
Identifying the causes of poor progress in software projects

Austen Rainer and Tracy Hall
Centre for Empirical Software Process Research

Department of Computer Science
University of Hertfordshire

College Lane, Hatfield, Hertfordshire AL10 9AB, England
{a.w.rainer, t.hall}@herts.ac.uk

Abstract

In this paper we present data on the progress of two
projects at IBM Hursley Park. Each project lasted
approximately 12 months in duration. We use the data
to identify the areas in the projects where poor
progress was occurring and to investigate the causes
of this poor progress. We find some similarities
between the two projects in terms of where some poor
progress is occurring i.e. with the design, code and test
processes. But we also identify differences between the
two projects that can be partially explained by the
dependency of these two projects on other parts of
IBM. We also find that limited quantitative data is
reported in the projects, and that there is little explicit
comparison of actual progress with planned progress.
Indeed, the reporting of progress seems to be affected
by factors like the 'deadline effect' and preferences for
reporting certain types of progress. We conclude that
these factors may threaten the valid reporting and
management of the projects.

1. Introduction

In this paper we present data on the progress of two
projects at IBM Hursley Park. Our data particularly
highlights areas of poor progress in these projects. We
relate our data on poor progress to data on waiting and
overdue work in order to identify the problematic areas
in software development projects.

One way in which poor progress is addressed in
projects is to commit more effort to those areas where
poor progress is occurring. The commitment of more
effort can be achieved in a number of ways e.g. hiring
additional staff, working shift work, or working

overtime. Many estimation models recognise a close
relationship between project duration and project
effort. Consequently, committing more effort to
problematic areas is likely to increase the probability
that the project duration will be extended.

Ideally, quantitative measures of actual effort in
software projects would allow researchers and
practitioners to best understand where effort is being
directed. Unfortunately, many software projects do not
(or cannot) collect quantitative data on effort. The two
projects that we report on here report little quantitative
data. In this paper, we investigate the use of naturally
occurring qualitative data to provide insights into
project progress and, indirectly, into effort.

The data is based on reports of waiting, overdue work
and the progress of work for two projects at IBM
Hursley Park. It was collected from practitioners’
comments during project status meetings over a 12
month period. The data has been collected on a week-
by-week basis, and has been aggregated so that it
applies at the project level (rather than a lower level
within the project). We use these three sets of data to
examine which functional areas of the project report
most problems and which types of project work appear
to be the cause of these problems.

As the data is based on reports made by practitioners,
the data is subjective. Nevertheless, the context within
which these reports were made i.e. during the highest-
level meetings in each project, at which key project
personnel were present, leads us to suggest that the
data provides valuable insights into the progress of
these two projects. While the results of our study may
not generalise, we believe that our research strategy of
collecting and analysing naturally-occurring qualitative

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

data on progress, waiting and overdue work has wider
applicability.

In section 2 we provide some background on the
collection of qualitative and quantitative data. In
section 3, we explain our study design. In sections 4
through 6, we present our evidence and analysis of
waiting, overdue work and the progress of work. In
section 7 we summarise our findings and briefly
discuss their implications. We also indicate further
analysis that we intend to conduct with this evidence.
In section 8, we provide brief conclusions.

2. Background

One of the major difficulties with investigating
software development is collecting detailed and
accurate quantitative data. Survey results from the
Software Engineering Institute suggest that most
companies do not collect quantitative data [1]. Where
companies do not collect quantitative data, it is
difficult for researchers to collect their own
quantitative data from projects in those companies.

However, it is often possible to ‘generate’ quantitative
data from other kinds of data that are collected within a
project. For example, Cook et al. [2] were able to
‘recover’ quantitative data on conformance to process
from events occurring in a defect-fixing process.
Bradac et al. [3-5] were able to use a lead developer’s
personal time diary to investigate the use of time by
that developer over a 30-month time period. In their
investigation, Bradac et al. focused particularly on the
effects of waiting, but recognised that it was not clear
whether their findings for an individual developer
would scale up to the project level. (See [6] for a
detailed re-analysis of Bradac et al.’s published data).

Bradac et al.’s difficulties with scaling up their
findings to the project-level illustrate a more general
difficulty in empirical software engineering research:
collecting quantitative, longitudinal data at the project-
level. Porter et al.’s [7] study of code inspections
provides another illustrative example. They have used
quantitative data ‘naturally’ collected by a project over
the duration of that project. Using the data they
collected, Porter et al. suggest that ‘development
phase’ confounds the relationship between code
inspections and faults found. Nevertheless, Porter et al.
are focusing on one process within the project, so their
study is not taking a project-level perspective.

To get some sense of what may be happening in
software projects at the project level, we have collected
qualitative data that has been naturally produced by
two projects at IBM Hursley Park. We have used this
qualitative data to gain insights into the overall
process. Our general research question is:

RQ How does progress vary during software
projects?

3. Study design

3.1 Overview

We selected two projects for longitudinal case study
(see below for further information). Our main criterion
for selecting a project was that the project was planned
to complete within approximately 12 months. In order
to know when a project was planned to complete, the
project must be close to completing its initial
requirements analysis and planning phases. This means
that our investigations focused on the progress of the
two projects after the project plans were established.

We collected a variety of data on these two projects.
Our primary source of data was the minutes of each
project’s status meetings. These meetings occurred on
a weekly or fortnightly basis, and were attended by
representatives of all the functional areas of the project
e.g. marketing, finance, design/code, testing. (We
provide further information on functional areas below.)
We also conducted interviews with project members,
and collected other information e.g. project plans.

3.2 The selection of projects

Five projects were initially selected for case studies
from a candidate set of 16 projects, all taken from IBM
Hursley Park. Almost immediately, there were
problems gaining regular access to two of these
projects, and these projects were dropped as case
studies and replaced by a sixth project. As the evidence
collection period progressed, it became increasingly
clear that it would be impractical to maintain four case
studies (because of the demands of collecting and
analysing evidence from four cases), so the number of
cases was further reduced to two, here called Project B
and Project C. [8] provides more information on the 16
candidate projects, the criteria for selecting the original
five cases, and more detail on the reduction of case
studies from four to two.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

Table 1 Characteristics of the projects

Characteristic Project B Project C
Size of support team Support team of 50 people

(separate from Project B).
Support team of 12 people (part
of Project C)

Size of planned development
team

approx. 38 people approx. 3 people

Size of planned management
team

approx. 6 people approx. 3 people

Assignment of work between
support team and development
team

Developers are either support or
development (but development
may support in critical
situations)

Developers ‘own’ components
and both develop and support
those components.

Role(s) of Project Leader Project Leader Project Leader, Design/Code
Manager, Support Manager

Strategic value of product Higher; long-term Lower; mid- to short-term
Purpose of project New functionality Port to new platform
Type of product Large, mission-critical,

middleware legacy system
Large, middleware legacy
system

Release sizes 36 KLOC 70 KLOC
Number of features/design
changes

13 features (planned)
12 design changes (unplanned)

19 features (planned) and 11
features (unplanned)

Platforms Mainframe Workstation
Project status meetings Yes No, but design/code/test status

meetings
Project duration (in weeks) 57 (planned and actual) 48 (planned) 59 (actual)
Product delivery week 52 (planned and actual) 48 (planned) 59 (actual)
Determination of project
duration

Project end-date driven, due to
market considerations

Project end-date driven, due to
resource funding constraints

3.3 Characteristics of the projects

Table 1 compares the two projects according to a
number of characteristics of the projects. Four entries
in Table 1 require clarification. First, the strategic
value of the two products is relative to the two
products. Although Product C has a lower strategic
value this is not to say that the product is not valued by
the organisation (if the product had a low value to the
organisation it is unlikely it would be maintained).
Second, although design changes and additional
features are unplanned, this is not to say that such
work is unexpected. Experienced Project Leaders
recognise that the workload for a project will probably
increase. Third, the KLOC sizes of the two projects
might misleadingly suggest that Project C is very much
more productive than Project B. Product B is,
however, a mission-critical product requiring very high
levels of reliability. In addition, much of the code for
Product C is being ported from an existing version of
the product. Fourth, a feature is the most basic unit of
development for a very large software system, and
represents a long-term effort [9].

3.4 Functional areas in the projects

In any large software project, personnel involved in the
project tend to be organised into teams, and teams tend
to be assigned specific types of work. For example,
there may be one or more design teams, and these will
be separate from the test team(s). Some teams are not
necessarily assigned technical work but are, instead,
assigned other types of work e.g. financial
management, marketing. Each of the projects that we
studied comprised a large number of different teams.
To emphasise the specific roles of these teams, we
have referred to them as functional areas of the
projects. The functional areas are summarised in Table
2.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

Table 2 Functional areas of the projects

Functional area Explanation

Build A team responsible for building versions of the system for
testing and, later, for release

Defect screen team A team that is established to prioritise and assign defects to
defect-fixers.

Design / Code The team(s) responsible for the high-level and low-level
design, and the actual coding.

Early market support The team responsible for marketing the product to client
companies that are ‘early adopters’ of technology

External organisation An organisation external to IBM Corporation with which the
project must interact.

Information development A team that develops the documentation that accompanies
the product.

Organisational ‘units’ Other organisational ‘units’ in the corporation that may not
be software or hardware, research or development, projects.
For example, a corporate management team would be
classified under this category.

Other project (within
laboratory)

Other projects within IBM Hursley Park with which the
project might interact e.g. sharing human resource.

Other projects within the
organisation

Other projects within IBM Corporation but outside of IBM
Hursley Park.

Performance A team responsible for ensuring that the system’s
performance is not unduly affected by new functionality

Project management The project management ‘team’ for the respective project
Service Provide technical support / maintenance to customers
Test There are various testing teams e.g. System test,

performance
Unknown This category is used to signify situations where it was not

possible to identify the specific functional area from the data
collected.

Table 3 Types of work causing poor progress and waiting, or that were overdue work

Type of
work/waiting Explanation

Decisions Some decision that needs to be made.
Defect/Fix A defect or fix relating to some piece of design, code or information.
Information Information (e.g. documentation) relating to the product.
Code Some source code for the system.
Resource Equipment, such as test PCs.
Other Other types of waiting
Unknown The type of waiting could not be identified from the available evidence.

As noted earlier, we started investigating these projects
once their requirements analysis and planning phases
were completed. Therefore, we are unable to
investigate the requirements analysis and planning
phases which is why they are not presented in Table 2.

Our investigations identified a number of different
types of work that were causing poor progress,
‘causing’ waiting, or that were overdue work. These
types are summarised in Table 3.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

Table 4 Definitions

Reports of Definition

Waiting A functional area cannot start or continue work on a task until some other
functional area provides input. It is likely that the functional area that is
waiting will work on some other task while they are waiting.

Overdue work A functional area has not completed work that they expected to have
completed. This indicates a difference between planned and completed
work.

Poor progress
of work

The rate at which work is actually completed is lower than the expected
rate. This indicates a difference between planned and actual work rate.
This may be due to an over-optimistic plan.

3.5 Data collection

As our data consists of practitioners’ reports of
waiting, overdue work and poor progress there is
inevitably a major subjective component to these
reports. The subjective nature of these reports implies
that practitioners are intentionally or unintentionally
‘filtering’ the information that they report. We are
assuming that practitioners’ reports emphasise the
more significant instances of waiting, overdue work
and poor progress i.e. that practitioners filter out the
less significant instances.

Table 4 provides simple definitions of our three main
sets of data.

The primary source of evidence used in the analyses
was the minutes of status meetings. Project B held
meetings attended by representatives of all the
functional areas in the project. Project C held meetings
attended mainly by representatives of the design, code
and test functional areas only. For both projects, the
status meetings were the highest-level meetings within
the respective projects, occurred regularly (typically
weekly or fortnightly), were typically attended by
representatives from functional areas important to the
given project, and are a naturally occurring
phenomenon (so that the researcher is not intruding on
the project).

Overall, the status minutes provide a broad view of the
project over the duration of the project. Naturally,
minutes do not record all that was discussed at a
meeting, or even necessarily the most important issues
(e.g. for political reasons, a discussion at the meeting
may not be reported in the minutes), and such meetings
are unlikely to discuss all the issues occurring within
the project at the time of the meeting. Despite these

simplifications, the minutes provide a large volume of
‘rich’ information about the project over the duration
of the project, and this information appears rich
enough to provide substantive, longitudinal insights
into progress in software development. Furthermore,
the minutes provide detail that is unlikely to be
collected from other sources of data, and detail that can
also indicate simple causal connections between
events. For example the Performance functional area
of Project B reported that there was no progress on a
particular feature being developed. This was because
of an overdue fix to a severe problem with the feature.
This was noted in the minutes:

“Performance: No progress on [feature F07] due to
outstanding sev 1 [severity 1] problem.”

Such statements allow us to make connections between
functional areas, overdue work and poor progress.

3.6 Data analysis

In order to investigate the characteristics of waiting,
overdue work and the progress of work the minutes of
the status meetings were searched, using a text editor,
for particular phrases.

Table 5 summarises the phrases used for the search,
including derivatives of a phrase. The terms presented
in Table 5 are not exhaustive but cover all of the terms
that were used in this investigation.

Having refined the set of references, each of these
references (together with their surrounding ‘chunk of
meaning’) was then copied into a separate text file and
labelled with the week number in which it occurred.
Each item was then classified in various ways. See [8]
for more information on the methods of analysis.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

Table 5 Phrases used for searching the minutes of status meetings

Evidence Phrase Derivatives (examples)
Reports of waiting wait waiting, awaiting, await

 block blocked, blocking
 held up
 hold holding (holding up)

Reports of overdue work outstanding
 backlog

Reports of progress of work progress

Table 6 Types of progress

 Project B Project C
Type of progress Count % Count %

Good progress 11 16.4 24 24.2
Reasonable progress 8 11.9 2 2.0
Slow progress 19 28.7 23 23.3
No progress 13 19.4 22 22.2
Other types 16 23.6 28 28.3

Total 67 100.0 99 100.0
Poor progress 32 48.1 45 45.5

Note:

Poor progress is an aggregate of slow progress and no progress.

4. The progress of work

4.1 Reports of progress

Table 6 presents the progress reported for Projects B
and C. For both projects, there is more reporting of
poor progress than good or reasonable progress.
However, the Project Leader for Project B explained,
during an interview, that he wanted reports of poor
progress but he wasn’t interested in good progress.
This may partially explain the tendency towards a bi-
modal distribution for Project B. More generally,
representatives of functional areas may be inclined
towards reporting negative exceptions to planned
progress. This indicates a limitation of our data. But it
also suggests an area for improvement in projects i.e. if
the projects are not going to report progress in terms of
actual vs. planned effort, then a more comprehensive
subjective summary/reporting would still be useful.

Table 6 also indicates that poor progress accounts for a
substantial percentage of all reports of progress. For
Project B, poor progress accounts for about 48% of the

reports of progress of work. For Project C, poor
progress accounts for about 45%.

4.2 Functional areas reporting poor progress

Table 7 indicates which functional areas were
reporting poor progress. The table indicates some clear
differences between Project B and Project C in where
poor progress is occurring. For Project B, most of the
poor progress is occurring in the Test functional area.

For Project C, most of the poor progress is occurring in
the Design/Code functional area. The differences
between Project B and Project C suggest that we
should be cautious about assuming that the same
problems will affect other projects, even when these
projects occur in the same company. Van Genuchten et
al. [10] also found differences in the ‘projects’ they
studied and were also cautious about how they
interpreted their findings.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

Table 7 Functional areas reporting poor progress

 Project B Project C
Functional area Count % Count %

Design/ Code 4 12.5 25 55.6
Test 20 62.5 14 31.1
Unknown 8 25.0 6 13.3

Total 32 100.0 45 100.0

Table 8 Factors contributing to poor progress, for Project B

Factor Poor progress %

Defect/Fix 10 47.6
System reliability problems 6 28.6
Other 5 23.8

Total 21 100.0

Table 9 Types of waiting

 Project B Project C
Category Count % Count %

Decision 44 42.7 7 16.7
Defect/Fix 27 26.2 14 33.3
Code 18 17.5 3 7.1
Other 5 4.8 10 23.8
Information 4 3.9 5 11.9
Resource 3 2.9 0 0.0
Unknown 2 1.9 3 7.1

Total 103 99.9 42 99.9

4.3. Reports of the causes of poor progress

As noted in our method section, the data we collected
allowed us to make some simple causal connections
between some of the data we collected. We analysed
the underlying causes of the poor progress reported for
Project B. This analysis is shown in Table 8.

It is clear from the Table 8 that the most frequent cause
of poor progress is Defects/Fixes. System reliability
problems also cause significant delay. More generally,
technical problems are most frequently reported as the
causes of poor progress.

5. Waiting

5.1. Types of waiting

Table 9 presents results on the types and frequency of
waiting for Projects B and C. (See Table 3 for an
explanation of the types of waiting.)

With the exception of the Defect/Fix category of
waiting, there appears to be little consistency between
the two projects. The similar frequencies of waiting on
Defects/Fixes, for the two projects, suggests that

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

Table 10 Dependent functional area

 Project B Project C
Functional area Count % Count %

Build 8 7.8 0 0.0
Design / Code 14 14.0 13 31.0
Test 36 35.0 19 45.0
Project management 24 23.0 0 0.0
Other project (within
laboratory)

2 1.9 0 0.0

Early market support 3 2.9 0 0.0
Information development 10 9.7 4 9.5
Unknown 6 5.8 6 14.0

Total 103 100.0 42 100.0

Table 11 'Source' functional areas

 Project B Project C
Functional area Count % Count %

Build 7 6.8 1 2.4
Design / Code 19 18.4 20 47.6
Test 0 0.0 1 2.4
Marketing 0 0.0 2 4.8
Organisational issues 26 25.2 1 2.4
Other project(s) within the organisation 33 32.0 4 9.5
Project management 1 1.0 0 0.0
External organisation 2 1.9 2 4.8
Unknown 15 14.6 11 26.2

Total 103 100.0 42 100.0

functional areas within Projects B and C often wait on
either software or fixes to software defects. This
suggests that the defect process and the coding process
are either problematic processes in themselves or are
impacted by problematic processes. One implication is
that these processes could be a focus for improvement.

5.2. Functional areas involved in waiting

The data we have collected allows us to identify which
functional areas are waiting. We can also identify the
type of work a functional area is waiting on and those
functional areas yet to deliver work. The dependent
functional area is waiting on the delivery of some type
of work from the source functional area.

Table 10 shows those functional areas that are waiting
on the delivery of work. The main dependent
functional areas in Project B are Test, Project

management and Design/Code. The presence of Test
and Project Management probably reflects the
project’s dependency on an external project in another
part of IBM, and the importance of Project B to the
corporation. See [8] for more information on this issue.
For Project C, the situation is somewhat simpler: the
Test and Design/Code functional areas are the main
dependent functional areas.

Table 11 shows those functional areas that are causing
waiting by not completing work on time. Again,
Project B is clearly affected by external entities,
notably external projects and also senior management
outside of IBM Hursley Park. For both projects, the
Design/Code functional area is responsible for not
completing work.

Table 9 shows the types of work that are at the ‘centre’
of the waiting. Source functional areas are failing to

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

complete these types of work, and therefore failing to
pass on their outputs to the dependent functional areas.
For Project B, most of the decisions being waited on
were to be made outside of the project. Similarly, a
number of the fixes to defects were being provided by
another project.

The differences between Project B and Project C
suggest that Project B would have greater difficulty
managing the project and improving the project’s
development processes, because some of the main
problematic processes are beyond the control of
Project B’s management.

6. Overdue work

6.1. Types of overdue work

Table 12 breaks down the types of overdue work for
the two projects. For Project B, Defect/Fixes clearly
dominate. In addition to Defects/Fixes, Decisions,
Problems and Tests are also important types of
overdue work. Problems may be yet-to-be identified
Defects.

Two key points emerge from the analysis of types of
overdue work. First, that for Projects B and C, the
most important types of overdue work are those that
relate to design/code-oriented issues and test-oriented
issues (i.e. the Defects/Fixes, Design/Code, Tests and
Problems types). This suggests the prominence of the
design/code and test functional areas within these two
software development projects. Second, that there may
be a strong relationship (dependency) between the Test
functional area and the Design/Code functional area.

Some of our data, therefore, confirms widely held
expectations of the relationship between design, code
and test processes.

6.2. Functional areas reporting overdue work

For Project B, the Defect Screen Team was created at
the beginning of the project to manage the allocation
of defects to developers. The Defect Screen Team
changed from weekly meetings to daily meetings in
week 38, two weeks after the completion of the
design/code phase. Typically, a Defect Screen Team
would be formed later in a project at this organisation
(perhaps around the time that the design/code phase
completes and the test phase commences). It is not
clear whether a Defect Screen Team actually existed
for Project C. Overdue work by the Defect Screen
Team can be related to the overdue Defects/Fixes and
overdue Tests, because the Defect Screen Team decide
the priority of the defect and allocate that defect to a
fixer. While the Defect Screen Team may help to
manage defect fixing, it also acts as a potential
bottleneck in the defect fixing process.

It is clear from Table 13 that there is little similarity
between the two projects in terms of the functional
areas reporting overdue work. Note, however, that for
both projects the Design/Code and Test functional
areas report the most number of different types of
overdue work. This is consistent with the Design/Code
and Test functional areas reporting poor progress. For
Project B, overdue Defect/Fixes seem to be reported
by a relatively large number of different functional
areas.

Table 12 Types of overdue work
 Project B Project C

Type Count % Count %

Design/Code 0 0.0 17 28.8
Decision 9 13.2 0 0.0
Defects/Fixes 37 54.4 11 18.6
Tests 7 10.3 10 17.0
Problem 8 11.8 8 13.6
Publications 2 2.9 6 10.2
Other 4 5.9 5 8.4
Unknown 1 1.5 2 3.4

Total 68 100.0 59 100.0

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

Table 13 Functional areas reporting overdue work

 Project B Project C
Functional area Count % Count %

Design / Code 15 22.1 38 64.4
Test 22 32.4 12 20.3
Build 1 1.5 0.0
Information development 6 8.8 1 1.7
Defect screen team 8 11.8 0.0
External to project 8 11.8 1 1.7
Other 7 10.3 0.0
Unknown 1 1.5 7 11.9

Total 68 100.0 59 100.0

7. Discussion

7.1. The collection and use of quantitative
measures of progress

The minutes for both projects present little quantitative
data. There is one exception, in Project B, where
detailed quantitative data on the actual progress of test
cases and defects is reported (see [11] for more detail).
Regardless of the amount of quantitative data
presented, there are few comparisons of actual
progress with planned progress. For example, there are
few comparisons of actual milestones with planned
milestones, and there are no comparisons of any kind
of planned work breakdown structure with an actual
work breakdown structure.

It may be that comparisons of progress in other work
(e.g. design, code) are made but not recorded.
However, the first author of this paper attended two
project meetings for Project B: at neither meeting were
actual comparisons discussed.

Another possibility is that actual versus planned
comparisons occurred outside the status meetings.
However this would be very surprising because the
status meetings for both projects are an explicit
mechanism for reporting the progress of each
functional area to the rest of the project. Also, the
quantitative reports of Project B’s progress on test
cases suggest that where quantitative data is available
it is reported at the status meetings.

In one interview, Project B’s Project Leader said:

“Everyone knows that a work breakdown structure
is only valid on the day it was created.”

The project leader’s statement provides a small insight
into why comparisons are not made: the original plan
is expected to be out of date anyway. This doesn’t
explain, however, why data on the actual process is not
collected and reported.

The lack of use of quantitative data in the two projects
we studied supports our argument on the use of
qualitative, subjective measures of progress. While
reliable quantitative data on progress is most desirable
it is clear that, for some projects at least, such data is
not available. In fact, results from the SEI suggest that
most projects are in this situation. To investigate these
kinds of project the most feasible approach may be to
exploit qualitative data naturally produced by the
projects.

7.2. Problems with reporting progress

The reporting of progress, waiting and overdue work
does not appear to be only a function of actual
progress, waiting and overdue work. Specifically,
reporting seems to be affected by:

The presence of major milestones (internal or
external) that may cause a Deadline Effect [12].
The difficulty of properly assessing progress due to
the lack of data on planned work and actual work.
The preference for reporting exceptions at status
meetings.
The preference for only recording exceptions in the
minutes of the meetings, even if other information
is actually reported at status meetings.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

These issues could be treated as limitations of this
study. But these limitations are inherent within the
naturally-produced data. Therefore, a much more
important conclusion may be that these issues are
severely limiting the effective management of the
projects.

8. Conclusion

There are some similarities between the two projects in
terms of the types of work that are causing problems,
and in the functional areas that are experiencing the
most difficulties. Some of our analysis, therefore,
confirms widely held expectations of the relationship
between design, code and test processes. There are also
differences between Project B and Project C, and these
suggest that we should be cautious about assuming that
the same problems will affect other projects, even
when these projects occur within the same company.

Our analysis indicates that, for these two projects,
there was very little reporting of quantitative data in
the projects and, related to this, there was little explicit
comparison of actual progress with planned progress.
In addition, the reporting of progress does not just
seem to be a function of progress itself. Other factors
(such as the Deadline Effect and some ‘preferences’
for reporting and recording certain types of
information) seem to affect the accurate reporting of
progress. While these other factors may threaten the
validity of empirical studies, a much more serious
threat is to the valid reporting and management of the
projects themselves.

In terms of further research, we have collected this
data on a week-by-week basis and we intend to
consider the temporal aspects of this data. For
example, we are interested to know whether the
frequency of reports are affected by other project
events e.g. an approaching deadline. We also plan to
investigate the effects of Project B’s dependencies on
projects and ‘units’ that are external to the project.

Overall, while the use of qualitative, subjective data
may be less desirable than quantitative data, we hope
that work in this area can contribute to improved
project planning and control, and may (in the longer
term) encourage practitioners to move toward more
developed, quantitative measures of progress.

Acknowledgements

Whilst the majority of this research was conducted
whilst at Bournemouth University, the actual writing
of this paper occurred during a lectureship at the
University of Hertfordshire. Austen Rainer is very
grateful to Professor Martin Shepperd for his support
throughout the duration of his doctoral research, of
which this paper is a product. Similarly, he is grateful
to Paul Gibson and John Allan, at IBM Hursley Park,
for their support during the doctoral research, and to
the many people at IBM Hursley Park for allowing
their projects to be studied (or at least candidates for
study). Dr. Sarah Beecham provided useful comments
on a draft of this paper. We also thank the reviewers
for their helpful comments.

References

[1] SEI, "Process Maturity Profile: Software CMM -
2003 Year End Update," Software Engineering
Institute, Carnegie Mellon University, Pittsburgh,
PA. March 2004 2004.

[2] J. E. Cook, L. G. Votta, and A. L. Wolf, "Cost-
Effective Analysis Of In-Place Software
Processes," IEEE Transactions on Software
Engineering, vol. 24, pp. 650-663, 1998.

[3] M. G. Bradac, D. E. Perry, and L. G. Votta,
"Prototyping A Process Monitoring Experiment,"
IEEE Transactions on Software Engineering, vol.
20, pp. 774-784, 1994.

[4] D. E. Perry, N. A. Staudenmayer, and L. G. Votta,
"People, organizations, and process improvement,"
IEEE Software, vol. 11, pp. 36-45, 1994.

[5] D. E. Perry, N. A. Staudenmayer, and J. G. Votta
Jr., "Understanding and improving time usage in
software development," in Trends in software:
software process, A. Fuggetta and A. L. Wolf,
Eds.: John Wiley and Sons Ltd, 1995.

[6] A. W. Rainer, "A secondary analyses of Bradac et
al.'s prototype process-monitoring experiment,"
University of Hertfordshire, Technical Report CS-
TR-383, April 2003 2003.

[7] A. A. Porter, H. P. Siy, A. Mockus, and J. G. Votta
Jr., "Understanding the sources of variation in
software inspections," ACM Transactions on
Software Engineering and Methodology, vol. 7, pp.
41-79, 1998.

[8] A. W. Rainer, "An Empirical Investigation of
Software Schedule Behaviour," in Department of
Computing. Bournemouth UK: Bournemouth
University, 1999.

[9] L. M. Taff, J. W. Borchering, and W. R. Hudgins
Jr., "Estimeetings: Development estimates and a
front-end process for a large project," IEEE
Transactions on Software Engineering, vol. 17, pp.
839-849, 1991.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

[10] M. van Genuchten, "Why is software late? An
empirical study of reasons for delay in software
development," IEEE Transactions on Software
Engineering, vol. 17, pp. 582-590, 1991.

[11] A. W. Rainer, "A catalogue of 'analytic fragments'
of the behaviour of a software project," Empirical
Software Engineering Research Group (ESERG)
Bournemouth University, Bournemouth, Technical
Report ESERG-TR00-007, 2000.

[12] B. W. Boehm, Software engineering economics.
Englewood Cliffs, N.J.: Prentice-Hall, 1981.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

	footer1:

