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Abstract

In contrast to traditional approaches, where the focus is on developing or
evolving artificial “brains” as the route to artificial intelligence (AI) more
recent approaches have increasingly emphasised and modelled the role of
“bodies” and “environments”. In turn, this has further encouraged ideas
regarding aspects of intelligence as being best thought of as distributed
across agent brains, bodies and environments. That is, as system prop-
erties emerging from interactions of these components. Action selection
is commonly recognised as one of the problems all agents, whether bio-
logical or artificial, must face: deciding at any given moment “what to do
next”. Researchers have generated many different action selection mech-
anisms as “solutions” to this problem. However, in the work of this thesis,
we focus on one which takes its inspiration from biological ideas about
the role and possible neural substrates of emotion. We use this to con-
sider how models of brain-body-environment interactions might be more
useful for the study of emotion, as well as action selection mechanisms.
For, despite the many mechanisms proposed, the literature still lacks sys-
tematic ways to analyse their performance in combination with different
physical and/or perceptual capabilities. That is, factors relating more di-
rectly to agent embodiment. In this thesis we have studied the performance
of our selected architecture in a robotic predator-prey scenario known as
the Hazardous Three Resource Problem. The predator-prey relationship
is popular in artificial intelligence, both as an action selection problem
and a situation which enables study of agent-agent interactions. Predators
can act as catalysts for the evolution of prey agents in a “survival of the
fittest” sense while, in their turn, prey agents are tests of predator ingenu-
ity. For us, however, it is also a situation where emotion might naturally
be assumed to have useful functions. To study action selection, emotion
and brain-body-environment interactions in an artificial predator-prey re-
lationship, we both advocate and adopt a bottom-up, animat approach. The
animat approach to AI is one that emphasizes characteristics neglected by
more traditional approaches. As such, it has embraced the study of robotic
agents. One reason for this is the process of designing “real-world” agents
forces us to consider practicalities simulations might not. What makes the



use of robots particularly appealing for our work, however, is how it can
give us a greater appreciation of more physical aspects of intelligence such
as agent morphology and its integration with agent control mechanisms as
well as environmental dynamics. Using LEGO robots, we show how the
performance of our architecture varies in our chosen scenario with aspects
of agent brain, body and environment. We argue our results complement
existing research by contributing evidence from a real-world implemen-
tation, explicitly modelling ideas about action selection and emotion as
distributed across, or best thought of as emerging from interactions be-
tween, agent brain, body and environment. In particular, this thesis shows
how our selected architecture varies and benefits from further integration
with aspects of agent “body”. It also acts as an example of an alterna-
tive form for the bottom-up development of artificial emotion, demonstrat-
ing wider applications for creating more adaptive action selection mecha-
nisms. Comparing the robotic predator-prey relationships we have created
to ethological evidence and theories, we argue our architecture may also
have specific potential for future research and applications — having al-
ready proven itself capable of emerging multiple functions and properties.



“If we knew what it was we were doing, it would not be
called research, would it?”
— Albert Einstein
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Chapter 1

Introduction

“We are not students of some subject matter, but students of prob-
lems. And problems may cut right across the borders of any subject
matter or discipline.”

— Karl Popper

Within this thesis we1 ask questions and explore problems which can be considered
to “cut right across the borders” traditionally drawn between various research areas
and scientific disciplines. An interdisciplinary endeavour, the initial motivation for the
work of this thesis was to make a contribution to existing literature by drawing together
ideas and evidence from a number of different research areas, concerning and incorpo-
rating ideas from the study of both biological and artificial agents. Generally speaking,
in doing so we wanted to recognise and encourage others to think about how, in order
to find solutions to problems in one discipline, we should consider and start to integrate
our own work even further with the work of those in others. The interdisciplinary na-
ture and implications of the questions we pose have the added advantage of making our
work of potential interest and relevance both across and within disciplines. For exam-
ple, by integrating ideas from fields where researchers in one have largely ignored the
work of those outside their own. More specifically though, we aim here for our work to
help lay the foundations for a new approach to the study and development of artificial
agents for exploring aspects of intelligence. To this end, we have focused our efforts
on helping to develop new tools and techniques to complement those currently used by
researchers. Our starting point? The development of a model with which to explore
our ideas about action selection, emotion and brain-body-environment interactions in
a predator-prey relationship.

1For stylistic reasons, throughout this thesis “we” is used instead of “I”. This is so as to be consistent
with the general style of the papers submitted as a result of this author’s research.
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1. Introduction

1.1 Cutting across borders

1.1.1 Artificial Intelligence
What is intelligence? How do we recognise it when we see it? Can we build artificial
agents that are capable of the same level of “intelligence” as we claim for ourselves?
If so, how and where should we focus our efforts so as to create such agents? These
questions lie at the heart of artificial intelligence (AI) and overlap both intimately and
intricately with many related areas and disciplines. Because of this, in the attempt
to find answers, many researchers have naturally linked research from the study of
biological organisms to the construction and design of artificial agents [1]. While
some have constructed high-fidelity models of biological processes [2], others have
focused more on useful abstractions of biological ideas [3]. For instance, extracting
and abstracting ideas such as evolution to act as general design principles [4]. However,
what is appealing about all such biologically-inspired research is that it not only gives
us a source of inspiration for developing artificial intelligence, but may also help us
find out more and clarify ideas about our own intelligence in return [5].

1.1.2 Artificial Life
In comparison with the field of AI, the questions at the heart of artificial life (AL) are
somewhat broader, but nevertheless tend to follow the same general spirit of enquiry.
What is life? How do we recognise it when we see it? Can we build artificial agents
that “live” and/or can help us understand and develop principles about the processes of
life? In terms of its position as a field of research, AL may be a relative latecomer com-
pared to AI. However, one of its most exciting features in terms of philosophy is that
it studies not only “life-as-we-know-it”, but also “life-as-it-could-be” [6]. Perhaps one
of its most notable strengths, further advocated in the work of this thesis, is that it has
embraced bottom-up approaches to the study of artificial systems much more readily
than other fields [7]. Such approaches try to answer these difficult questions by begin-
ning with the details, before working up to the highest conceptual level. Though many
AI researchers have also now started to accept this kind of approach, as evidenced by
the introduction of the behaviour-based, animat approach to AI (more on this later) this
is in direct contrast to the more traditional AI top-down approach, which tends to ap-
proach problems related to intelligence at the highest conceptual level, before working
down to the details.

1.1.3 Action Selection
AL researchers tend to suggest that the path to AI is to model, whether in computers or
in robots, the vital dynamics that support mental life [8]. Adopting an interdisciplinary

2



1. Introduction

approach, this thesis supports this view and likewise aims to contribute towards a better
understanding of tasks an agent, whether biological or artificial, must deal with to be
considered intelligent. It is commonly accepted that an “intelligent” agent must, by
necessity, be capable of making its own decisions as to what course of action to take
at any given time [9]. This relates strongly to notions of agent autonomy and adaptive
behaviour, but also more specifically to the problem of action selection1. The latter
can perhaps be defined most simply as a problem which all agents face of ‘what to do
next’ [10; 11; 12]. As a research area that has its roots in the very core of AI research,
many solutions to this problem have been proposed in the form of action selection
mechanisms [13; 14; 15]. However, as the purpose of this chapter is essentially to
provide an overview and brief introduction of the primary problems and ideas we are
concerned with in our research, a more in-depth discussion of these in terms of the
existing literature will be saved for later chapters.

1.1.4 Emotion
Counter-intuitively to early ideas regarding logical decisions as more “intelligent” ones
and devoid of emotional influence, a relatively recent branch of the action selection
literature has looked at how models of emotion might be used to develop more adaptive
agents, especially in the context of dynamic environments (those which change over
time) [16; 17]. Consequently, a particular subset of action selection mechanisms can
now be classed as “emotion-based” [18]. That is to say, they incorporate and model
ideas about the role of emotion in rational decision-making for humans. It is on this
type of action selection mechanism that we focus our own attention. However, in the
work of this thesis, in choosing to adopt a bottom-up approach, we further restrict
our attentions to the study of one in particular. This we selected for several reasons,
not least because it incorporates a hormone-like mechanism, used to modify inputs
to a motivation-based architecture, which simulates interoceptive modulation2. This
mechanism may be of special interest to those wanting to adopt a bottom-up approach
to the study of emotion in that it relates to the work of researchers such as Fellous
[19; 20], who suggest the biological roots (and neural substrate) of emotion are to be
found as patterns of neuromodulation.

1.1.5 The Brain-Body-Environment (B-B-E) Relationship
Since the early days of AI, ideas about the relative importance (and potential of mod-
els) of agent brains, bodies and environments for the development of adaptive agents
have also been revised: not only in terms of the biological, but also the artificial [21].

1Within other disciplines such as psychology, this can be thought of as akin to decision-making
2That is to say, it modulates the sensitivity to stimuli originating inside the body

3



1. Introduction

Collectively, researchers to-date have focused on (modelling) many types and aspects
of brain-body-environment relationships, both for producing and understanding adap-
tive behaviour. Researchers such as Clark [22] encourage us to rethink notions such as
intelligence as properties of systems that emerge only when the balance between brain,
body and environment is right. One aspect of this relationship, which we also focus
on in our research, relates to ideas about the importance of the body. Initial research
within AI generally focused on abstracting away the body of an agent completely,
treating it as peripheral at most. However, the limitations of this kind of research have
since led an increasing number of researchers to encourage us to model and think more
about how our own (and artificial) intelligence might be shaped by and emerge from
interactions between brain, body and environment [23].

1.1.6 Embodied Action Selection
With regards to action selection mechanisms and the importance of body, many action
selection mechanisms have been proposed and successfully implemented in agent bod-
ies with quite different capabilities: from “blind” agents, such as Miglino et al’s [24]
to agents with multi-modal abilities such as the robots Kismet [25] or Psikharpax [26].
Researchers such as Ziemke have even tried to co-evolve agent controllers with agent
bodies [27]. However, within the literature to-date, it is still difficult to find system-
atic studies showing how the performance of a given emotion-based architecture will
vary with specific aspects of agent embodiment per se. This thesis attempts to address
this, by seeing how aspects of embodiment will impact our chosen emotion-based ar-
chitecture’s performance. In our work, we have adopted and advocate the use of the
animat approach for this purpose, considering it ideal for conducting an exploratory
study of aspects of the brain-body-environment relationship (the reasons for which we
will demonstrate in subsequent chapters).

1.1.7 Dynamic Environments
Other aspects of the brain-body-environment relationship, which we also consider in
our model, relate more directly to agent environment. Again, in tune with the interdis-
ciplinary and biologically-inspired nature of our research, we focus on a specific type:
that of predator and prey. One reason for this is that it is an environment which both
encapsulates the problem of action selection and is one in which emotion is thought
to have a special role1. But another is that it is a scenario where we can take an even
wider perspective than is common. That is, to look at and compare affect-modulated
action selection (as performed by our chosen mechanism) not only in terms of brain-

1Explanations of emotions often suggest the primary emotion of fear having a role here in the fight-
or-flight response of the prey [28]
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body-environment interactions, but agent-agent interactions as well. The predator-prey
relationship can be used as a good metaphor for many environments, but particularly
those with hazardous aspects. That is, dynamic environments where risk assessment
and risk-taking has to be both considered and dealt with; requiring agents to be adap-
tive.

1.1.8 Our Research
This thesis argues that the adaptive value (including the emergent functions) of an
emotion-based architecture will be affected by the bodily and perceptual abilities of
both the agent itself and other agents present in its environment. Moreover, by study-
ing such systems and manipulating these abilities we might therefore create, or learn
how to create, more adaptive agents from simple, reactive ones. This may be par-
ticularly true for resource-limited agents making real-time decisions, such as robots,
performing tasks involving trade-offs and opportunity costs. The aim of this thesis is
to better understand these elements by considering them, in greater detail, in one body
of (systematic) research. To this end a bottom-up1, animat approach is both advocated
and followed here to ask and answer the question: “How will changes in the perceptual
abilities of predator and prey agents interact to affect the dynamics of their relation-
ship, especially in terms of the adaptive value of an emotion-based architecture for
action selection?”

In the research outlined in this thesis, we model brain-body-environment interac-
tions in an artificial predator-prey relationship, developing a methodology and running
experiments to enable us to explore both how interactions between components of our
model (brain, body, environment and agent) may be affected by the addition of an
emotion-like component, as well as how such an emotion-like component might fit
into such a relationship or “mediate” these components (brain, body, environment and
agent). Our approach therefore allows us to provide a much more qualitative, detailed
picture of emotion-based action selection at work in a particular scenario. One of our
principal aims here is to highlight or provide markers for points of interest that might
be useful to other researchers. Thus, we mainly aim for our results to provide a “proof
of concept”, seeing how we can connect the success of our emotion-based architecture
to aspects of the brain-body-environment relationship.

1.1.9 A Goldilocks Approach
One way to describe our own approach is by the Goldilocks principle. For, we do not
aim to optimise our action selection mechanism as such, but to hopefully discover — or

1More on this term in the next chapter.
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at least learn something useful about — those conditions1 under which emotion-based
action selection mechanisms become “just right” for artificial agents. Our research
thus coincidentally looks at how well the Goldilocks principle explains the success (or
not) of emotion-based architectures. One recent suggestion following this is that more
adaptive agents will be developed when we stop abstracting away the body, embrac-
ing it as being potentially as important for intelligent or adaptive behaviour as agent
“brains”. In this respect, we study intelligence and emotion as properties of systems,
emerging from the interactions of brains, bodies and environments.

1.1.10 Hazardous Three Resource Problem
To study the predator-prey relationship further, we have designed and created an imple-
mentation of a specific predator-prey robotic scenario (the Hazardous Three Resource
Problem; a model designed for the study of action selection [29]) for use as a research
platform. LEGO NXT robots, an off-the-shelf robotic platform, were used to create
prey and predator agents for several reasons. One of these is that, within this thesis,
we are primarily interested in action-selection for real-world systems, with real-world
constraints being imposed on them. This includes, for example, the laws of physics,
noisy sensors and real-time decision-making.

Varying aspects of both our developed robotic agents’ embodiment, such as per-
ceptual distance and perceptual field, we have conducted experiments to examine and
study the effect observed on each agent’s performance, as well as their relationship,
when our prey is implemented with an emotion-based architecture. Drawing on our
early findings and observations, in later experiments we have then examined how the
emotion-like component of our chosen architecture might be extended across the brain-
body-environment divide (and in what way this will be to our agent’s advantage). To
do this, in our experiments we have looked at how we might manipulate the connec-
tions between our emotion-like mechanism and the brain-body-environment compo-
nents represented in our model.

In this way, we have used our implementation to look at how various factors, rep-
resented in changes to our basic implementation of the H3RP, may affect the adaptive
value of our chosen emotion-based architecture. From these experiments, we aim to
see how our architecture might be improved or manipulated so as to take advantage of
brain-body-environment interactions and generate more adaptive behaviour. Our more
recent findings, outlined in later chapters, have led us to think about how such changes
might generate adaptive behaviours when physical abilities are given some kind of
“cost”.

1Brain-Body-Environment combinations
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1.1.11 Levels of Analysis
One of the advantages of both adopting the animat approach and studying predator-
prey relationships is the way it allows us to look at our developed model using multi-
ple levels of analysis. With regards to our own analysis of the data we have collected
during our experiments, we have adopted numerous measures in the process of our
research, so as to enable us to consider how different measures define “adaptive value”
and/or recognise the adaptive behaviour of our agents differently. For instance, during
our experiments, we have looked at how ideas about state transitions (as used by ethol-
ogists to study animal behaviour) may provide an alternative means for both capturing
and describing changes in our agents’ behaviour. While most of our data has been col-
lected internally from our robots, in later experiments we have also considered results
obtained from observational analysis. This has both enabled us to make comparisons
between different measures, as well as to think about introducing additional measures
of our own. In particular, within this thesis we put forward our own, novel plots for
use in analysis and exploration of agent behaviour — referred to here as “brain-body-
environment maps”. Mapping elements of the brain-body-environment relationship
represented in our model, and going by the extra detail these maps have enabled us to
capture as a result, we believe these maps hold great promise as a tool to aid future
research.

1.2 Overview
This section aims to give a brief overview of the different chapters composing this
thesis:

1.2.1 Chapter 2
This chapter introduces the animat approach to AI and AL as a method for developing
and studying artificial agents. We believe this to be one that is particularly well suited
to those with our research interests (as already identified in this chapter). Thus, a
general outline of this approach is given, before being used to provide the context for
our thesis, setting the scene in terms of the existing literature. In this way, we are not
just adopting this approach ourselves, but further using it to develop a new framework
for categorising the literature related to our research question by relating elements of
an animat to the concepts we are interested in studying together. Here, this is achieved
using the concepts of animat brains, bodies and environments to help us both categorise
and bring together several different threads of research. This includes work related to
action selection and aspects of the brain-body-environment relationship. We argue
the animat approach is a good choice of approach for studying such ideas further.
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The chapter then concludes with discussion of our particular environment — that of
predator and prey — outlining in more detail some of the advantages of studying the
predator-prey relationship and focusing on it in terms of action selection and emotion.

1.2.2 Chapter 3
Here we describe our model, providing an outline and history of our chosen scenario
(the H3RP) and the architecture studied and used throughout the rest of this thesis
as a model of action selection. This is a scenario which has been previously studied
so a brief review of the findings from previous research is given. We review some
of the literature with regards to emotion-based architectures and biologically-inspired,
robotic implementations, comparing our chosen architecture to existing emotion-based
ones using several criteria. Through these criteria both the aims and work of this
thesis are further distinguished from those of existing researchers (highlighting the
novel aspects at its core). The focus of this chapter then switches to the consideration
of how adaptive value has and, with regard to the performance of our implemented
agents, might be measured. The idea of using other measures of performance is also
introduced in light of the re-conceptualisation of action selection as activity cycles.

1.2.3 Chapter 4
This chapter details the technical details of our novel implementation of the Hazardous
Three Resource Problem, developed as a research platform for this thesis. Focusing on
providing a description of our basic agents (which take the form of a LEGO NXT prey
and LEGO NXT predator robot) the different components, including “brain” “body”
and “environment”, of these animats are both described and illustrated. This chap-
ter thereby provides an overview of both the software and hardware used to conduct
the experiments reported in later chapters. It also provides specific details of the im-
plemented hormone-like mechanism, used to simulate interoceptive modulation in our
prey. Finally, we define the measures used in our experiments to study the performance
of our robots.

1.2.4 Chapters 5-7
The results of experiments performed using our implementation of the H3RP are then
reported. Initial experiments looked at the impact of prey perceptual distance on per-
formance of the architecture used for a prey animat. Moving on from and extending
these experiments, we then looked at how prey and predator perceptual distance might
interact to affect performance in the H3RP. Modifications were made to the underlying
hormone-like mechanism to see whether a sigmoidal decay rate might provide more
interesting results. The implication here is that the predator, as a “brain within a body”

8



1. Introduction

as well as an aspect of the prey’s environment, will also determine the success of our
chosen architecture.

Considering the “sensitivity” of our emotion-like mechanism, we then go on in our
experiments to look at how changing the parameters of the emotion-like component
of our action selection mechanism itself (with regards to the “level” or “gradience” of
the fear it simulates) might affect prey performance. Focusing on both different lev-
els as well as the design and use of a gradient response, the implication here is that
modifying the emotion-like component of our mechanism to take into account other
sensory information will also lead to differences in prey performance, as measured in
environments using different types of predator agents. Finally, we move on to exam-
ine the factors of prey perceptual field and speed (trying to integrate the emotion-like
component more closely with aspects of prey body).

1.2.5 Chapter 8
This chapter draws together and compares the results obtained across all of our ex-
periments during the study of our developed system (H3RP). Here, we hope to extract
further insights from our work, drawing on our research experience so as to provide
a summary of our conclusions in terms of our initial research objectives. Reflections
are given on the potential implications of the results obtained and reported in previous
chapters, while consideration is given to the possibilities for future research.

1.3 Contributions
The main contributions of this thesis can be summarised as follows (these will be
expanded on in greater detail in subsequent chapters):

1.3.1 For Emotion-Based Action Selection
• Development of an implementation of the Hazardous Three Resource Problem

(H3RP) — a predator-prey environment — in which to study and develop archi-
tectures for action selection, as well as to study the influence of different aspects
of an agent’s brain-body-environment relationship such as embodiment.1 With
regards to our research question, we advocate this as an ideal platform for our
research; in which we can study together all the elements we are interested in, as
encapsulated in our research question

1In initial experiments the focus was on perceptual distance as a specific aspect of embodiment, for
which we divided perception into proximal and distal types (combinations of which made further sub-
problems/versions of the scenario). In latter experiments perceptual field and physical ability (speed)
were also studied as aspects of embodiment
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• A more systematic (step-by-step) study of the predator-prey type relationship
than has yet been conducted with regards to action selection and affect. That is,
looking at how an emotion-based action selection mechanism, when placed in
a prey agent, not only varies with individual changes to a single prey... but can
interact with and causes changes in a single predator

• An analysis of the adaptive value, in terms of costs and benefits, of both emotions
and decisions in the predator-prey relationship. To do this, we take inspiration
from ethological research (the study of animal behaviour)

• Consideration and investigation of emotion-like action selection mechanisms as
adaptive mechanisms, in addition to (even beyond) as mechanisms for adapta-
tion. In other words, we consider how emotion-based architectures themselves
can adapt to changes over time, in addition to being used to adapt an agent

1.3.2 For the Analysis and Design of Adaptive Systems
• A comparison and evaluation of measures of adaptive value (both quantitative

and qualitative) that might be adopted (to evaluate performance of an agent)

• An analysis of the action selection problem in terms of the brain-body-environment
relationship

• Consideration and integration of internal and observational metrics beyond the
work of other researchers

• Demonstration of how researchers might manipulate or adjust parameters so as
to better “fine-tune” mechanisms like our own and increase their value for adap-
tive action selection in similar contexts (of the predator-prey scenario)

1.4 Summary
To summarise then, the primary problems or areas that characterize this thesis include:

• The Animat Approach: as one which we consider ideal for studying all the prob-
lems and areas we are interested in, advocating as it does robotic implementation
(and simulations)

• Action Selection: in the form of action selection mechanisms

• Artificial Emotion: specifically, in the form of emotion-based action selection
mechanisms
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• The Brain-Body-Environment Relationship: through consideration of the im-
portance of individual components of this relationship, including aspects such as
embodiment, as well as the interactions arising between them

• The Predator-Prey Relationship: among other aspects, as a type of environment
that is dynamic, but also as a very interesting relationship between two agents

• The Goldilocks Principle: as a way of describing the approach we take (and
the philosophy which sees intelligence as a system property) to studying our
emotion-based action selection mechanism

1.4.1 Studying Emotion for Action Selection in a Predator-Prey
Relationship

This thesis focuses primarily on the study of action selection in conjunction with the
modelling of emotion in artificial prey agents (robots in particular). That is, how we
might design artificial agents that will decide at any given moment “what to do next”,
but especially focusing on the promise of biologically-inspired emotion-based archi-
tectures for designing and creating ever more adaptive agents that will perform adap-
tively in dynamic environments. In this case we argue our choice of studying the
predator-prey relationship allows further insights to be obtained as to how an emotion-
based architecture might impact such a relationship between artificial agents, as well as
to see how we might usefully measure agent behaviour in such contexts (the predator-
prey one being a context that is very interesting, for many reasons, in its own right).

1.4.2 System Properties generated by B-B-E Interactions
However, perhaps one of the most distinctive features of the research outlined in this
thesis, and which therefore separates it most from the existing research, is that in our
experiments we adopt a bottom-up approach to model and study action selection and
emotion as emergent properties of systems, generated by interactions of brain, body
and environment.
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Chapter 2

Animat Brains, Bodies and
Environments

“Intelligence is determined by the dynamics of the interaction with
the world.”

— Rodney Brooks

This chapter begins with a brief summary of the animat approach, outlining some of
the specific contributions it aims to make (and is making) to both Artificial Intelligence
(AI) and Artificial Life (AL). Moving on, we then use this to provide a context for our
work. That is to say, to set the scene in terms of existing literature. In this thesis, we
choose not only to adopt the animat approach as part of our research methodology,
but to use it to develop a framework for categorising literature related to our research
questions. In relating elements of this approach to those concepts we are interested in
studying together, we focus on that research which is particularly relevant to the study
and understanding of intelligence with regards to adaptive behaviour. This naturally
includes work relating to biological, as well as artificial, agents. To do this, we use the
concepts of animat brains, bodies and environments to help both categorise and bring
together several different, in some cases previously separated, strands of research.

Examples are given of some of the most relevant work carried out to date, relating
to our own research interests. With regards to the problem of action selection (how
an agent decides “what to do next”) and the brain-body-environment relationship, the
focus here is initially placed on work which has manipulated the components (brain,
body and environment) and interactions of the latter so as to create more autonomous
and adaptive systems for solving the former. Recent ideas about the importance of
aspects of embodiment for the development and study of adaptive agents, as well as the
possible importance or influence of the environment, are therefore included. We then
discuss research which has involved incorporating mechanisms mimicking one of the
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suggested roles of emotions in humans (with regards to decision-making). Specifically,
we draw together a branch of the more recent research on action selection to focus on
the promise of emotion-based action selection mechanisms, as well as questions about
the role of the body, for generating adaptive behaviour in artificial agents.

A particularly interesting action selection scenario from the perspective of the role
of emotion in decision-making is the case of predator-prey interactions, which involves
threats to the survival of agents in a dynamic environment. This chapter concludes with
a more in-depth discussion of the predator-prey relationship and its study. As a crucial
and defining feature of the environment we also choose to focus on in our research, we
identify some of the main advantages of studying this relationship, focusing on it as an
action selection problem that is ideal for developing models of artificial emotion. Our
discussion thereby enables consideration of the possible usefulness of the predator-
prey environment in helping animat researchers to further investigate affect-modulated
action selection in the context of brain-body-environment interactions. Again, we con-
sider the animat approach the ideal choice of approach for exploring our ideas in this
context.

2.1 The Animat Approach
The animat approach is a behaviour-based approach to Artificial Intelligence (AI) for
the design, creation and study of autonomous and adaptive agents [30]. The behaviour-
based approach to AI is one (the advent of which is most often attributed to Brooks’
[31] early research with robotic agents and demonstrated in his proposal of the sub-
sumption architecture [32]) that, in essence, sees intelligence as composed of a large
number of modular elements that are simple to design and which can be developed in
layers. As opposed to the more deliberative intelligence traditionally studied in AI, it is
thus more associated with and focused on producing more reactive intelligence. At the
time it was introduced, this approach was in many respects revolutionary, overcoming
limitations of the more traditional approaches. For example, by demonstrating greater
robustness and practical applications for real-time systems such as robots [33; 34].

The animat approach is also numbered among those developed as alternatives to
earlier approaches when the initial 1950s promise of symbolic reasoning started to
fade. As such, its history dates back as far as the mid-80s, when this new kind of
bottom-up type of approach was first adopted and advocated by researchers including
not only Brooks [13; 31; 33; 34], but others such as Wilson (cited in [35]) Meyer and
Guillot [36]. As a paradigm, the animat approach takes a synthetic approach to the
study and creation of autonomous agents, as well as the creation of artificial intelli-
gence, which more than a decade later Dean [30] described as an “attempt to com-
prehend the capacity of animals for autonomous generation of adaptive, intelligent
behaviour in complex, changing environments”.
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In essence, this approach argues that the best route to approaching the complexities
of human intelligence, in terms of both simulating and understanding it, is to build
and study (which will hopefully lead to the understanding of) simple but complete
creatures first. Key arguments or views of the animat approach, as nicely outlined by
Dean [30] include:

• Adaptive behaviour is best understood by focusing on the interaction between
an agent and its environment, hence an interest in embodied agents situated in
natural environments

• Specific abilities or behaviours are more natural units of analysis and design than
general, information-processing functions and world models

• High-level behaviours will emerge as systems composed of simple behavioural
competences become more complex

In this way, animat research begins with the design of agents with low-level abil-
ities, with the aim of later moving up towards higher, cognitive functions. Yet Dean
also reflects on some of the arguments of its detractors, whose doubts include:

• Whether animat research will contribute to a general theory of situated agents
and environments

• Whether animats can demonstrate the validity of the assumption that high-level
competence will emerge naturally and in reasonable time when complexity is
scaled up

• Whether the ultimate explanatory value of research with animats will be enough
for connecting to information-processing accounts of higher, cognitive functions

The animat approach naturally encourages the use of biologically-inspired control
mechanisms for creating autonomous and/or adaptive simulated animals or robots [37].
Such animats, and the models which use them, can act as tools for the study of adap-
tive behaviour, while also providing a means for considering intelligence, adaptation
and perception at higher levels. From a broader perspective, this approach thereby at-
tempts to better address some of the main criticisms directed towards more traditional
approaches, including those of situatedness and embodiment [38]. In particular, it does
this by considering the importance of agent-environment interactions [39].

Perhaps somewhat conversely though, the approach also resonates strongly with
the idea that, in order to understand and reproduce human-level intelligence (however
we might define this) we should first try to understand and reproduce the probable
roots of this intelligence. Because its main assumption is that we can develop more
complex animats by building on more simple ones, this places initial emphasis on
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the basic adaptive capacities of animals that have to deal with the full complexity of
autonomous interaction with their environment. For example, to concentrate first on
studying simpler abilities like navigating, seeking food and avoiding dangers [40].

Both in analysis and design, the animat approach takes its inspiration from the
work of ethologists, psychologists, neurobiologists and evolutionary biologists, as well
as connectionists [30]. For AI and robotic researchers, the primary research goal is
often the production of autonomous and adaptive behaviour. However, it is also hoped
that an increased understanding of the possible mechanisms able to generate adaptive
behaviour will lead to the discovery of tools and concepts which might further aid
natural scientists in their attempts to understand biological systems [41].

Researchers looking to study adaptive behaviour and autonomous agents in general
have included Steels [42; 43; 44], Maes [45] and Meyer [40; 46], who each identified
some of the advantages of this approach over the classical, more top-down approaches,
yet also offer criticisms of the newer approach. For example, identifying various open
questions still to be addressed, whilst also trying to more adequately attempt to define
what it means for an agent to be both autonomous and adaptive (if for no other reason
than to use as a yardstick for assessing how close animats have come to being both so
far).

More than ten years later, while a search of the literature for the work of those
researchers who have since adopted and used the term “animat” alone to describe their
approach and/or robots may only generate a relatively small selection of research pa-
pers, it is nevertheless possible to identify many examples of what can be considered
the animat approach/animats under other headings. Such examples include, but are
not limited to, many found scattered through the literature of artificial ethology [2],
embodied AI [31; 47] and bio-robotics [48]. In this way, although the term itself is
less often used, in as much as it has perhaps not caught on enough for the widespread
use of the term animat to be applied whenever the approach is adopted, the general
approach may actually be more frequently identified within the literature.1

2.2 Animat Brain, Body and Environment
One open question in particular in the study of autonomous and adaptive agents, for
animat research and the field of AI in general was identified by Meyer [40], who sug-
gests that the dynamics of interactions between agent and environment are still not

1Having said this, a simple search at the time of writing this returned more than 12,000 results for
the term “animat”. Out of interest, when these results are seen by decade we see several thousand results
that do not relate to the use of this term in this context at all. Yet between 1990 and 2000 there are 180
results for the term “animat” and “action selection” combined. Between 2001 and 2010 there are a
further 327 results, 33 of which are found to have been published in 2010 (14 in 2009 - one of which
was written as a result of the work in this thesis.).

15



2. Animat Brains, Bodies and Environments

well understood. At the time, Maes [45] identified Beer [49], Kiss [50] and Steels
[51], among others, as numbered among those having started to try approaching the
problem using a dynamical systems perspective but, said Meyer, the field is “far from
being able to prove in general what the emergent behaviour is of a distributed network
of competence modules”. Though to-date there might still be much about this we do
not understand, the animat approach nevertheless provides a means of exploring such
interactions more thoroughly. Moreover, it gives us a different perspective than more
top-down approaches, allowing us to experiment more with ideas about the evolution
of our own intelligence.

2.2.1 Action Selection Mechanisms as Animat Brains
As an open question itself in AI, action selection is a problem of considerable interest
to animat researchers. The problem of action selection is that of making a decision
as to what behaviour to execute next so as to carry out conflicting tasks and guarantee
survival in a given environment and/or situation. Researchers, including Maes [45]
and Avila-Garcı́a [29] see it as the problem of how to choose between competing be-
havioural alternatives so as to enable an agent to survive in dynamic, unpredictable and
hazardous environments. In his work, Avila-Garcı́a suggests that the main problem in
this area is to build architectures that will result in an agent demonstrating “adaptive,
robust and effective behaviour”. He argues this will be achieved by both solving the
problem of action selection — specifically, by using the correct arbitration mechanism
— and giving agents the ability to learn from experience. This follows quite closely
the arguments of earlier researchers such as Meyer [36; 40; 46] and Steels [42; 43; 44].

Action selection mechanisms can be seen as a collection of tools that are used in
an attempt to solve the problem of action selection within AI. That is, to allow agents
to choose what to do next at a given time. The argument often underlying and used
to justify the work of those that concentrate their attention purely on this problem
is that if we can develop the right action selection mechanism, it will be possible to
produce agents that behave both adaptively and autonomously in their environment
[45]. (Though this also implies that the action selection mechanism will be sufficient
in itself to guarantee adaptive and autonomous behaviour — something which is still
debatable)

Outside of the animat approach, as well as within its research literature, a range of
different types of action selection mechanisms have been identified and designed. Yet
often these can be characterised as belonging to one of a few main types:

• Classical or symbolic action selection mechanisms, covering those which use
more GOFAI1 symbol-based reasoning

1Good Old Fashioned AI
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• Distributed or connectionist action selection mechanisms, including those using
neural networks as animat controllers

• Dynamic control systems, including action selection architectures

• Hybrids of more than one of these types

Animat researchers often try to compare the properties that different action selec-
tion mechanisms display so as to see what type(s) of controller or action selection
mechanism perform(s) best under different conditions. For example, Tyrrell [14] com-
pared several (ethologically-inspired) action selection proposals/architectures, finding
that some performed better than others in his simulated environment.

Other action (or behaviour) selection mechanisms that have been proposed include
those outlined by Bryson [52], Guillot and Meyer [53] and Pirjanian [54]. They look
at some of the many different action selection architectures that have been successfully
developed and tested using both the animat approach and others. As Avila-Garcı́a [29]
notes, such designers as are mentioned can often be seen to differ along three main
dimensions in their proposed architectures: “winner-takes-all” versus “voting-based”,
“hierarchical” versus “non-hierarchical”, and “reactive” versus “motivation-based”.

Because of the more biological-like focus of the animat approach, animat researchers
have often similarly argued for and taken a correspondingly more biologically-inspired
approach to the development of action selection mechanisms [26; 55; 56; 57; 58; 59;
60]. Indeed, many researchers effectively treat the action selection mechanism as
something like the equivalent of a “robot brain”. Consequently, many also attempt
to take what has been discovered about the organic brain by scientists from biology,
neuroscience and other similarly biologically-centred disciplines, trying to apply it in
order to better develop action selection mechanisms/architectures [58; 59].

This follows the argument that the best and most complex example of action se-
lection mechanisms can be seen in the real world, provided by human and/or animal
brains, which can therefore be used, as working examples, so as to develop efficient,
working artificial action-selection mechanism(s) for action in the real world. However,
perhaps more interestingly, it also makes a case for the argument that the idea of an
action selection mechanism being the equivalent of an animat’s brain may be useful in
exploring further the possible roles of brain, body and environment, as well as that of
their interactions, in generating/designing for adaptive and autonomous behaviour.

2.2.2 Bodies and their Importance to Animat Brains
In contrast to those researchers that have focused on the development of controllers
for generating adaptive and autonomous agents, another relatively more recent branch
of literature has argued against the advisability of focusing purely on such “brains” at
the risk of forgetting all about the role of embodiment [61]. This includes the body
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of an agent itself [62]. As Chiel and Beer [21] mention “mechanisms of adaptive be-
haviour generally focus on neurons and circuits. But adaptive behaviour also depends
on interactions among... nervous system, body and environment... body structure...
[creating] constraints and opportunities for neural control; and continuous feedback
between nervous system, body and environment... essential for normal behaviour.”
Thus, “one cannot simply ‘peel away’ the body to understand the nervous system’s
role in adaptive behaviour”.

This broader perspective on adaptive behaviour can also be identified as that un-
derlying ecological psychology, a discipline which has influenced behaviour-based
robotics as well as the field of computational neuroethology, which models both neu-
ral control and the periphery of animals, and is praised for its position as a promising
methodology for the understanding of adaptive behaviour. Other researchers advo-
cating greater consideration of the “body” in the study of intelligence, as well as the
subsequent creation of adaptive and autonomous agents include Pfeifer and Scheier
(“Understanding Intelligence” [63]) and Pfeifer and Bongard (“How the body shapes
the way we think” [62]). This has implications for those studying action selection
mechanisms, in that it suggests that adaptive and autonomous agents may best be seen
when a researcher manipulates both the brain and body component of an agent in order
to suit its environment — rather than just the brain. Thus, perhaps better action selec-
tion mechanisms might be developed if they were to encompass a body too. (Though
we agree it is also possible to see the body simply as a means of solving some of the
problems of information-processing, effectively moving such problems “upstream” by
designing bodies that will filter out unnecessary information and/or perform some kind
of computation.)

Following this, the body of an animat can be thought of as the communication
channel between brain and environment: an animat being composed of both brain and
body. The animat approach is complementary in this respect as it too forces the de-
signer to consider the body design of an animat beforehand. Yet we must also consider
what is covered by the term “body”. Taking an animat perspective, perhaps it is best
defined as the entire material of physical structure of a given animat. Though this
does not mean both an “internal” and “external” body cannot be further identified. For
example, researchers might (and do) define internal ‘physiological variables’ and/or
“drives” as is the case with certain motivation-based architectures [60]. An interesting
area of research which aims to study more closely how brain and body interact has
been more recently termed by Parisi [24; 64] internal robotics.

2.2.3 Environments and their Dynamics
Another player in the animat approach, though it seems its role is often left under-
emphasised in the study of action selection mechanisms, is that of the environment
of the agent itself. A logical argument follows that, if a criticism that arose from re-
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searchers focusing purely on attempting to synthesize some sort of robot “brain” for
generating autonomous and adaptive behaviour was that it forgot about the role of the
“body”; then focusing purely on the agent (brain plus body) may suffer similar criti-
cism in the way it thereby under-emphasises and devalues the role of the environment
in developing interesting animats that make use of better action selection mechanisms.
One idea might be for researchers to consider the environment itself as an agent. How-
ever, more usefully perhaps, we might also consider more the ideas of embodied, em-
bedded cognition (EEC). Such ideas namely revolve around the premise that, to borrow
a phrase from the biologist Gerald Edelman , “the brain is embodied and the body is
embedded in its environment. That trio must operate in an integrated way.” [65].

Real-world environments can be characterized by many factors, including temper-
ature, precipitation, slope or gradient, sunlight, chemicals and sounds. Though or-
ganisms are also considered to have an internal environment, including factors such
as nutrients and body temperature, this can be sub-divided using the concept of brain
and body (internal). For agents studied in computer science in general, however, their
worlds (environments) are often necessarily designed to be much more limited. Often
the designer is creating a very specific, constrained and artificial ecological niche to see
how agents will manage when placed within it. Attempts have been made to classify
such artificial environments. For example, Todd and Wilson [35; 66] started to build a
taxonomy of environments as well as a taxonomy of agents that would provide a basis
for comparing different action selection mechanisms. However, for our purposes, we
have found it more useful to see environments as primarily varying in their level of
complexity and/or dynamics.

The “environments” that have been developed (or otherwise singled out) for the
study of both action selection and (indirectly or not) the brain-body-environment re-
lationship have varied: from the simulated and created gridworlds of Tyrrell [14],
Cañamero [67] and Sutton [68]; Wilson’s woods (cited in [14; 69]) and McCallum’s
maze (cited in [70]); the physically embodied, but more constrained worlds of those
such as Avila-Garcı́a [29; 71]; to the physically embodied, continuous-action robotic
environments (or niches) agents such as Genghis [72] have been built to exist in. Phys-
ically embodied agents and environments are particularly interesting as agents such
as robots are taking, as their environment, a sub-set of the real world as we know it
directly — in other words overlapping their environment more directly, if not directly
with ours.

Environments may therefore be simulated or embodied, static or non-static (as is
the case with dynamic environments). Interestingly, researchers such as Miglino, Lund
and Nolfi [73] have also provided evidence that it is possible to build an accurate model
of robot-environment dynamics by sampling the real world through the sensors and ac-
tuators of a robot (indicating that the study of simulated and real environments need
not necessarily be mutually exclusive). The ultimate goal for robotics is for a robot
to be able to deal with environments as dynamic as the ones we live in. Thus, a
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dynamic environment should be of particular interest to those who study action se-
lection and the brain-body-environment relationship. For, in order to develop robots
that will one day exist and function adaptively in our environment, we will first have
to find ways to allow such agents to cope with and adjust to its complex dynamics.
Tyrrell’s [14] simulated environment, though he used only one environment and task,
is a good example of a dynamic environment that introduces many sources of dynam-
ics into its environment: from consumable resources to moving predators. There are
also some researchers who have attempted to incorporate more indeterminate stimuli
such as night/day cycles, such as Cañamero [67].

Among others, Maes [45] and Wilson [66] argue that it is not possible to decide
whether one action selection model is better than another unless the characteristics of
the environment are also considered, along with the task and the agent. Maes gives the
example that, in an environment where the cost of making the wrong decision is high,
an agent should do more anticipation; while if the cost of making the wrong decision is
negligible, it does not matter if an agent often performs incorrect actions. Moreover, in
an environment where changes may occur quickly, an agent needs to act very quickly.
Another related example is that an agent with noisy sensors should have some inertia
in its action selection so that one wrong sensor reading does not make the agent switch
to doing something completely new and different. Maes [45] notes that an agent with
many sensors can rely on the environment to guide its selection of actions, whereas
an agent with fewer sensors will “need to rely more on its internal state or memory to
decide what to do next”.

Wilson, Somayaji and Yanco [74] go so far as to argue that adaptive behaviour is
in fact possible without any knowledge of the environment, at least, over an animat’s
lifetime. Yet in their experiments they used evolution to evolve controllers for their
animats, which were “blind” in that they did not have any direct contact with the en-
vironment — their agents were not given any sensors. However, we would argue that
they were not truly “blind” in that the process of evolution itself was acting as a more
indirect, cross-generational sensor of the environment. Thus, evolution was effectively
used by them as a way to avoid using sensors directly. In this way, the environment
created the adaptive behaviour because the adaptive behaviour would not have evolved
without the environment. That is to say, agent and environment were still interacting,
just not as directly as if direct sensors were used.

While their work also fits in with the earlier results of Todd and Wilson [66] (they
characterised important features of the environment structure in terms of the adaptive
behaviour the elicited) Wilson mentions the fact that, in many systems “multiple crea-
tures with different behaviours never interact in a common world, and as a result much
richness of both social behaviour and the effects of whole populations on a shared en-
vironment is left out” concluding “creatures need not be able to sense nor remember
anything about their world (or themselves) in order to behave adaptively in it, provided
the world is generous and benign enough”. Floreano’s [75] shared environment re-
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search examines the differences in behaviour that occur when creatures can or cannot
sense each other.

2.2.4 The Brain-Body-Environment Relationship: Interactions and
Manipulation

Seth [11] suggests “animals do not choose between behaviours per se; rather, behaviour
reflects interactions among brains, bodies and environments.” One of the useful advan-
tages of the animat approach is that it allows researchers to take a broader, often more
abstract look at the relationship and interactions between brain, body and environ-
ment under different conditions (that is, provided it is allowed that action selection
mechanisms represent some form of brain-equivalent — and similarly allowing for the
animat’s physical, or simulated, body plus its world to be its environment). Indeed,
one of the many hopes of the approach is that it is via interaction dynamics (between
these components) that emergent complexity will arise; another being that looking at
complete systems will change problems themselves, ideally in a favourable way. This
is particularly relevant considering the biologically-inspired aspect of the approach as,
in real life, there is an unarguably intimate connection between our brains, bodies and
environments — and many scientific disciplines exist to argue this point.

However, still much of the research within AI has focused on one or more com-
ponents in the brain-body-environment relationship, without necessarily looking at the
“bigger picture”. Though there is one recent branch of research that has started to focus
on looking at all three of these components together [27], it does so using evolutionary
algorithms, which often restricts the study to the use of simulations. Perhaps this is
why there is not much evidence of systematic studies of the brain-body-environment
relationship using real robots. Furthermore, more often than not one aspect of the
relationship seems to be neglected — perhaps none more so than that of the environ-
ment. Looking at the research, it is in fact very tempting to suggest that the brain-
body-environment relationship itself makes a good conceptual framework to use for
categorising the work so far. For example, experiments can change or manipulate:

• Brain: for instance, using different controllers/action-selection mechanisms, vary-
ing in form from architectures to neural networks

• Body: such as those using different hardware components (manipulating ex-
ternal body) or different physiological variables in a motivation-based system
(manipulating internal body)

• Environment: from completely static (such as Avila-Garcı́a’s Two Resource
Problem [29]) to increasingly more dynamic (for example, Cañamero’s [67] and
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Tyrrell’s [14] gridworld simulations1)

Some researchers have chosen to study or manipulate just one of these components.
To give an example, Tyrrell [14] studied the performance of different architectures in
the same body and environment (though it is possible to argue that the environment is
in essence changed, because a different architecture will introduce different dynamics
into the environment in return). However, others have varied two or, more rarely, all
three together — for instance, Avila-Garcı́a [29] used the “same” body, with differ-
ent architectures and environments, while Buason, Bergfeldt and Ziemke [27] chose
to vary all three components using evolutionary algorithms to produce different con-
trollers (brains) morphologies (bodies) and environments.

The most interesting research to us, however, is that which not only considers how
these components themselves might be changed, but simultaneously attempts to study
how interactions between these components can be manipulated or controlled so as
to produce adaptive behaviour. In this way, resulting experiments might focus on the
study of:

• Brain-Body interactions: for instance, by the addition of feedback mechanisms
including hormone-like and/or emotion-like mechanisms, learning mechanisms
or other mechanisms such as those as studied in Internal Robotics (bridging the
gap between brain and body) [64]

• Brain-Environment interactions: for example, using different bodies or sensor
placements [76; 77]

• Body-Environment interactions: including developing more dynamic environ-
ments, different bodies, two-way interactions and the ability for agent to manip-
ulate aspects of the environment [78]2

Again, a researcher may choose to study or manipulate one or more types of these
interactions. However, an idea that seems at times to be noticeably avoided or disre-
garded, particularly when evolution is introduced from such studies, is that of niche
construction. This term refers to the consideration that the agent-environment inter-
action does in fact go two ways. First adopted and defined in 2003 by Odlin-Smee et
al. [79] it relates to similar terms and concepts that can be traced further back, driv-
ing research using such concepts as stigmergy. As such, niche construction refers to
the “neglected” processes used by an agent to manipulate or create its own environ-
ment and environmental dynamics. Indeed, this idea seems particularly relevant for
the fact that it emphasises an aspect of the brain-body-environment relationship we

1Though we are not forgetting that an agent can itself be considered a dynamic of its environment
2NB. Brain-Body-Environment and Body-Environment interactions might alternatively and collec-

tively be thought of as Agent-Environment interactions
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have already identified here as being often neglected within the study of AI. Moreover,
it further illustrates one of the problems with more traditional approaches and/or those
using evolutionary algorithms, being an idea that may have significant implications for
evolutionary computer scientists.

2.2.5 Mechanisms for Action Selection and their Effect on B-B-E
Relationship

For the animat approach, with the focus often being on the controller of an agent, it can
be useful to see the action selection mechanism as the “core” mechanism around which
other mechanisms may be created to act on and influence. One interesting branch of
the research on the action selection problem, as well as the brain-body-environment
relationship, can thus be categorised as focusing on improving existing action selec-
tion mechanisms by the incorporation or design of mechanisms which themselves (as
mentioned) can be seen as manipulators of the brain-body interaction (and thus the
brain-body-environment one). The use of such mechanisms might involve the incor-
poration of any kind of perceptual or other mechanism that will bring the agent in-
formation from the outside environment: whether from simple sensor addition such
as touch sensors for detecting an obstacle or features of its world, to the use of more
complex algorithms to obtain or filter sensory information for use in action selection.

It can be argued that such perceptual mechanisms manipulate the body-environment
interaction. This is because they lead to different perceptions of the outside environ-
ment being received by an agent. Examples of other types of mechanisms include
those imitating some aspect of learning, memory and/or other higher-level functions.
Without getting side-tracked into a debate of psychological theories of human emotion,
interesting developments have further been made through the introduction of emotion-
like mechanisms or components to existing and/or purposely-designed action selection
mechanisms. This includes the subset of action selection mechanisms we call in this
thesis “emotion-based”. Leaving aside the notion of emotion in its entirety, such re-
search is biologically-inspired in that it recognises that one of the likely functions
of emotion in humans is to produce adaptive behaviour in a dynamic environment
(though it is also interesting to note that adaptive behaviour itself is usually dynamic
behaviour).

Various mechanisms and functions of (artificial) emotions have been suggested in
relation to autonomous agents and various agents, both simulated and robotic, have
subsequently been designed and implemented for study. Bringing the literature to-
gether in this area, a good analysis using a selection of existing agent architectures that
include an emotion mechanism has been provided by Rumbell et al [80] who have re-
cently attempted to address the difficulty of making comparisons between such agents
by proposing a set of architectural qualities as a basis for comparison. The architectural
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qualities they suggest are the agent architecture, action selection mechanism, emotion
mechanism and the emotion state representation, along with the model it is based on.

To give a few examples of the work carried out to-date by those researchers who
have chosen to adopt a bottom-up approach to the study of (various mechanisms and
functions of) emotion in artificial agents, in the work of researchers such as Gadanho
and Hallam [81] we have seen the development of a non-symbolic emotion model in
the form of a recurrent artificial neural network. Key to their work is the idea of re-
inforcement learning and emotions. That is, they explore what they consider to be
the most usual role attributed to emotions in the functionality of an artificial learning
agent — providing a source of context evaluation or reinforcement. In contrast, Del-
gado Mata and Aylett [82] examine a slightly different role for artificial emotion (with
an emphasis on the specific emotion of fear). Focusing on communication of emotion
between agents, they have developed an ethologically-inspired action selection mecha-
nism which integrates emotion with flocking and grazing behaviour in virtual animals.
Their suggestion is that emotion reduces the complexity of behaviour, thereby acting
as mediator between individual and collective behaviour. More recently, Burattini and
Rossi [83] have provided another example of this approach, suggesting that the in-
troduction of emotion as “timed controlled structures” may lead to an adaptation in
emergent behaviour without having an explicit action selection mechanism. They have
related the emergent properties of their (robotic) architecture to a substrate for emo-
tional processes, again intended as a bottom-up influence on perceptual capabilities
and action selection. Their conclusion is that this allows for more flexible/adaptive
behaviour, such that their agent is able to react and adapt in real time.

Various researchers, including Cañamero [67] and Avila-Garcı́a [29], suggest hormone-
like mechanisms are likely to be of increasingly more importance and useful for agents
operating in more dynamic environments, allowing for temporal patterns of behaviours
to be adjusted, often in response to stimuli detected in the environment. Mendao’s [84]
work on an architecture based on the role of biological hormones in the neural sys-
tem provides further support for the idea that such mechanisms give us the potential
to achieve complex behaviours through the interaction of very simplistic structures.
However, he suggests that as the number of behaviours grows so too would the amount
of design required to achieve meaningful emergent behaviour.

This research is also supported by the work of researchers in other disciplines, in-
cluding neuroscientists, such as Lazarus [85], Damasio [86] and Fellous [19]. This
is reflected more recently, with Tanguy, Willis and Bryson [17] suggesting the use
of emotions as “durative dynamic state(s) for action selection”. In this way, perhaps
a better solution is to see perception as being the information obtained from the out-
side world/environment; perceptual mechanisms relating to how this information is ob-
tained; and cognition as more of an emergent property (which seems more in keeping
with the nature of the animat approach itself anyway). Thus emotion or hormone-like
mechanisms may be considered mechanisms influencing perception, which therefore

24



2. Animat Brains, Bodies and Environments

create or help to create a system. Indeed, this thinking could also be applied to the
action selection mechanism itself. That is to say, an action selection mechanism could
be the emergent property of an arbitration mechanism, architecture, body and environ-
ment acting/interacting together.

2.3 The Prey-Predator Relationship
The relationship between predator and prey is one that should be of particular interest
to those studying action selection [14; 79; 87]. Indeed, it is of interest across and within
many disciplines. While there are many aspects of this scenario to interest researchers,
what often stands out is the fact it is a relationship between two agents. Moreover, it
is a relationship characterised by a dependency of one agent (the predator) on another
(the prey) for its continued survival. This results in interactions between agents that
will determine the success of each agent, with a push-pull effect. Where one wins, the
other will likely suffer some corresponding cost or loss.

Looking at the literature, research has explored this scenario from various perspec-
tives: from the level of the individual over a lifetime to populations across generations.
Yet the way this relationship has most often been studied is through the development of
action selection mechanisms for the prey that will result in it fleeing whenever it sees
a predator, thereby making immediate flight the more or less automatically optimal or
decided choice of action, regardless of the task currently being performed. Strangely,
researchers have also commonly continued to focus on one type of agent only (predator
or prey) with the action selection problem of the other agent being of secondary to no
interest. We regard this as possibly leading to a more superficial look at, or treatment
of, the action selection problem for artificial predators and prey. This could encourage
researchers to adopt a perspective which may lead to less rich, or realistic, solutions
than might be the case or useful in real life and real time.

For example, this emphasis does not take into account or allow for the possibility
that in fact there may be times in which the more adaptive behaviour would be for the
prey to “take the risk” of being attacked by its predator. Or, indeed, the case that there
are some, if not many, environments in which life must constantly be risked in order to
achieve long-term survival. Perhaps in favour of satisfying some other survival need
or task. Looking towards ethological studies for evidence and inspiration, researchers
illustrate this could also be true of biological organisms.

For instance, Cooper [88] found a species of lizard will tolerate predators to come
closer before they decide to “flee” under certain conditions, including when they were
eating food. Though it could be argued this might also reflect the possibility that the
lizard’s attention is more directed on feeding than awareness of or perception of the
predator. More interestingly, it could be that some kind of economic model allows for
“risk-taking” or a kind of “cost-benefit” analysis in terms of risk assessment that is
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adaptive for agents. Then too, this could lead to a role for emotion-like states as quick,
real-time assessors of risk in relation to certain stimuli.

The predator-prey relationship is an interesting and relatively popular action selec-
tion problem, as well as a general scenario for study within AI. For example, it has
been explored, using various techniques, by researchers such as Floreano and Nolfi
[89]; Buason and Ziemke [4]; Avila-Garcı́a [29]; Cañamero [67]; Tyrrell [14]; Kelly,
Holland, Scull and McFarland [87]. While certainly interesting in its own right, per-
haps what makes it particularly useful for studying the problems of action selection is
that the introduction of some kind of “predator” will immediately introduce dynamics
to a previously static environment, thereby increasing the “pressure” on the prey (or,
more specifically, its action selection mechanism) to make the right decision; while
also allowing the researcher to explore brain-body-environment interactions further.

As an action selection problem, the predator-prey scenario for the prey mostly con-
sists of having to choose how to respond to a predator so as to survive, whilst not ne-
glecting other essential tasks necessary for its survival. While many researchers have
focused on looking at problems of action selection through studying the prey (Avila-
Garcı́a [29], Tyrrell [14]) others have also attempted to consider the predator and its
action selection, often by taking a broader perspective. Usually, this involves introduc-
ing some kind of evolutionary component so as to simulate some kind of “competitive
co-evolution” of/between both predator and prey (For examples, see [4; 89]). What
is particularly interesting about this latter approach, however, is that it also enables
its researchers to study further the interplay between brains, bodies and environments
within the predator-prey scenario.

Some studies [29; 67] have also found, through manipulation of brain-body inter-
actions, action selection and therefore performance of the prey can be improved. For
example, via hormone-like mechanisms which release a “hormone” when the pres-
ence of a predator is detected. This, in turn, affects interactions between brain and
body such as perception (in the case of [29] the hormone-like mechanism acting as
a second-order controller to the existing action selection mechanism). This is an in-
teresting development in that it further supports the idea that, by making interactions
between brain and body more dynamic, whilst also connecting/rooting this to relevant
environmental features (in this case, the presence of the predator) we can produce more
adaptive behaviour in more dynamic environments.

Intriguingly, different types of predator-prey relationship may also be seen to arise
from the use of different action selection mechanisms, morphologies and environ-
ments. Or, in other words, brains, bodies and environments (as demonstrated by Bua-
son and Ziemke [4], for example). This is perhaps reflective of the different types
of predator-prey relationship discovered in nature: from the more symbiotic relation-
ship, to the parasitic, to the more traditional life-or-death situation once predator en-
counters prey. In this respect, continuing research in this area may thus be beneficial
not only for what it can tell us about the problems of action selection (for example,
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in producing adaptive behaviour in dynamic environments) but also for what it can
tell us about the dynamics of the predator-prey relationship itself, particularly in the
context of the brain-body-environment relationship. That is to say, we want to know
how the predator-prey relationship is influenced by and can influence the brain-body-
environment relationship. But we also want to see how this can, is and/or might be
manipulated.

With regards to niche construction in particular, the predator-prey scenario may
also be useful in exploring further this “neglected” aspect of the brain-body-environment
relationship. For example, by manipulating a prey agent in ways that will change its
behaviour, the environment of a predator agent is also likely to change, which may
mean it will also respond differently and/or need to adapt in different ways. This ef-
fectively means that prey has some freedom/control over creating its own niche (and
vice versa). Or, in other words, the prey can partially influence and shape its own
predator-prey relationship. Indeed, when considering real life scenarios, with entire
ecosystems having evolved together, it seems likely that such studies will help lead us
further to generate ideas as to how such predator-prey relationships as do exist may
have actually come to exist. But perhaps more importantly, how each agent adapts to
the dynamic behaviour of the other: thereby also allowing us to consider the possible
contribution(s) of perceptual mechanisms to niche construction.

What will be interesting to discover is whether more “adaptive” action selection
mechanisms will be those that attempt to and keep brain-body-environment relation-
ships stable; or whether they will be those that attempt to actively modify the brain-
body-environment relationship itself. That is to say, in the agents’ own self-interest.
Perhaps this may also be related to the ideas of autonomy/automaticity (such as Steels
[42; 43; 44]). For instance, an action selection that attempts to keep the brain-body-
relationship stable might be considered an automatic system, while an action selection
that successfully (adaptively) manipulates the brain-body-environment might be con-
sidered an autonomous one.

In summary, the predator-prey relationship may thus be of interest for action se-
lection researchers for many reasons. However, for us, among the most interesting
are:

• Adding a predator (or prey) to a given agent’s environment is a way of making
that environment dynamic. It leads to changes over time that the agent must
respond to adaptively and often increases environmental complexity. Thus, in
terms of action selection, it can act as a good test for how well an individual
agent (or the action selection mechanism implemented within it) can cope with
increases in the dynamics of their environment. Importantly, the nature of these
dynamics are typically such that each agent has to make quick decisions in order
to make adaptive ones. This leads to a trade-off, where if the agent hesitates or
ponders too long, all could be lost anyway (game over, especially for the prey).
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• It allows us to study action selection at a higher or more general level, within
the context of two agents in a very unique relationship. Typically, one in which,
where one agent wins, the other will invariably lose. This may affect the de-
mands for (and guide the design of) the agents and action selection mechanisms
themselves, especially as the relationship is characterised by a dependency of
one on the other — in as much as predator is dependent on prey. Admittedly,
prey might also be said to be dependent on predator. For instance, at the popu-
lation level, to avoid over-population. Yet such dependency is likely to be much
more indirect. This thereby makes the balance of opportunity cost and stakes for
each agent in any interaction unequal. Where predator loses a meal, prey loses
its life.

• It provides us with (if nothing else a wealth of biological) inspiration for build-
ing action selection mechanisms both a) capable of dealing with situations of
high and immediate risk (used by prey) and b) capable of adapting to another
agent’s behaviour (environmental dynamics) for the agent’s own advantage (used
by prey and predator). It is also a problem that may call for compromises, in-
creasingly specialised or more adaptive behaviours and, more specifically for us,
interesting trade-offs. Namely, between the basic choices for the prey of whether
it should flee or not, and for the predator of whether it should attack/hunt or not.
Somehow, these agents must be able to effectively weigh up and make these
decisions in the limited time available.

• It allows us to focus on the interactions that result between (the action selection
mechanisms of) two agents with different sensory abilities, brains, bodies, moti-
vations, possibly emotions (especially at the time of interaction) and behavioural
repertoires. Starting our own “arms race” between such agents, we can develop
and fine-tune features of these agents to enable one to gain an advantage over the
other. This could not only produce and drive the production of increasingly more
adaptive agents, but also lead to a better understanding of the (different types of)
predator-prey relationship(s), as well as the circumstances when certain compo-
nents of action selection mechanisms might be most adaptive.

• It allows us to look in more detail at the requirements for adaptive behaviour in
this context. For example, it allows us to ask whether a predator needs more
“brain power” than its prey in order to be able to catch it, or simply different
types of behaviours and abilities. Similarly, it allows us to explore those ways
in which we might increase or examine the adaptive value of predator and prey
action selection mechanisms. This could include the use of methods across dis-
ciplines. For instance, we might analyse developed prey agents’ behaviour in
a similar way to Cooper’s lizards: in terms of the assessments of risk or cost-
benefit analyses that he suggests can be used to explain their behaviour.
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2.4 So where does this Thesis fit in?
For an agent, the problem of action selection can be defined as consisting of decid-
ing what behaviour to execute next, so as to carry out conflicting tasks and guarantee
survival in a given environment and/or situation [45] which is often dynamic, unpre-
dictable, and hazardous. According to Maes [45] the main task in this area of study
is to build architectures or action selection mechanisms that will result in an agent
demonstrating “adaptive, robust and effective behaviour”. Indeed, many artificial ac-
tion selection mechanisms have been proposed in the literature, and their researchers
often try to compare the properties that different mechanisms display in order to see
what type(s) of controller (as, in effect, examples of different animat “brains”) per-
form(s) best under different conditions [40].

However, in contrast to research focusing on the development of controllers for
generating adaptive and autonomous agents, another, relatively more recent branch of
literature argues against the advisability of focusing purely on such “brains” at the risk
of forgetting all about the role of embodiment. This includes the body of an agent itself.
For, as Chiel and Beer [21] mention, “mechanisms of adaptive behaviour generally
focus on neurons and circuits. But adaptive behaviour also depends on interactions
among... nervous system, body and environment... ” thus “one cannot simply ‘peel
away’ the body to understand the nervous system’s role in adaptive behaviour”.

This argument has implications for action selection mechanisms in that it suggests
that adaptive and autonomous agents may best be understood when investigating the
relation between “brain” and “body”. For example, manipulating interactions both
between these components, as well as their combined interactions with aspects of an
environment, rather than just the “brain” (as represented by the action selection mech-
anism). In this thesis we too claim that better, more adaptive action selection mecha-
nisms would be developed if they were to encompass bodies. Furthermore, these ideas
may have important consequences for the study of the role of emotions in action se-
lection and decision making in general, encouraging researchers to take an “embodied
emotion” approach [90; 91] to model the effect of emotions on cognition and behaviour
through the body. Related to this, Parisi termed “internal robotics” the area of research
which aims to study the interactions of brain and body more closely [24].

Driven by our interest in making our own contribution to the research outlined in
this chapter — and because we believe a more systematic study of the predator-prey
scenario will lead to the development of better, more adaptive, emotion-based archi-
tectures — in our research we have been and are currently developing both a model
(and associated robotic implementation) of brain-body-environment interactions in a
predator-prey scenario. In doing so, we have chosen to study a specific type of architec-
ture so as to develop insights and explore more general concepts related to the adaptive
value of emotion in dynamic environments. The general framework within which we
hope to formulate our concrete research question(s) can be summarised thus: Under
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what conditions will a mechanism simulating neuromodulatory effects (as a proposed
substrate of emotion) prove adaptive for agents, in terms of action selection, emotion
and brain-body-environment interactions in a predator-prey scenario?

This also equates to: What factors will affect the adaptive value of a mechanism
simulating neuromodulation, as a proposed substrate of emotion and biasor of action
selection, in a predator-prey scenario? We are interested not only in what this will
tell us about the possible adaptive value of emotion, but also its likely link to and de-
pendence on properties of a given body and environment (implementation or task[s]).
More specifically, however, we ask: How will changes in the physical (such as sensory-
perceptual and motor-behavioural) abilities of predator and prey agents — sensory ca-
pabilities, in this case the distance into environment information about stimuli can be
obtained — interact to affect the balance and dynamics of their relationship, in terms
of the advantage of one over the other in given encounters? This includes who “wins”,
but more importantly it considers the behavioural interactions and the adaptive value
of a mechanism simulating neuromodulation, as a proposed substrate of emotion and
biasor of action selection.

Having considered the literature with regards to action selection and emotion in the
context of brain-body-environment interactions, as well as the brain-body-environment
relationship, we think this question is interesting because it not only explicitly explores
the importance of certain specific aspects of body in producing adaptive behaviour, but
also considers their importance for the successful integration of emotion and emer-
gence of specific, adaptive behaviours within a predator-prey situation. For it not only
looks at what kind of role emotion might play with regards to brain-body-environment
interactions, but also how the presence of another agent (prey or predator) might con-
currently affect and direct this relationship and its interactions.

To put this more simply, in the rest of this thesis we will ask: What will happen
to the dynamics of a predator-prey relationship in terms of physical/behavioural ad-
vantage and consequent adaptive value of a mechanism simulating neuromodulation
as a biasor of action selection when sensory capabilities (in this case, the distance into
environment information can be obtained) are varied?
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Chapter 3

A Model of Emotion-Based Action
Selection

“Remember that all models are wrong; the practical question is how
wrong do they have to be to not be useful.”

— George E. P. Box

Adopting a bottom-up, animat approach to investigate intelligence and adaptive be-
haviour, in this thesis we ask: How will changes in the perceptual abilities of predator
and prey agents interact to affect the dynamics of their relationship, in terms of the
adaptive value and emergence of adaptive behaviour from an emotion-based architec-
ture for action selection? With regards to our wider research interests, but especially
those encapsulated within our research question, the last chapter provided an initial
overview of some of the literature relevant to and motivating our research — devel-
oping a framework for, as well as positioning our ideas and subsequent work within
the wider literature. As we have illustrated, with regards to their roots in the literature,
the nature of the goals, encompassing the research question and aims, of this thesis
are particularly interdisciplinary. This poses several challenges, one of the main ones
being to choose among the many different methodologies available.

The underlying philosophy encapsulated within our model is that by representing
and explicitly modelling agent brains, bodies and environments as components, we
have the means for producing, using a bottom-up approach, aspects of intelligence
including emotion-like phenomena. Being strongly convinced that a bottom-up ap-
proach would provide us with a new look at an old problem we first had to consider
how to model and explore our main ideas further. In this chapter, we proceed to both
narrow and extend our focus on the literature to turn to and describe the model we
have consequently adopted in greater detail. In selecting and designing elements of
our model of brain-body-environment interactions in a predator-prey relationship, we
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aimed to construct a useful model for testing our ideas about the emergent properties
of a mechanism simulating interoceptive modulation. Adopting an animat approach,
in our model we make use of the Hazardous Three Resource Problem (H3RP). This is
the formalisation of a specific scenario which appealed to us because we consider it
enables the combined study of action selection, brain-body-environment interactions
and the predator-prey relationship. Here, we start to describe our model by providing
an initial description of the basic elements of the H3RP, looking at the research which
generated it.

The specific emotion-based action selection mechanism chosen for use in our in-
vestigation throughout the rest of this thesis is also outlined, which we further link to
the existing literature by comparing it with some examples of others using several crite-
ria. The chapter concludes with the examination of the different measures researchers
have used to evaluate agent performance. The calculations we use to measure “adap-
tive value” can be differentiated between in terms of the more quantitative measures
of viability and more qualitative temporal measures relating to activity cycles. These
are the dependent variables measured in our experiments (an outline of which will be
provided in the next chapter).

3.1 The Hazardous Three Resource Problem

3.1.1 The Two Resource Problem (TRP)
The H3RP is perhaps best described as an extension of the Two-Resource Problem
(TRP). Used by researchers to study the problem of action selection, the TRP is an
embodiment of the simplest model of action selection there is. That is, the situation
where an agent, given a choice between two resources, must choose at any given mo-
ment which one to search for or consume.1 However, we focus on one formalisation of
this problem in particular, looking to the work of Avila-Garcı́a [29]. This is because,
in keeping with our own interest in the potential role of the body, both internal and

1With regards to the terms used to describe both our ideas and research within this thesis, we are
aware some can have certain biological, or other, connotations we may not intend. However, despite the
potential controversy in using them to describe elements which relate to artificial agents, we argue it is
less confusing to simply adopt these terms, giving working definitions if necessary, than to invent a new
terminology. For, from our perspective, introducing new terms will not only be a potential source of
confusion (why invent a new word when the reader grasps what is meant more quickly using an existing
one, or will likely only substitute it in their mind for something more biologically-related anyway?)
but will likely also disassociate the element it refers to from the possible biological counterparts they
have been inspired by. Moreover, it affects the interest and appeal of our work when other researchers
have to learn a new vocabulary to understand it. This would not be in keeping with the interdisciplinary
nature of this research (in terms of encouraging a two-way flow of ideas). Thus, where we freely use
terms such as consume, physiology and nest it not always in their fullest, biological sense, but in a more
restricted, often more abstracted, artificial one.
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external, for artificial intelligence, in his formalisation of the TRP an internal physi-
ology is introduced. Two physiological variables, internal to the agent, must be kept
within a certain range, or else the agent will die (which would not be particularly adap-
tive!). These two variables are set to naturally decrease with time, following a kind of
metabolic activity. However, they can be increased if the agent can reach and consume
the corresponding resource in its environment. An action selection mechanism must
therefore be devised to keep the agent alive long enough to reach one resource, without
dying from lack of consumption of the other.

3.1.2 The Hazardous Three Resource Problem (H3RP) — A Dy-
namic Extension of the TRP

In terms of environment, the original TRP was a static one in as much as the agent’s
surroundings were unchanging. However, the TRP was extended to create the H3RP.
Compared to the TRP, the H3RP incorporates additional elements to make it both a
dynamic environment as well as a platform for studying the predator-prey relationship.
For here another agent (the predator) is introduced. With this problem, the original
agent of the TRP (now a prey agent) must still decide at any given moment which, of
two resources, to search for or consume. However, it now also has to deal with the
additional environmental dynamic caused by the danger introduced by the predator,
which can attack and therefore “kill” its prey by decreasing levels of a third physio-
logical variable. Not only does the now-prey agent gain this additional physiological
variable to keep within a viable range, but it also gains another resource type in the
form of a nest. This can be thought of as a safe place where it is protected from its
predator in as much as it cannot be attacked, but where the levels of its other two
physiological variables will still continue to decrease.

The prey’s task now becomes more difficult, as it does not just have to balance its
time between the two resources of the TRP. Indeed, any action selection mechanism
designed for the prey must now allow this agent to balance its time between three re-
sources. This means the prey must effectively “decide” how or somehow incorporate a
successful strategy to deal with the presence of its predator. Successful action selection
mechanisms might use various strategies to do this. For instance, perhaps biasing the
prey to spend more time “hiding” in the nest, so that there is less chance of an attack
— coming out only to “forage”. Or, to give another example, spending less time in any
one location — this might keep the prey from stopping too long in one place, which
might allow the predator to catch up. Alternatively, this might involve the prey risking
attack. Though, if attacked, the prey then also still has to choose whether to spend time
searching for its nest and healing any damage or satisfying its other goals first, risking
further attacks.
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3.1.3 Earlier Research
Overall, the H3RP was one of three problems formalised, of which individual robotic
implementations of each one were developed and studied. Using LEGO RCX robots,
the first to be created was an implementation of the TRP. Following the results of
experiments in simulation, this was used to compare two different action selection
architectures. The experimental data collected was analysed using the more novel
concept of activity cycles. That is, analysing and seeing action selection as more of a
cycle of activities — which in the TRP must keep the internal environment of the agent
stable — than a series of individual actions or decisions made.

The second implementation, building on the first, was an implementation of the
Competitive Two Resource Problem (CTRP). Like the H3RP, this problem can be
thought of as an extension of the TRP. For, in this scenario, two agents have to ef-
fectively perform the TRP in the same environment. Biologically-speaking, this can
also be related to the case of conspecifics competing for the same resources.

Avila-Garcı́a found that the architectures of the TRP were not adaptive enough to
deal with the additional dynamics introduced to the CTRP or the H3RP. However, with
both the CTRP and H3RP he found the performance of motivation-based architectures
could be improved with the addition of a hormone-like mechanism. In the CTRP this
was achieved by a process akin to exteroceptor modulation (modulating internal and
external sensor readings) and in the H3RP by a process akin to interoceptor modulation
(modulating perception of an internal variable — in this case, the variable used to
represent the damage sustained by the prey agent).

3.2 An Emotion-Based Architecture
Taking inspiration from the work of neuroscientists such as Damasio [86] and Fellous
[19; 20] — the former having used studies of brain-damaged patients to suggest emo-
tions have a vital role to play in rational human decision-making — it has been sug-
gested that mechanisms incorporating or otherwise simulating functions equivalent or
similar to those of emotion(s) may be useful in the successful design and improvement
of existing action selection mechanisms. In computer science, particularly for AI and
AL researchers, such evidence has been further used to support the idea that some kind
of artificial emotion(s), playing an equivalent function to emotions in human and/or
animal decision-making, might be required in order to produce more adaptive and au-
tonomous behaviour from existing robot action selection architectures. For example,
by increasing behavioural flexibility or plasticity.

Exploring this idea, researchers interested in this area have already attempted, with
varying degrees of success, to create more flexible action selection mechanisms by de-
signing what we term “emotion-based architectures”. However, the approaches taken
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to incorporate the idea into a model of action selection and emotion have been equally
varied. From the more top-down approach taken by researchers such as Breazeal [92],
to the more bottom-up approaches of researchers such as Cañamero [67]. While all
these approaches have produced interesting models of emotion, exploring its possible
role in relation to action selection, we think the latter approach may be especially use-
ful to researchers who wish to investigate plausible mechanisms underlying emotional
modulation of action selection and their adaptive value in autonomous robots. That
is, in as much as it avoids taking the more “black box” approach often advocated by
top-down models.

As previously noted, in our research we focus on studying and developing one
action selection mechanism in particular1. In keeping with our research question, and
positioning our chosen mechanism in the emotion-based subset of action selection
mechanisms, ours implements the same hormone-like mechanism first developed, and
previously used, by Avila-Garcı́a in the context of the H3RP. An added advantage
of using this mechanism is that doing so allows us to compare our results directly
with those obtained in the original H3RP implementation. However, we chose this
architecture for many other reasons as well. Primarily, because neuromodulation has
previously been noted by neuroscientists as a possible “neural substrate” of emotion —
and the emotion-like states introduced to an agent using this hormone-like mechanism
can be said to simulate the effects of neuromodulation, albeit at a more abstract level
than that of the neuron.

The hormone-like mechanism that is adopted here is particularly appealing as the
idea (or at least one of the major advantages) is it is one that can be “added” on to
any existing control architecture quite easily (in this case, a motivation-based one).
It can thereby be used to modulate a given action selection mechanism or controller,
changing a more reactive architecture into one which can respond dynamically over
time (in this case a simple motivation-based architecture has been selected as the base).
It acts as a second order controller to the underlying architecture and can be connected
to stimuli/components both internal and external to the agent.

In terms of artificial agents, what is particularly attractive about this hormone-like
mechanism is it is used as secondary controller, and modulator of perception, to an
existing architecture for action selection. That is to say, it builds on top of a previously
“emotion-free” action selection mechanism to make it emotion-based. In our case, the
underlying action selection mechanism is a motivation-based architecture. However,
the emotion-like component is not specific to this type of architecture. This means it is
one which could also be attached to or incorporated in practically any existing action
selection mechanism. Another point in its favour is that it does not make as many a
priori assumptions about the functions of emotion as many other emotion-based action

1Though we do study the effect on its performance of changing various parameters, which could
also be thought of as creating and comparing different architectures
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selection mechanisms, allowing us to take a more bottom-up approach.
In our model we focus on implementing motivation-based architectures as our ba-

sic animat “brains”. Motivation-based architectures can also be thought of as a subset
of action selection mechanisms. However, their defining feature is that they are in-
spired by ideas about motivation, represented in some way as to be used in an action
selection mechanism. With regards to the concept of motivation, the motivation-based
architecture we have used incorporates notions of both intrinsic and extrinsic motiva-
tion. Intrinsic motivation comes from within the individual agent, whereas extrinsic
motivation comes from outside. In our H3RP this is reflected in our agents’ calcu-
lations of motivational intensity, which uses the level of internal drives generated by
the current level of physiological variables (intrinsic motivation) and the presence of
stimuli, including resources, detected by agent sensors (extrinsic motivation).

Considering the hormone-like mechanism we use to create our emotion-based ar-
chitecture, we are especially interested in exploring how it might be implemented out-
side of computer simulations, embodied in the real world, in scenarios which place the
architectures and evaluate their performance within complete agents (taking an animat
approach) and in dynamic environments.

In the case of the H3RP, this hormone-like mechanism is connected to the perceived
presence of the predator. If detected, the prey’s hormone-like mechanism will signal a
“release” of hormone that will act as a biasor of action selection — in this case encour-
aging the prey to rest or search for its nest. In this way, it can be likened to the primary
emotion or some kind of mechanism of “fear”. Acting in this way, this mechanism has
been tentatively linked to emotion-like modulation of behaviour by researchers tak-
ing a bottom-up approach to the study of affect and action selection (following ideas,
such as Fellous’, about neuromodulation as the “neural substrate” of emotion for hu-
mans and other organisms). Previous experimental work has also found it to be useful
for adaptive action selection in a predator-prey context: primarily, as a modulator of
interoception (internal perception of the levels of physiological variables).

With this in mind, we have developed our own basic implementation of the H3RP
(outlined in greater detail in the next chapter). Initial experiments looked at the perfor-
mance, as measured by measures of viability also outlined by Avila-Garcı́a, of a prey
robot with and without a hormone-like mechanism, placed in different variations of
the H3RP. The idea was to try to vary the relationship between “hormone-release” in
terms of perceptual capabilities and outside stimuli, including features of the environ-
ment such as the resources of the prey’s environment and ability of its predator.

By using the H3RP as a framework we effectively study a society of sorts, com-
posed of predator and prey. Specifically, focusing on developing agent brain-body
combinations that create agents able to cope with and behave adaptively in ever more
dynamic environments. In the case of robots, this refers to dynamics found in the
real world. That is, our own — an aspect that makes it all the more appealing to us
especially.
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Figures 3.1 and 3.4 present Avila-Garcı́a’s architectures. One of the features of
these architectures that particularly appeals to our interests is they do not explicitly
label any one component as “emotion” — something we also advocate. Instead, we
both prefer a more bottom-up approach: trying to model one of the suggested neural
“substrates of emotion” — namely, neuromodulation. We do this in order to examine
the emergent properties of a system, which may consequently resemble the “emotion-
like” behaviours of real-life adaptive agents. Thus, we have both attempted to simulate
the effects of neuromodulation for the benefit (adaptively) of action selection mech-
anisms. In addition, at a level of abstraction which has resulted in the development
of hormone-like mechanisms (“hormone-release” occurring in the presence of relevant
external stimuli) which affect action selection over time. In particular, Avila-Garcı́a
examined different ways in which such a mechanism can act as a biasor of action se-
lection, modulator of perception (both interoception and exteroception) and “second-
order controller” for existing architectures.

Figure 3.1: Illustration and overview of Avila-Garcı́a’s modulated action selection architec-
ture, used in the CTRP: manipulating perception, and action selection, via hormone-like modu-
lation of exteroception using a motivation-based architecture. Emotion-like states are modelled
by the addition of a gland (g) releasing a “hormone”, the level of which is an additive func-
tion of internally-perceived physiological deficits and the presence/perception of a competitor.
This affects perception of external stimuli, increasing calculations of motivational intensity.
Hormonal concentration decays over time [29].
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3.3 A Comparison
To give an idea of where we place our emotion-based architecture and resulting work
in relation to that of existing emotion-based architectures, it may be useful to conduct
a quick comparison using some simple criteria. Here we do so in order to effectively,
albeit briefly, contrast our work with architectures created as a result of the work of five
different researchers: Breazeal, Arkin, Avila-Garcı́a, Delgado Mata and Mendao. We
chose each of these researchers and their architectures for different reasons: Breazeal
[92] provides us with a “classic” architecture for comparison, Arkin [93] with a rel-
atively recent addition for us to compare (TAME being the “state of the art” in the
history of his work) and Avila-Garcı́a’s work [29], as we have already mentioned, is
in many ways closest to our own, which makes it important for us to distinguish the
ways in which our approach and architectures differ. So as to also better illustrate the
similarities and differences between our work and that of researchers generally adopt-
ing a bottom-up approach to emotion, Delgado Mata [82] and Mendao [84] were then
chosen as two further advocates/representatives of this approach.

So as to get more of an overview of these differences, we look at these researchers’
work in reasonably broad terms. We do so here firstly in the context of how each
of these researchers treat/incorporate ideas about emotion in their architectures. Sec-
ondly, we compare their primary motivations, including the problem/domain of interest
they are interested in. Finally, we look at what they consider adaptive action selection
to be (in other words, their measures of adaptive value).

3.3.1 Function and Integration of Emotion
Illustrations of the types of architecture produced by Breazeal, Arkin and Avila-Garcı́a,
along with our own, are provided in Figures 3.2-3.5. To highlight the differences, we
can first look at how each one sees “emotion”. That is, their ideas as to the func-
tion and integration of emotion for action selection mechanisms. As can be seen from
Figure 3.2, Breazeal’s architecture explicitly introduces emotions as a subset of moti-
vations. Ideas about the function of emotion as being communicative are incorporated
through the modelling of emotional expressions (the “actions” selected by her imple-
mented robot Kismet) and internal “emotions” are used to activate a robot’s physical
“emotional expression” at any given time.

In contrast, Arkin (Figure 3.3) has more recently been contributing towards the
development of the TAME architecture. This introduces and incorporates emotions in
what might be considered a more “sophisticated” model, where emotion is treated as
one of a number of affective phenomena to be explicitly modelled (traits, attitudes,
moods and emotions). Similarly to Kismet, the robots (AIBO and Nao) in which
TAME has been implemented have used emotion in a communicative context. This
differs from some of his earlier architectures, looking “up the food chain”, which were
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Figure 3.2: Illustration and overview of Breazeal’s architecture for Kismet: Incorporating
ideas about different types of emotions and connecting them to different motor responses (emo-
tional expressions) [92]

generally based on the ideas of his earliest architecture (AuRA) but also were used to
explore the functions of emotion for an individual, autonomous agent.

Looking now towards those researchers specifically adopting a bottom-up approach
to emotion (as we are here) in his work Delgado Mata [82] considers one of the func-
tions of emotion as being to act as a mediator between individual and collective (or so-
cial) behaviour. To investigate this further, his own architecture models exteroceptors
used by real animals to detect the presence of chemicals in the external environment
as a virtual nose. Focusing on the communication of emotion between agents, the idea
here is that emotion will reduce the complexity of behaviour. In tune with our own
work, Delgado Mata demonstrates both a focus on the emotion of fear in particular
and a consideration of its role between agents. However, the motivation for our work
is different in as much we are not specifically focusing on emotion as a social regulator
per se.

Finally, with more relevance for our own work (Figure 3.5), we can refer to Figure
3.4. It is this work that we most closely align ourselves to in the respect of function
and integration of emotion. This is because, in his architecture, Avila-Garcı́a does
not actually explicitly label any one component as “emotion” — something we also
advocate. Instead, we both aim to adopt a more “bottom-up” approach, by instead
trying to model, taking inspiration from neuroscientists such as Fellous, one of the
suggested neural “substrates of emotion” — that of neuromodulation [19] — in order
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Figure 3.3: Illustration and overview of Moshkina and Arkin’s TAME Architecture: Incorpo-
rating ideas about and explicitly modelling personality and emotion using concepts connecting
Traits, Attitudes, Moods and Emotions (each of these varying in their temporal effects and
influence on each other) [93]

to examine the emergent properties of a system, which may consequently resemble
the “emotion-like” behaviours of real-life adaptive agents. Likewise, Mendao [84]
is similarly cautious about attributing a particular emotion to the emergent behaviour
demonstrated by his architecture. Having implemented an artificial system consisting
of neural networks that are sensitive to the available concentration of specific hor-
mones (released under certain conditions) his work bears a closer resemblance to our
own in our combined efforts to see if hormone-like mechanisms give us the potential to
achieve complex behaviours through the interaction of simple structures. Whilst we do
not use neural networks in our own work, interestingly, Mendao demonstrates the po-
tential of the types of hormone-like mechanisms we are interested in for architectures
other than our own.

In both Avila-Garcı́a’s and our own architectures, we therefore attempt to abstract
the effects of neuromodulation for the benefit (adaptively) of an action selection mech-
anism — which has resulted in the focus on development of a hormone-like mecha-
nism (“hormone-release” occurring released in the presence of relevant external stim-
uli) affecting action selection over time. In particular, in his architectures Avila-Garcı́a
examined different ways in which such a mechanism can act as a biasor of action se-
lection, modulator of perception (both interoception and exteroception) and “second
order controller” for existing architectures (in this case a motivation-based one).
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Figure 3.4: Illustration and overview of Avila-Garcı́a’s modulated action selection architec-
ture, used in the H3RP: manipulating perception, and action selection, via hormone-like modu-
lation of interoception using a motivation-based architecture. Emotion-like states are modelled
by the addition of a gland (g) releasing a “hormone” in the presence of a specific stimulus
(in the case of his predator-prey scenario, the H3RP, the predator) which affects perception
of internal physiological deficits, increasing calculations of motivational intensity. Hormonal
concentration decays over time [29].
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Figure 3.5: Overview of our developed architecture (“brain”) for a prey agent: internal “body”
is represented through physiological variables, deficits of which act as drives which, com-
bined with the presence/absence of external stimuli, are used to calculate motivational and
behavioural intensity. For example, calculations of motivational intensity for a motivation rep-
resenting hunger will take into account both physiological deficits such as blood sugar and
the presence/absence of food in the environment. In our experiments we vary external “body”
using different physical sensors. Emotion-like states are modelled by the addition of a gland
(g); releasing a “hormone” in the presence of a specific stimulus (in this case the predator)
which affects both perception of internal physiological deficits, increasing calculations of mo-
tivational intensity, and the behaviour selected in terms of physical response (speed or tempo
of behaviour is increased if hormone is present)
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However, one way in which our currently developed architecture differs from oth-
ers is that we try to integrate this kind of mechanism more pervasively or intricately
with the rest of our architecture. As later chapters will show, we have linked our
hormone-like mechanism not only to calculations of motivational intensity, but also
the intensity of behavioural response. To give an example, in latter experiments, this
has translated into an implementation of a prey agent that, when its “hormone level”
increases, so too does its physical speed. Thus, we use this “substrate” not only to
modulate perception, but to influence behaviour more dynamically and physically, in
terms of factors such as time and speed.

We think this has the advantage of effectively making “shortcuts” or more direct
links between a perceived external stimulus and physical response/readiness of action,
which may especially help in the problem of allocation of limited “energy” resources.
Moreover, we go further to consider the interactions between two agents (and their
architectures) rather than looking at one individually.

3.3.2 Problem or Domain of Interest
Next, we can turn to and compare the particular areas or “problems” that these archi-
tectures, or to be more specific their researcher’s implementations, have been used or
designed to study and solve. We attempt to do so here with regards to each researcher’s
particular contributions towards the study of action selection. These are reflected in the
implementations each researcher has developed, and the particular type of context (en-
vironment/scenario/task) they have looked at the role of emotion or emotion-like states
in. By doing this, we can extract some of those features of an action selection task that
each focuses on.

Whilst each architecture can itself be considered as a contribution to the action se-
lection literature, and all have been implemented in robots which is especially appeal-
ing for reasons we have previously mentioned, they have each been implemented for
quite different purposes and in quite different environments: Kismet to model social in-
teractions between infant and caregiver (human-robot interactions); Arkin’s TAME to
model affect more sophisticatedly for human-robot interaction; Delgado Mata’s to inte-
grate emotion with flocking and grazing behaviour in communicating emotion between
virtual animals; Mendao’s to see whether taking inspiration from biological hormones
might increase the flexibility of traditional artificial neural networks; Avila-Garcı́a’s
to test the properties of architectures across different types of environment/scenarios
(only one of which includes a predator-prey type scenario); and ours to study action
selection within a very particular context and relationship (predator-prey) in order to
examine brain-body-environment interactions.

First, in more general terms, we can see that the primary implementations of both
Breazeal’s and Arkin’s architectures have been in the area and interests of human-robot
interaction: the robot head Kismet being a result of Breazeal’s; and TAME having been
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implemented in both Sony’s AIBO dog and the humanoid Nao. While human-robot
interaction is of course an extremely relevant and interesting area for the study of the
role of emotion (particularly with regards to communicative functions and interactions)
what sets such architectures apart may actually therefore be that they are designed to
say as much, if not more, about our own emotions and interpretation of another agent’s
behaviour than its generally-applicable function(s) for a robot/agent as an autonomous
decision-maker. That is, as an agent interested primarily in its own survival.

In contrast, we regard this as bringing a dimension to the work that we currently
prefer to leave out of our own, in favour of focusing our study more on our agents —
and, one of the advantages of a synthetic approach, the interactions of two agents we
already know the exact internal workings of — and less on their impact on our own
(human) behaviours and perceptions of them as agents. Having said this, however, of
course we do not rule out the fact that we may inadvertently introduce our own bias as
researchers if we are not careful in how we study them.

To a lesser extent, the same can also be said of the work of Delgado Mata — one
further objective of this work being to examine how far his animals could increase the
feeling of immersion experienced by a human user in such environments. In terms of
the primary similarities and differences to his other research interests, whilst we might
point out that we can both be said to be generally investigating the function of emotion
between multiple agents, one of the most obvious differences between our own work
and that of Delgado Mata in terms of the problems addressed/domain of interest is
that we also explicitly model the action selection of a predator agent. Furthermore,
although we would not consider the two to be mutually exclusive, in our work we
have taken the decision to test our ideas directly outside of a computer simulation.
That is, we have taken the decision to implement our architecture in robots in the “real
world”. Though focusing only on the performance of one agent, in comparison to this,
Mendao’s work is perhaps more closely aligned to our own in the respect of both the
domain of interest and problem being addressed, having implemented his architecture
in a mobile robot (a Pioneer Dx2) equipped with a camera.

Avila-Garcı́a similarly goes a different way to Breazeal and Arkin: implementing
his architectures across different scenarios, also using LEGO robots (Taurus and Sador
being examples of these). However, he focuses instead on developing ways to quantita-
tively and qualitatively measure these implementations as individual adaptive systems,
so as to identify their specific properties in different contexts. That is, regarding other
agents solely with regards to how they may add to the environmental dynamics, and
possibly environmental complexity, rather than as an agent in a partnership or some
kind of artificial ecology, which can affect and be affected by other agents.

So, by not focusing on one particular problem, Avila-Garcı́a was able to look at
the properties of architectures, in particular arbitration mechanisms, across different
scenarios. He developed several types of scenario for the study of action selection,
including a robotic two-resource problem, competitive two-resource problem and haz-

44



3. A Model of Emotion-Based Action Selection

ardous three-resource problem (H3RP). Yet, even in his predator-prey type scenario
(the H3RP) action selection did not involve situations of such high risk as might be
expected of such a relationship. This was due to the development of a more “para-
sitic” type of predator-prey relationship (allowing his agents some leeway in choosing
to change activity).

This does not, however, mean that we do not want to, think, or aim to contribute
towards developing ideas that may also be of use to these other domains of interest.
More, we think by focusing on our particular scenario now — that of predator-prey —
we will be able to bring something particularly special or unique to the problems of
these other architectures later. Currently, for instance, all of these other architectures,
when you consider their researcher’s implementations, do not seem capable of pro-
ducing adaptive behaviour in situations where both the two-way relationship between
two agents is accounted for (in other words, considering both agents) and the right
decision/action selection is vital for agent survival. That is to say, high risk.

What is primarily different about our own motivation then, regards to the kinds of
decision and environmental demands we want our architecture to deal with, including
those situations where there may not be enough time or flexibility to allow for mistakes
or trial-and-error learning; instead requiring split-second judgements. More to the
point, we want to consider this in the predator-prey scenario for a much more in-depth
look at this kind of relationship, where a predator is not just an environmental dynamic.
For example, if someone were to wave a baseball bat in a threatening manner at a robot,
what we would like to see this robot’s architecture capable of doing is to use “fear” to
better make those split-second decisions that will direct action selection towards the
agent’s own survival. This could involve some means of “fleeing” the scene, but might
even involve something like a suppression of emotional expression so as to calm the
human threatening it down.

Another difference can be seen in the type of intelligence or adaptive behaviour
studied. For example, Breazeal and Arkin can be said to study action selection and
emotion more towards our ideas about human-level intelligence and emotions (though
Arkin has in fact previously studied those relating to a lower, more insect-level intel-
ligence). However, again in common with Delgado Mata, Mendao and Avila-Garcı́a,
we attempt to go back to basics more; considering these concepts more in terms of
animal-like mechanisms of adaptive behaviour and intelligence — another reason for
studying the predator-prey relationship. While Arkin has previously studied architec-
tures aiming towards insect-like intelligence, incorporating and developing ideas about
motivation and emotion, in “moving up the food chain” [94] it does appear he left a
somewhat expansive gap between the level of insect and that of animals. This is where
our work comes in. That is, somewhere between the reactive architecture given to
an insect and the more deliberative architectures he chooses for those interacting with
humans.
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3.3.3 Measures (of Adaptive Value)
Finally, we can also compare these architectures in terms of the level of analysis and
criteria each researcher expects will be used to measure the adaptive value of their
architectures in a given implementation. Without going into unnecessary detail, in this
respect, perhaps due to their interest in human-robot interaction, both Breazeal and
Arkin can be said to have focused on the use of both internally and externally-derived
measures. That is to say they measure, for different purposes, both external effects
of the robot’s action selection on human response and the internal parameters of the
system or architecture over time. When involving observations, this is often a lengthy
process with regards to analysis, but has the benefit of allowing us to directly study
interactions between humans and robots. Although not as focused on observational
analysis, Mendao nevertheless also used data from both internal and external variants
for statistical analysis, with Delgado Mata focusing on examining the trajectories of
his agents across time steps as well as defining a measures of complexity.

Conversely, Avila-Garcı́a’s architectures have been studied placing focus on the use
of more internally-derived and summarative measures: to develop measures of analysis
that consider the viability of his agents over an individual life span (as the correct level
of analysis to study adaptive value). Avila-Garcı́a also considered action selection in
terms of activity cycles rather than separate decisions.

Similarly, we would like to consider how analysis of behaviour over time might
bring us more insights into our architecture’s behaviour in different predator-prey sce-
narios. In our work though, perhaps more in common with Breazeal, Mendao and
Arkin, we try to combine the use of both externally and internally-derived measures.
However, we also attempt to go further, for a more comparative look. One of our pri-
mary concerns is to ask at what level of study will we find out most or understand our
systems best, especially with regards to what one might consider adaptive value to be
(and in terms of brain-body-environment interactions and their emergent properties).
In this way we seek to bridge the gap between these architectures, in respect of the
level their researchers have proposed we analyse them at, whilst also trying to develop
our own.

One source of inspiration for us in this endeavour again comes from another dis-
cipline: ethology. Though dynamic systems theory has developed tools to study the
interactions of dynamic systems, we use the analogy of animal-like behaviour to sug-
gest that the ethologists have already developed many tools to be used in the analysis
of our animat agents. In particular, many of these methods allow us to combine both
considerations of internal and external data (as derived or obtained/collected from ex-
periments).
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3.3.4 Contributions
Having considered our work in the context of these existing emotion-based architec-
tures, the specific contributions we hope to make with our model, especially towards
the literature on action selection and emotion (or affect), can be summarised as follows:

3.3.4.1 For Affective Action Selection:

• Development of our emotion-based architectures and implementation of the H3RP:
extending and investigating the scenario further by varying properties relating to
the architectures, emotion-like states and embodiment of each agent. In initial
experiments, for example, we divided perception into proximal and distal types
(combinations of which make further sub-problems or versions of the H3RP).
This enables and hopefully justifies direct comparison, especially in terms of
the interactions of different physical properties of predator and prey, with pre-
vious findings using the same framework (such as the work of Avila-Garcı́a).
At the same time, this also introduces a new dimension for study (combination
with different types of embodiment: in this case range of perception or “sensory
ability”). Such a comparison will, for example, enable us to identify aspects of
the original scenario that may have been crucial for the success of the proposed
emotion-like mechanism and overall action selection.

• A more systematic study of the predator-prey type relationship than has been
conducted yet in the action selection literature with regards to affect. For exam-
ple, looking to see the minimal conditions under which our chosen mechanism
(or emotion in general) might be adaptive, especially with regards to the capabil-
ities of our agents’ “brains” and “bodies”, as well as features of the environment,
varying both abilities of predator and prey (for, while others have looked at the
role of emotion in the predator-prey scenario, they do not necessarily know or
have not necessarily taken into consideration how their mechanisms or emotion-
based architectures might work, or be developed to work, in increasingly more
dynamic environments, or with different types of embodiment such as sensory-
range).

• An analysis of costs and benefits of both emotions and decisions in the predator-
prey relationship: looking at neuromodulatory effects as the basis for emotion,
when used in different ways for agents (for example, aggression for predator
and fear for prey). Moreover, looking at action selection mechanisms more in
terms of trade-offs, thus using these mechanisms as assessors of risk or oppor-
tunity cost — quick or rough-and-ready filters for behaviour and/or representa-
tions of the importance and limited nature of time — so as to allow for timely,
temporally-adaptive response. That is to say, looking at action selection in terms
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of a trade-off between the time taken to decide and time taken for environmental
circumstances to change adversely.

3.3.4.2 For Analysis of Adaptive Systems:

• A comparison and evaluation of measures of adaptive value (both quantitative
and qualitative) that might be used: from internal measures of viability, to inter-
nal Markov Models of an individual agent, to Markov Models constructed from
external observational data (adopting the idea of activity cycles, thereby looking
to analyse temporal behaviour of agents rather than simple life span etc).

• An analysis of the action selection problem in terms of the brain-body-environment
relationship. Taking a broader look at action selection, so as to ask whether we
should actually be looking at the architecture alone in isolation, or whether we
find out more by considering elements together (for example, considering both
architecture and body, predator and prey — together, rather than individually).
Moreover, looking at how (more realistic) two-way interactions may affect per-
formance of architectures and where emotion might fit in the relationship.

3.3.4.3 For System Design:

• Demonstration of how we might manipulate or adjust parameters so as to better
“fine-tune” our mechanism and increase its value for adaptive action selection
in this context (of predator-prey H3RP). In particular, looking at how we might
benefit from further distributing control and neuromodulatory influence across
both agent architecture and agent body (as generators of brain-body-environment
interactions).

While each of these contributions alone may provide useful insights into various
aspects of the problem of action selection, we suggest that together these contribu-
tions will enable us to make an altogether much more comprehensive, greater, even
synergistic, contribution to the literature. For example, attempting not only to link im-
portant concepts such as action selection and emotion to the predator-prey relationship
and brain-body-environment interactions; but, in turn, highlighting their more general
contributions to the more intelligent design or creation of artificial life.

3.3.5 Our Research
Relating these elements back to our research question then, we are asking “How will
changes in the perceptual abilities of predator and prey agents interact to affect the
dynamics of their relationship, especially in terms of the adaptive value of an emotion-
based architecture for action selection?”. To summarise our methodology, to answer
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this question we have adopted an animat approach. This means we have started by de-
veloping agents with less complex abilities — with the aim of incrementally increasing
both the complexity and our understanding of our agents. To study a predator-prey rela-
tionship in terms of action selection and emotion we have designed an implementation
of the H3RP, using the hormone-like mechanism it was first designed to allow study
of. To extend this research further, we have also selected and developed a number of
measures to calculate “adaptive value” for our agents. With regards to changes in the
‘perceptual abilities’ of these agents, which encapsulates our questions about the im-
portance of agent brains, bodies and environments — as well as their interactions —
in our experiments we manipulate elements connecting our agent “brains” with agent
“bodies” and “environments”. This includes use of different physical sensors, as well
as changing the impact and connections of the hormone-like mechanism we study.

3.4 Summary
Within the current literature, Avila-Garcı́a’s work is in many ways closest to our own.
This is especially true in terms of methodology in as much as we both study the
H3RP and have developed robotic implementations of it to study this particular type
of emotion-based architecture. Consequently, in many respects this thesis can be said
to build on the findings of his previous work. However, we consider our own study
of this problem to be much more in-depth, focusing more on the H3RP as it relates to
the predator-prey relationship and less on using it as a platform to compare the perfor-
mance of different architectures across different environments. One of the aims of our
current experiments has been to allow us to see what factors might affect the success
of the hormone-like mechanism, previously studied in this implementation.

If emotions were not inherently useful for survival, one argument is that evolution
would have wiped them out already. However, just what continues to relate emotion
to survival (if indeed it does) is not something researchers yet agree on. Indeed, many
different functions of emotion have been proposed. Wanting to explore the idea of
emotion (or one of the functions of emotion being to act) as a second-order controller,
this thesis partly aims to ask whether hormone-like feedback or modulation, in the form
of a hormone-like mechanism or module added to an existing control architecture —
thereby creating an emotion-based action selection mechanism — will consistently be
able to improve performance of that architecture, as an action selection mechanism, so
as to enable it to behave more adaptively in more dynamic environments. At the same
time, this research is just as concerned with looking at how the performance of the
overall action selection mechanism itself can be found to interact with other features
of both agent and environment. We do so namely by varying the perceptual abilities of
both predator and prey — and in increasingly dynamic environments.

In this way, while taking much of its inspiration from the previous work of Avila-
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Garcı́a, we focus on their work mostly in terms of how it provides us with an interesting
and useful platform for exploring dynamic interactions. In this case, those taking place
between the perceptual capabilities of an agent and the performance of its action se-
lection mechanism within a dynamic environment. We adopt the animat approach as
one that specifically allows us to look at both the “whole” agent, as well as individual
“parts” to see how they interact or contribute to overall adaptive behaviour. By devel-
oping agents using this approach, we are therefore advocating a bottom-up approach
— by which we aim to start by designing and studying simple, but complete agents.
The aim here is to then successively build on (our understanding of) these agents to
hopefully build even more adaptive agents. To further define our approach, in terms
of the four questions of ethology, rather than adopting a phylogenetic perspective —
for example, by evolving agents — we focus on adopting a more ontogeny-related per-
spective. That is, looking over an individual animat’s lifetime as opposed to lifetimes
of multiple agents (whether generations or populations).
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Chapter 4

Robotic Implementation of the H3RP

“At bottom, robotics is about us. It is the discipline of emulating our
lives, of wondering how we work.”

— Rod Grupen

For both the study of artificial intelligence (AI) and artificial life (AL) robots con-
tinue to hold a special appeal as a platform for research. Part of their attraction is that,
in many ways, building and studying robotic agents allows us to test ideas about our
own intelligence directly in our own environment. This may give robotic models of
intelligence a key advantage over those developed solely in computer simulations. Not
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only may they act as better litmus tests for theories about intelligence as they relate
to our world, but they may also be able to cope with tasks and model aspects of intel-
ligence that purely computational models of intelligence do not. Using LEGO NXT
robots, we have developed a platform for investigating ideas about action selection,
particularly with regards to the addition of emotion-like mechanisms in the context of
brain-body-environment relationships (including agent-agent interactions).

Moving on from the more abstract or conceptual elements of our model, here we
provide concrete details of both the software and hardware of the robots we used to
create our physical implementation. In our experiments we have manipulated each
of our basic animats (predator and prey) so as to create different variations of the
H3RP (and predator-prey combinations) for us to study. By doing so, we wanted to
see how our hormone-like mechanism especially would perform in such variations.
Here we focus on providing a description of the basic prey and predator robots we
have developed.

The last chapter introduced and described the main features of our model of ac-
tion selection and emotion, introducing both the Hazardous Three Resource Problem
(H3RP) and our particular type of emotion-based architecture. Using these to help us
create a template for creating and studying different artificial predator-prey relation-
ships, we have also selected several measures of adaptive value to create and measure
the performance of agents that act within it, incorporating some ideas of our own so
as to develop new measures for comparison. In this chapter we move on from the last
to consider and describe the more technical details of our own implementation of the
H3RP and measures for evaluating agent performance.

4.1 Our variation of the H3RP
Our implementation of the H3RP uses two LEGO robots (one prey, one predator) to
create a platform for studying the adaptive value and emergent functions of a hormone-
like mechanism. In particular, we have developed our implementation so as to enable
us to consider what influence different aspects of embodiment have on this value. To
develop our basic H3RP, however, we first created an implementation of the Two Re-
source Problem (as outlined in the previous chapter). Starting with the development of
our prey we began by developing this agent so that it would be competent in solving
the TRP, before trying to study it in the more dynamic environment of the H3RP.

The robots used in our experiments were two Mindstorm LEGO NXT Robots, one
built as prey and the other as predator, each with 32 bit ARM processors running at
48MHz and direct access to 64KB of RAM and 256KB of flash memory (thus 320KB
in total). The NXT model has an advantage over its predecessor, the RCX, in that it
has 10 times as much memory, as well as a separate 8 bit AVR processor, running at 8
MHz, to control the servo motors and rotation sensors to guarantee the accuracy of the
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motor operations. Both robots’ configurations were developed incrementally, building
on a design called “R2MeToo”, described by Brian Bagnell in his book “Maximum
LEGO NXT: Building Robots with Java Brains” [95]. Our agents’ architectures were
programmed using Lejos, an open source replacement firmware for the NXT that aims
to imitate the Java VM and API style.

In initial experiments we chose to vary both prey modulation (to see if our re-
sults would support the findings of research conducted using the original version of
the H3RP, which found modulation helped increase the adaptive value of a motivation-
based architecture) and prey perceptual distance (to test our own ideas as to how as-
pects of embodiment might interact with or otherwise affect any additive value of mod-
ulation). So as to better enable us to link our work with earlier work using the H3RP,
an attempt was made to base the initial underlying architecture and external environ-
ment as much as possible on Avila-Garcı́a’s own robotic implementation. This was
incorporated into design of the environment, as well as that of our predator and prey.
Both robots were placed in an arena, creating an environment consisting of several dif-
ferent resources for the prey to choose between, thereby reconstructing the necessary
environmental stimuli required for a version of the H3RP to be created. In our imple-
mentation we named the two physiological variables related to the TRP blood sugar
and vascular volume.

Our agent (in this case robot) was placed within this environment, in which it could
identify and distinguish between two different types of resource. In our implementa-
tion we labelled these resources food and water, with each internal variable being asso-
ciated with one of the resources (blood sugar and vascular volume respectively). Over
time, the levels of these variables naturally decrease, displaying a kind of “metabolic”
effect. These can only be increased by the robot finding and “consuming” its associ-
ated resource. In this case, food to increase blood sugar levels and water to increase
vascular volume. The robot’s basic task at any point is to decide which resource to
search for or consume, while the ultimate goal for the underlying control architecture
is to enable the robot to make the right decisions so as to allow it to keep both internal
variables above their set point — and thus enable the robot to “survive”.

As outlined in the previous chapter, the H3RP extends the TRP by introducing
an additional, third, internal variable. In our implementation we have labelled this
“integrity”. Though not present in the earliest versions of our implementation (that is,
for the TRP) the additional resource we associated with this variable we have called our
robot’s “nest”. However, unlike the other two variables, the integrity of our robot is not
set to decrease predictably over time. Instead, this variable is affected by the presence
of another robot, now labelled the predator, which is able to cause damage to the robot
of the TRP (now the prey) and subsequently add greater complexity to the original
scenario by developing a dynamic environment (changing over time depending on the
actions of the predator).

In the H3RP, the prey can recover from damage to its level of integrity by escaping
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Animat PV Motivation (m) Phys. Drive PV Min-Max Ext. Stim (c)
Prey Blood Sugar Hunger ↓ dblood sugar 0-100 Food

Vascular Volume Thirst ↓ dvasc volume 0-100 Water

Integrity Need to Heal ↓ dintegrity 0-100 Nest

Predator Blood Sugar Need to Hunt ↓ dblood sugar 0-100 Prey

Energy Need to Sleep ↓ denergy 0-100 n/a

Table 4.1: Summary of each animat’s physiology: relating their physiological variables (PVs)
to their associated motivations (m), drives, minimum and maximum levels and the external
stimuli (incentive cues needed for consummatory behaviour) associated with them.

to its nest. However, the opportunity cost of this is, of course, the food or water it could
have otherwise consumed. The robot’s basic task at any point is still to decide which
resource to search for or consume, just as the ultimate goal for the underlying control
architecture is still to enable the robot to make the right decisions so as to allow it to
keep all internal variables above their set point (thereby enabling the robot to survive).
Yet successful control architectures will now have to take into account the dynamics
introduced with the presence of the predator. Giving each a basic motivation-based ar-
chitecture, using Winner-Take-All (WTA) arbitration and following the same design as
those studied by Avila-Garcı́a both predator and prey had to select appropriate actions
from a behavioural repertoire. A summary of our robots’ underlying physiological
variables, motivations and behaviours are given in Tables 4.1 and 4.2.

Animat Behaviour Type Ext. Stim Effects on Physiology
Prey Avoid reflexive obstacle −0.1 to blood sugar and vasc. vol

Eat consummatory food +1 to blood sugar, −0.1 rate to vasc. vol
Drink consummatory water +1 to vasc. vol, −0.1 to blood sugar
Heal consummatory nest +1 to integrity, −0.1 to blood sugar and vasc. vol

Search appetitive none −0.1 to blood sugar and vasc. vol
Predator Avoid reflexive obstacle −0.1 to blood sugar and energy

Attack consummatory prey +50 to blood sugar, −0.04 to energy
Rest consummatory none +1 to energy, −0.04 to blood sugar
Hunt appetitive none −0.04 to blood sugar and energy

Table 4.2: Summary of our prey and predator’s behaviours, the stimuli associated with them
(incentive cues necessary for consummatory and reflexive behaviours to be executed) and their
effects on each animat’s physiology.

4.2 The Robots
Two main types of decisions had to be considered and made in the process of designing
our predator and prey robots: those relating to internal mechanisms and those relating
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to physical components. In our implementation, this translated to the action selection
mechanism chosen and used by us (as described in the previous chapter and Figure
4.1, we chose to implement a motivation-based control architecture/action selection
mechanism) and the eventual hardware configuration of our agents.

Figure 4.1: Overview of the basic architecture (“brain”) of our initial agents: internal “body”
is represented through physiological variables, deficits of which act as drives that, combined
with the presence/absence of external stimuli, are used to calculate motivational and be-
havioural intensity. For the prey, a “hormone-like” mechanism is introduced by the addition of
a “gland” (g) which releases a “hormone” in the presence of a specific stimulus (in this case
the predator) which affects both perception of internal physiological deficits and can create a
feedback mechanism between environment and brain via the body that can affect the behaviour
selected.

4.2.1 Prey
Figure 4.1 again provides an illustration of the basic architecture used for the prey
robot, while Tables 4.1 and 4.2 provide more details about the specific motivations and
behaviours named in the architecture. That is, the physiological drive used to calcu-
late each motivational intensity, the external stimulus associated with each drive (the
presence of which will increase the motivational intensity of the motivation associ-
ated with that drive) as well as the optimum values for each physiological variable (set
point) and the point at which the system fails (the limit is the point at which one of the
physiological variables is less than or equal to 0).
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Figure 4.2: Illustration of the physical design of our basic prey agent, used in our initial
experiments. We built this basic prey agent, a LEGO NXT robot, so as to take inputs from one
ultrasonic sensor (with which to detect the presence of the predator) two touch sensors (with
which to detect obstacles, whether that be the presence of the predator or the arena walls) and
a light sensor (with which to distinguish between the various “resources” represented in our
arena). We programmed our motivation-based architecture and “internal physiology” into the
software of our robot using Lejos.

Motivations in this case are tendencies to behave in certain ways as a result of
internal and external factors. Internal factors refer to the deficits for each physiological
variable at a given time. For instance, when either blood sugar or vascular volume fall
to less than their set point (100) in value, the resulting deficit is used as a measure of the
internal incentive to increase that physiological variable (as calculated by subtracting
the current value for blood sugar/vascular volume from this set point).

However, in addition to internal stimuli, action selection is also influenced in the
implemented architectures by the presence of external stimuli or environmental cues
that allow the execution of (consummatory) behaviours to satisfy bodily needs. This
idea is based on ethological studies that show an animal’s behaviour depends on the
strength of both external and internal factors. In the current architecture, calculations of
intensity therefore attempt to factor in, not only internal incentive cues (which includes
the deficits, if any, with regards to each physiological variable at any given time) but
also the presence or absence of external cues, including food/water resources. This
was achieved using the following formula to calculate intensity:

Motivational Intensity = Deficit+(Cue ·Deficit) (4.1)

Motivations in this architecture are calculated at each time-step (a single action
loop) by combining external stimuli (incentive cues such as the presence of water as
shown by cwater and internal stimuli (the physiological deficits such as dvascular volume.
These motivations then direct the competition between behaviours to satisfy the phys-
iological needs (for instance, Bdrink). The winning behaviour, as in this implemen-
tation we use winner-take-all arbitration, will modify the physiology of the robot and
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send commands to the actuators.
Resulting Action Loop: Thus, at every time-step (simulation step or cycle of the

architecture):

1. The intensity of each motivation (hunger and thirst) is calculated as the drive/error
of its controlled variable.

2. This is used to make a calculation of intensity that factors in the presence or
absence of an (external) incentive cue (for example, 0 if no food is present, but
1 if food is present.

3. The behaviour with the highest intensity is selected to be executed (we are im-
plementing an architecture with WTA arbitration)1

As much of our research is aimed at the study of brain-body-environment interac-
tions in artificial agents, to be useful case studies for our experiments our agents had to
capture (and allow us to describe them in terms of) key elements of each of these core
components. As a result, for instance, our predator and prey’s “brains” are represented
in both our model and implementation by the action selection architecture used (a
motivation-based architecture, using Winner-Take-All (WTA) arbitration — see Fig-
ure 4.1). Each agent’s “body” is defined as encompassing both their software and
hardware capabilities, primarily consisting of their internal physiology, “brain”, inter-
nal and external sensors — which, in the case of the prey, also includes the hormone-
like mechanism itself. Finally, the “environment” of each agent can be classified as
containing both the presence of the other agent (as a predator-prey scenario) and the
distribution of resources in the constructed arena.

Figure 4.2 shows our LEGO prey. The design of this robot, in terms of hard-
ware configuration, was developed incrementally. Following this, our basic prey was
equipped with three actuators (motors): two to drive the wheels and body and one to
rotate the “head” (though, in the experiments conducted to date, only the two driving
the wheels have been made use of so far). In addition, we equipped it with two touch
sensors to act as bumpers in obstacle avoidance; a light sensor, used to detect and dis-
tinguish between “resources”; and an ultrasonic sensor (which could still be developed
further so as to enable the robot to detect or recognise other robots moving towards it).
The reading from our basic prey’s light sensor is translated into external stimulus or
environmental cues for the action selection mechanism, while the motors provide dif-
ferential steering to the wheels to navigate our agent through its environment, avoiding
walls and identifying any resources in its path.

1In our architecture, if two motivational intensities are equivalent, the system will randomly select
one of the joint winners
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4.2.1.1 The Hormone-Like Mechanism (Interoceptor Modulation)

As discussed previously, to create our initial “emotion-based” architecture, we de-
signed and implemented a hormone-like mechanism similar to the one used by Avila-
Garcı́a [96]. Implemented in our LEGO prey, this was used to alter the perception that
our prey has of its own integrity level when the predator is detected. The mechanism
itself models hormonal release and dissipation, taking its inspiration from the artificial
endocrine system proposed by Neal and Timmis [97; 98] — Equations 4.2, 4.3 and
4.4.

The first element is a gland (g) that releases the hormone as a function of the inten-
sity of the external stimulus predator (Spredator) and a constant releasing rate betag:

rg = βg ·Spredator (4.2)

The concentration of hormone (cg) suffers two opposite forces over time. It in-
creases with the release (rg) of hormone by the gland, and dissipates or decays over
time at a constant rate γg:

c(t +1)g = min[(c(t)g · γg)+ rg,100] (4.3)

The hormonal concentration is limited to a maximum of cg = 100 in order to keep
more control on the hormone’s dynamics and help in analysis of results. In our exper-
iments we set an initial release rate of βg = 25 and a decay rate of γg = 0.98. These
values were set by trial and error prior to the experiments. It can be observed how
the hormone is released when the predator is detected (Spredator > 0) and how it de-
cays with time. In our initial implementation, the hormone only affected perception
of the level of integrity (the third variable, introduced in the H3RP and affected by the
presence of the predator).

The higher the hormone concentration, the lower the reading of the integrity inte-
roceptor v1

integrity. That is, the adjusted level of integrity perceived by the prey:

v1
integrity = max[vintegrity− (δg · cg),0] (4.4)

δg (here taken to be 0.5) determines how susceptible to hormonal modulation the in-
tegrity interoceptor is. We use δg = 0.5, which implies that the level of perceived
integrity drops by 50 when the hormonal concentration is at its maximum (cg = 100).
In other words, although the level of integrity is at its ideal value (vintegrity = 100), the
interoceptor will perceive a level of just 50 if the hormone concentration is at its max-
imum. Note a constraint exists to avoid the level of integrity to be perceived beyond
the lethal boundary or minimum possible value (vintegrity = 0).

Computation of the integrity deficit dintegrity is then carried out as usual, but using
the modulated perception of the integrity level:
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dintegrity = (100− v1
integrity) (4.5)

Hormonal secretion follows the detection of the predator and decreases the per-
ceived integrity level. Using the hormone’s temporal dynamics, the modulation will be
acting in the system after the predator has disappeared from sensory inputs. The con-
centration of hormone thus modifies one of the inputs to the architecture. As described
in [96] and as we have also found from our experiments, this in turn biases action
selection. Namely, by increasing the prey’s perceived integrity deficit when the preda-
tor is nearby. Figure 4.1 shows the prey architecture, used in our initial experiments,
when implemented with the hormone-like mechanism. Avila-Garcı́a called such new
architectures modulated.

If both prey and predator “brains” can be said to consist of a motivation-based
architecture selected as the underlying action selection mechanism, the hormone-like
mechanism is somewhat a part of this for the prey: connecting our prey’s “brain” to
both internal “body” (including its internal physiology — via internal sensors/interoception)
and external “environment” (or at least, perception thereof). For example, the hormone-
like mechanism from the initial experiments was connected to the external stimulus of
the predator via an ultrasonic sensor (used to detect the presence of the predator).

4.2.2 Predator

Figure 4.3: Illustration of the physical design of our basic predator agent, used in our initial
experiments. We built this basic predator agent, a LEGO NXT robot, so as to take inputs from
one ultrasonic sensor (mounted close to the ground so as to detect obstacles, namely the arena
walls) two touch sensors (with which to detect and attack the prey) and an infra-red sensor (not
used in our initial experiments, but developed for use in later experiments). As with our prey,
we programmed our motivation-based architecture and “internal physiology” into the software
of our predator robot using Lejos.
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Apart from the hormone-like mechanism, Figure 4.1 also provides an illustration of
the motivated behaviour-based model underlying the architecture used for the predator
robot, while Tables 4.1 and 4.2 provide more details about the specific motivations and
behaviours named in the architecture. This includes the physiological drive used to
calculate each motivational intensity, the external stimulus associated with each drive
(the presence of which will increase the motivational intensity of the motivation asso-
ciated with that drive) as well as the optimum values for each physiological variable
(set point) and the point at which the system fails (the limit is the point at which one
of the physiological variables is less than or equal to 0).

In our earliest experiments there was no real choice for the predator’s architecture
to be used to make, as we gave it only one motivation. However, in later experiments
the decision was made to give the predator the task of its own TRP. The rationale behind
this was that it would add additional dynamics to the environment and overall system.
That is, varying the predator’s attack patterns and producing a different variation of
the H3RP for the prey to be tested in. However, because the emphasis was more
on prey performance, the predator’s main task was still to pursue the prey; achieved
by not associating an incentive cue for the additional motivation — the motivation
representing the need to rest was simply calculated as the drive/error of its controlled
variable (energy).

The abilities of our basic predator were (for the initial development of our imple-
mentation) kept constant and limited. Thus, our basic predator was given very limited
abilities for hunting and an ultrasonic sensor, mounted low to the floor, for obstacle-
avoidance upon encountering the arena wall. In fact, the “hunting strategy” of the
predator here was to blindly search the arena for the prey agent. Should the preda-
tor then come into contact with the prey, a signal was sent via Bluetooth effectively
attacking the prey and decreasing its internal physiological variable (integrity) accord-
ingly. Through experiences gained from experimentation, as well as to contrast the
results with previous researchers’ work, the decision was made to make the damage
done by the predator in such attacks quite dramatic. In fact, should a healthy prey
allow/experience an attack, this would halve the maximum level allowed for this vari-
able. This means, effectively, the prey would almost certainly die should the predator
be allowed to attack more than once in a short period of time (without it having had
the chance to spend any time in the nest healing its wounds).

4.2.2.1 Attack of Predator on Prey

In our implementation a successful attack occurs when the predator comes into contact
with the prey, which the predator detects through its hardware — namely, through its
touch sensors. When successful in attacking, the predator sends a signal to the prey
via Bluetooth, which alters the prey’s internal integrity variable by the value set as
the damage caused by one successful attack. In turn, the variable associated with the
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predator’s need to hunt (blood sugar) will, upon the conduction of a successful attack,
also be altered.

4.3 Arena

Figure 4.4: Illustration of the basic physical design of our animats’ external environment,
used in our initial experiments. Different coloured floor tiles represent different resources:
black represents food, white represents water, grey represents resource-free (empty/neutral)
space and the absence of any tile (the arena floor itself, a tan colour) represents the prey’s nest,
where our prey is “safe” from attack.

The basic environment (in this case an arena) had to contain both predator and
prey, providing the prey with the three types of external resource; food, water and
a nest; the latter of which the prey can effectively use to escape from and recover
from any injuries caused to it by the predator. As with the original experiments, these
resources were kept static. However, from the beginning the plan has been to develop
this aspect of the environment in later stages of the research programme. The chosen
environment, as experienced by the robot, consists of a 1.2 by 1.2m arena, surrounded
by a wall (approximately 7cm in height). The floor is made up of 36 tiles, each one
measuring 20x20cm.

In order to replicate the H3RP, the three different resources (food, drink and the
prey’s nest) had to be represented within the environment. To do this, we used different
coloured tiles to represent different resources. Thus black tiles were used to represent
food, white to represent water, grey to represent an empty space, free of resources;
and the absence of any tile (the arena floor, differentiated by its light intensity, which
lies between that of the white and grey tiles) was used to represent the nest. Although
the original implementation of the H3RP had used lightness and darkness gradients
for resources of heat and energy, it was decided that, at least to start with, distinctions
could just as easily be made using these solid blocks of colour.
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4.4 Measures of Adaptive Value
With regards to our research question, looking at how we will measure “adaptive value”
for our agents is actually of as much interest to us — as it is to other researchers as
well — as how we create a scenario for manipulating agents perceptual abilities, study-
ing aspects of both an emotion-based architecture and predator-prey environment (the
H3RP). Thus, our main research question actually encapsulates another. That is, how
can we measure the “adaptive value” of the emotion-like component of our action se-
lection mechanism? In more general terms, this can equate to how we might measure
the adaptive value of any mechanism for an agent. Or, indeed, how adaptation itself, in
terms of adaptive behaviour, might be measured (that is, given a quantity). To address
this in our research, we have used a number of different measures of “adaptive value”
to perform our analyses. We have done this, in part, so as to enable a comparison of
these measures themselves. Both to get an idea of their relative advantages and disad-
vantages, as well as to provide us with a more detailed picture of adaptive behaviour
with regards to our own artificial agents. This can also be thought of as an attempt to
better define what we might mean by adaptive behaviour or what it means for an agent
to be “adaptive”.

Within the literature, researchers have used many different kinds of calculations to
compare the performance of their agents under different conditions. We have chosen a
select group of these, which can be categorised into two sub-groups. The first group we
have selected consists of measures that are commonly known and labelled as “viability
indicators” or “measures of viability”. By choosing this group, we thereby enable
direct comparison between our work and that conducted using the original H3RP. The
second group, however, consists of measures that we consider as measures of activity
cycles and action patterns. This group was chosen to continue our ideas in light of
ideas regarding the re-conceptualisation of action selection in terms of activity cycles.
Generally, our aim was to look at the impact across all these measures under different
experimental conditions — for the production of adaptive action selection from the
prey agent. However, for our own work, we also create graphs mapping aspects of our
agents’ (particularly prey) brains, bodies and environment over time. For reference,
we call these Brain-Body-Environment maps.

4.4.1 Measures of Viability
This group of measures collects together metrics focusing most strongly on the quan-
tification and summary measures of the internal bodily state of the prey across its
lifetime(s). That is, ignoring details of interactions between agent and environment
— such as which behaviour was selected when and which environmental feature was
encountered when — to concentrate on overall viability or homeostatic capacity. Such
measures are usually advantageous in as much as they provide a simple, unitary, mea-
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sure for each instance (or, in this case, lifetime). This allows simple comparisons to be
made quickly. For our purposes, four main measures of viability (as measures of prey
performance) were used by us to measure and compare the performance of our agents
and evaluate prey performance across the experimental conditions described. These
are Life Span, Overall Comfort, Physiological Balance and Risk of Death (as defined
by Avila-Garcı́a [29]).

4.4.1.1 Life Span

Perhaps the most obvious measure of adaptive value, this measure can be thought of as
a measure of the length of time an agent survives. Time could be measured in different
ways. In his work, Avila-Garcı́a calculated this with the following equation:

LS = tli f e/tsimul (4.6)

Where tli f e is the number of simulation steps that the agent lived and tsimul is the
total simulation time measured in number of simulation steps.

4.4.1.2 Overall Comfort

This is a measurement that can be thought of as a measure of the average level of the
internal variables on which the agent’s life (viability) depends.

OvC =

tli f e

∑
1
(cstep)/tli f e (4.7)

Where tli f e is the number of simulation steps the agent lived, cstep = 1− (Err/maxerr),
where Err is the total sum of errors of the agent’s physiological variables normalised
between [0,1] with maxerr the worst possible in each step. Err equates to the sum of
the intensities of the motivations’ drives (Err = Σ(e j)), and maxerr is the number of
compatible motivations.

4.4.1.3 Physiological Balance

This is a measurement that can be thought of as how well the agent’s internal variables,
on which life (viability) depends, are balanced. This average is calculated as follows:

PhB =

tli f e

∑
1
(bstep)/tli f e (4.8)

Where tli f e is the number of simulation steps the agent lived, bstep = 1− (Unb/maxunb),
where Unb is the variance of the errors of the agent’s physiological variables nor-
malised between [0,1] with maxunb (the worst variance possible in each step), which
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corresponds to the variance of the intensities of the (compatible) motivations’ drives
(Unb = σ (e j)).

4.4.1.4 Risk of Death Management

Finally, “Risk of Death” can be thought of as a measurement of “how close” death is
(to the agent) at any given time. Calculated by:

RoDi = stepsi/tli f e (4.9)

Where i is the number of the region (i = 0..10) and stepsi the number of steps the
agent’s highest physiological need (in this case, the variable with the highest deficit)
is within the region i. For our experiments, we calculate Risk of Death for ten distinct
regions, giving us values for RoD1 to RoD10 for comparisons. RoD1 represents the
proportion of time our agent’s highest physiological need was in region one i.e. at
a deficit of 0-10 percent, with little chance of death; whereas RoD10 represents the
proportion of time our agent’s highest physiological need was in region ten i.e. at a
deficit of 90-100 percent, where death is imminent. This granularity was decided upon
both so as to be more comparable to previous research and as a result of our initial
experiments. However, it would be interesting to investigate the linear assumptions of
this metric, as well as how calculating values for further regions might be more useful
later on.

4.4.2 Activity Cycles and Action Patterns
This represents a group of measures we introduce to compare the information they give
us with that of the first. The idea here was that other measures might be developed to
complement — or otherwise provide better information than — those used previously.
Inspired in part by the idea of action selection as a series of activity cycles, this led us
to suggest perhaps what is missing (to get a more complete picture of the success or
not of such agents) are measures that look more at the temporal effects of manipula-
tion on such agents — in terms of behavioural sequence, for example. We therefore
created this group of measures to relate more strongly to summarising activity cycles
of the prey across its lifetime(s). That is, rather than attempting to provide a more
summarative measure of overall success, looking at how the system becomes more or
less “stable” (and in what ways) in terms of the behaviour displayed across conditions.

In this way, these measures do not ignore so many of the details between agent
and environment as the first group. For instance, taking into account the fact an agent
might have started searching for a resource, then switched to satisfying another when
the resource representing it was encountered first. This includes which behaviour was
selected when and which environmental feature was encountered when and concen-
trates on building more of a profile of the actions selected than an overall summary of
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whether that profile was “better” in terms of agent survival. While likely to be more
time-consuming in terms of a more length analysis, we argue such measures will be
advantageous in as much as they can provide more detail, building a profile that may
suggest how the system should be adjusted in order to improve performance in terms
of the more summarative measures of viability.

4.4.3 Brain-Body-Environment Maps
In order to create a map that incorporates the (to us) crucial aspects of brain, body
and environment in our experiments, we create plots for individual runs from the data
collected from our implementation of the H3RP. These map our agents’ internal vari-
ables over time, as well as the environmental stimuli our agents encounter. We have
found these useful in our research as they enable us to (effectively) recreate our ani-
mat’s “life” and brain-body-environment interactions. That is to say, they incorporate
and enable us to track key elements of the brain-body-environment interactions repre-
sented in our model.

4.5 Summary
In this chapter, we have outlined the more technical details of our implementation of
the H3RP. That is, the physical instantiation of our model of action selection, emo-
tion, brain-body-environment interactions and the predator-prey relationship (previ-
ously outlined in more detail in the previous chapters). To create our own H3RP
we have designed two LEGO robots — one predator, one prey — along with an en-
vironment for them to interact or “live” in. As discussed, we selected one specific
emotion-based architecture because, in contrast to other researchers’ implementations
of emotion-based architectures, it offers us a possible route for investigating, creating
and exploring the possibilities of artificial emotion in a bottom-up way. This is more in
keeping with the spirit of AL in terms of allowing us to think about emotion not only as
it is, but as it could be. Yet, at the same time, the mechanism we adopt also happens to
relate to (as it is essentially a biologically-inspired abstraction of) physical substrates
in biological brains. In particular, it relates to ideas about the role of neuromodulation
in generating adaptive behaviour.
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Chapter 5

Brain-Body Combinations and
Predictions of Predator Attack

“The emotions aren’t always immediately subject to reason, but they
are always immediately subject to action.”

— William James

5.1 Emergent Functions of Interoceptive Modulation:
Results Chapter I.

The literature linked to and concerning our concepts of the advantages and contribu-
tions of emotion in the context of adaptive behaviour is not just restricted to humans.
For, not only has it been extended by researchers to include evidence from the study
of other biological organisms [99] but, more recently, has been yet further extended to
encompass evidence provided by artificial agents as well [20; 90]. Whether consider-
ing emotions in terms of the past [100], present [101] or future [102] this has led to
the development of explanations which suggest, or at least allow, that organisms other
than humans might also “have” some kind of emotion(s). For example, from an evo-
lutionary perspective, explanations of our own emotions have been given in terms of
a gradual evolution from simpler and/or earlier mechanisms, present in our early an-
cestors and perhaps still evident in other less “evolved”1 or otherwise less “complex”
species today.2

1By this, we refer to species whose more recent ancestors, at least compared to our own, do not
appear to have experienced such rapid change

2Here we would emphasise the point that, even if only considered to be “emotion-like” mechanisms,
not as “evolved” or intricately “developed” as our own, these give their own evidence for the adaptive

66



5. Brain-Body Combinations and Predictions of Predator Attack

Whether this evidence comes from studying early ancestors [103] or species cur-
rently in existence [99], this branch of research has encouraged and led many re-
searchers, including us, to adopt an incremental, bottom-up approach — both for ex-
plaining and exploring the origins of intelligence and adaptive behaviour. In other
words, exploring the idea that our “modern” human brains have been developed over
generations from earlier brains, and presumably less intelligent ones, by incrementally
adding or subtracting elements to existing structures. In tune with our research, such
explanations often go on to postulate evolutionary pressures being exerted by competi-
tion or threats to survival arising from the presence of other organisms. This might be
in terms of conspecifics, other species or, most interestingly for our current research,
predator and prey organisms [104; 105].

Many different functions of emotion are proposed [106], as well as many different
classifications [106; 107; 108] (and inevitable variations on these classifications) of
these emotions. However, when we consider the idea that our seemingly complex emo-
tions, or at least a collection of mechanisms serving the same function, have evolved
from simpler mechanisms (whether having persisted from one common ancestor or
co-evolving independently of each other) it is amazing that they seem to “work” for so
many species and across such a wide variety of agent morphologies, niches and capa-
bilities. More to the point, if true, this means we all stand as a very real and practical
demonstration of how a bottom-up approach to the design of intelligent and adaptive
agents can work, not to mention proof that it does. In its turn, our work echoes this
observation and tries to discover whether we can identify (and have identified within
our chosen model) similar mechanisms that might likewise work, or otherwise be de-
veloped to work, adaptively across many different artificial agents (including different
types of agent morphologies, niches and capabilities).

5.2 Fear and the Fight-or-Flight Response
Perhaps the most common emotion, and associated function of emotion, recognised
and studied as being adaptive for action selection in the predator-prey relationship,
particularly in terms of the notion of adaptive behaviour, is that of fear in the “fight-or-
flight” response upon prey encountering predator. Indeed, in terms of action selection,
many have argued one of the adaptive functions of fear is to act as an amplifier of
sorts, calling attention to the high risk and dangerous elements of an agent’s current
environment. In the original Hazardous Three Resource Problem (H3RP) this was in
fact noted as an emergent functionality of the emotion-based architecture also imple-
mented in our robots. For this reason, to start with we focus our own attention on
this proposed type and function of emotion. To explore the importance of body and
environment further, we first use our own model to demonstrate how the emergent

powers of emotion in terms of the persistence of such mechanisms across generations
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properties (such as prey “flight”) of our emotion-based architecture will vary with our
prey’s brain-body combination. Using our model of action selection and emotion, the
rest of this chapter reports our findings. It is in this way we start the investigation into
the possible role of our hormonal mechanism, as a modulator of perception — and sec-
ond order controller of a motivation-based architecture — on brain-body-environment
interactions within a prey-predator scenario.

Our experiments show how the adaptive value of our mechanism for action se-
lection varies with a particular aspect of the prey’s embodiment: namely, perceptual
distance. By this, we refer to how far into its environment an agent can “sense” or
“perceive”. To borrow a term from the field of neuroscience, this can also be thought
of as our agent’s receptive field. Here we modulated the architecture of our prey robot
using two different types of sensory capabilities, proximal and distal, effectively cre-
ating combinations of different prey “brains” and “bodies” (where perceptual distance
is varied by creating different sensory links between prey “body” and prey “environ-
ment”). The results of these experiments were analysed using the different measures
outlined more fully in the preceding chapters. These aimed to further explore the way
in which an action selection mechanism’s adaptive value and overall performance can
be judged.

5.3 Brain-Body Combinations for our Prey
We designed variations of the H3RP by varying the sensors available to our the robotic
prey for detecting predator presence — in this case either restricting the prey’s percep-
tion to sensory information obtained close to and directly from its own body (proxi-
mal detection) or allowing it to gather information corresponding to stimuli at some
distance from the prey’s own body (distal detection). For our basic implementation,
this created two variations of prey, each of which we then tested in our scenario so
as to see what effect the addition of an “emotion-like substrate” — our hormone-like
mechanism — would have on their performance. In our experiments, we created a
total of four different variations of the H3RP by varying both our basic prey’s per-
ceptual distance (proximal/distal) and the hormone-like mechanism attached to its ba-
sic motivation-based architecture (presence/absence). These prey agents were tested
against one type of predator (proximal predator). In these initial stages, we thus kept
the predator’s abilities at their most limited, creating four experimental conditions (a
factorial 2x2 design, summarised in Figure 5.1). To these conditions we also included
a control condition, in which the prey was first tested without the predator. This latter
condition we used so as to provide us with a baseline with which to better see if/how
the addition of our predator would actually affect prey performance.
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Figure 5.1: Summary of experimental conditions: In these experiments a factorial 2x2 design
was used to investigate how the adaptive value of our emotion-based architecture varies with
the perceptual abilities of our prey. Four experimental conditions were created so as to identify
the effects of a) the “emotion-like” substrate represented by our hormone-like mechanism,
presence (H+) or absence (H-) representing a variation in our prey’s “brain” and b) our prey’s
perceptual distance, proximal/distal detection representing a variation in “body”.

5.4 Prey

5.4.1 Interoceptive Modulation (Absence/Presence)
As the purpose here was to get a basic idea of how aspects of embodiment and mod-
ulation might interact to affect performance of the system, we focused first only on
the simple absence or presence of the hormone-like mechanism (outlined, along with
more technical details of our implementation, in the previous chapter).

5.4.2 Perceptual Distance (Proximal/Distal)
As the aspect of embodiment we chose to focus on, we aimed to vary our prey’s per-
ceptual distance by connecting the basic motivation-based architecture to two different
kinds of ability. The first we termed “proximal prey” and the second “distal prey”.
These can also be thought of as a “blind” and “seeing” prey respectively.

5.4.2.1 Proximal Prey

To recap the key features of this animat, also outlined in the previous chapter, the prox-
imal prey was given a motivation-based architecture consisting of an internal physiol-
ogy of three physiological variables. Two of these were set to decrease with time at a
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constant rate (we named these blood sugar and vascular volume respectively) while the
third was connected only to “attacks” registered by the prey and made by the predator
robot (arbitrarily named integrity). The hormone-like mechanism, if “switched on”,
causes “hormone-release” in the presence of the predator, as signalled by an internal
sensor, registering a decrease in the level of the third variable. That is, after a physi-
cal attack. Our first type of prey was thus given a very limited perceptual system. In
this case the only sensory information available to the prey robot from its environment
came from touch (via its touch sensors) and internal perception of the physiological
variable of integrity. This scenario could be thought of as limiting the prey to a single
perceptual system, akin to the somatosensory system present to many organisms. How-
ever, this system is particularly limited in the fact that it leaves the prey more or less
“blind” to actual events in its environment. For instance, the prey cannot actively (by
touch alone) discriminate between the stimuli of a wall or that of the-more dangerous-
predator. Indeed, the only signal to the prey that the predator is present comes from
internal changes following an attack. Because of this, hormone release, or what could
alternatively be thought of as neuromodulation, would occur only after the prey has
been attacked (integrity decreases).

5.4.2.2 Distal Prey

The distal prey differed from the proximal in that the hormone-like mechanism, if
“switched on”, caused hormone-release in the presence of the predator, as signalled
not only by the internal sensor, but also the detection of the predator via use of an
ultrasonic sensor, mounted on the prey’s “head”. To give a contrast to the proximal,
no-hormone condition the no-hormone architecture for the distal prey condition incor-
porated a “reflex” behaviour in the form of automatic obstacle avoidance, should the
predator be detected by the ultrasonic sensor. In this way, the second type of prey was
given a form of “distal” detection to be used to detect the predator at a distance (which,
when the hormone-like mechanism was added, would also trigger a corresponding hor-
mone release; otherwise triggering reflexive obstacle-avoidance behaviour). This in-
volved only a very small change; the prey robot now using an ultrasonic sensor to also
check with each time-step whether the predator could be “seen” at a distance (distal
detection). This scenario could perhaps be thought of as adding a (very) rudimentary
auditory-imaging system to that of the prey’s existing perceptual system(s) in as much
as the prey can now obtain information from both a form of “somatosensory” system
and an additional “auditory-imaging system”.
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5.5 Predator

5.5.1 Perceptual Distance (Proximal)
The perceptual distance of the predator was, for these experiments, an aspect that was
kept constant. Here, the predator was given very limited abilities for hunting. In fact,
the “hunting strategy” of the predator here was to blindly search the arena for the prey
agent. Should the predator then come into contact with the prey, a signal was sent
via Bluetooth effectively “attacking” the prey and decreasing its internal physiological
variable (integrity) accordingly. Through experiences gained from experimentation, as
well as to contrast the results with previous researchers’ work, the decision was made
to make the “damage” done by the predator in such attacks quite dramatic. In fact,
should a “healthy” prey allow/experience an attack, this would halve the maximum
level allowed for this variable. This means, effectively, the prey would almost certainly
“die” should the predator be allowed to attack more than once in a short period of time
(provided it had not spent any time in the nest “healing” its wounds).

As detailed in the last chapter, the decision was made to give the predator the task
of its own TRP. The rationale behind this was that it would both add a further dynamic,
varying attack patterns and producing a different variation of the H3RP for the prey
to be tested in. However, because the initial emphasis is placed that bit more on prey
performance, the predator’s main task was still to pursue the prey. This was achieved
by not associating an incentive cue to the additional motivation (need to rest). Instead,
this motivation was simply calculated as the drive/error of its controlled variable (en-
ergy). As mentioned, throughout these experiments the predator was, in its turn, also
given extremely limited perceptual abilities to hunt the prey. The only way the preda-
tor could find the prey being to blindly search its environment and wait for the prey
to somehow come into contact with its touch sensors. Unlike the prey however, the
predator was able to discriminate prey from the arena wall due to its morphology. That
is to say, the touch sensors were mounted higher than the arena wall.

5.6 Arena
The layout of the arena (resource distribution and abundance) was kept constant. This
consisted of a nest area, in which the prey could “rest” and where it would not be
“attacked” by its predator. It also consisted of food and water resources, along with
some neutral space in which the prey could not consume a resource.
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5.7 Results
For each run, both predator and prey were initially placed within the arena in randomly-
selected locations (and positions) with randomly-generated starting levels for each in-
ternal physiological variable (between 70 and 100, apart from prey integrity, which was
always initialised at its maximum level of 100). Each run was considered to be com-
plete, either when the prey “died” (involving at least one of its physiological variables
reaching a value of 0) or the prey had reached the end of its pre-determined maximum
life span, measured in time-steps. After each run, data was collected from both prey
and predator robots with regards to sensory and internal (physiological) data. The prey
was set to record, per three time steps, the following data: current time-step, level of
each physiological variable, sensory readings, whether the prey had been attacked, the
winner motivation, winner behaviour and the times taken to perform each of the previ-
ous three time steps. We tested each type of prey robot for a total of ten runs of 3000
steps (which would equate to approximately ten minutes per run if the prey survived),
one step representing a loop of the behaviour selection mechanism. Fifty runs were
therefore conducted, as ten runs were conducted without the predator so as to provide
a baseline for comparison.

5.7.1 Measures of Viability
From the data collected, we first calculated and looked at the results in terms of our
chosen measures of viability. These included calculations of Life Span, Overall Com-
fort and Physiological Balance (as defined in the last chapter) as well as calculations
of our prey’s Risk of Death Management. Figure 5.2 shows how each type of prey
performed as measured by our three measures of viability: Life Span, Overall Comfort
and Physiological Balance. To enable further comparisons, we have also included the
results obtained testing our prey alone, without a predator agent, making this condi-
tion essentially the results obtained using our prey to perform a two-resource problem.
Figure 5.3 then shows the same results for our predator agent.

5.7.1.1 Life Span, Overall Comfort and Physiological Balance

First looking at Life Span (how many time-steps out of the maximum that the prey
lasted for — defined more fully in the previous chapter) Figure 5.2 shows the results
in terms of the mean Life Span calculated per condition (error bars show the standard
error of the mean). The measure of Life Span, previously used for the H3RP and de-
fined in the last chapter, was originally defined so as to be calculated from the total
number of time steps that the prey lasted for — that is, the number of individual “de-
cisions” made over this agent’s life time. In our experiments what we are particularly
interested in is real time data, from a real time environment. Because of this, another
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decision was made to record the real-time Life Span of our agents as well. We did this
primarily in order to compare the two measures, to act as a further control. However,
we also wanted to see whether there might be any interesting differences. In fact, both
these calculations produced very similar results for these experiments. Nevertheless,
both measures of Life Span hold a special appeal, in as much as they are particularly
reflective of the aspect of action selection we are focusing on. That is, action selection
in terms of temporal space.

Figure 5.2: Summary of results showing average Life Span (LS), Overall Comfort (OvC) and
Physiological Balance (PhB) of our prey across conditions. Error Bars show the Standard Er-
ror of the Mean (SEM). We compare calculations of OvC and PhB both including (3PVs) and
excluding (2PVs) the variable integrity. In terms of LS, the longest lived prey tended to be
those with both “brains” in which our emotion-like substrate was implemented (present) and
“bodies” which enabled distal detection of the predator. The other conditions show more simi-
lar tendencies (less difference) between them for LS. However, we observe how the activation
of our emotion-like substrate, when combined with proximal detection only, actually led to the
lowest average LS. In terms of OvC and PhB, we see less obvious variations than for LS both
within and between conditions (Error Bars being smaller). N.B statistical tests nevertheless
indicate that, though small, some of these differences are statistically significant.

Realistically, once a given “decision” is made (at least, in the sort of architectures
we are interested in looking at) it might take longer to perform the associated action,
especially in “real life”, than it would a different decision or even the same decision
at a different time. For example, the reflex action of “obstacle-avoid” might, on av-
erage, take a different amount of time than the consummatory or appetitive action of
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eating or searching for food. Indeed, this was the definitely the case in our own im-
plementation. Regardless of the specific calculation used, however, both do show the
same trends across conditions for these experiments. The average life span for our prey
when placed in the arena without the predator was found to be significantly different
to all the individual experimental conditions tested (average life span decreasing). No
significant differences were found between the experimental conditions. However, for
the first type of prey (proximal) when the underlying architecture was a modulated one,
our prey’s average life span was shorter than that of the one without modulation. In
contrast, for the second type of prey (distal prey) the opposite trend was actually found.
That is to say, when the underlying architecture was modulated, our prey’s average life
span was longer than that of the one without modulation.

Looking at the means for both calculations of Life Span, our distal, modulated prey
thus appeared to perform the “best” for this measure (on average) while our proximal,
modulated prey performed “worst”. Testing for homogeneity of variances, these were
found to be homogeneous both within and between our conditions (p=0.85 across con-
ditions). Interestingly, but perhaps not surprisingly, when we looked further at the
distribution of our data, we found that while our data set did pass a test for normality
(Shapiro-Wilk result of p=0.08 across all our conditions) Q-Q plots indicated that some
of our samples (within-conditions) suffer from a moderate to strong skew, suggesting
some non-normality. For example, we calculated a skew of 1.32 for the distal prey,
without the hormone-like mechanism.

The reason why this is perhaps not surprising is due to the nature of our measures
of viability. This is because it is a calculation that is guaranteed to be between 0 and 1.
This may produce a more easily understood measure, but in doing so constraint/binding
is imposed on the resulting calculations for comparison. Thus, a freely generated dis-
tribution around the mean may not be possible. This would be the case, for example,
if the mean falls close to either limit (0 or 1). Moreover, if we have a particularly
successful prey, which only dies prematurely once, we may well find a strong positive
resultant skew for the Life Span results of this condition. Conversely, if we have a
particularly unsuccessful prey that lives a bit longer in one run, we will likely see it
result in some kind of negatively skewed distribution. Bearing this in mind, as well
as the relatively small sample sizes of these early experiments, the decision was made
to transform our data using arcsine transformation before performing our inferential
statistics (so as to better meet the assumptions of the parametric tests we planned to
perform).

Performing a multi-way (2x2) ANOVA for Life Span (as calculated by time steps)
across these conditions showed no significant main effects for prey perceptual distance,
(p=0.187) or the hormone-like mechanism (0.636). Likewise, there was no significant
interaction found between the two (p=0.121). However, in terms of calculations of
Overall Comfort (the average of the average level of all internal physiological vari-
ables, defined in the previous chapter) and Physiological Balance (the average of the
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Figure 5.3: Summary of results showing average Life Span (LS), Overall Comfort (OvC) and
Physiological Balance (PhB) of our predator across conditions. Error Bars show the Standard
Error of the Mean (SEM). In terms of LS and OvC, the trends here generally follow those for
the prey (perhaps not surprising considering these trials usually ended with the death of the
prey). However, it might be observed that the lowest average LS for the predator was actually
not seen in that condition where the activation of our emotion-like substrate was combined
with proximal detection only. Instead, this was true of that condition where our emotion-like
substrate was not activated, but our prey had distal abilities. This can be explained by the use of
time-steps in calculating LS (a single decision/time-step might take different amounts of real
time to complete depending upon what action is being selected). In comparison, PhB for our
predator hardly varied at all between conditions.
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average variance of all internal physiological variables across all time-steps) as Fig-
ure 5.2 shows, the results are slightly different. As with Life Span, we calculated
both Overall Comfort and Physiological Balance in two different ways to see whether
differences between them could be interesting for further research: first, combining
all three of our physiological variables and then (as our own variation of the measure)
concentrating only on those two physiological variables that decrease consistently with
time. That is, those we named blood sugar and vascular volume. We hoped this might
achieve support for our idea that the addition of our extra variable of integrity alone
(and thus extension from the two resource problem to a hazardous resource scenario)
might act to increase adaptive value of our agent. Moreover, we wanted to find out
whether this would actually be a more informative measure as far as both Overall
Comfort and Physiological Balance are concerned (the additional variable of integrity
being, temporally-speaking, very different in terms of increase/decrease).

Figure 5.2 shows the results of the latter calculations. The results of this exercise do
provide some interesting data for comparison. For, in terms of both Overall Comfort
and Physiological Balance, it looks like the inclusion of integrity in these calculations
may have the effect of decreasing the average shown, whilst increasing the standard
error of the mean for our experimental conditions. This is not surprising considering
the nature of this variable. That is, it will be subject to dramatic decreases, rather than
the consistent, predictable decreases of the other two variables.

Performing a multi-way (2x2) ANOVA for Overall Comfort and Physiological Bal-
ance (calculated using all three physiological variables) showed significant differences
between conditions. For Overall Comfort, after arcsine transformation, there were no
main effects for perceptual distance (p=0.606) or hormone presence (p=0.991). How-
ever, the results did suggest an interaction between these variables (p=0.018). Again
after transformation, for Physiological Balance there were also no main effects found
for perceptual distance (p=0.452) or hormone presence (p=0.220). But again, an inter-
action was suggested between the two (p=0.022).

5.7.1.2 Risk of Death Management

In terms of the prey’s Management of Death Risk (as defined in the previous chapter)
the individual regions for this measure can be used as an indication of how well viabil-
ity is preserved. Using this measure to explore our data provides us with an interesting
alternative look, and further insight into, our previous results. Figure 5.4 displays our
results, in terms of Risk of Death (RoD), providing a breakdown for each experimental
condition as well as our control (where the prey was acting alone). Here, each bar
represents the average percentage of time our prey was in each “zone”. A RoD of 1
means that the prey is almost, if not the most “healthy” it can be, whereas a RoD of 10
means the prey is “near death”. However, what is interesting to us here is the similarity
between our control condition and that of the prey given “distal” perception, connected
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Figure 5.4: Summary of results showing Risk of Death (RoD) Management across conditions
for our prey, also including the results for our control condition (Prey Alone). Each bar rep-
resents the average percentage of time our prey was in each RoD “zone”. Error Bars show
the Standard Error of the Mean (SEM). A RoD of 1 (green) means that the prey is almost if
not exactly the most “healthy” it can be, whereas a RoD of 10 (red) means the prey is “near
death”. Interestingly, these results demonstrate greater similarities between our control con-
dition and that of the prey given both “distal” perception and our emotion-based architecture
with hormone-release enabled. We suggest that this is because these are the two conditions that
show the most stable/adaptive activity cycles. In contrast, the other conditions show more vari-
ance, though Proximal Prey H- is interesting because it suggests that this type of prey tended
to spend most time in either RoD5 or RoD10. That is, either fairly comfortable or very near
death.
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Figure 5.5: Summary of results showing Risk of Death (RoD) Management across conditions
for our predator. Each bar represents the average percentage of time our predator was in each
RoD “zone”. Error Bars show the Standard Error of the Mean (SEM). A RoD of 1 (green)
means that the predator is almost if not exactly the most “healthy” it can be, whereas a RoD
of 10 (red) means the predator is “near death”. These results show that, perhaps not too sur-
prisingly, our predator actually spent the majority of time with a low Risk of Death. It appears
that the more “risky” conditions for our predator to be in were those for our non-modulated
proximal prey and modulated distal prey.
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to our emotion-based architecture in terms of variations in viability between runs. For,
both these agents seem to produce more “stable” agents in terms of viability. That is,
compared to the other conditions. Figure 5.6 illustrates this in more detail, with each
line per condition representing Risk of Death Management across each prey’s lifetime,
while Figure 5.5 shows the average Risk of Death (RoD) results for our predator.

Looking more closely at our data, Figure 5.7 shows some example runs, display-
ing the levels for each physiological variable of the prey as they changed throughout a
single lifetime (increasing with consummatory activity and decreasing with appetitive
or other activity) for three of the five conditions. As shown, the architecture of the
prey generated reasonably stable cycles of activity when the prey was acting alone.
However, upon introduction of the predator for each experimental condition, the archi-
tecture’s performance caused these cycles of activity to be disrupted (the prey having
to recover integrity, initialised for all our runs at its set point). Again, what is just as in-
teresting to us here are the differences in the patterns of behaviour shown. For instance,
the distal prey with modulation is seen to “respond” more rapidly to an attack, thereby
also recovering integrity levels sooner. These differences, particularly when placed in
context with our observations, would seem to suggest that modulation tended not to be
adaptive, and was possibly even maladaptive in the case of the simpler prey with prox-
imal perception only, not providing any advantage and carrying only costs. However,
in the case of the distal prey it was adaptive as it provided additional anticipatory capa-
bilities (a prediction of predator attack) that helped the prey avoid/escape the predator
more easily.

5.7.2 Activity Cycles and Action Patterns
5.7.2.1 States and State Transitions

One of the aims of this thesis was to also consider previous work advocating the re-
conceptualisation of the action selection problem in terms of activity cycles. As out-
lined in the previous chapter, one of the ways we look to explore this idea further is
(taking inspiration from ethologists) by looking at our agents’ performance in terms
of states and state transitions. State transitions in particular are useful calculations
in terms of problems involving movement from one “state” to another. In context, a
“state” may refer to many different variables, with the models which result from such
data (including Markov Models) being conceptual tools that can both elegantly de-
scribe and enable further analysis of the nature of changes generated by the movement
of such variables. What we are particularly interested in using them for here, in the
purpose of our analyses, is to find and explore further the patterns which appear over
time (and that might differ across our experimental conditions).

To do this, we must attempt to model our developed system (in other words, to
build models of our model). In this case, by focusing on the action selected by our
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Figure 5.6: Summary of results showing Risk of Death (RoD) Management across conditions
for our prey, also including the results for our control condition (Prey Alone). Each line here
represents the results from one run and shows the proportion of our prey’s lifetime spent in
each RoD “zone”. A RoD of 1 (green) means that the prey is almost if not exactly the most
“healthy” it can be, whereas a RoD of 10 (red) means the prey is “near death”. As with Figure
5.4, these results demonstrate greater similarities between our control condition and that of
our modulated distal prey. In contrast, the other conditions show more variance, though the
results for our non-modulated proximal prey are interesting in that they suggest this type of
prey tended to spend most time in either RoD5 or RoD10. That is, either fairly comfortable or
very near death.
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Figure 5.7: Illustration of differences observed across conditions between individual runs.
This figure better highlights the types of differences we typically see across conditions by draw-
ing upon some example runs, displaying the levels for each physiological variable of the prey as
they changed throughout a single lifetime (increasing with consummatory activity and decreas-
ing with appetitive or other activity) for three of the five conditions. The architecture of our prey
generated reasonable stable cycles of activity when the prey was acting alone. Upon introduc-
tion of the predator, the architecture’s performance (without the presence of our hormone-like
mechanism) caused these cycles to be disrupted (prey having to recover integrity). However,
upon introduction of both our hormone-like mechanism and distal abilities, the distal prey with
modulation was seen to “respond” more rapidly to an attack, thereby recovering integrity levels
sooner.

prey robot at any given time, we can construct state space diagrams to explore activity
cycles. We could call this “behaviour” but as we will construct these models from data
collected “internally” — from the prey “brain-body” — it seems more fitting to call
it an action for several reasons. One of these is that behaviour tends to be considered
the same as that which is “observable” while the data we collect is more “intentional”
in as much as the prey “intends” to perform that action, but in reality what emerges
from interaction between it and the environment may not be the same each time. For
example, while the prey may record itself as searching for food, it may be that its
predator somehow has it “pinned” against the arena wall and that it is actually flailing
helplessly in one place.

As “simple” as our agents are, they nevertheless already produce non-deterministic
patterns of actions selected. For one action does not always follow after another one
hundred percent of the time. To explore this aspect of our agents, from our data we
have therefore also constructed state transition diagrams. As a result of the design of
our prey’s architecture (detailed further in the previous chapter) at any given time it
could be “performing” one of six “actions”: the consummatory actions of “eating”,
“drinking” and “resting”; or the appetitive actions of searching for “food”, “water” or
the “nest”. Thus our initial focus was on these states and the transitions between them.
Figure 5.8 shows some sample state transition diagrams from different runs. These
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also show the percentage of the prey’s life spent in that state.
Though no clear differences were found between conditions just by looking at

these, as there was too much variation within conditions to make this supportable by
statistical test from our sample, it was nevertheless interesting to note that the “busiest”
prey (in terms of the diagrams showing connections from one state to another) were
found in the condition for distal perception, with the hormone-like mechanism. For the
proximal prey, without the hormone, it was interesting to see that these diagrams were
often very similar to those found in the “prey alone” condition. Putting this into the
context of the experiment in terms of our observations, this prey’s brain-body combi-
nation is such that the prey only considers integrity as it would the other two variables
— ignoring attacks from the predator unless it just so happens upon the nest resource.
Indeed, this seems a good strategy in terms of our “blind” predator. For, from obser-
vation, it seemed that the predator was just as likely to attack, then either decide to
“sleep” or else completely miss the prey the second time.

While these diagrams are useful in allowing us to see what happened in each in-
dividual run, they also allow us to consider how it might be more meaningful to cat-
egorise these “actions” so as to group together any dependent or similar sequences of
action. For example, we can see in our control condition eating is usually preceded by
“searching for food”, but that this tendency dissipates in our experimental conditions.
To explore the idea of state transitions further, we have also looked at averages across
conditions of both how long our prey spent in each state and how often one state fol-
lowed another. In particular, Figure 5.9 shows the average number of different types of
“state transitions” of our prey across conditions. Exploring the idea of action selection
as a cycle of activities, rather than a series of individual decisions and having con-
structed a state transition matrix for each individual run to show how often one action
followed another, we specifically focus here on the idea of “opportunism” and “persis-
tence”. While we define opportunism as the number of times our prey consumed one
resource while searching for another, persistence represents the number of times our
prey ended up consuming the resource it was searching for. To this we have added a
further definition (a subset of persistence) focusing only on those instances where our
prey both searched for the nest and ended up resting in its nest). Here we see that, on
average, all of our prey demonstrate more opportunism than persistence. Interestingly
though, our modulated distal prey actually tended to display less persistence towards
searching for and resting in the nest than our non-modulated prey.

To test our initial thoughts with regards to state transitions, in terms of an activity
profile, Figures 5.10 and 5.11 show the average time spent on each action. Together,
they show both the differences in terms of the average absolute number of time-steps
that each type of prey spent on each activity, and the percentage of their “lives” that this
made up. These we find interesting, if nothing else due to the fact that the differences
between them show how it could potentially be very misleading to judge performance
of our prey by one of these aspects alone. Figure 5.12 shows the same results for our
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Figure 5.8: Summary of results showing “state transitions” of our animats — one example
is given here from each condition to show differences between individual runs. These dia-
grams were constructed as a result of Markov analysis and show the different types of “action
switches” made by our animats. This represents another aspect of our investigation, exploring
the idea of action selection being best thought of as a cycle of activities, rather than a series
of individual decisions. The thickness of the arrows connecting one state to another represents
the transition rates for each run. Here, we distinguish further between those which represent
“persistent” (blue arrows) and “opportunistic” (red arrows) patterns of action.
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Figure 5.9: Summary of results showing the average number of different types of “state tran-
sitions” of our prey across conditions. Error bars show the Standard Error of the Mean (SEM).
Exploring the idea of action selection as a cycle of activities, rather than a series of individual
decisions, state transitions occur whenever our agent switches from one of the six available
actions to another. Having constructed a state transition matrix for each individual run, here
we define Opportunism as the number of times our prey consumed one resource while search-
ing for another. Persistence represents the number of times our prey ended up consuming the
resource it was searching for and we add a further category to this, Persistence (nest), which
is actually a subset of Persistence (focusing on those instances where our prey both searched
for the nest and ended up resting in its nest). Here we see that, on average, all of our prey
demonstrate more opportunism than persistence. Interestingly though, our modulated distal
prey actually tended to display less persistence towards searching for and resting in the nest
than our non-modulated prey.

84



5. Brain-Body Combinations and Predictions of Predator Attack

Figure 5.10: Summary of results in terms of “state sinks”. In this case, the average time (as
a percentage of overall life span) spent by our different prey animats performing each possible
activity/state out of the six available for our architecture to select from. Error Bars show the
Standard Error of the Mean (SEM). As the activities that our emotion-based architecture is most
likely to influence directly, we can focus our attention here on the proportion of time spent
by our prey either resting or searching for the nest. From this we can see that, on average,
our two types of proximal prey spent the largest proportion of time searching for their nest.
Conversely, our distal modulated prey spent the least amount of time searching for its nest.
However, it actually spent more time actively resting than the modulated proximal prey. This
also appears to result in an increased proportion of time on other consummatory activities,
namely feeding/drinking.
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Figure 5.11: Summary of results in terms of “state sinks”. In this case, the average time
(in terms of action selection loops) spent by our different prey performing each possible activ-
ity/state out of the six available for our architecture to select from. Error Bars show the Standard
Error of the Mean (SEM). As the activities that our emotion-based architecture is most likely to
influence directly, we can focus our attention here on the proportion of time spent by our prey
either resting or searching for the nest. From this we can see that, on average, our proximal
non-modulated prey and distal modulated prey spent the most time-steps searching for their
nest. Conversely, our distal non-modulated prey spent the least amount of time searching for
its nest. We can actually see the greatest similarity in terms of absolute time-steps spent rest-
ing/searching for nest between our non-modulated proximal prey and modulated distal prey.
However, the latter type of prey shows a higher average number of time-steps being spent on
consummatory activities, namely feeding/drinking.
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predator.

Figure 5.12: Summary of results in terms of “state sinks”. In this case, the average time
(in terms of action selection loops) spent by our predator animats performing each possible
activity/state out of the three available for its architecture to select from. Error Bars show the
Standard Error of the Mean (SEM). From this we can see that, on average, our predator spent
the most time-steps hunting in the modulated distal prey condition. A greater number of attacks
were also performed by the predator in this condition.

5.7.3 Brain-Body-Environment Maps
Though we have already looked at our results in the context of some example runs, as a
method of visualising the data shown it is interesting to see how our maps show “more
of the story”. Indeed, from our maps it is also possible to see how the prey’s body
varied with the external landscape (that is, the environmental dynamics). As Figure
5.13 shows, the prey’s movement in the environment was such that it was not necessar-
ily guaranteed to find the resource it was searching for within a predictable time (the
prey’s movements, particularly obstacle avoidance, having a stochastic element that in-
troduced further noise here). However, this demonstrates another emergent function of
our distally-connected hormone-like mechanism; with the “sight” of our predator ef-
fectively prompting our prey to keep moving, encouraging both our prey’s movement
through the environment towards the next resource and away from danger (at times en-
abling it to both escape attack and keep “topping up” its physiological variables along
the way).
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To provide more of an overview of this data, Figure 5.14 shows the average number
of state transitions or “action switches” of our prey across conditions. Here we can see
that, on average, our modulated distal prey performed the greatest number of action
switches.

Finally, looking further at the movement of our different animats and time spent on
different resources, Figure 5.15 shows the average time spent on different resources/areas
in the arena. This shows the differences in terms of the time our prey spent on each
resource, looking at the percentage of their “lives” that this made up. On average,
our non-modulated proximal prey and modulated distal prey can be seen to have spent
more similar proportions of their lives on each type of resource (more closely mim-
icking the distribution displayed in our control condition, where the prey was acting
alone).

5.8 Discussion and Conclusion
This chapter builds upon previous studies and constitutes a first step towards a sys-
tematic study of how variations in the brain-body interactions of prey and predator can
affect the dynamics of prey-predator interactions. In this study, we take in particular
what in the literature has been called the Hazardous Three-Resource Problem (H3RP)
in which a prey must survive by achieving the right balance between consuming two
resources needed to maintain the levels of its two essential internal variables (to satisfy
its internal needs or motivations) and protecting itself from a predator.

Varying our basic implementation, our experiments look at whether the addition of
our hormone-like component (as the suggested “emotion-like” substrate of our archi-
tecture — the details of which are given, along with an outline of our basic implemen-
tation, in the previous chapter) proves adaptive for prey performance regardless of its
embodiment. That is, in terms of emerging additional functionality, we see how this
varies in relation to the sensory connections connecting the prey’s brain to its environ-
ment. We propose that varying our prey’s perceptual abilities by changing its phys-
ical “body” will affect the adaptive value and emergent functions of our mechanism
simulating interoceptive modulation (which, in turn, also varies our prey’s perceptual
abilities by acting on the “brain-body” relationship).

Variations in the brain-body interactions were caused here by manipulation of two
elements of the prey: its perceptual mechanisms and those mechanisms’ connections
to features of the environment — in this case the predator. Specifically, we look to
see how the performance of the algorithm itself, in the context of the same motivation-
based architecture, might be affected by its link to the environment in terms of the
senses used for predator detection (triggering hormone-release).

In essence, we have compared the adaptive value of adding a hormone-like mech-
anism (affecting interoception of an animat prey’s internal physiology) to an existing
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Figure 5.13: Illustration of differences, relating to aspects of prey Brain, Body and Environ-
ment over time, as observed across conditions between individual runs and shown by our BBE
Maps. The background bars here represent our prey’s position within its environment (green
bars show where our prey detected “food”, blue bars show “water”, the absence of any bar
indicates the prey detected no resources present in its immediate environment at that time and
yellow bars indicate the prey was in its “nest”) while each line represents the internal vari-
ables of our prey, including each of its physiological variables (black for blood sugar, blue for
vascular volume, yellow for integrity) and hormone levels/effects. Additionally, here vPV3
represents the prey’s perceived level of integrity, which in the modulated conditions differed
from the actual level of integrity when concentrations of hormone were released.
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Figure 5.14: Summary of results showing the average number of state transitions or “action
switches” of our prey across conditions. Error bars show the Standard Error of the Mean
(SEM). Exploring the idea of action selection as a cycle of activities, rather than a series of
individual decisions, we use this simple measure to compare our prey. An “action switch”
occurs whenever our prey makes the decision to switch from one of the six actions available
to it to another. Here we can see that, on average, our modulated distal prey performed the
greatest number of action switches.
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Figure 5.15: Summary of results showing time (as the average proportion of our prey’s life
span) spent on different resources/areas in its environment/arena by our prey across conditions.
Error Bars show the Standard Error of the Mean (SEM). This shows that, on average, our
non-modulated proximal prey and modulated distal prey spent more similar proportions of
their lives on each type of resource (more closely mimicking the distribution displayed in our
control condition, where the prey was acting alone).
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motivation-based architecture, when it was linked to proximal detection of a threat to
internal physiological variables (the predator) to the adaptive value of adding the same
mechanism to the existing architecture when it was linked to both proximal and distal
detection. The trends seen in our data (see Figure 5.2), particularly when looking at
individual runs (see Figures 5.6, 5.7 and 5.13) would seem to suggest the addition of
a hormone-like mechanism was not “adaptive” for the prey when it was linked to only
proximal detection (triggering hormone-release) of a predator.

However the addition of our hormone-like mechanism was seemingly adaptive, in
terms of a number of our measures and observations, for the prey when it was given
further, more distal, abilities for predator detection (triggering hormone-release). From
this, we conclude that the way our hormone-like mechanism is connected (or connects
brain and body) to the environment, and therefore the stimuli and cues within it, will
affect action selection — supported by the differences we have found (thereby further
emphasising the importance of body in designing adaptive action selection mecha-
nisms). Our model allows that our agents’ environment (composed of the arena and
each other) shapes their action selection as much as their action selection shapes the
total environment.

In this chapter we use our model to show how the emergence of adaptive responses
via interoceptor modulation is dependent on (as it is affected by) perceptual ability. The
first set of experiments here were a demonstration of this — which further allowed us
to see how we might measure changes in agent performance (thus also providing us
with a baseline to compare later results against). Such results as have been explored in
this chapter are also interesting in that they allow us to see the “costs” of living longer,
using the measures of viability of Overall Comfort and Physiological Balance (Figure
5.2).

This provides initial support for the idea that the emergent functions of intero-
ceptive modulation, in terms of the “flight” response and adaptive behaviour, will be
dependent on the brain-body combination. In this case, the most successful combina-
tion appeared to be that which allowed the mechanism to act as a temporal predictor
of environmental dynamics (in the predator-prey relationship, represented by the pre-
diction or anticipation of predator attack). However, this was not something that we
were able to conclude or gain any insights about from either our measures of viability
or state transitions. It was only by looking at what happens more closely in each of our
agents’ “lives” that we could determine this link to, and dependence on the interactions
of body with environment (Figure 5.13).

These results thereby provide an initial proof of concept which might be of spe-
cial interest to researchers in our area including Avila-Garcı́a [29] and Mendao [84]
(providing support for and indicating as it does a role for agent body in emerging
emotion-like behaviour that is also adaptive). More generally though, we believe our
work should be of interest to the wider research area for the way in which we have ex-
tended the existing work on the use of hormone-like mechanisms for action selection.
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To summarise, this chapter supports the idea that one of the emergent functions of
interoception is to act as a predictor of environmental dynamics (in terms of environ-
mental dynamics such as the predator’s behaviour). In the experiments reported here,
we have focused on the importance of a specific aspect of embodiment: perceptual
distance. Getting this right will be vital for interoception of the prey to be adaptive.
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Chapter 6

Brain-Body Combinations and Risk
Assessment

“Control your emotion or it will control you.”
— Bertrand Russell

6.1 Emergent Functions of Modulating Interoception:
Results Chapter II.

Looking to the natural world for examples of intelligent and adaptive behaviour, we see
that predators are often described in terms of their highly evolved (as well as adaptive
and seemingly intelligent) “hunting” abilities. Whether this is helped along by the
evolution of specialist bodies (for example, the evolution of lots of sharp, pointy teeth
perfect for making short work of devouring prey) or specialist behaviour produced by
specialist brains (brain-body combinations) such as that of ambush predators, these
agents, as well as their prey, come in many different shapes and sizes. Considering
this further, we get into perhaps more complex and even more specialised (or perhaps
just special) realms of predator when we consider species such as lions, which have
evolved such that they can successfully coordinate a group attack on their selected
prey. Some biological species even assign specific roles to members of their species
(ants, for instance) thereby assigning them their “tasks” and, it could be argued, their
relative “importance” in life. However, all these species can be linked by their ability
to both survive and persist (successfully forage and reproduce) to the present date.

Our research focuses on action selection and our ideas about emotion within the
predator-prey relationship. Thus, while the last chapter started our investigation with
the initial idea that we would see our emotion-based architecture’s performance (and
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thus the predator-prey relationship) vary with different perceptual distances and mod-
ulation for the prey, we have nevertheless simultaneously, if deliberately for the initial
experiments at least, excluded consideration of an equally important and active agent
composing this relationship: the predator. Because our aim is to explore further our
ideas about both agents, for reasons mentioned in the previous chapters (among these
being that it is usually the case that one or the other of these agents is neglected in
other predator-prey research) this chapter turns to other experiments that, among other
things, look to remedy this. That is, putting the focus back on prey and predator.
This chapter therefore outlines and looks at the results of experiments designed to ex-
plore how both prey and predator perceptual abilities (including aspects of each agent’s
“body”) might or might not interact to affect the adaptive value of our prey’s emotion-
based architecture.

6.2 Emotions in Risk Assessment and Risk Taking
The last chapter started our investigation into the possible role of our hormonal mech-
anism, as a modulator of perception — and second order controller of a motivation-
based architecture — on brain-body-environment interactions within a prey-predator
scenario. From these experiments we argue that one of the most important functions of
the kind of “emotion” (or potential for “building” adaptive emotion-like mechanisms)
that we are studying may be to act as a temporal predictor of environmental dynam-
ics (particularly those introduced by the presence of the predator) for prey agents. It
also introduces the key concept for us of predictability in the predator-prey relation-
ship, especially in the context of the interactive relationship between brains, bodies
and environments.

In the rest of this chapter our implementation of the Hazardous Three Resource
Problem (H3RP) is extended again to explore further the potential adaptive value of
our chosen hormone-like mechanism. In particular, how our prey architecture might
react (whether in an adaptive or maladaptive way) in the presence of predators with
different physical abilities. Here then, we show how the adaptive value of our prey ar-
chitecture varies with both perceptual distance and a particular aspect (or dynamics) of
its environment; namely, its predator. This is achieved by similarly varying a particular
aspect of predator embodiment: perceptual distance. In this way, these experiments
further aim to investigate the relationships created by different predator-prey combina-
tions. We show that it does not necessarily follow that the greater the perceptual ability,
the better interoceptor modulation will work/adaptive responses will emerge. Putting
this another way, these experiments show that the power of hormone-like mechanism
over action selection must take into account what the perceptual information is indicat-
ing about future environmental dynamics. We argue this may point us towards another
emergent function of or role for “emotion” in our H3RP. That is, as a risk assessor.
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6.3 Brain-Body-Environment Combinations for Prey and
Predator

In our experiments this time we designed variations of the H3RP by creating and com-
bining different prey and predator agents, varying both agents’ perceptual distance
(proximal/distal). In the process, we therefore created four main different predator-
prey combinations of these agents for testing: proximal prey versus proximal predator,
proximal prey versus distal predator, distal prey versus proximal predator and distal
prey versus distal predator (see Figure 6.1). In order to investigate the impact of our
hormone-like mechanism further, however, we also varied other parameters in these ex-
periments that focused on the prey alone, including both hormone strength and decay.
(Though the latter variation is not one that varies within this chapter’s experiments,
rather it is one that varies between the experiments of this chapter and those of the last
chapter — something we will come back to later).

6.4 Prey

6.4.1 Interoceptive Modulation (Hormone-Release of 0, 25, 50 and
100)

Building on the results of the last set of experiments, one of the main purposes here
was to go further than previously, to take a more in-depth look at (and get a broader
snapshot of) how aspects of embodiment and modulation might interact to affect the
performance of our system. In our experiments, we therefore created further types of
prey by varying the parameter representing hormone release rate, which we tested at
four levels: 0, 25, 50 and 100. A level of 0 is effectively a non-modulated architec-
ture, while a level of 25 means that only 25 percent of the maximum concentration of
hormone is released each time the predator is detected.

6.4.1.1 Hormonal Decay Rate

For this type of prey we also tried modifying our hormone-like mechanism in another
way. For, in these experiments, we adapted our existing hormone-like mechanism us-
ing a different type of decay rate. Rather than the exponential decay rate previously
used, we implemented one that was more sigmoidal in its effect, allowing the hormone
to influence the prey’s action selection/system for longer. This came from the obser-
vations of early experiments that the exponential decay rate used previously led to a
very short “emotional memory” for our prey — which meant that our early prey was
easily “distracted” by a food/water resource when “fleeing” the predator after an at-
tack. While usually enough to get the prey to move off a resource after attacked and
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Figure 6.1: Summary of experimental conditions: In these experiments a factorial 2x2x4
design (resulting in sixteen experimental conditions) was used to investigate further how the
adaptive value of our emotion-based architecture varies when we both vary the strength of
the hormone-like mechanism and the perceptual abilities of our prey and predator. This de-
sign enables us to identify the effects of a) the “emotion-like” substrate represented by our
hormone-like mechanism, using different hormone release rates to represent further variation
in our prey’s “brain” b) our prey’s perceptual distance; proximal/distal detection representing
a variation in prey “body” and c) our predator’s perceptual distance; proximal/distal detection
representing both a variation in our predator’s “body” and prey’s “environment”. *Variations in the
body of one agent potentially leading to a variation in the other’s environment and vice versa.
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search for its nest, we noticed its exponential nature meant the “fear” of the prey act-
ing to increase the motivation to search for its nest and rest was soon overcome by any
consequent encounters with a food or water resource. That is to say, the incentive cue
of an existing resource won out over the adjusted interoception of the physiological
variable integrity (which was used to calculate the motivational intensity for the need
to rest).

Thus, based on our intuitions from previous experiments, we wanted to see whether
changing a specific aspect of our hormone-like mechanism would prove more adaptive
for our prey. In terms of the original mechanism, as outlined previously, the concentra-
tion of hormone suffers two opposite forces over time. That is to say, it increases with
the release of hormone by the gland, and dissipates or decays over time. While previ-
ously, this was at a constant rate, here we modified the decay rate of our mechanism,
using a sigmoidal decay rate which allows the perception of its predator to affect/bias
our prey’s action selection for longer (which could be thought of as akin to increasing
the “persistence” of our prey’s fear in biasing the underlying motivation-based archi-
tecture). We wanted to see what would happen when the hormone-like mechanism was
that bit more persistent over time (and whether this would be adaptive in terms of prey
survival).

6.4.2 Perceptual Distance (Proximal/Distal)
Again, as an aspect of embodiment we chose to continue to focus on, we aimed to
vary our prey’s perceptual distance by connecting the basic motivation-based architec-
ture (also comparing different hormone-release rates) to two different kinds of ability
(identified in the last chapter “proximal prey” and “distal prey” or “blind” and “seeing”
prey respectively).

6.4.2.1 Proximal Prey

Our first type of prey’s perceptual distance was severely limited. This was achieved by
making the only sensory information available to our prey from its environment come
from touch (via its two touch sensors) and internal perception of the variable integrity
(a sudden decrease signalling an attack by the predator). As mentioned previously, this
scenario can be thought of as limiting the prey to a system akin to the somatosensory
system available to many biological organisms. However, this system is also further
limited in that the prey cannot even actively (by touch alone) discriminate between
the stimuli of a wall or that of the (more dangerous) predator. For this prey, the only
way it has for “perceiving” the predator (and thus the only signal affecting our mecha-
nism/triggering hormone release) is via internal changes following an attack.
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6.4.2.2 Distal Prey

As before, our second type of prey’s perceptual distance, especially with regards to
detection of the predator and the proximal prey’s ability, was increased considerably
(to approximately 45cm away from its body). This was achieved by the addition of an
ultrasonic sensor. With regards to our hormone-like mechanism, information from this
sensor would thus give the prey two signals available for potentially detecting predator
presence/triggering hormone release. As with the proximal prey, we created further
types of this prey by also varying the parameter representing the level of hormone
released, tested at the four levels specified.

6.5 Predator

6.5.1 Perceptual Distance (Proximal/Distal)
This time, we also aimed to vary our predator’s perceptual distance by connecting the
basic motivation-based architecture to two different kinds of ability (which, similarly
to the two types of prey agent, can be identified as “proximal predator” and “distal
predator” or “blind” and “seeing” predator respectively).

6.5.1.1 Proximal Predator

The first type of predator was the same as previously studied and given an extremely
limited perceptual distance. Thus, its hunting abilities were extremely crude, to say the
least. The only way this predator can find its prey is to blindly search its environment
and wait for the prey to somehow come into contact with its touch sensors. When it
does so, this triggers an “attack” on the predator’s part, which sends a signal to the
prey via Bluetooth to decrease its level of integrity.

6.5.1.2 Distal Predator

However, the abilities of the second (new) type of predator, like the second type of
prey, were increased considerably. This was achieved by the addition of an infra-red
(IR) seeker to the predator — and infra-red ball mounted on the prey. This allowed us
to program a more sophisticated “hunting strategy” by getting the predator to follow
any IR light detected via its infra-red seeker/otherwise using the same “blind search”
as the proximal predator until the prey is encountered. This predator can therefore be
considered much more dangerous, but at the same time more predictable. It is this
predictability that we think will prove an important factor in determining the emergent
properties of our prey’s emotion-based architecture.
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6.6 Arena
As before, the layout of the arena for these experiments was kept constant, consisting
of a nest area, food, water and neutral space.

6.7 Results
To recap, using our two main types of prey and two main types of predator, we thereby
created four main predator-prey combinations for study. Further conditions were cre-
ated for comparison by varying the level of “hormone” released by our algorithm (at
four levels — 0, 25, 50 and 100). With regards to the procedure for each prey run,
we replicated that described in the last chapter. Similarly, the same data was collected
from both predator and prey after each run with regards to both sensory and internal
(physiological) data. Combining our variables at each of their levels this created six-
teen experimental conditions for our initial comparisons (summarised in Figure 6.1
and creating a balanced, 2x2x4 factorial design). We collected data from a total of
fifteen runs per condition (with a total of seventeen conditions — as this also includes
a control conditions, where we also tested the prey alone — this generated data from
a total of 255 runs). This experimental design allowed us to conduct a much more
in-depth study than previously, looking at the effect of different hormone-release rates
on the emergent properties of our developed system.

6.7.1 Measures of Viability
From the data collected, we again first calculated and looked at the results in terms of
our chosen measures of viability (previously outlined along with our basic implemen-
tation). Figures 6.2-6.5 shows how each type of prey performed as measured by Life
Span, Overall Comfort and Physiological Balance. Again, for purposes of compari-
son, we have also included the results obtained from testing our prey alone, without a
predator agent; making this essentially the results obtained using the prey to perform a
two-resource problem. The purpose of this was to again check that our predators were
actually having an impact on the prey in terms of representing a hazardous resource.

6.7.1.1 Life Span, Overall Comfort and Physiological Balance

In terms of Life span (how many time-steps out of the maximum that the prey lasted
for/remained viable) Figure 6.2 shows the average Life span, using the same method
outlined in the last chapter, calculated per condition (error bars show the standard er-
ror of the mean). Looking for trends in terms of Life Span (specifically, as calculated
from the average minutes the prey “lived” for each condition) for the results of those
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conditions testing the proximal predator we can see that, on average, our distal preda-
tor appeared to consistently shorten the average Life Span of our prey, regardless of
condition. This is perhaps none too surprising in itself. For a predator that can “see” its
prey will surely be expected to catch it more often! However, it is interesting to note
that the modulated prey in the distal predator conditions all show a tendency to last
longer than the prey without the hormone-like mechanism. Might this show a greater
use for our mechanism in circumstances where both the danger and predictability of
dynamics in the environment (that is to say, the predator) are increased?

Figure 6.2: Summary of results showing average Life Span (LS) of our prey across experimen-
tal conditions. Error Bars show the Standard Error of the Mean (SEM). Looking at the trends,
on average, the presence of our distal predator perhaps not surprisingly tended to shorten the
average LS of our prey. More interestingly to us though, we see our modulated prey in the distal
predator conditions displaying a tendency to last longer than the prey without the hormone-like
mechanism. The results of our inferential tests suggest a main effect for predator ability, which
we consider to lend support to our idea that our mechanism generates more adaptive behaviour
when both the danger and predictability of the environment (namely the predator) is increased.

Looking at the trends shown, at first glance it seems that the introduction of our
distal predator caused a general decrease in average Life Span. Though we continue
here to focus on Life Span as calculated from the number of time steps our prey sur-
vived for, for these experiments — in contrast to those of the previous chapter — when
looking at the real-time survival of our prey, we now began to see some differences
between our calculations of Life Span, depending upon whether we are looking at real
time (msecs) or the number of time steps survived. This is most likely due to some of
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our prey agents having spent more time performing actions that take longer (namely,
obstacle-avoidance). However, it is an interesting difference to note. Thus, to be con-
sistent with our previous results, for this data set we have again focused our inferential
tests purely on calculations made using the recorded number of time-steps the prey
“survived”. However, this time we also performed a further test on Life Span as cal-
culated by the total number of minutes our prey survived. Again after arcsine transfor-
mation, we performed a multi-way (2x2x4) ANOVA for Life Span across our sixteen
experimental conditions. This was to see if there were any main effects and interac-
tions between prey perceptual distance (proximal/distal) predator perceptual distance
(proximal/distal) and hormone strength (0, 25, 50, 100).

In terms of Life Span calculated using time-steps, the results of this test showed no
main effect for prey ability (p=0.211). However, a significant main effect was found
for predator ability (p=0.000). While significant interactions between our three inde-
pendent variables (prey perceptual distance, predator perceptual distance and hormone
strength) were not found, we nevertheless found the result for interactions of predator
perceptual distance and hormone strength to be interesting (p=0.071). Indeed, though
the inferential tests performed as a result of this thesis have continued to be judged by
the conventional alpha level of 0.05, in exploring our results, a further question arising
from our research, is whether, in “noisy” robotic systems such as ours, the conven-
tional alpha would lead us to reject make more or less Type II errors. Though currently
beyond the scope of this thesis, it is something which we would be keen to see ad-
dressed in future. Doing the same for our second calculation of Life Span in minutes,
we found no main effect for prey ability (p=0.319). However, we did again find a
significant main effect for predator perceptual distance (p=0.00) as well a main effect
for hormone-strength (p=0.007). In turn, the results further suggested a significant
interaction between prey ability and hormone strength (p=0.038).

In terms of Overall Comfort and Physiological Balance, Figures 6.3 to 6.5 do not
show any obvious decreases between their averages with regards to the introduction of
the predator. However, this could be due to shorter average Life Spans in some condi-
tions (leading to a prey “killed off” in its prime displaying similar levels to a prey that
has successfully survived and “thrived” in its environment). Performing a multi-way
ANOVA for each of these measures, after arcsine transformation no main effects or in-
teractions were found for prey or predator perceptual distance or hormone-strength in
terms of Overall Comfort. However, main effects were shown for all three independent
variables in terms of Physiological Balance (main effects for prey perceptual distance
(p=0.001) predator perceptual distance (p=0.002) and hormone-strength (p=0.000) but
not significant interactions between these conditions). Interestingly, when looking at
Overall Comfort in terms of blood sugar and vascular volume only, significant effects
were found to be the same as for Physiological Balance (main effects for prey percep-
tual distance (p=0.012) predator perceptual distance (p=0.034) and hormone-strength
(p=0.015) but no interactions between groups).
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Figure 6.3: Summary of results showing average Overall Comfort (OvC) of our prey across
conditions. Error Bars show the Standard Error of the Mean (SEM). In this case, calculations
of OvC exclude the third variable of integrity so that we can first consider the effect of adding
this variable on our architecture’s performance of the original two resource problem. Unlike
with Life Span, in comparison with our control condition (Prey Alone) here we do not observe
a distinct decrease in OvC with the introduction of our predator. This may be due to shorter
average Life Spans — a prey “killed off” in its prime displaying similar levels to a prey that
has successfully survived and “thrived” in its environment. For each predator-prey combi-
nation though, comparing the modulated to the non-modulated prey, in all but one condition
the modulated prey tended to display a decrease in OvC in comparison to its non-modulated
counterpart.
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Figure 6.4: Summary of results showing average Overall Comfort (OvC) of our prey across
experimental conditions. Error Bars show the Standard Error of the Mean (SEM). In this
case, calculations of OvC include the third variable of integrity. Unlike with Figure 6.3, in
comparison with our control condition (Prey Alone) here we do observe a decrease in OvC
with the introduction of our predator. For each predator-prey combination, comparing the
modulated to the non-modulated prey, in all but the proximal prey versus proximal predator
condition (which showed the opposite trend) the modulated prey tended to display a decrease
in OvC in comparison to its non-modulated counterpart.

104



6. Brain-Body Combinations and Risk Assessment

Figure 6.5: Summary of results showing average Physiological Balance (PhB) of our prey
across experimental conditions. Error Bars show the Standard Error of the Mean (SEM). In
this case, calculations of PhB include the third variable of integrity. In comparison with our
control condition (Prey Alone) here we actually observe a tendency to increase average PhB
with the introduction of our predator. However, this can also be explained by the fact that in our
control condition the variable integrity stays constant, while the other two variables fluctuate.
That is to say integrity will never decrease because the predator is absent, thereby skewing
(artificially lowering) calculations of PhB. For each predator-prey combination, comparing the
modulated to the non-modulated prey, the modulated prey tended to display a decrease in PhB
in comparison to its non-modulated counterpart. It also seems that, the greater the level of
hormone released following detection of the predator/an attack, the greater the decrease in PhB
for all conditions.
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6.7.1.2 Risk of Death Management

In terms of Management of Death Risk (as defined in the previous chapter) the indi-
vidual regions for this measure can be used as an indication of how well viability is
preserved. Again, using this measure to explore our data more visually provides us
with an interesting perspective on the performance of our different types of prey. Fig-
ures 6.6 to 6.10 show our results, in terms of Risk of Death (RoD) showing a plot for
each experimental condition as well as our control (where prey was acting alone). Each
bar represents the average percentage of time each type of prey was in each “zone”. A
RoD of 1 means the prey is almost, if not the most “healthy” it can be, whereas a RoD
of 10 means the prey is “near death”. While the differences here are not as striking
those in our initial experiments, the differences in the shapes our results create are still
of interest.

Figure 6.6: Summary of results showing Risk of Death (RoD) Management in our control
condition (Prey Alone). Each bar represents the average percentage of time our prey was in
each RoD “zone”. Error Bars show the Standard Error of the Mean (SEM). A RoD of 1 (green)
means that the prey is almost if not exactly the most “healthy” it can be, whereas a RoD of 10
(red) means the prey is “near death”. As seen, in this condition, on average our prey tended to
spend most of its life in a “healthy” state.
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Figure 6.7: Summary of results showing Risk of Death (RoD) Management across conditions
where proximal prey versus proximal predator. Each bar represents the average percentage
of time our prey was in each RoD “zone”. Error Bars show the Standard Error of the Mean
(SEM). A RoD of 1 (green) means that the prey is almost if not exactly the most “healthy” it
can be, whereas a RoD of 10 (red) means the prey is “near death”. Here, we see our proximal
prey with a hormone-release of 25 seemed to spend the least amount of time close to death.
However, considering Life Span, this was also the condition characterised by a life met with
a quick end. On average, the longest lived prey was the non-modulated one. This appears to
have also resulted in a more even distribution across zones, which is more similar to that of our
control condition.
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Figure 6.8: Summary of results showing Risk of Death (RoD) Management across conditions
where proximal prey versus distal predator. Each bar represents the average percentage of time
our prey was in each RoD “zone”. Error Bars show the Standard Error of the Mean (SEM).
A RoD of 1 (green) means that the prey is almost if not exactly the most “healthy” it can be,
whereas a RoD of 10 (red) means the prey is “near death”. Here, we see our non-modulated
prey seemed to spend the least amount of time close to death. However, considering Life Span,
this was again the condition characterised by a life met with a quick end. On average, the
longest lived prey here was the one with a hormone-release of 25. This appears to have again
resulted in a more even distribution across zones for this condition, which is more similar to
that of our control condition.
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Figure 6.9: Summary of results showing Risk of Death (RoD) Management across conditions
where distal prey versus proximal predator. Each bar represents the average percentage of time
our prey was in each RoD “zone”. Error Bars show the Standard Error of the Mean (SEM).
A RoD of 1 (green) means that the prey is almost if not exactly the most “healthy” it can be,
whereas a RoD of 10 (red) means the prey is “near death”. Here, we see our non-modulated
prey seemed to spend the least amount of time close to death. On average, the longest lived
prey here was the one with a hormone-release of 25. This appears to have again resulted in
a more even distribution across zones for this condition, which is more similar to that of our
control condition.
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Figure 6.10: Summary of results showing Risk of Death (RoD) Management across condi-
tions where distal prey versus distal predator. Each bar represents the average percentage of
time our prey was in each RoD “zone”. Error Bars show the Standard Error of the Mean (SEM).
A RoD of 1 (green) means that the prey is almost if not exactly the most “healthy” it can be,
whereas a RoD of 10 (red) means the prey is “near death”. Here, we see our non-modulated
prey seemed to spend the least amount of time close to death. However, considering Life Span,
this was also the condition characterised by a life met with a quick end. On average, the longest
lived prey here was the one with a hormone-release of 25.
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For these graphs, as opposed to the prey alone condition, we see some runs where
the prey seemed to spend all of its life in the same zone. We found that these are most
likely to be those runs characterised by a life met with a quick end. That is, death
inflicted by the predator within a short period. Indeed, the distal predator conditions
seem to be characterised by more of these peaks for the proximal prey than for the
distal. Interestingly, it is the distal prey, distal predator conditions where we again see
signs of the “calming” or stabilising effect of our hormone-like mechanism (looking at
the graph for this condition, from left to right, shows the effect of increasing hormone
strength).

6.7.2 Activity Cycles and Action Patterns
6.7.2.1 States and State Transitions

Looking next at how this performance translates to a pattern of action, Figure 6.11
shows some averages for different types of state transition across conditions. Here
we see that, on average, all of our prey continue to demonstrate more opportunism
than persistence. Considering the impact had on prey state transitions and state sinks,
investigating this further, in terms of an activity profile, Figures 6.12 to 6.15 show
the average time spent on each action per condition, as a percentage of overall life
span. Together with Life Span, these graphs better show both differences in terms
of the absolute number of time-steps that each type of prey spent on each activity,
and the percentage of their “lives” that this made up. For our proximal prey against our
proximal predator we actually still see quite similar patterns in terms of state transitions
as for our control condition. However, with the H100 release level, the amount of time
spent in the nest dramatically increases.

For each condition, we can see the effect of increasing the strength or “power” of
our hormone-like mechanism. Firstly, across all conditions, we can see (looking at
each plot from left to right) that increasing hormone release not unexpectedly gener-
ally increased the proportion of its lifetime our prey spent on activities associated with
recovering “integrity”. Comparing the results for the proximal prey versus proximal
predator conditions with those for the distal prey versus proximal predator, we then
see how introducing distal perception increases these proportions yet again. With our
proximal prey versus proximal predator condition though, when our hormone strength
is at its highest, we see our prey spending most of its time either in the nest or searching
for it (in the context of our state transition graphs seeming then to make only “oppor-
tunistic” stops for food/water if it should so happen to be encountered).

Turning to our distal predator conditions, we see the same general trends. However,
taken together with our other observations, in this case it is most likely that the more
advanced hunting abilities of our predator is responsible for increasing the proportions
of time spent performing activities associated with recovering integrity (that is, when
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Figure 6.11: Summary of results showing the average number of different types of “state
transitions” of our prey across conditions. Error bars show the Standard Error of the Mean
(SEM). Exploring the idea of action selection as a cycle of activities, rather than a series of
individual decisions, state transitions occur whenever our agent switches from one of the six
available actions to another. Having constructed a state transition matrix for each individual
run, here we define Opportunism as the number of times our prey consumed one resource
while searching for another. Persistence represents the number of times our prey ended up
consuming the resource it was searching for. Here we see that, on average, all of our prey
continue to demonstrate more opportunism than persistence.
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Figure 6.12: Summary of results in terms of “state sinks” across conditions where proximal
prey versus proximal predator. In this case, the average time (as a percentage of overall life
span) spent by our different prey animats performing each possible activity/state out of the six
available for our architecture to select from. Error Bars show the Standard Error of the Mean
(SEM). As the activities that our emotion-based architecture is most likely to influence directly,
we can focus our attention here on the proportion of time spent by our prey either resting or
searching for the nest. From this we can see that the prey which tended to spend most time
doing the latter was, somewhat unsurprisingly, that with a hormone release of 100. Conversely,
our non-modulated prey and prey with a hormone release of 50 spent the least amount of time
searching for the nest. However, the prey with a hormone release of 50 actually spent the most
time actively resting (albeit, looking at the error bars, not quite as consistently across life times
as we saw for our prey with a hormone release of 100).
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Figure 6.13: Summary of results in terms of “state sinks” across conditions where distal prey
versus proximal predator. In this case, the average time (as a percentage of overall life span)
spent by our different prey performing each possible activity/state out of the six available for
our architecture to select from. Error Bars show the Standard Error of the Mean (SEM). As the
activities that our emotion-based architecture is most likely to influence directly, we can focus
our attention here on the proportion of time spent by our prey either resting or searching for
the nest. From this we can see a definite impact on these activities upon having increased the
perceptual distance of our prey. That is, in comparison with our proximal prey in the previous
figures, while our non-modulated prey still spends more time trying to feed/drink than rest,
our modulated distal prey now tends to spend more of its life span on nest-related activities.
The modulated prey here also now spend similar proportions of their life times searching for
the nest. However, we now see a corresponding increase in the amount of time spent actively
resting as hormone strength was increased. Conversely, our non-modulated prey spent the least
amount of time on nest-related activities. Our prey with a hormone-release of 25 was earlier
identified as that with the longest average Life Span in the distal prey versus proximal predator
conditions.
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Figure 6.14: Summary of results in terms of “state sinks” across conditions where proximal
prey versus distal predator. In this case, the average time (as a percentage of overall life span)
spent by our different prey performing each possible activity/state out of the six available for
our architecture to select from. Error Bars show the Standard Error of the Mean (SEM). As the
activities that our emotion-based architecture is most likely to influence directly, we can focus
our attention here on the proportion of time spent by our prey either resting or searching for
the nest. From this, we can consider the impact upon having increased the perceptual abilities
of our predator. For instance, in comparison with our prey in the previous figures (proximal
predator conditions) we now see that our non-modulated prey spends a greater proportion of
its life searching for the nest. This prey also still spends more time trying to feed/drink than
rest. The prey which tended to spend most of its time on rest-related activities is our prey
with a hormone release of 50. This prey actually spent the most time actively resting as well
(similarly to the proximal prey versus proximal predator conditions). Our non-modulated prey
tended to spend the least amount of its time on the nest-related activities.
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Figure 6.15: Summary of results in terms of “state sinks” across conditions where distal prey
versus distal predator. In this case, the average time (as a percentage of overall life span) spent
by our different prey animats performing each possible activity/state out of the six available for
our architecture to select from. Error Bars show the Standard Error of the Mean (SEM). As the
activities that our emotion-based architecture is most likely to influence directly, we can focus
our attention here on the proportion of time spent by our prey either resting or searching for the
nest. From this, we can consider the impact upon having increased the perceptual abilities of
both our predator and prey. In comparison with our other prey, we again see that, in common
with our distal prey versus proximal predator conditions, the modulated prey here also now
spend similar proportions of their life times searching for the nest. Our non-modulated prey
still tended to spend the least amount of its time on nest-related activities. Again, the prey with
a hormone release of 50 actually tended to spend a larger proportion of its life actively resting.
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compared to our proximal prey versus proximal predator results). In this way, while
the increase in these proportions for our distal prey versus proximal predator is due
to the body/distal perception of our prey, the corresponding increase for our proximal
prey versus distal predator is due to the body/distal perception of our predator (our
prey’s environment). The distal prey versus distal predator condition then shows that
when these elements are brought together, we see the majority of our prey’s lifetime is
spent either seeking or in its “safe place”.

6.7.3 Brain-Body-Environment Maps
To visualise the dynamics of the prey’s brain-body-environment interactions over its
lifetime, Figure 6.16 shows the Brain-Body-Environment maps for a selection of runs
from our experimental conditions. These go some way into better/more qualitatively
illustrating the differences we have commented on across conditions. To provide more
of an overview of this data, Figure 6.17 shows the average number of state transitions
or “action switches” of our prey across conditions. Here we can see that, except where
we had our proximal predator paired with our proximal prey, our modulated distal prey
with a hormone release of 25 tended to perform a greater number of action switches.
Conversely, where we had our proximal predator paired with our proximal prey, our
non-modulated prey actually tended to perform a greater number of action switches.

Finally, to look further at the movement of our different animats and time spent
on different resources, Figures 6.18 to 6.21 show the average time spent on different
resources/areas in the arena. Together with the results for Life Span, they show both the
differences in terms of the absolute number of time-steps that each type of prey spent
on each resource, as well as the percentage of their “lives” this represents. The results
here also show how increasing the strength the “emotion” part of our emotion-based
architecture leads our prey to spend less time “risking” attack and more time “hiding”
in its nest and effectively changing the “strategy” of our prey in terms of coping with
the most hazardous element of its environment (the predator).

6.8 Discussion and Conclusion
Here, we use our model of action selection and emotion to explore the importance
of both body and environment further. This chapter builds upon our previous work,
constituting the next step in a systematic study of how variations in the brain-body
interactions of prey and predator can affect the dynamics of prey-predator interactions.
In this chapter, we continue to use and explore our implementation of the Hazardous
Three Resource Problem. In these experiments the hormone-like mechanism used to
simulate “fear-like” states, affecting the prey architecture through alteration of the level
of our third internal variable (integrity).

117



6. Brain-Body Combinations and Risk Assessment

Figure 6.16: Illustration of differences (relating to aspects of prey Brain, Body and Environ-
ment over time) as observed across conditions between individual runs and shown by our BBE
Maps. The background bars here represent our prey’s position within its environment (green
bars show where our prey detected “food”, blue bars show “water”, the absence of any bar
indicates the prey detected no resources present in its immediate environment at that time and
yellow bars indicate the prey was in its “nest”) while each line represents the internal vari-
ables of our prey, including each of its physiological variables (black for blood sugar, blue for
vascular volume, yellow for integrity) and hormone levels/effects. Additionally, here vPV3
represents the prey’s perceived level of integrity, which in the modulated conditions differed
from the actual level of integrity when concentrations of hormone were released.
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Figure 6.17: Summary of results showing the average number of “action switches” of our
prey across conditions. Error bars show the Standard Error of the Mean (SEM). Exploring the
idea of action selection as a cycle of activities, rather than a series of individual decisions, we
use this simple measure to compare our prey. An “action switch” occurs whenever our prey
makes the decision to switch from one of the six actions available to it to another. Here we
can see that, except where we had our proximal predator paired with our proximal prey, our
modulated distal prey with a hormone release of 25 tended to perform a greater number of
action switches. Conversely, where we had our proximal predator paired with our proximal
prey, our non-modulated prey actually tended to perform a greater number of action switches.
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Figure 6.18: Summary of results showing time (as the average proportion of our prey’s life
span) spent on different resources/areas in its environment/arena by our prey across conditions
where proximal prey versus proximal predator. Error Bars show the Standard Error of the
Mean (SEM). This shows that, on average, our non-modulated prey tended to spend a greater
proportion of its life span on neutral spaces within the arena whereas our modulated prey tended
to spend a greater proportion actually on a resource.
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Figure 6.19: Summary of results showing time (as the average proportion of our prey’s life
span) spent on different resources/areas in its environment/arena by our prey across conditions
where distal prey versus proximal predator. Error Bars show the Standard Error of the Mean
(SEM). This shows that, on average, our non-modulated prey still tended to spend a greater
proportion of its life span on neutral spaces (approximately 40%) whereas our modulated prey
tended to spend a greater proportion on a resource. As the prey with the longest average
Life Span in this condition, our prey with the hormone release of 25 spent similar amounts of
time on either neutral space or in the nest (approximately 30%) and less (but similar, smaller
proportions of time (just under 20%) on either food or water spaces.
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Figure 6.20: Summary of results showing time (as the average proportion of our prey’s life
span) spent on different resources/areas in its environment/arena by our prey across conditions
where proximal prey versus distal predator. Error Bars show the Standard Error of the Mean
(SEM). As the prey with the longest average Life Span in this condition, our prey with the
hormone release of 25 can be seen to have spent similar amounts of time on neutral space to
our non-modulated prey (approximately 40%) but rather than spending, on average, around
5% of its life span in the nest, this prey spent similar proportions of its time on each resource
(approximately 20%).
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Figure 6.21: Summary of results showing time (as the average proportion of our prey’s life
span) spent on different resources/areas in its environment/arena by our prey across conditions
where distal prey versus distal predator. Error Bars show the Standard Error of the Mean
(SEM). As the prey with the longest average Life Span in this condition, our prey with the
hormone release of 25 can be seen to have spent greater amounts of time on neutral space and
more time in the nest than our non-modulated prey (spending similar amounts of time on each
resource).
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We have compared the adaptive value of our chosen mechanism (affecting intero-
ception of our prey’s internal physiology) across different combinations of predator
and prey: also varying parameters and modifying this mechanism itself to see how
this would affect our prey life span. We found significant differences between condi-
tions, particularly in terms of our predator’s abilities (see Figures 6.2). Taken together
with further descriptive statistics, we suggest these results indicate that our mechanism
could be more “adaptive” — or in terms of our model have a particular emergent func-
tion or specific system property that is adaptive — in cases where our prey is against
predators that are both dangerous and predictable. We conclude that in the context of
a predator-prey relationship, the success of the use of such a mechanism as ours will
in fact most likely depend on getting the balance “just right” between aspects of prey
brain, body and environment. In terms of body, this includes the aspect of prey percep-
tual distance, hormone strength and type. In terms of environment, this includes the
aspect of predator body (particularly perceptual distance).

More generally, we can again use our results (Figures 6.2 and 6.16 drawing the
majority of our interest here) to suggest that the adaptive value of our prey’s emotion-
based architecture varies with aspects of body such as perceptual distance (as an aspect
of embodiment) demonstrating how the emergent properties (such as prey “flight”) of
our emotion-based architecture varied with our prey’s brain-body combination. Inter-
estingly, this fits in with ethological data which has found that certain prey animal’s
flight initiation distances (that is, the point at which they “decide” to “flee”) vary with
predator lethality [109]. Taken together, however, we suggest this could indicate a
wider role or function for our hormone-like mechanism in terms of acting as (effec-
tively) a risk assessor, assessing the risk of the environment dynamics (predator) as
well as determining how willing our prey is to “risk” attack in order to satisfy its other
survival needs (such as foraging).

Thinking back to our earlier review of the literature, in terms of the wider research
area, we hope that the results of this chapter in particular may provide further inspira-
tion and encouragement for greater collaboration and exchange between biological and
artificial research areas. For, in attempting to more systematically explore the possible
role of brain, body and environment in shaping an artificial predator-prey relationship,
we can also see a possible application for our robotic implementation for more specif-
ically allowing ethologists to better test and develop their ideas and theories such as
Cooper’s on flight initiation distance [88].
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Chapter 7

Sensory Integration and Resource
Allocation

“The degree of one’s emotions varies inversely with one’s knowledge
of the facts.”

— Bertrand Russell

7.1 Emergent Functions of Modulating Interoception:
Results Chapter III.

One of the arguments inherent and central to this thesis is that, by increasing our un-
derstanding of brain-body-environment interactions, such knowledge will enable us to
build agents that both solve the problem of action selection and, in doing so, will one
day display adaptive behaviour on a level with our own. From our own review of the
existing literature, and including the results of our experiments, we argue this could
well include the incorporation of mechanisms that generate behaviours which can be
considered functional equivalents to biological emotions. So far, we have focused on
our ideas about both predator and prey agents in terms of the importance of aspects
of both these types of agent’s embodiment (that is, their perceptual abilities) and their
potential effects on the adaptive value of our emotion-based architecture. This includes
the consequent effect on the predator-prey relationship itself.

However, here we now proceed to consider how we might develop our actual mech-
anism to make the most of its potential. That is to say, we look at how we might use it
so as to achieve further (multiple) functionalities. In terms of artificial emotion, such
functions might include those that somehow act to make connections between brain,
body and environment more useful, whether in terms of efficiency (such as speed of
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response) or cost-effectiveness (as with risk assessment). Relating to our concepts of
adaptive emotion in brain-body-environment relationships, in this chapter we explore
how we might use our conceptual framework to extend our ideas and develop our
agents to manipulate this relationship and its interactions adaptively. In this chapter
we continue to build and improve on our system step-by-step similar to the way in
which neuroscientists imagine our own brains (and other species) have evolved emo-
tions that are adaptive. As part of our incremental approach, we therefore think about
what we might begin to add or take away next.

7.2 Sensory Integration and Flight Initiation Distance
(FID)

Biologically, sensory integration can be defined as the neurological process that organ-
ises an agent’s senses from its own body and the environment. Thus it deals with how
the brain processes multiple sensory modality inputs into usable functional outputs. In-
terestingly, researchers note that detecting the positions of objects in the environment,
including predators or prey, is of crucial importance to animals. It further seems that
several of the sensory systems, especially vision and hearing, are particularly special-
ized for this task. In this chapter, continuing our biologically-inspired approach, we
borrow from biological ideas of sensory integration and focus our attention on trying
to demonstrate, as well as understand, the potential of our emotion-based architecture
with regards to adaptive action selection. Specifically, in this chapter we demonstrate
how our “emotion-like” substrate might successfully be integrated further with and, in
turn, actively integrate our prey agent’s brain, body and environment.

To do this, we have developed our basic emotion-based architecture — specifi-
cally, its hormone-like mechanism — by integrating it in such a way as to produce
more gradient responses/effects. Looking at ethological research, we considered such
a development might have an advantage in being somewhat more biologically plausi-
ble and, in turn, ultimately more adaptive for our prey. In the next chapter, the work
of this chapter will enable us to not only compare all our findings together, but to bet-
ter compare our own system with those found in biology. In particular, with regards
to how our work might fit into the very same concepts and framework that Cooper
[88] introduced in his work to explain the adaptive behaviour of lizards — which is
effectively about when they make the decision and what information they use to make
the decision (about when) to “flee” from a perceived predator (or, to borrow another
term from ethology, how our artificial prey’s flight initiation distance might be varied
to generate more adaptive behaviours in response to the dynamics of its environment).
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7.3 Gradient Perception and Response
Using our implementation of the H3RP, to consider the potential of our emotion-based
architecture further the rest of this chapter will report the results of two different sets of
experiments. The first (outlined in the first part of this chapter) were actually an exten-
sion to those of the previous chapter. However, in our second (and final) experiments,
we aimed to build on the results obtained so as to consider how we might create more
dynamic predator-prey relationships. That is, more in line with biological examples —
using our hormone-like mechanism to vary the intensity of prey response. In common
with our other experiments, however, we still primarily aim to consider our results pri-
marily in terms of action selection, emotion and brain-body-environment interactions
in the predator-prey relationship.

7.4 I. Fixed versus Gradient Hormone Release (Vary-
ing Sensory Signals)

Using the same H3RP as detailed in the last chapter, in the first experiments examined
here we varied parameters of our prey’s hormone-like mechanism, testing the effects of
using a new “gradient” hormone release for our distal prey in order to compare it with
our otherwise previously “fixed” hormone release (in our new gradient mechanism,
the amount of hormone released by the prey’s mechanism is calculated as a function
of how far away the predator is perceived to be). Testing the same four combinations
of predator (proximal/distal) and prey (proximal/distal) as before, we thereby created a
further six new conditions for testing our new type of hormone-like mechanism, which
demonstrates a more gradient response than the original one — again also varying
prey and predator perceptual distance and hormone strength. For comparison, and
focusing on our distal prey, we looked at a total of twelve experimental conditions for
this data set by also including the results we had already obtained from the six distal
prey conditions described in the previous chapter. The purpose of this was to better
enable (more informative) comparisons to be made between these conditions and the
previously-studied response of our prey. Our focus was especially on the difference, if
any, that the design of a more fine-grained (or integrated) hormonal mechanism might
make to the prey’s survival.

7.5 Prey
Because our first experiments here were more an extension of our previous set, the only
animat to change was the prey (the different predators and arena having been already
described in the last chapter).
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Figure 7.1: Summary of experimental conditions: In these experiments a factorial 2x3x2 de-
sign (resulting in twelve experimental conditions) was used to investigate further how the adap-
tive value of our emotion-based architecture varies when we both vary both the strength and re-
lease type of our hormone-like mechanism and the perceptual abilities of our prey and predator.
This design enables us to identify the effects of a) the “emotion-like” substrate represented by
our hormone-like mechanism, using different hormone release rates and types (fixed/gradient
release) to represent further variation in our prey’s “brain” and “body” and b) our predator’s
perceptual distance; proximal/distal detection representing both a variation in our predator’s
“body” and prey’s “environment”. *Variations in the body of one agent potentially leading to a variation in the
other’s environment and vice versa.
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7.5.1 Interoceptive Modulation (Graded Hormone-Release of 0, 25,
50 and 100)

Using the same basic distal prey as before, for these experiments we created a new,
“gradient” hormone-like mechanism by integrating information from our distal sensor
further. This “new” mechanism calculated the intensity of the external stimulus of the
predator as a function of the distance away the predator is perceived. If the predator
is perceived via the ultrasonic sensor more than 30cm away less hormone is released
than if the predator is perceived via an actual attack (where the maximum level of
hormone is released). Similarly to the previous experiments conducted using our old
“fixed” hormone-release rate, we tested our new “gradient” hormone-release rate at
four levels: 0, 25, 50 and 100. To recap, a level of 25 in the “fixed” condition means a
release of 25 percent of the maximum concentration of hormone, regardless of whether
the predator is detected via an attack or the ultrasonic. Meanwhile, a level of 25 in the
“gradient” condition means a release of hormone as a function of the distance away the
predator is detected: full release of 25 percent of the maximum concentration occurring
after an attack, otherwise a percentage of that 25 percent.

7.6 Results
For each condition, data was collected from fifteen runs, collecting the same type of
data and using the same procedure as reported in the previous chapter (resulting in a
total of a further 90 new runs for our analysis). When combined with the runs obtained
in the last set of experiments, our resulting data set consists of 180 runs (across twelve
conditions). Figures 7.2 to 7.6 show how each type of prey performed as measured by
Life Span, Overall Comfort and Physiological Balance. Again, to provide a baseline,
we include the results collected from the prey alone as well. That is, performing the
less dynamic and underlying two resource problem (in the absence of the predator).

7.6.1 Measures of Viability
From the data collected, we again first calculated and looked at the results in terms of
our chosen measures of viability (previously outlined along with our basic implemen-
tation). Figures 7.2-7.6 show how each type of prey performed as measured by Life
Span, Overall Comfort and Physiological Balance. Again, for purposes of compari-
son, we have also included the results obtained from testing our prey alone, without a
predator agent. The purpose of this was to again check that our predators were actually
having an impact on the prey in terms of representing a hazardous resource.
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Figure 7.2: Summary of results showing average Life Span (LS) of our prey across experi-
mental conditions. Error Bars show the Standard Error of the Mean (SEM). This shows the
average for each condition time-steps. Interestingly, we see a mirror image in terms of the
trends shown here for the types of prey tested using the “fixed” hormone release, as opposed to
those tested using the newer “gradient” hormone release. That is to say, we observe a tendency
for LS to decrease with an increase in hormone strength combined with fixed hormone release.
However, we see the opposite tendency with an increase in hormone strength when combined
with a gradient hormone release. A significant main effect for predator perceptual distance
was found on LS. While no main effects were found for our other independent variables, an
interaction was suggested between hormone type and strength.
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7.6.1.1 Life Span, Overall Comfort and Physiological Balance

In terms of Life Span, in Figure 7.2 we again show the average for each condition in
time-steps. Interestingly, but perhaps not surprisingly we see a mirror image in terms
of Life Span for the types of prey tested using the “fixed” hormone release, as opposed
to those tested using the newer “gradient” hormone release.

Figure 7.3: Summary of results showing average Overall Comfort (OvC) of our prey across
experimental conditions. Error Bars show the Standard Error of the Mean (SEM). In this case,
calculations of OvC exclude the third variable of integrity. In comparison to the patterns shown
for Life Span (LS) in Figure 7.2 from this it seems that, although we can trace a mirror image
in terms of “fixed” hormone release as opposed to the newer “gradient” hormone release here
too, the trends are generally in the opposite direction. That is to say, the longer our prey’s
average LS, the lower their OvC (excluding the third variable of integrity). The condition that
does not show this quite so clearly is that in which our distal prey was given a fixed hormone
release and paired with our proximal predator.

Performing a multi-way ANOVA (2x2x3) we looked for main effects of our in-
dependent variables of predator perceptual distance (proximal/distal) hormone type
(fixed/graded) and hormone strength (25, 50, 100). Again, as our original results also
showed, after arcsine transformation, a significant main effect for predator percep-
tual distance was found (p=0.002) for Life Span in time-steps. No main effects were
found for our other independent variables. However, an interaction was suggested be-
tween hormone type (fixed/graded) and strength (25, 50, 100) (p=0.000). Likewise, we
found the same effects for Life span in minutes for both predator perceptual distance
(p=0.000) and the same interaction between hormone type and strength (p=0.001). In
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Figure 7.4: Summary of results showing average Overall Comfort (OvC) of our prey across
experimental conditions. Error Bars show the Standard Error of the Mean (SEM). In this case,
calculations of OvC include the third variable of integrity. Here we can trace the same general
trends per condition shown in Figure 7.3 excluding the third variable. However, the conditions
which stand out to us are those for our distal prey with gradient hormone release of 100. For,
together, these results appear to suggest greater differences between calculations of OvC using
2 PVs or 3 PVs in relation to the same calculations for conditions with lower hormone releases,
particularly against our distal predator. To us, this implies that this type of prey was more likely
to sacrifice/lower the OvC of our two original variables so as to increase the average level of
integrity than its fixed hormone release counterpart.
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terms of Overall Comfort and Physiological Balance, no significant differences were
found for Overall Comfort. Nevertheless, an interesting result was found when test-
ing the interaction between hormone type and strength (p=0.056). A main effect was
found for predator perceptual distance for Physiological Balance (p=0.027). However,
no significant interactions were found between variables.

Figure 7.5: Summary of results showing average Overall Comfort (OvC) of our predator
across experimental conditions. Error Bars show the Standard Error of the Mean (SEM).
Though it might be expected that the OvC of our predator would be the opposite to that shown
for our prey, these results show that this was not necessarily the case.

7.6.1.2 Risk of Death Management

In terms of Management of Death Risk (as previously defined) Figures 7.7 to 7.10 show
these results in terms of Risk of Death (RoD). Again, each bar represents the average
percentage of time our prey was in each “zone”. As before, a RoD of 1 means the prey
is almost, if not the most “healthy” it can be, whereas a RoD of 10 means the prey is
“near death”. In terms of our “gradient” hormone-release conditions, these results are
interesting in that, for these conditions, our calculations seems to show the least (rel-
ative) variability when combined with the potential hormone-release strength of 100.
Perhaps this reflects the case that in the “fixed release” conditions, hormone-release
does not incorporate the additional information that the “gradient release” conditions
do in terms of the distance away the predator is perceived. This would then further sup-
port the conclusions of the previous chapters (hormone-release having a role as both
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Figure 7.6: Summary of results showing average Physiological Balance (PhB) of our prey
across experimental conditions. Error Bars show the Standard Error of the Mean (SEM). In
this case, calculations of PhB include the third variable of integrity. The condition showing
the greatest average PhB was that for our distal prey with a fixed hormone release when paired
with our distal predator. The conditions showing lowest average PhB tend to be those for prey
with a hormone release of 100.
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a predictor of attack and assessment of risk). To see how this relates to our predator’s
experience, Figures 7.11-7.14 show calculations of Risk of Death for our predator.

Figure 7.7: Summary of results showing Risk of Death (RoD) Management of our prey across
conditions where distal prey versus proximal predator and the hormone release of our emotion-
based architecture is fixed. Each bar represents the average percentage of time our prey was in
each RoD “zone”. Error Bars show the Standard Error of the Mean (SEM). A RoD of 1 (green)
means that the prey is almost if not exactly the most “healthy” it can be, whereas a RoD of 10
(red) means the prey is “near death”. Here we see a more even distribution for our prey with
a fixed hormone release of 100. From this, our prey with a fixed hormone release of 50 would
seem to have tended to spend a greater proportion of time in a more “healthy” zone. However,
considering Life Span, it was our prey with a fixed hormone release of 25 that lived longest.

At the risk of introducing a little anthropomorphism to better illustrate our findings,
from these results and our own observations it did seem that, in the “fixed” hormone-
release condition our prey suffered from something akin to “anxiety”, unnecessarily
sacrificing opportunities to feed and drink when detecting the predator in front of it.
With the prey in the “gradient” hormone-release condition though, we saw something
more akin an actual “assessment” taking place (a result of the gradual build-up of
hormone in the prey’s system with the approach of its predator). In some cases, the
prey therefore actually appeared to “wait” for the predator to approach further before
moving. The emergence of such behaviour is particularly interesting in light of the fact
that, as in nature, instant “flight” does not always prove optimal for our prey: whether
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Figure 7.8: Summary of results showing Risk of Death (RoD) Management of our prey across
conditions where distal prey versus distal predator and the hormone release of our emotion-
based architecture is fixed. Each bar represents the average percentage of time our prey was in
each RoD “zone”. Error Bars show the Standard Error of the Mean (SEM). A RoD of 1 (green)
means that the prey is almost if not exactly the most “healthy” it can be, whereas a RoD of 10
(red) means the prey is “near death”. Here we see quite similar results for our prey with a fixed
hormone release. That is to say, the greatest proportion of their time was spent in “zones” 3
and 6.
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Figure 7.9: Summary of results showing Risk of Death (RoD) Management of our prey across
conditions where distal prey versus proximal predator and the hormone release of our emotion-
based architecture follows a gradient release (the amount of hormone released being a function
of the distance at which the predator is perceived). Each bar represents the average percentage
of time our prey was in each RoD “zone”. Error Bars show the Standard Error of the Mean
(SEM). A RoD of 1 (green) means that the prey is almost if not exactly the most “healthy” it can
be, whereas a RoD of 10 (red) means the prey is “near death”. The highest peaked distribution
is shown here for a hormone release of 100. This hormone release further displayed the highest
average life span out of these three conditions.
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Figure 7.10: Summary of results showing Risk of Death (RoD) Management of our prey
across conditions where distal prey versus distal predator and the hormone release of our
emotion-based architecture follows a gradient release (the amount of hormone released being
a function of the distance at which the predator is perceived). Each bar represents the average
percentage of time our prey was in each RoD “zone”. Error Bars show the Standard Error of
the Mean (SEM). A RoD of 1 (green) means that the prey is almost if not exactly the most
“healthy” it can be, whereas a RoD of 10 (red) means the prey is “near death”. Here the prey
with a hormone release of 100 appeared to spend, on average, a higher proportion of its life
span in “zones” 7-10. However, this was also the prey with the longest life span of the three.
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Figure 7.11: Summary of results showing Risk of Death (RoD) Management for our predator
across conditions where distal prey versus proximal predator and the hormone release of our
emotion-based architecture is fixed. Each bar represents the average percentage of time our
predator was in each RoD “zone”. Error Bars show the Standard Error of the Mean (SEM). A
RoD of 1 (green) means that the predator is almost if not exactly the most “healthy” it can be,
whereas a RoD of 10 (red) means the predator is “near death”. Here we see that our predator
spent most of its life in a “healthy” state.
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Figure 7.12: Summary of results showing Risk of Death (RoD) Management for our preda-
tor across conditions where distal prey versus distal predator and the hormone release of our
emotion-based architecture is fixed. Each bar represents the average percentage of time our
predator was in each RoD “zone”. Error Bars show the Standard Error of the Mean (SEM). A
RoD of 1 (green) means that the predator is almost if not exactly the most “healthy” it can be,
whereas a RoD of 10 (red) means the predator is “near death”. Here we see that our predator
spent most of its life in a “healthy” state. However, the peaks shown here do not quite reach
the same levels as those in Figure 7.11.
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Figure 7.13: Summary of results showing Risk of Death (RoD) Management for our predator
across conditions where distal prey versus proximal predator and the hormone release of our
emotion-based architecture follows a gradient release (the amount of hormone released being
a function of the distance at which the predator is perceived). Each bar represents the average
percentage of time our predator was in each RoD “zone”. Error Bars show the Standard Error of
the Mean (SEM). A RoD of 1 (green) means that the predator is almost if not exactly the most
“healthy” it can be, whereas a RoD of 10 (red) means the predator is “near death”. Here we
see the prey with a release rate of 25 allowed our predator to live a life spending the greatest
proportion of that time in the most “healthy” state possible. Not surprisingly, as shown in
Figure 7.2 this led to a lower average life span for the prey.
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Figure 7.14: Summary of results showing Risk of Death (RoD) Management for our preda-
tor across conditions where distal prey versus distal predator and the hormone release of our
emotion-based architecture follows a gradient release (the amount of hormone released being
a function of the distance at which the predator is perceived). Each bar represents the average
percentage of time our predator was in each RoD “zone”. Error Bars show the Standard Error
of the Mean (SEM). A RoD of 1 (green) means that the predator is almost if not exactly the
most “healthy” it can be, whereas a RoD of 10 (red) means the predator is “near death”. Here
we see the prey with a release rate of 100 meant our predator spent a lower proportion of its
time in the most “healthy” states possible. Not surprisingly, as shown in Figure 7.2 this was
the condition with the highest average life span for the prey out of these conditions.
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this be because it leads our prey to ignore all opportunities to feed in the presence of a
resource to search for the nest (something which, depending on how long our prey takes
to find the nest, can lead to death anyway) or because it causes our prey to inadvertently
attract the predator’s attention (as the infra-red ball is mounted on the “front” of our
prey’s body, there were instances in these experiments where the decision to “flee” to
the nest by our prey led it to “attract” the attention of our predator — whereas, if it had
stayed where it was, it might have survived). This latter might also indicate a need for
further development to our architecture in terms of the actions selected. For example,
in terms of introducing a “freezing” ability or more sophisticated way of assessing
predator movement.

7.6.2 Activity Cycles and Action Patterns
7.6.2.1 States and State Transitions

Looking next at how this performance translates to a pattern of action, Figure 7.15
shows some averages for different types of state transition across conditions. Here we
see that, on average, all of our prey demonstrated more opportunism than persistence.

Looking further, in terms of an activity profile, Figures 7.16 to 7.19 show the av-
erage time spent on each action per condition, as a percentage of overall life span.
Together with Life Span, these graphs allow us to explore differences in terms of both
the absolute number of time-steps that each type of prey spent on each activity, as well
as the percentage of their “lives” that this made up. In terms of our “fixed” hormone
release conditions, we can see that when our prey was up against our proximal preda-
tor, our prey spent more time resting or searching for its nest than anything else. This
was also true when the same prey was up against our distal predator. However, in the
latter conditions, we tend to see our prey spending a much greater proportion of its
lifetime searching for its nest than actually resting within it. In contrast, the propor-
tion of time divided between searching for the nest/resting in the former conditions
appears more evenly split. This may be because our distal predator (due to its more
active “hunting” ability) is naturally coming within the perceptual distance of our prey
more often, thereby triggering hormone-release more often. Likewise, our “gradient”
hormone release conditions show similar trends.

7.6.3 Brain-Body-Environment Maps
Figure 7.20 shows a selection of Brain-Body-Environment maps constructed from dif-
ferent conditions. Here, we observe similarities between our Distal Prey (G100) vs
Prox Pred condition and Distal Prey (H25) vs Distal Pred condition.

Looking further at the movement of our different animats and time spent on dif-
ferent resources, Figures 7.22 to 7.25 show the average time spent (as a proportion of
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Figure 7.15: Summary of results showing the average number of different types of “state
transitions” of our prey across conditions. Error bars show the Standard Error of the Mean
(SEM). Exploring the idea of action selection as a cycle of activities, rather than a series of
individual decisions, state transitions occur whenever our agent switches from one of the six
available actions to another. Having constructed a state transition matrix for each individual
run, here we define Opportunism as the number of times our prey consumed one resource
while searching for another. Persistence represents the number of times our prey ended up
consuming the resource it was searching for. Here we see that, on average, all of our prey
demonstrate more opportunism than persistence.
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Figure 7.16: Summary of results in terms of “state sinks” across conditions where distal
prey versus proximal predator and the hormone release of our emotion-based architecture is
fixed. In this case, the average time (as a percentage of overall life span) spent by our different
prey performing each possible activity/state out of the six available for our architecture to
select from. Error Bars show the Standard Error of the Mean (SEM). As the activities that our
emotion-based architecture is most likely to influence directly, we can focus our attention here
on the proportion of time spent by our prey either resting or searching for the nest.
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Figure 7.17: Summary of results in terms of “state sinks” across conditions where distal prey
versus distal predator and the hormone release of our emotion-based architecture is fixed. In
this case, the average time (as a percentage of overall life span) spent by our different prey per-
forming each possible activity/state out of the six available for our architecture to select from.
Error Bars show the Standard Error of the Mean (SEM). As the activities that our emotion-
based architecture is most likely to influence directly, we can focus our attention here on the
proportion of time spent by our prey either resting or searching for the nest.
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Figure 7.18: Summary of results in terms of “state sinks” across conditions where distal prey
versus proximal predator and the hormone release of our emotion-based architecture follows
a gradient release (the amount of hormone released being a function of the distance at which
the predator is perceived). In this case, the average time (as a percentage of overall life span)
spent by our different prey performing each possible activity/state out of the six available for
our architecture to select from. Error Bars show the Standard Error of the Mean (SEM). As the
activities that our emotion-based architecture is most likely to influence directly, we can focus
our attention here on the proportion of time spent by our prey either resting or searching for the
nest.
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Figure 7.19: Summary of results in terms of “state sinks” across conditions where distal prey
versus distal predator and the hormone release of our emotion-based architecture follows a
gradient release (the amount of hormone released being a function of the distance at which
the predator is perceived). In this case, the average time (as a percentage of overall life span)
spent by our different prey performing each possible activity/state out of the six available for
our architecture to select from. Error Bars show the Standard Error of the Mean (SEM). As the
activities that our emotion-based architecture is most likely to influence directly, we can focus
our attention here on the proportion of time spent by our prey either resting or searching for the
nest.
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Figure 7.20: Illustration of differences (relating to aspects of prey Brain, Body and Environ-
ment over time) as observed across conditions between individual runs and shown by our BBE
Maps. The background bars here represent our prey’s position within its environment (green
bars show where our prey detected “food”, blue bars show “water”, the absence of any bar
indicates the prey detected no resources present in its immediate environment at that time and
yellow bars indicate the prey was in its “nest”) while each line represents the internal vari-
ables of our prey, including each of its physiological variables (black for blood sugar, blue for
vascular volume, yellow for integrity) and hormone levels/effects. Additionally, here vPV3
represents the prey’s perceived level of integrity, which in the modulated conditions differed
from the actual level of integrity when concentrations of hormone were released.
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Figure 7.21: Summary of results showing the average number of “action switches” of our
prey across conditions. Error bars show the Standard Error of the Mean (SEM). Exploring the
idea of action selection as a cycle of activities, rather than a series of individual decisions, we
use this simple measure to compare our prey. An “action switch” occurs whenever our prey
makes the decision to switch from one of the six actions available to it to another. Here we can
see that, on average, for our prey with a fixed hormone release a hormone release of 25 led to
a greater number of action switches. Conversely, for our prey with a gradient hormone release
a hormone release of 100 led to a greater number of switches.
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their overall life span) by our prey on different resources/areas in the arena. Compared
to the results of previous chapters, we see that the prey we are looking at in these
conditions are consistently spending a greater proportion of their time in the nest.

Figure 7.22: Summary of results showing time (as the average proportion of our prey’s life
span) spent on different resources/areas in its environment/arena by our prey across conditions
where distal prey versus proximal predator and the hormone release of our emotion-based
architecture is fixed. Error Bars show the Standard Error of the Mean (SEM).

7.7 II. Fixed versus Gradient Response for Prey (Vary-
ing Motor Response)

In designing the second set of experiments reported in this chapter, we once again took
our inspiration from ideas surrounding the fight-or-flight response in the biological
sciences. Since its initial christening as the fight-or-flight response, researchers of this
phenomenon have also referred to it by many other names, reflecting the knowledge
collected about this response. Among its aliases are the fight-flight-or-freeze response,
hyperarousal and acute stress response. As a theory, it states that animals react to
threats with a general discharge of the sympathetic nervous system, priming the animal
for fighting or fleeing. This response, first described by Walter Bradford Cannon [110;
111] was later recognised as the first stage of a general adaptation syndrome regulating
stress responses in many organisms.
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Figure 7.23: Summary of results showing time (as the average proportion of our prey’s life
span) spent on different resources/areas in its environment/arena by our prey across conditions
where distal prey versus distal predator and the hormone release of our emotion-based archi-
tecture is fixed. Error Bars show the Standard Error of the Mean (SEM).
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Figure 7.24: Summary of results showing time (as the average proportion of our prey’s life
span) spent on different resources/areas in its environment/arena by our prey across conditions
where distal prey versus proximal predator and the hormone release of our emotion-based
architecture follows a gradient release (the amount of hormone released being a function of the
distance at which the predator is perceived). Error Bars show the Standard Error of the Mean
(SEM).
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Figure 7.25: Summary of results showing time (as the average proportion of our prey’s life
span) spent on different resources/areas in its environment/arena by our prey across conditions
where distal prey versus distal predator and the hormone release of our emotion-based architec-
ture follows a gradient release (the amount of hormone released being a function of the distance
at which the predator is perceived). Error Bars show the Standard Error of the Mean (SEM).

Figure 7.26: Summary of experimental conditions: In these experiments a factorial 2x2 de-
sign (resulting in four experimental conditions) was used to investigate how modifications to
our existing emotion-based architecture, namely allowing our hormone-like mechanism to in-
fluence the intensity (speed) of prey response as well as the action selected, will interact with
the perceptual abilities (body) of our prey so as to generate more adaptive behaviour.
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Taking inspiration from this theory for improving our prey’s performance, in our
final experiments, we were particularly interested in the idea that we could use our
hormone-like mechanism in a similar way to “prepare” our animat prey. That is, in
terms of our emotion-based architecture, to allow the hormone-like mechanism to re-
act and adapt to threats not just by changing perception, but also by change the actions
selected in a similarly physical way (that is, similar to the observed changes in the sym-
pathetic nervous system, priming the animal for fight or flight). This thereby has the
added benefit of allowing us to study the importance of other aspects of “body” using
our H3RP. (Here, we look at the importance of our prey’s visual field.) But simulta-
neously, it allows us to see how we might integrate our hormone-like mechanism with
other components of the underlying motivation-based architecture. Perhaps more to
the point, it generates a situation where we can consider the possible costs and benefits
of such integration.

Figure 7.27: Overview of our developed architecture (“brain”) for a prey agent: internal
“body” is represented through physiological variables, deficits of which act as drives which,
combined with the presence/absence of external stimuli, are used to calculate motivational and
behavioural intensity. For example, calculations of motivational intensity for a motivation rep-
resenting hunger will take into account both physiological deficits such as blood sugar and
the presence/absence of food in the environment. In our experiments we vary external “body”
using different physical sensors. Emotion-like states are modelled by the addition of a gland
(g); releasing a “hormone” in the presence of a specific stimulus (in this case the predator)
which affects both perception of internal physiological deficits, increasing calculations of mo-
tivational intensity, and the behaviour selected in terms of physical response (speed or tempo
of behaviour is increased if hormone is present)
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7.8 Prey

7.8.1 Interoceptive Modulation (Graded Hormone Release and Re-
sponse Intensity)

To create four different experimental conditions, we first created a new (distal) prey
by changing the ultrasonic sensor of our prey to an infra-red seeker (matching its
sensor-type to that of our distal predator). Following this, we varied the actions of
our architecture so as to incorporate infra-red avoidance into our prey, mounting an
infra-red ball on our predator. We then created a second prey by varying the interocep-
tive modulation of our emotion-based architecture. This was achieved by connecting
the hormonal concentration of our prey to calculations of motor speed, triggered by
the presence of the predator detected via the infra-red detector. That is, the speed of
this prey when performing each action was a function of the level of total hormone
concentration at any given time. We also changed the decay rate of our mechanism
back to the original exponential one (having tested both in trials beforehand so as to
see which might be the better one for these experiments). In this way, we created a
modification of our emotion-based architecture, further illustrated in Figure 7.27.

7.8.2 Visual Field (Small/Large)
However, being interested in thinking about the possible functions of our hormone-
like mechanism in terms of attention, and still interested in other aspects of body for
their importance, in these experiments we also chose to vary another aspect of our
prey’s embodiment. This time, we selected what might be thought of as our prey’s
visual/perceptual field, using our new prey’s infra-red seeker to vary this either to allow
hormone to be released via signals from the sides of the prey. That is, to include
peripheral vision (using the full visual field/abilities of the infra-red sensor) or giving
our prey something more like “tunnel vision”; where hormone is likely to be released
only when the predator is detected in front of the prey.

7.9 Predator
The predator used in these experiments was the Distal Predator described in the pre-
ceding chapters. However, one additional change was incorporated in its design in as
much as we mounted an infra-red ball on top of this animat (see Figure 7.28).
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Figure 7.28: Illustration of our modified predator, on which we mounted an infra-red ball to
enable our modified prey (now equipped with an infra-red sensor) to detect its presence.

7.10 A Robotic Nest
Finally, another change made to the basic arena in these experiments was the addition
of a more “dynamic” nest resource. While the other resources in our H3RP were still
represented in the same way, we used a LEGO NXT to effectively act as a deterrent
to the predator (making it less likely to enter the nest) and at the same time, allow the
prey to (via Bluetooth) find and enter the nest from a short distance away (see Figure
7.29).

7.11 Results
For each run, both predator and prey were tested following the standard procedures
used in the previous chapters. Four experimental conditions were created by varying
both our prey’s interoceptive modulation (in terms of fixed/graded response) and visual
field (small/large). For each of these conditions, the data from five runs were collected
testing each condition (a total of twenty runs). The reason for this sample size was
because we also wanted to study our H3RP from yet another different perspective.
After each run, data again collected from both prey and predator robots with regards
to sensory and internal (physiological) data. However, in this set of experiments we
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Figure 7.29: Our robotic nest: designed to add a further dynamic to the environment of our
developed animats. This consisted of a LEGO NXT, with ultrasonic sensors fitted to deter the
predator from the area, as well as to allow the prey to detect and “home in” to its nest from a
(small) distance away.
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wanted to compare data from an external source. That is, via observation of our an-
imats as though they were animals. Thus, we collected additional data by recording
our animats for each run (mounting a video camera above the arena). We use this data
here so as to present findings from an alternative perspective. In addition to which,
we also present the results of a fifth condition alongside our four main experimental
conditions. In this condition (Large Visual Field Gradient H Response with Cost) we
introduce a “cost” of increasing speed for our prey (where the decrease of vascular
volume and blood sugar increases where our prey goes fast) allowing us to consider
whether putting a “price” on this action will negate or otherwise affect its adaptive
value.

7.11.1 Measures of Viability
From the data collected, we first calculated and looked at the results in terms of our
chosen measures of viability. These included calculations of Life Span, Overall Com-
fort and Physiological Balance as well as calculations of our prey’s Risk of Death
Management. Figure 7.30 shows how each type of prey performed as measured by our
three measures of viability of Life Span, Overall Comfort and Physiological Balance.

7.11.1.1 Life Span, Overall Comfort and Physiological Balance

In terms of Life Span, at first glance Figure 7.30 appears to show the most noticeable
difference between the condition which manipulated both prey perceptual field and the
hormone-like mechanism’s connection to action (gradient response). Again, similar
trends are seen between the average Life Span calculated in time-steps and that mea-
sured in minutes. From this, it seems that the gradient response conditions may result,
on average, in longer Life Spans.

Performing a multi-way ANOVA (2x2) on our data, we looked for main effects
of our independent variables of both prey interoceptive modulation (fixed/graded re-
sponse) and visual field (small/large). In terms of Life Span as calculated in time-
steps, after arcsine transformation we find a significant main effect for prey visual field
(p=0.030) but not interoceptive modulation (p=0.181). No interaction between the two
variables was suggested (p=0.190). However, the results in terms of real-time Life
Span (measured in minutes) showed both an effect for prey visual field (p=0.006) and
hormone response (p=0.034). Similarly to the previous measure, no interaction was
found between the two variables. Turning to the results for Overall Comfort and Phys-
iological Balance, the trends for these measures seem to differ from that of Life Span.
For both these measures, it appears that the “gradient-response” or “speedy prey” con-
ditions resulted in higher average levels of these values than their “fixed-response”
counterparts. This may reflect a “penalty”, incurred on these measures for the appar-
ently increased Life Span for these conditions. However, due to the hunting abilities of
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Figure 7.30: Summary of results showing average Life Span, Overall Comfort and Physio-
logical Balance of our prey across conditions. Error Bars show the Standard Error of the Mean
(SEM).

Figure 7.31: Summary of results showing average Life Span, Overall Comfort and Physio-
logical Balance of our predator across conditions. Error Bars show the Standard Error of the
Mean (SEM).
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the predator, and taken in conjunction with our observations it seems more likely that
the other conditions were those in which the predator had a perceptual “advantage”
and literally found the agents in these conditions “easy prey”. Having performed sep-
arate multi-way ANOVAs for these measures, looking at the results for each of these
together, our tests found a significant main effect of visual field on Overall Comfort
(p=0.017) and Physiological Balance (p=0.016). However, no main effects were found
for our “gradient-response” conditions.

7.11.1.2 Risk of Death Management

With regards to Risk of Death (RoD) Figure 7.32 shows these results for each condi-
tion. As before, each bar represents the average percentage of time our prey was in
each “zone”. What is interesting about these results, complementing the information
given by our previous measures, is that, across the conditions for our “speedy prey”
(that is, the ones which we implemented and tested with our modified architecture)
we see similar trends across the runs within these “speedy” conditions: the majority
of these agents’ lives seeming to have been spent in the sixth zone. To see how this
relates to our predator’s experience, Figure 7.33 shows calculations of Risk of Death
for our predator.

7.11.2 Activity Cycles and Action Patterns
7.11.2.1 States and State Transitions

Figure 6.11 shows some averages for different types of state transition across condi-
tions. Here we see that, on average, all of our prey continue to demonstrate more
opportunism than persistence. The prey with large visual field and gradient hormone
response more often demonstrated persistence in searching for and successfully reach-
ing the nest. Here and in our observations from having constructed state transition
diagrams from individual runs, we see more similarities between our prey with the
same visual field (those prey with larger visual fields demonstrating more connections
between states).

Looking further, in terms of an activity profile, Figures 7.35 and 7.36 show the
average time spent on each action for each animat. Figure 7.35 shows differences in
terms of the average percentage of their “lives” spent on each activity by the prey, while
Figure 7.36 shows the absolute number of time-steps that the predator spent on each
activity. From these graphs, we again see the greatest similarities between those prey
with large visual fields. However, comparing the absolute number of time-steps the
predator spent hunting the prey for each of these conditions, the prey with a gradient
response is seen to have lived to be pursued for longer.
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Figure 7.32: Summary of results showing Risk of Death (RoD) Management across condi-
tions for our prey. Each bar represents the average percentage of time our prey was in each
RoD “zone”. Error Bars show the Standard Error of the Mean (SEM). A RoD of 1 (green)
means that the prey is almost if not exactly the most “healthy” it can be, whereas a RoD of 10
(red) means the prey is “near death”.
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Figure 7.33: Summary of results showing Risk of Death (RoD) Management across condi-
tions for our Predator Animat. Each bar represents the average percentage of time our predator
was in each RoD “zone”. Error Bars show the Standard Error of the Mean (SEM). A RoD of 1
(green) means that the predator is almost if not exactly the most “healthy” it can be, whereas a
RoD of 10 (red) means the predator is “near death”.
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Figure 7.34: Summary of results showing the average number of different types of “state
transitions” of our prey across conditions. Error bars show the Standard Error of the Mean
(SEM). Exploring the idea of action selection as a cycle of activities, rather than a series of
individual decisions, state transitions occur whenever our agent switches from one of the six
available actions to another. Having constructed a state transition matrix for each individual
run, here we define Opportunism as the number of times our prey consumed one resource
while searching for another. Persistence represents the number of times our prey ended up
consuming the resource it was searching for and we add a further category to this, Persistence
(nest), which is actually a subset of Persistence (focusing on those instances where our prey
both searched for the nest and ended up resting in its nest). Here we see that, on average,
all of our prey demonstrate more opportunism than persistence. The prey with large visual
field and gradient hormone response more often demonstrated persistence in searching for and
successfully reaching the nest.
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Figure 7.35: Summary of results in terms of “state sinks””. In this case, the average time
(as a percentage of overall life span) spent by our different prey performing each possible
activity/state out of the six available for our architecture to select from. Error Bars show the
Standard Error of the Mean (SEM). As the activities that our emotion-based architecture is
most likely to influence directly, we can focus our attention here on the proportion of time
spent by our prey either resting or searching for the nest.
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Figure 7.36: Summary of results in terms of “state sinks”. In this case, the average time (in
terms of action selection loops) spent by our predator performing each possible activity/state
out of the three available for its architecture to select from. Error Bars show the Standard Error
of the Mean (SEM).

To complement this data, and turning now to consider some of the results of our ob-
servational analyses, Figure 7.37 allows us to compare our models of state-transitions
constructed from our internally-collected data with those constructed from externally-
collected data. Using a structural ethogram to record our robots’ behaviour over time,
the idea was that this would also allow us to consider how ethologists might classify
our robots’ behaviour. One of the reasons for doing this, for example, was to see
whether we might be able to identify fixed action patterns between/within conditions.
In this case, by describing our agent’s performance at a more abstract level, it provides
us with a neat summary of our most successful prey’s action patterns1.

7.11.3 Brain-Body-Environment Maps
Figures 7.38 to 7.40 show selected runs from our experimental conditions in the form
of our Brain-Body-Environment maps. Figure 7.38 shows these across our four main
experimental conditions for our prey, while Figure 7.40 shows these across our four
main experimental conditions for our predator. Figure 7.41 presents a sample map

1In tests of inter-observer reliability, when taking into account expected agreements by chance,
from the resulting value of kappa, the strength of agreement between observers was judged to be
good/substantial (between 0.61 and 0.8).
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Figure 7.37: Summary of results from external observation of our prey animat. Here, we
have constructed a Markov state space diagram using the results of observational analysis for
our modified architecture (constructed from an example run using our most successful prey
— full visual field, gradient hormone response). Specifically, this has further enabled us to
compare the models constructed from data obtained both internally and externally from our
implemented system. That is, to explore differences between recorded actions selected by
our animats (internal state transitions) to the behaviour observed. In this case, this has also
enabled us to identify more general patterns of behaviour, allowing us to group actions together
and describe the behaviour observed using a method much more in tune with those used by
traditional ethologists.
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for both animats from our “additional” condition, where we can see the effects of
introducing a physiological “cost” of speeding up movement through the environment
(physiological variables now being seen to decrease with physical effort as well as
time, creating a further dynamic and more intricately entwining elements of brain,
body and environment).

As shown, we see the “success” of our modified architecture is dramatically im-
proved when given to a prey embodied with a large visual field, allowing the emer-
gence of a more “stable” cycle of activity. Within our Large Visual Field Gradient H
Response condition, this also greatly affected the emergent behaviour observed (be-
coming much more “emotion-like” to us as observers, reminiscent of the “flight” re-
sponse noted in nature). To provide more of an overview of this data, Figure 7.39
shows the average number of state transitions or “action switches” of our prey across
conditions. Here we can see that, on average, our prey with both a large visual field
and gradient hormone response performed the greatest number of action switches.

Looking further at the movement of our different animats and time spent on dif-
ferent resources, Figure 7.42 shows the average time spent (as a proportion of their
overall life span) on different resources/areas in the arena. As before, we see greater
similarities in distribution between those animats with the same visual fields.

7.12 Discussion and Conclusion
In this chapter we have reported the results of two sets of experiments, both investigat-
ing how our emotion-based architecture might benefit from (and have a role in) sensory
integration. The results of our first set of experiments (Figures 7.2 and 7.20 providing
the majority of our evidence here) suggest a role for the body in producing a gradient
response from our prey. Again, supporting the results of our previous chapters, this
suggests a possible emergent function or property of our emotion-based architecture in
terms of risk assessment.

The results of our second set of experiments also suggest a role for the body in
producing a gradient response from our prey (Figures 7.30, 7.34, 7.38 and 7.39 sup-
porting this most). However, these results seem to go further in order to indicate a
possible function of our emotion-based architecture in terms of resource allocation.
For, although not simulated in our variation of the H3RP, in the real world there is
usually a cost associated with physical exertion such as speed. Our emotion-based
architecture might have a role in such situations. Indeed, this shows the potential of
our architecture for future robotic research (one of the goals of many researchers being
to design agents that are able to manage/allocate their own finite resources — a good
example being that of battery power).

Combining the results of our experiments, what is also interesting is what our latter
experiments appear to suggest about the former. A gradient hormone-release for our
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Figure 7.38: Illustration of differences (relating to aspects of prey Brain, Body and Environ-
ment over time) as observed across conditions between individual runs and shown by our BBE
Maps. The background bars here represent our prey’s position within its environment (green
bars show where our prey detected “food”, blue bars show “water”, the absence of any bar
indicates the prey detected no resources present in its immediate environment at that time and
yellow bars indicate the prey was in its “nest”) while each line represents the internal vari-
ables of our prey, including each of its physiological variables (black for blood sugar, blue for
vascular volume, yellow for integrity) and hormone levels/effects. Additionally, here vPV3
represents the prey’s perceived level of integrity, which in the modulated conditions differed
from the actual level of integrity when concentrations of hormone were released.
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Figure 7.39: Summary of results showing the average number of “action switches” of our
prey across conditions. Error bars show the Standard Error of the Mean (SEM). Exploring the
idea of action selection as a cycle of activities, rather than a series of individual decisions, we
use this simple measure to compare our prey. An “action switch” occurs whenever our prey
makes the decision to switch from one of the six actions available to it to another. Here we
can see that, on average, our prey with both a large visual field and gradient hormone response
performed the greatest number of action switches.
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Figure 7.40: Illustration of differences (relating to aspects of predator Brain, Body and En-
vironment over time) as observed across conditions between individual runs and shown by our
BBE Maps. The background bars here represent our predator’s detection of the prey in its en-
vironment (red bars show where our predator has detected the prey via its sensors) while each
line represents the internal variables of our predator.

Figure 7.41: Example BBE Map constructed from one of the runs of our prey in our “Large
Visual Field Gradient H Response with Cost” condition (not generally a part of our analysis
here, but included for interest).
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Figure 7.42: Summary of results showing time (as the average proportion of our prey’s life
span) spent on different resources/areas in its environment/arena across conditions where distal
prey versus proximal predator and the hormone release of our emotion-based architecture is
fixed. Error Bars show the Standard Error of the Mean (SEM).

prey indicates less “cost” in terms of the hormone used. With regards to “costs” of
physical actions in particular, we conclude our emotion-based architecture could have
more potential than has been shown in the H3RP. From an observer’s point of view, it
also seems to result in a prey that is more like a prey animal, and less like the abstracted
prey agents found in simulation. For our prey with “gradient” hormone-release rates
(release being a function of the distance away the predator is perceived) are not as
ready to give up their sometimes hard-found resources. Indeed, for them, the emergent
functions that we may associate with our architecture is not so much related to notions
of “panic” as it is for our previously-studied prey with “fixed” hormone-release. We
conclude that varying the integration (and gradience) of our mechanism may result in
more emergent functions than have yet been seen. That is, beyond a simple “flight”
response from the prey. Moreover, we conclude that our emotion-based architecture is
likely to benefit from (and have a role in) additional sensory integration.

Through our latest experiments, especially the introduction of our own novel archi-
tecture, we suggest that our work will advance the research area in relation to emotion-
based architectures by suggesting a further way in which we might develop architec-
tures such as Avila-Garcı́a’s [29] and Mendao’s [84] using what we have discovered
from a more systematic and incremental investigation of a robotic predator-prey rela-
tionship. Together with our previous results, these results may also enable us to further
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7. Sensory Integration and Resource Allocation

advance the research area from another direction by providing a further means for bi-
ological researchers (including ethologists such as Cooper [88]) to test theories and
provide further proof of concepts for the potential role of brain, body and environment
in shaping the predator-prey relationship.
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Chapter 8

Conclusions and Future Work

“The only source of knowledge is experience.”

— Albert Einstein

The goals and ideas of this thesis resonate strongly with the ideas of embodied,
embedded cognition. For, we suggest, if artificial emotion is to be adaptive for artifi-
cial agents, however this may be represented computationally, we need to understand
the conditions making the presence of such emotion “just right”. In our case, we fo-
cus on not abstracting away aspects of body and environment, further incorporating
them into the design and study of our animat robots instead. To do so, we take inspira-
tion from biological ideas about neuromodulation using a hormone-like mechanism in
our experiments to simulate neuromodulation (and fear-like states) at a more abstract
level: looking to explore the role and importance of various aspects of brain, body and
environment in the generation of adaptive action selection/behaviour.

In this chapter we will first draw together, for a brief overview, the results obtained
across all of our experiments during the study of our developed system (H3RP). As our
concluding chapter we will therefore consider and provide a review of the conclusions
drawn from all our experiments, individually as well as collectively. Following this,
we bring together our observations from these experiments, as researchers of action
selection and emotion and explorers of brain-body-environment interactions, to dis-
cuss the relative merits of our chosen measures of adaptive value (as defined in earlier
chapters of this thesis and used to analyse the results of our experiments). By reiterat-
ing the contributions of this thesis, we will suggest how our work might be extended,
using our research experience to suggest further contributions towards an analysis of
the predator-prey relationship in terms of costs and benefits. Finally, we suggest how
our model of embodied action selection, emotion and the predator-prey relationship

174



8. Conclusions and Future Work

might now be useful to others.

8.1 Results Summary
In this thesis, we first presented the results of a simple set of experiments exploring the
effect of our implemented prey robot’s perceptual distance and presence/absence of
an emotion-based architecture. We used these results to suggest that the hormone-like
component of our architecture will be adaptive in conditions where this mechanism
is somehow predictive of environmental dynamics (that is to say, the predator’s be-
haviour). From both the experimental results and our own observations, we suggest
that one of the emergent functions of the hormone-like mechanism in our emotion-
based architecture is that it acts as a predictor of environmental dynamics. Our mech-
anism can further be connected to ideas of anticipation in that our “seeing” prey, when
implemented with our emotion-based architecture, was able to perform at least a func-
tional equivalent of “anticipation” of future attacks and, through interoception, was
seen to be distributing its time between activities in a way more conducive to survival
(that is to say, adapting to the environmental dynamic introduced by the presence of
the predator). In terms of brain-body-environment interactions the results of this chap-
ter further support the idea that the body can be important for action selection, further
suggesting a possible role for emotion-based architectures in adjusting connections
between brain and environment adaptively.

From these results, we then went further to systematically vary aspects of both
prey and predator embodiment (in terms of perceptual distance) as well as exploring
the parameters of our hormone-like mechanism (in terms of strength and adopting a
sigmoidal decay rate). Taking a more in-depth look at the predator-prey relationship,
as well as our hormone-like mechanism, we varied both environmental dynamics of
our prey (in terms of predator perceptual distance) and hormone strength. Due to
observations made whilst conducting the previous experiments, a sigmoidal decay rate
was introduced to our basic hormone-like mechanism. This changed the boundaries
where one action switches to another by allowing our simulated hormone to stay in the
prey’s system for longer. This allowed the hormone-like mechanism to influence our
action selection for longer, encouraging further persistence in seeking refuge after an
attack.

From our results, we conclude that the mechanism we are studying will be adap-
tive in conditions where this mechanism is an accurate reflection of how dangerous the
predator is. Experimenting with the measures used, we also see that calculations using
time-steps sometimes provide us with a different look at the data than more “real-time
calculations” in minutes and seconds. In terms of brain-body-environment interactions
the results of this chapter further support the idea that the emergent functions of our
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emotion-based architecture will be affected by prey brain-body combinations (proxi-
mal/distal and hormone released) as well as environmental dynamics in the form of
predator brain-body combinations (proximal/distal).

Finally, in our last set of experiments, we have demonstrated how our emotion-
based architecture might benefit from (and have a role in) additional sensory inte-
gration. For, together, these experiments show that the mechanism we are studying
emerges further functions from brain-body-environment interactions when integrated
further with sensory abilities. Firstly, we found that a gradient hormone-release for
our prey indicates less “cost” in terms of the hormone used. From an observer’s point
of view, it also seems to result in a prey that is more like a prey animal, and less like
the abstracted prey agents found in simulation. For our prey with “gradient” hormone-
release rates (release being a function of the distance away the predator is perceived)
are not as ready to give up their sometimes hard-found resources. Indeed, for them, the
emergent functions that we may associate with our architecture is not so much related
to notions of “panic” as it is for our previously-studied prey with “fixed” hormone-
release.

Secondly, we found that the mechanism we are studying can have additional func-
tionality when integrated with behavioural response of our architecture as well. That
is, the intensity of the action selected by the architecture. This can be thought of as
akin to the flight/fight physiological response (readying body for action) and it has in-
teresting connections to the ethological literature. We thus conclude that varying the
integration (and gradience) of our mechanism may result in more emergent functions
than have yet been seen. That is, moving beyond the elicitation of a simple and re-
flexive “flight” response from the prey, and moving further towards the development
of architectures which allow our agents to function more as adaptive assessors of and
responders to risk.

Turning back to our initial research question, our results thus provide evidence to
show the ways in which the perceptual abilities of predator and prey agents can interact
to affect the dynamics of their relationship. Specifically, in the context of our model,
we can see that the perceptual abilities of both agents affect the performance (and
thus adaptive value) of our chosen emotion-based architecture for action selection. For
such artificial emotion to be adaptive for a prey agent, our work suggests this agent will
benefit if the combination of perceptual abilities and our emotion-based architecture:

• Provides an accurate prediction of environmental dynamics. In our work, this
refers to the chances of an attack by the predator.

• Provides an accurate assessment of the threat involved or represented by such a
dynamic. That is, the degree of risk or hazard to agent survival it represents. In
our work, this refers to how dangerous the detected presence of the predator is
(or is otherwise considered to be) by the prey.
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• Integrates the artificial emotion and perceptual abilities in such a way as to man-
age situations where it may be beneficial for an agent to take risks or otherwise
balance potential opportunity costs, which might be caused if the agent responds
too hastily to the hazardous aspect of its environment. For example, a starving
prey detecting a predator at a distance may benefit more from staying on the food
resource and continuing to feed than instigating a “flee” response automatically.

• Integrates information obtained from the combination of perceptual abilities and
emotion-based architecture with the response. Specifically, in our experiments,
this has appeared true of the intensity of prey response.

8.2 Levels of Analysis and Measures of Adaptive Value
With regards to different levels of analyses and measures of adaptive value, we con-
clude our work demonstrates that measures such as physiological balance and over-
all comfort are not necessarily, by themselves, informative indicators of adaptive be-
haviour per se. For, drawing further on our observations and more qualitative measures
(including our own maps) we have sometimes been able to identify those “flashes” of
adaptive behaviour, or “life-death” moments characteristic of the predator-prey rela-
tionship where a split-second decision can mean the difference between surviving or
not, that these more general measures (looking at averages across multiple lifetimes,
rather than the specific patterns in an individual’s lifetime) simply do not register. Hav-
ing said this, by combining information obtained from using multiple levels of anal-
yses, we have been able to build up a more detailed picture of our system in action.
Thus, we consider all the measures we have studied to be most usefully thought of
as tools which complement one another, rather than as tools which offer competing
alternatives where one will always out-perform or offers more than another.

8.3 Three is the magic number?
Throughout this thesis, it has been interesting to see how often we can find examples
where models that make concepts easier to understand make use of triads. Indeed, this
is true both internally and externally to the area of science. For a florist, working in
threes is quite often the route to the most aesthetically-pleasing arrangement. For a
writer, it can be a key way to make an impact, whether this be in poetry or headlines.
For a scientist, the number three is evidenced to us in the composition of an atom (con-
sisting of protons, neutrons and electrons) or, perhaps more relevantly to our research,
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MacLean’s early ideas of the triune brain (as composed of the reptilian complex, pale-
omammalian complex and neomammalian complex). Indeed, it is a number that often
combines well with our own abilities, making summaries of key elements easier to
remember and think about. The “three Rs” of education illustrate this point quite well
(Reading, Writing and Arithmetic). For, while it is not the most accurate, it is certainly
more memorable. However, that is not to say that we believe our model has proven
itself only to be a memorable way of summarising key elements (brain, body and envi-
ronment). Rather, from the results of our experiments, we suggest that models such as
ours will prove more useful in generating more useful knowledge and understanding
about action selection architectures at work in our own world. That is, action selection
and the possible role for artificial emotion in real-time, dynamic environments.

8.4 Optimal Escape Theory and FID
According to Meyer the “benefits of using... truly rich sensori-motor equipment can
be investigated only through real-world experiments, because no simulation is accurate
enough to correctly reproduce the inner workings of, for example, a whisker system”.
Inspired by this argument, in summarising the conclusions of this thesis, we have fur-
ther considered whether and how it may be possible to extract further insights from our
work and draw broader conclusions by exploring the proven potential, with regards to
the “richness”, of our implementation so far.

To do this, we can think about how the results of our experiments compare to real-
world experiments on/studies of biological agents. In particular, in our work we have
identified such experiments in the field of ethology. That is, the study of animals. We
thus believe our work might fit into the very same concepts and framework that re-
searchers in ethology have proposed with regards to the flight initiation distance (FID)
of various animals. As previously defined, the flight initiation distance point of a given
animal (or in our case robot) can be described as that point at which a given prey
animal (or robot) “decides” to flee in the presence of a given stimulus. Researchers
have introduced various theories to explain the adaptive behaviour of animals. How-
ever, Cooper suggests that “decisions regarding flight initiation distance have received
scant theoretical attention”. With regards to this particular metric, in the course of our
research we have developed a particular interest in it as it not only seems to be associ-
ated with the ethologist’s functional equivalents (or emergent function) of “fear”1 but
much of the evidence, with regards to the information it is suggested different animals
use in determining this distance, seems to complement our own studies of artificial

1This is said with an awareness that many ethologists, as observers of behaviour, are likely to cringe
at the cognitive implications of the term were we to attribute it directly to the animals they are studying
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prey agents. This includes the presence of food, distance to refuge, intruder starting
distance, intruder speed and individual differences.

Indeed, reflecting on the results collected in this thesis, from an interdisciplinary
perspective, as well as an animat, bottom-up one, we now hope that our findings may
have an appeal for and even act as inspiration for robotic models to complement ex-
isting literature on biological predator-prey relationships. Furthermore, our model of
embodied action selection shows a possible application for our model across disci-
plines. Namely, to test theories and models of flight initiation distance. According to
Cooper, it is a model first proposed by Ydenberg and Dill (1986. The economics of
fleeing from predators) that has “guided research for the past 20 years”. According to
the literature, this model “specifies that escape begins when the prey detects a predator,
monitors its approach until the costs of escape and of remaining are equal, then flees”.
Flight initiation is thus supposed to occur where the costs of remaining and costs of
fleeing intersect. However, Cooper’s research has concluded that optimality models
might be preferable to such a break-even model for a number of reasons. Regardless
of model, however, the performance of our emotion-based architecture would seem to
encourage further collaboration between disciplines, which could prove conducive to
increasing our understanding of both the biological and the artificial.

8.5 Future Work
Thus future work could include a more interdisciplinary look at the predator-prey rela-
tionship. However, more specifically to the literature of artificial intelligence and arti-
ficial life, future work might now include the further development of mechanisms such
as ours to continue to study further the emotion-like reactions resulting from use of
this mechanism. In particular, we see one of the next steps as trying to find other ways
to measure and quantify the differences in our system across conditions. Taking inspi-
ration from the re-conceptualisation of action selection as activity cycles, for example,
this might be in the form of adopting measures that are more ethologically-inspired.
In future, we would like to see how researchers might further integrate different types
of hormone-modulated sensory ability using the same basic architecture to study the
dynamics of “fight-or-flight” emotional reactions in more complex prey-predator sce-
narios, including scenarios where the predator’s abilities are also modulated. More
broadly, however, it is hoped that some of the ideas within this thesis will encourage
and be adopted or adapted by others so as to contribute towards acquiring knowledge
as to the intricate relations likely to exist between artificial brains, bodies and environ-
ments.
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Glossary

Action Selection
Thought of as a way of characterising the most basic problem of intelligent systems:
what to do next.

Adaptive value
The ability of our developed agents and/or their architectures to produce adaptive be-
haviour in response to and ensures survival of given environmental dynamics. For
example, specific variations of our motivation-based architecture have been found to
have greater adaptive value in certain circumstances over others.

Animat Approach
An approach to addressing problems including perception, categorisation and sensori-
motor control that focuses on characteristics neglected by standard approaches to AI.
This approach takes inspiration from what is known about mechanisms underlying
biological intelligence and approaches AI in a bottom-up manner.

Animat
A simulated animal or robot whose structures and functionalities are as much inspired
from current biological knowledge as possible, in the hope it will exhibit at least some
of the survival capacities of real animals. The term “animat” was introduced by Wilson
in 1985.
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Arbitration mechanism
In the context of action selection or control architectures, the arbitration mechanism/action
policy refers to the way in which conflicts between competing behavioural alternatives
are resolved. In the research of this thesis specifically, we use a “winner-take-all”
arbitration mechanism.

Autonomous
Having self-government, acting independently and/or having the freedom to do so.
That is to say, the state of functioning independently, without extraneous influence.
This further includes the ability of an agent to make its own decisions.

Bottom-up Approach
In the context of the animat approach, this refers to an approach which goes from
simple, but “complete” creatures to more complex ones. This is as opposed to a top-
down approach.

Body
In biological terms, this can be defined as the physical structure of a person or animal,
including bones, flesh and organs. In the context of our research, as with “brain”
we define “body” that bit more abstractly: focusing on “body” more as that which
embodies, or gives concrete reality, to an agent.

Brain-Body-Environment Relationship
Refers to the collective relationship and inter-connectedness of brain, body and envi-
ronment.

Brain
In biological terms, this can be defined as an organ of soft nervous tissue contained
in the skull of vertebrates, functioning as the coordinating center of sensation and
intellect. In the context of our own work, however, we take a more abstract definition
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of what a “brain” is: focusing less on the physical substrate and more on the functions
of the brain as a control mechanism.

Competitive Two Resource Problem (CTRP)
An extension of the Two Resource Problem which introduces two robots in the same
environment simultaneously performing their own two-resource problem. This intro-
duces competition for resources, as both robots might need access to the same resource
at the same time.

Distal Perception
The ability to sense something situated away from the center of the body or from the
point of attachment.

Embodied, Embedded Cognition
A philosophical theoretical position in cognitive science, closely related to situated
cognition, embodied cognition, embodied cognitive science and dynamical systems
theory. The theory states intelligent behaviour emerges out of the interplay between
brain, body and world. The world is not just that on which the brain is acting. Rather,
brain, body and world are equally important factors in the explanation of how particular
intelligent behaviours come about in practice.

Embodiment
A tangible or visible form of an idea, quality or feeling, along with the representation
or expression of something in such a form. In our research, this refers to the idea that
internal and external features of physical “body” (including homeostatic and hormonal
states) heavily influence the higher “cognitive” processes in the brain, presumably via
the emotional system (which also follows theories such as Damasio’s somatic marker
theory).

Emergent
The way in which complex systems and patterns arise out of a multiplicity of relatively
simple interactions.
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Emotion-based architecture
A control architecture which takes inspiration in some manner from biological theories
of emotion (and its role in action selection problems confronted by animals and/or
humans).

Emotion
A natural, instinctive state of mind deriving from circumstances, mood or relationships
with others and/or any of the particular feelings that define such a state of mind, in-
cluding anger, fear, love, hate etc. Thought to be related to certain activities in brain
areas that direct our attention, motivate our behaviour and determine the significance
of what is going on around us.

Environment
The surroundings or conditions in which a person, animal or plant lives or operates
and/or the setting or conditions in which a particular activity is carried on.

Ethology
The science of animal behaviour or the study of human behaviour/social organisation
from a biological perspective.

Exteroception
Sensitivity to stimuli originating outside of the body.

Hazardous Three Resource Problem (H3RP)
An extension of the Two Resource Problem (and in contrast to the Competitive Two
Resource Problem) that introduces a hazardous environmental dynamic through via an
additional resource as well as a “predator” robot. In this scenario, the robot of the
original TRP has to effectively deal with the dynamics introduced by the “predator” by
choosing between these three resources.

184



Hormone-like mechanism
A mechanism which includes, is modelled on or takes inspiration from biological hor-
mones (regulatory substances produced in an organism and transported in tissue fluids
such as blood or sap to stimulate specific cells or tissues into action).

Internal Robotics
An area of research that concentrates on reproducing in robots the inside of the body of
organisms and studies the interactions of a robot’s control system with what is inside
the body. This is in contrast to external robotics, the more often-studied area, which
concentrates on the interactions of an organism’s nervous system with the external
environment.

Interoception
Sensitivity to stimuli originating inside of the body.

Motivation-based architecture
A type of control mechanism/action selection architecture that takes inspiration from
biological ideas about motivations and their role in action selection.

(Neuro)modulation
In neuromodulation several classes of neurotransmitters regulate diverse populations of
central nervous system neurons (one neuron uses different neurotransmitters to connect
to several neurons).

Predator-Prey Relationship
The interaction between types of agents (predators) that survive by taking resources
from another type of agents (prey).
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Predator
An agent that survives by preying on other agents.

Prey
An agent hunted by another because it is a source for its survival.

Proximal Perception
The ability to sense something situated nearer to the center of the body or point of
attachment.

Situatedness
Sometimes used interchangeably with the idea of embeddedness, this refers to the idea
that the physical interaction between body and environment strongly constrains the
possible behaviours of an agent, in turn influencing (and in fact partly constituting) the
cognitive processes that emerge out of the interaction between agent and environment

Top-down approach
The inverse of the bottom-up approach, this method involves looking at the highest
conceptual level, before working down to the details.

Two Resource Problem (TRP)
A scenario known in the action selection literature, providing a standard that allows
comparison of results between researchers, where a self-sufficient (biological or ar-
tificial) creature must continuously decide which of its two survival-related needs to
satisfy by choosing between two resources available in the environment. This can be
seen as the minimal scenario to test action selection mechanisms.

Viability
Capable of success or continuing effectiveness.
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Voting-based arbitration mechanism
In the context of action selection, this is where resolution of conflicts between com-
peting behavioural alternatives allow for “compromise actions” i.e. actions that are not
best to satisfy any active goal in isolation, but rather compromise between multiple
goals.

Winner-take-all arbitration mechanism
In the context of action selection, this is where resolution of conflicts allow only the
behavioural alternative with the highest activation to stay active.
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[78] L. Cañamero, O. Avila-Garcı́a, and E. Hafner. First experiments relating behav-
ior selection architectures to environmental complexity. In Intelligent Robots
and Systems, 2002. IEEE/RSJ International Conference on, volume 3, pages
3024–3029. IEEE, 2002. 22

[79] F.J. Odling-Smee, K.N. Laland, and M.W. Feldman. Niche Construction: The
Neglected Process in Evolution. Monographs in Population Biology. Princeton
University Press, 2003. 22, 25

194



REFERENCES

[80] Timothy Rumbell, John Barnden, Susan Denham, and Thomas Wennekers.
Emotions in autonomous agents: comparative analysis of mechanisms and func-
tions. Autonomous Agents and Multi-Agent Systems, 25(1):1–45, 2012. 23

[81] Sandra Clara Gadanho and John Hallam. Robot learning driven by emotions.
Adaptive Behavior, 9(1):42–64, 2001. 24

[82] Carlos Delgado-Mata and Ruth S Aylett. Fear and the behaviour of virtual flock-
ing animals. In Advances in Artificial Life, pages 655–664. Springer, 2007. 24,
38, 39

[83] Ernesto Burattini and Silvia Rossi. Periodic activations of behaviours and emo-
tional adaptation in behaviour-based robotics. Connection Science, 22(3):197–
213, 2010. 24

[84] Miguel Mendao. Hormonally moderated neural control. In Proceedings of the
2004 AAAI Spring Symposium. AAAI Press, Menlo Park, CA, 2004. 24, 38, 40,
92, 172

[85] R.S. Lazarus. Emotion and adaptation. Oxford University Press, 1994. 24

[86] A. Damasio. Descartes’ Error: Emotion, Reason and the Human Brain. Ran-
dom House, 2008. 24, 34

[87] I. Kelly, O. Holland, M. Scull, and D. McFarland. Artificial autonomy in the nat-
ural world: building a robot predator. In Proceedings 5th European conference
on Artificial Life, ECAL, pages 289–93, 1999. 25, 26

[88] William E. Cooper, Valentn Prez-Mellado, Teresa Baird, Troy A. Baird,
Janalee P. Caldwell, and Laurie J. Vitt. Effects of risk, cost, and their interac-
tion on optimal escape by nonrefuging bonaire whiptail lizards, cnemidophorus
murinus. Behavioral Ecology, 14(2):288–293, 2003. 25, 124, 126, 173

[89] D. Floreano and S. Nolfi. Adaptive behavior in competing co-evolving species.
In P Husbands and I Harvey, editors, Proceedings of the fourth European con-
ference on Artificial Life, pages 378–387. MIT Press, 1997. 26
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