
ar
X

iv
:a

st
ro

-p
h/

03
12

13
8v

1 
 4

 D
ec

 2
00

3

Some Recent Peculiarities of the Early Afterglow
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Abstract. We consider some recent developments in GRB/afterglow observations: (i) the appear-
ance of a very hard prompt component in GRB 941017, and (ii) variability in the early afterglow
light curves of GRB 021004 and GRB 030329. We show that these observations fit nicely within
the internal-external shocks model. The observed variability indicates that the activity of the inner
engine is more complicated than was thought earlier and thatit involves patchy shells and refreshed
shocks. We refute the claims of Berger et al. and of Sheth et al. that the radio and mm observations
of GRB 030329 are inconsistent with refreshed shocks.

Introduction

The early afterglow and the GRB/afterglow transition are among the unexplored
regimes of GRBs. A great progress on this front was achieved during the last year
when, following fast HETE II identifications, two afterglows (GRBs 021004, 030329)
were followed from very early on showing remarkable variability and rich structure.
Also, somewhat unexpectedly, a search within the BATSE/EGRET archives revealed a
new very hard long lasting (∼ 200 s) component of GRB 941017. This is most likely
a manifestation of the early afterglow and of the GRB/afterglow transition. We discuss
these developments and their implication within the internal-external shocks model.

The Prompt High Energy Emission from GRB 941017 as a
GRB/afterglow transition

Recently, González et al. [1] discovered a high energy tail that extended up to
200 MeV in the combined BATSE and EGRET data of GRB 941017. Thetail had a hard
spectral slope (Fν ∝ ν0) up to 200 MeV. It appeared∼ 10-20 s after the beginning of the
burst and displayed a roughly constant flux while the lower energy component decayed.
At late times (∼ 150 s after the trigger) the very high energy (∼ 10-200 MeV) tail had a
luminosity∼ 50 times higher than the “main”γ-ray energy band (∼ 30 keV-2 MeV).

Granot & Guetta [2] where the first to suggest that we see here another manifestation
of the very early afterglow. Sari [3] has shown that for long bursts the external shocks
(and hence the afterglow) begin∼ R/cΓ2 after the beginning of the burst while the
internal shocks are still going on and hence the burst is still active. This behavior
was seen in the transition from the harder initial burst to the softer early afterglow
[4, 5, 6]. It was also seen in the prompt optical flash of GRB 990123 where the lower
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(optical) energy component did not trace the∼MeV γ-rays and a pronounced hard to
soft evolution was seen in theγ-ray signal.

The very high energy of this emission suggests that it is inverse Compton. There
are two relevant emitting regions in the early afterglow: the forward shock and the
reverse shock. With typical parameters [7] the energy of thesynchrotron photons and
the electrons’ Lorentz factor in the forward and reverse shocks are:

νsynch,F ≈ 0.1 MeV (Γ/300)4 ; γe,F ≈ 104(Γ/300)
νsynch,R ≈ 1 eV (Γ/300)2 ; γe,R ≈ 300

There are four possible combinations of seed photons and scattering electrons:

Rev. shock electrons For. shock electrons
Rev. shock photons∼ 0.1MeV(Γ/300)2 ∼ 100MeV(Γ/300)3

For. shock photons ∼ 10GeV(Γ/300)4 ∼ 10TeV(Γ/300)5 (within Klein Nishina)

While these approximate results are very sensitive toΓ, they indicate that inverse Comp-
ton scattering of the reverse shock photons on the forward shock electrons yeilds the
right energy range. The detailed calculations of Pe’er & Waxman [8] confirm these naive
estimates. The main problem, however, is not to explain the location of the spectral peak
but to explain the spectral slope (Fν ∝ ν0) and the temporal slope (Fν ∝ t0). Pe’er & Wax-
man [8] reproduce the spectral slope by requiring that the synchrotron self absorption
frequency of the reverse shock emission would be high enoughto effect the observed
spectrum. Granot & Guetta [2] reproduce both the temporal and spectral behaviors by
considering a slightly different scenario where the high energy component is produced
by Synchrtron self Compton within the reverse shock. They require a slightly higher ex-
ternal density with a somewhat unusual profile,∝ R−1, for a uniform ejecta shell (which
may explain the rareness of the event). In both models the high energy component is a
clear manifestation of the onset of the afterglow and the GRB/afterglow transition.

Afterglow Light curve variability

Theory: The different scenarios that lead to afterglow temporal variability can be
distinguished according to their characteristic features. Density variations produce only
weak fluctuations above the cooling frequency,νc, and cannot produce sharp changes
in the light curve. Energy variations produce variability both above and belowνc, and
can arise either due to refreshed shocks or due to a patchy shell structure. These two
mechanisms produce very different light curves. While the former produce a step-wise
increase in the light curve, the later produces random fluctuations with a decreasing
amplitude.

Rees & Mészáros [9], Kumar & Piran [10] and Sari & Mészáros [11] suggested
that slow shells take over the slowing down matter behind theafterglow shock and
producerefreshed shocks. Slow shells withΓs emitted from the source right after the
fast ejecta, catch up and collide with the slowing down ejecta at an observer time
t ∼ 0.25(Γs/10)−8/3(Eiso,52/n0)

1/3 days (whereEiso,52 is the isotropic kinetic energy



in units of 1052 ergs andn0 is the external density in cm−3) when the ejecta’s Lorentz
factor drops slightly belowΓs. The clearest feature of refreshed shocks is a monotonous
increase in the overall energy. Therefore the observed flux can only increase (relative
to the expected decay). The light curve has a step wise form with each step produced
by the arrival of a single shell. This step wise structure is seen both above and below
the cooling frequency with a similar amplitude. Each step (in the optical light curve)
should be accompanied by a flare in low frequencies that is produced by the reverse
shock which propagates back into the slow shell [10, 11]. Thetime scale,∆t of the steps
and the corresponding flares depends on their timing relative to the jet break. Before
the jet break the refreshed shocks are “locally” spherically symmetric and therefore the
angular time imposes∆t ∼ t [10]. The intensity of the reverse shock flare in this regime
is calculated in [10] , and the decay after the peak is∝ t−2 [7]. In the post-break case
the cold slow shells may not expand sideways (if cold enough). Then they keep their
original angular size,θ j, which is smaller thanΓ−1

s . In this case∆t ≈ t j < t, wheret j is
the jet break time [12] and the transition is fast. A reverse shock flare is expected in this
case as well. However, its frequency, intensity and temporal decay (which is expected to
be steeper than in the spherical case) are much harder to calculate.

Kumar & Piran [13] suggested, in thePatchy shell model, that the shells have an
intrinsic angular structure. As the blast wave deceleratesthe angular size of the observed
region (∼ 1/Γ) increases. The effective (average) energy of the observedregion and
hence the observed flux, relative to the expected decay, varies with time depending on
the angular structure. The variability time scale is∆t ∼ t [14]. The averaging over a
larger and larger random structure leads to a decay of the envelope ast−3/8 [14, 15]. An
important feature of this scenario is the break of the axial-symmetry and therefore the
production of a linear polarization. The variation of the polarization, both in degree and
in angle, are correlated with the light curve variations [14, 16]. The variability will be
observed both above and below the cooling frequencyνc with a similar amplitude.

Wang & Loeb [17], Lazzati et al. [18] and Nakar et al. [15] consideredExternal
density variations. Such variations may result from ISM turbulence or from a variable
pre-burst stellar wind. Wang & Loeb [17] analyzed the light curve resulting from mild
density fluctuations due to ISM turbulence. They show that these density fluctuations
can produce short time scale (∆t < 0.1t) and low amplitude (∼ 10%) fluctuations in the
light curve. Lazzati et al.[18], Nakar et al. [15] and Nakar &Piran [19] considered
large amplitude spherical density fluctuations. A basic feature of the resulting light
curve that distinguishes it from energy variations is that in the former the light curve
is different above and below the cooling frequency,νc. Density variations produce only
weak fluctuations aboveνc. The amplitude of the fluctuations aboveνc is at most tens
of percents and it is much smaller than the amplitude of the fluctuations belowνc [19].

A second feature of density fluctuations is their inability to produce a sharp variation
(either increase or decrease) in the light curve [20]. First, we note that because of angular
spreading, spherical density drops cannot produce decays sharper thant−2.6 [19, 21] and
even this decay is reached very slowly. More interesting is the fact that even a sharp
density enhancement cannot produce a steep increase in the light curve. The earlier
calculations [15, 18, 19] assumes that the ejecta can be described by a Blandford-McKee
solution whose density profile varies instantaneously according to the external density.



These calculations do not account, however, for the reverseshock resulting from density
enhancement and its effect on the blast-wave. Thus the abovemodels are limited to
slowly varying and low contrast density profiles. Now, the observed flux depends on
the external density,n, roughly asn1/2. Thus, a large contrast is needed to produce a
significant re-brightening. Such a large contrast will, however, produce a strong reverse
shock which will sharply decrease the Lorentz factor of the emitting matter behind
the shock,Γsh, causing a sharp drop in the emission belowνc and a long delay in the
arrival time of the emitted photons (the observer time is∝ Γ−2

sh ). Both factors combine
to suppresses the flux and to set a strong limit on the steepness of the re-brightening
events caused by density variations. Note that while non spherical density fluctuations
may lead to a steeper decline they usually do not lead to a steeper increase in the flux.

Implications: The early afterglow ofGRB 021004 showed clear deviations from
a smooth power law decay, lasting from 0.04 days to 3 days. Thefluctuations in the
light curve where accompanied by fluctuations both in the degree and in the angle of the
polarization ([14] and references therein).

The steep decays after each bump imply that the variations donot result from re-
freshed shocks. Thus, variable external density variations [15, 18, 22] and the patchy
shell model [14, 15] were considered as possible explanations. Unfortunately, the X-ray
observations are not detailed enough to clearly distinguish between density and energy
variations (although the former are favored by [22]). However, the sharp decays cannot
be produced by “locally” spherical density variations [19]. Furthermore, the first bump
requires, using the instantaneous Blandford-McKee approximation, an increase in the
external density by a factor of∼ 10 over∆R/R ≈ 0.05 [18, 19]. Such a density contrast
produces a mildly relativistic reverse shock which reduceΓsh by a factor of≈ 2, making
the approximation inconsistent. Preliminary results [20]of detailed numerical simula-
tions (including both hydrodynamics and synchrotron radiation) suggest that this bump
cannot be produced by density enhancement (due to the suppressed forward shock emis-
sion, caused by the reverse shock). These results leave the patchy shell as the only viable
explanation. Indeed, Nakar & Oren [14] show that patchy shell can reproduce the light
curve (including the sharp rise and steep decay of the first bump). They show that angu-
lar energy profiles which produce the observed light curve produce also a polarization
curve that fits the observed polarization. We conclude that angular energy fluctuations
are the dominant process that produce the observed fluctuations in GRB 021004.

In addition to the remarkable supernova signature, the optical afterglowGRB 030329
has shown also a unique variability ([12] and references therein). Several step-wise
bumps, att = 1.5,2.6,3.3 and 5.3 days, are seen after the jet break att j ≈ 0.5 days. The
first bump was the largest and best monitored, but even with the less dense monitoring of
the later bumps the step-wise profile (where after each bump the original decay slope is
resumed) is clear. All the bumps had a short rise time∆t ≈ 0.4-0.8 d< t. The step-wise
profile seems like a clear signature of post-break refreshedshocks [12], where∆t ≈ t j < t
because the later slower shells did not expand sideways before colliding with the faster
earlier ejecta. Moreover, the energy injected in these shocks is 10 times the energy in
the original blast-wave. This late (or rather slow) energy injection explains an additional
peculiarity of this GRB: the low energy output inγ-rays and in the early X-ray afterglow.

Berger et al. [23] suggested that the first bump and the energydeficiency can be



explained by a two component jet: A slow and energetic component with a wide half-
opening angle (17◦) dominates the afterglow after 1.5 days, and a fast component with
a narrow half-opening angle (5◦) dominates the afterglow before 1.5 days. The slow
component is observed only after 1.5 days≈ tdec≈ 0.5(Γs/10)−8/3(Eiso,52/n0)

1/3 days,
since only at this time its reverse shock consumes the slow shell. However, this model,
which received a great publicity, predicts that the rise time,∆t, of the first bump should
be of the same order as the observed time,tdec. Furthermore, it predicts a smooth light
curve after the first bump. Both predictions are contradicted by the observations.

Millimeter observations of GRB 030329 [24] show that at 100 &250 GHz the flux is
rather constant during the first week. Most surprising are two measurements at 100 GHz,
one before the first bump (0.6-1 d) and one after (1.7-1.9 d), which show a constant
flux. Sheth et al. [24] and Berger et al. [23] claim that these results support the two
component jet model and reject the refreshed shocks model due to the lack of radio
flares. However this analysis overlooks the fact that the encounter of the slow component
in the two-components jet model with the external matter produces a reverse shock
which should produce a radio flash. This flash is analogous to the optical flash produced
by the deceleration of the fast component [7], and to the radio flare expected in the
refreshed shocks model. The timing of this flash istdec = 1.5 d and its magnitude is
easily calculated. The contribution from this reverse shock at tdec= 1.5 d is larger by a

factor of up toΓ5/3
s ∼ 15 than the flux from the forward shock. Thus a very bright and

fast fading millimeter flash is expected in the two componentjet model. A more detailed
calculation (using [11] and the parameters of the wide jet presented in [23]) shows that
bothνa andνm of the reverse shock attdec are around 100-200 GHz and that the flux at
νm is ∼ 500 mJy which is an order of magnitude larger than the expected flux from the
forward shock and than the observed fluxes at 100 & 250 GHz (∼ 50 mJy) at this time.

The main argument of [23] in favor of a two-components jet is the existence of a sec-
ond jet break in the radio aftert j,2 ∼ 10 d. However, even this argument is not strongly
supported by the data. According to this model the flux belowνm should rise ast1/2

beforet j,2 and decay ast−1/3 after t j,2. However, the data of [24] contradict this pre-
diction. At 100 & 250 GHz the flux is constant before the passage of νm and the decay
after this passage (att = 6 & 8 d < t j,2, respectively) is steeper thant−1.7 in both bands.
This looks like a clear signature of a post break behavior in the radio att > 1 d. Now
the radio observations at lower frequencies (≤ 22 GHz) do not conform with the simple
post-break model (Fν ∝ t−1/3). The flux at these frequencies rises with time before the
passage ofνm. Interestingly enough, this radio behavior is exactly the one predicted as
the post break radio behavior by [25], using a 2D relativistic hydrodynamical simula-
tions. We find the striking similarity between the radio observations and Fig. 2 of [25]
as a very strong support that the broad band data are totally consistent with a single jet.

Sheth et al., [24] emphasize the fact that radio flare [10] wasnot detected during
the first bump att ∼ 1.5 days and argue that this rules out the refreshed shocks model.
However, in the post-break refreshed shocks model, the radio flash is expected to be
fainter and to decay faster than the radio flash in the two-components jet model (due to
the lower energy and the lateral spreading of the slow shell as opposed to the more
energetic and “locally” spherical wide jet). Thus, by assuming spherical symmetry,
Sheth et al., [24] over estimate the expected flash in the post-break refreshed shocks



scenario. It may be that the flash was missed by the sparse measurements due to its
lower intensity and faster decay. A detailed (and highly nontrivial) calculations should
be done in order find out.

Summary

With an increasing flow of new observations we discover that GRBs and afterglows
are richer than what was previously thought. The simple spherical theory had to be
modified, first with jets and now with additional angular structure (patchy shells) and
more extended velocity structure (refreshed shocks). The simple synchrotron theory has
to be modified with inverse Compton scattering. One can worry, are we adding epicycles
trying to revive a wrong theory? We don’t believe so. Complications and variation
are common in astrophysics and are found everywhere in nature. Moreover, the three
main themes that have been introduced here: patchy shells, refreshed shocks and inverse
Compton, were not invoked aposteriori to explain the new observations. On the contrary,
all three have been suggested long ago. It is just natural andeven reassuring to discover
them when better data become available.

The research was supported by US-Israel BSF.
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