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We propose a protocol for perfect quantum state transfer that is resilient to a broad class of realis-
tic experimental imperfections, including noise sources that could be modelled either as independent
Markovian baths or as certain forms of spatially correlated environments. We highlight interesting
connections between the fidelity of state transfer and quantum stochastic resonance effects. The
scheme is flexible enough to act as an effective entangling gate for the generation of genuine mul-
tipartite entanglement in a control-limited setting. Possible experimental implementations using
superconducting qubits are also briefly discussed.
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I. INTRODUCTION

In the last few years, it has been realized that specific
forms of built-in and permanent intra-register couplings
could be used for the purposes of quantum computation
and communication [1, 2]. These methods allow us to
bypass the need for both fast and accurate inter-qubit
switching and gating, which are generally very demand-
ing tasks. We refer to such schemes – where the required
external control over physical systems is greatly reduced
– as control-limited. However, the price to pay for the
performance of efficient operations is the need to pre-
engineer appropriate patterns of couplings. Determining
the exact distribution of coupling strengths for a given
interaction model in a control-limited setting is often a
matter of craftsmanship or the result of the exploita-
tion of certain geometrical properties of the system at
hand [3, 5]. A simple physical model suitable for this
scenario is provided by a linear spin chain. Here we use
the term “spin chain” in its wider sense which includes
other physical systems as well that can be modelled by a
generic spin chain Hamiltonian.

In the quest for the realization of a realistic quan-
tum processor, the achievement of faithful transmission
of quantum information has been the object of remark-
able interest. The possibility of linking different local
nodes of a quantum network through photons has been
exhaustively analyzed [4]. For short-distance quantum
communication, the idea of using spin chains as quan-

tum wires has been put forward by Bose [5]. With an
isotropic Heisenberg interaction a transmission fidelity
that exceeds the maximum value achievable classically
can be obtained for a chain of up to ∼ 80 qubits. The
original idea has then been extended along various direc-
tions [6]. In particular, Christandl et al. [3] showed that,
by engineering the strength of the couplings in the chain,
perfect state transfer could be achieved.

At the same time, quantum entanglement (bi-partite
as well as multi-partite) has been studied in great de-
tail over the last years [1, 7] and appears to be a key

resource for many applications in quantum information
processing (QIP). It is well-known that genuine multipar-
tite entanglement of Greenberger-Horne-Zeilinger (GHZ)
form [8] is useful for multi-agent protocols of distributed
QIP such as quantum secret sharing, remote implementa-
tion of unknown operations, quantum average estimation
and quantum anonymous transmission [9, 10]. Our study
is thus distinguished, for instance, with respect to the in-
vestigation in [11], which was centered on cluster state
generation in quantum spin chains.

Here we show how to make use of a physical system
whose Hamiltonian can be mapped into that of a spin
chain in order to achieve both these goals: With the same
system we are able to transfer the state from one qubit to
another or to generate GHZ entanglement. In addition
to pragmatic goals relevant to quantum information pro-
cessing, our study reveals an interesting non-monotonic
behavior of state-transfer fidelity against the strength of
the external noise. This reminds us of quantum stochas-
tic resonances in many-body systems [12] and represents
an original way of revealing these fundamentally inter-
esting processes in a linear register of qubits. A possible
physical implementation of the proposed system could be
provided by a chain of superconducting qubits [13, 14, 15]
in which each qubit operates at its degeneracy point [16].
One of the main reasons for this choice is related with the
remarkable recent advances in experiments with coupled
superconducting qubits [17, 18, 19]. The fabrication of
chains of N ∼ 50 Josephson qubits has been achieved in
the laboratory and their coherent operation is a foresee-
able possibility [20].

The remainder of the paper is organized as follows. In
Sec. II we describe the system we use either to obtain a
perfect state transfer or to generate multipartite entan-
glement of GHZ form. In Sec. III we explain in details
these two protocols while in Sec. IV the effects of static
disorder, decay and decoherence on these schemes are
studied. Finally, in Sec. V we summarize our results.
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II. THE SYSTEM AND THE
INFORMATION-FLUX APPROACH

The system we analyze is an open spin-chain of N
qubits, whose Hamiltonian reads

Ĥ =

N−1
∑

i=1

JiẐiẐi+1 +

N
∑

i=1

BiX̂i, (1)

where Ji is the coupling strength of the pairwise interac-
tion between qubit i and i + 1 and Bi is a local mag-
netic field on qubit i. In our notation, X̂, Ŷ and Ẑ
denote the x, y and z-Pauli matrix, respectively. The
model in Eq. (1) describes, for instance, a chain of in-
teracting superconducting qubits, each at its degeneracy
point [13, 15, 16]. Here, in order to keep our discussion
on the most general level, free from a specific setup, we
interpret Ĥ as a generic spin-chain model.

An important remark is due. Frequently one faces the
case of dynamics ruled by spin-preserving Hamiltonian
models (i.e. Hamiltonians that commute with the total
spin operator of the system). By assuming appropriate
boundary conditions, it is then convenient to diagonalize
the coupling Hamiltonian by means of a sequence com-
prising Wigner-Jordan, Fourier, and Bogoliubov trans-
formations [21]. In our case, Ĥ does not preserve the
total number of excited spins, so that the mutual cou-
pling among subspaces labeled by different numbers of
spin-excitation has to be considered. Rather than apply-
ing techniques for the exact solution of Eq. (1) [21], we
propose to tackle the evolution of the system by means of
an information-flux approach (IFA) which is specifically
designed for multi-spin interactions [22]. Our method
does not rely on the explicit analysis of the chain’s spec-
trum and enables us to gather an intuitive picture of the
dynamics at hand.

On a formal level, the IFA requires the time-evolved

form of specific operators ˆ̃Oi in the Heisenberg picture,

i.e.
ˆ̃Oi(t) = eiĤtÔie

−iĤt (here O = X,Y, Z and i =
1, .., N). This allows one to understand the dependence of
ˆ̃Oi on any Ôj and to design the set of coupling strengths
{Ji} in such a way that it becomes possible to drive a de-
sired evolution by means of engineered quantum interfer-
ence [22]. Our task here is the transmission of quantum
information from the first qubit to the last one in the

chain. This requires the study of ˆ̃ON (t)’s, which can be
decomposed into the operator-basis built out of all possi-
ble tensorial products of {X̂i, Ŷi, Ẑi}. Therefore, we can

write 〈Ψ0| ˆ̃ON (t)|Ψ0〉 =
∑

O′=X,Y,Z,I IOO′

(t)〈φ0|Ô′
1|φ0〉,

where |Ψ0〉 = |φ0〉1 ⊗ |ψ0〉2..N is the initial state of the
whole chain, |φ0〉 is the initial state of the first qubit only
and |ψ0〉2..N is the state of the rest of the chain. The co-

efficient IOO′

(t) is defined as the information flux at time

t from Ô′
1 to ÔN [22]. It is easy to see that if our sys-

tem achieves |IOO′ | = 1 when O = O′, we have perfect
1 → N state transfer.

To give an immediate picture of IFA, we discuss here a
simple but yet helpful application of the method. We
consider a three-qubit open chain whose Hamiltonian
reads ĤE = J(X̂1X̂2 + Ŷ1Ŷ2 + X̂2X̂3 + Ŷ2Ŷ3). By solv-
ing the corresponding Schrödinger equation, it is well
known that perfect state transfer from the first to the
third qubit is achieved in this case when the initial state
of second and third qubit is |00〉

23
and waiting a time

t = π/(2
√

2J) [3]. By analyzing the evolution of the

operator X̂3, we find ˆ̃X3(t) = − sin2(
√

2Jt)X̂1Ẑ2Ẑ3 −
(1/

√
2) sin(2

√
2Jt)Ŷ2Ẑ3 + cos2(

√
2Jt)X̂3. Similar results

are obtained by looking at the evolution of Ŷ3 and
Ẑ3. Therefore, the information flux from X̂1 to X̂3 is
IXX = − sin2(

√
2Jt)2,3〈00|Ẑ2Ẑ3|00〉

2,3 = − sin2(
√

2Jt),

whose modulus is 1 at t = π/(2
√

2J). We have thus ob-
tained a unit information flux (i.e. perfect state trans-
fer) at the time predicted by the standard approach. Our
simple example shows the basic features of IFA at work.

III. THE PROTOCOLS

A. Perfect state transfer

In order to properly understand our scheme for perfect
state transfer, it is useful to consider the Hamiltonian

ĤC =
N−1
∑

i=1

JiX̂iX̂i+1 +
N

∑

i=1

BiẐi. (2)

By analyzing the evolution of X̂N and ŶN (in the Heisen-

berg picture) under the action of ĤC , we obtain that
ˆ̃XN (t) and ˆ̃YN (t) can be written as

ˆ̃XN (t) = µ1(t)X̂N + µ2(t)ŶN + µ3(t)X̂N−1ẐN+

+ µ4(t)ŶN−1ẐN + · · +µ2N−1(t)X̂1Ẑ2 · ·ẐN+

+ µ2N (t)Ŷ1Ẑ2 · ·ẐN ,

ˆ̃YN (t) = ν1(t)X̂N + ν2(t)ŶN + ν3(t)X̂N−1ẐN+

+ ν4(t)ŶN−1ẐN + · · +ν2N−1(t)X̂1Ẑ2 · ·ẐN+

+ ν2N (t)Ŷ1Ẑ2 · ·ẐN .

(3)

The time-dependent coefficients µi(t) and νi(t) are func-
tions of Ji and Bi. Their explicit form is too cumbersome
to be presented here. However, one can give a graph-
ical picture of the way the operators entering Eqs. (3)
are inter-related in terms of oriented graphs, as done in
Ref. [23]. In particular, it is easy to check that such
graphs are linear, in our case. An example, for N = 3,
is given in Fig. 1 (a). By explicitly analyzing µi(t) and
νi(t), one recognizes that the information flux between

Ŷ1 (X̂1) and X̂N (ŶN ) follows the same behavior as the



3

information flux X̂1 → X̂2N (Ŷ1 → Ŷ2N ) in an open 2N -
qubit chain ruled by

Ĥeq =
2N−1
∑

j=1

Jeq
j (X̂jX̂j+1 + Ŷj Ŷj+1) (4)

with Jeq
j = B j+1

2

(Jeq
j = Jj/2) for odd (even) j. It is

well known that perfect state transfer is achievable in
a spin chain governed by the Hamiltonian in Eq. (4).
In particular, if the parameters in Eq. (2) follow the

pattern Ji = ±J
√

4i(N − i) (the choice of the signs
needs to be consistent throughout the chain) and Bi =

J
√

(2i− 1)(2N − 2i+ 1) [3] and the initial state of all
the qubits but the first one is |0〉, a unit (in modulus) in-

formation flux from Ŷ1 (X̂1) to X̂N (ŶN ) is found at the
rescaled dimensionless time Jt = π/4. The information

fluxes Ŷ1 → X̂N and X̂1 → ŶN , for N = 3, are shown
in Figs. 1 (b) and 1 (c), respectively. This suggests
that, by simply applying a single-qubit operator on the
first spin before the evolution under the action of ĤC

in Eq. (2) (the single-qubit operation being required in
order to rotate the operator-basis of the first qubit and
obtain unit flux between homonymous operators), per-
fect state transfer can be obtained. Under this point of
view, our approach is quite non-conventional. In fact,
instead of using a formal map between models (2) and
(4), we gather our analytic results and design the opti-
mal protocol in virtue of a quantitative analogy between
the evolution of specific sets of operators as driven by
the two interaction Hamiltonians we consider. We re-
mark that this is possible solely because of the power of
IFA. Hamiltonian (2) can be easily mapped onto the one

(a)

(b) (c)

FIG. 1: (a): Oriented graph describing the way the operators
entering Eqs. (3) are related. The operator in each circle (a
node) gives rise to its nearest neighbors under commutation

with ĤC in Eq. (2), for N = 3. The oriented edges connect
such nodes. The corresponding coefficients are also shown and
an outgoing (ingoing) edge with respect to a node implies a

+ (−) sign. (b): Information flux from Ŷ1 to X̂N against
the dimensionless interaction time Jt, for N = 3 and Ji =
±J

p

4i(N − i), Bi = J
p

(2i − 1)(2N − 2i + 1) in Eq. (2).
Qubits 2 and 3 are prepared in |00〉

23
. (c): Information flux

from X̂1 to ŶN , for the same conditions as in panel (b).

in Eq. (1) and perfect state transfer thus achieved with
a further change of basis for all the qubits in the chain
that transforms |0〉i → |+〉i. Let us go into the details
of the protocol. We prepare the first qubit in the state
|ψ〉

1
= α |0〉

1
+ β |1〉

1
and apply the following recipe for

perfect state-transfer:

• First step: The operator T1 ⊗H1 ⊗T1 is applied to
the first qubit of the chain, where T1 = |0〉

1
〈0| +

ei π
2 |1〉

1
〈1| and H1 = (σx + σz)/

√
2 is a Hadamard

gate [24].

• Second step: The chain evolves under the action of

Ĥ for a time Jt = π/4.

In this way, the state of the last qubit will be |ψ〉N ,
while the rest of the chain in the tensorial product state
|+ + ..+〉

1..N−1
, thus achieving perfect state transfer.

The first step is required to cope with both the neces-
sary basis changes (the first one to map the Hamiltonian

Ĥ onto ĤC and the second one to obtain unit fluxes
between homonymous operators) and can be performed
off-line. This corresponds to carrying out only the sec-
ond step but using the initial state |ψ̃〉1 = [(α+ iβ) |0〉

1
+

(β + iα) |1〉
1
]/
√

2. Alternatively, the change of basis can
also be performed off-line at the end of the evolution
driven by Ĥ. The initialization of the register in the ten-
sorial product of |+〉i states can be obtained by cooling a
thermal state of the qubit system to their own |0〉i state
(thus achieving |00 · ·0〉

1..N , which is the standard initial
state in quantum state-transfer protocols [3, 5]) and then
applying single-qubit Hadamard gates. The same task
can also be achieved by using a collective external poten-
tial resonant with the transition between the single-qubit
levels, waiting enough time for the system to relax to the
ground state and then applying the Hadamard gates.

B. Generation of multipartite entanglement

Interesting features arise from a deeper analysis of
the model encompassed by Ĥ. Indeed, the same pa-
rameter pattern addressed up until now can be used
so as to generate an N-qubit GHZ state |GHZ〉

12..N =

(
⊗N

i=1
|0〉i − i

⊗N
i=1

|1〉i)/
√

2. If the initial state of every

qubit is set to be |0〉, after the action of Ĥ for a time
Jt = π/4, the system will be in state |GHZ〉

12..N . This
is understood by considering the fact that the evolution

e−i π
4J

Ĥ can be decomposed into the equivalent quantum
circuit shown in Fig. 2 [11]. It is then straightforward to
check that a GHZ state of the above mentioned form is
the result of the computation described there.

It is very important to stress that our scheme to gener-
ate entanglement does not require any pre-built entangle-
ment resource. Multipartite entanglement is generated in
the chain only as a result of spin-non-preserving dynam-
ics. An analogous situation has recently been addressed
in [25].
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L.O.

L.O.

L.O.

H

H

H

HL.O.

HT H TL.O.

FIG. 2: Equivalent quantum circuit for a spin-chain that

evolves according to e−iĤ
π
4J . The inset shows the explicit

composition of the local operators before the inter-qubit in-
teraction structure. We show the symbols for T, H and
controlled-phase operations. For clarity of presentation, we
have omitted to show a set of swap gates (performing mirror-
inversion) at the end of the circuit.

IV. EFFECTS OF STATIC DISORDER, DECAY
AND DECOHERENCE

We address the effects of static disorder in the pattern
of coupling strengths which is required for the optimal
performance of the protocols. This is useful in a general
situation, and particularly necessary in the case of super-
conducting qubits. Although control over lithographic
techniques being used in the fabrication of superconduct-
ing qubits is constantly being improved, it is reasonable
to expect that the elements of a long chain of effective
spins would not be identical and the inter-qubit couplings
will correspondingly be affected. We also consider the in-
fluences of Markovian dissipation and phase-decoherence
on the state transfer and the creation of a multipartite
GHZ state. In order to account for the usual finite spatial
environmental correlation length that frequently affects
solid-state systems, we address both the case of uncor-
related individual baths being coupled to the spins in a
chain as well as the case of the same bosonic environ-
ment affecting multiple spins simultaneously. Our study
reveals not only a considerable resilience of the protocols
at hand but also points out some interesting features that
highlight the counter-intuitive nature of noise effects in
purely quantum dynamics. It is worth stressing that, as
we study a coupling model with a novel pattern of in-
teraction strengths, which is different from the one given
in [3], an investigation about noise effects is quite signifi-
cant and represents a due step in the full characterization
of the scheme we study. Such a program is in line with
previous studies on fluctuation and noise in state transfer
protocols, which can be found in Refs. [26, 27].

A. Perfect state transfer

We start by analyzing the effects of static disorder in
the coupling-strength pattern for the state transfer pro-
tocol. Our model for such imperfections is that of a dis-
tribution of coupling strengths along the chain according
to [26]

Ji → Ji = Ji[1 + δ(1 − 2ri)],

Bi → Bi = Bi[1 + δ(1 − 2si)]
(5)

with δ the ‘strength’ of the disorder (typically a few per-
cent of J) and ri, si ∈ [0, 1] that decide whether the
imperfect parameter is larger or smaller than the ideal
value. In our study, we take ri’s and si’s as random num-
bers following a given probability distribution. Clearly,
the choice of such a distribution should be made consis-
tent with a given experimental situation. Here, in order
to gather a simple idea of what the effect of static dis-
order is, a uniform distribution is chosen. Intuitively,
this case should depict a sort of ‘worst case’ scenario for
the influences of disorder. We show that, for values of
δ which are within the current accuracy of lithographic
fabrication of superconducting qubits, this class of im-
perfections does not significantly affect the performance
of quantum state transfer in our chain.

The figure of merit that we choose in order to test the
performance of the protocol affected by disorder is the
state fidelity between the logical input qubit and the state
of the N th physical qubit of the chain at time t = π/4J .
Indeed, while it is reasonable to expect that disorder
would influence the state of the rest of the chain, leaving

it in a state different from the expected
⊗N−1

i=1
|+〉i, this

is irrelevant in a state-transfer problem. Clearly, in a
real physical situation, we have no available information
on the exact value of the disordered coupling strengths’
pattern. This implies that a faithful measure of the qual-
ity of our protocol would be rather given by the average
of state fidelity over a large sample of disorder config-
urations (from now on called runs). That is, if we in-

dicate as F1N (δ, {ri, si}k) = 〈ist|̺δ,{ri,si}k

N |ist〉 the state
fidelity corresponding to a given run labelled by the inte-
ger k = 1, 2, ..,M (with |ist〉 is the ideal state to transfer

and ̺
δ,{ri,si}k

N the reduced density matrix of the last qubit
of the chain), we will consider the average value

Fav
1N =

1

M

M
∑

k=1

F1N (δ, {ri, si}k). (6)

The cut-off M in the estimation of the average is taken
large enough to guarantee that no appreciable differences
in Fav

1N are observed if a larger M is taken.
We first consider a state-dependent situation based

on an analogy with existing studies on quantum state
transfer. We will shortly demonstrate that the state fi-
delity of the process is very weakly dependent on the
input state being considered. However, in order to fix
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the ideas, we consider the arbitrarily chosen input state
|−〉

1
= (|0〉

1
− |1〉

1
)/
√

2. As a trade off between required
computational power and length of the chain, we have
examined the case of N = 7 qubits throughout the pa-
per (where not stated differently). Although the results
presented in our study depend on the length of the chain
system being studied, we have checked that such a de-
pendence is very weak and our findings can be taken as
faithful indications of the behavior of even longer chains.
As the maximum of fidelity is expected for Jt = π/4, we
restrict our observation to a temporal window centered
in this value. In Fig. 3, we compare the ideal and the
disordered situation for a strength δ/J = 5%, which is a
typical in state of the art value [28].

Evidently, the influence of disorder is negligible, at
least for the operating conditions considered above: not
only is the height of the fidelity peak preserved almost
perfectly, but also such peak occurs precisely at the re-
scaled time that is expected under ideal performances.
This is important, experimentally, as it proves that our
state of ignorance over the exact value of the disordered
coupling strengths does not require the fine adjustment
of the time at which the logical qubit to be transferred
should be collected.

As a step forward in the analysis of the protocol, we
now remove any dependence on the logical state to be
transferred. We take a ‘black box’ perspective under
which the problem at hand is not different from that of
characterizing an unknown operation (the transfer chan-
nel with disorder) with respect to an ideal one which
would map the logical input state onto the same state at
the N th physical qubit, leaving the logical input state
unchanged. Such a characterization is efficiently per-
formed by using quantum process tomography (QPT)
techniques [29, 31], which has proven to be invaluably
useful in many experimental contexts [30]. QPT is a use-
ful tools for the evaluation of the global closeness between
the ideal and disordered transfer channel. By studying
the way the black box affects the transfer of the four
probe states {|0〉 , |1〉 , |+〉 , |+y〉}, we can reconstruct the
so-called process matrix χdis of the disordered process.
This contains all the relevant information regarding the
process that a logical qubit undergoes in being trans-
ferred from the first to the last physical qubit. We refer

(a) (b)

Π �8 Π �4 3 Π �8
J t0.0

0.2

0.4

0.6

0.8

1.0
F

Π �8 Π �4 3 Π �8
J t0.0

0.2

0.4

0.6

0.8

1.0
F

FIG. 3: (a): State fidelity against dimensionless time Jt with
no disorder and N = 7; (b): Same with δ = 0.05, correspond-
ing to a 5% maximum deviation of the disordered parameters
from the ideal values.

to existing literature [29, 31] for further mathematical de-
tails and just mention that the QPT approach can also be
computationally beneficial as the averaged state fidelity
can be calculated out of the process fidelity

Fp = Tr(χidχdis) (7)

with χid the process matrix of the logical identity opera-
tion that is applied to the logical qubit to transfer in the
perfect case. In the operator basis {1̂1, X̂,−iŶ , Ẑ}, this
reads

χid =







1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






. (8)

QPT allows the reconstruction of the effective Kraus
operators of the disordered transfer channel and, from
these, one can easily get the output density matrix for
any logical input state. In turn, by using the correspon-
dence between density matrix and Bloch vector, we can
visualize the effect of the disorder directly on the Bloch
sphere of the transferred state, thus getting a general
overview of the behavior of the protocol. Given the re-
sults in Fig. 3, the output Bloch sphere with disorder
strength δ/J = 5% at Jt = π/4 should be very close to
the Bloch sphere of a pure qubit state. This is indeed the
case, as shown in Fig. 4, where panel (a) shows the Bloch
sphere for the ideal protocol, while panel (b) addresses
the case of the disordered pattern corresponding to the
worst fidelity among 200 runs. The two processes are
evidently quite close to each other, the most evident dif-
ference being a slight unwanted rotation of the sphere’s
poles around the x axis. We have checked that the ro-
tation angle is an increasing function of the disorder’s
strength. No shrinking of the sphere for the disordered
case is evident, showing that coherence and amplitude
of the logical qubit are almost perfectly preserved. The
matrix of the disordered process is given by

χdis =







0.987 0.003 + 0.022i 0 0
0.003 − 0.022i 0.001 0 0

0 0 0.008 0.003
0 0 0.003 0.005






,

(9)
which corresponds to a state fidelity of 0.991. The state
fidelity averaged over the whole set of runs is as large
as 0.995. The closeness of this number to the worst-case
fidelity shows that the disordered state transfer process
depends only very weakly on the pattern of disorder. On
the other hand, the evident isotropy of the reconstructed
Bloch sphere justifies an arbitrary choice of the input
state for our explicit analysis. We can therefore con-
fidently affirm that, within the range of chain’s length
we have studied, static disorder does not spoil the pro-
cess we have designed for perfect state transfer across a
chain. The average fidelity of the process stays largely
above 2/3, the highest value for a classical transmission
of a state [32], up until values of δ/J ∼ 30%.
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(a) (b)

FIG. 4: (a): Bloch sphere of the logical input qubit for various
choices of α. (b): Reconstructed Bloch sphere showing the
state of the N th qubit for a disordered chain of N = 7 and
δ/J = 5% at Jt = π/4.

.

We now consider the effects of dissipation and deco-
herence on the protocol. We assume conditions of weak
coupling of the spins of the chain with the environment,
so that a spin-boson approach can be retained and the
consequent non-unitary dynamics can be studied within
the context of a Lindbladian approach or, equivalently,
an operator-sum representation of the evolution [33]. By
choosing this second perspective, as it will clearly appear
in what follows, we model our study along the lines of a
Monte Carlo simulation. The environmental action over
the chain is identified in the effects of both amplitude
and phase damping channels. First, we address the case
of N individual baths, one for each spin of the chain.
This assumption is physically motivated by considering
that each Josephson charge qubit has its own voltage
gate and can thus suffer individual electromagnetic fluc-
tuations. Then in order to account for the finite spatial
correlation length of a Markovian environment, which
may occur in solid-state systems, we consider a bosonic
environment affecting more than a single spin simulta-
neously (as can be the case for a bath of background
phonons arising from the common substrate onto which
the charge qubits are placed). In the following, we show
a considerable robustness of the state transfer protocol
against both these sources of imperfection and the ap-
pearance of some counter-intuitive features that can be
related to the phenomenon of stochastic resonances [12].

In an operator-sum representation, the evolution of an
initial state ̺c of the whole chain under the effect of an
environment is given by

̺c(t) =
∑

µ

K̂µ(t)̺cK̂
µ†(t) (10)

with {K̂µ(t)} a set of time-dependent Kraus operators,
having the structure of a tensorial product of single-spin
operators and such that

∑

µ K̂
µ†(t)K̂µ(t) = 11 [24, 33].

The formal description of a single-spin amplitude damp-
ing process in a bath at finite temperature is described

by the trace-preserving completely positive map given by
the following set of Kraus operators [24]:

Â0
i =

√
p

(

1 0

0 e−
Γt
2

)

, Â1
i =

√
p

(

0
√

1 − e−Γt

0 0

)

Â2
i =

√

1 − p

(

e−
Γt
2 0

0 1

)

, Â3
i =

√

1 − p

(

0 0√
1 − e−Γt 0

)

(11)
with p = (n + 1)/(2n + 1) and n the average phonon
number of each bath. For a phase damping channel, on
the other hand, we have the following set [24]

D̂0
i =

√

1 + e−γt

2
1̂1i, D̂

1
i =

√

1 − e−γt

2
Ẑi. (12)

In the above equations, Γ and γ are the rates of
amplitude and phase damping, respectively. On the
other hand, clearly, the unitary dynamics determined by
the coupling Hamiltonian in Eq. (2) leads to ̺c(t) =

e−iĤt̺ce
iĤt. Our approach is to intersperse a unitary

evolution lasting for a time interval ∆t with non-unitary
dynamics. ∆t is taken randomly according to the gen-
eral recipe for Quantum Monte Carlo simulations (see
Ref. [34], for instance). Moreover, we randomly deter-
mine the set of Kraus operator to apply and the specific
spin being affected. The disorder’s pattern is kept as
fixed for the duration of one of such simulated dynam-
ics. In virtue of the weak dependence of state fidelity on
δ, a random choice of the disorder configuration will be
enough. The state fidelity resulting from the simulated
dynamics has then to be averaged over a collection of
noise-occurrence patterns (runs), which guarantees the
faithful unraveling of the open quantum dynamics [34].
For our numerical study, whose results are presented
in Fig. 5 (a), we have taken the input state |−〉

1
with

δ/J = 5%, γ/J = 0.5, Γ/J = 0.2 and n = 0.01 in a chain
of 7 qubits and a sample of 200 runs [35]. Evidently, the
state fidelity is close to 0.95, which is an excellent result.
Again, the peak of fidelity is obtained at the expected
value Jt = π/4, although the effects of noise and de-
coherence, altering the pattern of quantum interference
that is at the basis of a state transfer process [5, 6], could

(a) (b)

Π �8 Π �4 3 Π �8
J t0.0

0.2

0.4

0.6

0.8

1.0
F

FIG. 5: (a): Fidelity Fav

1N for an input state |−〉
1

against Jt
with δ/J = 5%, Γ/J = 0.5, γ/J = 0.2, n = 0.01 and N = 7.
The average fidelity is calculated over a set of 200 disordered
patterns. (b): Bloch sphere of the output qubit evaluated
with QPT for the same parameters assumed in panel (a).
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FIG. 6: Fidelity Fav

1N versus γ/J and Γ/J for Jt = π/4,
δ/J = 5%, n = 0.01 and N = 6.

also have resulted in a shift of the peak. A more com-
plete picture comes from the analysis by means of QTP.
As before, we have chosen a random configuration of dis-
ordered coupling strengths and have then evaluated the
effects of decoherence and dissipation on a generic input
state, obtaining the output Bloch sphere in Fig. 5 (b).
The effects of noise seem to result in just a small uniform
shrinking of the Bloch sphere. The average fidelity of the
process is 0.959.

In order to evaluate the relative weight of the two noisy
channels over the state fidelity, we have plotted its maxi-
mum against γ and Γ and for one randomly generated dis-
order pattern (Fig. 6). In this case, we needed to reduce
the number of qubits in the chain to N = 6 and increase
the number of runs to obtain a better plot. Moreover,
in order to exclude any dependence on the input state,
we have averaged the state fidelity over a large sample of
random pure input states. In virtue of the almost per-
fect insensitivity of the protocol to the specific instance
of input state, this step turned out to be rather conser-
vative. The most relevant feature appearing from this
study is that, for a fixed value of γ, the state fidelity has
a (weak) non-monotonic convex behavior against Γ. As
this feature is not well visible from Fig. 6, we have con-
sidered a bidimensional projection of this plot along the
cut γ = 0.2J in Fig. 7, where the interaction time is fixed
at Jt = π/4. The existence of a small peak of fidelity for
increasing value of the dissipation rate can be interpreted
following the lines of Ref. [12], where the phenomenon of
quantum stochastic resonances has been extended to a
multiparticle setting and invoked as the mechanism be-
hind counter-intuitive features of benchmarks such as en-
tanglement against the influences of noise [12, 36]. We
observe that a not too weak dissipative mechanism alters
the occurrence of quantum interference so as to improve
the performances of the state transfer protocol. This ef-
fect obviously disappears as soon as the dissipation is
so strong for the system to cope with it in a coherent
way. The non-monotonic transmission fidelity provides
us with a new way to characterize the response of a sys-
tem which differs from the figures of merit used in [12],

where dynamical properties (such as the chain’s magneti-
zation) or information theoretic ones (such as the mutual
information) have been used as a measure of global corre-
lations. Our study goes along the lines of previous results
by Mancini and Bowen [37], where the rate of transmis-
sion of information through a class of quantum channels
is shown to increase with the external noise. The results
of our investigation motivate further studies of stochas-
tic resonance phenomena in the context of information
transmission through quantum channels.

We conclude our analysis of the effects of realistic im-
perfections on the proposed protocol for quantum state
transfer by addressing the case of baths having a longer
correlation length, so as to give rise to non-localized en-
vironmental effects. The analysis so far has been done by
considering every qubit interacting with its own indepen-
dent bath. As explained before, the substrate where our
hypothetical superconducting chain is fabricated could
provide a mechanism for correlated noise at longer haul.
In this case the qubits can be considered, in first instance,
to interact with shared baths. Here, in order to provide
an intuitive idea of the general behavior of the protocol
with respect to this situation, we consider the simplest
case in which we have a collection of independent baths,
each affecting a pair of spins at the same time. In or-
der to model the evolution of the system in this scenario
we use the operator-sum representation corresponding to
the set of Kraus operators for two-qubit collective phase

0.1 0.2 0.3 0.4
G � J

0.958
0.959
0.960
0.961
0.962
0.963
0.964
0.965

F

FIG. 7: Fidelity Fav

1N with N = 6 at Jt = π/4, δ/J = 5%,
γ/J = 0.2, n = 0.01 against Γ/J . The transmission fidelity is
maximal for an optimal value of the environmental noise and
is the result of the average over many noisy and disordered
runs. The fact that the efficiency of the protocol depends
non-monotonically on the noise strength can be viewed as a
form of stochastic resonance.
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0.1 0.2 0.3 0.4
Γ � J

0.970

0.975

0.980

0.985

0.990

F

FIG. 8: Fidelity Fav

1N for a chain interacting with collective
baths addressing two qubits simultaneously with Jt = π/4,
δ/J = 5% and N = 6 against γ/J and in absence of dissipa-
tion.

damping noise (see Ref. [38], for instance)

D̂c
0 =









e−γt/2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−γt/2









,

D̂c
1 =

√
1 − e−γt







1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −e−γt






,

D̂c
2 = (1 − e−γt)









0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
√

1 + e−γt









.

(13)

Due to our choice of two qubit-addressing collective bath,
here we consider a chain of six qubits. Clearly, the analy-
sis can be extended to any number of qubits being simul-
taneously addressed. We have obtained the plot in Fig. 8.
In the presence of phase decoherence alone, no stochastic
resonance effects are observable. The fidelity decreases
monotonically as a function of γ/J , which agrees with all
previous literature [39], where the emergence of stochas-
tic resonance phenomena was shown to require the pres-
ence of noise forms that couple transversely to the local-
ized basis states.

Although the Hamiltonian model we have considered
does not enjoy particularly symmetries with respect to
the coupling with the collective baths, so that no genuine
phase-damping decoherence free subspace can be singled
out, the resilience of the protocol is evident. The results
are comparable to the case of individual environment at-
tached to each spin and we have checked that this feature
does not depend on the number of qubits being affected
at the same time by a given bath [40].

B. Generation of multipartite entanglement

We now pass to a brief analysis of the proposed pro-
tocol for GHZ-state generation along the lines described

in the previous part of our study. However, here there is
an important technical difference that has to be stressed:
differently from what has been done above, here we need
to consider the global fidelity of chain with a GHZ state

of the form |GHZ〉
12..N = (

⊗N
i=1

|0〉i − i
⊗N

i=1
|1〉i)/

√
2.

Indeed, we are now interested in the generation of a mul-
tipartite entangled state where every qubit will be in-
volved. We have evaluated the evolution of the system
in the noisy scenario. We take advantage of the analysis
performed in the previous Section and in order to avoid
unnecessary redundancy, we present here the results ob-
tained including static disorder, dissipation and phase
decoherence, without considering them individually.

Fig. 9 shows the fidelity against dimensionless time Jt
in the ideal case [panel (a)] and for the same values of
disorder, decoherence and dissipation rates and temper-
ature used previously [panel (b)]. The chain we have
considered is seven-qubit long and the state fidelity has
been averaged over 200 different runs. Although the per-
formance of the protocol seems to be inferior to the one
corresponding to quantum state transfer, we should keep
in mind that here we are using a global figure of merit.
Moreover, despite the fragility of GHZ-like entanglement
to various forms of noisy channels [41], the resilience of
the imperfect multipartite-entanglement generation pro-
tocol is still quite satisfactory (maximum fidelity larger
than 0.88).

V. CONCLUDING REMARKS

We have used information flux methods in order to
design a protocol for quantum state transfer in a finite,
open chain of qubits. The protocol is based on a non-
trivial map between the algebra of angular momenta an
a control-limited Ising-like Hamiltonian with additional
local magnetic fields. The dynamics described by such
a coupling is rich enough to provide an effective way of
performing a multipartite entangling gate among the el-
ements of the register, which produces GHZ-like entan-
glement. Both these protocols have been analyzed in
terms of their resilience against certain realistic sources
of disorder and decoherence and were found to be rather
robust. Moreover, our study has uncovered an unex-
pected relation between state-transfer fidelity and quan-

(a) (b)

Π �8 Π �4 3 Π �8
J t0.0

0.2

0.4

0.6

0.8

1.0
F

Π �8 Π �4 3 Π �8
J t0.0

0.2

0.4

0.6

0.8

1.0
F

FIG. 9: (a): State fidelity for GHZ-state generation against
dimensionless time Jt in the ideal case and N = 7; (b): Same
with disorder δ/J = 5%, γ/J = 0.5, Γ/J = 0.2 and n = 0.01.
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tum stochastic resonances, thus giving our pragmatically-
oriented work a more fundamental character. Our in-
vestigation contributes to the affirmation of information
flux-based methods in the design of multipartite systems
in control-limited scenarios and to the ubiquitous nature
of stochastic resonance mechanisms, two points which
certainly deserve further studies.
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