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Abstract. The topological phase factor induced on interfering electrons by
external quantum electromagnetic fields has been studied. Two and three electron
interference experiments inside distant cavities are considered and the influence
of correlated photons on the phase factors is investigated. It is shown that
the classical or quantum correlations of the irradiating photons are transferred
to the topological phases. The effect is quantified in terms of Weyl functions for
the density operators of the photons and illustrated with particular examples. The
scheme employs the generalized phase factor as a mechanism for information
transfer from the photons to the electric charges. In this sense, the scheme may be
useful in the context of flying qubits (corresponding to photons) and stationary
qubits (electrons), as well as the conversion from one type to the other.
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1. Introduction

The study of phase factors arising during quantum interference has been crucial for the
understanding of a wide range of physical phenomena [1]. The Aharonov–Bohm phase factor
[2], exp(iq�), is acquired by a particle with charge q in a looping trajectory that encloses
a classical magnetostatic flux �. This is true even when the particle moves in entirely field-
free regions. The effect has been investigated in relation to transport phenomena in solid-state
physics [3] and electron coherence in mesoscopic devices [4]. The reciprocal phase factor [5]
and the dual counterparts [6, 7] have also been studied and have recently found applications in
different contexts, such as topological quantum information processing [8], the quantum Hall-
effect analogue with neutral atoms [9] and ultra-cold atom technology [10].

The generalized phase factor exp(iqφ̂), which is induced on a charge q by a nonclassical
electromagnetic field with magnetic flux φ̂, has also been studied in the literature [11]. In
this case, the magnetic flux and the induced phase factor are quantum mechanical operators.
Consequently, an important quantity in terms of interference properties is the expectation value of
the phase factor 〈exp(iqφ̂)〉 = Tr [ρ exp(iqφ̂)], with respect to the density matrix ρ that describes
the external electromagnetic field. This phase factor is topological in the sense that it depends
on the number of times an electron winds around the enclosed magnetic flux and is independent
of the electron velocity. The 〈exp(iqφ̂)〉 is a complex quantity, in general, and is known as the
Weyl (or characteristic) function from quantum phase-space studies [12].

Clearly, the inherent fluctuations of the external quantum fields bring about the problem
of decoherence of the interfering electrons. Solutions have been proposed in relation to this
problem using various methods [13]. In this paper, it is assumed that, under certain conditions,
the external photons do not interact with the interfering charges. In particular, it is assumed that
the electromagnetic fields that are induced via Faraday’s law by the circulating electrons are
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negligible in comparison to the external fields, and so there is no back reaction. The inherent
noise of the external photons manifests itself as a decrease in the absolute value of the phase
factor |〈exp(iqφ̂)〉|, which becomes slightly less than one [14].

Nonclassical electromagnetic fields in various quantum states [15], such as squeezed and
number states, have been generated at both optical and microwave frequencies [16]. Quantum
mechanically correlated [17] photons have also been produced in the laboratory [18]. It is
therefore reasonable to ask whether we can use certain quantum interference devices, which
are sensitive to the external radiation, as detectors of photon correlations. This has indeed been
proposed recently using different techniques [19, 20]. In this paper, we study photon-induced
correlations between electron phase factors, which is the precursory mechanism for the detection
of photon entanglement in distant quantum interference devices. It is shown that the phase factors
of the electrons in interference experiments, which are initially independent of one another,
become correlated when the experiments are irradiated with correlated photons. The set-up
considered here may also be useful in the general area of flying and stationary qubits [21] and
their interaction.

The rest of the paper is organized as follows. A possible implementation is analysed and
the background material is provided in section 2. The correlations induced by the photons on
the phase factors are quantified for the bipartite case in section 3. The problem is approached
through examples, which involve classically and quantum mechanically correlated photons in
number states and coherent states, in section 4. This is subsequently generalized to the tripartite
case in section 5, where examples are also provided. The results are discussed and conclusions
are drawn in section 6.

2. Influence of entangled photons on distant interference experiments

We begin by introducing the set-up depicted in figure 1: two interference devices for charged
particles, A and B, are placed inside cavities that are far from each other. A source SEM of
two-mode nonclassical microwaves sends one mode of frequency ω1 into the cavity where A
has been placed and sends the other mode of frequency ω2 into the cavity where B has been
placed. It has been shown that, in this case, the correlation between the two electromagnetic field
modes is transferred to the distant quantum interference devices [20]. These devices could be,
for example, nanoscale superconducting quantum interference devices (SQUIDs) [19], in which
case the interfering particles are Cooper pairs, or simply two-path electron interference devices
[20]. In either case, the value of the phase factor, which depends on the external electromagnetic
fields, influences the measurable physical quantities (in the case of superconducting rings, the
measurable variable is the current, while in electron interference one measures the intensity of
electrons on the interference screen).

The external quantum fields are usually described by the vector potential Âi and the electric
field Êi, which are dual quantum variables. Âi, Êi can be transformed into another pair of
dual variables by integrating them around a small loop l (that is, ‘small’ in comparison to the
wavelength so that the field strengths are the same locally). This operation yields the magnetic
flux φ̂ = ∮

l
Âidxi and the electromotive force V̂EMF = ∮

l
Êidxi, respectively. The boson creation

and annihilation operators may now be introduced as

â† = 1√
2ξ

(φ̂ − iω−1V̂ EMF), â = 1√
2ξ

(φ̂ + iω−1V̂ EMF), (1)
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Figure 1. Two distant interference devices for charged particles A and B are
irradiated with nonclassical electromagnetic fields of frequencies ω1 and ω2,
respectively. The electromagnetic fields emanate from a single source SEM and
are correlated. It is required that the wavelengths of the fields are ∼1 mm
(microwaves) and that the interference devices have mesoscopic dimensions
(∼0.1 µm) operating at low temperatures of 10–100 mK, such that kBT �
h̄ω1, h̄ω2.

where ξ is a constant proportional to the area enclosed by l. They obey the usual commutation
relation [a, a†] = 1 (note that we employ units in which the Boltzmann constant, the Planck
constant divided by 2π and the speed of light in vacuum are set equal to one, kB = h̄ = c = 1).
The flux operator is consequently written in the Heisenberg picture as

φ̂(t) = exp(itH)φ̂(0) exp(−itH), (2)

where

H = Hfree + Hint, Hfree = ω(â†â + 1/2). (3)

The full Hamiltonian H contains the free electromagnetic field Hamiltonian and an interaction
term Hint, which includes the Hamiltonian of the interfering charges as well. In this paper, we
assume that Hint, which describes the back reaction from the charges to the electromagnetic field,
is neglected. In other words, it is assumed that the self-induced magnetic flux of the charges is
negligible compared to the external flux 〈φ̂(t)〉. In this approximation [11, 20], we get

φ̂(t) = ξ√
2

[
exp(iωt)â† + exp(−iωt)â

]
. (4)

Exponentiating, we obtain the phase factor for an electron of charge e:

exp
[
ieφ̂(t)

] = D[iq exp(iωt)], q = ξe√
2
, (5)

where q is introduced as a scaled electric charge. D(λ) ≡ exp(λâ† − λ∗â) is the displacement
operator.

Let ρA be the density matrix describing the external nonclassical electromagnetic field
mode in cavity A. The expectation value of the phase factor is given by the trace of the operator
exp [ieφ̂A(t)] with respect to ρA. It is easily seen that taking the trace we obtain the single-mode
Weyl function

W̃A(λA) ≡ Tr [ρAD(λA)], λA = iq exp(iω1t). (6)
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Similarly, the expectation value of the electron phase factor in experiment B is given by the Weyl
function

W̃B(λB) ≡ Tr [ρBD(λB)], λB = iq exp(iω2t). (7)

It is important to note that these ‘expectation values’ are, in general, complex numbers. The
reason for this is that the operator D(z) is not Hermitian, since D†(z) = D(−z).

To provide a physical interpretation, consider that A is a two-path electron interference
experiment. We associate with each path, a wavefunction for the electrons, for example, ψ0 and
ψ1 (let us assume equal splitting among them, for simplicity). It has been shown elsewhere
[20] that the intensity, or number density, of electrons at position x ≡ arg ψ0 − arg ψ1 on the
interference screen of experiment A is given by

IA(x) = Tr
[
ρA|ψ0 + 〈exp(ieφ̂A)〉ψ1|2

] = 1 + |W̃A(λA)| cos{x + arg [W̃A(λA)]}. (8)

It is clearly seen that the absolute value of the expectation value of the phase factor, |W̃A(λA)|, is
the visibility ν ≡ (Imax − Imin)/(Imax + Imin) of the interference. The arg [W̃A(λA)] is the phase
shift induced on the electrons by the irradiating electromagnetic field.

3. Correlations between electron phase factors

In this section, we show how the electron phase factors in distant interference experiments become
correlated when they are irradiated with correlated photons. The nature of the correlation between
the external photons can be classical or quantum [17, 18] and the aim here is to compare and
contrast the two cases. Firstly, the difference between the two cases is clarified.

The photons of frequencies ω1 and ω2 are described by density operators ρA and ρB,
respectively. If they are completely independent of each other, then the density operator describing
the bipartite state is factorizable, i.e., ρfac = ρA ⊗ ρB. If they are classically correlated, then the
bipartite state is described by the separable density operator ρsep = ∑

kPkρA,k ⊗ ρB,k, where Pk

are probabilities that sum up to unity. If the two photons are quantum mechanically correlated,
then their density operator ρent is entangled and cannot be cast in the above forms in any way.

The expectation values of the electron phase factors 〈exp(ieφ̂A)〉 and 〈exp(ieφ̂B)〉 in the
interference experiments A and B are given by the single-mode Weyl functions W̃A(λA) and
W̃B(λB) of equations (6) and (7), respectively. It is also possible to measure the product of the
electron phase factors in A and B (joint phase factor). The expectation value of this product,
〈exp(ieφ̂A) exp(ieφ̂B)〉, is given by the two-mode Weyl function

W̃AB(λA, λB) = Tr [ρD(λA)D(λB)]. (9)

In the case of independent subsystems, which are described by ρfac = ρA ⊗ ρB, the W̃AB(λA, λB)

is equal to the product W̃A(λA)W̃B(λB). However, for classically or quantum mechanically
correlated subsystems, the two-mode Weyl function is not equal to this product of one-mode
Weyl functions, in general. This implies that the electron phase factors in A and B are correlated
with each other.

In order to quantify the induced correlations between the electron phase factors, we define

C ≡ W̃AB(λA, λB) − W̃A(λA)W̃B(λB). (10)

If the subsystems are not correlated with each other, then C = 0. If they are correlated, then
C �= 0 (i.e., the real and imaginary parts of C do not both vanish).
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The experimentally measurable quantities are the visibilities of the electron interferences
in A (|W̃A(λA)|) and in B (|W̃B(λB)|); and the corresponding shifts of the interference fringes
arg(W̃A), arg(W̃B). The absolute value (joint visibility) and the argument (joint phase shift) of
W̃AB(λA, λB) have to be measured simultaneously in the two experiments.Alternatively, one may
use a SQUID ring with a single Josephson junction irradiated with nonclassical electromagnetic
fields [19], in which case W̃A, W̃B and W̃AB are calculated from the expectation values of the
currents in A and B (and the product of the currents in both rings). For example, it is known that
the current measured in A is given by IA = IcrIm[W̃A(λA)], where Icr is the critical current.

4. Examples for the bipartite case

In this section, we consider particular examples of classically and quantum mechanically
correlated two-mode nonclassical electromagnetic fields in number states and coherent states.
The fundamental relations that are necessary for the derivation of the following results are given
in appendix A (for the number states) and appendix B (for the coherent states).

4.1. Photons in number states

Consider a two-mode electromagnetic field in the separable state

ρsep = 1
2(|N1N2〉〈N1N2| + |N2N1〉〈N2N1|). (11)

In this case, the difference C of equation (10) is

Csep = exp(−q2)LN1(q
2)LN2(q

2) − 1
4 exp(−q2)[LN1(q

2) + LN2(q
2)]2, (12)

where Lα
N are Laguerre functions. Csep is time-independent; it depends only on the number of

photons N1, N2. It is clearly seen that |C| > 0 for any number of photons.
On the other hand, the entangled number state |n〉 = 2−1/2(|N1N2〉 + |N2N1〉), with a density

operator

ρent = ρsep + 1
2(|N1N2〉〈N2N1| + |N2N1〉〈N1N2|) (13)

yields

Cent = Csep + exp(−q2)L
N2−N1
N1

(q2)L
N1−N2
N2

(q2) cos(�t), (14)

which is time-dependent and oscillates around Csep with frequency

� = (N1 − N2)(ω1 − ω2). (15)

If there is no detuning between the external electromagnetic fields, in which case ω1 = ω2, then
Cent is constant in time but it is still different from Csep. It is worth noting that, for this example,
the difference C is purely real in both the separable and entangled cases.

4.2. Photons in coherent states

Consider two coherent states |A1〉 and |A2〉 in the classically correlated state

ρsep = 1
2(|A1A2〉〈A1A2| + |A2A1〉〈A2A1|). (16)
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In this case, the reduced density operators that describe the coherent states propagating in cavities
A and B are

ρsep,A = ρsep,B = 1
2(|A1〉〈A1| + |A2〉〈A2|). (17)

We also consider the entangled state |S〉 = N (|A1A2〉 + |A2A1〉) with density operator

ρent = 2N 2ρsep + N 2(|A1A2〉〈A2A1| + |A2A1〉〈A1A2|), (18)

where the normalization constant, which is such that 〈S|S〉 = 1, is given by

N = [
2 + 2 exp ( − |A1 − A2|2)

]−1/2
. (19)

In this case, the reduced density operators in A and B are

ρent,A = ρent,B = N 2(|A1〉〈A1| + |A2〉〈A2| + τ12|A1〉〈A2| + τ∗
12|A2〉〈A1|), (20)

where

τ12 = 〈A1|A2〉 = exp

(
−|A1|2

2
− |A2|2

2
+ A∗

1A2

)
. (21)

The quantity C of equation (10) has been studied numerically using the relations
provided in appendix B. For the separable case, we have calculated numerically Csep =
W̃AB,sep(λA, λB) − W̃A,sep(λA)W̃B,sep(λB); and for the entangled case, we have calculated Cent =
W̃AB,ent(λA, λB) − W̃A,ent(λA)W̃B,ent(λB). These are complex quantities and therefore, in the
following, we present the results in terms of their absolute values |Csep|, |Cent| and their imaginary
parts Im(Csep), Im(Cent).

4.3. Numerical results

For the numerical results in this section, the values of the microwave frequencies have been set
at ω1 = 1.2 × 10−4 and ω2 = 1.0 × 10−4. We have used units in which kB = h̄ = c = 1. Other
fixed parameters are ξ = 1 and the dimensionless electric charge e = (4π/137)1/2.

We study the entangled number state |β〉 = 2−1/2(|01〉 + |10〉) and its closest separable state.
We therefore let N1 = 1, N2 = 0 in the separable state of equation (11) and the entangled state
of equation (13). The corresponding results for |Csep| and |Cent| as a function of �t are plotted
in figure 2. We note that |Csep|, which is time-independent, is not zero, but it is very small in this
case (	5 × 10−4).

In the case of coherent states, we study the separable state of equation (16) and the entangled
state of equation (18) for the same average number of photons as in the number states, i.e.,
|A1|2 = N1 and |A2|2 = N2 (whereas arg A1 = 0, arg A2 = 0). The results for |Csep| and |Cent|
have been plotted against �t in figures 3(a) and (c), respectively. We note that, in this case, C is
complex and also Csep is time-dependent (in contrast to number states). In figures 3(b) and (d)
the imaginary parts Im(Csep) and Im(Cent) have been plotted against �t.

In figure 2, it is seen that both Csep and Cent are nonzero and that Cent is time-dependent.
In fact, this is true for any number of photons N1, N2 in the separable and entangled states
ρsep, ρent as can be seen from equations (12) and (14). Consequently, the electron phase factors
become correlated when the interference devices are irradiated with classically correlated (ρsep)
or quantum mechanically correlated (ρent) photons in number states. Clearly the quantity C

of equation (10) is different for the two cases, which implies that the nature of the correlation
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Figure 2. |Csep| (***) corresponding to the separable number states of equation
(11) and |Cent| (——) corresponding to the entangled number states of equation
(13) for N1 = 1, N2 = 0 as a function of �t. The frequencies are ω1 = 1.2 × 10−4

and ω2 = 10−4, in units where kB = h̄ = c = 1. Note that |Csep| is not zero but
equals 5 × 10−4.

between the irradiating photons influences the induced correlation between the topological phase
factors. In figure 3, we see that the same general result is true for the classically and quantum
mechanically correlated photons in coherent states. It is also evident that the correlations between
the phase factors are influenced by the quantum noise and statistics of the external photons, by
comparison of figures 2 and 3, which correspond to photons in number states and coherent
states.

5. Examples for the tripartite case

In this section, we consider three electron-interference devices of mesoscopic dimensions that
are placed inside distant microwave cavities. The interference experiments A, B and C are
irradiated with nonclassical electromagnetic fields of frequencies ω1, ω2 and ω3, respectively.
The three electromagnetic field modes are described by density operators ρA, ρB and ρC. If they
are completely independent of each other, then the density operator describing the tripartite state
is factorizable, i.e., ρfac = ρA ⊗ ρB ⊗ ρC. If they are classically correlated, then the tripartite state
is described by the separable density operator ρsep = ∑

k PkρA,k ⊗ ρB,k ⊗ ρC,k. If the three field
modes are quantum mechanically correlated, then their density operator ρent is entangled and
cannot be written in a separable form.

The phase factor acquired by the interfering electrons in A is given by W̃A(λA) of equation
(6) and the phase factor in B is given by W̃B(λB) of equation (7). Similarly, the phase factor in
C is obtained from W̃C(λC) = Tr [ρCD(λC)], where λC = iq exp(iω3t). We can also measure the
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Figure 3. (a) |Csep| and (b) Im(Csep) corresponding to the separable coherent
states of equation (16). (c) |Cent| and (d) Im(Cent) corresponding to the entangled
coherent states of equation (18) for A1 = 1, A2 = 0 as a function of �t. The
frequencies are ω1 = 1.2 × 10−4 and ω2 = 10−4, in units where kB = h̄ = c = 1.

product of the three-phase factors, which is given by the three-mode Weyl function

W̃ABC(λA, λB, λC) = Tr [ρD(λA)D(λB)D(λC)]. (22)

The tripartite correlations between the electron phase factors can be quantified with a
straightforward generalization of the quantity C of equation (10); i.e., in this case, we define

C ≡ W̃ABC(λA, λB, λC) − W̃A(λA)W̃B(λB)W̃C(λC). (23)

If the phase factors are not correlated then C = 0. If they are correlated then |C| > 0 (and also
possibly Im(C) �= 0).

5.1. Photons in number states

As an example of tripartite number states, consider the separable state

ρsep = 1
2(|N1N2N3〉〈N1N2N3| + |N2N3N1〉〈N2N3N1|) (24)

and the entangled state |ntri〉 = 2−1/2(|N1N2N3〉 + |N2N3N1〉) with density operator

ρent = ρsep + 1
2(|N1N2N3〉〈N2N3N1| + |N2N3N1〉〈N1N2N3|). (25)

New Journal of Physics 7 (2005) 50 (http://www.njp.org/)

http://www.njp.org/


10 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

The results for the three-mode Weyl function of equation (22) corresponding to the separable
and entangled number states are straightforward, albeit lengthy. Only the numerical calculations
are presented in terms of time �′t, where �′ has replaced � of equation (15), which was
valid for the bipartite case. In particular, it is not hard to show that the difference between the
separable and entangled Weyl functions includes a time-dependent term of frequency �′, which is
given by

W̃ABC,ent − W̃ABC,sep ∝ Re(〈N1|D(λA)|N2〉〈N2|D(λB)|N3〉〈N3|D(λC)|N1〉). (26)

From this term, we obtain the appropriate frequency for the tripartite case, namely

�′ = N1(ω3 − ω1) + N2(ω1 − ω2) + N3(ω2 − ω3). (27)

5.2. Photons in coherent states

We consider the separable coherent state

ρsep = 1
2(|A1A2A3〉〈A1A2A3| + |A2A3A1〉〈A2A3A1|). (28)

In this case, the reduced density operators are

ρsep,A = 2−1(|A1〉〈A1| + |A2〉〈A2|),
ρsep,B = 2−1(|A2〉〈A2| + |A3〉〈A3|), (29)

ρsep,C = 2−1(|A3〉〈A3| + |A1〉〈A1|).

We also consider the entangled state |Stri〉 = N ′(|A1A2A3〉 + |A2A3A1〉) with density
operator

ρent = 2N ′2ρsep + N ′2(|A1A2A3〉〈A2A3A1| + |A2A3A1〉〈A1A2A3|), (30)

where the normalization constant is given by

N ′ = [2 + 2Re(τ12 + τ23 + τ31)]
−1/2 (31)

for τij = 〈Ai|Aj〉 = exp(−|Ai|2/2 − |Aj|2/2 + A∗
i Aj) as in equation (21), for example. In this

case, the reduced density operators are

ρent,A = N ′2(2ρsep,A + τ13τ32|A1〉〈A2| + τ∗
13τ

∗
32|A2〉〈A1|),

ρent,B = N ′2(2ρsep,B + τ21τ13|A2〉〈A3| + τ∗
21τ

∗
13|A3〉〈A2|), (32)

ρent,C = N ′2(2ρsep,C + τ12τ23|A3〉〈A1| + τ∗
12τ

∗
23|A1〉〈A2|).

5.3. Numerical results

For the numerical results in this section, the photon frequencies are ω1 = 1.2 × 10−4, ω2 =
1.1 × 10−4 and ω3 = 1.0 × 10−4, in units where kB = h̄ = c = 1 and ξ = 1.

We study the entangled tripartite state |βtri〉 = 2−1/2(|012〉 + |120〉) and its closest separable
state. We therefore let N1 = 0, N2 = 1 and N3 = 2 in the separable number state of equation
(24) and the entangled number state of equation (25). The corresponding results for |Csep| and
|Cent| as a function of �′t in the case of tripartite number states are plotted in figure 4. In this
case, both |Csep| and |Cent| are very small but, in principle, measurable.
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Figure 4. |Csep| (***) corresponding to the separable number states of equation
(24) and |Cent| (——) corresponding to the entangled number states of equation
(25) for N1 = 0, N2 = 1 and N3 = 2 are plotted as a function of �′t. The
frequencies are ω1 = 1.2 × 10−4, ω2 = 1.1 × 10−4 and ω3 = 1.0 × 10−4, in units
where kB = h̄ = c = 1.

In the case of coherent states, we study the separable state of equation (28) and the entangled
state of equation (30) for the same average number of photons as in the number states, therefore
we let A1 = 0, A2 = 1 and A3 = √

2. The |Csep| and |Cent| have been plotted against �′t in
figures 5(a) and (c), respectively. In figures 5(b) and (d) the corresponding imaginary parts,
Im(Csep) and Im(Cent), have been plotted against �′t.

In figure 6, we show |Cent − Csep| for coherent states with A1 = 0, A2 = 1 and A3 = √
2

as a function of �′t. It is clearly seen that, in both the tripartite case and the bipartite case,
there is a significant difference between the Csep and Cent. It is also seen that the absolute value
of Cent − Csep for the tripartite case is an order of magnitude greater than in the bipartite case.
Therefore the quantum part of C does not diminish as the photon correlations are distributed to
more than two electron-interference devices.

6. Discussion

It has been recognized that geometrical and topological phases [1, 2, 5, 6] could be harnessed for
the purposes of inherently fault-tolerant quantum computation [8, 22]. It has also been known
for some time that the quantum mechanical correlations of physical states are a useful resource
for quantum information processing [17]. The aim of this paper has been to study the photon-
induced correlations of topological phase factors for charged particles in distant interference
experiments. It has been shown that the classical or quantum correlations of the irradiating
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Figure 5. (a) |Csep| and (b) Im(Csep) corresponding to the separable coherent
states of equation (28). (c) |Cent| and (d) Im(Cent) corresponding to the entangled
coherent states of equation (30) for A1 = 0, A2 = 1 and A3 = √

2 as a function
of �′t. The frequencies are ω1 = 1.2 × 10−4, ω2 = 1.1 × 10−4 and ω3 = 1.0 ×
10−4, in units where kB = h̄ = c = 1.
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Figure 6. |Cent − Csep| for coherent states with A1 = 0, A2 = 1 and A3 = √
2 as

a function of �′t. The solid line corresponds to the tripartite case of the separable
and entangled states of equations (28) and (30). The line of circles corresponds to
the bipartite case of the separable and entangled states of equations (16) and (18).
The frequencies are ω1 = 1.2 × 10−4, ω2 = 1.1 × 10−4 and ω3 = 1.0 × 10−4,
in units where kB = h̄ = c = 1.
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photons are transferred to the phase factors of the circulating electrons. This mechanism may
allow for the detection of photon entanglement using nanoscale electronic devices [19, 20].

In particular, we have considered the one-mode Weyl functions of equations (6) and (7) for
the density operators ρA and ρB of the photons propagating in the distant cavities A and B. They
yield the expectation values of the electron phase factors in the two interference experiments.
These can be measured experimentally through the visibility and the phase shift of the interference
fringes. We have also considered the two-mode Weyl function of equation (9) for the bipartite
state ρ. This yields the joint phase factor in both experiments. Using these Weyl functions, we
have defined the difference C of equation (10), which vanishes only for independent subsystems.
Considering suitable examples of classically and quantum mechanically correlated photons in
number states and coherent states, we have shown that C does not vanish and, therefore, that the
electron phase factors are correlated. We have also shown that the value of C depends on the
quantum noise and statistics of the external photons (figures 2 and 3). Further work is required in
order to distinguish between classical and quantum mechanical correlations using the proposed
set-up. One possibility is to derive a Bell-type inequality for the two-mode Weyl function, which
is obeyed in the separable case, but is violated in the entangled case.

It has also been shown that the same general result applies to the tripartite case. In this
case, the joint phase factor is measured in three distant electron interference experiments and its
expectation value is given by the three-mode Weyl function of equation (22). The difference C

is in this case replaced by that of equation (23). Numerical results have been presented in figures
4–6 for several examples of classically and quantum mechanically correlated number states and
coherent states.

In conclusion, we have shown that it is possible to entangle the topological phase factors of
interfering electrons that are irradiated with nonclassical electromagnetic fields. In future work,
it would be very interesting to derive similar results on the photon-induced entanglement of
geometric phases acquired by spin-1/2 particles [23], or Cooper pairs in mesoscopic Josephson
junctions [24], for example. In the last few years, there has been a lot of work on the role of
entanglement in mesoscopic devices [25]. The set-up discussed in this paper may be useful in
the production of entangled electric charges in a normal conductor or a superconductor using
topological phases that are induced by external photons. This is within the realm of current
experimental techniques, whereby a nanoscale Josephson device can be controlled with a single
microwave photon [26].
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Appendix A. Relations for number states

The following relation yields the matrix elements of the displacement operator in the number
state basis [27]:

〈m|D(z)|n〉 =
(

n!

m!

)1/2

zm−n exp

(−|z|2
2

)
Lm−n

n (|z|2). (A.1)
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Using this, it can easily be shown that

W̃A(λA) = W̃B(λB) = 2−1 exp

(−q2

2

) [
LN1(q

2) + LN2(q
2)

]
(A.2)

for the ρsep of equation (11) and the ρent of equation (13). The two-mode Weyl function of
equation (9) for the ρsep is

W̃AB,sep(λA, λB) = exp(−q2)LN1(q
2)LN2(q

2). (A.3)

However, for ρent, we have

W̃AB,ent(λA, λB) = W̃AB,sep(λA, λB) + exp(−q2)L
N2−N1
N1

(q2)L
N1−N2
N2

(q2) cos(�t). (A.4)

Appendix B. Relations for coherent states

In the coherent states basis, we have

〈A|D(z)|B〉 = 〈0|D(−A + z + B)|0〉 exp(χ), (B.1)

where 〈0|D(−A + z + B)|0〉 can be calculated with the help of equation (A.1) and the phase χ is
given by

χ = 1
2(−Az∗ + A∗z − AB∗ + A∗B − z∗B + zB∗) (B.2)

for any complex numbers A, B and z.
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