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Abstract: The dynamics of the atmospheric boundary layer in an alpine valley at night or in winter is dominated
by katabatic (or down-slope) flows. As predicted by McNider (1982) oscillations along the slope are expected
to occur if the fluid is stably-stratified, as a result of buoyancy and adiabatic cooling/warming effects. Internal
gravity waves must also be generated by the katabatic flows because of thestable stratification. The aim of the
present paper is to identify and characterize the oscillations in the katabatic flow as well as the internal gravity
wave field emitted by this flow. Numerical simulations with the ARPS code are performed for this purpose,
for an idealized configuration of the Chamonix valley. We show that the oscillations near the slope are non
propagating motions, whose period is well predicted by the single particle model of McNider (1982) and equal
to 10 to 11 mn. As for the wave field, its frequency is close to 0.85N, whereN is the value of the Brunt-Väisälä
frequency in the generation region of the waves, consistently with previous academic studies of wave emission
by turbulent motions in a stratified fluid. This leads to a wave period of 7 to 8 mn.

Keywords: ICAM 2007, stably-stratified atmosphere, alpine valley, katabatic winds, temporal oscillations, in-
ternal gravity waves, numerical simulations, ARPS code.

1. INTRODUCTION

As soon as the ground surface is not flat, a horizontal temperature gradient is created at night
between the air adjacent to that surface and the ambient air because of radiative cooling of the ground.
A katabatic (i.e. downslope) flow is thereby induced. This flow is a gravity current, namely a jet of
cold air confined near the ground. Katabatic flows are well-known to develop along gentle slopes
of ice shelfs (e.g. Derbyshire & Wood (1994), Renfrew (2004)). For steep slopes (larger than
about 10 degrees), the features of katabatic flows have also been well documented throughin situ
measurements, laboratory experiments or numerical simulations either on a simple slope (f.i. Helmis
& Papadopoulos (1996), Monti et al. (2002), Skyllingstad (2003), Baines (2005)) or in a valley
(Gryning et al. (1985), van Gorsel et al. (2004)): the along-slope velocity is of a few meters per
second with a high shear, whose maximum value is reached at a few tens of meters above the ground,
depending upon the distance from the top of the slope.

As predicted by Fleagle (1950) from particle dynamics, oscillations of the katabatic flow are
expected because of compressible warming and radiative cooling of the ground. When the atmo-
sphere is stable, McNider (1982) showed that the oscillations are further contributed by the restoring
buoyancy force. Such oscillations have been reported in several papers from measurements near the
slope (Gryning et al. (1985), Helmis & Papadopoulos (1996),van Gorsel et al. (2004), Monti et
al. (2002), Bastin & Drobinski (2005)). The oscillating katabatic flow should emit internal gravity
waves when the atmosphere is stable1, as was also reported in field measurements (van Gorsel et al.
(2004), Mori & Kobayashi (1996), Whiteman et al. (2008)). However, no systematic study of this

1These waves should be made distinct from lee waves which result from the interaction of a wind with a topography.



wave field has been performed and this is the main purpose of the present paper: our aim is to iden-
tify and characterize the oscillations in the katabatic flowas well as the internal gravity wave field
emitted by this flow. The topography of an alpine valley understable atmospheric conditions will be
considered. This configuration may be considered as highly idealized since a mixed residual layer
often exists in the valley at night or in winter and the stratification is partly produced by the katabatic
flow itself (Mori & Kobayashi (1996)). However, stable vertical temperature profiles can be extracted
from field measurements and we shall use such a realistic profile to initialize our temperature field.

Several questions are currently unanswered : do the oscillations pertain to the wave field? What
are the wave characteristics? What does happen to the waves once emitted? To address these ques-
tions, we analyse numerical simulations performed with theARPS code. The simulations are de-
scribed in the next Section. The characteristics of the oscillating and wave fields are reported in
Section 3 and conclusions are drawn in the final Section.

2. METHODOLOGY

The simulations employ the ARPS code (Advanced Regional Prediction System, Xue et al. (2000))
for an idealized configuration of the Chamonix valley. The valley is oriented along the NS axis and
is opened at one boundary to allow for the development of an along-valley wind. The analytic ex-
pression of the topography is provided in Rampanelli et al. (2004). The geometry of the valley is
displayed in Figure 1a. Its length is 20 km while its width is 1240 m at bottom level, located at sea
level. The sloping sidewall width (which comes into play in the definition of the topography) is equal
to 2640 m. Summits at altitude 1700 m dominate the bottom of the valley. The altitude of the summits
actually varies along the valley axis, as shown in Figure 1b,the altitude of 1700 m being reached at
the North end of that axis. The maximum value of the slope angle varies as well along the valley axis
and, hereafter, we use a mean value of 35o for this angle.
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Figure 1: (a) Constant contours of the initial potential temperature field (inK) in the mid-plane perpendicular
to the valley axis. The geometry of the valley is also displayed. (b) Vertical cross-section (atx = 2 km) of the
topography along the valley axis, showing how the altitude of the summits changes along that axis (note the
difference of scale between the two coordinate axes).

The simulations model a winter situation for which a 3o difference exists between the ground
surface and the air just above it (the ground surface being colder than the air). The initial time of the
computation is 2200 UTC, on Decembre 21st, at the latitude of the Chamonix valley. The horizontal
temperature difference between the air adjacent to the ground surface and the ambient air creates
a pressure gradient which triggers the katabatic flow. No velocity field is imposed at initial time.
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Figure 2: (a) Initial potential temperature profile; the potential temperature field is uniform in the horizontal
plane. (b) Corresponding Brunt-Väisälä frequency.

The air is stably-stratified, with an initial temperature profile inferred from measurements during the
MAP-Riviera campaign (Tavernier (2006)). This profile is displayed in Figure 2 along with the
corresponding Brunt-Väisälä frequencyN. Constant contours of the initial temperature field are also
visible in Figure 1a. We recall thatN is defined byN2 = g/T0 dθ/dz, whereT0 is a temperature
reference equal here to 271K, namely to the temperature at ground level at the beginning of the
computation, andθ is the potential temperature field.

Open boundary conditions are used in the NS and EW directionsand a Rayleigh sponge absorbs
motions reaching the top of the domain. The horizontal resolution is 200 m both in thex− and
y−directions. A variable grid is used along the vertical direction, the resolution being 5 m near the
ground level and slowly increasing upwards. The corresponding resolution is 61x103x140 grid points.

3. ANALYSIS OF THE OSCILLATING AND INTERNAL GRAVITY WAVE FIELDS

3.1 Background

The oscillations of the katabatic flow are well predicted by the model of McNider (1982) for a
fluid particle flowing down along a slope of constant valueα in a stably-stratified atmosphere with
constantN. The fluid particle is subjected both to adiabatic warming and to a restoring buoyancy
force, since the medium is stably-stratified, which decelerate the particle. Radiative cooling from the
ground then cools the slowly moving particle, which accelerates, and the cycle is repeated. These
mechanisms lead to temporal oscillations of the velocity ofthe fluid particle at frequencyω = Nsinα
about a mean value which depends upon the cooling rate.

The unsteadiness of the katabatic flow resulting from this oscillating process (and from possible
dynamical instabilities of this flow) perturbs the stably-stratified fluid. As a result, internal gravity
waves should be emitted from the slope and propagate away from it. It is well-known that a bounded
object oscillating at a fixed frequencyΩ in an infinite stably-stratified fluid with constantN emits
internal gravity waves at the same frequency whose energy propagates at a given angleθ to the
vertical. The angleθ is imposed by the dispersion relation, which is expressed as, ignoring Coriolis
effects:

Ω2 = N2cos2θ . (1)

(f.i. Lighthill (1978)). Voisin (2007) showed theoretically that, whenN is fixed andΩ varies from 0 to
its upper boundN, the power of the waves radiated by an oscillating sphere is maximum forΩ/N ≃
0.84 (and for≃ 0.82 for an oscillating cylinder). These results have been verified experimentally



(Ermanyuk & Gavrilov (2003)). Interestingly, when a mixed region is released at its equilibrium
level (Wu (1969)) or above it (Cerasoli (1978)), in a constantN stratified fluid, the power spectrum
of the radiated waves is peaked at a frequencyΩ such thatΩ/N ≃ 0.8 as well.

From these results, it follows that two systems of oscillations are expected in the stably-stratified
atmospheric boundary layer of a valley: (i) a system of temporal oscillations located near the slope
at frequencyω such thatω/N =sinα and (ii) a system of propagating motions, consisting of the
internal gravity wave field, propagating from the slope and away from it at frequencyΩ/N ≃ 0.8.
Since the temporal oscillations along the slope have been inferred from particle dynamics, no phase
propagation (that is, no wave motion) is assumed, which willneed to be checked.

3.2 Oscillations along the slope

Figure 3 provides an overview of the flow field in a vertical plane at 2230 UTC, by displaying the
horizontal (alongx) and vertical components of the velocity field in frames (a) and (b) respectively.
The flow is nearly symmetric about the mid-plane of the valleybecause of the symmetry of the
topography and of the initial condition. The largest valuesof u (frame (a)) are reached along the slope,
within the downslope flow, and are close to±6 m/s; for comparison, the minimum vertical velocity
is close to−2.8 m/s. These values are consistent with those obtained fromin situ measurements.
In order to visualize the lower amplitude internal gravity wave field, a limited range ofw values are
displayed in frame (b). The features of this field are discussed in the next Section.
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Figure 3: Constant contours of components of the velocity field (in m/s) in the mid-plane perpendicular to the
valley axis, at 2230 UTC. (a) Component along thex-axis. (b) Vertical component; a limited range of values is
selected for a clear visualization of the wave field. The inclined full lines markthe slope of the phase lines; the
angle between the vertical dashed line and the inclined bold full line is about 30o.

No clear information can be obtained from Figure 3a about theoccurence of oscillations in the
katabatic flow and a detailed analysis of the frequency content of the velocity field close to the slope
is now presented. These oscillations occur if the slope is long enough. Indeed, from McNider’s
model, the velocity field along the slope is of the formU0(1-cos(Nsinα t)), ignoring friction; the
displacement amplitude scales therefore likeU0(t−sin(Nsinα t)/(Nsinα)). With U0 of the order of
5 m/s,N ≃ 0.018 rad/s andα = 35o, this yields an excursion of the fluid particles of 1000 m already
after 5 mn. Hence, oscillations at frequencyNsinα = 0.01 rad/s should be best detected near the
North end of the valley, where the slopes are the longest, andclose to the valley axis.

We therefore computed the frequency spectrum of one velocity component (w here), near the
bottom of the slope, atx = 4.4 km, for different values ofy larger than 16 km. Results are displayed
in Figure 4. SinceN is not exactly constant and the slope varies, deviations from this theoretical
prediction may occur. All spectra nevertheless exhibit a peak around 0.01 rad/s, which is the expected
oscillating frequency. The values of these peaks areω = 0.0105 rad/s for frame a) andω = 0.0093



rad/s for frames b) and c), corresponding to an oscillating periodT = 2π/ω ranging between 10 and
11 mn. Figure 4 also shows that other maxima are reached at a higher frequency, around 0.015 rad/s,
which should be attributed to the presence of internal gravity waves as we shall see.
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Figure 4: Frequency spectrum of the vertical velocity at the bottom of the slope (x = 4.4 km), 50 m above
the slope for different locations along the valley axis: (a)y = 15.6 km, (b)y = 16.6 km, y = 19.6 km. The
vertical line indicates the oscillating frequencyNsinα predicted by McNider’s model (withN = 0.018 rad/s
andα = 35o).

The spectrum does not allow one to determine whether the peakfrequency around 0.01 rad/s
is associated with propagating or non-propagating motions. To investigate this point, we should
normally filter the data around this frequency before performing any analysis. We show below that
this is not necessary if the signal at the oscillating frequency is strong enough with respect to the
other frequencies. A Hövmoller diagram in(z, t) coordinates is thus plotted for the vertical velocity in
Figure 5a. This diagram simply displaysw along a vertical line as a function of time. The slope of the
phase lines in this diagram is equal to the phase velocity along thez-direction namelydz/dt = cz. The
z-component of the wave vector of the propagating motions (assumed to be spatially monochromatic),
denotedkz, can be inferred from this computation sincekz = ω/cz. For instance, vertical phase lines
yield kz = 0 implying that there is no propagation along the vertical direction.

Figure 5a shows that, near the ground, at all times, the phaselines are precisely vertical over a
height of about 30 m. Hence, oscillating motions without vertical phase propagation occur near the
slope. In other words,kz may be assumed to be zero near the slope.

A Hovmöller diagram in(y, t) coordinates is displayed in Figure 5b. The slope of the phaselines
is vertical again during the first 40 mn or so; though the pattern becomes more complicated later on,
no clear inclination can be detected after this time. Hence we may assume thatky = 0 as well. It
follows thatkx = 0 also since a non zero value ofkx would be associated with a propagating motion
along thex-direction only, which is unphysical. It can thus be concluded that the oscillations along
the ground with frequencyNsinα are associated with temporal oscillations only that is, there is no
phase propagation. (Therefore, these oscillations shouldnot be interpreted as internal gravity waves
propagating normal to the slope, as a formal analogy with thedispersion relation would suggest it,
usingNsinα = Ncos(π/2−α).)

3.3 Kinematics of the emitted wave field

Figure 3b shows that vertical velocity contours of alternate sign emanate from the katabatic flow,
thereby attesting of the emission of internal gravity waves. These waves are emitted all along the
slope, with phase lines making nearly the same angle with thevertical whatever the slope angle at the
emission location. From the dispersion relation (1), this implies that the waves are monochromatic in
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Figure 5: (a) Hovmöller diagram of the vertical velocity (in m/s) : (a) in(z, t) coordinates along the line defined
by x = 5.2 km andy = 15 km. (b) in(y, t) coordinates along the line defined byx = 4.4 km andz = 500 m (200
m above topography), fory larger than 15 km.

time. In the center of the valley, the phase lines are nearly vertical because waves with nearly opposite
horizontal phase velocity superimpose (hence standing waves are created there).

The purpose of this section is to determine the frequencyΩ of the internal gravity wave field
emitted by the unsteady katabatic flow and, if the wave field appears to be monochromatic in space as
well, its wave vector~k. The spatial monochromaticity is not obvious. Indeed, the dispersion relation
shows that the angle of the wave vector is selected byΩ andN, but not its modulus|~k|. Hence, any
scale 1/|~k| such that~k makes the angleθ with the vertical maya priori be generated. In practice, a
definite length scale appears, which is selected by the size of the source which emits the waves for
instance (see, e.g., Staquet & Sommeria (2002)).

3.3.1 Frequency of the emitted wave field

The frequencyΩ will be determined from three independent methods: (i) fromthe peak of the
frequency spectrum of the vertical velocity at a point well above the topography; (ii) from the angle
of the phase lines with the vertical; (iii) from Hovmöller diagrams at high altitude. The second and
third methods are strictly valid whenN is constant, since they rely upon the dispersion relation (1)
which has been derived under that assumption. As shown in Figure 2bN changes by not more than
20% over the first 1700 m above sea level, where the waves are generated. We shall therefore assume
that the dispersion relation remains valid and use a constant value forN.

The frequency spectrum of the vertical velocity is plotted in Figure 6 in the mid-plane along the
valley axis at two locations mainly differing by their altitude. Both spectra display a well-defined
peak, at a frequency close to 0.015 rad/s:Ω = 0.0145 rad/s for frame a) andΩ = 0.0156 rad/s for
frame b). The corresponding periods are 433 s and 403 s respectively. With N = 0.017 rad/s (which
is the value ofN at the generation region of the waves, atz ≃ 1100 m), this leads toΩ/N = 0.85
andΩ/N = 0.92 respectively. The former value is in good agreement with the values found in the
literature, as discussed in the Introduction, while the latter is slightly higher.

The second method consists in computing the slope of the phase lines displayed in Figure 3b.
The straight lines drawn in Figure 3 are all parallel, showing that a definite value for the angle of the
phase lines can be inferred. The lines plotted correspond toθ = 30o, namely toΩ/N ≃ 0.87. With
N = 0.017 rad/s, one getsΩ = 0.0147 rad/s leading to a wave period equal to 427 s. All these values
are totally consistent with those found from the first method.

Hence the waves have a period of about 7 mn. This is confirmed bythe computation of the
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Figure 6: Frequency spectrum of the vertical velocity in the mid-plane along the valley axis (a) atx = 3 km
andz = 1500 m (400 m above topography); (b) atx = 3.4 km andz = 2200 m (1300 m above topography).

Hovmöller diagrams as we show it now.

3.3.2 Wavelengths of the emitted wave field

Hovmöller diagrams show that free waves propagate fromz≃ 2200 m and up. Below that altitude,
such asz = 1500 m, confinement effects by the valley slopes lead to a standing wave system from
t ≃ 50 mn. We thus analyse the Hovmöller diagrams forz = 2200 m.

The (y, t) Hovmöller diagram is displayed in Figure 7a over the whole length of the valley and
for one hour. A striking feature is that two wave packets are actually generated, about the mid-plane
along the valley axis and close to the North end of the valley.We focus on the former wave system
in the following. The phase lines are close to the vertical for this wave packet implying that the
waves propagate in a vertical plane perpendicular to the valley axis. Hence, onlykx andkz need to be
determined.

Due to the symmetry of the wave pattern, only half of the domain along thex-direction is plotted
in the(x, t) diagram (Figure 7b). The phase lines display a well-defined slope, which slightly varies as
time elapses. Since the medium changes only in thez-direction (becauseN varies along the vertical),
the frequencyΩ andkx are unchanged. Hencecx = dx/dt should not change with time if the waves
were freely propagating. The interaction between wave packets emitted from either slope of the valley
may be responsible for this change. At early times (beforet = 50 mn), the diagram yieldscx = 3.3
m/s.

The same analysis can be performed from the(z, t) diagram, displayed in Figure 7c. The diagram
clearly shows that the wave packet is emitted from the groundand propagates upwards -as attested
by the inclined phase lines leaving the ground as time elapses- while vertical structures -namely the
oscillations discussed in the previous section- are left onthe ground. The slope of the inclined phase
lines is negative, consistently with internal gravity wavekinematics. Indeed the vertical component of
the group velocity and of the phase velocity have opposite signs (for a positive frequency) (Lighthill
(1978)). Since the former component is positive, as the waves are emitted upwards from the ground,
the latter component is expected to be negative. We foundcz = −4.4 m/s.

AssumingN is constant, the dispersion relation can be invoked again toinfer a value forΩ/N
from those of the phase velocities. Indeed, this relation can also be written (assumingΩ is positive):

Ω
N

=

(

1+
c2

x

c2
z

)−1/2

. (2)



time (minutes)

y 
(m

)

 

 

0   10 20 30 40 50 60
0  

4000

8000

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time (minutes)

x 
(m

)

 

 

20 30 40 50 60
3000

3500

4000

4500

5000

5500

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time (minutes)

z 
(m

)

 

 

10 20 30 40 50 60

1000

1500

2000

2500

3000

3500

−0.2

−0.1

0

0.1

0.2

(a) (b) (c)

Figure 7: Hovmöller diagrams of the vertical velocity: (a) in a(y, t) plane, forx = 3.4 km andz = 2200 m
(1300 m above topography); (b) in a(x, t) plane, fory = 9.8 km andz = 2200 m; (c) in a(z, t) plane, forx = 3.4
km andy = 9.8 km.

Using the values ofcx andcz, one getsΩ/N ≃ 0.80, which is consistent with our finding from the
direct measurement of the angle of the phase lines from Figure 3.

The finding of two well-defined values for the phase velocity along thex- andz-directions imply
that the wave field has a well-defined length scale along thex andz directions as well. These length
scales are obtained in a straightforward manner. Usingλx = 2π.cx/Ω, we findλx ≃ 1500 m (using
Ω/N ≃ 0.80 andN = 0.017 rad/s). As well, we getλz ≃ 2000 m.

The scale which sets the value forλx is not clear yet. This value is close to the width of the valley,
which suggests that the horizontal extent of the valley may set it. However, we ran a simulation being
identical to the one analysed in the present paper except forthe bottom width of the valley, which was
doubled (being set to 2480 m). The analysis of the(x, t) Hovmöller diagram for this simulation led
to the same estimate forλx, namelyλx ≃ 1300m. As for the vertical wavelengthλz, it is completely
determined from the dispersion relation onceΩ, N andkx are known. We just note thatλz is of the
same order as the highest altitude of the summits.

Hence large scale internal gravity waves are emitted from the slope.

4. CONCLUSION

This academic study dealt with the atmospheric boundary layer under stable conditions in an
alpine valley. An idealized topography was considered, as amodel of the Chamonix valley. We
focused upon the along-slope oscillations and upon the internal gravity wave field generated by the
unsteady katabatic flow. We showed that these two oscillating systems are distinct but have close
periods in the present context of steep slopes. The oscillations, which are well-predicted by the single
particle model of McNider (1982), are not associated with any phase propagation and have a period of
10 to 11 mn. The frequencyΩ of the waves is such that, assuming the Brunt-Väisälä frequency varies
weakly enough in space so that the dispersion relation may beassumed to be valid,Ω/N ≃ 0.8−0.9,
consistently with previous works on internal wave emissionby oscillating objects and turbulent fluids.
The corresponding wave period is 7 to 8 mn.

The internal wave field appears to be organized into two wave packets, which propagate in a
vertical plane perpendicular to the valley axis. These two planes are located at mid-distance along the
valley axis and at its end part, where the slopes are the longest. The waves have large wavelengths, of
the same order as the dimensions of the valley, but we could not conclude at the scales which set these
wavelengths. Indeed only a time scale (but no length scale) is imposed for internal gravity waves,
which isN−1.



As time elapses, the wave packets become trapped below a reflecting level, due to the change in
the Brunt-Väisälä frequency with altitude. As a result, velocity and temperature fluctuations arise
everywhere between that level and the valley floor, implyingthat turbulence and, possibly, mixing
may occur. This point is under investigation, as is also the application of the present analysis to the
realistic configuration of the Grenoble valley.
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