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Abstract 

Introduction: The peroxisome proliferator activated receptor beta/delta 

(PPARβ/δ) is a transcription factor ubiquitously expressed in cells, although more 

highly active in skeletal muscle, arteries and endothelium. Signalling via PPARβ/δ 

is involved in lipid metabolism, glucose metabolism, insulin sensitivity, 

inflammation, and cell proliferation and therefore it is emerging as a therapeutic 

target for the treatment of disorders associated with metabolic syndrome or 

diabetes. However, there are great discrepancies in the literature about the role of 

PPARβ/δ and scientists describe both anti- and pro-effects on inflammation, cell 

migration and cell proliferation after ligand-activation of PPARβ/δ. Understanding 

the PPARβ/δ mode of action is of great interest and may provide new molecular 

mechanisms for treating a variety of inflammation-related diseases. This thesis 

aims to expand the knowledge on PPARβ/δ to better understand its mechanism of 

action at genomic and non-genomic level, which might give some clues for new 

therapeutic drug developments targeting PPARβ/δ. 

Methods: Pharmacological techniques including organ bath and myography were 

used for the study of the non-genomic effects of PPARβ/δ on vascular tone, 

comparing aorta and mesenteric arteries as a model of systemic and resistance 

vasculature respectively from healthy and streptozotocin (STZ)-induced diabetic 

rats. Molecular biology techniques including Griess assay, ELISA and qRT-PCR 

were used for the study of the regulation of lung inflammation by PPARβ/δ, 

focusing on the PPARβ/δ molecular switch between induction and trans-

repression, two different pathways of gene regulation. Computational methods 

such as docking were used for the study of the PPARβ/δ binding pocket and how 
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PPARβ/δ is activated/repressed after ligand binding as well as the possibility of 

accommodating more than one ligand simultaneously into the binding pocket.  

Results: In large STZ-diabetic systemic aorta arteries, PPARβ/δ inhibits the 

contraction through the PI3K/Akt/eNOS pathway. GW0742, a PPARβ/δ agonist, 

improves vasodilation through the RhoA/ROCK pathway in Naïve aorta and 

through potassium channels in STZ-diabetic aorta. In resistance arteries such as 

mesenteric arteries, PPARβ/δ inhibits the contraction through the PI3K/Akt/eNOS 

pathway in Naïve and possibly STZ-diabetic tissues. In contrast, GW0742 inhibits 

the RhoA/ROCK pathway on STZ-diabetic mesentery arteries and regulates the 

potassium channels in Naïve mesenteric arteries in a PPARβ/δ independent 

manner. In the model of lung inflammation used, the presence of agonist (GW0742 

or L-165041) and antagonist (GSK3787 or GSK0660) at same time has anti-

inflammatory effects and switches the PPARβ/δ mode of action from induction to 

trans-repression, therefore it was concluded that, at least in this model, the 

PPARβ/δ induction mode of action is pro-inflammatory and the trans-repression 

anti-inflammatory. PPARβ/δ agonists and antagonists bind differently to the 

PPARβ/δ receptor pocket. PPARβ/δ agonists form polar interactions with the 

residues His287, His413 and Tyr437 whilst PPARβ/δ antagonists form polar 

interactions with the residues Thr252 and Asn307. Further, our modelling indicates 

favourable binding energies and the feasibility of two ligands binding at same time 

into the PPARβ/δ binding pocket.  

Conclusion: A multidisciplinary approach was designed for the study of PPARβ/δ 

and provided novel information about its functioning both at genomic and non-

genomic level. The findings of this thesis can help the drug discovery industry for 

a better prediction of the modelling behaviour of new PPARβ/δ drugs and can 

support the rationale for developing new treatments targeting PPARβ/δ for 

hypertension and/or cardiovascular complications. 
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   Chapter 1: Introduction 

1.1 Peroxisome Proliferator Activated Receptors (PPARs) 

Peroxisome proliferator activated receptors (PPARs) are ligand-activated 

transcription factors and members of the nuclear hormone receptor superfamily. 

PPARs were originally found to be activated by peroxisome proliferators, whereby 

they received their name (Issemann and Green 1990). The PPAR family consists 

of three isoforms, PPARα (NR1C1), PPARβ/δ (NR1C2) and PPARγ (NR1C3), 

which are encoded by different genes and its expression is tissue dependent: 

PPARα is expressed in tissues of high fatty acid catabolism, most importantly the 

liver, kidneys, heart and brown adipose tissue (Braissant et al. 1996); PPARγ is 

found as three isoforms, PPARγ1 is expressed in the gut, brain, vascular cells and 

immune cells, PPARγ2 in adipose tissue, and PPARγ3 in adipose tissue and large 

intestine (Fajas et al. 1998); PPARβ/δ is present in all animal cells, from C. elegans 

and drosophila to all mammals tested (Mandard and Patsouris 2013) and it is 

ubiquitously expressed, although more highly active in skeletal muscle, arteries 

and endothelium (Coll et al. 2009, Hamblin et al. 2009). 

PPARs can be activated by numerous endogenous ligands, mainly fatty acids and 

eicosanoids (Yu et al. 1995). Some of them are common to all PPAR, like 

arachidonic acid, and others are subtype specific (Krey et al. 1997). Natural ligands 

specific of PPARα includes leukotriene B4 (Krey et al. 1997), 8- 

hydroxyeicosatetraenoic acids (8-HETE) (Krey et al. 1997), eicosatetraionic acid 

(ETYA)(Keller et al. 1997) and oleoylethanolamide (OEA) (Moraes et al. 2006); 

PPARγ natural ligands are, 9- and 13-hydroxyoctadecadienoic acid  (9-HODE and 

13-HODE) (Schild et al. 2002) and prostaglandin J2 (Krey et al. 1997); and 
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PPARβ/δ natural ligands includes prostacyclin, (Li et al. 2012), omega 3 (Forman 

et al. 1997), and linoleic acid C6-C8 (Moraes et al. 2006). 

PPARs control key biological functions such as lipid metabolism, glucose 

metabolism, immune response, inflammation, cell proliferation, cell migration, 

apoptosis and carcinogenesis (reviewed by Bishop-Bailey (2000), Neels and 

Grimaldi (2014) and Tan et al. (2016)). Dysregulation of PPARs contributes to the 

pathogenesis of metabolic diseases such as obesity, metabolic syndrome, 

diabetes, non-alcoholic fatty liver disease and atherosclerosis. Thus, PPARs 

represent important molecular targets for the development of new drugs to treat 

metabolic diseases.  

1.1.1 PPARα 

PPARα regulates lipid metabolism acting as a lipid sensor. High concentrations of 

fatty acids activate PPARα which promotes the uptake and thus lowers the levels 

of these acids (Grygiel-Gorniak 2014). For that reason, PPARα is used as a target 

molecule for the treatment of dyslipidemias. 

Fibrates are a synthetic family of PPARα agonists which clinically proved to lower 

circulating triglycerides and small dense fraction of low density lipoprotein (LDL)-

cholesterol, raise high density lipoprotein (HDL)-cholesterol, and improve the 

overall atherogenic plasma lipid profile (Ito 2015). They also show to have 

beneficial effects on inflammation, insulin resistance and metabolic syndrome 

(Feng et al. 2016, Moreno-Indias et al. 2017). Moreover, increasing evidence 

suggests that the fibrate class of drugs also decreases the rate of cardiovascular 

disease (CVD) events, especially in patients with dyslipidemia and type 2 diabetes 

mellitus (T2DM) (Burgess et al. 2010, Lee et al. 2011). 
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Fibrates have been used to treat patients with dyslipidemia for decades. 

Fenofibrate, gemfibrozil, bezafibrate and ciprofibrate were the first fibrates 

synthesised in the 1970’s and 1980’s (Goldberg et al. 1989, Pauciullo et al. 1990), 

and more fibrates continue developing nowadays, like pemafibrate which is 

currently undergoing Phase III clinical trials (Araki et al. 2018). However, the use 

of fibrates is controversial due to the adverse side effects including gastrointestinal 

bleeding (Schelleman et al. 2010), increased liver function tests (Ahmad et al. 

2017), venous thromboembolic events (Humbert et al. 2017) or increased serum 

creatinine level (Zhao et al. 2012). 

The efficacy of fibrates in improving the lipid profile of the patients raised interest 

on its use as a treatment for the metabolic syndrome (Gomaraschi et al. 2015, 

Moreno-Indias et al. 2017). However, it is becoming clear that the combination of 

fibrate and statin drugs - a family of drugs that inhibits the 3-hydroxy-3-methyl-

glutaryl-coenzyme A reductase (HMG-CoA reductase) and thus reduces the 

production of cholesterol - results in a more effective therapy for lipid disorders 

than either monotherapy (Choi and Shin 2014). Moreover, several clinical trials 

have shown that the combined administration of fenofibrate/simvastatin to patients 

with mixed dyslipidemia is not associated with significantly increased incidence of 

severe undesirable effects compared with either monotherapy (Filippatos and 

Elisaf 2015) and in general, fibrates seem to be safe to use in combination with 

other lipid lowering medications. However, the metabolic syndrome is a 

multifaceted metabolic disorder composed of the combination of numerous risk 

factors including atherogenic dyslipidemia, elevated blood pressure, insulin 

resistance, elevated glucose, and a pro-thrombotic and pro-inflammatory state 

(Grundy 2016), and in this complex scenario fibrates and statin drugs only 

ameliorates the hyperlipidemia, and consequently its use as a therapy for the 

metabolic syndrome is very limited.  
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To improve the treatment strategies in the management of metabolic syndrome, 

T2DM and associated CVD, dual and pan PPARα agonists are currently being 

developed (Chen et al. 2017, Patel et al. 2017, An et al. 2018). The logic behind is 

that the simultaneous activation of two or all three PPARs by one single agonist 

will trigger overlapping and complementary mechanisms that will target multiple 

components of metabolic syndrome and other metabolic diseases at same time. A 

large number of structurally diverse dual PPARα agonists, such as muraglitazar 

(Nissen et al. 2005), naveglitazar (Long et al. 2009), tesaglitazar (Hellmold et al. 

2007), and aleglitazar (Henry et al. 2015), has been synthesized and evaluated, 

but further clinical development showed serious safety concerns, such as 

myocardial infarction, transient ischemic attack or stroke, and its use as potential 

therapy was discontinued. Encouraging, the PPARα/γ agonist saroglitazar has 

successfully passed the preliminary safety controls and is currently in clinical use 

in India (Jani et al. 2014). 

1.1.2 PPARγ 

PPARγ is involved in many physiological processes including the regulation of 

insulin sensitivity, inflammation, fatty acid storage and glucose metabolism, thus 

represents a high clinical interest as a target of insulin sensitizer drugs for the 

treatment of T2DM (Grygiel-Gorniak 2014). 

Thiazolidinedione (TZD) class of drugs are full agonists of PPARγ that improve 

insulin sensitivity, decrease fasting blood glucose, promote the utilization of 

glucose by peripheral tissues, and additionally increase serum levels of HDL-

cholesterol and decrease triglycerides and LDL-cholesterol levels (Fonseca et al. 

1998, Kawamori et al. 1998, Aronoff et al. 2000, Juhl et al. 2003, Chiquette et al. 

2004, Berhanu et al. 2006). Two of the most common TZD drugs currently used in 

the clinic for the treatment of T2DM are Rosiglitazone (Avandia), introduced in 

1999 and widely used as monotherapy or in fixed-dose combinations with either 



Chapter 1: Introduction 
 

5 
 

metformin (Avandamet, GlaxoSmithKline) or glimepiride (Avandaryl, 

GlaxoSmithKline), and pioglitazone (Actos) (Grygiel-Gorniak 2014, Soccio et al. 

2014). 

However, TZDs are known to cause severe side effects such as increased water 

retention, increased cardiovascular events, bladder tumours, bone fractures, 

oedema, weight gain, heart enlargement and hepatotoxicity, consequently some 

TZDs drugs, such as troglitazone and rosiglitazone, have been withdrawn from the 

market (Nesto et al. 2004, Kahn et al. 2006, Nissen and Wolski 2007, Home et al. 

2009, Lewis et al. 2014, Soccio et al. 2014). Pioglitazone was also found to 

increase the risk of bladder cancer (Neumann et al. 2012) although it is still the 

most used TZD. New TZD are in clinical development. For example, rivoglitazone 

is undergoing phase III trials in the US and China and has been reported to improve 

the glycemic control in a safe manner (Truitt et al. 2010, Kong et al. 2011), although 

further studies with longer duration are needed to fully assess the risks associated 

with this drug. 

The unwanted side effects of TZDs mentioned above have been associated with 

their behaviour as full agonists of PPARγ. In contrast, partial PPARγ agonists such 

as balaglitazone were found to be safer compounds while maintaining the insulin-

sensitizing effect (Henriksen et al. 2011, DePaoli et al. 2014). Crystal structures as 

well as in silico docking studies showed different binding profiles of the PPARγ 

agonists to the ligand binding domain which might explain the different co-

activators recruited and different effects (Bruning et al. 2007, Montanari et al. 

2008). Consequently, there is a growing interest on the development of partial 

PPARγ agonists with antidiabetic effects. For example, balaglitazone showed 50% 

PPARγ activation capacity (Larsen et al. 2008) and was used on a phase III clinical 

trial resulting on glycemic with a lower incidence of fat accumulation and fluid 

retention, when compared to pioglitazone (Henriksen et al. 2011). Similarly 
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INT131, a non-TZD selective for PPARγ modulator, has completed phase IIb 

clinical trial showing an improvement of hyperglycaemia in T2DM patients, with 

effects comparable to those of pioglitazone, but with less fluid accumulation and 

weight gain (DePaoli et al. 2014). 

Alternatively, dual PPARα/γ activators are being developed to combine the 

regulation of lipid plasma profile by PPARα with the increased insulin sensitivity 

effect of PPARγ, although with little success so far (Ratner et al. 2007, Erdmann 

et al. 2015). Aleglitazar is a dual PPARα/γ activator that has successfully 

completed phase II clinical trial (SYNCHRONY) (Henry et al. 2009). The results 

showed that aleglitazar treatment produced significant improvements in fasting 

plasma glucose and significant improvements in all lipid parameters compared with 

placebo. Also, for doses of aleglitazar less than 300 μg the frequency of oedema 

was similar to placebo, and bodyweight gain was less, compared with pioglitazone 

(Henry et al. 2009). The positive effects observed with aleglitazar together with the 

minor side effects provided enough evidence to move on to phase III of clinical trial 

(ALEPREVENT). Phase III was a randomized double-blind trial design to study 

aleglitazar 150 μg in patients with T2DM or prediabetes with stable cardiovascular 

disease compared with placebo. Unfortunately this study was halted early due to 

an excess of hypoglycaemia, oedema and gastrointestinal haemorrhage, and the 

authors raised severe concerns about any further clinical use for this drug 

(Erdmann et al. 2015). 

Saroglitazar, commercially known as Ligaglyn, is a new dual PPARα/γ agonist 

used for the treatment of dyslipidemia on patients with T2DM in India, though larger 

studies are yet needed for long term safety (Agrawal 2014).  
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1.1.3 PPARβ/δ 

PPARβ/δ is widely expressed in most tissues and is a major regulator of lipid 

metabolism, glucose metabolism, cell migration, proliferation and differentiation, 

hence it has been linked to very serious diseases such as metabolic syndrome, 

diabetes or cancer (Oliver et al. 2001, Kim et al. 2010, Quintela et al. 2014). 

Consequently, PPARβ/δ is emerging as a therapeutic target for the treatment of 

disorders associated with metabolic syndrome, although there are no marketed 

drugs targeting PPARβ/δ yet. 

Research reported mainly on animal models such as mice, rats or rhesus monkeys 

indicates that PPARβ/δ agonists results in a number of favourable pharmacological 

effects including reduced weight gain, increased metabolism in the skeletal muscle 

and cardiovascular function, suppression of atherogenic inflammation and 

improvement of the blood lipid profile, which are common abnormalities in patients 

with metabolic syndrome (Oliver et al. 2001, Tanaka et al. 2003, Wang et al. 2003). 

These encouraging results lead to the first clinical trials on humans. Glaxo Smith 

Kline (GSK) developed the agonist GW501516 (Endurobol), a promising 

compound that completed proof-of-concept clinical trials successfully for 

dyslipidaemia (Ooi et al. 2011) and hypocholesteraemia (Olson et al. 2012). 

However, some studies with GW501516 showed a suspected link with tumour 

development (Geiger et al. 2009, Pollock et al. 2011), and any further clinical trial 

was suspended.  

Nevertheless, the interest on PPARβ/δ continues and in the last years several 

compounds targeting PPARβ/δ were developed, although just a few of these 

molecules reached clinical trials. One of them was MBX-8025, which was tested 

on overweight men and women around 50 years old with mixed dyslipidemia. After 

8 weeks of treatment, MBX-8025 significantly reduced triglyceride and LDL-
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cholesterol, raised HDL-cholesterol, improved insulin sensitivity and decreased 

waist circumference and body fat compared with placebo, with the benefit of being 

safe and generally well tolerated (Bays et al. 2011). 

In a very recent study, a new PPARβ/δ agonist (Compound 1) was compared with 

GW501516 using a thermal injury mouse model for muscle regeneration, both of 

them showing an improvement on muscle regeneration compared with control 

(Lagu et al. 2017). After 14 days of treatment with either GW501516, Compound 1 

or vehicle, the marker for cancer ki-67 was measured showing a significant 

increase in those animals treated with GW501516 compared with vehicle and no 

significant in those animals treated with Compound 1, suggesting that this 

compound can be a safer alternative to GW501516. There are other PPARβ/δ 

agonists, such as HPP593, that are currently under various stages of development 

(Fedorova et al. 2013).  

At present there are no therapies available to treat metabolic syndrome, and 

extensive efforts are being devoted to develop new dual or pan PPAR agonists. 

The aim is to obtain a super agonist that holds combined properties of any of the 

two or all three PPARs that will target multiple components of metabolic syndrome 

simultaneously. That is the case of GFT505 (Elafibranor) and its main active 

circulating metabolite GFT1007, a PPARα/β activator used in a clinical phase IIa 

study with patients with either combined dyslipidemia or prediabetes and 

abdominal obesity. After 35 days treatment, GFT505 significantly improved lipid 

homeostasis and insulin sensitivity, and no serious adverse events were reported. 

(Cariou et al. 2011). This study was followed by another study 8 weeks long with 

twenty-two abdominally obese insulin-resistant males. GFT505 improved plasma 

lipid parameters and significantly decreased both TG and LDL cholesterol levels 

with no reported serious adverse events (Cariou et al. 2013). Although these 
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clinical trials are promising, further studies are needed to assess the long-term 

safety of GFT505 in a larger and more diverse sample group. 

1.2 Molecular structure of PPAR 

PPARs, as any other nuclear transcription factor, are organized in four functional 

domains (Figure 1.1): the N-terminal domain (NTD), the DNA binding domain 

(DBD), the hinge domain, and the ligand binding domain (LBD) which 

accommodates the ligand binding pocket.  

1- The NTD is the most varied domain among the different PPARs. This 

domain is relatively short and is believed to mediate ligand-independent 

activity through the ligand-independent transactivation motif (AF-1) by 

promoting protein-protein interactions with co-activators or co-suppressors, 

which induces conformational modifications that allow allosteric 

interactions (Xu et al. 1999). However, AF-1 has a very weak activity 

especially in PPARβ/δ, and is a target of kinase phosphorylation (Neels and 

Grimaldi 2014, Usuda and Kanda 2014, Vazquez-Carrera 2016). 

2- The DBD is the most conserved domain among the various PPARs. The 

core structure is composed of two zinc fingers: the α-helix in the first zinc 

finger promotes the recognition of a specific sequence in the peroxisome 

proliferator response element (PPRE) in the DNA, and the second zinc 

finger mediates the heterodimerization with retinoid X receptor (RXR). The 

rest of the DBD domain further stabilize the DNA-PPAR complex by direct 

interactions with the minor groove of the DNA and/or, alternatively, by 

stabilizing the interactions with other partner in the dimer complex (Xu et 

al. 1999). 
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3- The hinge domain separates the DBD from the LBD. It also contains a 

nuclear localization signal and amino acid side chains susceptible of post-

translational modifications (Xu et al. 1999). 

4- The structure of the LBD is similar among the various PPAR. This domain 

contains the pocket that accommodates the ligands, and the ligand-

dependent transactivation motif (AF-2), which promotes the recruitment of 

co-activators for gene transcription (Neels and Grimaldi 2014). Protein X-

ray crystallographic structures of PPARβ/δ identified a Y-like shaped ligand 

binding cavity of ~1300Å3 (Xu et al. 1999), larger than other members of 

the nuclear receptor superfamily.  

 

Figure 1.1 Structure of PPARs. PPARs have the classical structure of a nuclear transcription factor 
composed of a ligand binding domain (LBD), DNA binding domain (DBD), hinge domain and an N-
Terminal domain (NTD). The structure above belongs to the PDB file 3DZY (Chandra et al. 2008). 
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Among all three PPARs, PPARβ/δ is the most unknown and controversial, besides 

is the subject of interest in the present thesis. Therefore, all the evidence presented 

from this point will exclusively focus on PPARβ/δ. 

1.3 PPARβ/δ multiple mechanisms of action 

PPARβ/δ is a transcription factor that regulate genes by two different mechanisms, 

induction and trans-repression (Figure 1.2): 

1.3.1 Induction mode 

In the induction mode, PPARβ/δ forms a complex with RXR and together, as a 

heterodimer, regulate the target genes by binding to the promoter PPRE. The 

promoter is composed of the repetition of the consensus sequence AGGTCA 

separated by one nucleotide, where PPARs are orientated to the 5’-end and RXR 

to the 3’-end (IJpenberg et al. 1997). In the absence of ligand, co-repressor 

proteins and histone deacetylases (HDACs) are bound to the heterodimer which 

tight the chromatin and prevents its binding to the PPRE sites (Neels and Grimaldi 

2014). The presence of ligand induces a conformational change of PPARβ/δ which 

makes helix 12 act as a lid of the ligand-binding pocket. This conformation of helix 

12 promotes the binding of co-activators, releases the co-repressor proteins, 

induces histone acetylation and methylation and finally allows the transcription of 

the target genes (Figure 1.2) (Cronet et al. 2001, Helsen and Claessens 2014). 

A large number of co-activator and co-repressor complexes interacting with 

PPARβ/δ have been identified and summarised in Table 1.1. The expression of 

these complexes is cell and tissue specific, adding another level in the regulation 

of PPARβ/δ.    
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Table 1.1 PPARβ/δ co-activators and co-repressors      

PPARβ/δ co-activators References 

SRC-1 (Steroid receptor co-activator-1) (Zhu et al. 1996) 

SRC-2 (Steroid receptor co-activator-2) (Lim et al. 2004) 

CBP/p300 (cAMP response element binding 

proteins) 

(Misra et al. 2002) 

PGC1-α (PPAR gamma co-activator 1-alpha) (Puigserver et al. 1998) 

PBP (PPAR binding protein) (Zhu et al. 1997) 

PPARβ/δ co-repressors References 

HDAC (Histone deacetylases) (Aarenstrup et al. 2008) 

NCo-R (Nuclear receptor co-repressor) (Krogsdam et al. 2002) 

SMRT (Silencing mediator of retinoid and thyroid 

signalling) 

(Lim et al. 2004) 

RIP140 (Receptor interacting protein 140) (Seth et al. 2007) 

 

On the other side, RXR forms heterodimers with other nuclear transcription factors 

such as liver X receptor (LXR) (Széles et al. 2010), vitamin D receptor (VDR) 

(Széles et al. 2010), farnesoid X receptor (FXR) (Forman et al. 1995), pregnane X 

receptor (PXR) (Toell et al. 2002), retinoid acid receptor (RAR) (Széles et al. 2010), 

thyroid receptor (TR) (Kojetin et al. 2015), PPARα and PPARγ (Kliewer et al. 1992), 

being direct competitors of PPARβ/δ for RXR. This means that high concentrations 

of these receptors decrease the availability of RXR, which indirectly represses the 

induction activity of PPARβ/δ. 

 



 

 
Figure 1.2 Induction and trans-repression mode of action of PPARβ/δ. Modified from Neels and Grimaldi (2014).
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1.3.2 Trans-repression mode 

PPARβ/δ regulates gene expression in a PPRE independent manner through the 

regulation (mostly suppression) of other transcription factors, including nuclear 

factor-κB (NF-κB) (Rodriguez-Calvo et al. 2008), activator protein (AP-1) (Schnegg 

et al. 2012) and B cell lymphoma 6 (Bcl6) (Fan et al. 2008) (Figure 1.2).  

Control over other nuclear factors can occur different ways:    

1- Direct competition between PPARs and other transcription factors for 

limiting amounts of shared co-activators (Sheppard et al. 1998).  

2- Direct interaction of the PPAR-RXR heterodimer with other transcription 

factors preventing binding with their promoters and thus inhibiting gene 

transcription (Desreumaux et al. 2001).  

3- PPAR-RXR heterodimer inhibition of mitogen-activated protein kinase 

(MAPK) phosphorylation and activation, resulting in the inhibition of 

transcription factors (Wu et al. 2016). 

1.3.3 PPARβ/δ synthetic ligands 

Synthetic PPARβ/δ ligands have been developed in the last few years and widely 

used as a chemical tool for the pharmacological study of PPARβ/δ. The most 

commonly used are the following: 

1.3.3.1 L-165041 

L-165041 is a non-selective PPARβ/α agonist with a human PPARβ/α (hPPARβ/α) 

activity of Ki = 6 nM and a weaker human PPARγ (hPPARγ) activity of Ki = 730 nM 

(Berger et al. 1999).  
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1.3.3.2 GW0742 

GW0742 is a PPARβ/δ agonist that showed hPPARβ/δ activity of EC50 = 1 nM and 

selectivity of ~1100-fold against hPPARα and ~2000-fold against hPPARγ. In mice, 

the PPARβ/δ activity of GW0742 was EC50 = 30 nM and the selectivity ~290-fold 

against PPARα and ~330-fold against PPARγ (Sznaidman et al. 2003). 

1.3.3.3 GW501516 

GW501516 is another PPARβ/δ agonist developed at same time as GW0742 

which showed a hPPARβ/δ activity EC50 = 1 nM and a selectivity of ~1100-fold 

against hPPARα, and ~850-fold against hPPARγ. GW501516 also showed 

excellent selectivity on the murine receptors of EC50 = 2.5, 1.0, 0.02 mM for PPARα, 

PPARγ, and PPARβ/δ, respectively (Sznaidman et al. 2003). 

1.3.3.4 GSK0660 

The PPARβ/δ ligand GSK0660 was developed as the first specific PPARβ/δ 

antagonist (Shearer et al. 2008). GSK0660 pIC50 and selectivity for the PPARs was 

determined in an in vitro ligand displacement assay. GSK0660 showed to be a 

potent binder of PPARβ/δ with a pIC50 of 6.8 (IC50 = ~160 nM) and nearly inactive 

on PPARγ and PPARα, with IC50s above 10 M.  The GSK0660 antagonism activity 

on PPARβ/δ was 100% at pIC50 of 6.53 (IC50 = ~100 nΜ). However, it has the 

disadvantage that is not bioavailable (Shearer et al. 2008). 

1.3.3.5 GSK3787 

GSK3787 was developed later by Shearer et al. (2010) as a bioavailable and 

irreversible PPARβ/δ antagonist that covalently modifies Cys249 within the ligand 

binding pocket. The ability of GSK3787 to bind to each of the PPAR subtypes was 

measured in vitro in a ligand displacement assay showing no binding activity for 

hPPARα and hPPARγ; however, it showed a potent binding to hPPARβ/δ with a 
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pIC50 = 6.7 (IC50 = ~0.1 μM) and 100% hPPARβ/δ antagonism activity with a pIC50 

= 6.9 (IC50 = ~0.1 μM). 

1.4 Genomic regulation of the inflammatory response by PPARβ/δ 

Signalling via PPARβ/δ has been shown to be involved in lipid metabolism (Olson 

et al. 2012), glucose metabolism (Lee et al. 2006), insulin sensitivity (Lee et al. 

2006), inflammation (Barish et al. 2008, Bishop-Bailey and Bystrom 2009) and cell 

proliferation (Kim et al. 2004); however, its role remains controversial and scientists 

do not agree on its function, as shown in a number of contradictions reviewed by 

Perez-Diaz and Mackenzie (2015) and summarised in the Table 1.2 below. 

Table 1.2 Controversy of the function of PPARβ/δ in different biological activities. 

Biological 
activity 

Pro- Anti- 

Inflammation (Wang et al. 2014, 
Degueurce et al. 2016, 
Wang et al. 2016) 

(Di Paola et al. 2010, Kapoor et 
al. 2010, Schnegg et al. 2012) 

Cell proliferation (Zhang et al. 2002, Stephen 
et al. 2004, Piqueras et al. 
2007) 

(Wang et al. 2006, Romanowska 
et al. 2008, Lim et al. 2009, Kim 
et al. 2010) 

Cell migration (Tan et al. 2007, Ham et al. 
2014, Park et al. 2015) 

(Lim et al. 2009, Kim et al. 2010, 
He et al. 2011) 

Atherosclerosis (Vosper et al. 2001, Zhang 
et al. 2002, Mou et al. 2016) 

(Barish et al. 2008, Takata et al. 
2008, Chin et al. 2010) 

Angiogenesis (Piqueras et al. 2007, Han 
et al. 2013, Quintela et al. 
2014) 

(Meissner et al. 2011, Liu et al. 
2013, Yang et al. 2013) 

Apoptosis (Foreman et al. 2011, 
Pechery et al. 2016, Wu et 
al. 2016) 

(Di-Poi et al. 2002, Barlaka et al. 
2015, Hwang et al. 2015) 

Senescence (Zhu et al. 2014, Zhu et al. 
2014, Riahi et al. 2015) 

(Altieri et al. 2012, Kim et al. 
2012, Jung et al. 2015) 
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Among these biological activities, the regulation of inflammation by PPARβ/δ has 

been extensively studied. 

1.4.1 Role of PPARβ/δ in the inflammatory responses  

Inflammation is a complex and dynamic process that happens when the body 

detects an infection or injury. The inflammatory response is a sequential release of 

mediators that leads to vasodilation, increased blood flow and increased vascular 

permeability which provokes the accumulation of a fluid exudate, and the activation 

of neurosensory pain fibres, resulting in the classical signs of acute inflammation 

of heat, redness, swelling and pain (Moraes et al. 2006). 

Several inflammatory cellular pathways regulated by PPARβ/δ have been 

identified (Fan et al. 2008, Piqueras et al. 2009, Kapoor et al. 2010, Schnegg et al. 

2012, Serrano-Marco et al. 2012, Zhang et al. 2014), but how exactly they are 

regulated remains unknown.  The trans-repression of Bcl6 has been proposed as 

a key mechanism (Kapoor et al. 2010). When PPARβ/δ is in the trans-repression 

mode and in the absence of agonist, it sequesters Bcl6 which leads to a pro-

inflammatory response; however, the presence of agonist activates PPARβ/δ and 

releases Bcl6 (Figure 1.3 B), which is then free to repress the inflammatory gene 

expression (Fan et al. 2008). Following the same principle, the absence of 

PPARβ/δ would free Bcl6, resembling the PPARβ/δ-activated anti-inflammatory 

response. Surprisingly, Kapoor et al. (2010) showed that PPARβ/δ KO mice do not 

mimic the effect of the free Bcl6 in the presence of PPARβ/δ ligand, and concluded 

that there are additional major anti-inflammatory pathways regulated by PPARβ/δ. 

NF-κB has been extensively studied as one of the main responsible molecules for 

the inflammatory response (Lawrence 2009, Schnegg et al. 2012, Chang et al. 

2013, Yue et al. 2016). NF-κB is a transcriptional factor that regulates the 

transcription of genes involved in local and systemic inflammation, such as 



Chapter 1: Introduction 

18 
   

cytokines, chemokines, cell adhesion molecules, apoptotic factors and other 

mediators (Lawrence 2009). PPARβ/δ can regulate NF-κB, and therefore its 

inflammatory response, at different levels (Figure 1.3-1): inhibition of the NF-κB 

translocation to the nucleus (Jove et al. 2005, Kapoor et al. 2010), physical 

interaction with NF-κB (Schnegg et al. 2012) , and reduction of NF-κB acetylation 

(Barroso et al. 2011). 

Alternatively, Kapoor et al. (2010) proposed the regulation of the Akt/GSK-3β/NF-

κB inflammatory pathway by PPARβ/δ (Figure 1.3-2). Akt is a member of the 

phosphoinositide 3-kinases signal transduction enzyme family that reduces 

apoptosis and inflammation when phosphorylated. Ligand activated PPARβ/δ 

contributes to the phosphorylation of Akt, and hence, contributes to the anti-

inflammatory effects. On the other hand, GSK-3β is a serine-threonine kinase 

which is inactivated by phosphorylation and regulated by multiple signalling 

pathways, including the Akt pathway; several studies have reported an association 

between GSK-3β and NF-κB (Chang et al. 2013, Zhang et al. 2014). Taking this 

together, it is likely that the activation of PPARβ/δ phosphorylates and activates 

the Akt pathway, which goes on to phosphorylate and hence inhibit GSK-3β, 

resulting in the inhibition of NF-κB.  

There are a few studies involving PPARβ/δ-regulated interleukin 6 (IL-6) that 

suggest a similar anti-inflammatory mechanism (Figure 1.3-3). IL-6 is a cytokine 

related to the development of rheumatoid arthritis and other inflammatory 

disorders, atherosclerosis, osteoporosis and septic shock (Pathan et al. 2004, 

Edwards and Williams 2010, Yue et al. 2016). The activation of PPARβ/δ inhibits 

IL-6-mediated inflammatory responses and subsequent acute phase reaction in 

the liver by increasing the phosphorylation of STAT-3 (Kapoor et al. 2010), or by 

inhibiting NF-kB in adipocytes (Serrano-Marco et al. 2012).  
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The tumour necrosis factor alpha (TNF-α) contributes to reactive oxygen species 

(ROS) production and induces the expression of the pro-inflammatory molecules 

vascular cell adhesion molecule 1 (VCAM-1) and E-selectin in endothelial cells 

(ECs), which is suppressed by PPARβ/δ activation (Fan et al. 2008, Piqueras et 

al. 2009) (Figure 1.3-4). Interestingly, the 5’-flanking regulatory regions of VCAM-

1 and E-selectin genes lack PPRE, which means that these proteins are regulated 

via trans-repression rather than induction mechanism of PPARβ/δ, and other 

transcription factors might play an important role (Fan et al. 2008). 

 

Figure 1.3 Regulation of the inflammatory pathways by PPARβ/δ. The inflammatory response 
frequently involves several molecules, which can be regulated by PPARβ/δ at different levels: 1) 
PPARβ/δ can inhibit NF-κB by: inhibition of the NF-κB translocation to the nucleus (Jove et al. 2005), 
physical interaction with NF-κB (Schnegg et al. 2012), and reduction of NF-κB acetylation (Barroso 
et al. 2011). 2) Ligand activated PPARβ/δ contributes to the phosphorylation of Akt, which becomes 
active. Activated Akt phosphorylates GSK-3β which ultimately results in the inhibition of NF-κB 
(Kapoor et al. 2010, Chang et al. 2013, Zhang et al. 2014). 3) PPARβ/δ inhibits the IL-6 mediated 
inflammatory response (Kapoor et al. 2010, Serrano-Marco et al. 2012). 4) Activated PPARβ/δ 
supresses TNF-α, which induces the expression of the pro-inflammatory molecules VCAM-1 and E-
selectin and contributes to ROS production (Fan et al. 2008). 5) At same time, ligand activated 
PPARβ/δ leads to the expression of the anti-oxidative genes SOD1, catalase and thioredoxin, which 
eliminate ROS and releases Bcl-6, that is then free to repress the transcription of VCAM-1 and E-
selectine (Kapoor et al. 2010). 
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Additionally, changes in PPARβ/δ activity leads to changes in the induction of gene 

expression of three important anti-oxidative stress enzymes: superoxide dismutase 

1 (SOD1), catalase, and thioredoxin, which are key in the elimination of ROS from 

the cell (Fan et al. 2008). An induction/trans-repression mechanism for the anti-

inflammatory effects of PPARβ/δ in endothelial cells has been proposed, namely 

that the activation of PPARβ/δ leads to the activation of the target genes, including 

the antioxidative enzymes SOD1, catalase and thioredoxin (induction), and 

releases Bcl6, which represses the transcription of pro-inflammatory genes such 

as VCAM-1 and E-selectin (trans-repression) (Figure 1.3-5). Such a synergistic 

action leads to a potent inhibition of endothelial activation and therefore to the 

vascular protection (Fan et al. 2008).  

On the contrary, other studies have shown no effect or pro-inflammatory effects 

after PPARβ/δ-ligand activation. In a murine model of asthma, PPARβ/δ failed to 

inhibit the allergen-induced airway inflammation (Trifilieff et al. 2003). Similarly, 

other studies shown that PPARβ/δ agonist did not protect against colitis 

(Hollingshead et al. 2007) or even promoted the colonic inflammation (Wang et al. 

2014). In the same line, it has been shown that PPARβ/δ is over expressed in 

psoriasis and its activation in a murine model of psoriasis triggers the inflammatory 

response (Romanowska et al. 2010), and also the treatment with an agonist of 

PPARβ/δ in pigs with organ-induced dysfunction did not attenuate histological 

damage nor improved inflammation parameters (Wepler et al. 2013).  

1.4.2 Lung inflammation and PPARβ/δ 

Acute lung injury (ALI) is a frequent complication in critical ill ICU patients that led 

to the development of multiple organ failure and ultimately the death of the patients 

(Bellani et al. 2016). ALI is characterised by an intense inflammatory parenchymal 

process that includes lung tissue destruction, neutrophil accumulation, and diffuse 
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lung inflammation, resulting in the release of pro-inflammatory cytokines (Ware and 

Matthay 2000). In this scenario, the regulation of lung inflammation by PPARβ/δ is 

becoming a very interesting pharmacological target.  

A number of murine models for ALI and septic shock have been developed and 

used to study the regulation of lung inflammation by PPARβ/δ in vivo (Galuppo et 

al. 2010, Bao et al. 2014, Nullens et al. 2018, Song et al. 2018). Most of the studies 

showed anti-inflammatory effects after ligand-activation of PPARβ/δ, however the 

mechanism underlying these beneficial effects are more controversial. 

In a model of hyperbaric oxygen (HBO2)-induced ALI in rats, the treatment with the 

PPARβ/δ agonist GW0742 led to a significant decrease in the overall lung injury 

by inhibiting the activation of NF-κB and increasing the activity of antioxidant 

enzymes (Bao et al. 2014). In the same line, Di Paola et al. (2010) used 

carrageenan-induced pleurisy mice treated with GW0742 which also showed to 

have anti-inflammatory effects by inhibiting the degradation of IκB-α and inhibiting 

the translocation of NF-κB into the nucleus. Similarly, Zymosan-induced multiple 

organ inflammation in mice was reduced after treatment with GW0742 by inhibiting 

the degradation of IκB-α and the translocation of NF-κB into the nucleus (Galuppo 

et al. 2010). 

Cecal ligation and puncture (CLP) operation is a widely used model for 

experimental sepsis in rodents (Nullens et al. 2018, Song et al. 2018), which was 

also used to study the regulation of inflammation by PPARβ/δ in rats. GW501516, 

another PPARβ/δ agonist, showed to reduce the mortality of the animals as well 

as alleviate lung injury during sepsis. Interestingly, in this model the anti-

inflammatory effects were independent of the NF-κb pathway. Alternatively, 

GW501516 showed to inhibit the phosphorylation of STAT3 and the inhibition of 
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the STAT3/JAK kinases cascade was proposed as the anti-inflammatory 

mechanism instead (Wang et al. 2014). 

Same CLP-induced sepsis was used in mice, which were treated with GW0742, 

showing higher survival rate and reduced inflammation (Kapoor et al. 2010). In this 

study, the beneficial effects of PPARβ/δ-activation were associated with the 

activation of the PI3K/Akt pathway and inhibition of the MAPK-ERK1/2 pathway, 

which together could suppress NF-kB activity. In parallel, the authors showed that 

PPARβ/δ-activation is also associated with the suppression of the pro-

inflammatory transcription factor STAT-3 (Kapoor et al. 2010). 

In a model of LPS-stimulated lungs in mice, GW0742 attenuates pulmonary 

inflammation by decreasing the inflammatory cell influx as well as pro-inflammatory 

cytokines IL-1β, TNFα and IL-6 in the bronchial alveolar lavage fluid. Interestingly, 

the transcription of these cytokines on post-lavage lung tissue showed increased 

levels after administration of LPS but did not demonstrate a reduction in GW0742-

treated animals. The authors hypothesised that these results may be due to an 

insufficient number of PPARβ/δ receptors in lung tissue and the anti-inflammatory 

effects of GW0742 are due to the regulation of the immune reaction to LPS that 

alters the quality and quantity of the cellular infiltrate into the lung (Haskova et al. 

2008). 

As shown, there are great discrepancies in the literature, which may be due to 

differences in experimental variables (Nandhikonda et al. 2013). PPARβ/δ receptor 

appears to be a sensitive molecular switch that has both endogenous and 

exogenous ligands which controls cellular function through changes in very small 

concentration range. Added to this, in any cell or tissue, the activity of PPARβ/δ 

may also depend on its promoter activity and relative expression, as well as 

presence and activity of co-repressor and co-activator proteins. It is clear though 
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that PPARβ/δ has a dual effect in the cell and indeed acts as a molecular switch 

having both pro- and anti- effects in inflammation (Di Paola et al. 2010, Wang et 

al. 2014), cell proliferation (Zhang et al. 2002, Wang et al. 2006) and migration (Lim 

et al. 2009, Ham et al. 2014). It has been shown that GW0742 is capable of 

behaving as an agonist activating the transcription pathway at lower concentrations 

(nM) and antagonist inhibiting this effect at higher concentrations (μM) 

(Nandhikonda et al. 2013). In the same line, a study done in a model of systematic 

inflammation on mice showed that higher doses of GW0742 (0.3 mg/kg) triggered 

a pro-inflammatory response, whereas lower concentration (0.03 mg/kg) showed 

an anti-inflammatory trend, although without a significant difference (Yin et al. 

2018). The mechanism by which GW0742 inhibits activity is not clear, but it has 

been suggested that GW0742 inhibits PPARβ/δ by competing with the co-

activators (Nandhikonda et al. 2013). Alternatively, the large ligand binding pocket 

of the receptor can accommodate more than one ligand and high GW0742 

concentrations could result in unusual PPAR:ligand stoichiometries that could 

trigger inactive receptor conformations (Nandhikonda et al. 2013), an issue that 

requires further investigation. In the same line, Adhikary et al. (2015) suggests that 

the pro- or anti-inflammatory response of the ligand activated PPARβ/δ is stimulus-

dependent. 

1.4.3 Transcriptomics of PPARβ/δ 

A key insight into the complexity of induction and trans-repression has been 

provided through microarray analysis of mouse keratinocytes, where GW0742 was 

used as the principle agonist in PPARβ/δ+/+ and PPARβ/δ-/- mice. Khozoie et al. 

(2012) organised the genes regulated by PPARβ/δ into four main groups plus a 

further 4 minor groups (constituting 5% of responses collectively). This model 

compares well with a study in human myofibroblasts, where Adhikary et al. (2011) 

used gene silencing to parallel the use of knockouts by Khozoie et al. (2012). By 



Chapter 1: Introduction 

24 
   

exposing cells to GW501516 and comparing the results from siPPARβ/δ to normal 

untreated cells, they developed a three mode of action model for PPARβ/δ: Group 

I: Trans-repression no exogenous ligand; Group II: induction or repression with 

exogenous ligand; and Group III: induction no exogenous ligand (Adhikary et al. 

2011). Strikingly, both studies indicate that PPARβ/δ induces gene transcription 

when there is no exogenous ligand, Khozoie et al. (2012) argues that gene 

induction occurs due to endogenous ligands found within the cell; however, few 

studies have shown to which extent these endogenous ligands produce cellular 

effects by binding and activating PPARβ/δ.  

The models so far proposed to explain the different modes of action of PPARβ/δ 

may be further complicated by endogenous ligands, which may account for 

induction with no exogenous ligand, suggesting that signalling by different ligands 

would have a large impact on the functional outcome for the cell (Khozoie et al. 

2012, Nandhikonda et al. 2013). While this is a novel concept to explain the diverse 

range of effects of PPARβ/δ in the control of cellular function, a parallel argument 

has been made on the cause of the side effects of glucocorticoids. It has been 

argued that subtle changes to transcriptional activity of glucocorticoid receptors 

would alter the related side effects of these drugs as opposed to the traditional 

view that the benefits of glucocorticoids are due to the inhibition of transcription 

and the side effects due to activation of transcription by the glucocorticoid receptor 

(Clark and Belvisi 2012). Implications for drug design for PPARβ/δ therefore needs 

to take this difference into account. It is tempting to think that direct control of the 

PPARβ/δ molecular switch would be possible by tipping the balance between 

endogenous-like ligands and exogenous ligands. 
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1.5 Non-genomic regulation of the vascular tone by PPARβ/δ 

Surprisingly, PPARβ/δ also have non-genomic effects. It has been shown that the 

activated PPARβ/δ receptor binds directly to PKCα in platelets to inhibit 

aggregation (Ali et al. 2006, Ali et al. 2009) and also induces vasodilatation in 

arteries (Harrington et al. 2010, Jimenez et al. 2010, Li et al. 2012).  

Vascular tone, or the state of contractile tension in the vessel walls, is determined 

by the smooth muscle contractility, which depends on the phosphorylated state of 

myosin (Figure 1.4). The phosphorylation/dephosphorylation of myosin and hence 

the contraction/relaxation of the vessels is mainly regulated by three pathways: 

potassium channels (Li et al. 2012, Morales-Cano et al. 2015, Perez-Diaz et al. 

2016), RhoA/ROCK (Harrington et al. 2010, Rao et al. 2013, Perez-Diaz et al. 

2016) and PI3K/Akt/eNOS (Jimenez et al. 2010, Gu et al. 2016). These pathways 

have shown to be impaired in diabetic vessels (Rao et al. 2013, Morales-Cano et 

al. 2015, Sun et al. 2015, Perez-Diaz et al. 2016) resulting in a significantly 

increased contractile response and/or decrease vasodilator response to stimuli, 

which might contribute to the development of diabetes-associated vascular 

complications.  

Cardiovascular diseases, including hypertension, stroke, myocardial infarction and 

heart failure are the major causes of mortality and morbidity in diabetic patients. 

Moreover, hypertension is three times more common in diabetic patients than non-

diabetic, and it is found in up to 60-65% of type 2 diabetic patients (Dai et al. 2010, 

Reboldi et al. 2012). The resistance of target cells to insulin is the main mechanism 

underlying the development of T2DM (Saini 2010), resulting in an impaired glucose 

up-take by the tissues and therefore high levels of glucose in blood. The insulin-

resistance of vascular tissues along with high blood glucose levels are related to 
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the dysfunction of the vascular reactivity, contributing to the diabetes-related 

hypertension (Xie et al. 2010, Oelze et al. 2011).  

The reduction in vascular dysfunction after PPARβ/δ activation has been largely 

documented (Jimenez et al. 2010, Quintela et al. 2012, Tian et al. 2012, Quintela 

et al. 2014). Most of these studies show this protection after several hours or days 

of treatment, involving the transcription or inhibition of target genes - as it would be 

expected from a nuclear receptor. However, PPARβ/δ agonists can also induce 

full vasodilation of aorta, pulmonary artery and mesenteric artery in a non-genomic 

manner. As an example, in one study done with rat aortic rings pre-contracted with 

phenylephrine (PE), a selective α1-adrenergic receptor agonist, the vessels were 

relaxed using the two PPARβ/δ agonists GW0742 and L-165041, both at µM 

levels. The maximal vasodilator response was reached after 15 min incubation, 

indicating that this effect is genome-independent, and was also blocked by the 

PPARβ/δ antagonist GSK0660, indicating that it is mediated by PPARβ/δ (Jimenez 

et al. 2010). Similarly, in pulmonary arteries from rat pre-contracted with U46619, 

a thromboxane A2 receptor agonist, the prostacyclin-like drugs iloprost and 

treprostinil provoked the relaxation of the vessels, which was blocked with 

GSK0660 and mimicked by GW0742, suggesting that PPARβ/δ regulates the 

dilation of the pulmonary artery (Li et al. 2012). 

It has been shown that the PPARβ/δ mediated relaxation of vessels involves the 

three pathways mentioned above: PI3K/Akt/eNOS pathway (Jimenez et al. 2010), 

RhoA/ROCK pathway (Harrington et al. 2010) and K+ channels (Li et al. 2012), but 

how exactly these pathways are regulated by PPARβ/δ remains unclear. 
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1.5.1 PPARβ/δ-regulation of potassium channels 

Membrane voltage is largely determined by potassium (K+) channel activity (Stott 

et al. 2014). Among the different types of potassium channels, the Kv7 family 

(voltage-dependent potassium channels) seem to play a central role in the control 

of vascular tone. At resting membrane potential Kv7 channels are open, letting the 

outflux of K+ and contributing to the hyperpolarization of the membrane, making 

the contraction less likely (Archer et al. 1998). When the membrane is depolarized, 

the voltage-dependent calcium channels (VDCC) are opened and the Ca2+ enters 

in the cell, increasing the concentration of intracellular Ca2+. Calmodulin binds to 

this Ca2+ now available in the cytosol and together activate the myosin light chain 

kinase (MLCK), which then phosphorylate myosin promoting the contraction of the 

vessel (Figure 1.4) (Yuan et al. 1998, Cole and Welsh 2011). It has been shown 

that the hyperglycaemia in diabetic rats reduces Kv7 channel activity, expression 

and vasodilatory function contributing to the vascular pathology in diabetes 

(Morales-Cano et al. 2015).  

Human pulmonary artery smooth muscle cells (PASMCs) treated with GW0742 

was associated with an acute and significant decrease in [Ca2+], and the treatment 

with either ITX, a selective inhibitor of calcium-activated K+ channel, or calcium-

activated K+ channel-siRNA abolished the effect. Similarly, iloprost and treprostinil 

induced the activation of calcium-activated K+ channel, which was blocked by 

GSK0660, and the treatment with PPARβ/δ-siRNA abolished the prostacyclin-

induced activation of calcium-activated K+ channels. Taken all together, the 

relaxation of pulmonary artery by prostacyclin-like drugs is PPARβ/δ dependent 

and through the activation of calcium-activated K+ channels. (Li et al. 2012). 

 

 



 

 
Figure 1.4 Mechanisms of VSMC contractility. The contraction of the vessels is ultimately controlled by the phosphorylation/dephosphorylation of the myosin in the smooth muscle cells, which is mainly regulated 
by three pathways: 1- potassium channels, 2- Rho/ROCK and 3- PI3K/Akt/eNOS.  1- At resting membrane potential Kv7 channels are open, letting the outflux of K+ and contributing to the hyperpolarization of the 
membrane, making the contraction less likely. When the membrane is depolarized, the VDCC channels are opened and the Ca2+ enters in the cell, increasing the concentration of intracellular Ca2+ and promoting 
the contraction of the vessel. 2- RhoA is converted from the inactive GDP-bound to the active GTP-bound form in response to stimuli. GTP-RhoA activates ROCK, which phosphorylates and inactivates MLCP, 
allowing an increase of phosphorylated myosin and causing the contraction of the vessel. 3- The activation of IR results in the autophosphorylation of multiple tyrosine residues, which then activates PI3K, leading 
to phosphorylation and activation of Akt and its multiple downstream target, including eNOS, and increasing the production of NO. NO activates soluble guanylate cyclase converting GTP into cGMP, which inhibits 
MLCK-Ca2+-Calmodulin, preventing the phosphorylation of myosin and causing the relaxation of the vessel. Akt: protein kinaseB. APPL-1: adaptor protein, phosphotyrosine interacting with PH domain and leucine 
zipper 1. cGMP: cyclic guanosine monophosphate. eNOS: endothelial nitric oxide synthase. ER: endoplasmic reticulum. GAP: GTPase activation protein. GDP: guanosine diphosphate. GEF: guanine nucleotide 
exchange. GTP: guanosine triphosphate. IR: insulin receptor. Kv7: voltage-dependent potassium channel 7. MLCK: myosin light chain kinase. MLCP: myosin light chain phosphatase. NO: nitric oxide. PDK-1: 
phosphoinositide-dependent protein kinase-1. PI3K: phosphatidylinositol 3-kinase.  RhoA: ras homolog gene family, member A. ROCK: Rho-associated protein kinase. VDCC: voltage-dependent calcium channels.
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1.5.2 PPARβ/δ-regulation of RhoA/ROCK pathway 

RhoA is a small G-protein which is converted from the inactive GDP-bound to the 

active GTP-bound form in response to stimuli such as PE (Budzyn et al. 2006), 

thrombin (Walsh et al. 2008) or high glucose (Xie et al. 2006). GTP-RhoA activates 

Rho kinase (ROCK), a serine/threonine kinase, which phosphorylates and 

inactivates the myosin light chain phosphorylase protein (MLCP), allowing an 

increase of phosphorylated myosin and causing the contraction of the vessel 

(Figure 1.4). 

In diabetic tissue, the RhoA/ROCK signalling pathway is impaired and it has been 

largely linked to hypertension (Sandu et al. 2001, Xie et al. 2006, Rao et al. 2013, 

Soliman et al. 2015). In a model of type 2 diabetic mice, RhoA was activated in 

aorta and mesenteric arteries, which contributed to the artery contractile 

hyperreactivity of the vasculature (Xie et al. 2006). In the same line, a study done 

using Goto-Kakizaki rats, a non-obese model of type 2 diabetes that also develop 

mild hypertension, the inhibition of ROCK normalized the blood pressure similar to 

that of control rats; besides, it had no effect in control animals (Rao et al. 2013). 

This suggests that the RhoA/ROCK pathway contributes to the development of 

diabetes-associated hypertension. 

A very interesting study done with PPARβ/δ-/- mice showed that the GW0742-

induced vasodilation of pulmonary and mesenteric arteries was PPARβ/δ-

independent, since there was no difference on dilation between control and 

knockout. However, the dilation of aorta from PPARβ/δ-/- mice was significantly 

reduced compared to control, suggesting an involvement of PPARβ/δ on aorta 

dilation and indicating that vessels of different anatomical locations can utilize 

different signalling pathways (Harrington et al. 2010). In a further experiment, the 

authors performed a RhoA activation assay on mouse aortic rings, and the 
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treatment with GW0742 inhibited the GTP-bound RhoA to a similar extent to that 

of the classic RhoA inhibitor Y27632, suggesting that the dilatory effect of GW0742 

is through the inhibition of the RhoA/ROCK pathway (Harrington et al. 2010).  

1.5.3 PPARβ/δ-regulation of PI3K/Akt/eNOS pathway  

Under normal physiological conditions, insulin receptor (IR) activation results in the 

autophosphorylation of multiple tyrosine residues, which then activates 

phosphatidylinositol 3 kinase (PI3K), leading to phosphorylation and activation of 

Akt and its multiple downstream targets, which finally phosphorylates and activates 

eNOS, increasing the production of nitric oxide (NO) (Jiang et al. 1999). NO 

activates soluble guanylate cyclase converting GTP into cGMP, which inhibits 

myosin light chain kinase (MLCK)-Ca2+-Calmodulin, preventing the 

phosphorylation of myosin and causing the relaxation of the vessel (Figure 1.4) 

(Kitazawa et al. 2009). 

It has been shown that this pathway is also impaired in diabetes, probably because 

a failure of the activation of IR and subsequent interaction with PI3K (Soliman et 

al. 2015), leading to an inactivation of the rest of the pathway and contributing to 

the diabetes-associated hypertension. A number of studies have shown an 

improvement in hypertension of diabetic animals by recovering this pathway (Gu 

et al. 2016, Li et al. 2016, Zheng et al. 2017). 

The PPARβ/δ agonists GW0742 and L-165041 induced the relaxation of rat aorta 

rings, which was significantly reduced with the incubation with the PI3K inhibitor, 

indicating that PPARβ/δ relaxes rat aorta rings through PI3K/Akt/eNOS pathway. 

Furthermore, human umbilical vascular endothelium cells (HUVECs) were  

incubated with either GW0742 or L-165041 for 15 min and some of them were co-

incubated with either LY294002 or GSK0660, inhibitors of PI3K and PPARβ/δ 

respectively, which significantly blocked the phosphorylation of Akt and eNOS, 
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providing stronger evidence of the regulation of PI3K/Akt/eNOS pathway through 

PPARβ/δ (Jimenez et al. 2010). 

In the same line, in another study done on human mononuclear cells, the treatment 

with another PPARβ/δ agonist GW501516 showed the highest phosphorylation of 

Akt 10 min after the treatment. This phosphorylation was blocked by both, the 

PPARβ/δ antisense oligodeoxynucleotide transfection and incubation with 

LY294002, adding more evidence at the regulation of the PI3K/Akt/eNOS pathway 

by PPARβ/δ (Han et al. 2008). 

Additionally, the authors co-immunoprecipitated PPARβ/δ and the PI3K subunit 

p85α, showing a direct interaction of PPARβ/δ and PI3K which would trigger the 

PI3K/Akt/eNOS cascade causing the relaxation of the vessel in a genome 

independent manner (Han et al. 2008). 

Interestingly, the RhoA/ROCK and PI3K/Akt/eNOS pathways are not independent 

to each other and a few studies have linked them together. In vascular smooth 

muscle cells (VSMCs), insulin inhibits the activation of RhoA through the NO/cGMP 

pathway (Sandu et al. 2001). Also, the ROCK inhibitor Y27632 is able to increase 

the Akt activity in bone marrow endothelium cells. Moreover, the inhibition of ROCK 

or the enhancing Akt activity improves the diabetes-induced dysfunction of marrow 

endothelium cells (Mangialardi et al. 2013). 

Taken all together, it can be affirmed that the non-genomic effects of PPARβ/δ are 

yet not fully understood and more research is needed. 
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1.6 Aims and objectives 

The aim of this thesis is to expand the knowledge on PPARβ/δ combining a number 

of pharmacological, molecular and in silico methods. A brief outline of the different 

approaches employed is as follows: 

- Chapter 3: Study of the non-genomic effects of PPARβ/δ activation on 

vascular contractility comparing healthy with diabetic vessels using organ 

bath and myography pharmacological based experiments. 

- Chapter 4: Study of the genomic effects of PPARβ/δ activation on the 

regulation of inflammation in lung using molecular based experiments 

including ELISA, Griess assay and qRT-PCR. 

- Chapter 5: Study of the molecular interaction of PPARβ/δ with different 

agonists and antagonists using docking in silico modelling methods.



 

 Chapter 2: Methods 

2.1 Material 

Table 2.1 List of materials used in this thesis. 

Chemical Supplier 
Product 

Number 

1400W Sigma W4262 

Acrylamide:Bis-acrylamide 30% Fisher Scientific J61505.K2 

Agarose Fisher Scientific BP1356-100 

Anti-NF-κB p65 antibody Abcam ab16502 

Anti-PPARβ/δ monoclonal antibody Santa Cruz 

Biotechnology 

sc-74517 

Anti-PPARβ/δ policlonal antibody Santa Cruz 

Biotechnology 

sc-7197 

Anti-PPARβ/δ policlonal antibody Abcam ab23673 

Anti-Retinoid X receptor alpha antibody Abcam ab125001 

Biotinylated protein ladder detection pack Cell Signaling 

Technology 

7727 

Bovine serum albumin (BSA) Sigma A7906 

Calcium chloride (CaCl2) Fisher Scientific 10171800 

Citric acid Fisher Scientific 10345410 

Collagenase Sigma C7657 

Complete Mini EDTA-free protease 

inhibitor cocktail tablets 

Roche 11 836 170 

001 
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Dithiothreitol (DTT) Fisher Scientific 10592945 

DMSO Fisher Scientific D/4121/PB08 

Dubecco's modified Eagle medium 

(DMEM) 

Gibco 41965-039 

Elastase Sigma E-1250 

Fasudil Sigma CDS021620 

Foetal bovine serum (FBS) Gibco 10500-064 

Formaldehyde Fisher Scientific BP531-25 

Glucose Fisher Scientific 10385940 

Glutaraldehyde Fisher Scientific G/0518/PB08 

Goat anti-mouse antibody Invitrogen 32430 

Goat anti-rabbit antibody Abcam ab97051 

Goat Anti-Rabbit IgG Abcam ab97051 

GSK0660 Sigma G5795 

GSK3787 Sigma G7423 

GW0742 Sigma G3295 

Hank's Sigma H8264 

HEPES solution Sigma H0887 

Immobilon-P PVDF membrane Merk Millipore IPVH00010 

Immunoprecipitation kit Abcam ab206996 

Insulin Sigma I6634 

iScript cDNA synthesis kit Bio-Rad 170-8891 

L-165041 Sigma L2167 

LPS O55:B5 Sigma L2880 

LY294002 Tocris 1130 

Magnesium sulfate (MgSO4) Fisher Scientific M/1000/62 

Methanol Fisher Scientific 11976961 
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Naphthylethylenediamine dihydrochloride Sigma N9125 

Non-essential aminoacids Sigma M7145 

Orthophsphoric acid Fisher Scientific O/0500/PB17 

Penicillin/Streptomycin Sigma P0781 

Phenilephryne Sigma P6126 

Pierce BCA Protein Assay kit ThermoFisher 23225 

Pierce Co-immunoprecipitation kit ThermoFisher 26149 

Pierce ECL western blotting substrate ThermoFisher 32106 

Potassium chloride (KCl) Fisher Scientific 10375810 

Potassium dihydrogen phosphate 

(KH2PO4) 

Fisher Scientific 10783611 

Purelink Genomic DNA minikit  Invitrogen K1820-00 

Rat IL-6 Duo Set ELISA kit R&D Systems DY506 

Rat PPARβ/δ ELISA kit Abbkine KTE100973 

Restore Plus western blot stripping buffer ThermoFisher SJ257621 

Rneasy Fibrous Tissue Minikit  Quiagen 74704 

Sodium carbonate Fisher Scientific 10264540 

Sodium chloride (NaCl) Fisher Scientific 10735921 

Sodium dodecylsulfate polyacrylamide 

(SDS) 

Fisher Scientific 1281-1680 

Sodium nitrate Fisher Scientific 10696842 

Stabilized goat anti-mouse IgG 

peroxidase conjugated 

ThermoFisher 32430 

Streptozotocin Sigma S0130 

Sulfanilamide Sigma S2951 

SupersignalWest Femto Masimum 

Sensitivity Substrate 

ThermoFisher 34094 
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SYBER Green Master Mix Applied Biosystem A25741 

Tac DNA polymerase Invitrogen 10342-020 

Tapman PCR Master Mix Applied Biosystem 4304437 

TEMED Fisher Scientific 10689543 

Tris-base Fisher Scientific 10785341 

Trypsin Sigma T-4174 

Tween-20 Sigma P7949 

U46619 Tocris 1932 

Y27632 dihydrochloride Sigma Y0503 

2.2 Animals and environmental conditions 

Male Wistar rats (350-450 g) were sourced from Charles River (UK) and housed 

in pairs in standard cages (Techniplast 2000P) with sawdust (Datesand grade 7 

substrate) and shredded paper wool bedding with water and food (5LF2 10% 

protein LabDiet) freely available in the Biological Services Unit, University of 

Hertfordshire. The housing room was maintained at a constant temperature of 22 

± 2 oC, under a 12 h light/dark cycle (lights on: 07:00 to 19:00 h). All testing was 

conducted under the light phase of the animals’ light/dark cycle, and care was 

taken to randomise treatment sequences to control for possible order effects. 

All studies were approved by the University of Hertfordshire Animal Welfare and 

Ethics review committee and conducted in accordance with the guidelines 

established by the Animals (Scientific Procedures) Act, 1986 and European 

directive 2010/63/EU and diabetes experiments were carried out under project 

licence PPL70/7732. 
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2.3 Induction and maintenance of Streptozotocin (STZ) induced 

diabetes (carried out by licenced researchers and animal 

technicians) 

Groups of rats were randomly selected and administered a single injection of 55 

mg/kg Streptozotocin (STZ; dissolved in 20 mM citrate buffer at pH 4.5) 

intraperitoneally (i.p., DV 10 mL/kg) or vehicle control (20 mM citrate buffer at pH 

4.5, i.p., DV 10 mL/kg) or untreated (Naïve group) by a licenced researcher. For 

48 hours following STZ or control injection an additional choice of 2% sucrose 

solution was provided to avoid the initial hypoglycaemia that is seen following STZ. 

After 48 hours all STZ-diabetic rats were supplied with extra unmodified drinking 

water to compensate for diabetic polydipsia. Home cages were changed more 

frequently due to polyuria. Moreover, food was also changed from 10% protein 

(LabDiet 5LF2, EURodent Diet 10%) into protein rich diet 22% protein (LabDiet 

5LF5, EURodent Diet 14%) after injection to compensate possible diabetes-

induced protein loss. Sunflower seeds and wheatgerm seeds were provided to 

enrich dietary fats and protein post STZ. To minimise discomfort of spontaneous 

pain (allodynia, guarding) animals were placed on suitable bedding throughout the 

study. 

Blood glucose was measured before the intraperitoneal injection (baseline), at day 

7 after intraperitoneal injection to confirm hyperglycaemia and finally on the day of 

sacrifice (terminal). Blood glucose was measured from a single drop of tail vein 

blood obtained by a needle prick of conscious rats, using an Accu-check blood 

glucose monitor (Roche). Blood glucose concentrations above 16mmol/L (≥300 

mg/dL) were considered diabetic (hyperglycaemic) and included in the diabetes 

study. All experiments were powered to take into consideration the loss of animals 

of 10% weight i.e. those that do not develop diabetes following the intraperitoneal 
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injection or develop acute toxicity following STZ despite welfare provisions of 

sucrose, high protein diet and frequent home changes. 

2.4 Tissue dissection and preparation 

Rats (Naïve, control and STZ-diabetic) were euthanised according to schedule 1 

procedure by CO2 asphyxiation followed by cervical dislocation. Lungs, aortas and 

mesenteric arteries were removed and immediately placed in a black background 

dissection plate containing physiological saline solution (PSS) buffer (118 mM 

NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 1.17 mM MgSO4, 1 mM KH2PO4, 5.5 mM 

glucose and 25 mM NaHCO3). 

The connective tissue surrounding the aortas from Naïve, control and STZ-diabetic 

rats was gently removed using spring scissors. The thoracic upper half of the aorta 

was cut into approximately 2-3 mm long rings and used for the organ bath 

experiments (Section 2.5). The abdominal half of the aorta was cut into 

approximately 1.5 mm long rings and used for the subsequent experiments in the 

myograph (Section 2.6). 

The mesentery from Naïve, control and STZ-diabetic rats was placed on the 

dissection plate with the duodenum upward endowing the whole tissue as a C 

shape to yield the vein toward the objective lens of the microscope while the artery 

underneath proximal to the tray surface. The vein and the tissue surrounding the 

mesenteric arteries were gently removed under DMT 2000 stereomicroscope 

(magnification 4-40x) using spring scissors and once the artery was completely 

clean it was cut from the mesentery and loaded in the myograph (Section 2.6). 

The lungs from Naïve rats were removed and immediately placed in a dissection 

plate for the dissection of pulmonary artery, bronchi and parenchyma. Each lung 

was dissected individually. Using a DMT 2000 stereomicroscope (magnification 4-
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40x) and spring scissors the primary vein was cut longitudinally. The vein was very 

carefully removed without damaging the bronchi, which is immediately underneath. 

The bronchi was then removed without damaging the principal artery, which is also 

very closely attached underneath the bronchi. Then, the principal pulmonary artery 

was removed from the lung and finally pieces of lung parenchyma from each lung 

were also cut. Once the pulmonary arteries and bronchi were isolated from the 

lung, they were placed again in the dissection plate with fresh PSS and completely 

cleaned from the surrounding connective tissue and cut into rings. The tissues from 

four rats (n=4) were immediately used to quantify the expression of PPARβ/δ 

(Section 2.9). The rest of the tissues were immediately placed in the required 

treatment detailed in Chapter 4 Section 4.3.1. After 24 h incubation, the culture 

medium was removed and kept at -20 oC until needed for the detection of NO 

(Section 2.10) and IL-6 (Section 2.11), and the tissues were kept at  -80 oC until 

needed for PPARβ/δ co-immunoprecipitation (Section 2.12) or qRT-PCR (Section 

2.17). 

2.5 Organ bath 

Freshly isolated thoracic aorta rings were threaded by superior and inferior loops 

where the inferior thread loop was attached to a fixed hook and kept suspended in 

the Bennet isolated tissue vessel organ bath of 95% O2 / 5% CO2 Kreb’s buffer (pH 

7.4, 118 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 1.2 mM KH2PO4, 2.5 mM CaCl2, 

25.0 mM NaHCO3 and 11.0 mM glucose) at 37 ± 1oC. The superior loop was 

attached through long terminal thread to FT-100 force transducer under 2 g tension 

force immediately after the Labscribe software was calibrated with a standard 2 g 

weight. FT-100 force transducer transmitted the tissue responses to iWORKS 

amplifier that generated electrical signals to be recorded through Labscribe 

software from iWORKS version 1.817.  



 Chapter 2: Methods 
 

40 
  

Rings were then left to equilibrate for 20 min and the viability of the tissue was 

tested by adding 1 µM of phenylephrine. The tissue was washed three times until 

the tension was stable at the baseline. The tissue was then ready to perform the 

required experiment, the experimental design is explained in detail in the Methods 

section of Chapter 3.  

2.6 Myography 

Mesenteric arteries and abdominal aorta rings were mounted in a four channel 

Mulvany-Halpern wire myograph (Model 610 M, Danish Myo Technology) using 2 

tungsten wires of 40 µm diameter. The tissues were normalized, and the tension 

was set to 100 mmHg using the Labchart software. Rings were left to equilibrate 

for 30 min in PSS and the viability of the tissue was tested by adding high 

potassium physiological saline solution (KPSS) (4.7 mM NaCl, 118 mM KCl, 1.17 

mM MgSO4, 1 mM KH2PO4, 2.5 mM CaCl2, 25 mM NaHCO3, and 5.5 mM glucose), 

which induces vasoconstriction in a viable tissue. The rings were washed three 

times until the tension was stable at the baseline. The tissue was then ready to 

perform the required experiment, the experimental design is explained in detail in 

the Methods section of Chapter 3.  

2.7 Cell culture of pulmonary smooth muscle cells (PSMCs) 

Pulmonary arteries from Naïve rats were dissected and carefully washed in filtered 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) Ca2+-free solution 

(pH 7.3, 130 mM NaCl, 5mM KCl, 10 mM HEPES, 1.2 mM MgCl2, 10 mM glucose) 

and treated with an enzymatic solution (1.125 mg/mL collagenase, 2.5% vol/vol 

elastase, 1 mg/mL albumin in filtered HEPES Ca2+-free solution) for 4 min at 4 oC 

followed by 1 min at 37 oC.  After incubation, the enzymatic treatment was removed 

and substituted for HEPES Ca2+-free solution; pulmonary artery rings were shaken 
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vigorously with a glass Pasteur pipette and then transferred to a Petri dish. Rings 

were opened and the endothelium was mechanically removed. Strips were cut into 

small pieces and stuck on the Petri dish with the luminal side facing down. 

Carefully, culture medium was added (20% fetal bovine serum (FBS), 1% 

penicillin/streptomycin, 1% no essential amino acids) and incubated under 5% CO2 

at 37 oC. When cells started to grow the explants were removed and the cells were 

left to grow (passage 0); after 7-8 days the cells were transferred into a T25 flask 

(passage 1). When the cells were confluent they were trypsinized; briefly, the 

medium was removed and the cells were washed twice with 5 mL of Hank’s 

solution. Then, 4.5 mL of fresh Hank’s solution and 0.5 mL of 10x trypsin were 

added into the flask and incubated at 37 oC for 1 min. The flask was then hit on the 

sides to detach the cells, which was verified under the microscope. At that point 

2.5 mL of culture medium was added into the flask and vigorously shaken to 

dissolve any remaining lump of cells. The content of the flask was then transferred 

into a 15 mL Falcom tube and centrifuged at 1500 rpm for 10 min. The supernatant 

was discarded and the cells were resuspended in 2-3 mL of fresh culture medium. 

The cells were then counted using a Neubauer chamber and plated into 6 well-

plates in a density of 500,000 cells/well (passage 2). Next day the medium was 

removed and substituted for the required treatments in triplicate. After 24 h 

incubation the supernatant was removed and kept at -20 oC until needed for IL-6 

detection (Section 2.11), and cells were lysed and kept at  -20 oC until needed to 

analyse protein expression by Western blot (Section 2.15).  
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2.8 Quantification of proteins by BCA assay 

The quantification of total protein is a pre-step required for the quantification of 

PPARβ/δ expression in pulmonary artery, bronchi and lung parenchyma (Section 

2.9) as well as PPARβ/δ immune precipitation of whole lung homogenate and 

PSMCs lysate (Section 2.12).   

The total protein concentration of the tissue/cell homogenates mentioned above 

was measured by the bicinchoninic acid (BCA) protein assay, which is a 2-step 

colorimetric assay. In the first step the Cu+2 present in the peptide bonds are 

reduced to Cu+ in an alkaline medium forming a light blue colour. In the second 

step, two molecules of BCA chelate with one Cu+, forming a purple complex that 

absorbs light at 562nm in a linear relationship. The amount of Cu+ produced and 

purple colour is proportional to the amount of protein present in the sample, which 

can be quantified by comparison to a standard curve of bovine serum albumin 

(BSA) (0-10 mg/mL). 

Pierce™ BCA Protein Assay Kit (ThermoFisher) was used for protein 

quantification. The protocol was modified from that supplied for the manufacturer. 

Briefly, 5 µL of each standard diluted on lysis buffer was added into a 96 microtate-

plate in triplicate. Then, 5 µL of sample (either tissue homogenate or cell lysate) 

was added into wells also in triplicate. BCA reagent A was mixed with the BCA 

reagent B in a ratio 50:1, and 100 µL of the mixture was added to both, samples 

and standards. The plate was incubated at 37 oC for 30 min and the absorbance 

measured at 562 nm. 



 Chapter 2: Methods 
 

43 
  

2.9 Quantification of PPARβ/δ expression in pulmonary artery, 

bronchi and parenchyma by enzyme-linked immunosorbent 

assay (ELISA) 

The expression of PPARβ/δ on pulmonary artery, bronchi and parenchyma from 

Naïve rat was measured using Rat PPARβ/δ ELISA kit (Abbkine) according to the 

manufacturer’s instructions. Briefly, the tissues were dissected (Section 2.4) and 

homogenized with liquid N2 using a mortar and a pestle. The powder was 

transferred to a micro fudge tube containing ice-cold phosphate buffered saline 

(PBS) with proteinase inhibitor cocktail in a ratio 9 mL PBS (NaCl 137 mM, KCl 2.7 

mM, Na2HPO4 10 mM, KH2PO4 1.8 mM, pH 7.4) per g tissue. The samples were 

sonicated 3x30 seconds and then centrifuged for 5 min at 5000 g. The supernatant 

was collected, and the protein concentration was quantified by BCA assay (Section 

2.8). Then, 50 µL of standards and samples were added in duplicate to the plate 

containing pre-coated anti-PPARβ/δ and incubated 45 min at 37 oC. The wells were 

washed and incubated with 50 µL of the horseradish peroxidase (HRP)-conjugated 

detection antibody for another 30 min at 37 oC. The wells were washed again and 

incubated in dark with the chromogen solution for 15 min at 37 oC. Finally, the 

reaction was stopped by adding 50 µL of Stop solution and the plate was 

immediately measured in a microplate reader at 450 nm. The concentrations of 

PPARβ/δ were determined by comparison with the standard curve (0-8 ng/mL). 
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2.10 Quantification of nitric oxide released by pulmonary artery, 

bronchi and parenchyma by Griess assay 

The NO produced by pulmonary artery, bronchi and parenchyma (Section 2.4) and 

accumulated in the culture medium after 24 h of incubation under different 

treatments (specified in Chapter 4) was measured by Griess reaction. Briefly, the 

NO released by tissues is very unstable and is stoichiometrically converted to nitrite 

(NO2
-) very quickly. An aliquot of the culture medium (50 µL) previously thaw in ice 

was mixed with an equal volume of Griess reagent (mixture of equal volumes 

Griess reagent 1 and Griess reagent 2 containing sulfanilamide 1% w/v + 

orthophosphoric acid 5% v/v and naphthylethylenediamine dihydrochloride 0.5% 

w/v respectively). Sulfanilamide forms a diazonium salt with the nitrites, as shown 

in the reaction below (Figure 2.1). When the azo dye agent (N-alpha-

naphthylethylenediamine) is added, a pink colour develops.  

This second compound is proportional to the NO initially present in the culture 

medium and the concentration was determined by comparison of the OD540 to a 

standard curve of solutions of sodium nitrite (0-1 mM) dissolved in Dulbecco's 

modified Eagle medium (DMEM), the same culture medium used for the incubation 

of the tissues. 



 

 

 

Figure 2.1 Griess reaction. The NO released by cells/tissues is very unstable and is stoichiometrically converted to NO2- very quickly. Under acidic conditions one molecule of 
nitrite reacts with one molecule of sulphanilamide forming the diazonium ion, which is then coupled to one molecule of naphthylethylenediamine forming the Azo dye, seen as 
pink colour. This dye strongly absorbs at 540 nm and its concentration is proportional to the NO initially present in the medium (Coneski and Schoenfisch 2012). 
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2.11 Quantification of IL-6 released by PSMCs and lung tissues by 

ELISA 

The release of IL-6 by PSMCs (Section 2.7) and lung tissues (Section 2.4) was 

measured using Rat IL-6 DuoSet ELISA kit (R&D Systems) according to the 

manufacturer’s instructions. Briefly, the samples previously thawed in ice and 

standards were added in duplicate to a microtiter plate containing the capture 

antibody. After two hours of incubation the wells were washed and incubated with 

the detection antibody for another two hours. The wells were washed again and 

incubated in dark with Streptavidin-HRP for 20 min. The wells were washed once 

more and incubated in dark with Substrate Solution. After 20 min the stop solution 

was added and immediately measured in a microplate reader. The readings at 540 

nm were subtracted from the readings at 450 nm and the concentrations of 

samples were determined by comparison with the standard curve (0-8 ng/mL). 

2.12 Co-immunoprecipitation of PPARβ/δ from lung and PSMCs 

There are different methods to immunoprecipitate proteins; among them two were 

tried out in this thesis: covalent antibody immobilization in agarose beads and 

antibody binding protein A/G sepharose beads 

2.12.1 Covalent antibody immobilization in agarose beads 

PSMCs and a piece of lung from Naïve rat were homogenised with lysis buffer 

provided by the Pierce Co-Immunoprecipitation kit (ThermoScientific) and 

supplemented with Complete Mini EDTA-free protease inhibitor cocktail tablets 

(Roche). PSMCs were lysed on ice using a cell scrapper and the lung was 

homogenised with liquid N2 using a mortar and pestle. The lysates were incubated 

in ice for 30 min vortexing every 10 min and centrifuged at 10,000 rpm for 15 min 
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at 4 oC, the pellet was discarded. Protein concentration of the supernatant was 

quantified by BCA assay (Section 2.8) and used for the subsequent co-

immunoprecipitation of proteins. 

PPARβ/δ was isolated with the Pierce Co-Immunoprecipitation kit 

(ThermoScientific) following the manufacturer’s instructions (Figure 2.2). Briefly, 

75 µg of antibody anti-PPARβ/δ was immobilized in a column by incubating the 

antibody with the resin overnight at 4 oC with end-over-end mixing. In parallel, 1 

mg of sample lysate was pre-cleared by incubating the sample in a column 

containing control agarose resin for 30 min with end-over-end mixing. The column 

was centrifuged and the flow-through containing the clear sample was diluted to a 

final volume of 500 µL. These 500 µL were added to the column containing the 

immobilised anti-PPARβ/δ and left incubating overnight at 4 oC with end-over-end 

mixing. The column was centrifuged and the flow-through was kept (FT). The resin 

was washed three times with IP Lysis Buffer (W1, W2, W3) to remove any protein 

that non-specifically bound the column. The specifically bound protein was eluted 

with 60 µL of Elution buffer (E1), and any remaining protein was removed by adding 

50 µL of Elution buffer twice more (E2, E3). All the centrifugation steps were done 

at 1,000 g for 1 min at room temperature. All the fractions were further analysed 

by silver staining (Section 2.14) and Western blot (Section 2.15). 

 



 

 

Figure 2.2 Diagram of the covalent antibody immobilization Co-IP. The antibody was added to a column containing the pre-activated resin. After incubation, the column was 
centrifuged, and the slurry was collected for further analysis. The lysate was then added to the column containing the immobilised antibody. After incubation, the column was 
centrifuged and the flow through (FT) was collected in a new tube. The column was then washed three times with washing solution to remove any protein that non-specifically 
bound the column (W1, W2, W3). The specifically bound protein was eluted with elution buffer and collected in a new fraction (E1). Any remained protein was removed in following 
elution steps (E2, E3). 
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2.12.2 Antibody binding protein A/G sepharose beads 

PPARβ/δ was isolated with the Immunoprecipitation kit ab206996 (Abcam) 

following the manufacturer’s instructions (Figure 2.3). Briefly, a piece of lung from 

Naïve rat was homogenized in a mortar and pestle using liquid nitrogen and 

transferred to a tube containing ice-cold lysis buffer (300 μL of buffer per 5 mg of 

tissue). The tube was mixed on a rocker at 4 oC for 1h. The tissue was centrifuged 

at 10,000 g for 5 min at 4 oC and supernatant was transferred to a new tube. The 

protein was quantified. The primary antibody was added to the sample at the 

recommended concentration by the antibody’s manufacturer and mixed overnight 

at 4 oC on a rocker. In the meantime, the protein A/G sepharose was washed twice 

with washing buffer, centrifuged at 2,000 g for 2 min and removing the supernatant 

between washes. Then it was suspended as 50% slurry in wash buffer. After 

antibody binding, the sample and the protein A/G sepharose beads were mixed 

and incubated for 1 h at 4 oC. The complex Protein A/G sepharose beads-antibody-

protein was collected by low speed centrifugation at 2,000 g for 2 min at 4 oC. The 

complex was washed three times with 1 mL of wash buffer and the supernatant 

was removed after centrifuging at 2,000 g for 2 min at 4 oC. Finally, 40 μL of SDS-

PAGE loading buffer was added to the beads and boiled for 5 min. Then it was 

centrifuged to collect the eluent and stored at -80 oC until use for SDS-PAGE 

electrophoresis (Section 2.13). 
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Figure 2.3 Diagram of the protein A/G sepharose Co-IP. The tissue lysate was mixed with the 
anti- PPARβ/δ antibody. After the incubation, the Protein A/G beads were added in the mixture and 
incubated again. The mixture was then centrifuged and the pellet containing the precipitated protein 
was boiled in SDS-PAGE loading buffer at 95 oC for 5 min. Finally, the sample was centrifuged, and 
the supernatant loaded in an SDS-PAGE gel. 

2.13 SDS-PAGE electrophoresis  

Electrophoresis of the fractions resulted from the co-immunoprecipitation of 

PPARβ/δ (Section 2.12) was performed using the Mini-protean system (Bio-Rad). 

A total of 20 µL of sample was heated at 95 oC for 5 min to denature the protein. 

Samples and molecular weight markers were loaded into the sample wells and 

proteins were separated in a 7.5% sodium dodecylsulfate polyacrylamide gels 

(SDS-PAGE) at a current of 200 mV supplied by a PowerPac 300 (Bio-Rad) unit 

for approximately 40 min, until the dye front was near the bottom of the gel. The 

gels were used for either silver staining or Western blot. 
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2.14 Silver staining 

SDS-PAGE gels were silver stained as a check point of the purification of 

PPARβ/δ. After electrophoresis, gels were washed in washing solution (5% 

methanol, 7% acetic acid, in water) for 30 min and incubated with 10% 

glutaraldehyde for 30 min. Any remaining glutaraldehyde was removed by washing 

with continuous changes of distilled water for 4 h. Gels were then treated with 

dithiothreitol (DTT) 5 µg/mL for 30 min followed by 0.01% silver nitrate treatment 

for another 30 min. Gels were finally incubated with the developer (3% sodium 

carbonate and add 0.02% formaldehyde) until they were stained, and the reaction 

was stopped with 5 mL of 2.3 M citric acid. 

2.15 Western blot 

The proteins contained in an SDS-PAGE gel were transferred to a polyvinylidene 

difluoride (PVDF) membrane (GE Healthcare Life Science) using the Mini-protean 

system (Bio-Rad) at a current of 400 mA supplied by a PowerPac 300 (Bio-Rad) 

unit for 105 min. After transference, Tris-buffered saline with Tween 20 (TBST) 

plus 5% non-fat milk was used to block the membrane at room temperature for 1 

h (TBST buffer: 5 M NaCl, 2 M Trys pH 7.6 and 0.1% Tween-20). Membranes were 

incubated with the target primary antibodies at 4 °C overnight (PPARβ/δ 1:200 in 

3% milk; RXR 1:1000 in 3% milk; p-65 1:1000 in 5% BSA; NOS2 1:500 in 5% milk; 

β-actin 1:5000 in 5% milk) followed by four washes with TBST every 8 min. Bound 

antibodies were detected by HRP-conjugated secondary antibodies at a dilution of 

1:10000 in TBST-1% non-fat milk powder for 1 h at room temperature. Protein 

signal intensities were determined by chemiluminescence using the enhanced 

chemiluminescence (ECL) Prime Western Blotting Detection Reagent (GE 

Healthcare Life Science) or SuperSignal™ West Femto Maximum Sensitivity 
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Substrate (ThermoFisher). When needed, relative signal intensities were 

normalized to β-Actin and quantified. 

2.16 Stripping of membranes 

The stripping of the membranes was done using Re-Blot Plus Strong Solution 

(Millipore) following the manufacturer’s instructions. Briefly, the membranes were 

incubated in Re-Blot Plus Solution for 30 min, washed with TBS-T and blocked in 

blocking solution for 30 min. 

2.17 Quantitative real time-polymerase chain reaction (qRT-PCR) 

2.17.1 RNA extraction 

Total RNA was extracted from pulmonary artery, bronchi and parenchyma (Section 

2.4) using RNeasy Fibrous Tissue Mini Kit (Quiagen). The tissues were first 

pulverized in a pestle with liquid N2 and the RNA was then extracted following the 

manufacturer’s instruction. Briefly, the tissue (<20 mg) was transferred into a 1.5 

mL tube containing 300 μL of Buffer RLT. Then, 590 μL of RNase-free water was 

added followed by 10 μL of proteinase K. The mixture was incubated at 55 oC for 

10 min and centrifuged at 10,000 g for 3 min. The supernatant was transferred into 

a new tube and 0.5 volumes of 100% ethanol was added. After mixing, 700 μL was 

transferred to a RNeasy Minicolumn and centrifuged at 8,000 g for 30 s. This last 

step was repeated with the rest of the sample and flow-through was discarded. 

Then, 350 μL Buffer RW1 was added and centrifuged at 8,000 g for 30 s, flow-

through was discarded. A mixture of 10 μL of DNase + 70 μL Buffer RDD was 

added into the column and incubated for 15 min at room temperature. After, 350 

μL Buffer RW1 was added and centrifuged at 8,000 g for 30 s. The columns were 

washed with 500 μL of Buffer RPE and centrifuged at 8,000 g for 2 min. Finally, 30 
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μL of RNase-free water was added to the column and incubated for 5 min at room 

temperature. After, the columns were centrifuged, and the last step was repeated 

using the same 30 μL of RNase-free water. After the last centrifugation the samples 

were kept at -80 oC until use. 

The quality and concentration of the RNA was measured using Nanodrop 

(SimpliNano, GE Healthcare Life Science) at wavelength of 260 nm. Further to 

that, the degradation of RNA was also checked in a 1% agarose gel, and the DNA 

contamination of RNA was checked by PCR (Polymerase chain reaction), using 

genomic DNA (gDNA) as a positive control. Two primers for the housekeeping 

gene β-actin were design (forward CTGGTCGTACCACTGGCATT, reverse 

AATGCCTGGGTACATGGTGG) and used to perform a PCR of the RNA samples 

together with the positive control. The termociclator Mastercycler Nexus gradient 

(Eppendorf) was set with the following PCR protocol: 95 °C for 10 min, 40 cycles 

of 95 °C for 30 s, 56 °C for 30 s and 72 °C for 30 s, 72 °C for 10 min and hold at 4 

°C.  

2.17.2 Genomic DNA extraction 

Genomic DNA was extracted from pulmonary artery, bronchi and parenchyma to 

use as a positive control of PCR. PureLink Genomic DNA mini kit from Invitrogen 

was used following the manufacturer’s instructions. Briefly, up to 25 mg of tissue 

was incubated at 55 oC in a 1.5 mL tube containing 180 μL of PureLink Genomic 

Digestion Buffer and 20 μL of Proteinase K until the tissue was completely 

digested. Then, the tube was centrifuged at maximum speed for 3 min and the 

supernatant was transferred into a new sterile tube. 20 μL of RNase A was added, 

mixed and incubated at room temperature for 2 min. After, 200 μL of PureLink 

Genomic Lysis Buffer was added and mixed until the solution was homogeneous, 

and 200 μL of absolute ethanol was added and mixed. The sample was then 
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transferred into a PureLink Spin Column and centrifuged at 10,000 g for 1 min at 

room temperature. The flow through was discarded and 500 μL of wash buffer was 

added, centrifuged at 10,000 g for 1 min at room temperature and the flow through 

was discarded. Finally, 100 μL of PureLink genomic Elution Buffer was added to 

the column, incubated at room temperature for 1min and centrifuged at max speed 

for 1 min at room temperature. The flow through was collected and kept at -20 oC 

until use. 

2.17.3 Quantitative real time polymerase chain reaction (qRT-PCR) 

cDNA was obtained by reverse transcription (RT) using iScript cDNA synthesis kit 

(Bio-rad) following the manufacturer’s instructions. Briefly, 300 ng of RNA was 

diluted to a final volume of 15 µL, and 4 µL of iScript reaction mix and 1 µL of iScript 

reverse transcriptase were added. The RT was performed using a thermociclator 

Stratagene Mx3005P (Agilent Technologies) with the following steps: 5 min at 25 

oC, 20 min at 46 oC, 5 min at 95 oC, and hold at 4 oC. 

2.17.3.1 SYBR GREEN 

qRT-PCR was performed to analyse mRNA expression using SYBR GREEN 

system. Briefly, 20 µL of reaction mix containing the primers was incubated in a 96 

well-plate following the cycle conditions: 94 °C for 2.5 min, 40 cycles of 94 °C for 

30 s 60 °C for 30 s 72 °C for 15 s, and a final dissociation curve consisting on 72 

°C for 5 min. The primers used for the amplification were design using the Roche 

ProbeFinder Assay Design Software available online at 

https://qpcr.probefinder.com/organism.jsp and are as follows: Pdk-4 (forward 

cgcttagtgaacaccccttc, reverse tccactaaatccatcaggctct), Angplt-4 (forward 

tccgaggggaccttaactgt, reverse attggaatggctgcaggt), NOS2 (forward 

accatggagcatcccaagt, reverse cagcgcataccacttcagc), Serpine-1 (forward 

agagccaatcacaaggcact, reverse gaggcaagtgagggctga), Timp-1 (forward 

https://qpcr.probefinder.com/organism.jsp
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cagcaaaaggccttcgtaaa, reverse tggctgaacagggaaacact), Sema7a (forward 

ctatggcgttttctccaacc, reverse gtcaatgtcaccaagcgaatac), Ppfibp1 (forward 

acaaggagtccctcgttgag, reverse ttcaagttagagatctcagccatc), β-actin (forward 

gccctagacttcgagcaaga, reverse tcaggcagctcatagctcttc). Relative quantification of 

the different transcripts was determined with the ΔΔCt method using β-actin as an 

endogenous control and normalized to control group. 

2.17.3.2 Taqman 

qRT-PCR was performed to analyse mRNA expression using a Taqman System 

(TaqMan PCR Master mix, Applied biosystem). Briefly, 10 µL of reaction mix 

containing the primers and cDNA was incubated in a 96 well-plate following the 

cycle conditions: 95 °C for 10 min, 40 cycles of 95 °C for 15 s and 60 °C for 1min. 

The primers used for amplification are Pdk-4, Angplt-4, NOS2, Serpine-1, Timp-1, 

Sema7a, Ppfibp1, β-actin (Applied biosystem). Relative quantification of these 

different transcripts was determined with the ΔΔCt method using β-actin as an 

endogenous control and normalized to control group. 

2.18 Docking 

Molecular docking is a computational-based procedure to predict non-covalent 

interactions of a receptor and a ligand, as well as determine binding affinities of 

ligands. The ability of drugs to bind into protein active sites was investigated using 

AutoDock/Vina with Pymol and and Ligplot+ as a graphical user interface 

2.18.1 Protein preparation 

For the docking simulations, the PPARβ/δ crystal structure 3TKM was selected for 

having one of the highest resolutions (1.95 Å). The PDB file was downloaded from 

Protein Data Bank. Water molecules, ligands and other hetero atoms were 

removed from the protein structure, and the addition of hydrogen atoms to the 
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protein was performed using AutoDock Tools version 1.5.6. The grid was set 

manually to cover the active site. The file was saved as pdbqt file. 

2.18.2 Ligand preparation 

The ligand molecule structures were drawn in ChemSketch, the energy was 

minimized and saved in PDB and MOL-2 format. Same file was opened in 

AutoDock Tools version 1.5.6 and saved as pdbqt file. 

2.18.3 Docking 

Molecular docking was performed with the software AutoDock Vina and all 

parameters set as default. Results with minor calculated free energy variations (the 

best theoretical binding energy) were analysed using Pymol version 1.7.4 and 

LigPlot+ version1.4.5 softwares. 

For the docking of two molecules, the 3TKM PDB file without hetero atoms was 

combined with the best docking result of each ligand in one single PDB file, one 

PDB file per ligand. These files were opened in Autodock Tools, H2 were added, 

the grid was set manually and saved in a new pdbqt file. This file was used for the 

docking with the second molecule. 

2.19 Statistical analysis 

The number of different experiments conducted from different animals is referred 

as the studies group size (n). Data subjected to statistical analysis had at least n=3 

and showed consistency and robust reproducibility. 

Statistical comparisons were performed on GraphPad Prism 5.0 software using 

one-way or two-way ANOVA with Bonferroni’s procedure for post hoc analysis, the 

values are expressed as mean ± SEM. 
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One-way ANOVA was conducted to examine the effect of a single independent 

variable on more than 2 groups. The experiments analysed by one-way ANOVA 

are Griess assay, ELISA, and qRT-PCR (Chapter 4). Data was normalized 

previously to the statistical analysis. In short, data from Griess assay and ELISA 

for IL-6 detection was normalised against the group treatment LPS and expressed 

as a fold change. Data from ELISA for the expression of PPARβ/δ in tissues was 

normalized against total protein. The relative quantification of genes analysed by 

qRT-PCR was calculated with the comparative CtΔΔ method, β-actin was used as 

endogenous control and data was normalized against control group.  

Two-way ANOVA analysis was conducted to examine the effect of two 

independent variables in the experiments performed in the organ bath and 

myograph, where the effect of treatments (or STZ-induced diabetes condition) in 

addition to the effect of the applied drug concentration (x-axis) was studied 

(Chapter 3). Two-way ANOVA was also use for the analysis of NO production by 

lung tissues (variable 1) over time (variable 2) (Chapter 4). 

Values of p<0.05 were considered statistically significant. When the level of 

probability (P) is less than 0.05 (*), less than 0.01 (**) or less than 0.001 (***), the 

effect of the difference was regarded as significance.



 

 Chapter 3: Non-genomic effects 
of PPARβ/δ on vascular tone 

3.1 Introduction 

As explained in Chapter 1 (1.5), hypertension is a side effect of diabetes due to the 

impairment of the mechanisms that regulate vascular tone (PI3K/Akt/eNOS 

pathway, RhoA/ROCK pathway and K+ channels). Additionally, diabetes is 

characterized by the dysregulation of blood glucose levels, which is abnormally 

high, especially in untreated patients, and can also contribute to hypertension. It 

makes it interesting to study the effects of new drugs for the treatment of 

hypertension in normal and high glucose conditions, especially in diabetic tissues. 

Another factor to take into account when studying a potential new treatment for 

hypertension is its effect on different types of vessels, since several studies 

showed different responses from different arteries under same conditions. For 

example, Budzyn et al. (2006) found differences on PE and U46619 mediated 

contraction between rat aorta and mesenteric arteries, and MacKenzie et al. (2008) 

found different effects of high glucose exposure between human mesenteric and 

subcutaneous arteries relaxations. In this thesis two main type of arteries with 

different functions are differentiated: systemic (aorta) and resistance arteries 

(mesenteric arteries).  

Systemic arteries, such as aorta, are large conducting vessels with thick and elastic 

walls that expand and recoil during systole and diastole, thereby allowing the heart 

to function at an optimal rate and stroke volume.  
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Resistance arteries, such as mesenteric arteries, are smaller vessels with lumen 

diameters measuring <400 μm when relaxed, which constitute the major site of 

generation of vascular resistance. Peripheral resistance, and hence blood 

pressure, is primarily determined by small resistance arteries.  

3.1.1 Factors affecting vascular reactivity 

The lack of insulin or the lack of tissue response to insulin as well as the high 

glucose levels in plasma are the main features in diabetes, which can also affect 

the vascular reactivity. 

3.1.1.1 Insulin 

As well as its function as endocrine hormone to increase the uptake of glucose in 

skeletal muscle, insulin is also a vasodilator factor (Steinberg et al. 1994, Iida et al. 

2001, Qu et al. 2014). It has been shown that mesenteric and posterior tibial 

arteries from mice pre-contracted with 1 μM PE relaxed after a single dose of 0.3 

μM insulin. This dilation was blocked with a 30 min pre-incubation of the artery with 

the PI3K inhibitor LY294002 (5 μM) and NOS inhibitor L-NAME (100 μM), which 

suggests the activation of the PI3K/Akt/eNOS pathway, the classical downstream 

cascade of the insulin receptor (IR) (Qu et al. 2014). 

Interestingly, the addition of 10 and 100 μU/mL insulin to a PE pre-contracted 

mesenteric arteries from rat significantly dilated the arteries, but in this case it was 

not inhibited by the presence of 100 μM L-NAME, indicating that the vasorelaxation 

effect of insulin is NO-independent (Iida et al. 2001). To find out the molecular 

mechanism, the authors examined the effects of a number of K+ channel blockers: 

30 nM charybdotoxin (blocker of large-conductance Ca2+-activated K+ channels), 

1 μM apamin (blocker of small-conductance Ca2+-activated K+ channels) and 10 

μM glibenclamide (ATP-sensitive K+ channels blocker). They found that 

charybdotoxin was the only blocker that significantly inhibited insulin-induced 
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vasorelaxation, which indicates that large-conductance Ca2+-activated K+ channels 

have an important role on insulin-induced relaxation of rat mesenteric arteries (Iida 

et al. 2001). 

However, another study has linked insulin to the RhoA/ROCK pathway (Sandu et 

al. 2001). VSMCs isolated from rats exposed to 100 nM insulin for 10 min 

prevented the thrombin induced RhoA translocation to the membrane, which is 

indicative of RhoA inactivation. Furthermore, the exposure of VSMCs to insulin for 

10 min decreased the phosphorylation of MLCP and increased its activity by 30%. 

The results indicate that insulin induces smooth muscle relaxation by preventing 

the translocation of RhoA to the membrane, which leads to the inhibition of RhoA 

kinase activity decreasing MLCP phosphorylation and therefore causing its 

activation (Sandu et al. 2001). This study provides an alternative molecular 

mechanism by which insulin can induce vasodilation, however further experiments 

involving the measurement of contraction/relaxation of arteries are needed in order 

to test the hypothesis. 

3.1.1.2 Glucose 

High glucose levels have been proved to contribute to the damage of the vessels 

(Xie et al. 2006, Brouwers et al. 2010, Liu et al. 2016) and to cause hypertension 

by reducing NO production and preventing the phosphorylation of Akt and eNOS 

(Quintela et al. 2014). Some studies were designed to investigate the effects of 

high glucose per se, without the effect of any additional disease, showing that high 

glucose leads to endothelial dysfunction in several ways such as reducing the Kv 

channel activity (Li et al. 2003), reducing eNOS activity through the PI3K/Akt/eNOS 

pathway (Liu et al. 2016) or activating RhoA/ROCK pathway (Xie et al. 2006). Most 

of these dysfunctions are a consequence of a long-term exposure to high glucose, 
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however there are a few studies arguing that short-term exposure also has a 

negative impact on the vasculature. 

One of the first studies done in this line showed that the exposure of rat mesenteric 

arteries to 20 mM and 45 mM glucose for 2 h lead to a reduced acetylcholine (Ach)-

induced relaxation and enhanced contraction to noradrenalin of the vessels (Taylor 

and Poston 1994). In the same line, another study using also rat mesenteric 

arteries incubated with 22.2 mM glucose for 6 h showed an inhibition on Ach-

induced relaxation, but in this case the high glucose did not increase the 

contractility induced by PE (Ozkan and Uma 2005).  

More recently, the exposure of mesenteric and femoral rat arteries to 23 mM 

glucose for 30 min was enough to enhance the PE-induced contraction (Vorn and 

Yoo 2017). However, different effects were observed on rat aortic rings incubated  

at 44 mM glucose for 3 h, where PE-induced contraction was reduced, although  

the Ach-induced relaxation was also decreased (El-Awady et al. 2014). 

Human mesenteric and subcutaneous arteries were exposed to 20 mM glucose for 

periods of 2 or 6 h. The results from these experiments are a bit more surprising, 

since Ach-induced relaxation was enhanced in mesenteric arteries but had no 

change in subcutaneous arteries; however, longer incubation for 6 h improved the 

Ach-induced relaxation on subcutaneous arteries and had no significant effects on 

mesenteric arteries (MacKenzie et al. 2008). 

Unfortunately, these studies failed to explain the molecular mechanism underlying 

the effects of the acute high glucose exposure. Some of them argue that is a result 

of a contribution of a number of pathways (Taylor and Poston 1994). Others do 

some further experiments providing evidence that the endothelial function is not 

affected (Vorn and Yoo 2017) and the ability of NO to induce relaxation is not 

affected (MacKenzie et al. 2008); also, it has been suggested that  an increased 
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level of reactive oxygen species like O2
- and H2O2 could be responsible (Ozkan 

and Uma 2005). 

In conclusion, all these studies indicate that glucose influences vascular 

contractility, although there are great discrepancies on how exactly. One reason is 

the different experimental conditions such as different times of exposure, different 

concentrations of glucose or the use of different species. However, it is also 

important to consider the types of vessels used, because different vessels might 

have different molecular mechanisms. 

As well as studying the potential adversary effect of high glucose on vessels, 

another reason of using high glucose in this thesis is because it is also a good 

control for STZ-diabetic tissues, because it is more representative of what non-

treated diabetic tissues are exposed to. 

3.1.2 Animal models of diabetes mellitus 

There are two main types of diabetes mellitus: Type 1 diabetes mellitus (T1DM) is 

characterized by a specific destruction of the insulin-producing pancreatic β cells, 

commonly associated with immune-mediate damage. T1DM is most commonly 

diagnosed in children and young adults (2005). 

Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and 

impaired insulin secretion and defined by a raised fasting or post-challenge blood 

glucose. T2DM is most commonly diagnosed in middle-aged adults and can be 

improved by weight reduction and exercise (2005). 

A number of different animal models have been developed for the study of type 1 

and 2 diabetes, some of the most commonly used are listed below. 
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3.1.2.1 Animal models for T1DM 

Diabetes inducers (diabetogenics) are experimental toxins including alloxan and 

streptozotocin (Lenzen 2008). Alloxan was firstly discovered by Wohler and Liebig 

in 1838, and afterward it was applied as a diabetogenic in 1943 (Lenzen 2008). 

Twenty years later, Rackeiten and colleagues found the naturally occurring 

Streptomyces achromogenes – derived streptozotocin (STZ) antibiotic, 2-deoxy-2-

(3methyl-3-nitrosureido)-D-glucopyranose that enters in the pancreatic β cells and 

causes alkylation and thus fragmentation of DNA. STZ is a source of free radicals 

that can contribute to DNA damage and subsequent cell death. STZ can be 

administered as a single dose to animals, which leads to a rapid destruction of β 

cells and hyperglycaemia, or as multiple low doses over 5 days to induce insulitis 

and has been widely applied experimentally (Lenzen 2008). Numerous differences 

shift the favour toward STZ rather than alloxan, since alloxan is less stable at 

physiological conditions; pH 7.4 and 37 oC where it decomposes into alloxanic acid 

with a 90 seconds short half-life, while STZ is more stable with approximately 1 

hour short half-life (Szkudelski 2001). Moreover, alloxan is highly hydrophilic and 

therefore less stable in aqueous solutions where it decomposes into another 

lipophilic derivative, butyl-alloxan (Lenzen 2008). In contrast, STZ is highly stable 

in aqueous media and induces diabetes according to its selective N-methyl-N-

nitrosurea (MNU) moiety which renders STZ to act on glucose transporter 2 

(GLUT-2) expressing tissues only such as pancreatic β cells (Elsner et al. 2000). 

Numerous diabetic transgenic models are utilised in diabetes research to help 

decipher pathophysiological pathways. Transgenic or highly inbred animal strains 

have been developed that spontaneously or conditionally develop diabetes (eg 

ob/ob, Zucker). 
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The non-obese diabetic (NOD) mouse spontaneously develop autoimmune 

diseases similar to human T1DM. These animals have been inbred in laboratories 

for many generations and, as a result, many genes and phenotypes will have been 

enriched, but not all will be relevant to the pathophysiology of diabetes. NOD mice 

are potentially suitable for testing therapies for the modulation of the autoimmune 

response (Makino et al. 1980, Atkinson and Leiter 1999) . 

Biobreeding (BB) rats were derived from outbred Wistar rats. The diabetic 

phenotype is quite severe, and the rats require insulin therapy for survival. The 

model has been valuable in elucidating more about the genetics of the T1DM and 

it is the preferable model for islet transplantation tolerance induction (Nakhooda et 

al. 1977, Mordes et al. 2004). 

AKITA mouse is derived from a spontaneous mutation in the insulin 2 gene 

preventing correct processing of pro-insulin and resulting in a severe insulin-

dependent diabetes. It has been used as a model of T1DM to study islet 

transplantation (Mathews et al. 2002). 

3.1.2.2 Animal models for T2DM 

The KK mouse produced by Prof Kyoji Kondo and Prof. Masahiko Nishimura is a 

mildly obese strain that develop severe hyperinsulinemia and hyperglycemia, and 

demonstrate insulin resistance in both muscle and adipose tissue as well as 

hypertrophic pancreatic islets (Nakamura and Yamada 1967, Reddi and Camerini-

Davalos 1988). 

The Nagoya-Shibata-Yasuda (NSY) mouse spontaneously develop diabetes in an 

age-dependent manner. They develop an impaired insulin secretion and mild 

insulin resistance. Obesity is not a major feature of these animals and there is a 

marked gender difference with almost all males developing hyperglycaemia, but 

less than a third of females being affected (Ueda et al. 1995). 
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Psammomys obesus (the Israeli sand rat) has an essential vegetarian diet. 

However, when fed laboratory chow, the animals become obese, insulin resistant 

and hyperglycaemic. This model is particularly useful when studying the effects of 

diet and exercise of the development of type 2 diabetes (Ziv et al. 1999). 

The Otsuka Long-Evans Tokoshima fatty (OLETF) rat originates from an outbred 

colony of Long-Evans rats selectively bred for glucose intolerance. The rats are 

mildly obese and males are more likely to develop diabetes in adult life than 

females (Kawano et al. 1992). 

The Goto Kakizaki (GK) rat was developed by the selective breeding of Wistar rats 

with the highest blood glucose over many generations. The rats develop relatively 

stable hyperglycaemia in adult life. Both insulin resistance and impaired insulin 

secretion are present. The GK rat develops deseases that can be compared with 

the complications of diabetes seen in humans (Goto et al. 1976, Liepinsh et al. 

2009).  

The use of these genetic T1DM and T2DM models can be restricted by their cost 

and the fact that diabetes is highly genetically determined unlike the heterogeneity 

seen in humans (Rees and Alcolado 2005). Furthermore, genetic models can show 

a variety of alterations, for instance, suppressed GLUT-1 mice are associated with 

reduced protein kinase C (PKC) activity and fibronectin, which can trigger further 

complications in organ function since fibronectin is involved in regulating cellular 

differentiation and organogenesis (Mosesson and Amrani 1980). 

Among all these models, the Streptozotocin-induced experimental diabetes rat 

model is validated as a predictive T1DM related complications model, and several 

reports on STZ-induced vascular dysfunctions have been published (Chang and 

Stevens 1992, Taylor et al. 1994). It also has the advantage that is a cheaper and 

more robust model compared to others - in our laboratory over 90% of rats treated 
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with a single dose of STZ become diabetic. Therefore, this model was selected in 

this thesis for the assessment of diabetes-derived cardiovascular complications 

and its potential treatment with PPARβ/δ agonists. 

3.1.3 Aims and objectives 

This chapter aims to identify the molecular mechanisms underneath the vascular 

reactivity of Naive and STZ-diabetic aorta vs mesenteric arteries as a model of 

systemic and resistance arteries respectively, and how they can be regulated by 

PPARβ/δ in a non-genomic manner, which may lead to new therapeutic 

approaches for the treatment of hypertension. Objectives: 

1- Investigate the non-genomic effects of PPARβ/δ in normal and STZ-

diabetic vessels focusing on RhoA/ROCK and PI3K/Akt/eNOS pathways 

using the PPARβ/δ ligands GW0742 and GSK3787, the ROCK inhibitors 

Fasudil and Y27632 and the PI3K inhibitor LY294002.  

2- Investigate the effects of high glucose (20 mM glucose) on PI3K/Akt/eNOS 

pathway and whether they can be reverted by PPARβ/δ and/or insulin in 

normal and STZ-diabetic vessels. 
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3.2 Methods 

3.2.1 Organ bath 

Thoracic aorta rings 2-3 mm long from Naïve and STZ-diabetic rats were used in 

an organ bath of 15 mL capacity. The design of the experiments performed are 

detailed below and the cumulative concentration response and treatments of the 

organ bath experiments are detailed in Table 3.1 below. For a full description of 

the method refer to Chapter 2 Section 2.5. 

3.2.1.1 Thoracic aorta rings 

Experiment 1: Aorta rings were incubated with GW0742 (1 nM, 10 nM or 100 nM) 

or vehicle (0.01% dimethyl sulfoxide (DMSO)) for 30 min followed by a response 

to increasing concentrations of PE (10 nM to 30 µM) or U46619 (1 nM to 300 nM).  

Experiment 4: Aorta rings were incubated with the RhoA/ROCK inhibitors 10 μM 

Fasudil or 10 μM Y27632 as well as vehicle (0.01% DMSO) for 30 min followed by 

a response to increasing concentrations of PE (10 nM to 30 µM) or U46619 (1 nM 

to 300 nM). 

Experiment 5: Aorta rings were incubated with 10 μM Fasudil or vehicle (0.01% 

DMSO) for 30 min, pre-contracted with 100 nM U46619 and exposed to increasing 

concentrations of GW0742 (1 µM to 30 µM). 

Experiment 6: Aorta rings were pre-contracted with high potassium physiological 

saline solution (KPSS) followed by increasing concentrations of GW0742 (1 µM to 

30 µM). 
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Table 3.1 Treatments and cumulative concentrations response dose schedules used in a 15 
mL capacity organ bath. 

Final concentration Stock Amount (µL) 

Treatments 

Vehicle 0.01% DMSO 10% DMSO 15 
1 nM GW0742 1 μM GW0742 15 

10 nM GW0742 10 μM GW0742 15 
100 nM GW0742 100 μM GW0742 15 

10 μM Fasudil 10 mM Fasudil 15 
10 μM Y27632 10 mM Y27632 15 

PE response-dose schedule 

10 nM PE 10 μM PE 15 
30 nM PE 10 μM PE 30 

100 nM PE 100 μM PE 15 
300 nM PE 100 μM PE 30 
1 μM PE 1 mM PE 15 
3 μM PE 1 mM PE 30 

10 μM PE 10 mM PE 15 
30 μM PE 10 mM PE 30 

U46619 response-dose schedule 

1 nM U46619 1 μM U46619 15 
3 nM U46619 1 μM U46619 30 
10 nM U46619 10 μM U46619 15 
30 nM U46619 10 μM U46619 30 

100 nM U46619 100 μM U46619 15 
300 nM U46619 100 μM U46619 30 

GW0742 response-dose schedule 

1 µM GW0742 1 mM GW0742 15 
3 µM GW0742 1 mM GW0742 30 

10 µM GW0742 10 mM GW0742 15 
30 µM GW0742 10 mM GW0742 30 
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3.2.2 Myography 

Abdominal aorta rings and mesenteric artery rings 1.5 mm long from Naïve and 

STZ-diabetic rats were used in an myograph with a final volume of 5 mL per 

chamber. The design of the experiments performed are detailed below and the 

cumulative concentration response and treatments of the myograph experiments 

are detailed in Table 3.2 below. For a full description of the method refer to Chapter 

2 Section 2.6.  

3.2.2.1 Abdominal aorta rings 

Experiment 2: Abdominal aortic rings were incubated with 100 nM GW0742, 1 μM 

GSK3787, 100 nM GW0742 + 1 μM GSK3787 or vehicle control (0.01% DMSO) 

for 30 min followed by a response to increasing concentrations of PE (10 nM to 30 

µM). 

Experiment 3: Abdominal aortic rings were incubated with 1 U/mL insulin, 100 nM 

GW0742, 1 U/mL insulin + 100 nM GW0742, 1 U/mL insulin + 1 μM  LY294002, 

100 nM GW0742 + 1 μM  LY294002, 1 U/mL insulin + 100 nM GW0742 + 1 μM 

LY294002 or vehicle control (0.01% DMSO), and then were subjected to 

increasing concentrations of PE (10 nM to 30 µM). After reaching the maximum 

contraction, the rings were washed three times until the tension was stable at 

baseline. The tissues were then expose to 20 mM glucose PSS for 10 min and 

incubated with the same treatments as before for extra 20 min; at that point 

increasing concentrations of PE (10 nM to 30 µM) were added. 

3.2.2.2 Mesenteric arteries 

Experiment 1: Mesenteric rings were incubated with GW0742 (1 nM, 10 nM or 100 

nM) or vehicle control (0.01% DMSO) for 30 min followed by a response to 

increasing concentrations of PE (10 nM to 30 µM) or U46619 (1 nM to 300 nM). 
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Experiment 2: Mesenteric rings were incubated with 100 nM GW0742, 1 μM 

GSK3787, 100 nM GW0742 + 1 μM GSK3787 or vehicle control (0.01% DMSO) 

for 30 min followed by a response to increasing concentrations of PE (10 nM to 30 

µM). 

Experiment 3: Mesenteric rings were incubated with 1 U/mL insulin, 100 nM 

GW0742, 1 μM LY294002, 1 U/mL insulin + 100 nM GW0742, 1 U/mL insulin + 1 

μM LY294002, 100 nM GW0742 + 1 μM LY294002, 1 U/mL insulin + 100 nM 

GW0742 + 1 μM LY294002 or vehicle control (0.01% DMSO), and then were 

subjected to increasing concentrations of PE (10 nM to 30 µM). After reaching the 

maximum contraction, the rings were washed three times until the tension was 

stable at baseline. The tissues were then expose to 20 mM glucose PSS for 10 

min and incubated with the same treatments as before for extra 20 min, at that 

point increasing concentrations of PE (10 nM to 30 µM) were added. 

Experiment 4: Mesenteric rings were incubated with the RhoA/ROCK inhibitors 10 

μM Fasudil or 10 μM Y27632 as well as vehicle (0.01% DMSO) for 30 min followed 

by a response to increasing concentrations of PE (10 nM to 30 µM) or U46619 (1 

nM to 30 nM). 

Experiment 5: Mesentery rings were incubated with 10 μM Fasudil, 1 μM GSK3787 

or vehicle (0.01% DMSO) for 30 min, pre-contracted with 10-5 M PE and exposed 

to increasing concentrations of GW0742 (1 μM to 30 μM). 

Experiment 6: Mesenteric rings were incubated with 1 μM GSK3787 or vehicle 

(0.01% DMSO) for 30 min, pre-contracted with KPSS, and exposed to increasing 

concentrations of GW0742 (1 μM to 30 μM). 
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Table 3.2 Treatments and cumulative concentrations response dose schedules used in the 
myograph with a final volume of 5 mL per chamber. 

Final concentration Stock Amount (µL) 

Treatments 

Vehicle 0.01% DMSO 10% DMSO 5 
1 nM GW0742 1 μM GW0742 5 

10 nM GW0742 10 μM GW0742 5 
100 nM GW0742 
1 μM GSK3787 

100 μM GW0742 
1 mM GSK3787 

5 
5 

10 μM Fasudil 10 mM Fasudil 5 
10 μM Y27632 
1 U/mL Insulin 

1 μM LY294002 

10 mM Y27632 
1000 U/mL Insulin 
1 mM LY294002 

5 
5 
5 

PE response-dose schedule 

10 nM PE 10 μM PE 5 
30 nM PE 10 μM PE 10 

100 nM PE 100 μM PE 5 
300 nM PE 100 μM PE 10 
1 μM PE 1 mM PE 5 
3 μM PE 1 mM PE 10 

10 μM PE 10 mM PE 5 
30 μM PE 10 mM PE 10 

U46619 response-dose schedule 

1 nM U46619 1 μM U46619 5 
3 nM U46619 1 μM U46619 10 
10 nM U46619 10 μM U46619 5 
30 nM U46619 10 μM U46619 10 

100 nM U46619 100 μM U46619 5 
300 nM U46619 100 μM U46619 10 

GW0742 response-dose schedule 

1 µM GW0742 1 mM GW0742 5 
3 µM GW0742 1 mM GW0742 10 

10 µM GW0742 10 mM GW0742 5 
30 µM GW0742 10 mM GW0742 10 

 



 

Table 3.3 Overview of the experiments of Chapter 3.  

 Aorta Mesenteric arteries 

 Method Treatments Figure Method Treatments Figure 

Exp 1 Organ 
bath 

0.01% DMSO 

1 nM GW0742 

10 nM GW0742 

100 nM GW0742 

Figure 3.2 
Figure 3.3 

Myograph 

0.01% DMSO 

1 nM GW0742 

10 nM GW0742 

100 nM GW0742 

Figure 3.5 
Figure 3.6 

Exp 2 Myograph 

0.01% DMSO 

100 nM GW0742 

1 μM GSK3787 

100 nM GW0742 + 1 μM GSK3787 

Figure 3.4 Myograph 

0.01% DMSO 

100 nM GW0742 

1 μM GSK3787 

100 nM GW0742 + 1 μM GSK3787 

Figure 3.7 

Exp 3 Myograph 

0.01% DMSO 1 U/mL insulin 

100 nM GW0742 

1 U/mL insulin + 100 nM GW0742 

1 U/mL insulin + 1 μM LY294002 

100 nM GW0742 + 1 μM LY294002 

1 U/mL insulin + 100 nM GW0742 + 1 μM LY294002 

Figure 3.10 
Figure 3.11 

Myograph 

0.01% DMSO 1 U/mL insulin 

100 nM GW0742 

1 U/mL insulin + 100 nM GW0742 

1 U/mL insulin + 1 μM LY294002 

100 nM GW0742 + 1 μM LY294002 

1 U/mL insulin + 100 nM GW0742 + 1 μM LY294002 

Figure 3.12 
Figure 3.13 

Exp 4 Organ 
bath 

0.01% DMSO 

10 μM Fasudil   

10 μM Y27632 

Figure 3.14 Myograph 

0.01% DMSO 

10 μM Fasudil   

10 μM Y27632 

Figure 3.16 

Exp 5 Organ 
bath 

0.01% DMSO 

10 μM Fasudil  
Figure 3.15 Myograph 

0.01% DMSO 

10 μM Fasudil 

1 μM GSK3787 

Figure 3.17 

Exp 6 
Organ 
bath 

0.01% DMSO Figure 3.18 Myograph 0.01% DMSO Figure 3.19 

GW0742 is a PPARβ/δ agonist ; GSK3787 is a PPARβ/δ antagonist; LY294002 is a PI3K inhibitor; Fasudil is a ROCK inhibitor; Y27632 is a ROCK inhibitor
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3.3 Results 

3.3.1 Animals became diabetic after a single dose of STZ (55 mg/kg 

i.p) 

Plasma glucose levels and body weight of all rats were monitored from the day 

they were dosed with 55 mg/kg STZ day 0, day 7 and the day they were sacrificed 

(day 10-27). As shown in Table 3.4, all rats became hyperglycaemic (blood 

glucose>16 mmol/L) after seven days following a single dose of STZ with an 

increase in weight of 23.6 g over the time. There was a significant increase in blood 

glucose on day 7 and terminal day compared with day 0 (***p<0.001) and no 

significant change in body weight at day 7 (p>0.05) but significantly different at 

terminal day (***p<0.001). 55 mg/kg STZ induced diabetes in rats without 

compromising the wellbeing of the animal.  Tissues from STZ-diabetic rats were 

harvested on terminal day for vasoactive organ bath and myograph studies. 
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Table 3.4 Plasma glucose levels and body weight of rats dosed with 55 mg/kg STZ on day 0, 
7 and terminal day. Significant difference on plasma glucose level and body weight at Day 7 and 
Terminal day compared with Day 0 was analysed by a repeated measures one-way ANOVA followed 
by Bonferroni post-hoc test. The data are presented as mean ± standard error of the mean. 
***p<0.001 vs Day 0. 

Animal 

Plasma glucose level 

(mmol/L) 
Body weight (g) 

Day 0 Day 7 
Terminal day 

(D10-27) 
Day 0 Day 7 

Terminal day 
(D10-27) 

S1 6.2 27.1 28.0 380 382 378 

S2 6.8 31.7 26.1 394 383 382 

S3 8.4 29.5 28.2 398 399 397 

S4 7.5 33.3 24.4 387 381 390 

S5 6.5 33.3 28.7 418 407 406 

S6 6.1 33.3 28.1 384 391 396 

S7 6.7 33.3 25.7 392 380 414 

S8 6.0 33.3 30.8 392 372 409 

S9 6.3 26.0 23.8 398 395 440 

S10 7.2 23.6 26.7 399 376 410 

S11 6.0 19.5 20.7 407 423 446 

S12 6.8 21.8 23.6 402 389 410 

S13 7.2 25.3 29.2 383 386 399 

S14 6.7 26.6 33.3 387 380 400 

S15 6.7 18.8 28.6 389 390 408 

S16 6.4 31.6 26.4 382 397 423 

S17 6.7 33.3 30.1 393 407 445 

S18 5.3 24.5 30.8 389 411 455 

S19 7.3 22.8 33.3 394 407 466 

S20 5.4 25.5 33.3 389 410 455 

Mean 6.61 27.71*** 27.99*** 392.85 393.30 416.45*** 

Stdev 0.72 4.97 3.43 9.13 13.89 25.93 

Sem 0.24 1.66 1.14 3.04 4.63 8.64 
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3.3.2 Aorta and mesenteric arteries are dysfunctional in STZ-

diabetic rat and improved by GW0742 via PPARβ/δ 

PE-induced contraction of aorta and mesenteric arteries is significantly increased 

in STZ-diabetic tissues compared to Naïve (Figure 3.1 A, C); however, U46619 

mediated contraction shows no significant difference on aorta (Figure 3.1 B) or it 

is significantly decreased on STZ-diabetic mesenteric arteries (Figure 3.1 D). 

U46619 was only tested until a concentration of 300 nM since any further addition 

induces an irreversible contraction. 

 

Figure 3.1 Change in tension in thoracic aorta and mesenteric arteries induced by A-C) PE 
and B-D) U46619 in Naïve and STZ-diabetic rat vessels. Data are represented as mean ± SEM 
(n=4-13). Significant difference compared to Vehicle controls was analysed by two-away ANOVA 
denoted by +++=p<0.001; and followed by Bonferroni’s post hoc test denoted by ***=p<0.001, 
**=p<0.01, ns= non-significance. 
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3.3.2.1 Aorta 

Aorta rings from STZ-diabetic and Naïve rats were incubated with increasing 

concentrations of GW0742 to observe the effect of this drug on PE and U46619 

mediated contraction. In both cases, low concentration of GW0742 (1 nM and 10 

nM) had no effect on aorta contraction (Figure 3.2 A, B, D, E; Figure 3.3 A, B, D, 

E). However, 100 nM GW0742 significantly decreases both PE and U46619 

mediated contraction in Naïve and STZ-diabetic tissues (Figure 3.2 C, E; Figure 

3.3 C, E). 

Table 3.5 Emax and EC50 of thoracic aorta and mesenteric artery from Naïve and STZ-diabetic 
rats contracted with PE and U46619. Emax is represented as mean ± SEM (n=4-13). Significant 
difference compared to Vehicle Naïve controls was analysed by two-way ANOVA and followed by 
Bonferroni’s post hoc test denoted by ** = p<0.01, ***= p<0.001.   

  Thoracic aorta Mesenteric arteries 

 Treatment Emax EC50 Emax EC50 

PE 
Vehicle Naive 0.33 ± 0.04 g 16.1 nM 14.11 ± 1.0 mN 6.7 μM 

Vehicle STZ 0.44 ± 0.02 g*** 10.3 nM 17.18 ± 1.6 mN** 1.8 μM 

U46619 
Vehicle Naive 0.25 ± 0.05 g 4.8 μM 7.90 ± 0.8 mN 214.3 nM 

Vehicle STZ 0.25 ± 0.05 g 2.2 μM 4.96 ± 0.9 mN*** 517.4 nM 
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Figure 3.2 Change in tension induced by PE in Naïve and STZ-diabetic rat thoracic aorta 
incubated with 1 nM, 10 nM or 100 nM GW0742. Naïve and STZ-diabetic rat aorta rings were 
treated with 0.01% DMSO (Vehicle), 1 nM, 10nM or 100 nM GW0742. After 30 min incubation a PE 
dose-response curve was performed. Data are represented as mean ±SEM (n=4-6). Significant 
difference compared to vehicle controls was analysed by two-way ANOVA denoted by +++=p<0.001; 
and followed Bonferroni’s post hoc test denoted by **=p<0.01, *=p<0.05, ns= non-significance. 
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Figure 3.3 Change in tension induced by U46619 in Naïve and STZ-diabetic rat thoracic aorta 
incubated with 1 nM, 10 nM or 100 nM GW0742. Naïve and STZ-diabetic rat aorta rings were 
treated with 0.01% DMSO (Vehicle), 1 nM, 10 nM or 100 nM GW0742. After 30 min incubation a 
U46619 dose-response curve was performed. Data are represented as mean ±SEM (n=4-6). 
Significant difference compared to vehicle controls was analysed by two-way ANOVA followed by 
Bonferroni’s post hoc test denoted by *=p<0.05, ns=non-significance. 
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Table 3.6 Emax and EC50 of thoracic aorta from Naïve and STZ-diabetic rats incubated with 1 
nM, 10 nM or 100 nM GW0742 and contracted with PE and U46619. Emax is represented as mean 
± SEM (n=4-6). Significant difference compared to Vehicle controls was analysed by two-way 
ANOVA and followed by Bonferroni’s post hoc test denoted by * = p<0.05, ***= p<0.001.   

  Thoracic aorta 

  Naïve  STZ 

 Treatment Emax (g) EC50 Emax (g) EC50  

PE  

Vehicle 0.33 ± 0.04 16.1 nM 0.44 ± 0.02 10.3 nM 

1 nM GW0742 0.35 ± 0.05 29.4 nM 0.47 ± 0.04 9.5 nM 

10 nM GW0742 0.28 ± 0.04 18.1 nM 0.44 ± 0.06 6.3 nM 

100 nM GW0742 0.15 ± 0.04* 36.9 nM 0.31 ± 0.08*** 28.3 nM 

U46619 

Vehicle 0.25 ± 0.03 10.3 μM 0.25 ± 0.06 2.2 μM 

1 nM GW0742 0.22 ± 0.03 9.5 μM 0.17 ± 0.03 5.6 μM 

10 nM GW0742 0.25 ± 0.04 6.3 μM 0.18 ± 0.02 2.6 μM 

100 nM GW0742 0.11 ± 0.03* 2.8 μM 0.17 ± 0.03 3.4 μM 

 

Although 100 nM GW0742 is a concentration selective for PPARβ/δ (Sznaidman 

et al. 2003), a further experiment was performed to confirm that the effect of 

GW0742 is PPARβ/δ-dependent. Aorta rings were incubated with either 0.01% 

DMSO (Vehicle), 100 nM GW0742, the PPARβ/δ antagonist GSK3787 (1 μM), or 

GW0742 together with GSK3787. The Figure 3.4 F shows how GSK3787 blocks 

the effect of GW0742, verifying that the action of GW0742 is mediated by 

PPARβ/δ. 
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Figure 3.4 The effect of GW0742 on PE-induced abdominal aorta contraction is reversed by 
the PPARβ/δ antagonist GSK3787. Four aorta rings from Naïve and STZ-diabetic rats were 
incubated in four different treatments: 0.01% DMSO (Vehicle), 100 nM GW0742, 1 µM GSK3787 
and 100 nM GW0742 + 1 µM GSK3787. After 30 min incubation a PE dose-response curve was 
performed. Data are represented as mean ±SEM (n=6-7). Significant difference compared to vehicle 
controls was analysed by two-way ANOVA followed by Bonferroni’s post hoc test denoted by 
**=p<0.01, *=p<0.05, ns=non-significance. 
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Table 3.7 Emax and EC50 of abdominal aorta from Naïve and STZ-diabetic rats incubated with 
100 nM GW0742, 1 µM GSK3787 or 100 nM GW0742 + 1 µM GSK3787 and contracted with PE. 
Emax is represented as mean ± SEM (n=6-7). Significant difference compared to Vehicle controls was 
analysed by two-way ANOVA and followed by Bonferroni’s post hoc test denoted by ** = p<0.01.   

 Abdominal aorta 

 Naïve STZ 

Treatment Emax (mN) EC50  Emax (mN) EC50 

Vehicle 13.3 ± 1.3 290.7 nM 16.26 ± 1.7 102.8 nM 

100 nM GW0742 12.62 ± 1.4 240.0 nM 12.34 ± 0.4** 114.6 nM 

GSK3787 13.45 ± 0.9 238.1 nM 13.85 ± 1.1 143.6 nM 

100 nM GW0742 + GSK3787 12.65 ± 1.0 264.2 nM 14.52 ± 0.7 103.8 nM 

 

3.3.2.2 Mesenteric arteries 

The same protocols were conducted in parallel on mesenteric arteries with similar 

results, 100 nM GW0742 significantly reduce PE- and U46619-induced contraction 

both in Naïve and STZ-diabetic vessels (Figure 3.5 C, F and Figure 3.6 C, F). 

Moreover, 10 nM GW0742 also significantly reduced PE-induced contraction from 

10 μM PE in Naïve tissue (Figure 3.5 B), but 100 nM was maintained for the 

following experiments to keep the same concentration through-out the study. 

To verify that this reduction on vascular contractility in the mesentery is also 

mediated by PPARβ/δ, mesenteric artery rings were co-incubated with GW0742 

and GSK3787. Figure 3.7 C, F shows that GSK3787 prevented the inhibition of 

contraction caused by GW0742 providing the evidence that GW0742 acts through 

PPARβ/δ in mesenteric arteries. 
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Figure 3.5 Change in tension induced by PE in Naïve and STZ-diabetic mesenteric arteries 
incubated with 1 nM, 10 nM or 100 nM GW0742. Naïve and STZ-diabetic rat mesenteric artery 
rings were treated with 0.01% DMSO (Vehicle), 1 nM, 10 nM or 100 nM GW0742. After 30 min 
incubation a PE dose-response curve was performed. Data are represented as mean ±SEM (n=5-
6). Significant difference compared to vehicle controls was analysed by two-way ANOVA denoted 
and followed by Bonferroni’s post hoc test denoted by **=p<0.01, *=p<0.05, ns= non-significance. 
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Figure 3.6 Change in tension induced by U46619 in Naïve and STZ-diabetic mesenteric 
arteries incubated with 1 nM, 10 nM or 100 nM GW0742. Naïve and STZ-diabetic rat mesenteric 
artery rings were treated with 0.01% DMSO (Vehicle), 1 nM, 10 nM or 100 nM GW0742. After 30 min 
incubation a U46619 dose-response curve was performed. Data are represented as mean ±SEM (4-
6). Significant difference compared to vehicle controls was analysed by two-way ANOVA denoted 
and followed by Bonferroni’s post hoc test denoted by **=p<0.01, *=p<0.05, ns= non-significance. 
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Table 3.8 Emax and EC50 of mesenteric arteries from Naïve and STZ-diabetic rats incubated with 
1 nM, 10 nM or 100 nM GW0742 and contracted with PE and U46619. Emax is represented as 
mean ± SEM (n=4-6). Significant difference compared to Vehicle controls was analysed by two-way 
ANOVA and followed by Bonferroni’s post hoc test denoted by * = p<0.05, **= p<0.01.   

  Mesenteric arteries 

  Naïve  STZ 

 Treatment Emax (mN) EC50 Emax (mN) EC50 

PE  

Vehicle 15.23 ± 1.2 3.6 μM 18.47 ± 2.9 3.6 μM 

1 nM GW0742 11.43 ± 2.2 3.0 μM 17.93 ± 1.8 2.1 μM 

10 nM GW0742 10.00 ± 1.4** 6.2 μM 17.09 ± 1.3 4.4 μM 

100 nM GW0742 10.90 ± 0.6** 3.5 μM 12.50 ± 0.8* 5.4 μM 

U46619 

Vehicle 5.84 ± 2.3 478.2 nM 7.58 ± 1.0 723.4 nM 

1 nM GW0742 4.10 ± 1.2 255.2 nM 6.50 ± 1.8 135.3 nM 

10 nM GW0742 3.65 ± 0.9 168.1 nM 7.89 ± 2.5 168.1 nM 

100 nM GW0742 2.64 ± 0.8** - 3.43 ± 0.6** 243.9 nM 
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Figure 3.7 The effect of GW0742 on PE-induced mesenteric arteries contraction is reversed 
by the PPARβ/δ antagonist GSK3787. Four mesenteric artery rings from both Naïve and STZ-
diabetic rats were incubated in four different treatments: 0.01% DMSO (Vehicle), 100 nM GW0742, 
1 µM GSK3787 and 100 nM GW0742 + 1 µM GSK3787. After 30 min incubation a PE dose-response 
curve was performed. Data are represented as mean ±SEM (n=4-6). Significant difference compared 
to vehicle controls was analysed by two-way ANOVA followed by Bonferroni’s post hoc test denoted 
by ***=p<0.001, **=p<0.01, *=p<0.05, ns=non-significance. 
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Table 3.9 Emax and EC50 of mesenteric arteries from Naïve and STZ-diabetic rats incubated with 
100 nM GW0742, 1 µM GSK3787 or 100 nM GW0742 + 1 µM GSK3787 and contracted with PE. 
Emax is represented as mean ± SEM (n=4-6). Significant difference compared to Vehicle controls was 
analysed by two-way ANOVA and followed by Bonferroni’s post hoc test denoted by *=p<0.05, *** = 
p<0.001.   

 Mesenteric arteries 

 Naïve STZ 

Treatment Emax (mN) EC50  Emax (mN) EC50  

Vehicle 15.42 ± 1.3 2.6 μM 22.12 ± 2.0 3.2 μM 

100 nM GW0742 11.22 ± 1.2* 6.0 μM 11.2 ± 1.4*** 1.9 μM 

GSK3787 12.65 ± 1.4 3.3 μM 19.25 ± 1.7 1.9 μM 

100 nM GW0742 + GSK3787 14.01 ± 1.3 3.4 μM 19.10 ± 2.3 1.9 μM 
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3.3.3 Acute exposure to high concentrations of glucose does not 

influence vascular contractility 

3.3.3.1 Aorta 

The exposure to 20 mM glucose concentration for 30 min does not influence the 

vascular contractility on aorta neither in Naïve or STZ-diabetic tissues as shown 

on Figure 3.8 below. 

 

Figure 3.8 Effects of acute exposure to high glucose on abdominal aorta contraction. Aorta 
rings from Naïve (A) and STZ-diabetic rats (B) were exposed to normal levels of glucose (NG=5 mM) 
or high levels of glucose (HG=20 mM). After 30 min incubation a PE dose-response curve was 
performed. Data are represented as mean ±SEM (n=9-13). Significant difference compared to NG 
was analysed by two-way ANOVA followed by Bonferroni’s post hoc test denoted by ns=non-
significance. 
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3.3.3.2 Mesenteric arteries 

Similarly, mesenteric arteries are not influenced by acute high concentrations of 

glucose either in Naïve or STZ-diabetic tissues, as shown on Figure 3.9 below. 

 

 

Figure 3.9 Effects of acute exposure to high glucose on mesenteric arteries contraction. 
Mesenteric artery rings from Naïve (A) and STZ-diabetic rats (B) were exposed to normal levels of 
glucose (NG=5 mM) or high levels of glucose (HG=20 mM). After 30 min incubation a PE dose-
response curve was performed. Data are represented as mean ±SEM (n=9-13). Significant 
difference compared to NG analysed by two-way ANOVA followed by Bonferroni’s post hoc test 
denoted by ns=non-significance. 
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Table 3.10 Emax and EC50 of abdominal aorta and mesenteric arteries from Naïve and STZ-
diabetic rats exposed to normal levels of glucose (NG= 5 mM) high levels of glucose (HG= 20 
mM) and contracted with PE. Emax is represented as mean ± SEM (n=9-13). Significant difference 
compared to NG was analysed by two-way ANOVA and followed by Bonferroni’s post hoc test.   

  Vehicle Naïve  Vehicle STZ 

 Treatment Emax (mN) EC50 Emax (mN) EC50 

Abdominal 

aorta 

NG 14.26 ± 1.0 102.2 nM 16.6 ± 1.2 84.4 nM 

HG 15.44 ± 1.0 110.1 nM 19.15± 1.5 212.1 nM 

Mesenteric 

arteries 

NG 14.14 ± 1.1 6.1 μM 17.18 ± 1.5 1.8 μM 

HG 13.73 ± 1.1 6.6 μM 18.17 ± 1.1 1.6 μM 

 
 

3.3.4 Role of PPARβ/δ on PI3K/Akt/eNOS pathway 

Previous results showed that the activation of PPARβ/δ reduces vascular 

contraction both in aorta and mesenteric arteries (Figure 3.2, Figure 3.3, Figure 

3.5, Figure 3.6). Next interest was understanding the molecular mechanism 

underlying this regulation and the differences, if any, between Naïve vs diabetic 

tissue as well as aorta vs mesenteric arteries. The regulation of the PI3K/Akt/eNOS 

pathway and the effects of high glucose concentrations were studied first. With that 

aim, aorta and mesenteric artery rings from Naïve and STZ-diabetic rats were 

incubated with different combinations of Insulin, LY29002 (PI3K inhibitor), and 

GW0742 at normal and high glucose concentrations. 
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3.3.4.1 Aorta 

Insulin significantly decreases the PE-induced contraction from 1 μM PE on Naïve 

aorta rings (Figure 3.10 A, D), while GW0742 does not have a significant effect 

(Figure 3.10 B, E); however, GW0742 reverses the effect of the Insulin when they 

are incubated together (Figure 3.10 C, D). Surprisingly, the PI3K inhibitor 

LY294002 enhances the effect of Insulin and GW0742 blocking the contraction of 

the artery (Figure 3.10), which is the opposite of the expected response where 

LY294002 inhibits dilation via PI3K/Akt/eNOS. 

Although the acute exposure to high glucose did not have an effect on aorta 

contraction per se (Figure 3.8) it enhaces the effect of the treatments in Naïve aorta 

rings (Figure 3.10). 
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Figure 3.10 PI3K/Akt/eNOS pathway in Naïve rat aorta. Naïve abdominal aorta rings were 
exposed to one of the following treatments: 0.01% DMSO (Vehicle); 1 U/mL Insulin; 1 μM LY29002; 
1 U/mL Insulin + 1 μM LY29002, 100 nM GW0742; 100 nM GW0742 + 1 μM LY29002; 1 U/mL Insulin 
+ 100 nM GW0742; 1 U/mL Insulin + 100 nM GW0742 + 1 μM LY29002. Same treatments were 
performed in normal glucose (NG) concentration of 5 mM and high glucose (HG) concentration of 20 
mM. After 30 min incubation a PE dose-response curve was performed. Data are represented as 
mean ±SEM (n=5-13). Significant difference compared to vehicle controls was analysed by two-way 
ANOVA followed by Bonferroni’s post hoc test denoted by ***=p<0.001, **=p<0.01, *=p<0.05, 
ns=non-significance. 
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Interestingly, insulin does not have an effect on PE-induced contraction of STZ-

diabetic aortic rings (Figure 3.11 A, D), however, it is significantly reduced by 

GW0742 (Figure 3.11 B-E). Similar to Naïve aorta rings, the co-incubation of insulin 

and GW0742 reverses any loss of contraction produced by GW0742 (Figure 3.11 

C, F). LY294002 reverses the effect of the GW072 to levels similar to control, as 

predicted (Figure 3.11 B, E), and alike in Naïve tissues, high glucose intensifies 

the effect of GW0742 (Figure 3.11. B, D, E, F). 
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Figure 3.11 PI3K/Akt/eNOS pathway in STZ-diabetic rat aorta. STZ-diabetic abdominal aorta 
rings were exposed to one of the following treatments: 0.01% DMSO (Vehicle); 1 U/mL Insulin; 1 μM 
LY29002; 1 U/mL Insulin + 1 μM LY29002, 100 nM GW0742; 100 nM GW0742 + 1 μM LY29002; 1 
U/mL Insulin + 100 nM GW0742; 1 U/mL Insulin + 100 nM GW0742 + 1 μM LY29002. Same 
treatments were performed in normal glucose (NG) concentration of 5 mM and high glucose (HG) 
concentration of 20 mM. After 30 min incubation a PE dose-response curve was performed. Data are 
represented as mean ±SEM (n=4-9). Significant difference compared to vehicle controls was 
analysed by two-way ANOVA followed by Bonferroni’s post hoc test denoted by ***=p<0.001, 
**=p<0.01, *=p<0.05, ns=non-significance. Significant difference GW0742 vs GW0742 + LY294002 
and Insulin + GW0742 vs Insulin + GW0742 + LY294002 was analysed by Bonferroni’s post hoc test 
denoted by ff=p<0.01, f=p<0.05. 
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Table 3.11 Emax and EC50 of abdominal aorta from Naïve and STZ-diabetic rats incubated with 
1 U/mL Insulin; 1 μM LY29002; 1 U/mL Insulin + 1 μM LY29002, 100 nM GW0742; 100 nM 
GW0742 + 1 μM LY29002; 1 U/mL Insulin + 100 nM GW0742; 1 U/mL Insulin + 100 nM GW0742 
+ 1 μM LY29002 in conditions of NG (5 mM) or HG (20 mM) and contracted with PE. Emax is 
represented as mean ± SEM (n=4-13). Significant difference compared to Vehicle controls was 
analysed by two-way ANOVA and followed by Bonferroni’s post hoc test denoted by * = p<0.05, 
**=P<0.01, ***= p<0.001.   

  Abdominal aorta 

  NG HG 

 Treatment Emax (mN) EC50 (nM) Emax (mN) EC50 (nM)  

Naïve  

Vehicle 14.26 ± 1.0 102.2  15.44 ± 1.0 110.1 

Insulin 11.05 ± 0.3* 163.7  10.51 ± 1.0** 214.5 

Insulin + LY294002 7.85 ± 0.5*** 1023.0  10.27 ± 1.9** 945.1 

GW0742 12.55 ± 1.3 109.9  12.62 ± 1.1 100.8 

GW0742 + LY294002 10.93 ± 0.7 300.9  12.66 ± 1.0 208.3 

Insulin + GW0742 14.05 ± 0.7 200.0  11.51 ± 1.4* 146.3 

Insulin + GW0742 + 

LY294002 

10.50 ± 0.9* 686.7  11.50 ± 2.2* 825.6 

STZ 

Vehicle 16.16 ± 1.2 94.4  19.15 ± 1.5 212.1 

Insulin 14.16 ± 1.7 134.5  16.33 ± 2.9 306.0 

Insulin + LY294002 15.89 ± 3.3 144.2  20.07 ± 3.6 937.8 

GW0742 10.15 ± 1.5*** 83.0  12.02 ± 1.4*** 250.1 

GW0742 + LY294002 13.84 ± 1.4 50.0  16.89 ± 1.8 115.0 

Insulin + GW0742 14.66 ± 1.3 235.9 14.02 ± 1.2* 247.8 

Insulin + GW0742 + 

LY294002 

16.12 ± 3.1 74.4 21.54 ± 3.4 486.0 
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3.3.4.2 Mesenteric arteries 

Insulin and GW0742 significantly reduce PE-induced contraction on Naïve 

mesenteric artery, which is partially blocked in the presence of LY294002 (Figure 

3.12 A, B, D, E). Surprisingly, the incubation of insulin and GW0742 together inhibit 

each other’s effect resulting in contractions similar to that of the Vehicle (Figure 

3.12 C, F). Strangely, the presence of LY294002 together with insulin and GW0742 

leads to a loss of contraction compared to Vehicle (Figure 3.12 C, F). 

Insulin but not GW0742 significantly reduces PE-induced contraction on STZ-

diabetic mesenteric artery, which again, is partially blocked by the presence of 

LY294002 at low glucose (Figure 3.13 A, B, D, E). Similar to Naïve mesenteric 

arteries, the presence of insulin and GW0742 together inhibit any effect of the 

insulin and leads to a contraction similar to Vehicle (Figure 3.13 C, F).  

High glucose does not affect the contraction of the mesenteric arteries from Naïve 

or STZ-diabetic tissues compared to normal glucose incubations, as shown in 

Figure 3.12 and Figure 3.13.  
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Figure 3.12 PI3K/Akt/eNOS pathway in Naïve rat mesenteric arteries. Naïve mesenteric artery 
rings were exposed to one of the following treatments: 0.01% DMSO (Vehicle); 1 U/mL Insulin; 1 μM 
LY29002; 1 U/mL Insulin + 1 μM LY29002, 100 nM GW0742; 100 nM GW0742 + 1 μM LY29002; 1 
U/mL Insulin + 100 nM GW0742; 1 U/mL Insulin + 100 nM GW0742 + 1 μM LY29002. Same 
treatments were performed in normal glucose (NG) concentration of 5 mM and high glucose (HG) 
concentration of 20 mM. After 30 min incubation a PE dose-response curve was performed. Data are 
represented as mean ±SEM (n=4-13). Significant difference compared to vehicle controls was 
analysed by two-way ANOVA followed by Bonferroni’s post hoc test denoted by ***=p<0.001, 
**=p<0.01, *=p<0.05, ns=non-significance. Significant difference Insulin + GW0742 vs Insulin + 
GW0742 + LY294002 was analysed by Bonferroni’s post hoc test denoted by fff=p<0.001, ff=p<0.01, 
f=p<0.05. 
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Figure 3.13 PI3K/Akt/eNOS pathway in STZ-diabetic rat mesenteric arteries. STZ-diabetic 
mesenteric artery rings were exposed to one of the following treatments: 0.01% DMSO (Vehicle); 1 
U/mL Insulin; 1 μM LY29002; 1 U/mL Insulin + 1 μM LY29002, 100 nM GW0742; 100 nM GW0742 
+ 1μM LY29002; 1 U/mL Insulin + 100 nM GW0742; 1 U/mL Insulin + 100 nM GW0742 + 1 μM 
LY29002. Same treatments were performed in normal glucose (NG) concentration of 5 mM and high 
glucose (HG) concentration of 20 mM. After 30 min incubation a PE dose-response curve was 
performed. Data are represented as mean ±SEM (n=4-9). Significant difference compared to vehicle 
controls was analysed by two-way ANOVA followed by Bonferroni’s post hoc test denoted by 
***=p<0.001, **=p<0.01, *=p<0.05, ns=non-significance.  
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Table 3.12 Emax and EC50 of mesenteric arteries from Naïve and STZ-diabetic rats incubated 
with 1 U/mL Insulin; 1 μM LY29002; 1 U/mL Insulin + 1 μM LY29002, 100 nM GW0742; 100 nM 
GW0742 + 1 μM LY29002; 1 U/mL Insulin + 100 nM GW0742; 1 U/mL Insulin + 100 nM GW0742 
+ 1 μM LY29002 in conditions of NG (5 mM) or HG (20 mM) and contracted with PE. Emax is 
represented as mean ± SEM (n=4-13). Significant difference compared to Vehicle controls was 
analysed by two-way ANOVA and followed by Bonferroni’s post hoc test denoted by * = p<0.05, 
**=P<0.01, ***= p<0.001.   

  Mesenteric arteries 

  NG HG 

 Treatment Emax (mN) EC50 (μM) Emax (mN) EC50 (μM) 

Naïve  

Vehicle 14.14 ±1.1 6.1 13.73 ± 1.1 6.6 

Insulin 10.23 ± 1.8** 8.2 9.34 ± 1.2*** 8.4 

Insulin + LY294002 10.73 ± 1.6 16.6 10.35 ± 1.3* 8.1 

GW0742 11.26 ± 1.0* 7.2 11.12 ± 0.8* 7.1 

GW0742 + LY294002 11.96 ± 1.2 8.5 12.23 ± 1.8 8.5 

Insulin + GW0742 16.84 ± 0.9 7.4 12.83 ± 1.0 8.8 

Insulin + GW0742 + 

LY294002 

10.31 ± 1.5** 21.5 10.07 ± 1.5** 19.6 

STZ 

Vehicle 17.18 ± 1.5 1.8 18.17 ± 1.6 1.6 

Insulin 9.87 ± 1.1*** 5.7 12.64 ± 1.7* 6.8 

Insulin + LY294002 12.51 ± 1.7* 4.3 13.26 ± 1.6* 7.0 

GW0742 15.01 ± 1.4 3.2 15.53 ±1.4 1.9 

GW0742 + LY294002 15.46 ± 1.4 2.8 15.45 ± 1.3 3.2 

Insulin + GW0742 15.97 ± 2.0 3.9 16.86 ± 2.2 3.7 

Insulin + GW0742 + 

LY294002 

17.05 ± 2.2 4.8 16.02 ± 1.7 7.2 
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3.3.5 Role of PPARβ/δ on RhoA/ROCK pathway 

The inhibition of the RhoA/ROCK pathway by PPARβ/δ was studied next. The 

drawback of using ROCK inhibitors is the lack of contraction of the vessels, making 

the investigation of a ROCK inhibitor difficult to determine directly. The approach 

taken here was to use a contractile agent that induced a non-RhoA mediated 

contractile response and measure the effects of GW0742 on tone. To achieve this, 

the tissues were incubated with the ROCK inhibitors Fasudil and Y27632 first and 

then contracted with U46619 or phenylephrine.  

3.3.5.1 Aorta 

The ROCK inhibitors Y27632 and Fasudil led to a loss of PE-mediated contraction 

in Naïve rat aorta (Figure 3.14 A). In contrast, ROCK inhibitors reduced U46619-

mediated contraction in Naïve rat aorta when incubated with Y27632 and Fasudil 

(Figure 3.14 B). STZ-diabetic rat aorta contraction in response to U46619 was 

significantly reduced by Fasudil and completely inhibited by Y27632 (Figure 3.14 

C). 

Essentially, the Figure 3.11 (B, C) shows that Fasudil significantly reduces the 

U46619-induced contraction both in Naïve and STZ-diabetic aorta rings, but leads 

to enough vascular tone to study the vasodilator effect of GW0742, therefore 

Fasudil was used for further experiments. 
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Figure 3.14 Change in tension induced by  A) phenylephrine, B) U46619 in naïve rat aorta, C) 
U46619 in STZ-diabetic rat thoracic aorta after incubation with 10 μM Y27632 and 10 μM 
Fasudil. Aorta rings were incubated with 0.01% DMSO (Vehicle), 10 μM Y27632 or 10 μM Fasudil 
for 30 min and a PE or U46619 dose-response curve was performed. Data are represented as mean 
± SEM (n=4-6). Significant difference compared to vehicle controls was analysed by two-way ANOVA 
followed by Bonferroni’s post hoc test and denoted by ***=p<0.001, **=p<0.01, *=p<0.05, ns = non-
significance. 
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Table 3.13 Emax and EC50 of thoracic aorta from Naïve and STZ-diabetic rats incubated with 10 
μM Y27632 or 10 μM Fasudil and contracted with PE and U46619. Emax is represented as mean 
± SEM (n=4-6). Significant difference compared to Vehicle controls was analysed by two-way 
ANOVA and followed by Bonferroni’s post hoc test denoted by **=p<0.01, *** = p<0.001.   

  Thoracic aorta 

  Naïve  STZ 

 Treatment Emax (g) EC50 (nM) Emax (g) EC50 (nM) 

PE  

Vehicle 0.44 ± 0.05 101.5 - - 

Y27632 0.06 ± 0.01*** 310.7 - - 

Fasudil 0.17 ± 0.06*** 276.4 - - 

U46619 

Vehicle 0.55 ± 0.07 19.0 0.81 ± 0.07 137.0 

Y27632 0.31 ± 0.04** 71.0 0.14 ± 0.03*** 644.6 

Fasudil 0.45 ± 0.09 105.1 0.45 ± 0.03*** - 

 

Aorta pre-contracted with EC80 U46619 was exposed to increasing concentrations 

of GW0742 resulting in a full relaxation of the vessel, which is significantly reduced 

in STZ-diabetic rat aorta (Figure 3.15 A). Fasudil significantly reduced the GW0742 

mediated dilation in naïve rat aorta (Figure 3.15 B), but not in STZ-diabetic rat aorta 

(Figure 3.15 C). 
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Figure 3.15 Dilation of Naïve and STZ-diabetic rat thoracic aorta to GW0742 following pre-
contraction to U46619. Rat aorta rings were incubated with 0.01% DMSO (Vehicle) or 10 μM Fasudil 
of 30 min, pre-contracted with EC80 U46619 and exposed to increasing concentrations of GW0742. 
Data are represented as mean ± SEM (n=4-13). Significant difference compared to vehicle controls 
was analysed by two-way ANOVA and followed by Bonferroni’s post hoc denoted by ***=p<0.001, 
*=p<0.05, ns= non-significance. 

 
 
 
 



 Chapter 3:  Non-genomic effects of PPARβ/δ 
 

103 
 

Table 3.14 Imax and IC50 of thoracic aorta from Naïve and STZ-diabetic rats incubated with 10 
μM Fasudil, pre-contracted with U46619 and relaxed with GW0742. Imax is represented as mean 
± SEM (n=4-13). Significant difference compared to Vehicle controls was analysed by two-way 
ANOVA and followed by Bonferroni’s post hoc test denoted by *=p<0.05, *** = p<0.001.   

 Thoracic aorta 

 Naïve  STZ 

Treatment Imax (%) IC50 Imax (%) IC50  

Vehicle -79.44 ± 4.5 17.2 μM -54.45 ± 8.6 - 

Fasudil -54.21 ± 3.7*** 65.9 μM -64.37 ± 8.4* - 

 
 

3.3.5.2 Mesenteric arteries 

Fasudil and Y22763 led to a loss of the U46619-induced contraction (Figure 3.16 

B, D), but only partially inhibited the PE-induced contraction (Figure 3.16 A, C). 

Same effects were observed on Naïve and STZ-diabetic mesenteric arteries. 

To be consistent with the experiments done in aorta, Fasudil was used to perform 

further experiments. However, since the ROCK inhibitors completely abolished any 

contraction produced by U46619 in mesenteric arteries, PE was used to contract 

the mesenteric arteries instead. It is worth pointing out that the minimum 

concentration of GW0742 used for the dilation of the vessels is 100-fold higher 

than the concentrations used in previous experiments, which might produce off 

target effects. To find out if the GW0742-induced dilation is an effect independent 

of PPARβ/δ activation one extra treatment with GSK3787 was included. Therefore, 

mesenteric arteries were incubated with Vehicle, Fasudil or GSK3787, pre-

contracted with EC80 PE and relaxed with increasing concentrations of GW0742. 

The Figure 3.17 A shows that GW0742 induces vascular dilation on Naïve and 

STZ-diabetic mesenteric arteries with no significant difference between them. This 

dilation is significantly reduced by Fasudil on STZ-diabetic tissues but not on Naïve 
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(Figure 3.17 B, C), and GSK3787 does not have any effect on GW0742-induced 

dilation (Figure 3.17 B, C). 

 

 

Figure 3.16 Change in tension induced by  A) phenylephrine, B) U46619 in naïve rat mesenteric 
artery, C) U46619 in STZ-diabetic rat mesenteric artery after incubation with 10 μM Y27632 
and 10 μM Fasudil. Mesenteric rings were incubated with 0.01% DMSO (Vehicle), 10 μM Y27632 
or 10 μM Fasudil for 30 min and a PE or U46619 dose-response curve was performed. Data are 
represented as mean ± SEM (n=5-6). Significant difference compared to vehicle controls was 
analysed by two-way ANOVA followed by Bonferroni’s post hoc test and denoted by ***=p<0.001, 
**=p<0.01, *=p<0.05, ns = non-significance. 
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Table 3.15 Emax and EC50 of mesenteric arteries from Naïve and STZ-diabetic rats incubated 
with 10 μM Y27632 or 10 μM Fasudil and contracted with PE and U46619. Emax is represented 
as mean ± SEM (n=5-6). Significant difference compared to Vehicle controls was analysed by two-
way ANOVA and followed by Bonferroni’s post hoc test denoted by *** = p<0.001 

  Mesenteric arteries 

  Naïve  STZ 

 Treatment Emax (mN) EC50 Emax (mN) EC50 

PE  

Vehicle 18.33 ± 2.8 3.5 μM 16.32 ± 1.2 2.5 μM 

Y27632 10.88 ± 1.4*** 8.2 μM 8.36 ± 1.1*** 6.9 μM 

Fasudil 10.34 ± 1.6*** 10.1 μM 8.60 ± 1.9*** 10.4 μM 

U46619 

Vehicle 7.21 ± 1.5 109.2 nM 5.63 ± 1.5 425.7 nM 

Y27632 0.60 ± 0.6*** 2.3 μM 0.52 ± 0.2*** 335.3 nM 

Fasudil 1.09 ± 0.3*** 1.3 μM 1.06 ± 0.2*** - 
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Figure 3.17  Dilation of Naïve and STZ-diabetic mesenteric arteries to GW0742 following pre-
contraction to PE. Rat mesenteric artery rings were incubated with 0.01% DMSO (Vehicle), 1 μM 
GSK3787 or 10 μM Fasudil of 30 min, pre-contracted with EC80 PE and exposed to increasing 
concentrations of GW0742. Data are represented as mean ± SEM (n=4). Significant difference 
compared to vehicle controls was analysed by two-way ANOVA and followed by Bonferroni’s post 
hoc denoted by *=p<0.05, ns= non-significance. 
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Table 3.16 Imax and IC50 of mesenteric arteries from Naïve and STZ-diabetic rats incubated with 
10 μM Fasudil or 1 μM GSK3787, pre-contracted with PE and relaxed with GW0742. Imax is 
represented as mean ± SEM (n=4). Significant difference compared to Vehicle controls was analysed 
by two-way ANOVA and followed by Bonferroni’s post hoc test denoted by *=p<0.05.   

 Mesenteric arteries 

 Naïve  STZ 

Treatment Imax (%) IC50  Imax (%) IC50  

Vehicle -60.28 ± 6.6 49.7 μM -77.59 ± 8.8 41.5 μM 

GSK3787 -56.00 ± 6.7 17.0 μM -73.06 ± 6.2 82.9 μM 

Fasudil -53.07 ± 15.3 - -41.47 ± 6.7* - 

 
 

3.3.6 Potassium channels 

In an attempt to do a brief study of the regulation of potassium channels by 

PPARβ/δ, aorta and mesenteric artery rings were pre-contracted with KPSS and 

then relaxed with increasing concentrations of GW0742. 

3.3.6.1 Aorta 

The relaxation in response to GW0742 in STZ-diabetic rat aorta was significantly 

reduced compared to Naïve control rat aorta, as shown on Figure 3.18 below.  
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Figure 3.18 Dilation of Naïve and STZ-diabetic rat thoracic aorta to GW0742 following pre-
contraction to high potassium solution (KPSS). Rat aorta rings pre-contracted with KPSS and 
exposed to increasing concentrations of GW0742. Data are represented as mean ± SEM (n=3). 
Significant difference compared to Naïve vehicle control was analysed by two-way ANOVA and 
followed by Bonferroni’s post hoc denoted by ***=p<0.001, *=p<0.05. 

 

3.3.6.2 Mesenteric arteries 

On the contrary to aorta, GW0742-induced dilation on Naïve mesenteric artery was 

significantly reduced compared to STZ-diabetic mesenteric arteries (Figure 3.19).  

 

Figure 3.19 Dilation of Naïve and STZ-diabetic rat mesenteric arteries to GW0742 following 
pre-contraction to high potassium solution (KPSS). Rat mesenteric artery rings were pre-
contracted with KPSS and exposed to increasing concentrations of GW0742. Data are represented 
as mean ± SEM (n=4). Significant difference compared to Naïve vehicle control was analysed by 
two-way ANOVA and followed by Bonferroni’s post hoc denoted by *=p<0.05. 



 Chapter 3:  Non-genomic effects of PPARβ/δ 
 

109 
 

Table 3.17 Imax and IC50 of thoracic aorta and mesenteric arteries from Naïve and STZ-diabetic 
rats pre-contracted with KPSS and relaxed with GW0742. Imax is represented as mean ± SEM 
(n=3-4). Significant difference compared to Vehicle controls was analysed by two-way ANOVA and 
followed by Bonferroni’s post hoc test denoted by *=p<0.05, ***=p<0.001.   
 

 Thoracic aorta Mesenteric artery 

Treatment Imax (%) IC50  Imax (%) IC50  

Vehicle Naive -39.32 ± 2.0 20.3 μM -22.18 ± 6.9 75.6 μM 

Vehicle STZ -20.69 ± 2.5*** 21.4 μM -41.92 ± 6.3* 21.7 μM 
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3.4 Discussion 

In this chapter further evidence that aorta and mesenteric arteries contraction is 

dysfunctional in STZ-diabetic rat model was provided, and it was shown that 

GW0742 significantly improves PE and U46619 mediated contraction. While 

similar results have previously been noted (Harrington et al. 2010, Jimenez et al. 

2010, Li et al. 2012), to our knowledge this is the first time to determine and publish 

that 100 nM GW0742 is the minimum concentration needed to perceive these 

beneficial results (Perez-Diaz et al. 2018).  

The effects of 100 nM GW0742 are non-genomic and PPARβ/δ-dependent, which 

has been proved by three facts: 1) the incubations were 30 min long, a time frame 

that is too short to allow for new genes to be induced, 2) the use of a concentration 

that is selective for PPARβ/δ (100 nM) (Sznaidman et al. 2003); 3) the selective 

PPARβ/δ antagonist GSK3787 blocked the effect of 100 nM GW0742.  

The incubation of aorta and mesenteric arteries in high glucose for 30 min did not 

have any effect in vascular contractility. The lack of effect of high glucose in STZ-

diabetic tissues is expected because the vessels from these animals were exposed 

to high glucose levels for over 14 days (see Table 3.4), therefore during the 

experiment the tissues were not exposed to an acute high glucose concentration 

but to an acute normal glucose concentration instead. All together suggests that 

the influence of high glucose to the impairment of contraction of STZ-diabetic 

vessels is the result of a prolonged exposure rather than punctual peaks of 

elevated glucose levels. 

There is also new evidence of the different mechanistic pathways used by different 

contraction agents that change with the type of vessel and health condition. PE-

induced contraction pathway is impaired in diabetic tissues, while U46619-induced 
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contraction is only affected in STZ-diabetic mesenteric arteries and not in aorta 

(Figure 3.1). On the other hand, PE induces contraction through the RhoA/ROCK 

pathway in aorta, since this contraction is abolished by the ROCK inhibitors, as 

shown in Figure 3.14 A and supported by previous studies (Budzyn et al. 2006, 

Hamblin et al. 2009). Same inhibitors prevent the U46619-induced contraction but 

only to some extent, confirming previous data showing that U46619 contracts using 

partially different contractile machinery to PE (Budzyn et al. 2006). Therefore, if the 

PE-contraction is dysfunctional in aorta STZ-diabetic tissue and this contraction is 

mainly mediated by the RhoA/ROCK pathway, it suggests that the impairment of 

the RhoA/ROCK pathway contributes the most to the dysfunction of the aorta 

contraction in diabetes. Same conclusion was achieved using a different approach 

in another in vivo study using insulin resistance obese rats, where the authors 

demonstrate that RhoA/ROCK pathway is activated in aorta and is involved in the 

increased systemic vascular resistance in hypertension (Kanda et al. 2006). 

On the contrary, and according to the results from this study, U46619 mainly 

signals via the RhoA/ROCK pathway to contract mesenteric arteries, while PE only 

partially utilizes this pathway to contract. Therefore, and following the same 

rationalising as before, if PE-contraction is dysfunctional in STZ-diabetic 

mesenteric arteries and it is only partially mediated by the RhoA/ROCK pathway, 

this suggest that other pathways such as PI3K/Akt/eNOS or potassium channels 

might have more relevance in the dysfunction of the mesenteric arteries in 

diabetes. The same hypothesis was suggested in a previous study where Y2763, 

the antagonist of ROCK1/2, partially inhibited the hyperreactivity of mesenteric 

mice arteries (Xie et al. 2006). However, RhoA/ROCK showed to be the main 

pathway contributing to the development of diabetes-associate hypertension in 

Goto-kakizaki rats, a model of diabetes type 2 (Rao et al. 2013). It is possible that 

different types of diabetes develop hypertension involving different pathways, 
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suggesting different treatments depending on the type of diabetes. More research 

is needed to answer this question.  

In a previous study Budzyn et al. (2006) described very similar findings where the 

RhoA/ROCK pathway contributes to contractile responses more in aorta than in 

mesenteric arteries from rat. Furthermore, responses of the aorta to PE were 

abolished by Rho-kinase inhibition and relatively reduced in mesenteric arteries 

and caused relatively weak attenuation of contractile responses to U46619 in aorta 

and mesenteric arteries. Equally, the authors concluded that RhoA/ROCK pathway 

has a major role in mediating contractile responses of larger conductance vessels, 

whereas its contribution is greatly diminished in small resistance vessels. 

After these findings, next step was to find out how insulin and PPARβ/δ regulates 

the different contraction pathways in every possible scenario, signifying health vs 

disease and aorta vs mesenteric arteries.                                                                                                                                                                                                   

3.4.1 Aorta 

3.4.1.1 PI3K/Akt/eNOS pathway  

This study shows that insulin has a relaxation effect on Naïve rat aorta, but not in 

STZ-diabetic rat aorta. Interestingly, the relaxation of Naïve rat aorta is not inhibited 

by the PI3K inhibitor LY294002, indicating that insulin is relaxing the vessel through 

another pathway, possibly via RhoA/ROCK. In the same line, Sandu et al. (2001) 

showed that insulin inhibits the RhoA/ROCK pathway in aorta SMCs from rats. 

Since this pathway is impaired in diabetic aorta, that can explain the loss of insulin-

induced vascular relaxation in diabetic tissue; however, more research is needed 

to confirm this hypothesis. 

PPARβ/δ significantly reduces aorta contraction in STZ-diabetic tissues and 

possibly Naïve tissues. Whereas the incubation with 100 nM GW0742 of Naïve 
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thoracic aorta rings mounted in an organ bath significantly reduce the contraction 

of the vessel, as shown in Figure 3.2 C, this effect is lost when the same treatment 

is used in abdominal aorta rings mounted in the myograph (Figure 3.4 A and Figure 

3.10 B). One study done with two different hypertension murine models showed 

region-specific differences between thoracic and abdominal aortic expression of 

several genes, including metalloproteinases and cathepsins (Ruddy et al. 2017). 

Although any study showing differences on the expression of PPARβ/δ between 

thoracic and abdominal aorta was found, Ruddy et al. (2017) showed a decrease 

on the expression of Timp1 on abdominal aorta, a gene that was reported to be 

regulated by PPARβ/δ (Adhikary et al. 2011, Khozoie et al. 2012). Another study 

showed a decrease on PPARγ expression on the perivascular adipose tissue 

surrounding abdominal rat aorta compared to perivascular adipose tissue from 

thoracic rat aorta (Padilla et al. 2013). All together suggests the possibility of a 

lower expression of PPARβ/δ in Naïve abdominal aorta which could explain the 

loss of dilation with GW0742, although further studies need to be done to confirm 

this hypothesis.  

However, the inhibition of STZ-diabetic aorta contraction by 100 nM GW0742 is 

consistent throughout all the experiments regardless the region of the aorta used. 

Therefore, it can safely be concluded that PPARβ/δ improves vascular dilation of 

at least STZ-diabetic aorta. Interestingly, the effect of PPARβ/δ on STZ-diabetic 

aorta is blocked by LY294002, an inhibitor of PI3K, indicating that in STZ-diabetic 

rat aorta PPARβ/δ causes vascular relaxation through the PI3K/Akt/eNOS, which 

agrees with previous studies (Jimenez et al. 2010). 

Surprisingly, the incubation of the vessel with insulin and GW0742 together reverse 

any beneficial effect that these drugs can have independently. Since they trigger 

two different pathways, it is possible that some sort of downstream interference 
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occurs that cannot be explained with the present data. Further experiments need 

to be done in order to further understand this phenomenon.  

The insulin-induced relaxation effect is lost on STZ-diabetic aorta; thus, it is 

tempting to consider the use of GW0742 for the treatment of hypertension in 

diabetes. However, the fact that the effect of GW072 is inhibited in the presence of 

insulin makes it infeasible as a therapy for type 1 diabetes. It would be interesting 

to find out if the same phenomenon is seen in a model of diabetes type 2, a type 

of diabetes that is not responsive to insulin, in which case PPARβ/δ might be good 

target for the treatment of T2DM-induced hypertension. 

Another observation that was very surprising is that LY294002 inhibits the 

contraction of the aorta on Naïve tissue. This is puzzling, since the initial hypothesis 

is that LY294002 inhibits PI3K blocking the downstream pathway and preventing 

the dilation of the vessel, therefore the opposite effect was expected. It has been 

described previously a dilatory effect of LY294002 both in aorta (Northcott et al. 

2002) and mesenteric arteries  (Northcott et al. 2004) in a rat model of spontaneous 

hypertension. The authors found that PI3K is overexpressed in the vessels of 

hypertensive rats, and they also associated PI3K with the activation of Ca2+ 

channels which would increase the intracellular concentration of Ca2+ in the 

vascular smooth muscle cells and contribute to the contraction of the vessel. In this 

scenario, the inhibition of PI3K by LY294002 would correct the enhanced 

contraction and relax the artery. However, in the model used in this study the 

dilatory effect of LY294002 is observed in the Naïve tissue, which does not fit with 

this explanation, and further investigations need to be done to fully explain this 

finding. 
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3.4.1.2 RhoA/ROCK pathway 

Direct pharmacological evidence of the effects of PPARβ/δ on inhibiting 

RhoA/ROCK mediated contraction has so far not been demonstrated possibly due 

to the complication of RhoA inhibition inducing a lack of contractile tone. Here a 

novel protocol was developed, which allowed the measurement of this response 

using a non-RhoA mediated contractile response. 

The vasodilatory response of U46619 pre-contracted aorta elicited by GW0742 

was significantly inhibited by Fasudil in Naïve but not in STZ-diabetic aorta rings, 

providing direct pharmacological evidence that GW0742 induces vasodilation 

mediated in part by the inhibition of RhoA/ROCK activity in Naïve rat contracted 

arteries but not in STZ. Additionally, because the presence of Fasudil in STZ-

diabetic aorta does not have any significant effect on GW0742-induced dilation, 

that provides further evidence that the RhoA/ROCK pathway is impaired in 

diabetes and explains why although GW0742 still dilates STZ-diabetic aorta, it is 

significantly reduced compared to Naïve tissues. 

It is worth noting that the maximum concentrations used in the GW0742-induced 

vasodilation are 300-fold higher than 100 nM, which might have off-target effects 

as reported in previous studies. Harrington et al. (2010) showed that the GW0742-

induced dilation of aorta using 30 µM GW0742 are partially regulated by PPARβ/δ, 

since they observed a decrease on the dilatory effect of GW0742 on PPARβ/δ-/- 

aorta. Unfortunately, from the experiments performed here it is not clear if the 

effects of GW0742 are exclusively PPARβ/δ-dependent and further experiments 

need to be done to clarify this point. 
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3.4.1.3 Potassium channels 

To investigate the contribution of potassium channels to GW0742-mediated 

dilation, the depolarization of the SMCs of the aorta was induced with high KPSS, 

which inhibited GW0742-induced depolarization. While GW0742-mediated dilation 

was inhibited in Naïve rat aorta pre-contracted with high KPSS, it was abolished in 

STZ-diabetic rat aorta, which indicates that GW0742-mediated dilation of aorta 

involves potassium channels more in the diabetic state. 

Again, from this experiment it is not clear whether the effect of GW0742 is mediated 

by PPARβ/δ or it is off-target, and extra experiments need to be done to clarify this 

question. 

3.4.2 Mesenteric arteries 

3.4.2.1 PI3K/Akt/eNOS pathway 

Insulin significantly decrease mesenteric arteries contraction both in health and 

disease. This contraction is only partially inhibited by LY294002, suggesting that 

insulin inhibits contraction not only through the PI3K/Akt/eNOS pathway but 

involving other mechanisms of action. Supporting this finding, it has been shown 

that insulin relaxes rat mesenteric arteries mediated by large-conductance Ca2+-

activated K+ channels (Iida et al. 2001). 

Similarly, PPARβ/δ also significantly reduces contraction in Naïve and STZ-

diabetic mesenteric arteries. It is worth noting that Figure 3.13 B does not show 

this inhibitory effect on STZ-diabetic artery and, although it was not possible to 

confirm the reason for this lack of effect, there is a high possibility that the GW0742 

used in this batch of experiments was off. Nevertheless, because most of the data 

show the inhibition of STZ-diabetic mesenteric artery contraction by GW0742 

which also agrees with the majority of the literature published, it was concluded 

that this result is an isolated phenomenon and that PPARβ/δ inhibits contraction 
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on STZ-diabetic mesenteric arteries. It was also found that PPARβ/δ inhibits 

mesenteric artery contraction in a PI3K/Akt/eNOS dependent manner, since it is 

inhibited by LY294002; however, the pathway used on STZ-diabetic mesenteric 

arteries remains unclear. 

Similar to the results obtained in aorta, the presence of GW0742 and Insulin at 

same time inhibit each other’s effects, which again, is a very surprising finding and 

cannot be explained with the current data shown in this study, further research is 

needed to explain this result. 

3.4.2.2 RhoA/ROCK pathway 

GW0742 induces dilation of PE pre-contracted Naïve and STZ-diabetic rat 

mesenteric arteries. This dilation is inhibited by Fasudil on STZ-diabetic tissues but 

not in Naïve rat tissues, suggesting that GW0742 induces dilation mediated by the 

RhoA/ROCK pathway more in STZ-diabetic than in Naïve rat mesenteric arteries.  

Interestingly, the GW0742 dilatory effect is not blocked in the presence of 

GSK3787, suggesting that this beneficial effect is PPARβ/δ-independent. This 

agrees with a previous study done by Harrington et al. (2010), where they did not 

find any significant difference on the dilatory effect of GW0742 on mesenteric 

arteries of wild control mice compared to PPARβ/δ-/- animals.  

3.4.2.3 Potassium channels 

The depolarization of the SMCs of the mesenteric arteries was induced with high 

KPSS which inhibited GW0742 induced depolarization. GW0742-mediated dilation 

was abolished in Naïve rat mesenteric arteries pre-contracted with high KPSS, but 

it was inhibited in STZ-diabetic rat aorta, which indicates that GW0742-mediated 

dilation of mesenteric artery involves potassium channels more in Naïve rat tissue. 
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3.4.3 Conclusion 

The evidence provided shows that PPARβ/δ inhibits contraction of aorta and 

mesenteric arteries from Naïve and Type 1 diabetic rat model. The impairment of 

the RhoA/ROCK pathway contributes the most to the dysfunctional contraction in 

aorta, while other pathways such as PI3K/Akt/eNOS or potassium channels have 

a more relevant role in the dysfunction of STZ-diabetic rat mesenteric arteries.  

In large systemic arteries such as aorta, GW0742 activates PPARβ/δ which will act 

through the PI3K/Akt/eNOS pathway to improve the dilation on STZ-diabetic 

vessel. GW0742 also improves the dilation through the RhoA/ROCK pathway in 

Naïve aorta and through potassium channels in STZ-diabetic aorta, whether this 

GW0742-dependent dilation is PPARβ/δ-mediated or it is an off target effect is still 

to be determined (Figure 3.20).  

In resistance arteries such as mesenteric arteries, GW0742 activates PPARβ/δ 

which inhibits the contraction through the PI3K/Akt/eNOS pathway in Naïve and 

possibly STZ-diabetic tissues. Additionally, GW0742 inhibits the RhoA/ROCK 

pathway on STZ-induced diabetes in a PPARβ/δ-independent manner and 

regulates the potassium channels in Naïve mesenteric arteries, although it is not 

known if the regulation of potassium channels is PPARβ/δ-dependent or an off-

target effect (Figure 3.21). 
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Figure 3.20 Main findings on GW0742-induced dilation of Naïve and STZ-diabetic aorta. A) 
GW0742 induces Naïve aorta dilation by inhibiting the RhoA/ROCK pathway. Whether this inhibition 
is PPARβ/δ-dependent or not is still to be confirmed. B) The RhoA/ROCK pathway is impaired in 
STZ-diabetic aorta. The activation of PPARβ/δ induces dilation through the PI3K/Akt/eNOS pathway. 
GW0742 also induces dilation through the regulation of K+ channels, whether PPARβ/δ is involved 
or not is to be confirmed. 
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Figure 3.21 Main findings on GW0742-induced dilation of Naïve and STZ-diabetic mesenteric 
arteries. A) PPARβ/δ induces Naïve mesenteric arteries dilation through PI3K/Akt/eNOS. GW0742 
induces dilation through K+ channels, not confirmed whether it is PPARβ/δ-dependent or not. B) The 
RhoA/ROCK pathway, PI3K/Akt/eNOS pathway and K+ channels are impaired in STZ-diabetic 
mesenteric arteries. The activation of PPARβ/δ possibly induces dilation through the PI3K/Akt/eNOS 
pathway, and GW0742 inhibits RhoA/ROCK pathway in a PPARβ/δ-independent manner. 
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In conclusion, this chapter provides with some clues of the mechanism underlying 

the beneficial effects of PPARβ/δ-activation as well as GW0742 off- target effects, 

and a deeper understanding of dilatory mechanism involved in diabetes, which can 

help in developing a better strategy for treating diabetes-induced hypertension.



 

 Chapter 4: PPARβ/δ molecular 
switch. 

4.1 Introduction 

Understanding how PPARβ/δ switches between induction and trans-repression 

mode of action and how this determines cellular function is of great interest and 

may provide new molecular targets for treating a variety of inflammation-dependent 

diseases, including atherosclerosis, diabetes, and cancer. Whether differences in 

endogenous and exogenous ligands induce slightly different genes in different cells 

is a great possibility, and one that has not been so far explored. The question that 

needs to be addressed is not whether activation leads to proliferation and cancer, 

but whether the type of agonist activation and the subsequent molecular control 

can be adjusted to place the cell into a non-proliferative and non-inflammatory state 

of gene expression. A parallel argument has been made on the cause of the side 

effects of glucocorticoids; the type of ligand determines whether the glucocorticoid 

receptor forms a homodimer, and the subsequent type of trans-repression and 

transcriptional control exerted leads to change in cellular function (Clark and Belvisi 

2012). 
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4.1.1 Hypothesis and objectives 

It is hypothesised that PPARβ/δ acts as a molecular switch between induction and 

trans-repression (Figure 4.1) and depending on which mechanism is triggered it 

will have pro- or anti-effects.  

To test this hypothesis the following will be done: 

1- Validate an experimental model where the PPARβ/δ molecular switch is 

active. This will be identified by the detection of pro- and anti-inflammatory 

effects after activation and/or blocking of PPARβ/δ. 

2- Characterize the PPARβ/δ molecular switch linking the induction and trans-

repression mode of action with the pro- or anti-inflammatory response of 

PPARβ/δ. 

 



 

 

Figure 4.1 Switch between induction and trans-repression mode of PPARβ/δ. The ligand activated response of PPARβ/δ can be either via induction or trans-repression 
depending on the pre-state of the receptor.  
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4.2 Validation of drug concentrations 

In pharmacology, the concentration of the drug used is preferably based on a dose-

response curve previously done in the same system as the actual experiment. 

However, considering the number of different drugs used and the small amount of 

tissue obtained per animal (especially pulmonary artery and bronchi), it was not 

feasible or moral to do one dose-response curve per tissue and per drug because 

of the large number of animals needed. Instead, a deep research in the literature 

was done to carefully choose an appropriate concentration. 

4.2.1 GW0742. 

GW0742 was used to study the regulation of inflammation by PPARβ/α in different 

human, murine and rat cell types. Treatment with 100 nM GW0742 supresses IFN-

γ and IL-12 family cytokines in human immune cells (Dunn et al. 2010). The same 

treatment in the LPS-stimulated murine cell line J44.A1 inhibited the production of 

TNF-α by direct inhibition of NF-κB transactivation (Zingarelli et al. 2010); similarly, 

primary hepatocytes from mice stimulated with IL-1β showed a significantly 

reduced transcription of TNF-α after treatment with 100 nM GW0742 (Shan et al. 

2008).  

Moreover, rat cardiomyocytes were activated with LPS and treated with different 

concentrations of GW0742 (0 to 100 nM), which inhibited the transcription of TNF-

α and the proteolysis of IκBα and IκBβ, preventing the translocation of NF-κB to 

the nucleus (Ding et al. 2006). In another study, the treatment with 50 nM GW0742 

protected rat cardiac myocytes cells from H2O2 oxidative stress, increasing the cell 

viability and inhibiting apoptosis (Barlaka et al. 2015). On the other side it was also 

shown that the treatment of IL-6 activated rat skeletal muscle cells with 100 nM 
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GW0742 increases the expression of the genes FOXO1, atrogin-1, MuRF1 

involved in the muscle wasting and responsible for atrophy (Castillero et al. 2013). 

4.2.2 L-165041 

L-165041 is another PPARβ/δ agonist widely used in research that uses human, 

murine and rat models. For example, it has been reported that high glucose 

produces adversary effects on endothelial cells (Quintela et al. 2014). ROS 

production by HUVEC incubated in high glucose (30 mM) is significantly reduced 

by PPARβ/α activation using 1 μM L-165041 (Quintela et al. 2014). Similarly, 

human embryonic kidney 293 (HEK293) cells incubated in high glucose 

significantly increased the IL-6 production, which was significantly attenuated by 

treatment with 1 μM L-165041 (Liang et al. 2011).  

The expression of IL-6 by H9c2 cells, a cell line of rat cardiomyoblasts, was 

induced with C-reactive protein. This production was again attenuated with the 

treatment of 1 μM L-165041 which also abolished the translocation of NF-κB to the 

nucleus (Liang et al. 2010). Furthermore, the incubation of rat VSMCs with 1 μM 

L-165041 significantly inhibited PDGF-induced cellular proliferation and migration 

(Lim et al. 2009). Additionally, the treatment LPS-stimulated rat astrocytes with 1 

μM L-165041 significantly decreases the expression of Cox2 (Astakhova et al. 

2015). 

4.2.3  GSK0660 

GSK0660, a PPARβ/δ antagonist, was extensively used on human, mouse and rat 

cells as well. Human skeletal muscle cells incubated with GW0742 increased the 

transcription of the PPARβ/δ target genes Pdk-4, Angptl-4 and Cpt-1, which was 

significantly repressed by the coincubation with 1 μΜ GSK0660 (Shearer et al. 

2008). Similarly, HUVECs treated with GW0742 showed an increment of Pdk-4 
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levels, which was again abolished by co-incubation with 1 μΜ GSK0660 (Quintela 

et al. 2014). 

C2C12 mouse myotubes treated with palmitate increase the synthesis of TNF-α, 

which is repressed by GW501516. The protective effect of GW501516 is abolished 

in the presence of 1 μM GSK0660 (Coll et al. 2010). Likewise, GW0742 prevents 

LPS-induced endothelial dysfunction as well as NO and ROS production in mouse 

aortic endothelial cells. These protective effects are inhibited by the co-incubation 

with 1 μM GSK0660. Additionally, the expression of the gene Ucp2 is increased in 

the presence of GW0742, which is repressed when these same endothelial cells 

are co-incubated with 1 μM GSK0660 (Toral et al. 2016). 

Same antagonist behaviour of GSK0660 was found in rats. The mRNA ppET-1 and 

p47phox upregulation induced by high glucose in rat aortic rings was supressed by 

GW0742, whose protective effects were inhibited by co-incubation with 1 μM 

GSK0660 (Quintela et al. 2012). In rat cardiac myocytes, the protective effect of 

GW0742 to H2O2 oxidative stress was abolished by 0.5 μΜ GW0660 (Barlaka et 

al. 2015). 

4.2.4 GSK3787 

Treatment with 1 μM GSK3787, another PPARβ/δ antagonist, effectively 

antagonized the GW0742-induced expression of the PPARβ/δ target genes Pdk-4 

and Ctp1 in human skeletal muscle cells (Shearer et al. 2010). Additionally, in 

another study using cancer cell lines treated with GW0742, the authors showed 

that 1 μM GSK3787 antagonizes the expression of the PPARβ/δ target genes 

Angptl-4 and Adrp (Palkar et al. 2010). 

An in vivo model of corneal damage in adult Sprague-Dawley rats showed an 

improvement on corneal scars after PPARβ/δ activation with GW501516, which 

was reversed by 1 μM GSK3787 (Gu et al. 2014). 
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4.2.5 1400W 

1400W is a potent and selective inhibitor of inducible nitric oxide synthase (iNOS). 

Left ventricular myocardium from senescence rats was induced by isoproterenol in 

vitro and nitric oxide was measured, which was significantly decreased by 

treatment with 100 μM 1400W (Birenbaum et al. 2008). 

In another study, alveolar macrophages (AM) were co-cultured with pulmonary 

microvascular endothelial cells (PMVEC) at an AM:PMVEC ratio of 3:1. The 

albumin leak under 3 ng/mL cytomix stimulation was measured and it was found 

to be inhibited by 100 μM 1400W (Farley et al. 2008). 

Based on the studies mentioned above, the concentrations chosen for the 

experiments in this study are the ones shown in the Table 4.1 below. 

 

Table 4.1 Concentrations of drugs used in Chapter 4 and publications using same 
concentrations 

Drug Concentration 
(μM) 

Publications 

GW0742 

 

0.1 
(Sznaidman et al. 2003, Ding et al. 2006, Shan et al. 2008, 
Dunn et al. 2010, Zingarelli et al. 2010, Castillero et al. 2013, 
Barlaka et al. 2015) 

L-165041 1 (Berger et al. 1999, Lim et al. 2009, Liang et al. 2010, Liang 
et al. 2011, Quintela et al. 2014, Astakhova et al. 2015) 

GSK3787 1 (Palkar et al. 2010, Shearer et al. 2010) 

GSK0660 1 (Shearer et al. 2008, Coll et al. 2010, Quintela et al. 2012, 
Quintela et al. 2014, Barlaka et al. 2015, Toral et al. 2016) 

1400W 100 (Birenbaum et al. 2008, Farley et al. 2008) 
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4.3 Methods 

4.3.1 Samples and treatments used 

Since PPARβ/δ is expressed and highly active in the lung (Di Paola et al. 2010, Li 

et al. 2012) and it is involved in the inflammatory response (Barish et al. 2008, Fan 

et al. 2008), pulmonary smooth muscle cells (PSMCs) as well as different lung 

tissues from rat (pulmonary artery, bronchi and parenchyma) were used as an 

experimental system. 

PSMCs were grown from Naïve rat pulmonary artery extracts, as explained in 

Chapter 2 Section 2.7, and incubated for 24 h under 5% CO2 at 37 oC with one of 

the treatments shown in the Table 4.2 below. The markers of inflammation IL-6 

and NO were measured after 24 h incubation as explained in Chapter 2. 

Pulmonary artery, bronchi and lung parenchyma from Naïve rats were dissected 

as explained in Chapter 2 Section 2.4, and immediately placed in a final volume of 

500 μL of DMEM containing 1% penicillin/streptomycin and one of the treatments 

shown in Table 4.2 below. Tissues were incubated in 5% CO2 at 37 oC, the 

inflammation biomarker NO was measured at 8 h, 20 h and 24 h in order to monitor 

the evolution of the inflammation on time, and IL-6 at 24 h incubation, as explained 

in Chapter 2 Sections 2.10 and 2.11 respectively. 
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Table 4.2 Treatments of tissues. Two different combinations of agonists and antagonists were used 
to confirm the results. 

 

Combination 1 Combination 2 

Vehicle 0.01% DMSO 0.01% DMSO 

LPS 1 μg/mL LPS 1 μg/mL LPS 

LPS + agonist 1 μg/mL LPS + 0.1 μM 

GW0742 

1 μg/mL LPS + 1 μM L-

165041 

LPS + antagonist 1 μg/mL LPS + 1 μM 

GSK3787 

1 μg/mL LPS + 1 μM 

GSK0660 

LPS + agonist + 

antagonist 

1 μg/mL LPS + 0.1 μM 

GW0742 + 1 μM GSK3787 

1 μg/mL LPS + 1 μM L-

165041 + 1 μM GSK0660 

LPS + 1400W 1 μg/mL LPS + 100 μM 

1400W  

1 μg/mL LPS + 100 μM 

1400W  
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4.4 Results. 

4.4.1 Inflammatory response regulated by PPARβ/δ in rat PSMCs 

LPS increased IL-6 production after 24h incubation, GW0742 does not have an 

effect and GSK0660 significantly decreases IL-6 production (Figure 4.2 A). The 

expression of iNOS, an enzyme that is induced in inflammation, was analysed by 

Western blot; however, as shown in Figure 4.2 B, the iNOS polyclonal antibody 

detects several bands. According to the manufacturer, the molecular weight of 

iNOS is 132 kDa (indicated with an arrow), but this information is not enough to 

conclude that this band corresponds to iNOS.  
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Figure 4.2 Regulation of the inflammatory response by PPARβ/δ in rat PSMCs. A) IL-6 released 
by rat PSMCs incubated for 24 h with different combinations of 1 µg/mL LPS, 100 nM GW0742 and 
1 µM GSK0660. Each experiment (n=3) was normalized with LPS treatment and the results are 
expressed as a fold change vs LPS. The significant difference between treatments was analysed by 
one-way ANOVA followed by Bonferroni post-hoc test and the data are presented as mean ± 
standard error of the mean. f=P<0.05 shows difference compared to LPS. B) Differences in iNOS 
expression after 24 h incubation (n=2) with the same treatments as before. The protein was not 
quantified and analysed because the uncertainty of knowing which band corresponds to iNOS.  
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4.4.2 Expression of PPARβ/δ in rat lung 

The expression of PPARβ/δ was measured in pulmonary artery (PA), bronchi and 

parenchyma. Among them, bronchi shows the lowest expression of PPARβ/δ and 

parenchyma shows an expression two-fold higher than PA (Figure 4.3). 

 

 

Figure 4.3 Expression of PPARβ/δ in pulmonary artery, bronchi and parenchyma. PPARβ/δ 
expression in three different tissues from rat lung was quantified by ELISA and normalized by the 
concentration of protein extracted (n=4). The data are presented as mean ± standard error of the 
mean. 
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4.4.3 Inflammatory response regulated by PPARβ/δ in rat lung 

The NO produced by pulmonary artery, bronchi and lung parenchyma was 

measured after 8 h, 20 h and 24 h of incubation. The Figure 4.4 shows that the 

effects of the treatments for all the tissues tested are greater after 24 h of 

incubation. An additional experiment was performed to compare 24 h with 48 h of 

incubation, but the vehicle showed high inflammation after 48 h indicating that 

another source of inflammation was affecting the tissues at this time point (data 

not shown). For the reasons exposed above, 24 h of incubation was selected for 

the subsequent experiments. 
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Figure 4.4 NO production by lung tissues over the time. A) Pulmonary artery (n=13), B) bronchi 
(n=9) and parenchyma (n=14) were dissected, cut into six pieces and incubated under six different 
treatments of different combinations of 1 µg/mL LPS, 100 nM GW0742, 1 µM GSK3787, 10 µM 
1400W; the NO production was measured at 8 h, 20 h and 24 h of incubation. Significant difference 
between treatments was analysed by two-way ANOVA followed by Bonferroni post-hoc test and the 
data are presented as mean ± standard error of the mean. *=P<0.05, **=P<0.01, ***=P<0.001 
compared with vehicle; f=P<0.05, ff=P<0.01, fff=P<0.001 compared with LPS; #=P<0.05 compared 
with LPS+GW0742. 
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4.4.3.1 Pulmonary artery. 

The pulmonary artery rings used for the time-line incubations were found to be very 

small to use for further experiments, for that reason the same experiment was 

repeated using bigger rings. However, since the amount of pulmonary artery is 

limited there was only enough tissue to obtain three rings per animal, which means 

that only two treatments plus vehicle can be performed per animal. NO production 

was measured after 24 h as shown in Figure 4.5 A. LPS, as expected, significantly 

increased NO production by 4-fold, the PPARβ/δ ligands GW0742 and GSK3787 

on their own do not have a significant effect on LPS-induced NO; surprisingly, the 

combination of GW0742 and GSK3787 significantly reduces NO production. 

In order to confirm this unexpected result, same experiment was repeated using L-

165041 as agonist and GSK0660 as antagonist with similar result (Figure 4.5 B), 

the co-incubation with the agonist-antagonist attenuates the LPS-induced NO 

production more effectively. 

Additionally, IL-6 was also measured as another inflammatory biomarker (Figure 

4.6). LPS increases IL-6 production by 10-fold, and the PPARβδ ligands GW0742, 

L-165041 and GSK0660 do not have a significant effect on their own. However, 

the antagonist GSK3787 significantly decreases IL-6 production by half, as well as 

the co-incubation with GW0742-GSK3787 or L-165041-GSK0660. 
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Figure 4.5 NO production by pulmonary artery. Rat pulmonary artery rings were treated with two 
combinations of PPARβ/δ agonist-antagonist and iNOS inhibitor 1400W: A) 100 nM GW0742 – 1 µM 
GSK3787 – 100 µM 1400W B) 1 µM L-165041 – 1 µM GSK0660 – 100 µM 1400W. NO production 
was measured after 24 h and normalized with LPS: A) The average of NO production in LPS was 
used for the normalization of the data and the number of samples per treatment is written at the top 
of the bar; B) each experiment was normalized with its own LPS treatment (n=9). Significant 
difference between treatments was analysed by one-way ANOVA followed by Bonferroni post-hoc 
test and the data are presented as mean ± standard error of the mean. ***=P<0.001 compared with 
vehicle; ff=P<0.01, fff=P<0.001 compared with LPS; #=P<0.05, ###=P<0.001 compared with 
LPS+GW0742. 

 



 Chapter 4:  PPARβ/δ molecular switch
  

138 
  

 

 

Figure 4.6 IL-6 production by pulmonary artery. Rat pulmonary artery rings were treated with two 
combinations of PPARβ/δ agonist-antagonist and iNOS inhibitor 1400W: A) 100 nM GW0742 – 1 µM 
GSK3787 – 100 µM 1400W  B) 1 µM L-165041 – 1 µM GSK0660– 100 µM 1400W. IL-6 production 
was measured after 24 h and normalized with LPS: A) The average of IL-6 production with LPS 
treatment was used for the normalization of the data and the number of samples per treatment is 
written at the top of the bar; B) each experiment was normalized with its own LPS treatment (n=9). 
Significant difference between treatments was analysed by one-way ANOVA followed by Bonferroni 
post-hoc test and the data are presented as mean ± standard error of the mean. ***=P<0.001 
compared with vehicle; ff=P<0.01, fff=P<0.001 compared with LPS. 
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4.4.3.2 Bronchi. 

NO production in bronchi shows a similar profile to pulmonary artery (Figure 4.7). 

LPS increases the production of NO 2- to 4-fold with LPS, which is decreased in 

the presence of the co-incubation with PAPRβ/δ agonist and antagonist, although 

this reduction showed not to be statistically significant. 

Similarly, LPS increases IL-6 production by 2 to 4-fold, but this increment is not 

significantly affected by the PAPRβ/δ ligands used (Figure 4.8). 
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Figure 4.7 NO production by bronchi. Rat bronchi rings were treated with two combinations of 
PPARβ/δ agonist-antagonist and iNOS inhibitor 1400W: A) 100 nM GW0742 – 1 µM GSK3787 – 
100 µM 1400W B) 1 µM L-165041 – 1 µM GSK0660– 100 µM 1400W. NO production was measured 
after 24 h and normalized with LPS: A) The average of NO production in LPS was used for the 
normalization of the data and the number of samples per treatment is written at the top of the bar; B) 
each experiment was normalized with its own LPS treatment (n=5). Significant difference between 
treatments was analysed by one-way ANOVA followed by Bonferroni post-hoc test and the data are 
presented as mean ± standard error of the mean. *=P<0.05, **=P<0.01, ***=P<0.001 compared with 
vehicle. 
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Figure 4.8 IL-6 production by bronchi. Rat bronchi rings were treated with two combinations of 
PPARβ/δ agonist-antagonist and iNOS inhibitor 1400W: A) 100 nM GW0742 – 1 µM GSK3787 – 
100 µM 1400W B) 1 µM L-165041 – 1 µM GSK0660 – 100 µM 1400W. IL-6 production was 
measured after 24 h and normalized with LPS: A) The average of IL-6 production with LPS treatment 
was used for the normalization of the data and the number of samples per treatment is written at the 
top of the bar; B) each experiment was normalized with its own LPS treatment (n=5). Significant 
difference between treatments was analysed by one-way ANOVA followed by Bonferroni post-hoc 
test and the data are presented as mean ± standard error of the mean. *=P<0.05, **=P<0.01, 
***=P<0.001 compared with vehicle. 
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4.4.3.3 Parenchyma.  

LPS increases NO production in parenchyma as well by 2-fold, as seen in Figure 

4.9. The PPARβ/δ ligands do not have any significantly effect on LPS-induced NO, 

although the same pattern of NO reduction when agonist and antagonist are 

present at the same time is followed. 

IL-6 is also increased in the presence of LPS by 3 to 4-fold. The PPARβ/δ ligands 

on their own do not have an effect, however the co-incubation with GW0742 and 

GSK3787 significantly reduces the LPS-induced IL-6 production by 1-fold. 
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Figure 4.9 NO production by parenchyma. Rat pieces of parenchyma were treated with two 
combinations of PPARβ/δ agonist-antagonist and iNOS inhibitor 1400W: A) 100 nM GW0742 – 1 µM 
GSK3787 – 100 µM 1400W (n=10) B) 1 µM L-165041 – 1 µM GSK0660 – 100 µM 1400W (n=7). 
NO production was measured after 24 h and each experiment was with its own LPS. Significant 
difference between treatments was analysed by one-way ANOVA followed by Bonferroni post-hoc 
test and the data are presented as mean ± standard error of the mean. *=P<0.05, **=P<0.01 
compared with vehicle. 
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Figure 4.10 IL-6 production by parenchyma. Rat parenchyma pieces were treated with two 
combinations of PPARβ/δ agonist-antagonist and iNOS inhibitor 1400W: A) 100 nM GW0742 – 1 µM 
GSK3787 – 100 µM 1400W B) 1 µM L-165041 – 1 µM GSK0660 – 100 µM 1400W. IL-6 production 
was measured after 24 h and normalized with LPS (n=8). Significant difference between treatments 
was analysed by one-way ANOVA followed by Bonferroni post-hoc test and the data are presented 
as mean ± standard error of the mean. *=P<0.05, **=P<0.01, ***=P<0.001 compared with vehicle; 
f=P<0.05, fff=P<0.001 compared with LPS. 
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4.4.4 Verification of the functioning PPARβ/δ molecular switch by 

co-immunoprecipitation 

To confirm that the PPARβ/δ switch is working in this specific model, the immune-

precipitation of PPARβ/δ together with the protein bound to it was attempted. The 

idea is to quantify RXR and NF-κB as markers of the induction and trans-repression 

mode of action respectively and observe how the ratio RXR:NF-κB changes with 

the treatment. If the hypothesis is true, there will be a shift of the ratio depending 

on the pro-inflammatory or anti-inflammatory state of PPARβ/δ. 

4.1.1.1 Covalent antibody immobilization in agarose beads 

The co-immunoprecipitation and relative quantification of the proteins bound to 

PPARβ/δ is a new approach that needs to be optimised. Two lysates of rat lung 

where loaded in a column containing the immobilized polyclonal anti-PPARβ/δ 

from Abcam. All the fractions obtained were run in a SDS-PAGE gel and silver 

stained to check for any immunoprecipitated protein (Figure 4.11 A). The profiles 

of the elution and wash fractions are clearly different, indicating that some proteins 

have been retained in the columns. The molecular weight of PPARβ/δ and RXR is 

50 kDa, and the strongest band in the elution fraction is slightly less than 50 kDa, 

which suggests that PPARβ/δ was successfully retained in the column and the 

eluted sample is enriched with PPARβ/δ and RXR. 

Next step was to identify and quantify PPARβ/δ, RXR and NF-kB by Western blot. 

Using the same anti-PPARβ/δ used in the column, one clear band of ~30 kDa and 

one faint band ~75 kDa were identified in the lysates L1 and L2 (Figure 4.11 B-1 

indicated with an arrow), both bands very different to the expected 50 kDa. To 

confirm this result, another polyclonal anti-PPARβ/δ was used (from Santacruz), 

which detected the same two bands, but this time the one at ~75 kDa appeared 

stronger (Figure 4.11 B-2 indicated with an arrow).  
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RXR and p-65 (the NF-κB subunit that physically binds to PPARβ/δ) were also 

identified. Figure 4.11 B-3 shows a band in the elution fraction E1 of ~50 kDa, as 

it would be expected if the PPARβ/δ co-immunoprecipitation had been successful, 

but no band was detected in the lysates L1 or L2. However, it is worth noting that 

the membrane was exposed to the super-signal ECL substrate for long time and it 

could be a random blot. On the other hand, p-65 appears in the flow-through and 

in the lysates (Figure 4.11 B-4), but not in the elution fractions. 
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Figure 4.11 Co-immunoprecipitation of PPARβ/δ using polyclonal anti-PPARβ/δ from Abcam 
in agarose beads. A) Silver stained SDS-PAGE gel of the fractions from the co-immunoprecipitation 
of two lung lysates from rat. M: marker, FT: flow-through, W1-2-3: washes 1-2-3, E1-2: elution 1-2; 
L1: lysate from lung 1; L2: lysate from lung 2.  B) Immunodetection by Western blot of (1) PPARβ/δ 
using anti-PPARβ/δ from Abcam; (2) PPARβ/δ using anti-PPARβ/δ from Santacruz, (3) RXR and (4) 
p-65.  



 Chapter 4:  PPARβ/δ molecular switch
  

148 
  

Same experiment was repeated using another immobilized polyclonal anti-

PPARβ/δ (from Santacruz). Lung lysate was loaded into the column and all the 

fractions were run in a SDS-PAGE gel for silver staining (Figure 4.12 A), which 

showed that the elution fraction profiles are again different from the washing 

fractions. The Western blot using the same anti-PPARβ/δ from Santacruz revealed 

one band in the flow-through and one band in the elution fraction of ~50 kDa 

(Figure 4.12 B), and the detection of PPARβ/δ using anti- PPARβ/δ from Abcam in 

the same membrane detected same band of ~50 KDa in the flow-through (Figure 

4.12 C), but none of them identified any protein in the lysate.  
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Figure 4.12 Co-immunoprecipitation of PPARβ/δ using polyclonal anti-PPARβ/δ from 
Santacruz in agarose beads. A) Silver stained SDS-PAGE gel of the fractions from the co-
immunoprecipitation of one lung lysate from rat. M: marker, L: lysate, FT: flow-through, W1-2-3: 
washes 1-2-3, E1-2-3: elution 1-2-3. B) Immunodetection by Western blot of PPARβ/δ using anti- 
PPARβ/δ from Santacruz and C) using anti- PPARβ/δ from Abcam. 
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Using the same column with the immobilized anti-PPARβ/δ from Santacruz, two 

rat PSMCs lysates samples of different treatments were compared, control vs LPS. 

Figure 4.13 A shows an increase of p-65 after 24 h incubation with LPS, as 

expected. Because the signal was very intense in the FT, it was possible that it 

was hiding a weaker signal in the elution fractions, so the FT fraction was physically 

removed. By doing this, two bands in the elution fractions were detected (Figure 

4.13 B), however the molecular weight of these bands are not the same as the one 

detected in the FT. The membrane was stripped and incubated with polyclonal anti-

PPARβ/δ, again excluding the FT (Figure 4.13 C) and same two bands appeared.  
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Figure 4.13 Co-immunoprecipitation of PPARβ/δ from rat PSMCs using polyclonal anti-
PPARβ/δ from Santacruz in agarose beads. Rat PSMCs were incubated for 24 h with DMEM 
(control) or with LPS, and the lysates were immunoprecipitated. A) Immunodetection of p-65 in all 
the fractions, B) Immunodetection of p-65 in Elution and Washing fractions. C) Immunodetection of 
PPARβ/δ in Elution and Washing fractions.  

 

 

 

 

 

 



 Chapter 4:  PPARβ/δ molecular switch
  

152 
  

Two new columns were done using fresh polyclonal anti-PPARβ/δ antibody from 

Santacruz. The two slurries obtained after the incubation of the antibody with the 

activated resin were compared to an aliquot of the antibody in an SDS-PAGE gel 

to check the efficiency of the immobilization of the antibody in the columns (Figure 

4.14 A). Also, Western blot conditions for immunodetection of PPARβ/δ, RXRα and 

p-65 were optimised (Figure 4.14 B, C).  
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Figure 4.14 Validation of columns and antibodies. A) Verification of the efficiency of the 
immobilization of the polyclonal anti-PPARβ/δ in the columns. B) Optimization of the conditions of 
the immunodetection of PPARβ/δ, C) RXRα and p-65 in Western blot. The samples used were 
lysates of PSMCs control and treated with LPS. 
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Once it was verified that the anti-PPARβ/δ has successfully bound to the column 

and the conditions of the antibodies have been optimised for Western blot, a new 

attempt of Co-IP was done. Two cell lysates treated with LPS or LPS+GW0742 

were loaded into these two columns, and the fractions E1 and FT were compared 

in a SDS-PAGE gel. The membrane was used for the detection of p-65 (Figure 

4.15 A), PPARβ/δ (Figure 4.15 B) and RXR (Figure 4.15 C). In all cases two bands 

of ~50 kDa and ~65 kDa were detected in the E1 fraction. It is worth saying that 

after each stripping step the membrane was incubated with ECL substrate to make 

sure that all the protein has been removed from the membrane before adding a 

new primary antibody. Since all three antibodies detect the same two bands in the 

E1 fraction, the membrane was stripped once more, blocked and incubated only 

with the secondary antibody to check for non-specific bindings (Figure 4.15 D), and 

the same two bands appeared. 
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Figure 4.15 Co-immunoprecipitation in agarose beads of PPARβ/δ from lysates of PSMCs 
treated with LPS and LPS+GW0742. Fractions E1 and FT were run in a SDS-GEL followed by 
immunodetection of p-65 (A), PPARβ/δ (B) and RXR (C). D is the same membrane incubated only 
with the secondary antibody. M: marker, E1: elution fraction 1, FT: flow through.  
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One more attempt was done using lysates of cells incubated with all different 

treatments (vehicle, LPS, LPS+GW0742, LPS+GSK0660, 

LPS+GW0742+GSK0660). E1 fractions of each lysate were compared in a SDS-

PAGE gel, together with the marker and a positive control, which is one aliquot of 

the lysate (Figure 4.16). Additionally, the W3 fractions were run in parallel in 

another SDS-PAGE. As before, the membrane was used for the immunodetection 

of PPARβ/δ, p-65 and RXR, and the same two bands of ~50 kDa and ~65 kDa 

were detected in all E1 fractions, which do not match with the band detected in the 

positive control of each antibody. It is worth noting that the positive control of the 

membrane incubated with anti-PPARβ/δ detects one single band at ~80 kDa 

(Figure 4.16 C).  
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Figure 4.16 Co-immunoprecipitation of PPARβ/δ from lysates of PSMCs in agarose beads. 
PSMCs were incubated for 24 h with different treatments (Vehicle, LPS, LPS+GW0742, 
LPS+GSK0660, LPS+GW0742+GSK0660), lysed and used for the co-immunoprecipitation of 
PPARβ/δ. The elutions and washes of each lysate were run in parallel gels together with the positive 
control (an aliquot of the lysate) and a marker. Membranes containing the elutions (1) and washes 
(2) of the samples were used for the immunodetection of PPARβ/δ (A), p-65 (B) and RXR (C).  
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An additional experiment was conducted to find out whether the two bands 

detected in the elution fractions are anti-PPARβ/δ antibodies that eluted from the 

column or something else. A new monoclonal anti-PPARβ/δ raised in mouse was 

immobilized in the column, which cannot be detected by the anti-rabbit antibody 

used for the detection of RXR, PPARβ/δ and p-65. As before, it was verified that 

the monoclonal antibody was successfully bound to the column (Figure 4.17 A); 

then, a lysate of rat PA treated with LPS+GSK3787 was loaded into the column. 

The three elutions, three washes, and flow-through fractions were run in a SDS-

PAGE gel, together with the marker and an aliquot of the cell lysate as a positive 

control. The membrane was incubated with anti-p-65, which was detected in the 

positive control and FT (Figure 4.17 B). The membrane was stripped and incubated 

with RXR, identifying two bands again in the positive control and FT (Figure 4.17 

C). To check whether the band at ~65 kDa was detected by anti-RXR antibody or 

is the result of an unsuccessful stripping, the membrane was stripped again and 

incubated only with the secondary antibody (Figure 4.17 D). Same band at ~65 

kDa appears, indicating that anti-p-65 cannot be removed with the mild stripping 

protocol used. Finally, the same membrane was incubated with anti-PPARβ/δ, 

detecting a new band at ~90 kDa again, in the positive control and FT (Figure 4.17 

E).  

None of the proteins of interest are detected in the elution fractions, indicating that 

the PPARβ/δ is not being retained in the column and this method was discarded. 
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Figure 4.17 Co-immunoprecipitation of PPARβ/δ from pulmonary artery using monoclonal 
anti-PPARβ/δ antibody in agarose beads. A) Verification of the efficiency of the immobilization of 
the monoclonal anti-PPARβ/δ in the columns. B) Immunodetection by Western blot of p-65, C) RXR, 
E) PPARβ/δ of the fractions of the immunoprecipitation. D) Membrane incubated with secondary 
antibody to test how well the primary antibodies have been removed from the membrane after 
stripping. +VE: positive control, FT: flow-through, W1-2-3: washing fractions, E1-2-3: elution 
fractions.             
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4.4.4.1 Antibody binding protein A/G sepharose beads. 

Three ring lysates of pulmonary artery treated as vehicle, LPS+GW0742 and 

LPS+GSK3787 were used for the co-immunoprecipitation of PPARβ/δ using 

protein A/G sepharose beads. The flow through and elutions resulted were run in 

an SDS-PAGE gel together with the marker, one positive control (an aliquot of 

pulmonary artery lysate) and one negative control (elution of the lysate buffer 

without sample). The anti-RXR antibody detects one band of ~60 kDa in the 

positive control and FT, and a higher band of ~70 kDa in all the elutions (Figure 

4.18 A). The anti-p65 antibody detects a band of ~70 kDa in the positive control, 

elutions and FT fractions (Figure 4.18 B).  It is worth noting that both antibodies 

used detect the same band in the elution fractions, including the elution of the 

negative control, indicating that the antibodies are detecting something coming 

from the column rather than from the sample. 
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Figure 4.18 Co-immunoprecipitation of PPARβ/δ from pulmonary artery using monoclonal 
anti-PPARβ/δ antibody and protein A/G sepharose beads. Rat PA rings were treated with vehicle, 
LPS+GW0742 or LPS+GSK3787 for 24 h and lysed. The lysates were used for the co-
immunoprecipitation of PPARβ/δ using protein A/G sepharose beads. The elution fractions, flow 
through fractions, positive control (PA lysate) and negative controls (lysate buffer) were run in an 
SDS-PAGE gel and the membrane was use for the immunodetection of A) RXR and B) p-65. 
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In order to check if the pulmonary artery lysate is somehow incompatible or is 

affected by the buffers used in this method, a commercial nuclear extract 

suggested by the manufacturer as a positive control of the monoclonal anti-

PPARβ/δ was used for the co-immunoprecipitation of PPARβ/δ. Additionally, a 

commercial cell lysate as a positive control for Western blot was also used. The 

elution and flow through fractions resulted from the co-immunoprecipitation of the 

nuclear extract, an aliquot of the nuclear extract, and an aliquot of the cell lysate 

were run in a SDS-PAGE gel. The incubation of the membrane with polyclonal anti-

PPARβ/δ showed a band in the elution fraction of ~70 kDa, but no bands in the FT 

or positive controls (Figure 4.19 A). Anti-RXR shows same band of ~70 kDa in the 

elution fraction and a band of ~60 kDa in the flow through and the nuclear extract, 

but nothing was detected in the cell lysate (Figure 4.19 B). Similarly, anti-p65 

shows a band of ~70 kDa in the elution and flow through fraction, as well as the 

nuclear extract. 
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Figure 4.19 Co-immunoprecipitation of PPARβ/δ from the nuclear extract positive control 
using monoclonal anti-PPARβ/δ antibody and protein A/G sepharose beads. The commercial 
monoclonal anti-PPARβ/δ positive control was used to co-immunoprecipitate PPARβ/δ. The elution 
and flow through fractions were loaded into an SDS-PAGE gel together with an aliquot of the nuclear 
extract as a positive control, and an aliquot of a commercial cell lysate as another positive control. 
The membrane was incubated with A) polyclonal PPARβ/δ, B) anti-RXR and C) p-65, and the 
proteins were detected by ECL detection. 
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Because PPARβ/δ was not detected in any of the positive controls, the monoclonal 

anti-PPARβ/δ was used to detect the protein. This antibody is the same used in 

the column, consequently the secondary antibody will detect the anti-PPARβ/δ 

antibody eluted from the beads. For that reason, the membrane was stripped and 

incubated with secondary antibody first, showing a band in the eluted fraction of 

~50 kDa, which corresponds to the eluted monoclonal anti-PPARβ/δ (Figure 4.20 

A). The membrane was stripped once more and incubated with monoclonal anti-

PPARβ/δ (Figure 4.20 B). The idea is to identify and remove the signal of the 

secondary antibody incubation which corresponds to the eluted antibody from the 

beads from the signal of the monoclonal anti-PPARβ/δ, which corresponds to the 

actual PPARβ/δ protein. However, as seen in Figure 4.20, there are no differences 

between them, and PPARβ/δ was still not detected in any of the positive controls 

or FT.  
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Figure 4.20 Immunodetection of PPARβ/δ in the nuclear extract using polyclonal anti-
PPARβ/δ antibody. A) The same membrane was stripped and incubated with A) Anti-mouse 
secondary antibody. B) The membrane was stripped once more and incubated with polyclonal anti-
PPAR 

 
 

As last attempt, two different amounts of the positive controls nuclear extract and 

cell lysate were run in two SDS-PAGE gels (25 µg and 50 μg). Each membrane 

was treated with two different dilutions of the anti-PPARβ/δ antibody, and no band 

was detected in any membrane (data not shown). As a result, it was concluded 

that the anti-PPARβ/δ antibodies are not suitable antibodies for this type of 

experiments. 
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4.4.5 Verification of the functioning PPARβ/δ molecular switch by 

RT-qPCR 

A different approach was design for the detection of the PPARβ/δ molecular switch. 

Instead of identifying which protein is bound to PPARβ/δ, marker genes for the 

induction and trans-repression mode of action were chosen and its transcription or 

repression was linked with the pro- and anti-inflammatory responses of the tissues 

tested.  

To do that, RNA was extracted from tissues and converted to cDNA as described 

in Chapter 2.13. Standard curves of the target genes comparing SYBER GREEN 

and Taqman qRT-PCR were conducted to check the performance of the assay - a 

slope of the standard curve of -3.3 and an efficiency of 90-110% is considered 

optimal. The Table 4.3 below shows the slope and efficiency for each gene using 

SYBR GREEN reagents, and Table 4.4 shows the same data for Taqman in 

pulmonary artery, bronchi and parenchyma. Ppfia-1 and Sema7a did not amplify 

with SYBR GREEN and therefore these genes were not tested with Taqman. 

The standard curves performed with Taqman are closer to the optimum values 

than SYBER GREEN, thus all the subsequent qRT-PCR experiments were run 

using Taqman. 
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Table 4.3 Primers used for SYBR GREEN qRT-PCR. Standard curves were run with cDNA obtained from 
pulmonary artery to check for gene amplification and performance. 

Gene Primers sequence RSq Slope 
Efficiency 

(%) 

β-actin 
S (5’ to 3’): GCCCTAGACTTCGAGCAAGA 
AS (5’ to 3’): TCAGGCAGCTCATAGCTCTTC 

0.970 -2.669 137.0 

Pdk-4 
S (5’ to 3’): CGCTTAGTGAACACCCCTTC 
AS (5’ to 3’): TCCACTAAATCCATCAGGCTCT 

0.995 -3.431 95.6 

Angptl-4 
S (5’ to 3’): TCCGAGGGGACCTTAACTGT 
AS (5’ to 3’): ATTGGAATGGCTGCAGGT 

0.984 -2.862 123.6 

Nos2 
S (5’ to 3’): ACCATGGAGCATCCCAAGT 
AS (5’ to 3’): CAGCGCATACCACTTCAGC 

0.939 -1.803 258.6 

Serpine-1 
S (5’ to 3’): AGAGCCAATCACAAGGCACT 
AS (5’ to 3’): GAGGCAAGTGAGGGCTGA 

0.997 -2.561 145.7 

Timp-1 
S (5’ to 3’): CAGCAAAAGGCCTTCGTAAA 
AS (5’ to 3’): TGGCTGAACAGGGAAACACT 

0.990 -2.834 125.4 

Ppfia-1 
S (5’ to 3’): ACAAGGAGTCCCTCGTTGAG 
AS (5’ to 3’): TCAAGTTAGAGATCTCAGCCATC 

N/A N/A N/A 

Sema7a 
S (5’ to 3’): CTATGGCGTTTTCTCCAACC 
AS (5’ to 3’): GTCAATGTCACCAAGCGAATAC 

N/A N/A N/A 

 

 

Table 4.4 Primers used for Taqman qRT-PCR. Standard curves were run with cDNA obtained from 
pulmonary artery, bronchi and parenchyma to check for gene amplification and performance. 

Gene Assay ID Tissue RSq Slope 
Efficiency 

(%) 

β-actin Rn00667869_m1 
Pulmonary artery 
Bronchi 
Parenchyma 

0.994 
0.984 
0.998 

-3.304 
-3.999 
-3.440 

100.8 
77.9 
95.3 

Pdk-4 Rn00585577_m1 
Pulmonary artery 
Bronchi 
Parenchyma 

0.983 
0.966 
0.991 

-3.039 
-1.964 
-3.850 

113.3 
223.0 
81.9 

Angptl-4 Rn015228817_m1 
Pulmonary artery 
Bronchi 
Parenchyma 

0.998 
N/A 

0.988 

-3.997 
N/A 

-3.303 

77.9 
N/A 

100.8 

Nos2 Rn00561646_m1 
Pulmonary artery 
Bronchi 
Parenchyma 

0.997 
0.990 
0.995 

-3.763 
-3.402 
-3.436 

84.4 
96.8 
95.5 

Serpine-1 Rn01481341_m1 
Pulmonary artery 
Bronchi 
Parenchyma 

0.943 
0.984 
0.995 

-3.399 
-3.480 
-3.434 

96.9 
93.8 
95.5 

Timp-1 Rn01430873_m1 
Pulmonary artery 
Bronchi 
Parenchyma 

0.990 
0.923 
0.994 

-4.155 
-3.144 
-3.268 

74.0 
108.0 
102.3 

Id2 Rn01495280_m1 
Pulmonary artery 
Bronchi 
Parenchyma 

0.877 
0.803 
0.983 

-3.466 
-2.416 
-3.407 

94.3 
159.4 
96.6 
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4.4.5.1 qRT-PCR pulmonary artery 

Pdk-4 and Angptl-4 are genes known to be expressed in the induction mode of 

action of PPARβ/δ (Khozoie et al. 2012, Adhikary et al. 2015, Klingler et al. 2016), 

therefore they were chosen as markers for this mechanism of action. Figure 4.21 

A and B shows a 6-fold significant increase of the transcription of Pdk-4 and Angptl-

4 in the presence of GW0742, which is inhibited by the antagonist GSK3787.  

Timp-1 and Serpine-1 are two target genes of NF-κB whose expression is activated 

by LPS (Schreiber et al. 2006) and also showed to be regulated by PPARβ/δ 

(Khozoie et al. 2012), therefore they were chosen as marker genes of the PPARβ/δ 

trans-repression mode of action through NF-κB.  

As expected, the transcription of Timp-1 is increased 1-fold by LPS in pulmonary 

artery, (Figure 4.21 C), and the agonist-activation of PPARβ/δ blocks the 

transcription by 4-fold compared to LPS. Interestingly, the treatment with 

LPS+GW0742+GSK3787 decreases the transcription of Timp-1 to the same level 

as the treatment with LPS+GW0742. The one-way ANOVA statistical analysis 

showed significant differences between treatments, and the post-hoc test showed 

a borderline significant difference between LPS vs LPS+GW with a p-value=0.0556 

and LPS vs LPS+GW+GSK p-value=0.0617. 

Serpine-1 shows the same transcription profile as Timp-1, LPS increases the 

transcription and GW0742 inhibits the transcription by 3-fold compared to LPS, 

although the differences between treatments are not significantly different (Figure 

4.21 D). 
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Figure 4.21 Expression of genes regulated by PPARβ/δ in pulmonary artery. The expression 
of different PPARβ/δ target genes was measured after 24 h incubation under five different treatments: 
vehicle (0.01% DMSO); 1 µg/mL LPS; 1 µg/mL LPS + 100 nM GW0742; 1 µg/mL LPS + 1 µM 
GSK3787; and 1 µg/mL LPS + 100 nM GW0742 + 1 µM GSK3787 (n=4-5). Relative quantitation 
was calculated with the comparative CtΔΔ method and normalized against β-actin as an endogenous 
control. Significant difference between treatments was analysed by one-way ANOVA followed by 
Bonferroni post-hoc test and the data are presented as mean ± standard error of the mean. 
***=P<0.001 and *=P<0.05 compared with vehicle; fff=P<0.001 and ff=P<0.01 compared with LPS; 
###=P<0.001, ##=P<0.01 and #=P<0.05 compared with LPS+GW0742. 
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Id2 is a target gene of Bcl-6 (Sandhu et al. 2012) which is induced by LPS (Wang 

et al. 2011) and is also regulated by PPARβ/δ (Khozoie et al. 2012), therefore it 

was chosen as a marker of the PPARβ/δ trans-repression mode of action trough 

Bcl-6. The Figure 4.21 E shows that LPS does not induced the expression of Id2 

in pulmonary artery, and similarly its expression is not affected by the PPARβ/δ 

ligands. 

The expression of Nos2, the gene that encodes for iNOS, is significantly increased 

by LPS, and its expression is inhibited by GW0742 (Figure 4.21 F). Surprisingly, 

the treatment LPS+GW0742+GSK3787 reduces the expression of Nos2 to levels 

similar to the treatment LPS+GW0742. 

4.4.5.2 qRT-PCR bronchi 

Similar to pulmonary artery samples, GW0742 significantly increased the 

expression of Pdk-4 by ~2.5-fold and the presence of GSK3787 inhibited its 

expression (Figure 4.22 A). Interestingly, Angptl-4 did not amplify in bronchi 

samples and the expression of Timp-1, Serpine-1 and Id2 showed not to be 

regulated by the treatments (Figure 4.22 B, C and D). 

The transcription of Nos2 is significantly increased by LPS, as expected. 

Surprisingly, GW0742 significantly increases Nos2 expression compared to LPS, 

and the presence of GSK3787 significantly reduces the transcription of Nos2 

compared to LPS+GW0742, although it is still significantly higher than control 

(Figure 4.22 E). 
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Figure 4.22 Expression of genes regulated by PPARβ/δ in bronchi. The expression of different 
PPARβ/δ target genes was measured after 24 h incubation under five different treatments: vehicle 
(0.01% DMSO); 1 µg/mL LPS; 1 µg/mL LPS + 100 nM GW0742; 1 µg/mL LPS + 1 µM GSK3787; 
and 1 µg/mL LPS + 100 nM GW0742 + 1 µM GSK3787 (n=4-5). Relative quantitation was calculated 
with the comparative CtΔΔ method and normalized against β-actin as an endogenous control. 
Significant difference between treatments was analysed by one-way ANOVA followed by Bonferroni 
post-hoc test and the data are presented as mean ± standard error of the mean. ****=P<0.0001, 
***=P<0.001, **=P<0.01, *=P<0.05 compared with vehicle; ffff=P<0.0001, f=P<0.05 compared with 
LPS; ###=P<0.001, ##=P<0.01 and #=P<0.05 compared with LPS+GW0742. 
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4.4.5.3 qRT-PCR parenchyma 

Interestingly, the expression of the marker genes tested are affected by the 

PPARβ/δ ligands in lung parenchyma (Figure 4.23 A).  

The expression of Nos2 is significantly increased by LPS, but again, it is not 

regulated by PPARβ/δ ligands (Figure 4.23 E). 
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Figure 4.23 Expression of genes regulated by PPARβ/δ in parenchyma. The expression of 
different PPARβ/δ target genes was measured after 24 h incubation under five different treatments: 
vehicle (0.01% DMSO); 1 µg/mL LPS; 1 µg/mL LPS + 100 nM GW0742; 1 µg/mL LPS + 1 µM 
GSK3787; and 1 µg/mL LPS + 100 nM GW0742 + 1 µM GSK3787 (n=4-5). Relative quantitation 
was calculated with the comparative CtΔΔ method and normalized against β-actin as an endogenous 
control. Significant difference between treatments was analysed by one-way ANOVA followed by 
Bonferroni post-hoc test and the data are presented as mean ± standard error of the mean. *=P<0.05 
compared with vehicle. 
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4.5 Discussion. 

This chapter was designed to further understand the PPARβ/δ molecular switch 

between induction and trans-repression, so the first thing to do was to establish a 

model where this induction/trans-repression switch is occurring. 

The first attempt was using PSMCs, since these cells are known to express 

PPARβ/δ (Li et al. 2012, Liu et al. 2013).  The inflammation of the cells was induced 

by LPS, however PPARβ/δ did not show any regulation of the inflammation and 

therefore PSMCs were discarded as a suitable model. 

Next focus was on lungs because it has been shown that PPARβ/δ is highly 

expressed in this organ (Huang et al. 2007, Girroir et al. 2008, Bao et al. 2014). 

However, the lung is a complex structure composed of different tissues and cell 

types whose expression of PPARβ/δ might vary and therefore respond differently 

under same conditions. Three main tissues were identified in the lung, pulmonary 

artery, bronchi and parenchyma, and it was shown that all three tissues express 

PPARβ/δ although at different concentrations. 

The expression of PPARβ/δ in pulmonary artery agrees with previous results 

where PPARβ/δ was shown to be expressed in  endothelial cells (Bishop-Bailey 

and Hla 1999). Bronchi express the lowest concentration of PPARβ/δ, which also 

agrees with the weak PPARβ/δ immunostaining of bronchial epithelial cells of mice 

(Higashiyama et al. 2007), and parenchyma shows the highest expression of 

PPARβ/δ, which differs to the expression profile in mice, where the expression of 

PPARβ/δ is also week in alveolar type II cells (Higashiyama et al. 2007). 

The inflammation of the tissues was induced by LPS, and the PPARβ/δ-regulation 

of the inflammation was studied by incubating the tissues with different agonists 

(GW0742 and L-165041) and antagonists (GSK3787 and GSK0660), which 
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showed similar regulatory profile in all tissues. In general terms, LPS induces the 

release of NO and IL-6, and the incubation with one of the agonists or antagonists 

individually does not reduce the production of these inflammation markers. 

However, when the agonist and antagonist are present at the same time the 

inflammation is significantly reduced. This result is very surprising and has never 

being described before, which raises the possibility that the compounds were 

impure or unstable. A further analysis on the ligands by mass spectrometry 

(Appendix A) and nuclear magnetic resonance (NMR) (Appendix B) confirmed that 

the agonists and antagonists used in the experiments are pure and have not been 

degraded. This analysis together with the fact that same response is replicated 

when using two chemically different agonists such as GW0742 and L-165041 and 

the high n number used indicates that the result is consistent and is not an isolated 

phenomenon. 

However, it cannot be ignored the fact that these results disagree with a large 

number of studies where the treatment with GW0742 attenuated the lung 

inflammation in murine models, the effects of GW0742 were abolished or 

significantly reduced by GSK0660, and the PPARβ/δ deletion exacerbates the lung 

inflammation (Haskova et al. 2008, Kapoor et al. 2010, Bao et al. 2014). The 

difference is that these studies are in vivo and, although the inflammation is 

monitored in the lung, the whole organism is fighting the infection, the immune 

system is being activated and immune cells such as neutrophils and macrophages 

are infiltrated into the alveolar cavity. This means that there is a synergic response 

composed of different tissues and cells that makes the anti-inflammatory response 

more effective. In the model used in this thesis, the tissues were separated from 

each other and the LPS-induced regulation of inflammation by PPARβ/δ was 

analysed in isolated tissues. Under these conditions, PPARβ/δ seems to play a 



 Chapter 4:  PPARβ/δ molecular switch
  

176 
  

more important role in the regulation of inflammation in the pulmonary artery than 

in bronchi and lung parenchyma. 

The initial hypothesis was that PPARβ/δ acts as a molecular switch between 

induction and trans-repression and depending on which mechanism is triggered it 

will have pro- or anti-inflammatory effects. If the hypothesis is true, the results 

would indicate that the incubation with an agonist led to a pro-inflammatory state 

of PPARβ/δ and the incubation with the agonist and antagonist together switches 

PPARβ/δ to an anti-inflammatory state. However, the data do not provide enough 

information to know if the pro- and anti-inflammatory states regulate genes in the 

induction or trans-repression mode of action. To find this out a qRT-PCR was 

performed for the expression of marker genes for each mechanism of action in all 

treatments and all tissues.  

The appropriate marker genes were selected to represent the induction and trans-

repression modes of action. Khozoie et al. (2012) performed a genomewide 

analysis of genes regulated by PPARβ/δ in mouse keratinocytes. They found that 

a total of 612 genes are regulated by PPARβ/δ and, furthermore, the analysis of 

ChIP-seq data demonstrated a PPARβ/δ promoter occupancy of 203 genes out of 

these 612. Similarly, Adhikary et al. (2011) did another genomewide study in 

human myofibroblasts, where they found a total of  3704 genes regulated 

PPARβ/δ. Khozoie et al. (2012) crosslinked the two lists of genes regulated by 

PPARβ/δ and created a new list of 103 genes regulated by PPARβ/δ in both human 

and mouse models. This list of genes was used because if they are regulated by 

PPARβ/δ in mouse and human then it is more likely that they are also regulated by 

PPARβ/δ in rat.  

It is very tempting to accept that those genes found with PPARβ/δ bound to its 

promoter are regulated through the induction mode of action and those without 

PPARβ/δ bound to the promoter are regulated through the trans-repression mode 
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of action, however this assumption can lead to a big mistake. For example, Angptl-

4 is well known to be regulated by induction mode (Inoue et al. 2014, Adhikary et 

al. 2015, Klingler et al. 2016), which agrees with Khozoie et al. (2012) results, 

where they found PPARβ/δ bound to the promoter of Angptl-4. However, Pdk-4 is 

another well-known gene regulated in the induction mode (Degenhardt et al. 2007, 

Adhikary et al. 2015, Klingler et al. 2016), but Khozoie et al. (2012) did not identified 

PPARβ/δ bound to the promoter of the gene. Consequently, it can be presumed 

that the genes with PPARβ/δ bound to the promoter are regulated through the 

induction mode of action, but it cannot be ruled out that genes without PPARβ/δ in 

their promoter are regulated in the trans-repression mode. Therefore, other ways 

of identifying potential markers for the trans-repression mode of action are needed.  

A separate study was used to identify the genes regulated by NF-κB after LPS 

activation of human cells (Schreiber et al. 2006) and crosslinked with the list of 103 

genes regulated by PPARβ/δ in mouse and human. After LPS-activation, NF-κB 

was found in the promoter of four genes common in the two lists, whose 

transcription was also increased (Schreiber et al. 2006), therefore they were 

selected as potential markers for the trans-repression mode of action of PPARβ/δ:  

Ppfia-1, Sema7a, Timp-1 and Serpine-1. The idea is that when PPARβ/δ is 

activated and functioning in the trans-repression mode of action it will sequester 

NF-κB and inhibit the transcription of the selected genes. 

Bcl-6 has shown to be another important trans-repression mechanism of action of 

PPARβ/δ, for that reason another marker gene for this pathway was identified. One 

study showed that LPS increases the transcription of Id2 in some tissues, like the 

brain (Wang et al. 2011), and another study showed that Id2 is regulated by Bcl-6 

(Sandhu et al. 2012), therefore Id2 was chosen as a marker gene of the PPARβ/δ 

trans-repression mode of action through Bcl-6.  The idea is that when PPARβ/δ is 

not activated it sequesters Bcl-6, which will allow the transcription of Id2 in the 
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presence of LPS. If PPARβ/δ is activated it will release Bcl-6 which will then 

repress the expression of Id2.    

The qRT-PCR of pulmonary artery showed that the activation of PPARβ/δ with 

GW0742 increases the transcription of Pdk-4 and Angptl-4 and represses the 

transcription of Timp-1 and Serpine-1, indicating that agonist activation of PPARβ/δ 

triggers both, induction and trans-repression. However, the presence of GW0742 

and GSK3787 together does not induce the transcription of Pdk-4 or Angptl-4 but 

it still represses the transcription of Timp-1 and Serpine-1, indicating that the trans-

repression but not induction is occurring. The transcription of Id2 seems not to be 

affected by any of the treatments used in this study and therefore it can be 

concluded that Id2 is not regulated by PPARβ/δ in pulmonary artery.  

By combining these findings with the inflammatory response, it can be deduced 

that in pulmonary artery GW0742 triggers both, induction and trans-repression, 

resulting in a pro-inflammatory state of PPARβ/δ. Interestingly, the presence of 

GW0742 and GSK3787 together inhibits the induction mode of action but activates 

the trans-repression mode of action through NF-κB, which is the treatment that 

produces the strongest anti-inflammatory effect. Taken together, it suggests that 

GW0742 triggers the induction mechanism, which is pro-inflammatory, and 

GW0742 plus GSK3787 switches PPARβ/δ to the trans-repression mechanism 

through NF-κB which is responsible for the anti-inflammatory effects of PPARβ/δ 

in LPS-induced inflamed pulmonary artery. 

This finding fits well with the conclusions of Adhikary et al. (2015), where they 

describe a fatty acid oxidation and lipid metabolism function related of the genes 

regulated by induction, and genes regulated by trans-repression were associated 

with pro- or anti-inflammatory functions. Hence, they suggest that the response to 

PPARβ/δ agonists is mainly anti-inflammatory through trans-repression. 
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In bronchi, Angptl-4 is not expressed but Pdk-4 is significantly increased by 

GW0742, suggesting that the induction mechanism of action of PPARβ/δ is 

occurring. On the other side, the transcription of Timp-1, Serpine-1 and Id2 does 

not vary with the treatments, indicating that trans-repression mode is not a major 

mechanism of action of PPARβ/δ in bronchi, which can explain the weaker 

inhibition of the inflammatory response in bronchi. 

The PPARβ/δ marker genes used in this study seem not to be regulated by 

PPARβ/δ in lung parenchyma, indicating that PPARβ/δ is not being activated either 

in the induction nor in the trans-repression mode of action, which agrees with 

previous results where NO production showed not to be regulated by PPARβ/δ. 

However, IL-6 production showed to be reduced when GW0742 and GSK3787 are 

present, which suggests that, although not as strong, some anti-inflammatory 

effect of PPARβ/δ is happening. There is the possibility that the marker genes 

selected in this study are not the right markers to detect the trans-repression 

mechanism in parenchyma.   

It has been shown in several studies that Nos2 is regulated by PPARβ/δ (Kapoor 

et al. 2010, Di Paola et al. 2011, Bojic et al. 2014), although it has not been 

described whether this regulation is via induction or trans-repression. To find this 

out, the expression of Nos2 was measured in all tissues under the same conditions. 

As expected, LPS increases Nos2 expression in all tissues, however the regulation 

of its expression by PPARβ/δ is different dependent on the tissue. In pulmonary 

artery, GW0742 and GW0742+GSK3787 represses the expression of Nos2, 

suggesting that PPARβ/δ is inhibiting Nos2 through the trans-repression mode of 

action. Surprisingly, in bronchi GW0742 significantly increases the transcription of 

Nos2 compared to LPS, but this increment does not occur with the treatment 

LPS+GW0742+GSK3787, suggesting that PPARβ/δ enhances the expression of 

Nos2 through the induction mode of action. This observation fits well with the 
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previous conclusion that the induction-activation of PPARβ/δ is pro-inflammatory 

and trans-repression activation of PPARβ/δ is anti-inflammatory.  

In parenchyma, LPS increases the expression of Nos2, but its expression is not 

regulated by PPARβ/δ, which fits well with previous results where PPARβ/δ is not 

a major player in the regulation of inflammation.  

4.5.1 Conclusion 

In summary, it is clear that PPARβ/δ ligands can have pro- and anti-inflammatory 

effects. Conformational changes of PPARβ/δ caused by different agonists, 

antagonists and partial agonists can cause differential recruitment of co-regulators 

resulting in alteration of the dynamics of transcriptional complexes and interactions 

with DNA binding sites. The cell/tissue type is another important co-determinant of 

the type of response of PPARβ/δ target genes. Thus, there are multiple levels of 

regulation by which PPARβ/δ can influence the expression of target genes. 

In the model used in this thesis, the presence of agonist and antagonist at same 

time switches the PPARβ/δ mode of action from induction to trans-repression, and 

the trans-repression mode of action was linked with anti-inflammatory effects. 

Among the tissues tested, PPARβ/δ seems to play a more important role on the 

regulation of inflammation in pulmonary artery, however it is not as important in 

lung parenchyma.  



 

 Chapter 5: In silico modelling of 
PPARβ/δ 

5.1 Introduction 

Molecular docking is a computational method that predicts the preferred and most 

stable orientation binding of one molecule to a second, being protein-protein or 

protein-ligand. The docking algorithms and programs rank the predicted ligand 

poses according to their “binding affinity”, which is an indicator on how well the 

ligand binds to the receptor at that specific orientation. These studies are very 

useful for providing deep information on the interaction between the two molecules 

docked, and it is widely used in drug discovery to predict the most stable drug 

interactions between a drug and a target receptor molecule, where the most 

suitable ones are selected for further research. 

The best option when doing docking is to use the crystal structure of the receptor. 

Fortunately, there is a number of X-ray crystal structures of all three PPAR-LBD 

subtypes complexed with ligands, which provides an insight into the binding and 

activation of PPARs by ligands. A comparison of the crystal structure of the three 

PPARs showed a 60-70% homology with a large Y-shaped ligand binding pocket 

of ~1300 Å3 composed of 13 α-helix and four stranded β-sheets (Figure 5.1) 

(Kahremany et al. 2015) organized in three arms (I, II and III) (Xu et al. 2001). Arm 

I is predominantly polar, well conserved and includes the activation helix 12 (AF-2 

helix). Arms II and III are predominantly hydrophobic and less well conserved 

among PPARs (Maltarollo et al. 2015, Laghezza et al. 2019). The pocket is sealed 

on the left side by the C-terminal helix that contains the AF-2 (helix 12) and on the 

right side by helix 1 and small β-sheet (Xu et al. 1999). 
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Figure 5.1 Structure of the ligand binding domain (LBD) of PPARβ/δ (Xu et al. 1999). 

Most known synthesized PPAR ligands share the same structure: a hydrophilic 

head group, a central hydrophobic part, and a flexible hydrophobic tail. The binding 

mode of these compounds in the binding pocket is very similar, with the head group 

interacting with the AF-2 helix, which is crucial for PPAR activation and successful 

coactivator binding, the central part forming hydrophobic interactions, and the tail 

toward the lower or upper distal cavity binding Arm II and/or Arm III (Cronet et al. 

2001, Laghezza et al. 2019). 

Although the overall size of the binding pocket is similar, there are some 

differences among the PPARs. The PPARβ/δ-LBD cavity is significantly narrower 

in the region adjacent to the AF-2 helix (Xu et al. 2001). Therefore, PPARβ/δ hardly 

accommodates bulky polar heads or substituents, which could explain why large 

headed TZDs agonists show little or no binding to PPARβ/δ (Xu et al. 2001). 

It is now widely accepted the mechanism of activation of PPARs in response to the 

ligand binding. When a ligand is present in the LBD, the AF-2 helix H12 closes the 

binding pocket resulting in the active form of the receptor which triggers the binding 

of the co-activators (Renaud et al. 1995). This model was proposed based on the 

observation that in the unliganded RXR structure, the AF-2 helix adopts an alpha-
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helical structure that extends away from the LBD, while the AF-2 helix in the 

agonist-bound RAR, thyroid hormone receptor and oestrogen receptor structures 

is folded against the LBD (Renaud et al. 1995). 

Due to the large binding pocket of PPARβ/δ a number of researchers suggested 

the possibility of accommodating more than one ligand at the time, which could 

result in unusual PPARβ/δ:ligand stoichiometries (Nandhikonda et al. 2013, 

Adhikary et al. 2015). This situation could cause the receptor to adopt different 

conformations that might result in the recruitment of different co-regulators, 

resulting in the alteration of the dynamics of transcriptional complexes and 

interactions with DNA binding sites and ultimately alterations in the responses of 

PPARβ/δ. To our knowledge, this possibility has so far not been explored, and 

could explain the surprising results from Chapter 4. 

5.1.1 Aims and objectives 

This chapter will explore how PPARβ/δ is activated/repressed after ligand binding 

as well as the possibility of binding more than one ligand into the binding pocket 

simultaneously using in silico methods. This approach aims to give a new light to 

the PPARβ/δ molecular switch theory.  

Objectives: 

1- Dock and analyse the synthesised agonists and antagonists used in this 

thesis (GW0742, L-165042, GSK3787 and GSK0660) into the PPARβ/δ 

binding pocket. 

2- Explore the possibility of accommodating more than one ligand into the 

PPARβ/δ binding pocket mimicking the conditions of the experiments 

performed in this thesis. 
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5.2 Results 

The PPARβ/δ-LBD crystal structure 3TKM was chosen for the docking 

experiments for several reasons. The X-ray resolution is 1.95 Å, a good enough 

resolution to distinguish the atoms from each other. Also, PPARβ/δ was co-

crystallised with GW0742, same agonist that was used during the development of 

this project. And finally, this structure only contains 5 missing residues: Lys229, 

Gln230, Leu231, Val232 and Asn233. 

The PDB file for 3TKM was downloaded from Protein Data Bank, and the protein 

and ligands were prepared as previously explained in Chapter 2. 

5.2.1 Docking of PPARβ/δ ligands 

The two PPARβ/δ agonists used in the experiments of the present study GW0742 

and L-165041 as well as the two antagonists GSK3787 and GSK0660 were docked 

into the crystal structure of the LBD of PPARβ/δ. The best eight hits were analysed 

by Pymol to identify the residues that form polar interactions with each of the 

different poses of the ligands; the results are summarised in Table 5.1 below. 

 

 

 

 

 



  

 
 

Table 5.1 Best eight docking hits of four ligands into PPARβ/δ (PBD: 3TKM). In green are the residues more likely to bind agonists and in red the residues more likely to 
bind antagonists. 

 Agonists Antagonists 

 GW0742 L-165041 GSK3787 GSK0660 

Best fit 
Affinity 

(Kcal/mol) 
Aa with polar  
interactions 

Affinity 
(Kcal/mol) 

Aa with polar  
interactions 

Affinity 
(Kcal/mol) 

Aa with polar  
interactions 

Affinity 
(Kcal/mol) 

Aa with polar  
interactions 

1 -11.1 
His287 
His413 
Tyr437 

-8.7 
His287 
His413 
Tyr437 

-9.1 
Thr252 
Asn307 

-8.6 

Arg248 
Thr252 
Ala306 
Asn307 

2 -10.8 

Thr253 
His287 
His413 
Tyr437 

-8 

Met192 
Thr252 
Thr256 
Ile290 
Ala306 

-8.9 Thr252 -8.3 
Arg248 
Thr252 
Ala306 

3 -9.9 
Thr253 
His413 

-7.6 
Thr252 
Arg258 
Glu259 

-8.6 Thr252 -8.1 
Thr256 
Asn307 

4 -9.6 Thr256 -7.5 
Thr252 
Thr253 
Ala306 

-8.5 Thr256 -8.1 Asn307 

5 -9.3 No bonds -7.5 

Trp228 
Thr252 
Thr256 
Ile290 

-8.4 No bonds -7.9 
Thr256 
Ala306 
Asn307 

6 -8.8 Thr253 -7.1 
Thr252 
Thr256 
Ala306 

-8.3 
Thr252 
Thr253 

-7.6 Asn307 

7 -8.7 Thr252 -6.9 
Tyr284 
Arg361 

-8.3 Thr252 -7.5 
Ala306 
Asn307 

8 -8.4 Arg258 -6.8 
Glu255 
Asn307 

-8.2 Met192 -7.4 
Thr256 
Asn307 
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The best orientation of each ligand was selected for further analysis using Pymol 

and Ligplot+.  

5.2.1.1 Docking of GW0742 

The Figure 5.2 A shows the most stable orientation of GW0742 within the PPARβ/δ 

binding pocket predicted by Autodock Vina (green) vs the real GW0742 present in 

the crystal structure (pink). Figure 5.2 B is a more detailed image showing the 

residues that form polar interactions with GW0742 (His247, His413 and Tyr437) 

according to Pymol and Figure 5.2 C is a 2D image showing both polar and 

hydrophobic interactions of the residues with GW0742 according to Ligplot+. This 

last image shows very clearly how the head of GW0742 forms the polar bindings 

and how the tail is surrounded by the hydrophobic amino acids. 
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Figure 5.2 Analysis of GW0742 docked into PPARβ/δ (PBD:3TKM). A) Representation of the 
most stable GW0742 docking conformation (green) compared to the GW0742 of the crystal structure 
(pink). B) 3D detail of the amino acids forming polar bindings with GW0742 calculated by Pymol. C) 
Schematic 2D representation of the interaction between PPARβ/δ LBD and GW0742 calculated 
using Ligplot+. The green dashed lines indicate polar interactions and the red spoked arcs indicate 
hydrophobic interactions. Color coding of atoms: red O, Blue N, mustard S, pink C of GW0742 from 
the crystal structure, green C of GW0742 docked into the crystal structure, cyan C from PPARβ/δ. 
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5.2.1.2 Docking of L-165042 

The most stable L-165041 orientation predicted by Autodock Vina binds in the 

same physical place as GW0742 (Figure 5.4 A), and the same three amino acids 

(His287, His413, Tyr437) form polar interactions with the head of L-165041, as 

shown in Figure 5.4 B. The tail of L-165041 also forms hydrophobic interactions 

with a number of residues in common with GW0742, such as Val245, Arg248, 

Cys249, Thr253, Phe291, Leu294, Val305, Val312, Met417, Leu433, as shown in 

Figure 5.4 C. 
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Figure 5.3 Analysis of L-165042 docked into PPARβ/δ (PBD:3TKM). A) Representation of the 
most stable L-165041 docking conformation (cyan sticks) compared to the GW0742 of the crystal 
structure (pink). B) 3D detail of the amino acids forming polar bindings with L-165041 calculated by 
Pymol. C) Schematic 2D representation of the interaction between PPARβ/δ LBD and -L-165041 
calculated using Ligplot+. The green dashed lines indicate polar interactions and the red spoked arcs 
indicate hydrophobic interactions. Color coding of atoms: red O, Blue N, mustard S, pink C of 
GW0742 from the crystal structure, cyan sticks C of L-165041 docked into the crystal structure, cyan 
lines C from PPARβ/δ. 
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5.2.1.3 Docking of GSK3787 

GSK3787 binds in a slightly different place than GW0742, although there is some 

overlapping of the binding sites, as shown in Figure 5.4 A. Also, the amino acids 

involved in the polar interaction of GSK3787 predicted by Pymol, Thr252 and 

Asn307, are different to those of the agonists (Figure 5.4 B) as well as the residues 

that interact with the hydrophobic tail of GSK3787 (Figure 5.4 C). 
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Figure 5.4 Analysis of GSK3787 docked into PPARβ/δ (PBD:3TKM). A) Representation of the 
most stable GSK3787 docking conformation (yellow) compared to the GW0742 of the crystal 
structure (pink). B) 3D detail of the amino acids forming polar bindings with GSK3787 calculated by 
Pymol. C) Schematic 2D representation of the interaction between PPARβ/δ LBD and GSK3787 
calculated using Ligplot+. The green dashed lines indicate polar interactions and the red spoked arcs 
indicate hydrophobic interactions. Color coding of atoms: red O, Blue N, mustard S, pink C of 
GW0742 from the crystal structure, yellow C of GSK3787 docked into the crystal structure, cyan C 
from PPARβ/δ. 
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5.2.1.4 Docking of GSK0660 

GSK0660 binds very close but not in the same binding site as GW0742, as shown 

in Figure 5.5 A. The amino acids involved in the polar bindings with GSK0660, 

Thr252, Asn307, Arg248 and Ala306, are again different to those for the agonists, 

although two of them are common with GSK3787 (Figure 5.5 B). Ligplot+ predicts 

slightly different polar binding profile (Figure 5.5 C), probably because these two 

softwares use different algorithms for binding prediction, although still show 

hydrophobic interactions common with GSK3787, such as Trp228, Val305 and 

Ala306. 
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Figure 5.5 Analysis of GSK0660 docked into PPARβ/δ (PBD:3TKM). A) Representation of the 
most stable GSK0660 docking conformation (grey) compared to the GW0742 of the crystal structure 
(pink). B) 3D detail of the amino acids forming polar bindings with GSK0660 calculated by Pymol. C) 
Schematic 2D representation of the interaction between PPARβ/δ LBD and GSK0660 calculated 
using Ligplot+. The green dashed lines indicate polar interactions and the red spoked arcs indicate 
hydrophobic interactions Color coding of atoms: red O, Blue N, mustard S, pink C of GW0742 from 
the crystal structure, grey C of GSK0660 docked into the crystal structure, cyan C from PPARβ/δ. 

 

 
 
 



 Chapter 5:  In silico modelling 

194 
 

5.2.2 Docking of two PPARβ/δ ligands simultaneously 

The possibility of binding a second ligand after the first ligand was bound in the 

most stable orientation was investigated next. To do that, the best hit from previous 

docking was used, assigned Ligand 1, and then a second molecule was docked, 

assigned Ligand 2. The aim was to mimic the conditions of the experiments 

performed in this thesis and predict what could have happened at molecular level. 

When the tissues were treated with only one ligand there is only one option for two 

ligands to bind, but when two different ligands are present at the same time either 

of them can bind first into the binding pocket. All these ligand-binding possibilities 

were considered and resumed in Table 5.2, the results are summarised in Table 

5.3. 

Table 5.2 Possible order the ligands could have bound to PPARβ/δ in the experiments 
performed in this thesis. 

Treatment Ligand 1 Ligand 2 

GW0742 GW0742 GW0742 

GSK3787 GSK3787 GSK3787 

GW0742+GSK3787 
GW0742 GSK3787 

GSK3787 GW0742 

L-165041 L-165041 L-165071 

GSK0660 GSK0660 GSK0660 

L-165041+GSK0660 
L-165041 GSK0660 

GSK0660 L-165041 
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Table 5.3 Docking prediction of binding affinities and amino acids forming polar interactions 
with the PPARβ/δ ligands bound into the LBD. The affinity of the binding was predicted by 
Autodock Vina and the best hit was analysed on Pymol. 

Ligand 1 Ligand 2 

Molecule 
Affinity 

(Kcal/mol) 

Aa with 
polar 

interactions 
Molecule 

Affinity 
(Kcal/mol) 

Aa with 
polar 

interactions 

GW0742 -11.1 
His287 
His413 
Tyr437 

GW0742 -8.5 Arg258 

GSK3787 -7.7 
Trp228 
Thr252 

GSK3787 -9.1 
Thr252 
Asn307 

GW0742 -8.1 
Trp228 
Lys229 

GSK3787 -7.4 
Thr253 
His413 

L-165041 -8.7 
His287 
His413 
Tyr437 

L-165041 -8.3 

Met192 
Cys251 
Thr252 
Thr256 
Ile290 
Ala306 

GSK0660 -6.5 
Arg198 
Asn339 

GSK0660 -8.6 

Arg248 
Thr252 
Ala306 
Asn307 

L-165041 -8.1 
Thr253 
His413 

GSK0660 -8.9 
Thr252 
Thr253 

 

A further analysis on Pymol was done for each option. 
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5.2.2.1 Analysis of GW0742 and GSK3787 docked into GW0742-bound 

PPARβ/δ 

After GW0742 is bound in the most stable orientation within the PPARβ/δ-LBD, 

GW0742 and GSK3787 can still bind at favourable energies (-8.5 kcal/mol and -

7.7 kcal/mol respectively), although at very different binding sites to the most stable 

one and forming polar interactions with different residues, as shown in Figure 5.6. 

 

Figure 5.6 Analysis of GW0742 and GSK3787 docked into PPARβ/δ+GW0742. A second 
molecule of GW0742 (A, B) or GSK3787 (C, D) was docked into the LBD of PPARβ/δ containing one 
molecule of GW0742. A) Representation of how two GW0742 molecules bind into the PPARβ/δ 
binding pocket at same time. B) Detail of the amino acids interacting with the second molecule of 
GW0742. C) Representation of how one molecule of GW0742 first and then one molecule of 
GSK3787 bind into the PPARβ/δ binding pocket at same time. D) Detail of the amino acids interacting 
with the second molecule of GSK3787. Color coding of atoms: red O, Blue N, mustard S, cyan C 
PPARβ/δ and GW0742 that binds first within the binding pocket, green C of GW0742 that binds 
second into the binding pocket, yellow C of GSK3787 that binds second into the binding pocket. 
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5.2.2.2 Analysis of GW0742 and GSK3787 docked into GSK3787-bound 

PPARβ/δ 

GW072 and GSK3787 can also bind into the binding pocket after GSK3787 at 

favourable energies (-8.1 kcal/mol and -7.4 kcal/mol respectively) and the binding 

site is also different to the most stable ones (Figure 5.7), but interestingly the 

binding site is also different to the previous one, when GW0742 is bound first into 

the binding pocket instead of GSK3787. 

 

Figure 5.7 Analysis of GW0742 and GSK3787 docked into PPARβ/δ+GSK3787. A second 
molecule of GW0742 (A, B) or GSK3787 (C, D) was docked into the LBD of PPARβ/δ containing one 
molecule of GSK3787. A) Representation of how one molecule of GSK3787 first and then one 
molecule of GW0742 bind into the PPARβ/δ binding pocket at same time. B) Detail of the amino 
acids interacting with the second molecule of GW0742. C) Representation of how two molecules of 
GSK3787 bind into the PPARβ/δ binding pocket at same time. D) Detail of the amino acids interacting 
with the second molecule of GSK3787. Color coding of atoms: red O, Blue N, mustard S, grey C 
PPARβ/δ and GSK3787 that binds first within the binding pocket, green C of GW0742 that binds 
second into the binding pocket, yellow C of GSK3787 that binds second into the binding pocket. 
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5.2.2.3 Analysis of L-165041 and GSK0660 docked into L-165041-bound 

PPARβ/δ 

When L-165041 is bound to the ligand binding pocket first, a second molecule of 

L-165041 or GSK0660 can bind with favourable energies (-8.3 kcal/mol and -6.5 

kcal/mol respectably) and again, forming polar interactions with different residues. 

The most interesting finding is that GSK0660, although still in the PPARβ/δ-LBD, 

it binds outside the binding pocket (Figure 5.8). 

 

Figure 5.8 Analysis of L-165041 and GSK0660 docked into PPARβ/δ+L-165041. A second 
molecule of L-165041 (A, B) or GSK0660 (C, D) was docked into the LBD of PPARβ/δ containing 
one molecule of L-165041. A) Representation of how two L-165041 molecules bind into the PPARβ/δ 
binding pocket at same time. B) Detail of the amino acids interacting with the second molecule of L-
165041. C) Representation of how one molecule of L-165041 first and then one molecule of 
GSK0660 bind into the PPARβ/δ binding pocket at same time. D) Detail of the amino acids interacting 
with the second molecule of GSK0660. Color coding of atoms: red O, Blue N, mustard S, yellow C 
PPARβ/δ and L-165041 that binds first within the binding pocket, cyan C of L-165041 that binds 
second into the binding pocket, grey C of GSK0660 that binds second into the binding pocket. 
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5.2.2.4 Analysis of L-165041 and GSK0660 docked into GSK0660-bound 

PPARβ/δ 

L-165041 and GSK0660 can also bind within the binding pocket at favourable 

energies (-8.1 kcal/mol and -8.9 kcal/mol respectively) after GSK0660 is bound in 

the most stable orientation (Figure 5.9), but again the binding site is different to 

previously when L-165041 was bound first. 

 

Figure 5.9 Analysis of L-165041 and GSK0660 docked into PPARβ/δ+GSK0660. A second 
molecule of L-165041 (A, B) or GSK0660 (C, D) was docked into the LBD of PPARβ/δ containing 
one molecule of GSK0660. A) Representation of how one molecule of GSK0660 first and then one 
molecule of L-165041 bind into the PPARβ/δ binding pocket. B) Detail of the amino acids interacting 
with the second molecule of L-165041. C) Representation of how two molecules of L-165041 bind 
into the PPARβ/δ binding pocket at same time. D) Detail of the amino acids interacting with the 
second molecule of GSK0660. Color coding of atoms: red O, Blue N, mustard S, green C PPARβ/δ 
and GSK0660 that binds first within the binding pocket, cyan C of L-165041 that binds second into 
the binding pocket, grey C of GSK0660 that binds second into the binding pocket. 
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5.3 Discussion 

This chapter aims to gain a deeper understanding of the interaction of the PPARβ/δ 

binding pocket with different ligands, which might help explaining the different 

responses after PPARβ/δ activation.  

To do that the four PPARβ/δ ligands used in this thesis, two agonists (GW0742 

and L-165042) and two antagonists (GSK3787 and GSK0660) were docked into 

the PPARβ/δ binding site. The PPARβ/δ crystal structure used for the docking 

experiments was co-crystallized with GW0742, which was used as a control to 

validate the performance of the docking. The most stable pose of GW0742 

predicted by Autodock Vina overlaps perfectly with the GW0742 of the crystal 

structure, and the polar head of GW0742 interacts with the same residues 

described by the author of the crystal structure (Batista et al. 2012), indicating that 

the docking protocol followed is good. 

The main finding of this docking experiment is that the agonists and antagonists 

have a different binding profile within the binding pocket. GW0742 and L-165041 

dock in the same binding place, while GSK3787 only partially overlaps GW0742 

and GSK0660 binds very close but not in the very same site as GW0742. But far 

more interesting is the fact that the same three amino acids His287, His413 and 

Tyr437 form polar interactions with the two agonists docked, but they do not bind 

the antagonists in any of the poses predicted by docking. Furthermore, the amino 

acids Thr252 and Asn307 are more prone to bind the antagonists and are not 

predicted to bind GW0742. 

This finding agrees with previous results were GW0742 was docked to another 

PPARβ/δ crystal structure (PDB: 3GZ9) using another docking software (Glide), 

and the same three amino acids bound GW0742 (Perez-Diaz et al. 2016). What is 
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more, several studies co-crystallised PPARβ/δ with different agonists both 

synthetic, such as iloprost (Jin et al. 2011), the fibrate GW2433 (Xu et al. 1999), or 

GW501516 (Wu et al. 2017) and natural PPARβ/δ agonists such as with 

eicosapentaenoic acid (EPA) (Xu et al. 1999), and in all cases the agonists showed 

polar bindings with the same three amino acids His287, His413 and Tyr437.  

It is worth mentioning another study where the authors selected 5 compounds that 

potentially bound PPARβ/δ and performed a luciferase transactivation assay to 

biologically test if these compounds activate PPARβ/δ. They further analysed two 

of them by docking and molecular dynamics (MD) simulation, one compound that 

activated PPARβ/δ (Compound 1) and another one that did not activate PPARβ/δ 

(Compound 2). The docking and MD simulation results for the Compound 1 

showed and interaction with His287, His413 and Tyr437, and the results for 

Compound 2 showed and interaction with Thr252 (Maltarollo et al. 2015). 

This suggests the possibility that the different binding profile between agonists and 

antagonists can provoke a different 3D conformational change that might explain 

why PPARβ/δ binds to co-repressors instead of co-activators and vice versa. 

Taking all this into account it can be hypothesised that a ligand that shows a high 

binding affinity and is predicted to form polar bonds with His287, His413 and 

Tyr437 will most likely behave as agonist. On the contrary, if one ligand shows high 

binding affinity but it is predicted to bind other residues such as Thr252 and Asn307 

it is more likely that it will behave as antagonist. While there is a number of studies 

and PPARβ/δ crystal structures that support the first part of the hypothesis, it would 

be very useful to have PPARβ/δ crystal structures co-crystallized with antagonists 

to confirm the second part of this claim.  
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Some researchers mentioned the possibility that more than one ligand can 

simultaneously fit in the PPARβ/δ binding pocket (Nandhikonda et al. 2013). This 

option was tested using the in silico methods available.  

The treatment of tissues with only GW0742 allows two possibilities: the binding of 

one or two molecules into LBD. If a second molecule of GW0742 binds to 

PPARβ/δ, this molecule is predicted to bind no too far from the most stable binding 

site and with the same binding affinity and residue interaction (Arg258) than the 8th 

best pose predicted for the first molecule. Similarly, when only GSK3787 is present 

in the treatment, a second molecule of GSK3787 is predicted to bind also not far 

away from its most stable binding site and with favourable binding affinity, and what 

is more, it will still form polar bonds with Thr252, an amino acid that is predicted to 

bind GSK3787 in five out of eight most stable poses predicted by docking, including 

the first three.  

For the treatment of tissues with GW0742+GSK3787 all the options mentioned 

above still apply but two more options are available: GW0742 binds first and 

GSK3787 after or GSK3787 binds first and GW0742 after. When GW0742 binds 

first, GSK3787 can still bind very close to its most stable binding site with a very 

favourable binding affinity, and what is more, still binds the residue Thr252. If 

GSK3787 binds first, GW0742 is predicted to bind very far away from the most 

stable binding site, at the entrance of the binding pocket, and as a consequence it 

will have a very different binding profile forming polar bonds with Trp228 and 

Lys229, two residues that did not show any interaction with ligands before.   

Similar analysis can be done with the other pair of agonist and antagonist. The 

treatment with L-165041 can lead to the binding of one or two molecules at same 

time; if a second molecule of L-165041 binds, it will interact with the same residues 

as the second most stable pose (Met192, Thr252, Thr256, Ile290 and Ala306) also 
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at similar binding affinity. When tissues are treated with GSK0660, a second 

molecule can bind very close to the most stable orientation, with similar binding 

affinity and also, they will share the amino acid Thr252 to form polar bindings. 

If tissues are treated with L-165041+GSK0660 and L-165041 binds first, GSK0660 

can still bind the LBD but outside the binding pocket, forming polar interactions with 

Arg198 and Asn336 and at much lower binding affinity. If GSK0660 binds first, L-

165041 can bind very close to its most stable binding pose with very favourable 

affinity binding and interacting with Thr253 and His413.  

Looking at the docking scores and molecular poses of the ligands, all possibilities 

described above have very favourable energies for it to happen. That opens a 

whole new scenario of possibilities that could dramatically change the 3D 

conformation of PPARβ/δ in ways that have not been thought of before, resulting 

in the binding of different co-regulators, which ultimately could change the 

PPARβ/δ response from induction to trans-repression or vice versa.  

However, although tempting, it would be very venturous to conclude that these 

bindings are likely to happen only based on docking results. Docking is a very 

useful tool but only provides the calculated binding affinity, in other words, how well 

the ligand binds into the binding site. But there are other factors that can affect the 

likelihood of the ligands binding the binding site, such as the mobility of the 

molecules. 

Molecular dynamics (MD) simulation is a technique for the calculation of 

‘movement’ of the complex. It takes into account how the shape of the molecules 

can change with time, because a ligand can have a very good binding affinity but, 

because of the movement, it might ‘fly’ away from the binding pocket. For that 

reason, MD simulation is probably an essential validation that needs to be done 

before making any further conclusion from the docking results. 
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5.3.1 Conclusion 

In this chapter it is described a characteristic PPARβ/δ-ligand binding profile which 

is different for agonists and antagonists. PPARβ/δ agonists form polar bonds with 

His287, His413 and Tyr437, while antagonists are more promiscuous about which 

amino acids they bind to, although they are very prone to bind Thr252 and Asn307. 

This is a new finding that can help to do better predictions about the 

agonist/antagonist behaviour of new drugs targeting PPARβ/δ. 

To our knowledge, this is the first time that the possibility of binding two ligands 

simultaneously into the binding pocket is explored. The results suggest that this 

possibility is very likely to happen with very favourable affinity energies, and it is 

worth considering when designing and interpreting experiments where PPARβ/δ is 

ligand-activated. However, more experiment such as MD simulation need to be 

done to verify the results



 

 Chapter 6: General discussion  

PPARβ/δ is a nuclear receptor widely expressed which is involved in lipid 

metabolism, glucose metabolism, insulin sensitivity, inflammation, and cell 

proliferation, and it is emerging as a therapeutic target for the treatment of 

disorders associated with metabolic syndrome or diabetes. There is also an 

increased interest about the non-genomic effects of PPARβ/δ on hypertension, a 

life-threatening condition that can appear either spontaneously for still not known 

reasons or as a consequence of other diseases such as diabetes. Although there 

are no marketed drugs targeting PPARβ/δ yet, the interest on PPARβ/δ continues 

and in recent years several compounds were developed, and few reached clinical 

trials. 

Because PPARβ/δ is a receptor involved in so many important biological functions 

its regulation can affect a number of different molecular pathways at the same time, 

so it is very important to fully understand its mechanism of action. However, there 

are great discrepancies in the literature about its role and its functioning both at 

genomic and non-genomic level.  

This thesis aims to expand the knowledge on PPARβ/δ to better understand its 

mechanism of action at different levels using a multidisciplinary range of 

techniques including pharmacological, molecular and computational methods, 

which might give some clues for the development of new drugs and treatments. 
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6.1 Non-genomic effects of PPARβ/δ. 

The non-genomic effects of PPARβ/δ ligands on vascular tone was the first focus 

of investigation. Pharmacological methods such as organ bath and myography 

were used because they are the ex vivo techniques most physiologically similar to 

an in vivo living organism where the conditions can be controlled and the 

responses measured accurately. Two main types of arteries were investigated, 

aorta and mesenteric arteries as a model of systemic and resistance vasculature 

respectively from healthy and STZ-induced diabetic rats.  

As a result of the experiments, further evidence that PPARβ/δ significantly reduces 

hypercontraction in a non-genomic manner was provided but, to our knowledge, 

this is the first time to determine and publish that 100 nM GW0742 is the minimum 

concentration needed to perceive these beneficial effects. 

It was also found that the incubation of aorta and mesenteric arteries in high 

glucose for 30 min did not have any effect in vascular contractility and the influence 

of high glucose to the impairment of contraction of STZ-diabetic vessels is the 

result of a prolonged exposure rather than punctual peaks of elevated glucose 

levels. 

Additional evidence that aorta and mesenteric arteries contraction is dysfunctional 

in STZ-diabetic rat model was provided. But further to this, new evidence of the 

different mechanistic pathways used by different contraction agents that change 

with the type of vessel and health condition was found. According to the data, the 

impairment of the RhoA/ROCK pathway contributes the most to the dysfunction of 

the aorta contraction in diabetes; on the contrary, other pathways such as 

PI3K/Akt/eNOS or potassium channels might have more relevance in the 

dysfunction of the mesenteric arteries in diabetes.  
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It was also described the pathways used by PPARβ/δ to dilate the vessels. In large 

systemic arteries such as aorta, GW0742 activates PPARβ/δ which will cause the 

vascular dilation through the PI3K/Akt/eNOS pathway in STZ-diabetic model. 

GW0742 mediates the dilation of the artery in part by the inhibition of RhoA/ROCK 

activity in Naïve contracted arteries but not in STZ-diabetic arteries, although it is 

not clear if this mechanism is PPARβ/δ dependent. Besides, GW0742-mediated 

dilation of aorta involves potassium channels more in the diabetic state, but 

whether this GW0742-dependent dilation is PPARβ/δ-mediated or it is an off-target 

effect is still to be determined. 

In resistance arteries such as mesenteric arteries, GW0742 activates PPARβ/δ 

which inhibits the contraction through the PI3K/Akt/eNOS pathway in Naïve and 

possibly STZ-diabetic tissues. Additionally, GW0742 inhibits the RhoA/ROCK 

pathway in STZ-diabetic mesenteric arteries in a PPARβ/δ-independent manner 

and regulates the potassium channels in Naïve mesenteric arteries, although it is 

not known if the regulation of potassium channels is PPARβ/δ-dependent or an off-

target effect. 

To our knowledge, this is the first study comparing the vascular reactivity of 

systemic and resistance arteries from healthy and STZ-induced diabetic animals 

looking at three different pathways at same time and analysing the effect of 

PPARβ/δ in all of them. The results exposed here may help to lead new therapeutic 

approaches for the treatment of hypertension.  

6.2 Genomic effects of PPARβ/δ 

The mechanism of action of PPARβ/δ at genomic level was explored next. Based 

on the literature it was hypothesised that PPARβ/δ can act as a molecular switch 

between induction and trans-repression and depending on which pathway is 
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triggered the tissue will have pro- or anti- response. To test the hypothesis, and 

again based on the literature, the regulation of the inflammatory response by 

PPARβ/δ on different lung tissues using a variety of molecular techniques was 

investigated. 

In the lung three main tissues were identified: pulmonary artery, bronchi and 

parenchyma. All three tissues were dissected from the same lung and treated in 

parallel. The inflammation was induced with LPS and regulated with different 

PPARβ/δ ligands. Surprisingly, it was found that the most anti-inflammatory effect 

of PPARβ/δ was observed when an agonist and antagonist were present at same 

time, and also that PPARβ/δ seems to play a more important role on the regulation 

of inflammation in pulmonary artery than bronchi or parenchyma. 

Following the hypothesis, it was interpreted that the presence of agonists and 

antagonist simultaneously provokes a conformational change on PPARβ/δ that 

switches PPARβ/δ from a pro-inflammatory state to an anti-inflammatory state. 

Next step was to link the pro- and anti-inflammatory responses with the induction 

or trans-repression mechanism of action of PPARβ/δ.  

To do that, the regulation of the transcription of the selected marker genes for each 

mechanism of action was studied, and the results indicated that the induction was 

more responsible for the pro-inflammatory response and trans-repression for the 

anti-inflammatory response. This regulation was clearer in the pulmonary artery 

than in the other two tissues, which fits with the weaker inflammatory regulation by 

PPARβ/δ observed in bronchi and parenchyma. 

It is worth pointing out that in pulmonary artery the differences on gene transcription 

of marker genes for trans-repression were borderline to be significantly different 

between treatments, but they showed not to be regulated by PPARβ/δ in 

parenchyma. NF-κB and Bcl-6 regulate a long list of genes, and the analysis of a 
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few selected marker genes is only a small part of a much bigger picture, indicating 

that there is a potential lack of information. Moreover, it would not be surprising 

that NF-κB and Bcl-6 regulate a different cluster of genes depending on the tissue, 

suggesting the need of a different marker gene per tissue. It all indicates that, 

although reliable, qRT-PCR provides limited information about the PPARβ/δ 

molecular switch. 

A better alternative to this approach is the co-immunoprecipitation of PPARβ/δ. By 

analysing the protein that is bound to PPARβ/δ, whether it is RXR (induction mode) 

or NF-κB (trans-repression mode), and how it changes with the treatment and even 

tissue can demonstrate which pathway has been activated or repressed. What is 

more, it could also provide data of additional trans-repression pathways by 

detecting other transcription factors bound to PPARβ/δ, such as Bcl-6 or AP-1. In 

that way it is possible to draw the full picture of the PPARβ/δ molecular switch and 

how it changes with treatments and even with tissues, independently of the genes 

regulated by them. Unfortunately, due to the non-reliable antibodies anti-PPARβ/δ 

available this approach was not successful. 

6.3 In silico modelling of PPARβ/δ 

Next interest was to find out what happens in the PPARβ/δ binding pocket and how 

PPARβ/δ is activated/repressed after ligand binding, as well as the possibility of 

accommodating more than one ligand simultaneously into the binding pocket. For 

these questions computational methods such as docking were used. 

First of all, a different binding profile for agonists and antagonists was described, 

which might cause a different 3D conformation of PPARβ/δ that could explain the 

interaction with co-repressors instead of co-activators and vice versa. To our 

knowledge, the different agonist/antagonist binding profile to PPARβ/δ has not 
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been described before and it might help to predict the behaviour of a ligand with a 

high binding affinity.  

Also, the possibility of two agonists binding at same time into the PPARβ/δ binding 

pocket was explored. According to the results, all the options studied seem feasible 

with favourable binding energies, suggesting the need of being more cautious 

when designing and interpreting the results of experiments using PPARβ/δ ligands, 

although more experiments need to be done to verify this result. 

6.4 Conclusion 

This thesis reveals a multidisciplinary approach for the study of PPARβ/δ that 

provides novel information about its functioning both at genomic and non-genomic 

level. The findings of this study can potentially help the drug discovery industry for 

a better prediction of the behaviour of new drugs and can also help developing new 

treatments targeting PPARβ/δ for hypertension or metabolic diseases. 

6.5 Future work 

It would be very useful to perform experiments in order to prove or disprove some 

of the conclusions of this thesis, such as: 

- Co-immunoprecipitate PPARβ/δ under the same conditions used in this 

thesis to have the full picture of the PPARβ/δ molecular switch. 

- Co-crystallise PPARβ/δ with antagonists to verify the antagonist binding 

profile described. 

- Perform a MD simulation of PPARβ/δ with two ligands simultaneously, 

same combinations used in this thesis. 
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Appendix A 

GW0742  

 

Figure 1. GW0742 mass spectrometry results. A sample of 0.1 mg/mL GW0742 in DMSO was 
run in a mass spectrophotometer. A) GW0742 structure and molecular weight. B) UV spectrum. C) 
Mass spectrum at the time of the largest peak 
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L-165041 

 

Figure 2. L-165041 mass spectrometry results. A sample of 0.1 mg/mL L-165041 in DMSO was 
run in a mass spectrophotometer. A) L-165041 structure and molecular weight. B) UV spectrum. C) 
Mass spectrum at the time of the largest peak 
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GSK3787 

 

Figure 3 . GSK3787 mass spectrometry results. A sample of 0.1 mg/mL GSK3787 in DMSO was 
run in a mass spectrophotometer. A) GSK3787 structure and molecular weight. B) UV spectrum. C) 
Mass spectrum at the time of the largest peak 
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GSK0660 

 

Figure 4. GSK0660 mass spectrometry results. A sample of 0.1 mg/mL GSK0660 in DMSO was 
run in a mass spectrophotometer. A) GSK0660 structure and molecular weight. B) UV spectrum. C) 
Mass spectrum at the time of the largest peak 
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C. 

 
 
Figure 1. H-NMR spectrum of GW0742. A sample of 1 mg GW0742 in deuterated DMSO was run 
for NMR spectroscopy. A) Wide spectrum B, C) Spectrum zoom in. 
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D. 
 

 
 
 

Figure 2. H-NMR spectrum of L-165041. A sample of 1 mg L-165041 in deuterated DMSO was run 
for NMR spectroscopy. A) Wide spectrum B, C, D) Spectrum zoom in. 
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D. 

 

Figure 3 . H-NMR spectrum of GSK3787. A sample of 1 mg GSK3787 in deuterated DMSO was 
run for NMR spectroscopy. A) Wide spectrum B, C, D) Spectrum zoom in. 
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B. 

 

Figure 4. H-NMR spectrum of GSK0660. A sample of 1 mg GSK0660 in deuterated DMSO was run 
for NMR spectroscopy. A) Wide spectrum B) Spectrum zoom in. 

 
 


