS , τ) == ScheduledHI (BP , τ)

Proof (Theorem 5.2.4) BP and BPS behave the same way regarding the han-

dling of HI jobs. BPS reduces the number of times the system goes into

Chapter 5. Formal Comparison of Variants of BP and LBP 80

Bailout/Recovery mode and enlarges the duration of Normal mode by increas-

ing the CLO of HI jobs. The scaling up of CLO increases the system load up

to the maximum point for which the task set is still schedulable, i.e., BPS does

the upscaling of CLO only as long as the Assumptions 1 to 3 from Chapter 4

are preserved. Assuming that the schedulability test used to check Assump-

tions 1 to 3 is a sufficient test, this concludes the proof that BPS preserves the

schedulability of HI tasks. Thus, for any task set τ it follows that

ScheduledHI (BPS , τ) == ScheduledHI (BP , τ)

Theorem 5.2.5 BPS can have a better success rate of LO tasks than BP, but

newer worse, which can be formally written as:

∀ τ ∈ STS. ScheduledLO(BP , τ) ⊆ ScheduledLO(BPS , τ)

∃ τ ∈ STS. ScheduledLO(BP , τ) ⊂ ScheduledLO(BPS , τ)

Proof (Theorem 5.2.5) The proof consists of two parts:

1. Showing that for all possible task sets τ it holds that

ScheduledLO(BPS , τ) ⊇ ScheduledLO(BP , τ)

2. Showing by example that there exists a task set τ such that

ScheduledLO(BPS , τ) ⊃ ScheduledLO(BP , τ)

Part 1:

Compared with BP, in BPS an offline static analysis is performed to scale up the

CLO estimates of all HI tasks as much as possible while preserving the schedu-

lability of the whole task set when considering their optimistic WCET bounds

CLO . The scaling of CLO values with BPS reduces the number of times HI jobs

overrun their CLO , thus reducing the number of times the Bailout mode is en-

tered (since it delays the entering into Bailout mode). As a result, BPS may

abandon less LO jobs than BP, but never more:

∀ τ ∈ STS. Abandoned(BPS , τ) ⊆ Abandoned(BP , τ)

Chapter 5. Formal Comparison of Variants of BP and LBP 81

This leads to more jobs that can start and successfully complete. Thus, for any

task set τ it follows that

ScheduledLO(BP , τ) ⊆ ScheduledLO(BPS , τ)

Part 2:

Figure 5.3 shows the existence of a task set with tasks having implicit deadlines

in which more LO jobs meet their deadlines if scheduled with BPS compared with

BP. In the example, jobs of HI task A have an execution time of et = 2, except

for A0 and A1 for which et(A0) = et(A1) = 7 (denoted as 2+5 in Figure 5.3).

Furthermore, task A has CLO(A) = 2 in Figure 5.3.a) and CLO(A) = 5 in

Figure 5.3.b) while its CHI (A) = 10. The jobs of LO task B have a constant

execution time of et = 3.

10	 30	20	
B0	

P	
	

D	 et	 CLO	 CHI	 L	

A	 15	 15	 2+5	 2	 10	 HI	

B	 9	 9	 3	 4	 ---	 LO	

Tasks	

Time	

A0	 A1	

Normal	 Bailout	 Normal	 Bailout	

B1	is	
abandoned	

B2	is	
abandoned	

Normal	

B3	

A2	

A0	overruns	its	CLO		 A1	overruns	its	CLO		

5	 15	 25	

(a) With BP the jobs B1 and B2 are abandoned

20	10	 30	

Tasks	

Time	

A0	 A1	

Normal	 Bailout	 Normal	 Bailout	

B1	is	
abandoned	

Normal	

A2	A1	

P	
	

D	 et	 CLO	 CHI	 L	

A	 15	 15	 2+5	 5	 10	 HI	

B	 9	 9	 3	 4	 ---	 LO	

A0	overruns	its	CLO		 A1	overruns	its	CLO		

B0	 B2	 B3	

5	 15	 25	

(b) With BPS only the job B1 is abondoned

Figure 5.3: (Proof of Theorem 5.2.5, Part 2) BPS schedules more LO jobs than
BP.

As shown in Figure 5.3.a), BP schedules successfully all HI jobs but abandons

the LO jobs B1 and B2 during Bailout mode. However, as shown in Figure 5.3.b),

BPS also schedules all HI jobs but only abandons the LO job B1 due to the delay

in entering into Bailout mode after the scaling up of CLO of HI task A. This

allows to LO job B2 to start on time and to complete successfully.

Hence, the task set τ of this example is an instance fulfilling the property to

Chapter 5. Formal Comparison of Variants of BP and LBP 82

be shown:

∃ τ ∈ STS. ScheduledLO(BPS , τ) ⊃ ScheduledLO(BP , τ)

Corollary 5.2.6 BPS has a better mixed-criticality performance than BP, which

can be formally written as:

IsBetterMCS (BPS ,BP)

Proof (Colollary 5.2.6) Theorem 5.2.4 demonstrates that both BP and BPS

schedule all HI task instances successfully. Furthermore, Theorem 5.2.5 proves

that BPS abandons less LO jobs and, by doing this, leads to better success rate

for LO tasks. Hence, it follows that

IsBetterMCS (BPS ,BP)

5.2.3 Comparison between BPG and BPS

Theorem 5.2.7 BPG can have a better LO jobs success rate than BPS but there

also exist cases where BPG results in a worse LO jobs success rate than BPS,

which could be formally written as:

∃ τ ∈ STS.IsBetterMCS (BPG ,BPS , τ)

∃ τ ∈ STS.IsBetterMCS (BPS ,BPG , τ)

Proof (Theorem 5.2.7) The proof has two parts:

1. Showing by example that there exists a task set τ such that

IsBetterMCS (BPG ,BPS , τ)

2. Showing by example that there exists a task set τ such that

IsBetterMCS (BPS ,BPG , τ)

Chapter 5. Formal Comparison of Variants of BP and LBP 83

Part 1:

Figure 5.4 shows a mixed criticality task set consisting of two tasks having both

constant execution times. In particular, the HI task A always has an execution

larger than its CLO while the LO task B always has an execution time of et = 1

that is smaller than its CLO . The example compares the schedule generated

respectively by BPG and BPS. Figure 5.4.a) shows that BPG delays the entering

of the Bailout mode because the gain time collected from the earlier completion

of B instances increases the CLO of HI task A. However, it still abandons jobs B1,

B2 and B4. In particular, Figure 5.4.b) represents the BPS schedule. The CLO

of the HI task A has been scaled up and the increased duration of the Normal

mode execution allows to run also jobs B1 and B4.

10	 30	20	

P	
	

D	 et	 CLO	 CHI	 L	

A	 19	 19	 14	 4	 14	 HI	

B	 7	 7	 1	 2	 ---	 LO	

Tasks	

Time	

A0	 A1	

Normal	 Bailout	 Normal	 Bailout	

B1	is	
abandoned	

B2	is	
abandoned	

A0	overruns	its	CLO		
gain	time	-	1	

A1	overruns	its	CLO		
gain	time	-	1	

B4	is	
abandoned	B0	 B3	

gain	time	+	1	 gain	time	+	1	

(a) BPG abandons jobs B1, B2 and B4

B4	

30	

B2	is	
abandoned	

10	 20	

P	
	

D	 et	 CLO	 CHI	 L	

A	 19	 19	 14	 10	 14	 HI	

B	 7	 7	 1	 2	 ---	 LO	

Tasks	

Time	

A0	 A1	

Normal	 Bailout	 Normal	

A1	

A0	overruns	its	CLO	

B0	 B3	

A0	

B1	

(b) BPS abandons job B2

Figure 5.4: (Proof of Theorem 5.2.7, Part 1) BPS schedules more LO jobs than
BPG

Part 2:

Figure 5.5 shows a task set in which there is no slack time to exploit via sensi-

tivity analysis. In this case, BPS behaves exactly like BP while the BPG online

gain time collection allows to rescue more LO jobs. Tha task set consists of

two tasks, the HI task A always runs with a constant execution time of et = 12

while instances of LO task B can have a variable execution time. In particu-

lar, et(B0) = et(B1) = 1 while et(B2) = et(B3) = et(B4) = 2. Furthermore,

CLO(A) = 10 and CHI (A) = 13 while CLO(B) = 2. Figure 5.5.a) shows that

Chapter 5. Formal Comparison of Variants of BP and LBP 84

the earlier completion of jobs B0 and B1 allows to avoid the entering of Bailout

mode. On the othe hand, Figure 5.5.b) reveals that the HI job A exceeds its

CLO at time t = 12 and the system switches to Bailout mode. The HI job A0

completes at time t = 14 and the bailout fund is reduced but it remains still

positive. The LO job B2 arrives at time t = 14 and the bailout fund becomes

zero but since the HI job had already completed its execution, then the system

goes back to Normal mode.

10	 30	20	

P	
	

D	 et	 CLO	 CHI	 L	

A	 17	 17	 12	 10	 13	 HI	

B	 7	 7	 2-1	 2	 ---	 LO	

Tasks	

Time	

A0	 A1	

Normal	

B3	

A1	

B0	

A0	

B4	B1	

gain	time	+	1	 gain	time	+	1	

B2	

(a) BPG sucessfully schedules all LO jobs

10	 30	20	

P	
	

D	 et	 CLO	 CHI	 L	

A	 17	 17	 12	 10	 13	 HI	

B	 7	 7	 2-1	 2	 ---	 LO	

Tasks	

Time	

A0	 A1	

Normal	

B3	

A1	

B0	

A0	

B1	

B2	is	
abandoned	

A0	overruns	its	CLO	

B4	

Bailout	 Normal	

(b) BPS abandons job B2

Figure 5.5: (Proof of Theorem 5.2.7, Part 2) BPG schedules more LO jobs than
BPS

5.2.4 Comparison between BP and BPSG

Corollary 5.2.8 BPSG has better mixed-criticality performances than BP.

Proof (Corollary 5.2.8) Corollary 5.2.3 and Corollary 5.2.6 prove that the com-

plementary techniques used together with BP, i.e., the offline scaling up of CLO

of HI tasks and the online gain time collection, actually increase the amount

of LO jobs that complete within their deadlines without affecting the task set

schedulability [17].

Since BPSG results from the integration of the above techniques with the

standard BP, it adds the benefits of both to BP. Therefore it follows that:

Chapter 5. Formal Comparison of Variants of BP and LBP 85

∀τ ∈ STS. IsBetterMCS (BPSG ,BP)

5.3 Comparison of LBP with Related Protocols

This section contains the formal comparison of LBP and its variants with the

corresponding BP-based scheduling protocols and with SLBP.

5.3.1 Comparison between BP and LBP

Theorem 5.3.1 LBP has the same success rate of HI tasks than BP, which can

be formally written as:

∀τ ∈ STS. ScheduledHI (BP , τ) == ScheduledHI (LBP , τ)

Proof (Theorem 5.3.1) BP and LBP behave the same way regarding the han-

dling of HI jobs:

1. If a HI job is overrunning its CLO , it is granted an execution budget till

CHI .

2. If a HI job does not finish within CHI or within its deadline then it is

dropped.

The schedulability of HI tasks is always guaranteed by Assumptions 1 to

3 introduced in Chapter 4. The only difference between BP and LBP lies in

the handling of LO jobs, where LBP puts them in a lower priority scheduling

queue instead of abandoning them when released in Bailout/Recovery modes or

dropping them after the overrun of their CLO as BP does. Since the content of

the LBP low-priority queue cannot influence the scheduling of jobs of the default

(high-priority) queue, Assumptions 1 to 3 continue to be valid. It follows that

∀τ ∈ STS. ScheduledHI (BP , τ) == ScheduledHI (LBP , τ)

Chapter 5. Formal Comparison of Variants of BP and LBP 86

Theorem 5.3.2 LBP can have a better success rate of LO tasks than BP, but

newer worse, which can be formally written as:

∀ τ ∈ STS. ScheduledLO(BP , τ) ⊆ ScheduledLO(LBP , τ)

∃ τ ∈ STS. ScheduledLO(BP , τ) ⊂ ScheduledLO(LBP , τ)

Proof (Theorem 5.3.2) The only difference between BP and LBP lies in the

handling of LO jobs, where LBP puts them in a low-priority scheduling queue

instead of abandoning them or dropping them. Hence we have:

∀ τ ∈ STS. Abandoned(BP , τ) ⊆ LORated(LBP , τ)

Since with BP it happens by definition that

∀ τ ∈ STS. Failed(BP , τ) ⊇ Abandoned(BP , τ)

to prove Theorem 5.3.2, it only has to be shown that:

∃ τ ∈ STS. Abandoned(BP , τ) ∩ LORated(LBP , τ) ∩ Scheduled(LBP , τ) 6= ∅

which means it is sufficient for the proof to show by example that it is possible

to have task sets where some LO jobs can be scheduled when the default high-

priority queue is idle. To do so, I use the following task set consisting of a HI

task A and a LO task B:

Task P D et CLO CHI L

A 15 15 5 3 10 HI

B 4 4 2 2 - LO

Task A is assumed to have an execution time et = 5, which always causes an

overrun of the optimistic WCET estimate. The first time, job A0 exceeds its CLO

at t = 7 and the system switches into Bailout mode. The LO job B2 is released

at time t = 8 during Bailout mode. Hence, the bailout fund BF is decreased by

a quantity equal to the CLO of B2. However, BF still remains positive. After A0

completes the system experiences an idle instant and this causes a switch back

to Normal mode.

As shown in Figure 5.6.a), BP immediately abandons job B2 at its arrival time

during the HI criticality execution mode. In contrast, as shown in Figure 5.6.b),

LBP moves such job into the low-priority queue at its arrival and executes it when

Chapter 5. Formal Comparison of Variants of BP and LBP 87

the default queue becomes idle. Thus, this example demonstrates the existence

of a task set τ such that

∃ τ ∈ STS. Abandoned(BP , τ) ∩ LORated(LBP , τ) ∩ Scheduled(LBP , τ) 6= ∅

which completes the proof.

A0	

B0	

A0	

B1	

Tasks	

Time	

Normal	 Bailout	 Normal	

5	 10	

P	 D	 et	 CLO	 CHI	 L	

A	 15	 15	 5	 3	 10	 HI	

B	 4	 4	 2	 2	 ---	 LO	 B3	
B2	is	

abandoned	

A0	overruns	its	CLO		

15	

A1	

(a) BP abandons LO jobs that are not released in Normal mode

A0	

B0	

A0	

B1	

Tasks	

Time	

Normal	 Bailout	 Normal	

5	 10	
B3	

B2	is	delayed	and	then	
processed	in	Normal	mode	

B2	

P	 D	 et	 CLO	 CHI	 L	

A	 15	 15	 5	 3	 10	 HI	

B	 4	 4	 2	 2	 ---	 LO	

A0	overruns	its	CLO		

15	

A1	

(b) LBP provides a delayed execution for job B2

Figure 5.6: (Proof of Theorem 5.3.2) Example in which LBP successfully executes
LO jobs that are abandoned by BP.

From Theorem 5.3.1 and Theorem 5.3.2 it follows that:

Corollary 5.3.3 LBP has a better mixed-criticality performance than BP, which

can be formally written as:

IsBetterMCS (LBP ,BP)

Proof (Corollary 5.3.3) Theorem 5.3.1 proves that BP and LBP have the same

success rate for HI tasks. Furthermore, Theorem 5.3.2 proves that, compared

with BP, LBP increases the amount of LO jobs completed within their deadlines.

As a result, according to the criterion defined in Section 5.1, it follows that

Chapter 5. Formal Comparison of Variants of BP and LBP 88

IsBetterMCS (LBP ,BP)

5.3.2 Comparison between BPG and LBPG

Theorem 5.3.4 LBPG has the same success rate of HI tasks than BPG, which

can be formally written as:

∀τ ∈ STS. ScheduledHI (BPG , τ) == ScheduledHI (LBPG , τ)

Proof (Theorem 5.3.1) BPG and LBPG behave the same way regarding the

handling of HI jobs:

1. If a HI job is overrunning its CLO , it is granted an execution budget till

CHI .

2. If a HI job does not finish within CHI or within its deadline then it is

dropped.

The only difference between BPG and LBPG lies in the handling of LO jobs that

exceed their optimistic WCETs or that are released during Bailout and Recovery

modes. BPG abandons such jobs while LBPG inserts them in the low-priority

queue for later execution. The content of low-priority queue cannot interfere

with the scheduling of jobs within the default queue.

BPG and LBPG schedule all jobs, hence also HI jobs, in the high-priority

queue at the same way. Since the gain collection during the Normal mode does

not alter the worst-case system load, Assumption 1 guarantees the schedulabil-

ity of all jobs in such mode. Furthermore, when the system switches to Bailout

mode, Assumption 2 and Assumption 3 guarantee that schedulability of HI

tasks is preserved. Thus, it follows that

∀τ ∈ STS. ScheduledHI (BPG , τ) == ScheduledHI (LBPG , τ)

Theorem 5.3.5 LBPG can have a better success rate of LO tasks than BPG,

Chapter 5. Formal Comparison of Variants of BP and LBP 89

but newer worse, which can be formally written as:

∀ τ ∈ STS. ScheduledLO(BPG , τ) ⊆ ScheduledLO(LBPG , τ)

∃ τ ∈ STS. ScheduledLO(BPG , τ) ⊂ ScheduledLO(LBPG , τ)

Proof (Theorem 5.3.5) The only difference between BPG and LBPG lies in the

handling of LO jobs, where LBPG puts them in a low-priority scheduling queue

instead of abandoning them immediately or dropping them after the overrun of

their CLO . Hence we have:

∀ τ ∈ STS. Abandoned(BPG , τ) ⊆ LORated(LBPG , τ)

Since with BGP it happens by definition that

∀ τ ∈ STS. Failed(BPG , τ) ⊇ Abandoned(BPG , τ)

to prove Theorem 5.3.5 it is necessary to show that:

∃ τ ∈ STS. Abandoned(BPG , τ) ∩ LORated(LBPG , τ) ∩ Scheduled(LBPG , τ) 6= ∅

Figure 5.7 shows an example of task set in which LBPG rescues LO jobs by mov-

ing them into the low-priority queue instead of abandoning them. The instances

of HI task A have a constant execution time et = 9, which always causes an

overrun of the CLO estimate. On the other hand, jobs of LO task B always have

an exeuction time of et = 3 apart from B0 that runs only for 2 time units, which

allows to have a gain time of 1. Job B0 completes earlier at time t = 2 and gives

its gain time to job A0 for which the optimistic time budget is now updated to

5. A0 enters the Bailout mode at time t = 7 and then runs till its completion.

No other gain time is collected in this example. Figure 5.7.a) and Figure 5.7.b)

show respectively that BPG abandones job B1 and B3 while LBPG runs them in

Normal mode during idle time. Thus, this example demonstrates the existence

of a task set τ such that

∃ τ ∈ STS. Abandoned(BPG , τ) ∩ LORated(LBPG , τ) ∩ Scheduled(LBPG , τ) 6= ∅

which completes the proof.

Corollary 5.3.6 LBPG has a better mixed-criticality performance than BPG,

which can be formally written as:

Chapter 5. Formal Comparison of Variants of BP and LBP 90

A0	

B0	

Tasks	

Time	

Normal	 Bailout	 Normal	

10	 20	

P	 D	 et	 CLO	 CHI	 L	

A	 19	 19	 9	 4	 13	 HI	

B	 8	 8	 3-1	 3	 ---	 LO	

A0	overruns	its	CLO		
	gain	time	-	1	

30	
B2	

A1	

A1	overruns	its	CLO		

Bailout	

gain	time	+	1	

Normal	

B1	is	
abandoned	

B3	is	
abandoned	

(a) BPG abandons LO jobs B1 and B3 during Bailout mode

A0	

B0	

Tasks	

Time	

Normal	 Bailout	 Normal	

10	 20	

P	 D	 et	 CLO	 CHI	 L	

A	 19	 19	 9	 4	 13	 HI	

B	 8	 8	 3-1	 3	 ---	 LO	

A0	overruns	its	CLO		
	gain	time	-	1	

30	
B2	

A1	

A1	overruns	its	CLO		

Bailout	

gain	time	+	1	

B1	 B3	

Normal	

(b) LBPG provides a delayed execution for job B1 and B3

Figure 5.7: (Proof of Theorem 5.3.5) Example in which LBPG successfully sched-
ules LO jobs that are abandoned by BPG.

IsBetterMCS (LBPG ,BPG)

Proof (Corollary 5.3.6) Theorem 5.3.4 demonstrates that both BPG and LBPG

always allow to schedule all HI jobs within their deadlines. Furthermore, The-

orem 5.3.5 proves that LBPG increases the amount of LO jobs that complete

within their deadlines with respect to BPG. It follows that

IsBetterMCS (LBPG ,BPG)

5.3.3 Comparison between BPS and LBPS

Theorem 5.3.7 LBPS has the same success rate of HI tasks than BPS, which

can formally written as

∀τ ∈ STS. ScheduledHI (BPG , τ) == ScheduledHI (LBPG , τ)

Chapter 5. Formal Comparison of Variants of BP and LBP 91

Proof (Theorem 5.3.7) BPS and LBPS behave the same way regarding the

handling of HI jobs:

1. If a HI job is overrunning its CLO , it is granted an execution budget till

CHI .

2. If a HI job does not finish within CHI or within its deadline then it is

dropped.

The only difference between BPS and LBPS lies in the handling of LO jobs that

exceed their optimistic WCETs or that are released during Bailout and Recovery

modes. BPS abandons such jobs while LBPS inserts them in the low-priority

queue for later execution. The content of low-priority queue cannot interfere

with the scheduling of jobs within the default queue.

As a result, Assumption 1 to 3 guarantee the schedulability of HI tasks in

every execution mode. Therefore, it follows that

∀τ ∈ STS. ScheduledHI (BPS , τ) == ScheduledHI (LBPS , τ)

Theorem 5.3.8 LBPS can have a better success rate of LO tasks than BPS, but

newer worse, which can be formally written as:

∀ τ ∈ STS. ScheduledLO(BPS , τ) ⊆ ScheduledLO(LBPS , τ)

∃ τ ∈ STS. ScheduledLO(BPS , τ) ⊂ ScheduledLO(LBPS , τ)

Proof (Theorem 5.3.8) The only difference between BPS and LBPS is in the

handling of LO jobs exceeding their CLO or released in Bailout/Recovery modes,

i.e., BPS suddenly abandons them while LBPS inserts them in a low-priority

queue for later execution during system idle instants. Therefore, it follows that

∀τ ∈ STS. Abandoned(BPS , τ) ⊆ LORated(LBPS , τ)

Since, with BPS, the amount of LO jobs not completed within their deadlines

could be greater than those that are abandoned, it follows that:

∀τ ∈ STS. Failed(BPS , τ) ⊇ Abandoned(BPS , τ)

Therefore, to prove that LBPS has a better success rate of LO tasks than

BPS, it is necessary to show an example in which LBPS allows to schedule LO

Chapter 5. Formal Comparison of Variants of BP and LBP 92

jobs within their deadlines while BPS abandons them, which could be formally

written as

∃ τ ∈ STS. Abandoned(BPS , τ) ∩ LORated(LBPS , τ) ∩ Scheduled(LBPS , τ) 6= ∅

Figure 5.8 shows that LBPS has a better LO jobs success rate than BPS.

The example shows a task set in which the CLO of HI task A is already scaled

up by sensitivity analysis. This enlarges the Normal mode execution duration.

However, BPS still abandons LO jobs released during HI criticality execution

modes. Conversely, LBPS runs them afterwards during idle instants. Figure 5.8

displays how the LO job B1 released at time t = 9 is abandoned with BPS and

executed later at time t = 10 with LBPS.

This is an instance proving Theorem 5.3.8.

20	10	 30	

Tasks	

Time	

A0	 A1	

Normal	 Bailout	 Normal	 Bailout	

B1	is	
abandoned	

Normal	

A2	A1	

P	
	

D	 et	 CLO	 CHI	 L	

A	 15	 15	 2+5	 5	 10	 HI	

B	 9	 9	 3	 4	 ---	 LO	

A0	overruns	its	CLO		 A1	overruns	its	CLO		

B0	 B2	 B3	

5	 15	 25	

(a) BPS abandons job B1

P	
	

D	 et	 CLO	 CHI	 L	

A	 15	 15	 2+5	 5	 10	 HI	

B	 9	 9	 3	 4	 ---	 LO	 B3	B2	B1	B0	

10	 30	20	

Tasks	

Time	

A0	 A1	

Normal	 Bailout	 Normal	 Bailout	

B1	is	delayed	and	
then	processed	

Normal	

A2	A1	

A0	overruns	its	CLO		 A1	overruns	its	CLO		

5	 15	 25	

(b) LBPS schedules all LO jobs

Figure 5.8: (Proof of Theorem 5.3.9) LBPS schedules more jobs than BPS by
provided a delayed execution for LO jobs relased in Bailout mode

Theorem 5.3.9 LBPS has better mixed-criticality performance than BPS,

which can be formally written as:

IsBetterMCS (LBPS ,BPS)

Chapter 5. Formal Comparison of Variants of BP and LBP 93

Proof (Theorem 5.3.9) Theorem 5.3.7 proves that both BPS and LBPS schedule

successfully every HI tasks. Moreover, Theorem 5.3.8 demonstrates how LBPS

increases the amount of LO jobs completed within their deadlines. As a result,

it follows that

IsBetterMCS (LBPS ,BPS)

5.3.4 Comparison between BPSG and LBPSG

Corollary 5.3.10 LBPSG has a better mixed-criticality performance than

BPSG, which can be formally written as:

IsBetterMCS (LBPSG ,BPSG)

Proof (Corollary 5.3.10) Theorem 5.3.3 demonstrates that LBP has a better

success rate of LO tasks than BP. Moreover, Theorem 5.3.9 and Corollary 5.3.6

prove respectively that the offline scaling up of CLO of HI tasks as well as the

online gain time collection mechanism further increases the number of LO jobs

completed within their deadlines. As a consequence, it follows that

IsBetterMCS (LBPSG ,BPSG)

5.3.5 Comparison between LBP and BPS

Theorem 5.3.11 LBP can have a better LO jobs success rate than BPS but also

exist cases where LBP results in a worse LO jobs success rate than BPS, which

could be formally written as:

∃ τ ∈ STS.IsBetterMCS (LBP ,BPS , τ)

∧

∃ τ ∈ STS.IsBetterMCS (BPS ,LBP , τ)

Chapter 5. Formal Comparison of Variants of BP and LBP 94

Proof (Theorem 5.3.11) The proof has two parts:

1. Showing by example that there exists a task set τ such that

IsBetterMCS (LBP ,BPS , τ)

2. Showing by example that there exists a task set τ such that

IsBetterMCS (BPS ,LBP , τ)

Part 1:

To prove the first part of such theorem I use a task set in which LBP fails in

scheduling some LO jobs while BPS, thanks to the scaling up of CLO of the HI

task, is able to successfully schedule all LO jobs. The task set consists of two

tasks, one HI task with a long execution time and a low arrival rate and a LO

task with a short execution time and a higher arrival rate. Figure 5.9.a) shows

the LBP execution. The system enters in Bailout mode when the HI jobs A0

and A1 exceed their CLO , respectively at times t = 3 and t = 23. The LO jobs

released during the Bailout mode execution are not abandoned but inserted in

the low-priority queue. In particular, jobs B1 and B6 are released at times t = 4

and t = 24 and removed from the low-priority queue at times t = 8 and t = 28

when next instances of the same task is released. The LO jobs B2 and B7 are

scheduled during the system idle instants in Normal mode.

On the other hand, Figure 5.9.b) shows how the scaling up of CLO allows to

completely avoid the switch to Bailout mode. The system always runs in Normal

mode and all instances of LO task B are processed as soon as they are relased

since they have higher scheduling priority.

Part 2:

The second part of such theorem is proved by showing the existence of a

task set in which LBP schedules more LO jobs than BPS. Figure 5.10 shows the

existence of a task set that is first processed by LBP and the by BPS. In Fig-

ure 5.10.a) LBP schedules more jobs than BPS. The LO jobs B1 and B2 are

released respectively at times t = 9 and t = 18 during Bailout mode and im-

mediately inserted within the low-priority queue. Then, they are run afterwards

during the Normal mode. The Figure 5.10.b) shows the BPS execution. In this

case, the CLO of the HI task A has been scaled up via sensitivity analysis. This

extends the time the system runs in Normal mode and, as a result, B2 is not

abandoned since it is now released during the LO criticality mode. However,

BPS still drops job B1.

Chapter 5. Formal Comparison of Variants of BP and LBP 95

A0	

Tasks	

Time	

Normal	 Bailout	 Normal	

10	 20	

P	 D	 et	 CLO	 CHI	 L	

A	 21	 21	 10	 2	 10	 HI	

B	 4	 4	 1	 1	 ---	 LO	

A0	overruns	its	CLO		

30	

B1	is	abandoned	

A1	

A1	overruns	its	CLO		

Bailout	

B5	B4	B3	B0	 B2	

B6	is	abandoned	

B7	

(a) LBP abandons B1 and B6 since they start after the arrival of next instance of same task

A0	

Tasks	

Time	

Normal	

10	 20	

P	 D	 et	 CLO	 CHI	 L	

A	 21	 21	 10	 10	 10	 HI	

B	 4	 4	 1	 1	 ---	 LO	

30	

A1	A0	 A0	 A1	 A1	

B7	B6	B3	B2	B1	B0	 B5	B4	

(b) BPS schedules successfully all LO jobs

Figure 5.9: (Proof of Theorem 5.3.11, Part 1) BPS schedules more LO jobs than
LBP

These two examples represent instances proving Theorem 5.3.11.

5.3.6 Comparison between LBP and SLBP

Theorem 5.3.12 LBP has the same success rate of HI tasks than SLBP, which

can be formally written as:

∀τ ∈ STS. ScheduledHI (LBP , τ) == ScheduledHI (SLBP , τ)

Proof (Theorem 5.3.12) LBP and SLBP behave the same way regarding the

handling of HI jobs:

1. If a HI job is overrunning its CLO , it is granted an execution budget till

CHI .

2. If a HI job does not finish within CHI or within its deadline then it is

dropped.

Chapter 5. Formal Comparison of Variants of BP and LBP 96

B2	

10	 30	20	
B0	

P	
	

D	 et	 CLO	 CHI	 L	

A	 15	 15	 2+5	 2	 10	 HI	

B	 9	 9	 3	 4	 ---	 LO	

Tasks	

Time	

A0	 A1	

Normal	 Bailout	 Normal	 Bailout	

B1	is	delayed	and	
then	processed	

B2	is	delayed	and	
then	processed	

Normal	

B3	

A2	

A0	overruns	its	CLO		 A1	overruns	its	CLO		

5	 15	 25	
B1	

(a) LBP schedules LO jobs released in Bailout mode during the Normal mode

20	10	 30	

Tasks	

Time	

A0	 A1	

Normal	 Bailout	 Normal	 Bailout	

B1	is	
abandoned	

Normal	

A2	A1	

P	
	

D	 et	 CLO	 CHI	 L	

A	 15	 15	 2+5	 5	 10	 HI	

B	 9	 9	 3	 4	 ---	 LO	

A0	overruns	its	CLO		 A1	overruns	its	CLO		

B0	 B2	 B3	

5	 15	 25	

(b) BPS abandons job B1

Figure 5.10: (Proof of Theorem 5.3.11, Part 2) LBP schedules more LO jobs
than BPS

The schedulability of HI tasks is assured in each execution mode by means of

Assumptions 1 to 3. The only difference between LBP and SLBP lies in the

handling of jobs in the low-priority queue. However, the low-priority queue does

not contain HI jobs and it cannot interfere with the scheduling of jobs in the

default high-priority queue. Therefore, the feasibilty assumptions continue to be

true in every execution modes. It follows that

∀τ ∈ STS. ScheduledHI (LBP , τ) == ScheduledHI (SLBP , τ)

Theorem 5.3.13 LBP can have a better success rate of LO tasks than SLBP,

but newer worse, which can be formally written as:

∀ τ ∈ STS. ScheduledLO(SLBP , τ) ⊆ ScheduledLO(LBP , τ)

∃ τ ∈ STS. ScheduledLO(SLBP , τ) ⊂ ScheduledLO(LBP , τ)

(Note that LO jobs successfully scheduled with ScheduledLO are those that

terminate within their deadline and not those that complete later since this

Chapter 5. Formal Comparison of Variants of BP and LBP 97

chapter provides an evaluation in hard real-time settings. Applications for which

a tardy completion of LO jobs is still beneficial should consider other types of

metrics.)

Proof (Theorem 5.3.13) The only difference between LBP and SLBP lies in

the handling of jobs in the low-priority queue that exceed their deadlines. LBP

removes them from the queue and makes room to incoming lower priority LO

jobs that might complete within their deadlines. Conversely, SLBP lets LO jobs

overrun their deadline to complete as long as they terminate within the arrival

of next instance of the same task. As a result, LBP can successfully schedule at

least as many LO jobs as SLBP, but never less. This could be formally written

as

∀τ ∈ STS. ScheduledLO(SLBP, τ) ⊆ ScheduledLO(LBP, τ)

Figure 5.11 shows an example in which LBP permits to more LO jobs to

complete within their deadlines during system idle time. Figure 5.11.a) reveals

how the discard of LO jobs that overrun their deadlines allows to successive

lower priority jobs in the low-priority queue to exploit the system idle time to

sucessfully complete. The jobs C2, C3 and B2 are released during the Bailout

mode and hence inserted in the low-priority queue to be processed during idle

instants in Normal mode. Then, C2 is discarded at time t = 12 when it misses

its deadline while the remaining jobs run in Normal mode. The job C3 starts

at time t = 16 and misses its deadline at time t = 17 when it is removed from

the queue. This allows to the lower priority job B2 to start its execution and

complete before the arrival of job A1 from the high-priority queue.

Figure 5.11.b) instead highlights how SLBP allows to job C3 for a tardy

completion. However, this prevent execution of the lower priority job B2 that

misses its deadline and it is then abandoned at time t = 21 at the arrival of job

B3.

This proves that

∃ τ ∈ STS. ScheduledLO(SLBP , τ) ⊂ ScheduledLO(LBP , τ)

Corollary 5.3.14 LBP has a better mixed-criticality performance than SLBP,

which can be formally written as:

IsBetterMCS (LBP , SLBP)

Chapter 5. Formal Comparison of Variants of BP and LBP 98

P	
	

D	 et	 CLO	 CHI	 L	

A	 18	

	
18	 10	 3	 10	 HI	

B	 7	
	

	

5	 1	 1	 ---	 LO	

C	 5	
	

2	 2	 2	 ---	 LO	

A1	A0	A0	

C0	

Tasks	

Time	

Normal	 Bailout	 Normal	

10	 20	

A0	overruns	its	CLO		

30	

A1	overruns	its	CLO		

Bailout	

B0	

C1	

B0	

C1	

B0	

A1	

C4	

B0	B0	 B1	 B2	 B3	

C3	

C2	misses	its	deadline	and	
it	is	abandoned	

C5	misses	its	deadline	and	
it	is	abandoned	

C3	misses	its	deadline	and	
it	is	abandoned	

(a) LBP abandons job C3 after it misses its deadline and B2 completes successfully its execution

P	
	

D	 et	 CLO	 CHI	 L	

A	 18	

	
18	 10	 3	 10	 HI	

B	 7	
	

	

5	 1	 1	 ---	 LO	

C	 5	
	

2	 2	 2	 ---	 LO	

A1	A0	A0	

C0	

Tasks	

Time	

Normal	 Bailout	 Normal	

10	 20	

A0	overruns	its	CLO		

30	

A1	overruns	its	CLO		

Bailout	

B0	

C1	

B0	

C3	

A1	

C4	

B0	B0	 B1	 B3	

C2	is	abandoned	 C5	is	abandoned	

B2	is	abandoned	

(b) SLBP allows to job C3 to complete its execution after its deadline but B2 cannot execute
because of lack of idle time

Figure 5.11: (Proof of Theorem 5.3.13) LBP schedules more LO jobs than SLBP

Proof (Corollary 5.3.14) Theorem 5.3.12 proves both LBP and SLBP always

schedule every HI jobs within their deadlines. Moreover, Theorem 5.3.13 demon-

strates that LBP can have better success rate of LO tasks than SLBP. Hence, it

follows that

IsBetterMCS (LBP , SLBP)

Chapter 5. Formal Comparison of Variants of BP and LBP 99

5.4 Chapter Summary

In this chapter I have introduced the predicates and a strategy to evaluate per-

formances of different mixed-criticality scheduling protocols. In particular, the

predicate IsBetterMCS(mtd1,mtd2) allows to compare the performance of two

mixed-criticality scheduling methods with priority given to HI jobs that com-

plete within their deadlines. Since, by assumptions, the HI jobs always have to

meet their deadlines, the enhancement in scheduling performances is measured

by considering the increase in the amount of LO jobs that meet their deadlines.

Based on this criterion, this chapter contains a formal assessment among

mixed-criticality methods in hard real-time settings, i.e. jobs successfully sched-

uled are those completed within their deadlines. In particular, Section 5.2 studies

mixed-criticality performances of BP-based protocols while Section 5.3 compares

LBP with the remaining protocols, including SLBP.

I proved that each LBP-based protocol always increases the amount of LO

instances that complete within their deadlines with respect to their corresponding

BP-based protocol. On the other hand, no definitive result there is for the

comparison between LBP/BPS and BPG/BPS. Lastly, I also showed how LBP

allows to process more LO jobs within their deadlines if compared with its variant

SLBP.

Chapter 5. Formal Comparison of Variants of BP and LBP 100

Chapter 6

The Adaptive Tolerance-based

Mixed-Criticality Protocol

This chapter introduces the Adaptive Tolerance-based Mixed-criticality Proto-

col (ATMP), a criticality and utility-aware partitioned scheduling heuristics that

maximises the utility on each processing element of a multi-core platform by

adjusting the throughput of tasks. The partitioned policy has been preferred to

the global scheduling because it avoids the potential excessive overhead due to

manipulating a single global queue for all cores, it allows to reuse all the existing

scheduling algorithms on each single core and it is supported by the automotive

industry, e.g. AUTOSAR [107].

ATMP uses the TRTCM model [22, 1] in which each task can exploit a

specific tolerance interval to degrade its service level, measured by means of

a utility function. The utility maximisation is made according to the linear

programming problem formulated in [6]. The ATMP protocol performs first

a reallocation of tasks and then an optimisation of their arrival times in case

of sudden unavailability of some core. The schedulability of each optimised

set of tasks on each core is guaranteed with an appropriate test. Since the

arrival rates optimisation is independent of the underlying scheduling algorithm

used to process tasks, any schedulability test can be used to check the task

set schedulability on each core. However, we use AMC-rtb [69] that requires the

existence of at maximum two WCET estimates per task that indicate respectively

the lowest and highest level of assurance required for a correct completion.

Section 6.1 introduces the system and task model together with a description

of the TRTCM utility functions. Section 6.2 describes the ATMP optimisation

method while Section 6.3 describes the benefits with regard to system safety

deriving from the ATMP adoption. Section 6.4 concludes and summarises the

101

Chapter 6. The Adaptive Tolerance-based Mixed-Criticality Protocol 102

chapter.

6.1 System Model

This section describes the tolerance-based mixed-criticality task model. It is

assumed a mixed-criticality system, which consists of multiple tasks that could

have different levels of criticality. Each task τi of a task set τ is defined as follows:

τi = 〈Pi, Di, ~Ci, Li, Ui〉 (6.1)

Pi represents the period of a task τi, i.e., the inverse of its arrival rate.

Di is the relative deadline of task τi. Task sets have implicit deadlines, i.e.,

Di = Pi. It is worth to note that such assumption of implicit deadlines has

only been chosen for a concrete scheduling test in the implementation, but

it is not a requirement of ATMP.

Li is the criticality level of task τi with Li > 0. A higher value of Li means

a higher level of criticality. The vector ~L is used to represent all possible

criticality levels in a system: ~L = (L1, . . . , Lk), with L1 being the least and

Lk being the maximum criticality level, i.e., L1 < L2 < . . . < Lk.

Ui is the relative utility of task τi with 0 ≤ Ui ≤ 1. The value of Ui is described

by a utility function as in Figure 6.1 and varies according to the period

of a task τi. An absolute utility U∗i is also defined, which is calculated as

U∗i = Ui · Li.

~C is a vector of at maximum two WCET estimates, indicated respectively by

CLO and CHI with CLO < CHI . The smaller value CLO represents the

upper bound for the level of assurance required at the lower task criticality

level while CHI represents the estimate trustworthy at the higher level of

assurance required.

The individual instances of a task τi at runtime are called jobs. A job ji is

described by the following tuple:

ji = 〈Ai, Pi, Di, etji ,
~C, Li〉

where Ai is the arrival time and etji is the actual execution time. The entries

Pi, Di, ~C and Li are inherited from the task structure.

Chapter 6. The Adaptive Tolerance-based Mixed-Criticality Protocol 103

6.1.1 Utility Function

The service level provided to each task is measured by means of a utility func-

tion and is linked to one or more tasks’ parameters. The specific utility-based

optimisation performed binds the utility value together with the task periods

and permits to adjust the overall system utility by changing the arrival rates of

tasks within a task set according the constraints specified in the TRTCM linear

programming problem formulated in [6].

The key concept underlying the fault-tolerant optimisation of tasks at runtime

is that to tune the task set workload according to the utility and criticality

requirements of each task such that the overall system utility is maximised. Such

optimisation is made by exploiting the tolerance interval of each task assigned

to a specific processing element. Therefore, within the tolerance-based mixed-

criticality model the period Pi of a task τi is not a given constant, but is assigned

by the optimisation method within a certain interval that is specific for each

individual task. To be able to calculate the utility of a task, the period Pi of

each task τi ∈ τ is connected to the following additional utility parameters upi:

upi = 〈Pprim,i, Ptol,i, Utol,i〉 (6.2)

Pprim,i is the primary period of task τi, representing the optimal execution rate.

For any period P ≤ Pprim,i the relative utility is one: ui = 1.

Ptol,i is the tolerance period of task τi, which is the maximum period still toler-

able for task τi.

Utol,i is the tolerance utility of task τi, which is the relative utility at period

Ptol,i.

Relative
Utility

Period

1.0

0.0
Pprim Ptol

Utol

Pcrit

Figure 6.1: Utility function for relative utility calculation based on chosen period

Chapter 6. The Adaptive Tolerance-based Mixed-Criticality Protocol 104

Figure 6.1 shows how the utility parameters upi describe the utility function

of a task τi. The modelled tolerance section of the utility function is of linear

shape and it is used to smoothly adjust, i.e., degrade or speed up according to

the circumstances, the task arrival rates at runtime. Figure 6.1 also contains

the critical period (indicated as pcrit) that represents the arrival rate for which

the task utility becomes zero. More details about the tolerance-based real-time

model can be found in [6].

The usage of the tolerance range allows to tune the period of each task within

its related utility range. Because of this, the adjustment of the utilisation factor

of a task corresponds to the adjustment of its related utility value. In the TRTCM

task model, the possible load of a task τi varies within its so-called primary load

loadprim,i and its tolerance load loadtol,i, respectively defined as below:

loadprim,i =
CLO,i
Pprim,i

, loadtol,i =
CLO,i
Ptol,i

(6.3)

where CLO,i represents the non-conservative WCET estimate of an individual

task τi. Consequently, the total system load can be adjusted within loadprim and

loadtol of the whole task set:

loadprim =
∑
τi∈τ

CLO,i
Pprim,i

, loadtol =
∑
τi∈τ

CLO,i
Ptol,i

(6.4)

Finally, looking at the formulas above it is possible to notice that, by ad-

justing at runtime the task periods within specific tolerance ranges, the utility

optimisation leads to tune the overall system workload according to the specific

computing resources available.

6.1.2 System Adaptation

The exploitation of the tolerance range described in sub-section 6.1.1 permits

to optimise the load on each core by adjusting the tasks’ periods. Each task

has its own tolerance range [Pprim, . . . , Ptol] at which corresponds a utility range

[1, . . . , Utol]. The runtime adaptation capability of a task is classified according

to the relationship between its tolerance range and its tolerance utility as in

Figure 6.2. The higher is the tolerance utility Utol corresponding to Ptol and the

larger is the tolerance range extent, the more it is possible to adjust the arrival

rate of a task by preserving a high value of utility. Therefore, the adaptation at

runtime is made considering first tasks that have a higher utility corresponding

to the Ptol value and a larger tolerance range extent.

Chapter 6. The Adaptive Tolerance-based Mixed-Criticality Protocol 105

The system designer can set tolerance and utility ranges, defined as utility pa-

rameters upi in Section 6.1.1, of each task according to specific application needs

and periods larger than Ptol,i are considered not beneficial anymore to guarantee

an acceptable level of service. The rationale underlying the utility-based adap-

tation is that to guarantee the maximum possible achievable utility related to

the possibility to tune the arrival rate among tasks that have to be guaranteed

at same level of assurance. Therefore, among tasks with same criticality, tasks

are deallocated from a core according to their capability adaptation, i.e., first are

dropped tasks corresponding to Figure 6.2.d), then tasks in Figure 6.2.c), next

tasks in Figure 6.2.b) and lastly tasks in Figure 6.2.a).

Relative
Utility

Period

1.0

0.0 Pprim Ptol

Utol

(a) Large tolerance range with high tolerance util-
ity

Relative
Utility

Period

1.0

0.0 Pprim Ptol

Utol

(b) Large tolerance range with low tolerance util-
ity

Relative
Utility

Period

1.0

0.0 Pprim Ptol

Utol

(c) Small tolerance range with high tolerance util-
ity

Relative
Utility

Period

1.0

0.0 Pprim Ptol

Utol

(d) Small tolerance range with low tolerance util-
ity

Figure 6.2: Service utility adaptation: tolerance range versus tolerance utility

6.2 Optimisation Method

The Adaptive Tolerance-based Mixed-criticality Protocol (ATMP) allows to tune

the overall system utility by appropriately partitioning and adjusting tasks as

soon as the number of cores working in a platform changes. Firstly, tasks are

partitioned to cores prioritising higher criticality tasks. Secondly, on each core,

the optimal adjustment of tasks is made by considering their tolerance interval,

i.e., first tasks having least criticality and least benefit for utility optimisation

are deallocated and then the arrival rates of the remaining tasks are optimised.

The final overall system utility is computed by considering only the optimised

Chapter 6. The Adaptive Tolerance-based Mixed-Criticality Protocol 106

tasks kept allocated on each core that are deemed to be schedulable. As soon

as more computing resources become available, tasks that were removed can

be reallocated again, a further suitable periods optimisation is found on each

core and this results in an increase of the overall system utility. Therefore, the

variation of tasks’ periods within their tolerance interval and the number of tasks

kept onboard on each core affect the variation of system utility and this depends

on the change of computing resources available.

In the whole, ATMP consists of the following two main parts:

1. Tasks are first sorted according to decreasing criticality. Then, the parti-

tioning of tasks to cores is made as in Algorithm 1, i.e., highest criticality

tasks are repeatedly selected and assigned to the core with least load allo-

cated until all tasks are assigned. Note that Algorithm 1 is a static task

partitioning scheme but with the special property that the tasks’ criticality

is taken into account for the allocation.

2. If a task set allocated to a specific core is schedulable, then it is processed

by the underlying scheduler otherwise a binary search heuristics with linear

programming optimisation is performed on each core as showed in Algo-

rithm 2.

6.2.1 Criticality Aware Allocation

This sub-section describes the preliminary reallocation of tasks to cores made at

runtime after the sudden fault of some processing element. Below is a description

of the subroutines, either functions or procedures, used in Algorithm 1:

getTaskWithMaxCrit(τ): it gets in input a list of tasks sorted by decreasing

criticality and returns the first task with highest criticality in the list.

getCoreWithMinLoad(CS): it gets in input the list of core ids in the system and

returns the id of core cid with least load allocated.

addTaskToCore(τi, cid): it allocates the first task with highest criticality τid to

the core cid with least load allocated.

Algorithm 1 performs an online repartitioning of tasks to core after some

core fails. Algorithm 1 considers a list of tasks sorted by decreasing criticality

regardless of their priority or of their utilisation factor. At each iteration (line

2-6), the algorithm removes the first task from the queue, finds the core with

least load allocated and then it allocates the task to such core.

Chapter 6. The Adaptive Tolerance-based Mixed-Criticality Protocol 107

Algorithm 1: Criticality aware allocation

Input : τ : list of tasks sorted by criticality;
CS : list of cores;

1 begin
2 while τ is not empty do
3 τi ← getTaskWithMaxCrit(τ);
4 cid ← getCoreWithMinLoad(CS);
5 addTaskToCore(τi , cid);

6 end

7 end

6.2.2 The ATMP Utility Optimisation

This sub-section describes the utility optimisation made on a set of tasks allo-

cated to one core. A precise description of how the heuristics works is made in

Algorithm 2. Below is an explanation of subroutines used in the pseudocode:

isSchedulable(τ): it returns true if τ is deemed to be schedulable or false oth-

erwise. This schedulability test checks the three assumptions introduced in

Chapter 4 since we are assuming task set with two WCET estimates that

are schedulable by a mixed-criticality scheduling protocol.

loadtol(tts): it represents the utilisation factor of the task set tts computed by

using the optimistic WCET estimate CLO,i and the tolerance period Ptol,i

for each task τi ∈ tts.

removeMinCritTask(tts): it removes the first task with worst capability adapta-

tion (as described in Section 6.1.2 and Figure 6.2) among those with least

criticality.

solveILP(tts): it generates a linear programming problem as described in [6] and

returns as result a list of optimised periods.

applyPrimaryPeriods(tts, periods): it replaces the optimised periods in the task

set tts.

applyPrimaryPeriod(tts): it sets the primary period as optimal period when tts

consists of just one task, no optimisation is performed.

average(lm, lm2): it computes the middle value between two interval ends and

then returns it.

Chapter 6. The Adaptive Tolerance-based Mixed-Criticality Protocol 108

Once a set of tasks has been assigned to a specific core, Algorithm 2 first

checks its schedulability as indicated in line 2. If the task set is deemded to be

schedulable according to the specific test used, then it will be processed with

the underlying scheduling protocol. Conversely, if the task set is deemed to be

not schedulable, then a binary search is performed for a predefined number of

times indicated by the variable lcnt (line 5-28). At every iteration, a copy of

the partitioned task set tts assigned to such core is modified. Every time, the

binary search finds an lm value, initially set to a default value, to use as load

upper bounds for the tolerance load of task set tts. While the utilisation factor

of the set of tasks tts computed according to the tolerance periods is greater than

the upper bounds lm, then tasks with worst adaptation capability (Figure 6.2)

among those with least criticality are dropped (line 7-9).

Once a set of tasks with tolerance load suitable with the upper bounds lm

is found, the heuristics finds the optimised arrival rates by means of the LP

problem described in [6] and then replaces such periods within each task on

the core (line 10-15). Note that if the task set with tolerance load not greater

than lm consists of just one task (line 14), then it is assumed to have a load

less than or at maximum equal to 100% and, since there is no interference from

higher priority tasks, it will be schedulable by default. In this particular case,

no optimisation is performed and the task is stored in the tts variable.

A schedulability test chosen according to the underlying scheduling protocol

checks if the set of tasks with optimised periods will complete within their dead-

lines (indicated at line 16). If the optimised task set is deemed to be schedulable

and its load is greater than that of the last feasible optimised task set, then it

is stored in the τ ∗c variable and the range in which performing the binary search

is updated to continue in the upper half of the interval (line 16-22). Otherwise,

if the optimised task set is not schedulable, then the range in which performing

the binary search is updated to continue in the lower half of the interval (line

23-26). At the end of each iteration the counter lcnt is decreased (line 27).

The algorithm ends when lcnt = 0 and it returns the optimised set of tasks

assigned to a specific core with the best tolerance load (line 30).

Although Algorithm 2 can be used with any schedulability test, we use the

three step schedulability analysis introduced in [69] leading to process task sets

respecting the three assumptions used in Chapter 4. Therefore, as specified in

the system model section 6.1, each task has got one or two WCET estimates,

indicating respectively a low and a high level of assurance for its correct comple-

tion.

Chapter 6. The Adaptive Tolerance-based Mixed-Criticality Protocol 109

Algorithm 2: ATMP Utility Optimisation

Input : τc: task set allocated to a core;

Local : lm← 0.90;
lm1← 0.2;
lm2← 1.0;
lcnt← 6;
tts← Null;
bestlm← 0.0;

Output: τ ∗c : optimised task set;

1 begin
2 if isSchedulable(τ) then
3 τ ∗c ← τc;
4 else
5 while lcnt > 0 do
6 tts← τ ;
7 while (loadtol(tts) > lm) do
8 removeMinCritTask(tts);
9 end

10 if len(tts) > 1 then
11 periods← solveILP(tts);
12 tts← applyPrimaryPeriods(tts, periods);

13 else
14 tts← applyPrimaryPeriod(tts);
15 end
16 if isSchedulable(tts) then
17 if lm > bestlm then
18 bestlm← lm;
19 τ ∗c ← tts;

20 end
21 lm1← lm;
22 lm← average(lm, lm2);

23 else
24 lm2← lm;
25 lm← average(lm1, lm);

26 end
27 lcnt← lcnt− 1;

28 end

29 end
30 return τ ∗c ;

31 end

Chapter 6. The Adaptive Tolerance-based Mixed-Criticality Protocol 110

6.3 Safety Implications of Scheduling

Safety-critical systems are typically subject to two related but different correct-

ness requirements that is necessary to consider during their design phase: a pri-

ori verification and run-time robustness [12]. The verification determines offline

whether a system will behave correctly during runtime and deals with the case

when runtime behaviour is compliant with its assumed model while the robust-

ness at runtime is concerned with what happens when modelling assumptions

are violated.

ATMP manages these cases in which the a-priori assumptions are violated

and ensures that performances degrade gracefully whenever computing resources

suddenly become insufficient. In such cases, a general rule is that less impor-

tant system functionalities should be compromised before the most important

ones. In fact, each task within a task system can be classified on the extent

on which it contributes to the safety of the system. As an example, in case of

just two criticalities, tasks can be classified into safety-related and non-safety

related, corresponding to HI and LO in the system model used in Chapter 4.

A typical subdivision of tasks, even in case of multiple criticality levels, may

be based on Safety Integrity Levels (SIL) like in IEC61508 standard [108] or

similar classifications. Traditionally, the safety-related and non-safety related

functions are required to be separated to not interfere among them [108], since

failures of non-safety related functions should not cause a dangerous failure of

the safety functions. This issue is even more a challenge nowadays with the in-

creasing trend in designing systems having tasks of different criticality running

on a shared platform [12].

The ATMP protocol allows to keep the advantages of the different WCET

estimation process per different criticality levels that enables to design systems

in which the safety-critical tasks execution is guaranteed to a higher level of

assurance while making a more efficient resource usage at runtime since for non

critical tasks lower guarantees are required. From this point of view, the analysis

introduced by Vestal et al. permits to verify the correctness of task systems that

otherwise would have been deemed unschedulable using conventional analysis

techniques.

Furthermore, ATMP allows to drop lower criticality tasks with no impact

on the performances of the higher criticality ones. In fact, if any core suddenly

becomes unavailable, ATMP allows to de-allocate tasks according to their criti-

cality and online adaptation capability till when the computing resources become

available again. Whenever some processing elements that failed at some point

Chapter 6. The Adaptive Tolerance-based Mixed-Criticality Protocol 111

becomes active again, then ATMP can re-deploy tasks that were de-allocated.

However, discarding non-safety related tasks for long time is not free from con-

sequences since they can be important for non-safety reasons. The tolerance

range present in each task allows to degrade also the service provided to higher

criticality tasks to keep running as many non-critical tasks as possible.

Safety-criticality is of particular concern for the UK critical national infras-

tructures supplying essential services. These services include provision of drink-

ing water, transport of oil and gas, rail transport and medical infrastructure.

Moreover, the EU has recently established a directive [109] that mandates that

providers take steps to mitigate the impact of incidents which can compromise

the delivery of essential services, and the British National Cyber Security Centre

guidance [110] identifies as core principle that such essential services must be

resilient, meaning that their provision should not be interrupted. In some cases

the infrastructure for the provision of essential services may also provide addi-

tional services classified as non-essential (e.g., a system monitoring that provides

functionality for availability of drinking water may also be used to monitor the

supply of non-potable water). Failure of essential services typically has safety

implications, while temporary failure of non-essential services is unlikely to rep-

resent a safety risk, intended as a potential risk for human lives. Because of this,

tasks associated with the essential service are regarded as of higher criticality and

those associated only with the non-essential services as lower criticality ones. In

case of resource shortages, the ATMP protocol removes first the non-essential ser-

vices with worst adaptation capability and meanwhile it ensures the continuity

of essential services during and after the resolution of the incident. Furthermore,

ATMP guarantees a timely restoring of non essential services whenever the faulty

computing elements within the infrastructure are reactivated. As such, ATMP

represents a potential solution for scheduling tasks on a shared platform required

to comply with the European and British directives on network and information

systems security [109, 110].

6.4 Chapter Summary

This chapter introduced the ATMP protocol, an adaptive and criticality-aware

heuristics that optimises the overall system utility by adjusting the system work-

load of individual tasks. ATMP allows to allocate and de-allocate tasks from

cores at run-time whenever processing elements fail or become available again

during the system lifetime.

Chapter 6. The Adaptive Tolerance-based Mixed-Criticality Protocol 112

Section 6.1 introduced the system and task model that uses the utility func-

tions as designing instrument for system adaptation at runtime. The presence

of the tolerance interval allows to appropriately optimise each task arrival rate.

The system adaptation is made by respecting each predefined task utility require-

ments. Section 6.2 describes the ATMP heuristics used for system optimisation.

The task removal is made according to the possibility to profitably adjust the ar-

rival rates at runtime in order to keep as many tasks running as possible. Lastly,

in Section 6.3 I explained how ATMP can address the safety issues emerged from

the European and British guidances for network and system security [109, 110].

Chapter 7

Experimental Evaluation

This chapter describes the experiments conducted first with LBP and its variants

and then with ATMP.

Section 7.1 describes the experiments made with the protocols for short-term

scheduling on single-core architectures while Section 7.2 contains the experimen-

tal evaluation about the mid-term re-allocation and optimisation strategy on

multi-cores systems. All the results are collected within tables and then anal-

ysed by means of figures and charts. Section 7.3 concludes and summarises the

whole chapter.

7.1 Evaluation of Lazy Bailout Protocols

This section describes the experiments made with the fixed-priority scheduling

protocols designed for uniprocessor platforms. It contains the metrics used to

evaluate the amount of jobs scheduled, the configuration settings and scenarios

in which such experiments have been made and lastly the final outcome. In

particular, sub-Section 7.1.3 compares the lazy bailout approaches with the state

of the art fixed-priority scheduling protocols in hard real-time settings, i.e., jobs

not completed within their deadlines are abandoned. Then, since LBP and SLBP

have different scheduling behaviour when tasks have deadlines smaller than their

periods, in sub-Section 7.1.4 I also compared LBP with its variant SLBP in soft

real-time settings by considering jobs that complete after their deadlines. All the

experiments also consider the scheduling protocols derived from the integration

of the basic methods with complementary techniques like the offline sensitivity

analysis and the gain time collection at runtime.

113

Chapter 7. Experimental Evaluation 114

7.1.1 Setup of Experiments

This sub-section contains the explanation of software and settings used to con-

duct the experiments. I have developed a scheduling framework in Python 2.7.10

that first creates task sets that are schedulable according to AMC-rtb [69] and

then runs sequentially different scheduling methods to process them. A final

report is created to summarise, compare and analyse the results.

I have conducted different experiments first with implicit and then with con-

strained deadline task sets. The task model used is that introduced in Chapter 4

that considers dual-criticality task sets with independent periodic tasks. HI tasks

have two WCETs, one more conservative indicated with CHI and another more

optimistic indicated with CLO , while for LO tasks only the knowledge of unsafe

upper bounds CLO is assumed. Each experiment consists of a group of three

thousand task sets randomly generated. The number of tasks within each task

set varies randomly between four and twelve. Within each task set, the amount

of HI tasks varies between the 20% and 70%. Priorities are assigned to tasks

according to Deadline Monotonic (DM) strategy in which task instances with

the shortest deadline have the highest priority. Three task set scenarios have

been created by appropriately combining deadlines of each task within a task

set. Every task set group created to make experiments belongs to one of the

three scenarios specified below.

HC-LP: The first case contains job sets where all HI jobs have larger deadlines

than all LO jobs. Therefore, all HI jobs have lower priority than all the

LO jobs:

∀j ∈ JHI ∧ ∀j′ ∈ JLO. pr(j) < pr(j′)

HC-MP: This case contains job sets where HI jobs could have deadlines that

are either smaller or larger than those of LO ones. Therefore, HI and LO

jobs have mixed priorities:

∀j ∈ JHI ∧ ∀j′ ∈ JLO. pr(j) ≤ pr(j′) ∨ pr(j) > pr(j′)

HC-HP: It contains job sets where all HI jobs have smaller deadlines than all

LO ones. This implies that all HI jobs have higher priority than LO jobs:

∀j ∈ JHI ∧ ∀j′ ∈ JLO. pr(j) > pr(j′)

Chapter 7. Experimental Evaluation 115

It is important to notice that, if higher criticality tasks have all higher prior-

ity than lower criticality ones, then the scheduling problem so created becomes

equivalent to the standard real-time scheduling problem since there is no crit-

icality inversion. The same applies to those cases in which higher priority is

assigned to the highest criticality tasks regardless of their periods or deadline as

in Criticality As Priority Assignment (CAPA) [13].

7.1.2 Performance Metrics and Evaluation Scenarios

This sub-section introduces the criteria used to assess performances of mixed-

criticality scheduling protocols.

To evaluate the results, I defined two types of metrics. The former is rela-

tive to the whole amount of task sets while the latter is relative to jobs within

each individual task set. I named them respectively task set and global job set

schedulability.

The task set schedulability formula tsched is defined as follows:

tsched(S, cat) =
|STSsucc(S, cat)|

|S|
(7.1)

where S could be either a simple task set τ or set of task sets STS and the

category cat ∈ {HI + LO ,HI ,LO} represents the type of tasks within a set that

is HI for high-criticality tasks, LO for low-criticality tasks and either in case of

HI+LO usage. The function STSsucc depends on the scheduling protocol that is

actually used and returns as output the set of task sets STS in which there are

no jobs missed of category cat. The absolute values within the formula give the

set cardinality. The equation 7.1 allows to derive the percentages of tasks set in

STS that are successfully processed according to the category cat as follows:

TSSched : amount of task sets scheduled with no jobs missing their deadlines.

TSSched = tsched(STS ,HI + LO)

TSSchedHI : amount of task sets scheduled with no HI jobs missing their dead-

lines.

TSSchedHI = tsched(STS ,HI)

TSSchedLO : amount of task sets scheduled with no LO jobs missing their dead-

lines.

TSSchedLO = tsched(STS ,LO)

Chapter 7. Experimental Evaluation 116

The task set schedulability permits to show the percentage of task sets in

which no job of category cat misses its deadline. However, whenever a task set

contains some jobs that miss their deadline, it is also useful to assess the level

of service provided in terms of jobs completed and jobs abandoned or aborted.

Such a view is provided by the amount of jobs that are completed within or even

after their deadlines. The job set completion rate methods jsched and jsched∗

are defined with this regard. In particular, jsched returns only the percentage

of jobs of category cat generated by a specific task set that complete within

their deadlines while jsched∗ returns the total percentage of jobs of category cat

generated by a task set that complete, either within or after their deadline.

The on-time job set completion rate jsched is formally written as below:

jsched(τcat) =
|Jsucc(J(τcat))|
|J(τcat)|

| cat ∈ {LO ,HI } (7.2)

while the total job set completion rate jsched∗ is defined as follows:

jsched∗(τcat) =
|Jsucc∗(J(τcat))|
|J(τcat)|

| cat ∈ {LO ,HI } (7.3)

The formulas above are used to compute the global job set on-time and total

completion rates showed below that return respectively the average amount of

jobs of category cat completed within their deadline and the overall percentage

of jobs completed, including those that terminate after their deadline. It is worth

to notice that HI jobs all complete within their deadlines, thus only the global

job set on-time completion average is computed for them. The global job set

completion rates are computed on the whole amount of task sets STS and are

shown below:

gjsched(STS , cat) =

∑
τ∈STS jsched(τcat)

|STS |
| cat ∈ {LO ,HI } (7.4)

gjsched∗(STS , cat) =

∑
τ∈STS jsched

∗(τcat)

|STS |
| cat ∈ {LO ,HI } (7.5)

As in the previous case, it is possible to filter the jobs completed according

to the category cat as below:

GJSched : average number of jobs (either HI or LO) generated by a set of task

Chapter 7. Experimental Evaluation 117

set that complete within their deadlines.

GJSched = gjsched(STS ,HI + LO)

GJSched∗: average number of jobs (either HI or LO) generated by set of task

set that complete, including those that terminte after their deadlines.

GJSched = gjsched(STS ,HI + LO)

GJSchedHI : average number of HI jobs generated by a set of task set that com-

plete within their deadlines.

GJSchedHI = gjsched(STS ,HI)

GJSchedLO : average number of LO jobs generated by a set of task set that

complete within their deadlines.

GJSchedLO = gjsched(STS ,LO)

GJSchedLO∗: average number of LO jobs generated by a set of task set that

complete, including those that complete after their deadlines.

GJSchedLO∗ = gjsched∗(STS ,LO)

It is possible to use the performance metrics described above to assess the

scheduling methods in different settings and analyse results in each case.

7.1.3 Discussion of Results in Hard Real-Time Settings

This sub-section describes the assessment conducted by comparing the LBP pro-

tocols with the former BP approaches. I have conducted different experiments,

each consisting of a group of three thousand implicit deadline task sets randomly

generated. The following scheduling protocols have been compared:

• the standard Fixed-Priority Preemptive Scheduling with DM as priority

assignment (FPPS-DM).

• the standard Bailout Protocol (BP).

• the Lazy Bailout Protocol (LBP).

Chapter 7. Experimental Evaluation 118

• the Soft Lazy Bailout Protocol (SLBP).

• the Bailout Protocol - Slack (BPS), Lazy Bailout Protocol - Slack (LBPS)

and the Soft Lazy Bailout Protocol - Slack (SLBPS) deriving from the in-

tegration of the basic mixed-criticality protocols with the offline sensitivity

analysis [106, 44] while guaranteeing the schedulability according to AMC-

rtb [69].

• the Bailout Protocol with Gain time (BPG), Lazy Bailout Protocol

with Gain time (LBPG), and Soft Lazy Bailout Protocol with Gain

time (SLBPG) where each job that finishes before its optimistic time

threshold in Normal mode gives its gain time to increase the time budget

of next job ready to be scheduled.

• the Bailout Protocol - Slack and Gain time (BPSG), the Lazy Bailout Pro-

tocol - Slack and Gain time (LBPSG) and the Soft Lazy Bailout Protocol -

Slack and Gain time (SLBPSG) deriving from the integration of both the

offline scaling of CLO of HI tasks with sensitivity analysis and the online

gain time collection with the basic scheduling protocols.

Tables 7.1 and 7.2 contain respectively the results about the task set schedu-

lability and global job set completion rates of mixed-criticality scheduling meth-

ods. Since these experiments are made with set of tasks having deadline equal

to periods, all LO jobs deadlines are considered to be hard. I have also collected

data within figures to summarise the results of experiments with dual-criticality

task sets and show the results in all the three different scenarios. More precisely,

Figure 7.1, Figure 7.2 and Figure 7.3 show the averages of task sets and jobs

scheduled while Figure 7.4, Figure 7.5 and Figure 7.6 show how the LO jobs

scheduled are distributed.

Figure 7.1 and Figure 7.2 summarise the results in cases where there is criti-

cality inversion. In these situations, if no HI job completes within its optimistic

threshold estimate CLO , then very likely there will be some new incoming higher

priority LO jobs that will interfere with it. Conversely, Figure 7.3 contains in-

formation about cases in which all HI jobs have higher priority than LO jobs,

i.e., all the critical jobs have smaller deadlines. This basically leads to have no

interference between HI and LO jobs and thus no criticality inversion occurrence

during the scheduling process.

Looking both at task set and job set schedulabilities results, it is possible to

notice that the standard deadline monotonic approach always schedules jobs only

according to priorities. In this case, the percentages of HI or LO jobs successfully

Chapter 7. Experimental Evaluation 119

scheduled mainly depend only on their priority, with all LO jobs that meet their

deadlines in HC-LP scenario, i.e., LO jobs have smaller deadlines than HI jobs,

and all HI jobs that always meet their deadlines in HC-HP scenario, i.e., HI jobs

have smaller deadlines than LO jobs.

On the other hand, the mixed-criticality protocols always assure that there

are no HI jobs missed regardless of job priorities. The experiments confirm what

is stated in Chapter 5 with LBP that always successfully schedules more LO jobs

than BP since BP schedules no more than 7.07% of task sets with no jobs missed

while LBP can schedule till the 52.33% of task sets with no jobs missed. All

figures highlight that the amount of jobs scheduled further increases when the

offline and online complementary techniques are used. It is worth to notice that

the usage of sensitivity analysis and the gain time mechanism always leads to

have the same effects when applied both to the standard or to the lazy bailout

methods. A noticeable result is that each LBP-based approach allows to complete

more LO jobs within their deadlines than the corresponding standard BP-based

protocol. In the whole, according to the criteria defined in Chapter 5, LBPSG

and SLBPSG are the protocols that increase more the amount of jobs completed

within their deadlines. As an example, LBPSG and SLBPSG schedule between

the 43.07% and 58.67% of task sets with no jobs missed compared to BPSG for

which the percentage of set of tasks with no jobs missed is at maximum 26.87%.

As a conclusion, LBP and SLBP always schedule more LO jobs compared

with BP while guaranteeing the same level of performances in processing HI

jobs. Each protocol can be further refined by exploiting the system slack time

identified offline and the online gain time collection to still increase the amount

of lower criticality jobs scheduled. With regard to the formal evaluation criteria

introduced in Chapter 5, the results show that LBPS and SLBPS always outper-

form BPS, LBPG and SLBPG always outperform BPG and LBSG and SLBPSG

always outperform BPSG. Finally, the usage of mixed-criticality protocols is rec-

ommended in HP-LP and HC-MP scenarios, i.e., when HI jobs could have lower

priorities than LO jobs.

Figure 7.4, Figure 7.5 and Figure 7.6 display the distribution of the LO jobs

percentages per task set that are completed within their deadlines. Each schedul-

ing protocol is represented by a box-and-wisker diagram with the box itself rep-

resenting the range in which at least the 50% of results tend to be concentrated.

The box also contains the indication of the median and the mathematical aver-

age of all the LO jobs scheduled by the related protocol. The results highlight

how the LBP/SLBP-based methods always increase the LO jobs success rate, as

defined in Chapter 5, compared with the former BP ones.

Chapter 7. Experimental Evaluation 120

HC-LP HC-MP HC-HP

Method TSSched

TSSchedHI

TSSchedLO

TSSched

TSSchedHI

TSSchedLO

TSSched

TSSchedHI

TSSchedLO

FPPS-DM 83.03 83.03 100.0 66.13 97.20 66.60 68.80 100.0 68.80

BP 7.07 100.0 7.07 2.63 100.0 2.63 4.40 100.0 4.40

BPG 11.90 100.0 11.90 3.10 100.0 3.10 4.53 100.0 4.53

BPS 17.07 100.0 17.07 16.80 100.0 16.80 21.17 100.0 21.17

BPSG 24.17 100.0 24.17 22.13 100.0 22.13 26.87 100.0 26.87

LBP 27.97 100.0 27.97 32.83 100.0 32.83 52.33 100.0 52.33

LBPG 34.23 100.0 34.23 33.53 100.0 33.53 52.70 100.0 52.70

LBPS 36.27 100.0 36.27 40.13 100.0 40.13 55.53 100.0 55.53

LBPSG 43.07 100.0 43.07 44.07 100.0 44.07 58.67 100.0 58.67

SLBP 27.97 100.0 27.97 32.83 100.0 32.83 52.33 100.0 52.33

SLBPG 34.23 100.0 34.23 33.53 100.0 33.53 52.70 100.0 52.70

SLBPS 36.27 100.0 36.27 40.13 100.0 40.13 55.53 100.0 55.53

SLBPSG 43.07 100.0 43.07 44.07 100.0 44.07 58.67 100.0 58.67

Table 7.1: BP and LBP variants: comparison of task set schedulability (%)

7.1.4 Comparison of LBP with SLBP in Soft Real-Time

Settings

This sub-section describes the outcome of the experiments conducted by compar-

ing LBP and SLBP based scheduling protocols. The evaluation considers both

jobs that complete within their deadlines as well as jobs that complete after their

deadlines. The results show that the SLBP always increases the amount of jobs

completed after their deadlines but sometime at the expense of those scheduled

within their deadlines.

The experiment considers a group of three thousand task sets randomly gen-

erated. Each task set consists of tasks with constrained deadlines, with deadline

that can be even 50% smaller than its period. Since deadlines of tasks are

randomly generated and mostly not coincide with their related periods, the out-

come only contains the case in which HI and LO jobs in each task set have

mixed priorities, formally defined as HC-MP in sub-section 7.1.2. Because of the

schedulability assumptions, all HI jobs complete within their deadlines. As in

sub-section 7.1.3, the number of HI tasks per task set varies randomly between

the 20% and 70%.

Chapter 7. Experimental Evaluation 121

HC-LP HC-MP HC-HP

Method GJSched

GJSchedHI

GJSchedLO

GJSched

GJSchedHI

GJSchedLO

GJSched

GJSchedHI

GJSchedLO

FPPS-DM 98.32 86.94 100.0 96.25 99.10 94.49 96.74 100.0 93.56

BP 67.71 100.0 59.32 72.46 100.0 55.22 82.05 100.0 58.91

BPG 71.21 100.0 64.07 73.19 100.0 56.26 82.32 100.0 59.43

BPS 71.46 100.0 64.39 77.56 100.0 63.87 85.46 100.0 67.56

BPSG 74.99 100.0 69.18 79.79 100.0 67.64 86.95 100.0 71.34

LBP 85.68 100.0 82.35 90.29 100.0 85.18 94.72 100.0 89.14

LBPG 87.55 100.0 84.67 90.46 100.0 85.40 94.74 100.0 89.18

LBPS 86.77 100.0 83.87 90.72 100.0 85.81 94.80 100.0 89.32

LBPSG 88.63 100.0 86.18 91.20 100.0 86.59 94.93 100.0 89.67

SLBP 85.68 100.0 82.35 90.29 100.0 85.18 94.72 100.0 89.14

SLBPG 87.55 100.0 84.67 90.46 100.0 85.40 94.74 100.0 89.18

SLBPS 86.77 100.0 83.87 90.72 100.0 85.81 94.80 100.0 89.32

SLBPSG 88.63 100.0 86.18 91.20 100.0 86.59 94.93 100.0 89.67

Table 7.2: BP and LBP variants: comparison of jobs scheduled within their
deadline (%)

As stated in Chapter 4, the LBP protocol and, as a consequence, its deriva-

tives (LBPG, LBPS and LBPSG) treat LO jobs as soft real-time jobs only during

the high criticality execution, i.e., when the system runs in Bailout or Recov-

ery modes. On the other hand, SLBP and its derivatives allow to LO jobs to

complete after their deadlines even during the Normal mode.

Table 7.3 and Table 7.4 show respectively data regarding the task schedula-

bility and the global on-time and total jobs completion averages. The average

completion rate including tardy jobs is not shown for HI jobs since they always

complete within their deadlines.

Table 7.3 shows that LBP and SLBP process the same amount of task sets

with no jobs missing their deadlines. However, whenever task sets are not fea-

sible, Table 7.4 reveals that there are some cases in which LBP schedules more

LO jobs within their deadline while SLBP always increases the overall amount

of LO jobs completed, including tardy jobs. This is due to the different usage

of system idle time made by the two protocols in scheduling LO jobs. LBP re-

moves jobs from the low-priority queue as soon as they miss their deadlines and

Chapter 7. Experimental Evaluation 122

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

FPPS-DM	 BP	 BPG	 BPS	 BPSG	 LBP	 LBPG	 LBPS	 LBPSG	 SLBP	 SLBPG	 SLBPS	 SLBPSG	

Ta
sk
	S
et
	S
ch
ed

ul
ab

ili
ty
		[
%
]	

TSSched	

TSSchedHI	

TSSchedLO	

(a) Task sets with no jobs missed

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

FPPS-DM	 BP	 BPG	 BPS	 BPSG	 LBP	 LBPG	 LBPS	 LBPSG	 SLBP	 SLBPG	 SLBPS	 SLBPSG	

Gl
ob

al
	Jo

b	
Se
t	S

ch
ed

ul
ab

ili
ty
			
[%

]	

GJSched	

GJSchedHI	

GJSchedLO	

(b) Average of jobs scheduled per task set

Figure 7.1: BP and LBP variants: schedulability in HC-LP scenario

0

10

20

30

40

50

60

70

80

90

100

FPPS-DM BP BPG BPS BPSG LBP LBPG LBPS LBPSG SLBP SLBPG SLBPS SLBPSG

Ta
sk

 S
et

 S
ch

ed
ul

ab
ili

ty
 [

%
]

TSSched

TSSchedHI

TSSchedLO

(a) Task sets with no jobs missed

0

10

20

30

40

50

60

70

80

90

100

FPPS-DM BP BPG BPS BPSG LBP LBPG LBPS LBPSG SLBP SLBPG SLBPSG SLBPSG

Gl
ob

al
 Jo

b
Se

t S
ch

ed
ul

ab
ili

ty
 [%

]
GJSched

GJSchedHI

GJSchedLO

(b) Average of jobs scheduled per task set

Figure 7.2: BP and LBP variants: schedulability in HC-MP scenario

0

10

20

30

40

50

60

70

80

90

100

FPPS-DM BP BPG BPS BPSG LBP LBPG LBPS LBPSG SLBP SLBPG SLBPS SLBPSG

Ta
sk

 Se
t S

ch
ed

ul
ab

ili
ty

 [
%

]

TSSched

TSSchedHI

TSSchedLO

(a) Task sets with no jobs missed

0

10

20

30

40

50

60

70

80

90

100

FPPS-DM BP BPG BPS BPSG LBP LBPG LBPS LBPSG SLBP SLBPG SLBPS SLBPSG

Gl
ob

al
 Jo

b
Se

t S
ch

ed
ul

ab
ili

ty
 [%

]

GJSched

GJSchedHI

GJSchedLO

(b) Average of jobs scheduled per task set

Figure 7.3: BP and LBP variants: schedulability in HC-HP scenario (as priority
and criticality values have the same order, this is essentially a standard real-time
scheduling problem)

Chapter 7. Experimental Evaluation 123

On
 ti

m
e L

O
jo

bs
 co

m
pl

et
ed

0

10

20

30

40

50

60

70

80

90

100

DM
BP
BPG
BPS
BPSG
LBP
LBPG
LBPS
LBPSG
SLBP
SLBPG
SLBPS
SLBPSG

Figure 7.4: BP and LBP variants: LO jobs scheduled per task set in HC-LP
scenario

On
 ti

m
e L

O
jo

bs
 co

m
pl

et
ed

0

10

20

30

40

50

60

70

80

90

100

DM
BP
BPG
BPS
BPSG
LBP
LBPG
LBPS
LBPSG
SLBP
SLBPG
SLBPS
SLBPSG

Figure 7.5: BP and LBP variants: LO jobs scheduled per task set in HC-MP
scenario

On
 ti

m
e L

O
jo

bs
 co

m
pl

et
ed

0

10

20

30

40

50

60

70

80

90

100

DM
BP
BPG
BPS
BPSG
LBP
LBPG
LBPS
LBPSG
SLBP
SLBPG
SLBPS
SLBPSG

Figure 7.6: BP and LBP variants: LO jobs scheduled per task set in HC-HP
scenario

Chapter 7. Experimental Evaluation 124

Method TSSched TSSchedHI TSSchedLO

LBP 31.47 100.0 31.47

LBPG 31.93 100.0 31.93

LBPS 35.67 100.0 35.67

LBPSG 38.67 100.0 38.67

SLBP 31.47 100.0 31.47

SLBPG 31.93 100.0 31.93

SLBPS 35.67 100.0 35.67

SLBPSG 38.67 100.0 38.67

Table 7.3: LBP and SLBP derivatives: comparison of task set schedulability (%)

Method GJSched GJSched∗ GJSchedHI GJSchedLO GJSchedLO∗

LBP 89.96 90.77 100.0 82.23 83.79

LBPG 90.02 90.84 100.0 82.33 83.91

LBPS 90.21 91.06 100.0 82.67 84.32

LBPSG 90.47 91.33 100.0 83.18 84.83

SLBP 89.81 92.01 100.0 82.00 86.04

SLBPG 89.88 92.08 100.0 82.09 86.14

SLBPS 90.07 92.19 100.0 82.44 86.38

SLBPSG 90.34 92.40 100.0 82.95 86.76

Table 7.4: LBP and SLBP derivatives: average of completion rates of jobs (%)

by doing this it makes room for new incoming LO jobs that might successfully

complete. On the other hand, SLBP allows to LO jobs to complete even after

their deadlines which takes up extra resources compared to LBP.

Figure 7.7.a) and Figure 7.7.b) represent graphically what is shown respec-

tively in Table 7.3 and Table 7.4. On the other hand, Figure 7.8.a) and Fig-

ure 7.8.b) contain the distribution of LO jobs scheduled within and after their

deadlines.

7.2 Experimental Evaluation of ATMP

This section assesses and analyses the ATMP protocol, the experiments target

task sets running on multi-core platforms in which some processing elements can

fail at run-time and it is necessary to remap tasks to cores. The analysis shows

that the approach based on utility accrual and tolerance range exploitation out-

Chapter 7. Experimental Evaluation 125

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

LBP	 LBPG	 LBPS	 LBPSG	 SLBP	 SLBPG	 SLBPS	 SLBPSG	

Ta
sk
	S
et
	S
ch
ed

ul
ab

ili
ty
		[
%
]	

TSSched	

TSSchedHI	

TSSchedLO	

(a) Task sets with no jobs missed

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

LBP	 LBPG	 LBPS	 LBPSG	 SLBP	 SLBPG	 SLBPS	 SLBPSG	

Gl
ob

al
	Jo

b	
Se
t	S

ch
ed

ul
ab

ili
ty
	[%

]	

GJSched	

GJSched*	

GJSchedHI	

GJSchedLO	

GJSchedLO*	

(b) Jobs average completion rates

Figure 7.7: LBP and SLBP derivatives: comparison between LBP and SLBP in
soft real-time settings

performs the classical reallocation of tasks to cores based just on the knowledge of

criticality. The optimisation based on the tolerance range exploitation permits to

keep onboard more tasks and to increase the overall system utility accumulated.

Chapter 7. Experimental Evaluation 126

On
 ti

m
e a

nd
 ta

rd
y L

O
jo

bs
 co

m
pl

et
ed

0

10

20

30

40

50

60

70

80

90

100

LBP
LBPG
LBPS
LBPSG
SLBP
SLBPG
SLBPS
SLBPSG

(a) LO jobs completed, including tardy jobs

0

10

20

30

40

50

60

70

80

90

100

On
 ti

m
e L

O
jo

bs
 co

m
pl

et
ed LBP

LBPG
LBPS
LBPSG
SLBP
SLBPG
SLBPS
SLBPSG

(b) LO jobs completed within their deadlines

Figure 7.8: LBP and SLBP derivatives: distribution of LO jobs completed

To show the effectiveness of ATMP, I compared it with a standard approach,

referred to as Standard Adaptive Mixed-criticality Protocol (SAMP), in which

mixed-criticality tasks have no tolerance range. With the SAMP approach, the

tasks removal is performed only considering the load computed according to

the predefined periods and no LP optimisation is made. On the other hand,

ATMP adjusts the tasks’ periods within a predefined tolerance range according

to specific needs at run-time.

The task model used to create task sets is that contained in Chapter 6. I have

created a task set consisting of twenty tasks randomly generated and then I have

processed it using both ATMP and SAMP first on eight, then on five and finally

on three cores. The experiment confirms that, in case of resource shortages, i.e.,

Chapter 7. Experimental Evaluation 127

sudden unavailability of computing resources, the usage of the tolerance range to

appropriately optimise the tasks arrival rates allows to ATMP to de-allocate a

smaller amount of tasks per core. Both approaches worked well with eight cores

since no task was removed. However, ATMP showed its advantages after further

reducing the number of processing elements. Because of this, I only show the

comparison of performances between SAMP and ATMP in case of five and three

cores. Figure 7.9 displays the absolute utility accrued by each individual task

with the two above approaches compared with the maximum achievable utility

indicated with MAX. The absolute utility of de-allocated tasks is 0. Tasks from

A to H have criticality 2 while tasks from I to T have criticality 1. Figure 7.9a)

presents the runtime reallocation on five cores. In this case, SAMP removes

five non-critical tasks while ATMP allows, via tolerance-based optimisation, to

adjust the tasks periods and to keep all tasks allocated to their cores. It is worth

to notice that such result is achieved also slowing down higher criticality tasks

and this leads to a decrease in the overall load allocated on each core. Such

results are even more emphasised in Figure 7.9b) in which the number of cores

available is further reduced. In this latter case, in the whole, SAMP removes

thirteen tasks (two of which are highly critical ones) while ATMP removes just

six tasks and keeps onboard all the higher criticality tasks.

Table 7.5 summarises the overall outcome of the experiment by showing the

total relative and absolute utilities accrued within the system and the amount

of tasks removed respectively by SAMP and ATMP. The total relative utility

consists of the sum of the individual task utility while the total absolute utility

considers also the task criticality.

SAMP ATMP

Cores# Rel. Utility Abs. Utility Task dropped Rel. Utility Abs. Utility Tasks dropped

8 20.00 28.00 0 20.00 28.00 0

5 15.00 23.00 5 17.51 25.23 0

3 7.00 13.00 13 11.79 18.81 6

Table 7.5: Overall comparison between ATMP and SAMP

As a conclusion, the more the number of cores is reduced and the more the

utility gained by the tolerance-based approach increases compared with that

accrued by the SAMP method. Furthermore, the ATMP protocol allows to run

more tasks per core when the amount of computing resources decreases.

Chapter 7. Experimental Evaluation 128

0

0,5

1

1,5

2

2,5

A B C D E F G H I J K L M N O P Q R S T

A
bs

ol
ut

e
U

ti
lit

y

Task ID

Absolute Utility of Individual Tasks (5 Cores)

MAX

SAMP

ATMP

(a) Comparison on 5 cores

0

0,5

1

1,5

2

2,5

A B C D E F G H I J K L M N O P Q R S T

A
bs

ol
ut

e
U

ti
lit

y

Task ID

Absolute Utility of Individual Tasks (3 Cores)

MAX

SAMP

ATMP

(b) Comparison on 3 cores

Figure 7.9: Absolute utility achieved by each task with SAMP and ATMP

7.3 Chapter Summary

This chapter contains all the experiments made with the scheduling protocols

previously introduced in this dissertation.

Section 7.1 contains the discussion, description and evaluation of experi-

ments made with the LBP approaches, which are fixed-priority protocols to

Chapter 7. Experimental Evaluation 129

schedule mixed-criticality task sets on uniprocessor platforms. In particular,sub-

Section 7.1.3 contains the evaluation of scheduling protocols in a hard real-time

settings while sub-Section 7.1.4 contains a study and analysis of performances

between LBP and SLBP in the case in which they behave differently, i.e., when

tasks have constrained deadlines.

Section 7.2 contains the description and evaluation of experiments made with

ATMP, a mixed-criticality protocol based on the TRTCM model [6] for dynamic

reallocation of tasks to cores at run-time on multi-core platforms. The results

confirm that, compared with the standard approach in which tasks have a fixed

and unmodifiable arrival rate, the ATMP allows to keep more tasks allocated in

case of sudden faults of cores.

Chapter 7. Experimental Evaluation 130

Chapter 8

Conclusions

This chapter concludes my dissertation by providing a summary of its content

and a review of all my contributions. It also provides an overview of future

enhancements of the protocols introduced both for short and mid-term scheduling

decisions.

8.1 Summary of Dissertation

My research work has dealt with the mixed-criticality scheduling with the aim of

maximising the number of jobs correctly processed. This dissertation presented a

framework to connect the TRTCM mid-term resource optimisation together with

the underlying mixed-criticality scheduling protocols. The method is suitable

both in case of single and multicore architectures.

Currently, all fixed priority and dynamic priority mixed-criticality scheduling

protocols aim to guarantee a correct completion to jobs according to the level

of their criticality, established at the design phase. In case of resource shortage

the higher criticality jobs execution has to be guaranteed at the expense of lower

criticality ones. On the other hand, the TRTCM represents a model in which,

in case of resource shortage, the service provided to each task can be smoothly

degraded regardless of its criticality and within a certain tolerance interval. The

optimisation method finds a trade-off among tasks having different criticality

with the final aim to maximise the overall system utility.

The research question that has motivated and guided my research is the

following:

131

Chapter 8. Conclusions 132

Is it possible to improve the state of the art of fixed-priority mixed-

criticality scheduling and then combine such protocols with the

TRTCM model to optimise the utility of mixed-criticality real-time

systems in case of resource shortages?

Such question led me to study and analyse short and mid-term mixed-

criticality scheduling protocols both on uniprocessor and multiprocessor archi-

tectures. As a result, I have further refined and fractured my main question into

the following three sub-questions:

1. Is it possible to increase the robustness of existing fixed-priority

mixed-criticality scheduling protocols?

2. Is it possible to connect the TRTCM optimisation problem with

the mixed-criticality scheduling protocols?

3. Are the utility functions and tolerance ranges of TRTCM a useful

means to increase the amount of tasks scheduled in real-time

systems with mixed-criticality services?

To answer to the sub-questions above, first I had to understand how the

mixed-criticality scheduling protocols work and the challenges to be faced. With

regard to this, Chapter 3 reviewes the research work on mixed-criticality schedul-

ing. It highlights how the challenge of current research is that to design schedul-

ing algorithms to enhance robustness at run-time. A recent method to schedule

mixed-criticality task sets is represented by the Bailout Protocol (BP) [16, 17].

As previous mixed-criticality protocols, BP schedules set of tasks of low or high

criticality, indicated respectively by LO and HI. The novelty of such protocol is

that to introduce an effective and fast control mechanism to switch back to the

starting execution mode in which all jobs can be scheduled. Although this proto-

col represents an enhancement if compared with previous scheduling algorithms,

it still abandons a large amount of LO jobs at run-time.

The preliminary study of the mixed-criticality scheduling algorithms led to

devise the Lazy Bailout Protocol (LBP), introduced in Chapter 4. LBP increases

the amount of jobs completed within their deadline because LO jobs released

in case of resource shortage are inserted in a low-priority queue for background

execution during the system idle time rather than being suddenly aborted. LBP

works within mixed-criticality environments with all tasks being hard real-time

tasks, i.e., each job completion has a value if it occurs within the related deadline.

Chapter 4 also presented a variant of LBP, the SLBP protocol, in which HI jobs

Chapter 8. Conclusions 133

have hard deadlines while LO tasks instances have soft deadlines. Such soft real-

time jobs could have a maximum tardiness that is bounded and hence does not

jeopardise the timeliness of successive instances of the same task. With SLBP, I

have also made the existing fixed-priority mixed-criticality methods more suitable

in cases in which a tardy completion of LO jobs is better than no result at all.

I further strengthened the robustness of LBP and SLBP by combining them

with two complementary scheduling techniques that are usually used to increase

the adaptiveness of real-time systems. Such additional strategies are based on

the exploitation of the CPU spare capacity, that can be identified either offline or

online. The first technique is based on the usage of the offline tuning of the task

system while the second is based on the online collection of the gain time. Both

methods allows to increase the amount of jobs scheduled without affecting the

task set schedulability. The integration of such additional techniques with LBP

led to devise LBPG, LBPS and LBPSG while the integration with SLBP led to

SLBPG, SLBPS and SLBPSG. Then, Chapter 5 shows, via formal proofs, that

each LBP and SLBP-based protocol increases the amount of LO jobs completed

within their deadlines if compared with the corresponding BP-based one. This

ultimately confirms that LBP and its variants increase the runtime robustness

with respect to the existing BP and its derivatives.

After having understood challenges and issues related to the fixed-priority

mixed-criticality scheduling on single core architectures, I built a framework

to integrate the existing scheduling protocols, including the mixed-criticality

ones, with the TRTCM model as required in the second sub-question. With

regard to this, Chapter 6 contains the Adaptive Tolerance-based Mixed-criticality

Protocol (ATMP), a utility and criticality aware strategy to reallocate tasks to

cores at runtime in case of sudden unavailability of processing elements. ATMP

allows to connect the mid-term TRTCM planning with the underlying mixed-

criticality scheduling algorithms. Furthermore, ATMP allows to show how the

TRTCM task model minimises the number of lower criticality tasks deallocated

from each core while guaranteeing the schedulability of the overall task set. This

represents a way to prove the effectiveness of the usage of tolerance intervals and

utility functions as means to optimise performances in real-time systems with

mixed-criticality services.

Finally, Chapter 7 contains the results and experimental evaluation that give

quantitative measurements with regard to the extent of my contributions about

fixed-priority scheduling on uniprocessor platforms and utility driven optimi-

sation within the field of mixed-criticality systems. This chapter further con-

firms the enhancement with respect to the BP-based protocols proved in Chap-

Chapter 8. Conclusions 134

ter 5. Furthermore, experiments show that LBPSG and SLBPSG are the mixed-

criticality protocols that achieve better performances, i.e., that mostly increase

the amount of LO jobs scheduled without affecting the HI jobs schedulability.

Then, this chapter also replies to sub-question 3. I compared ATMP with a

mixed-criticality heuristics in which tasks have no tolerance interval to exploit

and results confirm that, in case of resource shortage leading to a decrease in the

number of active processing elements, the ATMP keeps allocated more tasks to

cores by adjusting their arrival rates.

8.2 Research Impact and Application Areas

As explained in Section 8.1, the contributions of my dissertation are represented

by the ATMP and LBP/SLBP protocols. ATMP represents a mixed-criticality

partitioned scheduling heuristics to allocate and optimise a set of tasks on mul-

ticore platforms while the lazy scheduling methods represent algorithms to de-

cide what ready job to execute next on single-core architectures. My research

concerns the real-time scheduling in safety-critical systems. In this area, the

mixed-criticality scheduling represents a form of scheduling in which faults, ei-

ther permanent or transient, and more generally resource shortage situations are

handled in the scheduling process itself. This is due also to the Size, Weight and

Power (SWaP) design constraints that have always been important for embedded

systems and that sometime make even unsuitable the usage of hardware replica-

tion [111]. The contributions proposed in this dissertation permit to increase the

robustness of mixed-criticality systems both on single and multi-core architec-

tures since they allow to successfully schedule more jobs in case of unexpected

shortage of computational resources. This would reduce the overall system ser-

vice degradation in all the applications in which timing constraints are part of

the functional requirements.

Concrete examples of these applications are represented by distributed and

multicore cyber-physical medical systems used in remote telesurgery. Remote

telesurgery devices typically consist both of hard real-time image processing and

robotic components. An accurate scheduling of tasks is required for both com-

ponents since such applications are safety-critical, i.e., any communication or

processing delay can endanger the patient’s life. Therefore precision and accu-

rateness in scheduling such tasks must always be preserved. Typically, images

would be collected via camera and sent over a wide area network to a medical

device that will schedule all the tasks related to images to provide the results to

Chapter 8. Conclusions 135

the surgeon that remotely can afterwards move a robot to operate the patient.

The tasks involved in the image processing can be the following (each with

its own period, deadline and criticality):

• Image filtering: removes noise from images or even enhances brightness or

contrast to make the images clearer;

• Object detection: extracts features of interest and highlights the desired

object to check;

• Image analysis: extracts and processes some parameters or measurements

of interest either from the images or from the objects to be detected;

• Logging: tracks the operations related to all the previous tasks and stores

them in the text file.

Figure 8.1 shows an overview of how remote telesurgery works:

Remote Telesurgery

• Remote telesurgery is the same as normal
telesurgery, except that the surgeon and the
patient are separated by significant distances.

Hundreds of miles away

Figure 8.1: (Remote surgery) A physician that gets images about the patient via
network and then moves a robot for the operation [5]

To build such applications it is necessary to use real-time protocols at Trans-

port layer of the TCP/IP stack and have a very high bandwidth capability but

also medical devices equipped with appropriate real-time schedulers that are ca-

pable to process tasks by considering both timing requirements and criticalities.

In case of problems over the network the medical device can degrade the service

provided to LO tasks via LBP/SLBP while in case of sudden unavailability of

some core it can reallocate tasks to cores and perform a task periods optimisa-

tion via ATMP. Some lower criticality tasks, e.g. logging or even image analysis,

might experience a service degradation or be temporarily not provided because

deallocated from some core since the mixed-criticality system should schedule

first tasks that provide images related to the part of human body to be high-

lighted. Once the output has been provided, the surgeon can move the robot at

the other end of the network to operate the patient.

Chapter 8. Conclusions 136

8.3 Outlook

Within this dissertation, I presented my contributions to enhance the robust-

ness of mixed-criticality scheduling protocols for both short-term and mid-term

scheduling decisions. With regard to this, I have introduced scheduling protocols

that exploit the system idle time on single core architectures and that permit

to optimise the overall system utility by adjusting the overall load on multicore

architectures.

Since the timely memory and computing resource allocation to higher critical-

ity tasks has to be guaranteed by assumptions, the current and future challenge

will continue to be that to minimise the impact on lower criticality tasks because

they could be still important for the mission completion.

Strategies that are possible to devise and to integrate into my research work

either to increase robustness at runtime or to extend the scheduling architecture

are the following:

• Usage of a feedback mechanism to reduce the number of LO jobs

missing their deadline.

As stated in Chapter 2, the feedback mechanism uses information about the

actual behaviour of a scheduling system to dynamically adapt the schedul-

ing algorithms such that the intended behaviour is achieved. Unlike ATMP

that adjusts the arrival rates of tasks after a change in the number of ac-

tive processing elements in multi-core systems, the feedback mechanism is

used at runtime for short-term scheduling decisions on a single core. The

feedback can be integrated within LBP and its variants to dynamically

adjust the arrival rate of LO tasks according to the number of their in-

stances that miss their deadlines. Chapter 4 introduced the LBP protocol

and Figure 4.1 shows its architecture. The LBP architecture contains two

monitors to check respectively the LO and HI jobs execution. LO jobs

exceeding their optimistic WCET or released during Bailout and Recovery

modes are inserted into a low-priority queue while HI jobs exceeding their

optimistic WCET trigger the switch to the Bailout mode. The usage of

a feedback mechanism would extend the LO jobs monitor functionality to

check also the number of LO jobs missing their deadlines because they are

dropped or abandoned. Such information can be used to reduce the overall

system load by slowing down the arrival rate of LO tasks with the final aim

to guarantee a minimum guaranteed amount of LO jobs completing within

their deadlines.

Chapter 8. Conclusions 137

It is worth to notice that previous mixed-criticality scheduling methods,

e.g., BP and AMC, are not suitable for an online adaptation of task peri-

ods because LO jobs relased during the HI execution modes are suddenly

abandoned and this limits the possibility to adjust the LO task periods

to properly optimise the system performances. Conversely, the LBP and

SLBP approaches permit to freely adjust the task periods according to the

specified needs with smaller impact on system performances, i.e., task in-

stances released during the HI modes will be processed during idle instants

if there are.

• Extending the LBP protocol to support multiple criticality levels.

Most of mixed-criticality scheduling protocols on uniprocessor platforms

devised so far support two levels of criticality, HI and LO with HI being

more critical than LO. Introducing the support to schedule set of tasks

having more than two criticality levels would permit to schedule jobs at

different criticality levels according to different policies in case of resource

shortage.

Unlike the ATMP protocol in which each task exploits a tolerance range

to optimise its arrival rate via linear programming [112, 6], the multi-

criticality LBP protocol must always ensure the correct completion of high-

est criticality jobs at their fixed rates while trying to maximise the amount

of lower criticality jobs scheduled. Furthermore, lower criticality jobs that

have to be guaranteed at different levels of assurance can be processed

according to different strategies. As an example, it would be possible to

consider a task set containing tasks with three criticality levels, i.e., high

(HI), medium (ME) and low (LO). In case any HI job exceeds its optimistic

WCET, it would be necessary to ensure its timely completion and mean-

while to find heuristics or best effort strategies to maximise the amount

of lower criticality jobs completed within or even after their deadline. It

could be possible to adjust the arrival rate of ME jobs via feedback control

to minimise the number of deadlines missed or to permit to such jobs to

complete even after their deadline. Lastly, no guarantee could be enforced

for LO jobs.

• Integrating the Selective TRTCM approach into the ATMP pro-

tocol.

The ATMP protocol introduced in Chapter 6 implements the Retained

TRTCM approach (TRTCMret), in which each task has got a least tolerance

Chapter 8. Conclusions 138

utility under which it cannot be degraded anymore but it will rather be

abandoned [6, page 5]. The TRTCMret is suitable in cases where no service

at all is preferrable over poor performances. With TRTCMret , if it is not

possible to degrade anymore the least acceptable utility of a lower criticality

task but it is still necessary some adjustment to maximise the overall system

utility, then such task would be de-allocated from the assigned core.

Conversely, the Selective TRTCM (TRTCMsel) removes such constraint for

lower criticality tasks [6, page 5]. This TRTCM variant is appropriate

for systems that contain tasks that are optional for mission completion.

Through this extra flexibility it is possible to further degrade the service

provided to lower criticality tasks and to allocate more resources to higher

criticality tasks. In case of just two criticality levels indicated by LO and

HI, this would lead to slowing down LO task arrival rates even below their

least tolerance bounds.

Bibliography

[1] R. Kirner, “A uniform model for tolerance-based real-time computing,”

in 17th IEEE International Symposium on Object/Component/Service-

Oriented Real-Time Distributed Computing, ISORC 2014, Reno, NV,

USA, June 10-12, 2014, pp. 9–16, 2014.

[2] H. Kopetz, Real-Time Systems - Design Principles for Distributed Embed-

ded Systems. Real-Time Systems Series, Springer, second ed., 2011.

[3] M. Rouhifar, “A survey on scheduling approaches for hard real-time sys-

tems,” International Journal of Computer Applications (IJCA), vol. 131,

no. 17, 2015.

[4] S. Afshar, “Scheduling and resource sharing in multiprocessor real-time sys-

tems.” https://www.slideshare.net/knowdiff/presentations, July

2015. Slides on www.slideshare.net.

[5] D. Obenshain and T. Tantillo, “Remote telesurgery.” http://www.cnds.

jhu.edu/~dano/RemoteTelesurgery.pdf, 2018.

[6] R. Kirner, S. Iacovelli, and M. Zolda, “Optimised adaptation of mixed-

criticality systems with periodic tasks on uniform multiprocessors in case of

faults,” in Proc. 11th IEEE Workshop on Software Technologies for Future

Embedded and Ubiquitous Systems (SEUS’15), (Auckland, New Zealand),

April 2015.

[7] RTCA, “Software considerations in airborne systems and equipment certi-

fication.” RTCA/DO-178B, December 2011.

[8] ISO/DIS, “Road vehicles – functional safety.” ISO/DIS standard 26262,

November 2011. International Standard.

[9] I. E. Commission, “Functional safety of electrical / electronic / pro-

grammable electronic safety-related systems.” IEC standard 61508, 1998.

139

https://www.slideshare.net/knowdiff/presentations
http://www.cnds.jhu.edu/~dano/RemoteTelesurgery.pdf
http://www.cnds.jhu.edu/~dano/RemoteTelesurgery.pdf

Bibliography 140

[10] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-

ing Algorithms and Applications. Springer Publishing Company, Incorpo-

rated, 3rd ed., 2011.

[11] S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-

ing degrees of execution time assurance,” in 28th IEEE Real-Time System

Symposium (RTSS 2007), pp. 239–243, December 2007.

[12] S. Baruah, “Mixed-criticality scheduling theory: Scope, promise, and lim-

itations,” IEEE Design & Test, vol. 35, no. 2, pp. 31–37, 2018.

[13] D. de Niz, K. Lakshmanan, and R. R. Rajkumar, “On the scheduling of

mixed-criticality real-time task sets,” in RTSS ’09 Proceedings of the 2009

30th IEEE Real-Time Systems Symposium, pp. 291–300, December 2009.

[14] A. Thekkilakattil, A. Burns, R. Dobrin, and S. Punnekkat, “Mixed criti-

cality systems: Beyond transient faults,” in Proceedings of the third Inter-

national Workshop on Mixed Criticality Systems (WMC), (San Antonio,

Texas, USA), December 2015.

[15] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,

G. Bernat, C. Ferdinand, R. Heckman, T. Mitra, F. Mueller, I. Puaut,

P. Puschner, J. Staschulat, and P. Stenstrom, “The worst-case execution

time problem - overview of methods and survey of tools,” ACM Transac-

tions on Embedded Computing Systems (TECS), vol. 7, April 2008.

[16] I. Bate, A. Burns, and R. I. Davis, “A bailout protocol for mixed criticality

systems,” in 27th Euromicro Conference on Real-Time Systems, 2015.

[17] I. Bate, A. Burns, and R. I. Davis, “An enhanced bailout protocol for

mixed criticality embedded software,” IEEE Transactions on Software En-

gineering, vol. 43, pp. 298–320, Apr. 2017.

[18] S. Tobuschat, P. Axer, R. Ernst, and J. Diemer, “IDAMC: A noc for

mixed criticality systems,” in IEEE 19th International Conference on Em-

bedded and Real-Time Computing Systems and Applications, RTCSA 2013,

Taipei, Taiwan, August 19-21, 2013, pp. 149–156, August 2013.

[19] B. Motruk, J. Diemer, R. Buchty, R. Ernst, and M. Berekovic, “IDAMC:

A many-core platform with run-time monitoring for mixed-criticality,” in

IEEE 14th International Symposium on High-Assurance Systems Engineer-

ing (HASE), pp. 24–31, IEEE Computer Society, October 2012.

Bibliography 141

[20] H. Su, D. Zhu, and D. Mossé, “Scheduling algorithms for elastic mixed-

criticality tasks in multicore systems,” in 2013 IEEE 19th International

Conference on Embedded and Real-Time Computing Systems and Applica-

tions, IEEE, August 2013.

[21] V. Legout, M. Jan, and L. Pautet, “Mixed-criticality multiprocessor real-

time systems: Energy consumption vs deadline misses,” in First Workshop

on Real-Time Mixed Criticality Systems (ReTiMiCS), (Taipei, Taiwan),

pp. 1–6, August 2013.

[22] R. Kirner, “Ingredients for the specification of mixed-criticality

real-time systems,” in 17th IEEE International Symposium on

Object/Component/Service-Oriented Real-Time Distributed Comput-

ing, ISORC 2014, Reno, NV, USA, June 10-12, 2014, pp. 269–275,

2014.

[23] G. Lipari and L. Palopoli, “Real-time scheduling: from hard to soft real-

time systems,” CoRR, vol. abs/1512.01978, 2015.

[24] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard

real-time systems,” in Proceedings of the IEEE Real-Time Systems Sympo-

sium, RTSS ’98, (Washington, DC, USA), pp. 4–, IEEE Computer Society,

1998.

[25] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming

in a hard-real-time environment,” Journal of Association for Computing

Machinery, vol. 20, pp. 46–61, January 1973.

[26] S. Baruah, M. Bertogna, and G. Buttazzo, Multiprocessor Scheduling for

Real-Time Systems. Embedded Systems, Springer, 2015.

[27] R. I. Davis, L. C.-G. Liliana, M. Bertogna, and A. Burns, “A review of

priority assignment in real-time systems,” Journal of System Architecture,

vol. 65, pp. 64–82, April 2016.

[28] S. Baruah and A. Burns, “Sustainable scheduling analysis,” in 27th IEEE

International Real-Time Systems Symposium (RTSS’06), pp. 159–168, De-

cember 2006.

[29] G. C. Buttazzo, “Rate monotonic vs. edf: Judgment day,” Real-Time Sys-

tems, vol. 29, pp. 5–26, January 2005.

Bibliography 142

[30] J. Y. Leung and J. Whitehead, “On the complexity of fixed-priority

scheduling of periodic, real-time tasks,” Performance Evaluation, vol. 2,

pp. 237–250, December 1982.

[31] J. Lehoczky, “Fixed priority scheduling of periodic task sets with arbitrary

deadlines,” in Proceedings 11th Real-Time Systems Symposium (RTSS’90),

December 1990.

[32] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “Hard

real-time scheduling: The deadline-monotonic approach,” in in Proceedings

IEEE Workshop on Real-Time Operating Systems and Software (RTOSS),

pp. 133–137, May 1991.

[33] N. C. Audsley, A. Burns, M. M. Richardson, K. Tindell, and A. J. Wellings,

“Applying new scheduling theory to static priority pre-emptive schedul-

ing,” Software Engineering Journal, vol. 8, no. 5, pp. 284–292, 1993.

[34] J. P. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algo-

rithm: Exact characterization and average case behavior,” in Proceedings

of the Real-Time Systems Symposium - 1989, Santa Monica, California,

USA, December 1989, pp. 166–171, 1989.

[35] M. L. Dertouzos, “Control robotics: The procedural control of physical

processes.,” in IFIP Congress, pp. 807–813, 1974.

[36] E. D. Jensen, C. D. Locke, and H. Tokuda, “A time-driven scheduling

model for real-time operating systems,” in 6th IEEE Real-Time Sys. Symp.

(RTSS’85), pp. 112–122, December 1985.

[37] P. Li, B. Ravinan, and E. D. Jensen, “Adaptive time-critical resource

management using time/utility functions: Past, present and future,” in

28th Annual International Computer Software and Applications Confer-

ence, 2004.

[38] B. Ravindran, E. D. Jensen, and P. Li, “On recent advances in time/utility

function real-time scheduling and resource management,” in Eighth IEEE

International Symposium on Object-Oriented Real-Time Distributed Com-

puting (ISORC’05), May 2005.

[39] A. Colin and S. M. Petters, “Experimental evaluation of code properties

for WCET analysis,” in Proceedings of the 24th IEEE Real-Time Systems

Bibliography 143

Symposium (RTSS 2003), 3-5 December 2003, Cancun, Mexico, pp. 190–

199, 2003.

[40] N. C. Audsley, R. I. Davis, and A. Burns, “Mechanisms for enhancing the

flexibility and utility of hard real-time systems,” in RTSS, pp. 12–21, IEEE

Computer Society, 1994.

[41] R. I. Davis, On Exploiting Spare Capacity in Hard Real-Time Systems.

PhD thesis, Department of Computer Science, University of York, July

1995.

[42] D. Haban and K. G. Shin, “Application of real-time monitoring to schedul-

ing tasks with random execution times,” IEEE Trans. Software Eng.,

vol. 16, no. 12, pp. 1374–1389, 1990.

[43] E. Y. Hu, A. J. Wellings, and G. Bernat, “Gain time reclaiming in high per-

formance real-time java systems,” in ISORC, pp. 249–256, IEEE Computer

Society, 2003.

[44] S. Punnekkat, R. Davis, and A. Burns, “Sensitivity analysis of real-time

task sets,” in Advances in Computing Science - ASIAN’97: Third Asian

Computing Science Conference Kathmandu, Nepal, December 9-11, 1997

Proceedings, (Berlin, Heidelberg), pp. 72–82, Springer Berlin Heidelberg,

1997.

[45] S. Vestal, “Fixed-priority sensitivity analysis for linear compute time mod-

els,” IEEE Transactions on Software Engineering, vol. 20, no. 4, pp. 308–

317, 1994.

[46] D. I. Katcher, H. Arakawa, and J. K. Strosnider, “Engineering and analysis

of fixed priority schedulers,” IEEE Transactions on Software Engineering,

vol. 19, pp. 920–934, Sept. 1993.

[47] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multi-

processor systems,” ACM Comput. Surv., vol. 43, pp. 35:1–35:44, October

2011.

[48] T. P. Baker, “A comparison of global and partitioned edf schedulability

tests for multiprocessors,” tech. rep., Florida State University, Dept. of

Computer Science, 2005.

Bibliography 144

[49] S. K. Baruah and J. Goossens, “Rate-monotonic scheduling on uniform

multiprocessors,” in 23rd International Conference on Distributed Com-

puting Systems, 2003. Proceedings., May 2003.

[50] T. P. Baker and S. K. Baruah, “Sustainable multiprocessor scheduling of

sporadic task systems,” in Proceedings of the 2009 21st Euromicro Confer-

ence on Real-Time Systems, ECRTS ’09, (Washington, DC, USA), pp. 141–

150, IEEE Computer Society, July 2009.

[51] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness (Series of Books in the Mathematical

Sciences). W. H. Freeman, first edition ed., 1979.

[52] B. Andersson and J. Jonsson, “Fixed-priority preemptive multiprocessor

scheduling: To partition or not to partition,” in Proceedings of the Seventh

International Conference on Real-Time Systems and Applications, RTCSA

’00, (Washington, DC, USA), pp. 337–, IEEE Computer Society, 2000.

[53] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and efficient schedul-

ing of certifiable mixed-criticality sporadic task systems,” in Proceedings

of the 2011 IEEE 32nd Real-Time Systems Symposium, RTSS ’11, (Wash-

ington, DC, USA), pp. 13–23, IEEE Computer Society, 2011.

[54] S. K. Baruah, “Certification-cognizant scheduling of tasks with pessimistic

frequency specification,” in 7th IEEE International Symposium on Indus-

trial Embedded Systems (SIES), pp. 31–38, IEEE, June 2012.

[55] A. Burns and R. I. Davis, “A survey of research into mixed criticality

systems,” ACM Comput. Surv., vol. 50, pp. 82:1–82:37, November 2017.

[56] A. Burns and R. I. Davis, “A survey of research into mixed criticality

systems,” ACM Comput. Surv., vol. 50, pp. 82:1–82:37, Nov. 2017.

[57] A. Wasicek, C. El–Salloum, and H. Kopetz, “A system-on-a-chip plat-

form for mixed-criticality applications,” in 2010 13th IEEE International

Symposium on Object/Component/Service-Oriented Real-Time Distributed

Computing, pp. 174–188, IEEE, May 2010.

[58] A. Burns and S. Baruah, Dependable and Historic Computing, vol. 6875 of

Lecture Notes in Computer Science, ch. Timing Faults and Mixed Critical-

ity Systems, pp. 147–166. Springer, 2011.

Bibliography 145

[59] S. Baruah and B. Chattopadhyay, “Response-time analysis of mixed criti-

cality systems with pessimistic frequency specification,” in 2013 IEEE 19th

International Conference on Embedded and Real-Time Computing Systems

and Applications (RTCSA), August 2013.

[60] S. Baruah, “Schedulability analysis of mixed-criticality systems with multi-

ple frequency specifications,” in Proceedings of the 13th International Con-

ference on Embedded Software, EMSOFT 2016, Association for Computing

Machinery, Inc”, 10 2016.

[61] A. Burns and R. I. Davis, “Mixed criticality on controller area network,” in

25th Euromicro Conference on Real-Time Systems, ECRTS 2013, Paris,

France, July 9-12, 2013, pp. 125–134, 2013.

[62] S. Baruah and A. Burns, “Implementing mixed criticality systems in ada,”

in Proceedings of the 16th Ada-Europe International Conference on Reliable

Software Technologies, Ada-Europe’11, (Berlin, Heidelberg), pp. 174–188,

Springer-Verlag, 2011.

[63] A. Crespo, A. Alonso, M. Marcos, J. A. de la Puente, and P. Balbastre,

“Mixed criticality in control systems,” in Proc. 19th World Congress, The

International Federation of Automatic Control, (Cape Town, South Africa),

August 2014.

[64] O. Cros, L. George, and X. Li, “A protocol for mixed-criticality manage-

ment in switched ethernet networks,” in Proceedings of the third Inter-

national Workshop on Mixed Criticality Systems (WMC), (San Antonio,

Texas, USA), December 2015.

[65] R. Ernst and M. D. Natale, “Mixed criticality systems - a history of mis-

conceptions,” in IEEE Design and Test, vol. 33, pp. 65–74, IEEE Design

and Test, October 2016.

[66] A. Esper, G. Nelissen, V. Nélis, and E. Tovar, “How realistic is the mixed-

criticality real-time system model?,” in Proceedings of the 23rd Interna-

tional Conference on Real Time and Networks Systems, RTNS ’15, (New

York, NY, USA), pp. 139–148, ACM, 2015.

[67] R. Ernst and M. D. Natale, “Mixed criticality systems - a history of mis-

conceptions?,” IEEE Design & Test, vol. 33, no. 5, pp. 65–74, 2016.

Bibliography 146

[68] P. Graydon and I. Bate, “Safety assurance driven problem formulation for

mixed-criticality scheduling,” in Proceedings of the Workshop on Mixed-

Criticality Systems, pp. 19–24, 2013.

[69] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for

mixed criticality systems,” in Proceedings of the 2011 IEEE 32Nd Real-

Time Systems Symposium, RTSS ’11, (Washington, DC, USA), pp. 34–43,

IEEE Computer Society, November 2011.

[70] A. Burns and R. I. Davis, “Response time analysis for mixed criticality

systems with arbitrary deadlines,” in 5th International Workshop on Mixed

Criticality Systems (WMC 2017), December 2017.

[71] L. Li, R. Li, L. Huang, R. Wu, and L. Zeng, “A new rta based schedul-

ing algorithm for mixed-criticality systems,” in Proc. of 16th International

Conference on Computational Science and Engineering, IEEE, December

2013.

[72] Z. Guo, S. Sruti, B. C. Ward, and S. Baruah, “Sustainability in mixed-

criticality scheduling,” in IEEE Real-Time Systems Symposium, RTSS

2017, Paris, France, December 5-8, 2017, pp. 24–33, December 2017.

[73] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney, “Task scheduling for

control oriented requirements for cyber-physical systems,” in Proceedings

of the 2008 Real-Time Systems Symposium, RTSS ’08, (Barcelona, Spain),

pp. 47–56, IEEE Computer Society, December 2008.

[74] H. Su and D. Zhu, “An elastic mixed-criticality task model and its schedul-

ing algorithm,” in Conference on Design, Automation and Test in Europe

(DATE), pp. 147–152, IEEE, March 2013.

[75] A. Burns and S. Baruah, “Towards a more practical model for mixed criti-

cality systems,” in Proc. of 1st International Workshop on Mixed Criticality

Systems (WMC), pp. 1–6, December 2013.

[76] S. Baruah, A. Burns, and R. Davis, “An extended fixed priority scheme for

mixed criticality systems,” in ReTiMiCS, RTCSA (L. George and G. Li-

pari, eds.), pp. 18–24, 2013.

[77] A. Zuhily and A. Burns, “Optimal (d-j)-monotonic priority assignment,”

Information Processing Letters, vol. 103, pp. 247–250, 2007.

Bibliography 147

[78] T. Fleming and A. Burns, “Incorporating the notion of importance into

mixed criticality systems,” in Proc. of 2nd International Workshop on

Mixed Criticality Systems (WMC), pp. 33–38, December 2014.

[79] D. Prasad, A. Burns, and M. Atkins, “The valid use of utility in adaptive

real-time systems,” Real-Time Systems, vol. 25, pp. 277–296, September

2003.

[80] N. Audsley, “Optimal priority assignment and feasibility of static priority

tasks with arbitrary start times,” Technical Report YCS 164, Department

of Computer Science, University of York, York, UK, 1991.

[81] O. Gettings, S. Quinton, and R. I. Davis, “Mixed criticality systems with

weakly-hard constraints,” in RTNS ’15: Proceedings of the 23rd Interna-

tional Conference on Real Time and Networks Systems, (New York, NY,

USA), pp. 237–246, ACM, November 2015.

[82] G. Bernat, A. Burns, and A. Llamosi, “Weakly hard real-time systems,”

IEEE Trans. Comput., vol. 50, pp. 308–321, Apr. 2001.

[83] P. Ramanathan and M. Hamdaoui, “A dynamic priority assignment tech-

nique for streams with (m, k)-firm deadlines,” IEEE Trans. Comput.,

vol. 44, pp. 1443–1451, December 1995.

[84] G. Koren and D. Shasha, “Skip-over: Algorithms and complexity for over-

loaded systems that allow skips,” in Proceedings of IEEE Real-Time System

Symposium (RTSS), pp. 110–117, IEEE, December 1995.

[85] G. Frehse, A. Hamann, S. Quinton, and M. Woehrle, “Formal analysis of

timing effects on closed-loop properties of control software,” in Proceedings

of the 2011 IEEE 32Nd Real-Time Systems Symposium, RTSS ’14, pp. 53–

62, IEEE, December 2014.

[86] F. Santy, L. George, P. Thierry, and J. Goossens, “Relaxing mixed-

criticality scheduling strictness for task sets scheduled with fp,” in Proc. in

24th Euromicro Conference on Real-Time Systems (ECRTS), pp. 155–165,

IEEE, July 2012.

[87] S. K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela,

S. van der Ster, and L. Stougie, “Mixed-criticality scheduling of sporadic

Bibliography 148

task systems,” in Algorithms - ESA 2011 - 19th Annual European Sympo-

sium, Saarbrücken, Germany, September 5-9, 2011. Proceedings, pp. 555–

566, 2011.

[88] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,

S. van der Ster, and L. Stougie, “The preemptive uniprocessor scheduling

of mixed-criticality implicit-deadline sporadic task systems,” in 24th Eu-

romicro Conference on Real-Time Systems, ECRTS 2012, Pisa, Italy, July

11-13, 2012, pp. 145–154, 2012.

[89] H. Su and D. Zhu, “An elastic mixed-criticality task model and its schedul-

ing algorithm,” in Proceedings of the Conference on Design, Automation

and Test in Europe, DATE ’13, (San Jose, CA, USA), pp. 147–152, EDA

Consortium, 2013.

[90] G. C. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive

rate control,” in Proceedings of the IEEE Real-Time Systems Symposium,

RTSS ’98, (Washington, DC, USA), IEEE Computer Society, 1998.

[91] R. Obermaisser and D. Weber, “Architectures for mixed-criticality systems

based on networked multi-core chips,” in Proceedings of the 2014 IEEE

Emerging Technology and Factory Automation, ETFA 2014, Barcelona,

Spain, September 16-19, 2014, pp. 1–10, 2014.

[92] V. Legout, M. Jan, and L. Pautet, “An off-line multiprocessor real-time

scheduling algorithm to reduce static energy consumption,” in First Work-

shop on Highly-Reliable Power-Efficient Embedded Designs (HARSH),

(Shenzhen, China), pp. 7–12, February 2013.

[93] A. Thekkilakattil, R. Dobrin, and S. Punnekkat, “Mixed criticality schedul-

ing in fault-tolerant distributed real-time systems,” in 2014 International

Conference on Embedded Systems (ICES), pp. 92–97, July 2014.

[94] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory ac-

cess control in multiprocessor for real-time systems with mixed criticality,”

in Proceedings of the 2012 24th Euromicro Conference on Real-Time Sys-

tems, ECRTS ’12, (Washington, DC, USA), pp. 299–308, IEEE Computer

Society, 2012.

[95] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling of

mixed-criticality applications on resource-sharing multicore systems,” in

Bibliography 149

Proceedings of the Eleventh ACM International Conference on Embedded

Software, EMSOFT ’13, (Piscataway, NJ, USA), pp. 17:1–17:15, IEEE

Press, 2013.

[96] R. Trüb, G. Giannopoulou, A. Tretter, and L. Thiele, “Implementation of

partitioned mixed-criticality scheduling on a multi-core platform,” ACM

Trans. Embed. Comput. Syst., vol. 16, pp. 122:1–122:21, September 2017.

[97] A. Burns, T. Fleming, and S. Baruah, “Cyclic executives, multi-core plat-

forms and mixed criticality applications,” in Proceedings of the 2015 27th

Euromicro Conference on Real-Time Systems, ECRTS ’15, (Washington,

DC, USA), pp. 3–12, IEEE Computer Society, 2015.

[98] D. S. Johnson, Near-optimal bin packing algorithms. PhD thesis, Mas-

sachusetts Institute of Technology, Department of Mathematics, June 1973.

[99] V. Izosimov and E. Levholt, “Mixed criticality metric for safety-critical

cyber-physical systems on multi-core architectures,” in Proceedings of the

4th Workshop On Manufacturable and Dependable Multicore Architectures

at Nanoscale (MEDIAN’15), MEDIAN ’15, March 2015.

[100] RTCA, “Software considerations in airborne systems and equipment certi-

fication.” RTCA/DO-178B, 1992.

[101] H. Su, D. Zhu, and S. Brandt, “An elastic mixed-criticality task model

and early-release edf scheduling algorithms,” ACM Transactions on De-

sign Automation Electronic Systems (TODAES), vol. 22, pp. 28:1–28:25,

December 2016.

[102] R. Schneider, D. Goswami, A. Masrur, and S. Chakraborty, “Qoc-oriented

efficient schedule synthesis for mixed-criticality cyber-physical systems,”

in Proceeding of the 2012 Forum on Specification and Design Languages

(FDL), September 2012.

[103] R. Schneider, D. Goswami, A. Masrur, M. Becker, and S. Chakraborty,

“Multi-layered scheduling of mixed-criticality cyber-physical systems,”

Journal of Systems Architecture, vol. 59, pp. 1215–1230, November 2013.

[104] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A.

Scoredos, “Mixed-criticality real-time scheduling for multicore systems,” in

Proceedings of the 2010 10th IEEE International Conference on Computer

150 BIBLIOGRAPHY

and Information Technology, CIT ’10, (Washington, DC, USA), pp. 1864–

1871, IEEE Computer Society, 2010.

[105] D. Tamas-Selicean and P. Pop, “Optimization of time-partitions for mixed-

criticality real-time distributed embedded systems,” in 14th IEEE Interna-

tional Symposium on Object/Component/Service-Oriented Real-Time Dis-

tributed Computing Workshops, ISORC Workshops 2011, Newport Beach,

CA, USA, March 28-31, 2011, pp. 1–10, 2011.

[106] E. Bini, M. D. Natale, and G. C. Buttazzo, “Sensitivity analysis for fixed-

priority real-time systems,” Real-Time Systems, vol. 39, no. 1-3, pp. 5–30,

2008.

[107] “AUTOSAR development standards partnerships.” www.autosar.org,

2018. Automotive Open System Architecture.

[108] I. E. Commission, “Functional safety of electrical, electronic, pro-

grammable electronic safety-related systems,” 2010.

[109] E. Parliament and the Council of the European Union, “Directive (eu)

2016/1148 concerning measures for a high common level of security of

network and information systems across the union,” 2016.

[110] N. C. S. Centre, “Nis-directive: Top level objectives.” https://www.ncsc.

gov.uk/guidance/nis-directive-top-level-objectives, 2018.

[111] C. Lee, H. Kim, H. woo Park, S. Kim, H. Oh, and S. Ha, “A task remapping

technique for reliable multi-core embedded systems.,” in IEEE/ACM/IFIP

International Conference on Hardware/Software Codesign and System Syn-

thesis (CODES+ISSS) (T. Givargis and A. Donlin, eds.), pp. 307–316,

ACM, 2010.

[112] S. Iacovelli, R. Kirner, and C. Menon, “ATMP: an adaptive tolerance-

based mixed-criticality protocol for multi-core systems,” in 13th IEEE In-

ternational Symposium on Industrial Embedded Systems, SIES 2018, Graz,

Austria, June 6-8, 2018, pp. 1–9, 2018.

www.autosar.org
https://www.ncsc.gov.uk/guidance/nis-directive-top-level-objectives
https://www.ncsc.gov.uk/guidance/nis-directive-top-level-objectives

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Mixed-Criticality Real-Time Systems
	Mixed-Criticality Scheduling
	Research Question
	Contributions
	Evaluation of Mixed-Criticality Protocols
	Publications
	Structure of the Dissertation
	Chapter Summary

	Background
	Real-Time Systems
	The WCET Estimation
	Hard Real-Time Systems
	Soft Real-Time Systems
	Task Models for Real-Time Scheduling
	Schedulability Analysis
	Sustainable Schedulability Test
	Processor Utilisation Factor

	Scheduling on Uniprocessor Systems
	Preemption and Priority Assignments
	Fixed Priority Scheduling
	Dynamic Priority Scheduling
	Scheduling with Utility Functions
	Complementary Scheduling Techniques
	Techniques for Soft Real-Time Systems

	Scheduling on Multiprocessor Systems
	Classification of Multiprocessor Systems
	Taxonomy of Multiprocessor Scheduling Algorithms
	Partitioned Scheduling
	Global Scheduling
	Hybrid Scheduling Approaches

	Chapter Summary

	Related Work
	Mixed-Criticality Scheduling
	Extensions and Applications of Mixed-Criticality Model
	Interpretations of Criticality
	Criticisms to the Mixed-Criticality Scheduling
	Standard Real-Time Scheduling and Criticality Inversion Problem
	Fixed-Priority Mixed-Criticality Scheduling
	The AMC-rtb Analysis
	Dynamic-priority mixed-criticality systems
	Mixed-Criticality Systems on Multiprocessor Architectures
	Mixed-Criticality Systems with Soft Deadlines
	Utility-based Optimisation of Mixed-Criticality Systems
	Chapter Summary

	The LBP Protocol
	System model
	The LBP Protocol
	SLBP: An LBP Variant with Soft Deadlines
	Integration of LBP and SLBP with Complementary Scheduling Techniques
	Chapter Summary

	Formal Comparison of Variants of BP and LBP
	Predicates and Comparison Criterion
	Comparison of BP-based protocols
	Comparison between BP and BPG
	Comparison between BP and BPS
	Comparison between BPG and BPS
	Comparison between BP and BPSG

	Comparison of LBP with Related Protocols
	Comparison between BP and LBP
	Comparison between BPG and LBPG
	Comparison between BPS and LBPS
	Comparison between BPSG and LBPSG
	Comparison between LBP and BPS
	Comparison between LBP and SLBP

	Chapter Summary

	The Adaptive Tolerance-based Mixed-Criticality Protocol
	System Model
	Utility Function
	System Adaptation

	Optimisation Method
	Criticality Aware Allocation
	The ATMP Utility Optimisation

	Safety Implications of Scheduling
	Chapter Summary

	Experimental Evaluation
	Evaluation of Lazy Bailout Protocols
	Setup of Experiments
	Performance Metrics and Evaluation Scenarios
	Discussion of Results in Hard Real-Time Settings
	Comparison of LBP with SLBP in Soft Real-Time Settings

	Experimental Evaluation of ATMP
	Chapter Summary

	Conclusions
	Summary of Dissertation
	Research Impact and Application Areas
	Outlook

