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Abstract. We discuss stochastic resonance–like effects in the context of coupled
quantum spin systems. We focus here on an information–theoretic approach and
analyze the steady state quantum correlations (entanglement) as well as the global
correlations in the system when subject to different forms of local decoherence.
In the presence of decay, it has been shown that the system displays quantum
correlations only when the noise strength is above a certain threshold. We extend
this result to the case of a Heisenberg XY Z exchange interaction and revise
and clarify the mechanisms underlying this behaviour. In the presence of pure
dephasing, we show that the system always remains separable in the steady state.
When both types of noise are present, we show that the system can still exhibit
entanglement for long times, provided that the pure dephasing rate is not too
large.

1 Introduction

The phenomenon of stochastic resonance (SR) [1] epitomizes the peculiar ways by which the
interplay between coherent and incoherent interactions may yield an optimized system’s re-
sponse, as quantified by some suitable figure of merit, for some intermediate noise strength [2].
Initial studies on classical and semiclassical systems soon extended to the quantum domain
[2,3,4,5,6,7], while the concept of SR itself broadened to account for an enhanced response in
the presence of an optimal noise rate with [8,9,10] or without [11,12,13] an underlying syn-
chronization effect [14]. Our interest here focuses on this latter situation with the additional
ingredient that we will be dealing with interacting quantum systems [15]. In this case, the sys-
tem may display not only quantum coherence but also quantum correlations (entanglement)
across subsystems. The typical scenario we will be analyzing is depicted, in its simplest form,
in figure 1. Two spin–1/2 particles (qubits) are coupled via a Hamiltonian interaction VQ−Q

and individually driven whilst subject to local forms of noise that we will model as independent
sets of harmonic oscillators. The driving is supposed to be weak, in the sense that the external
Rabi frequency Ωj is constrained to be such that Ωj ≪ ωj

0 and Ωj ∼ J , where ωj
0 denotes

the local spin energy and J is the inter-qubit coupling strength. We will say that the system
displays SR–like behaviour when we can identify some suitable figure of merit to characterize
the system response in the steady state, be it dynamical or information–theoretic, such that it is
nonmonotonic as a function of the environmental noise strength. Dynamical figures of merit for
coupled, driven spin systems are typically magnetization properties along a given direction [16],
which provide a suitable generalization of the standard measurements proposed for single spin
systems [8,11]. Here we will focus on an information theoretic approach and adopt the quantum
mutual information, which measures the total amount of correlations across any bipartition in
the system [17], as the suitable figure of merit to quantify the presence of SR [18]. Of particular
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interest for us is discerning whether there is steady state entanglement in the system. In the
case of bipartite entanglement this will be quantified by a suitable entanglement measure like,
for instance, the entanglement of formation [19] (see Sect. 2 for precise definitions).

We have organized the presentation of our results as follows. We start by discussing the case
of system qubits subject to pure decay. We first revise the case of longitudinally coupled qubits
discussed in [16] and revisit in some detail the basic mechanisms yielding an inseparable mixed
steady state. We show that similar results hold when qubits couple via an exchange interaction,
which has been the object of recent interest in the related context of noise assisted excitonic
transport [20,21,22,23]. The next section deals with systems subject to pure dephasing and we
show that no steady-state correlations will be displayed in this case. Finally we analyze the case
when the array is subject to both types of noise and re-evaluate the emergence of a threshold,
above which quantum correlations are non zero, in this situation, as well as the behaviour of the
total correlation content. The final section summarizes our findings and elaborates on future
work.

2 Steady state entanglement in qubit chains subject to longitudinal
decoherence (pure decay)

The system to study is a chain of N coupled qubits, each of them interacting with indepen-
dent, local, harmonic baths and driven by an external field, so the total system+environment

Fig. 1. Illustration of the generic set up. The simplest scenario if provided by an array of N = 2
qubit systems, whose quantum state we denote by ρ12, with coherent interaction Hamiltonian VQ−Q

subject locally to an external driving of strength Ωj and a decohering environment to which it couples
with strength Γj . Note that the noise is local and therefore does not act as direct mediator of qubit
interactions.

Hamiltonian will be given by

H = −
1

2

N
∑

j=1

ωj
0σ

j
z +

∑

j,k

ωj
k(aj

k)†aj
k +

N
∑

j=1

Ωj(σ
j
+e−iω

j

L
t + h.c.) + VQ−Q + VQ−Bath, (1)

here VQ−Q denotes the interqubit coupling Hamiltonian and VQ−Bath =
∑N

j=1 ξ̂j ⊗ Xj =
∑

j,k Ck ξ̂j ⊗ [aj
k + (aj

k)†] is the Hamiltonian term describing the interaction with the baths.
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Let us consider the case first analyzed in [16] where qubits exhibit longitudinal coupling of

the form VQ−Q = −J
∑N−1

j=1 σj
z ⊗ σj+1

z and qubit–bath coupling ξ̂j = σj
x. We adopt here the

notation [24] when referring to transverse or longitudinal coupling and note that a longitudinal
decoherence allows for energy exchange while a transverse coupling to the bath results solely
in pure dephasing.

Moving to a frame rotating with the external driving (by the unitary transformation U =
∏N

j=1 eiω
j

L
σj

z ), we arrive at the following master equation for the reduced density matrix of the
qubits

dρ

dt
= −i

(

Heffρ − ρH†
eff

)

+ 2

N
∑

j=1

Γj(n̄j + 1)σj
−ρσj

+ + 2

N
∑

i=1

Γj n̄jσ
j
+ρσj

−, (2)

where we have introduced an effective, non-Hermitian term

Heff = Hcoh − i

N
∑

j=1

Γj(n̄j + 1)σj
+σj

− − i

N
∑

j=1

Γj n̄jσ
j
−σj

+, (3)

with the coherent part of the evolution contained in

Hcoh = −
1

2

∑

j

δjσj
z +

N
∑

j=1

Ωjσ
j
x − J

N−1
∑

j=1

σj
z ⊗ σj+1

z , (4)

where δj is the detuning from the qubit transition frequency, Ωj denotes the Rabi frequency
of the external driving and J is the strength of the coherent interqubit coupling. The num-
ber of quanta in the local baths is given according to the Bose-Einstein distribution n̄j =

[exp(ωj
0/kBT )− 1]−1. In addition the decay rates are expressed as Γj = πJ (ωj

0) where J (ω) =
∑

k C2
kδ(ω−ωj

k) is the spectral density of each bath. This master equation treatment is valid in

the parameter regime Ωj/ω ≪ 1, Γj n̄/ω ≪ 1, δj/ω ≪ 1 and J/ω ≪ 1, where ω = min{ωj
0, ωc}

for a suitable bath’s frequency cut off ωc [25]. Note that in our study, decoherence rates will be
considered as ad-hoc parameters whose specific value is set by the details of the qubit–bath in-
teraction and the noise’s spectral properties so that these parameters provides with an effective
measure of the noise strength acting on the system. Moreover, we will operate at T = 0 given
that the presence of a (realistic) finite temperature does not modify the qualitative features we
discuss, but simply reduces the amplitude of the entanglement or mutual information maximal
values, as shown in [16].

Let us consider the simplest case where the arrays consist of only two qubits whose state we
will denote by ρ12, as depicted in figure 1, and let us assume, for simplicity, that Ω1 = Ω2 = Ω
and Γ1 = Γ2 = Γ . At perfect tuning δj = 0 and zero temperature, the steady state of the
master equation given by equation (2) can be computed analytically to be [16]

ρss
12 =

1

k







t2 + 4s2r2, 2sr2 + irt, 2sr2 + irt, 2irs − r2

2sr2 − irt, t, r2, ir
2sr2 − irt, r2, t, ir
−2irs − r2, −ir, −ir, 1






(5)

where k = 3 + 2r2 + t2 + 4r2s2, r = Γ/Ω, s = J/Ω and t = r2 + 1. This state is separable if,
and only if, its partial transpose is a positive operator [26]. We find that ρss

12 is entangled for
values of the noise strength Γ such that

Γ > Γth, where Γth =
Ω2

2J
. (6)

As a result, the systems exhibit quantum correlations in the steady state only if the noise
strength, encapsulated in the parameter Γ , is above the threshold value Γth. Otherwise, the
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steady state is fully separable. In order to shed light onto this rather counterintuitive behaviour,
it is useful to analyze the structural form of the steady state density matrix by calculating its
spectral resolution. One can easily evaluate the eigenvalues of the density matrix specifying the
steady state equation (5) to be

λ1,2 =
1

4r2s2 + (1 + t)2
, (7)

λ3,4 =
1 + r2

(

2 + 4s2
)

+ t2 ∓
√

4r2 (1 + s2) + (t − 1)2
√

4r2s2 + (1 + t)2

2 (4r2s2 + (1 + t)2)
. (8)

The corresponding expressions for the eigenvectors are not so compact. Figure 2 shows these
eigenvalues as a function of the noise strength as well as the steady state entanglement as
measured by the entanglement of formation EF (ρ12). This quantity represents the minimal
possible average entanglement over all pure state decomposition of ρ and as such, its evaluation
requires solving a variational problem. However, in the case of two qubits, the entanglement of
formation has a simple closed form in terms of the so-called two-qubit concurrence, defined as
C(ρ) = max{0, µ1 −µ2 −µ3 −µ4}, where the µi are, in decreasing order, the eigenvalues of the
matrix ρσy ⊗ σyρ∗σy ⊗ σy, where ρ∗ is the matrix obtained by element complex conjugation of
ρ [19]. For any bipartite qubit state,

EF (ρ) = s

(

1 +
√

1 − C2(ρ)

2

)

, (9)

where s(x) = −x log2 x − (1 − x) log2(1 − x). We see in figure 2 that the entanglement of
formation is zero for noise values below threshold, while displaying the typical SR-like profile
for Γ > Γth. When looking at the behaviour of the spectral components, we observe that as
Γ increases, the weights of some spectral components decrease and the chain tends to localize
in a certain eigenstate, in this case the one corresponding to λ4, which in the limit Γ → ∞
is actually the product state of the local Hamiltonian ground states. That means the qubits
tend to be in their individual ground states as the effective decay rate becomes very large, as
would be expected intuitively. Interestingly, the approach to this separable steady-state, and
therefore the system’s purity, is monotonic in the noise strength Γ , despite the steady-state
entanglement exhibiting nonmonotonic SR–like behaviour. This picture is in agreement with
the behaviour already described in [27] where, in the absence of dissipative noise in the form of
an additional heat bath, a thermally driven composite system would approach a thermal steady
state, while the presence of a second heat bath at different temperature has the potential to
make the steady state mixture entangled. This behaviour may in fact be quite general as closely
related scenarios have now been identified where steady state entanglement in facilitated by
the presence of a noisy channel [28,29,30].

3 XXYY Heisenberg Interaction

It is worth exploring whether these results remain valid for other kinds of qubit–qubit interac-
tions. The most general coupling between qubits is given by the Heisenberg Hamiltonian

VHei = −Jxσx ⊗ σx − Jyσy ⊗ σy − Jzσz ⊗ σz.

However, the evolution equation for this general Hamiltonian can no longer be written in terms

of a time independent effective Hamiltonian, because the transformation U =
∏N

j=1 eiω
j

L
σj

z does
not commute with VXXY Y . As long as the frequency of the driving is the same for each qubit
ωj

L = ωL, the most general Heisenberg-type of Hamiltonian which is time–independent in the
rotating picture is the so-called XXYY interaction:

VXXYY = −J⊥(σx ⊗ σx + σy ⊗ σy) − J‖σz ⊗ σz .
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Fig. 2. Eigenvalues and entanglement content of the steady state given by equation (5) as a function
of the noise strength (for J/Ω = 1.5). The dashed vertical line divides entangled and separable regimes.
See main text for explanations.

It is easy to check that UVXXYYU † = VXXYY.
Again for two qubits with zero detuning at zero temperature, the steady state can be found

analytically:

ρss
12 =







t2 + 4d2r2, 2dr2 + irt, 2dr2 + irt, 2ird − r2

2dr2 − irt, t, r2, ir
2dr2 − irt, r2, t, ir
−2ird − r2, −ir, −ir, 1






,

where d = (s⊥−s‖) = (J⊥−J‖)/Ω. This is the same as the steady state in (5), with s replaced
by the parameter d. As a result, we obtain an entangled steady-state for Γth < Γ , where the
threshold this time is

Γth =
Ω2

2|d|
.

This interesting formula shows that for the isotropic Heisenberg model J‖ = J⊥, the steady state
remains separable. Furthermore, increasing |d| (the dominance of XXYY over ZZ or conversely
in an anisotropic Heisenberg model) increases the maximum steady-state entanglement, as
illustrated in figure 3). This is sensible as the interaction becomes more entangling the further
it deviates from a product of local Hamiltonians.

4 Steady state entanglement under transverse decoherence (pure
dephasing)

Apart from processes describing emission or absorption of quanta, qubit implementations can
undergo energy conserving, purely dephasing processes, where only the coherences are affected
and the populations remain unchanged. This is the situation encountered when the interaction
term with the bath is mediated by an operator that commutes with the qubit Hamiltonian.
Given the system Hamiltonian of one qubit H = (ω0/2)σz, a feasible qubit–bath interaction is

V = σzX where the force operator is X =
∑

k Ck(ak + a†
k). This leads, under the customary
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Fig. 3. Increasing behaviour of the steady-state entanglement for |d| growing from 0 to 4. The system is
separable when d = 0 (isotropic Heisenberg model). When d increases, and the term XXY Y dominates,
the range of values of Γ for which the steady state is separable shrinks, while the maximum achievable
steady state entanglement grows.

approximations, to the master equation

dρ

dt
= −i[H, ρ] + 2γ(σzρσz − ρ), (10)

where

γ =
1

2
lim
ω→0

SX(ω) = π lim
ω→0

J (ω) coth

(

ω

2kBT

)

for a thermal bath with spectral density J (ω) =
∑

k C2
kδ(ω − ωk).

This process can be embedded in our framework provided that the Rabi frequencies of the
external driving Ωj and the interqubit coupling J are small enough in comparison with the
free evolution frequencies [16]. The master equation in the rotating picture for N qubits is then
given by

dρ

dt
= −i[Hcoh, ρ] + 2

N
∑

j=1

γj(σ
j
zρσj

z − ρ). (11)

In this situation the system no longer exhibits quantum correlations in the steady state. Indeed,
the steady state of equation (11) is unique and it is the completely mixed state ρss = 1/N . This
result follows from theorem 5.2 in [31] which asserts that given a steady state ρss of a master
equation written in the standard form

dρ

dt
= −i[H, ρ] +

∑

j

(

VjρV †
j −

1

2
V †

j Vjρ −
1

2
ρV †

j Vj

)

,

such that rank(ρss) = N , the given steady state is unique if the only operators commuting
with H and every Vj are multiples of the identity. This is true for our case since the only
operators that commute with both σx and σz (and therefore with σy as well because of the
Jacobi identity) are proportional to the identity because of Schur’s lemma.
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5 SR phenomena under both longitudinal and transverse decoherence

The situation changes if we have both emission/absorption and pure dephasing processes in
our system, as is the case in many solid state qubit implementations (see for example [32] and
references therein). Then the master equation is modified according to

dρ

dt
= −i

(

Heffρ − ρH†
eff

)

+
∑

j

2Γj(n̄ + 1)σj
−ρσj

+ +
∑

j

2Γj n̄σj
+ρσj

− +
∑

j

2γjσ
j
zρσj

z , (12)

where γj denotes the pure dephasing rates, and Heff is given by the same equation (3) with an
additional term of the form −i

∑

j γj accounting for pure dephasing.

Consider T = 0 (also assuming that each γj is finite). For two qubits in the absence of pure
dephasing, the threshold for an entangled steady state was given in (6) to be [16]

ρss
12 entangled ⇔

1

2s
< r.

We now want to do the same analysis with the pure dephasing term added. For simplicity let
us assume γ = Γ . The result is now more complicated as shown in figure 4 where J is plotted
against Γ (s vs. r) without pure dephasing (red dashed line), and with pure dephasing (blue
solid line dividing entangled and separable zones). For illustrative purposes we have included
values of J substantially larger than Ω, whilst still adhering to the weak-coupling assumptions
of the master equation. There are several differences between the two cases. For both cases,

   0 0.65  1.3 1.95  2.6 3.25  3.9 4.55  5.2
0

5

10

15

20

25

30

35

Γ(Ω)

J
(Ω

)

Entangled

Separable

Fig. 4. Steady state entangling behaviour: J vs. Γ without pure dephasing (red dashed line), and with
pure dephasing (blue solid line). The blue shading shows the entangled zone in the presence of pure
dephasing.

the steady state is separable for very small Γ , so it is necessary to include some appreciable
amount of noise to produce entanglement (SR–like behaviour). However, in the presence of pure
dephasing, only a finite amount of additional noise is required to come back to the separable
regime. (Recall that an infinite amount of noise is required in the absence of pure dephasing.)
Furthermore, in the presence of pure dephasing the SR–like behaviour disappears completely
for small J , where the steady state remains separable. At odds with the monotonic result (6)
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of [16] (red dashed line of figure 4), the nonmonotonicity of the blue solid threshold in figure
4 (note the minimum point) reflects in some sense the competition between both processes.
Consider the simplest case where qubits were subject to a ZZ coupling. In figure 5, where we
plot the behaviour of the probabilities Pz (localization) and Px (delocalization) for each qubit
to be in an eigenstate of the corresponding Pauli operator (i.e., σz or σx). The closer the local
states are to an eigenstate of σz , the less effective the coherent ZZ coupling is and the global
state tends to be separable. The localization probability increases steadily with the transverse
decay rate; however, the delocalization probability is maximal for some optimal noise strength
provided that pure dephasing is not too large. The region around the maximum delocalization
probability coincides with the maximum steady state entanglement.

0  1 2 3 4 5
0.5 

0.6 

0.7 

0.8 

0.9 

1   

Γ(Ω)

 

 

Pz(ρ1)

Px(ρ1)

γ(Ω) = 0
γ(Ω) = 2/3
γ(Ω) = 4/3
γ(Ω) = 2

Fig. 5. Illustration of the combined action of transverse and longitudinal decoherence on an array
of N = 2 qubits with a ZZ interqubit Hamiltonian. Increasing the pure dephasing rate keeps the
delocalization probability of single qubits Px close to 1/2 so that the qubits are in a state close to an
eigenstate of their local Hamiltonians (σz) which reduces the entangling power of the coherent ZZ
coupling.

The exact form of the threshold is complicated [33]. An approximate solution for it is
s ≃ 1

2r
+ 32r+2

5
. So that the steady state is entangled for a noise strength in, approximately,

the range

−1/32+(5/64)s−(1/64)
√

25s2 − 20s− 316 < r < −1/32+(5/64)s+(1/64)
√

25s2 − 20s− 316

Note that the lower bound is always higher than the previous one, 1/2s.
For the case of arbitrary values of γ and Γ , the steady-state correlations are diminished as

γ increases. This can be visualized in the behaviour of bipartite entanglement, as illustrated
in figure 6. In order to construct a proper information theoretic measure of SR, we consider
the quantum mutual information IM , defined for a general bipartite system AB as IM (ρAB) =
S(ρA) + S(ρB) − S(ρAB), where the states ρA,B are the local states ρA,B = TrB,A(ρAB). This
function quantifies the total correlation content in any bipartite system [17] and is depicted
in figure 7 for the case of a chain of 6 qubits. There we evaluate the mutual information of
the first two qubits in the chain but should stress that the same qualitative behaviour, where
total correlations are maximized for some optimal, intermediate value of the decay rate, are
obtained when evaluating the quantum mutual information across any other bipartition in
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the chain. We note that having a nonzero detuning δ 6= 0 does not change the shape of the
entanglement function, but its magnitude is reduced; the effect being small for small detuning,
say δj ∼ 10−3 − 10−2.

  0
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Fig. 6. Quantum correlations in a two-qubit array as quantified by the entanglement of formation as
a function of the noise parameters Γ and γ for J/Ω = 1.5. Note the monotonous negative effect when
γ increases so that as the pure dephasing rate increases, the larger it becomes the threshold value for
the transverse decoherence until reaching a critical value γc for which no entanglement survives in the
steady state.

6 Conclusion

We have discussed the emergence of SR–like effects in composite spin systems subject to both
decay (longitudinal decoherence) and pure dephasing (transverse decoherence). We have shown
that quantum correlations vanish in the steady state if the local noise is purely transverse.
Under pure dephasing, the system evolves into a maximally mixed state. When transverse
and longitudinal noise are simultaneously present, for fixed dephasing, one encounters a decay
rate threshold for steady–state entanglement to exist, provided that dephasing noise remains
moderate. In the special case where Γ = γ, an approximate analytical threshold condition can
be derived.

To quantitatively characterize the presence of stochastic resonance, we compute the total
correlation content of the system, as quantified by its mutual information for bipartitions of
arbitrary size, and show that it is a non-monotonic function of the decay rate Γ (for fixed γ).
We therefore argue that the system displays SR as measured by an information–theoretic figure
of merit.

In the present work we have focussed our interest on the correlations content and, in par-
ticular, on the entanglement content of the steady state. These results show that a noisy en-
vironment does not just monotonically degrade the amount of entanglement but can act, for a
suitable noise level, as a purifying mechanism that prevents the system from thermalizing —
unless the noise becomes too strong [27].
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Fig. 7. Quantum mutual information IM (ρ12) between qubits 1 and 2 in an N = 6 array for different
values of the dephasing rate γ and variable transverse decoherence rate Γ for J/Ω = 1.5. The same
qualitative behaviour is observed for other pairs of neighbouring qubits or across different bipartitions
within the system. The quantum mutual information is maximized for an optimal decay rate Γ above
which the total correlations in the system start to degrade. The larger the dephasing rate acting locally
on the qubit systems, the smaller the value of the maximum correlation content becomes.

It seems to become more and more clear that the presence of environmental noise, far from
being always detrimental, may actually be instrumental in the optimization of certain processes.
So far this is more clear–cut in the case of processing classical information, as in the original
SR concept of amplifying a weak signal, or the quantum setting in the context of the assisting
transport of excitons across spin networks. Those can model for instance natural phenomena
such as exciton transport in light–harvesting complexes [20,21,22,23]. However, there are already
indications that noise may also assist the transfer of quantum information, as exemplified by
the enhanced fidelity in the transmission of quantum states demonstrated in [34]. It would be
extremely important to generalize this result and to clearly identify the conditions under which
not only quantum correlations, but also the transfer of quantum information, can be effectively
assisted by noise.

This work was supported by the EU STREP project CORNER and the EU Integrated project on Qubit

Applications QAP. AR acknowledges support from a University of Hertfordshire Fellowship. We are
grateful to Martin Plenio and Shash Virmani for numerous and inspiring discussion on the topic of this
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