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We derive exceedingly simple practical procedures revealing the quantum nature of states and
measurements by the violation of classical upper bounds on the statistics of arbitrary measurements.
Data analysis is minimum and definite conclusions are obtained without evaluation of moments, or
any other more sophisticated procedures. These nonclassical tests are independent of other typical
quantum signatures such as sub-Poissonian statistics, quadrature squeezing, or oscillatory statistics.
This approach can be equally well applied to very diverse situations such as single- and two-mode
fields, observables with continuous and discrete spectrum, finite- and infinite-dimensional systems,
ideal and noisy measurements, etc.

I. INTRODUCTION

Nonclassicality is a key concept supporting the neces-
sity of the quantum theory [1–8]. A customary signature
of nonclassical behavior is the failure of the Glauber-
Sudarshan P phase-space representation to exhibit all
the properties of a classical probability density. This oc-
curs when P takes negative values, or when it fails to
be a proper function becoming a generalized function or
distribution.

Within standard quantum theory, quantum states play
two dissimilar but complementary roles: (i) they express
the state of the system, and (ii) they determine the statis-
tics of measurements by projection on the system state,
such as for example photon number and quadrature mea-
surements in quantum optics. We may refer to them as
measured and measuring states respectively.

In this work we derive exceedingly simple and robust
practical procedures to reveal the quantum nature of
measured and measuring states. In this regard, while
characterization of nonclassical (measured) states has
been well developed [1–6], much less attention has re-
ceived the characterization of measurements [8]. One of
the purposes of this work is to contribute to fill this gap
addressing the characterization of nonclassical measure-
ments, i. e., when the measuring state is nonclassical.
More specifically, measurements are described by posi-
tive operator-valued measures (POVMs) ∆m, such that
the statistics of the measurement is pm = tr(∆mρ), where
ρ is the measured state. We will say that the measure-
ment is nonclassical when the P representative of some
∆m takes negative values or is a generalized function. In
most practical situations, ∆m define legitimate measur-
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ing states ρm ∝ ∆m so that the measurement is nonclas-
sical if and only if some ρm is nonclassical. Nonclassical-
ity of measurements has been recently related with the
noncontextuality problem in Ref. [7].

The main contributions of this work are:

(i) We derive exceedingly simple practical procedures
that can reveal the quantum nature of states and mea-
surements. These are upper bounds on measurement
statistics which are satisfied by all states and measure-
ments for which the P representative is a nonnegative
function compatible with classical physics. The lack of
compliance of these statistical bounds is thus a nonclas-
sical signature.

(ii) This approach can be applied to arbitrary mea-
surements, which may involve for example single- or two-
mode electromagnetic fields, observables with continu-
ous or discrete spectrum, systems on finite- or infinite-
dimensional spaces, ideal or noisy measurements, etc.
(Some of these possibilities are considered in detail be-
low.) This is in sharp contrast with other nonclassical cri-
teria that refer exclusively to specific measuring schemes.

(iii) A key point of this approach is that data analysis
is reduced to minimum. At difference with other tests
of nonclassical behavior, in our case definite conclusions
can be obtained without evaluation of moments, or any
other more sophisticated data elaborations [1–6]. This
is reflected on the robustness under practical imperfec-
tions that may even favour observation of nonclassical
behavior.

(iv) These nonclassical tests are independent of other
typical quantum signatures of nonclassical behavior such
as sub-Poissonian statistics, squeezing, or oscillatory
statistics [1]. To this end we propose examples of quan-
tum states violating classical bounds that present no such
typical quantum signatures.

To derive the nonclassical tests we will use the P and
Q phase-space representatives associated to any operator
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A, defined as

A =
∫

d2αP (α)|α〉〈α|, Q(α) =
1
π
〈α|A|α〉, (1.1)

where |α〉 are coherent states, a|α〉 = α|α〉, and a is the
annihilation or complex-amplitude operator. They are
suitably normalized

∫
d2αP (α) =

∫
d2αQ(α) = trA, (1.2)

with d2α = dxdy, where x, y are the real and imag-
inary parts of α = x + iy. The measured statistics
pm = tr(∆mρ) can be then expressed as

pm = π

∫
d2αPm(α)Q(α) = π

∫
d2αP (α)Qm(α), (1.3)

where P (α) and Q(α) are the P and Q representatives
of the measured state ρ, while Pm(α) and Qm(α) are the
ones associated to the POVM ∆m.

In Secs. II and III we derive simple bounds to pm

able to reveal the nonclassical nature of measuring states
ρm ∝ ∆m and measured states ρ, respectively. The ro-
bustness of this criteria under practical imperfections is
examined in Sec. IV. This formalism is further extended
to two-mode situations in Sec. V, and adapted to finite-
dimensional systems in Sec. VI.

II. NONCLASSICAL MEASUREMENTS

From Eq. (1.3) we can derive classical bounds dis-
closing nonclassical measurements. For every ordinary
nonnegative function Pm(α) ≥ 0 it holds that for every
α

Pm(α)Q(α) ≤ Pm(α)Qmax, (2.1)

where Qmax is the maximum of Q(α) (note that Q(α) is
always a positive and well behaved function). Applying
this to the first equality in Eq. (1.3) we get the following
upper bound for pm, provided that tr∆m is finite,

pm ≤ πQmaxtr∆m. (2.2)

Equation (2.2) can be violated if Pm(α) fails to be posi-
tive or when it becomes a generalized function. In both
cases Eq. (2.1) fails to be true. Therefore, the violation
of condition (2.2) is a signature of nonclassical measure-
ment.

The existence of Pm(α) as a classical probability den-
sity for all m allows us to understand the measurement as
a classical stochastic process [9] between the phase space
and the sample space, with transition probability kernel
given by K(m,α) = πPm(α). Conversely, the failure of
K(m,α) to be a classical conditional probability density
denotes the quantum nature of the measurement process.

In order to detect the violation of the classical bound
(2.2) the only prior information required about the mea-
surement being performed is the trace tr(∆m). This can
be measured using explicit practical methods (see some
proposals in the Appendix). In any case this is not a very
stringent condition since in most practical situations this
can be inferred from simple rough analyses of the exper-
imental arrangement, by symmetry considerations, etc.

Note that coherent states |α〉 are useless as mea-
sured states to reveal nonclassical measurements since
πQmax = 1 so that Eq. (2.2) leads to the trivial bound
pm ≤ tr∆m for all measurements [10]. This bound is
trivial because, using the Cauchy-Schwarz inequality

∣∣tr(AB†)
∣∣2 ≤ tr(AA†)tr(BB†), (2.3)

we get

p2
m = [tr (ρ∆m)]2 ≤ tr

(
ρ2

)
tr

(
∆2

m

)
, (2.4)

and using that for positive operators tr(A2) ≤ (trA)2 we
get

pm = tr(ρ∆m) ≤ trρ tr∆m = tr∆m. (2.5)

Otherwise, quantum or classical states other than coher-
ent may be used since the weight of the criteria relies on
the behavior of Pm(α).

This approach is next illustrated with the examples of
photon number and field quadrature measurements per-
formed on a single mode electromagnetic field.

A. Photon-number measurements

In order to illustrate this formalism the simplest ex-
ample is the ideal photon-number measurement, ∆n =
ρn = |n〉〈n|, where |n〉 are number states, a†a|n〉 = n|n〉
so that tr∆n = 1. In this case the classical bound in Eq.
(2.2) becomes

pn ≤ πQmax = pb, (2.6)

that is actually independent of the outcome n.
A readily demonstration of the nonclassical nature of

the photon-number measurement is provided when n = 1
and the measured state is the one-photon state |n = 1〉.
In such a case p1 = 1,

Q(α) =
|α|2
π

exp(−|α|2), πQmax =
1
e
, (2.7)

where the maximum occurs for |α| = 1. Thus we have
that

p1 = 1 > πQmaxtr∆1 =
1
e
, (2.8)

so that the measurement is nonclassical and the classical
upper bound is surpassed by 172 %, since (p1− pb)/pb =
1.72.
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B. Quadrature measurements

Concerning quadrature measurements (implemented
in practice by homodyne detection [1]) we have ∆x =
|x〉〈x|, where |x〉 are the eigenstates of the quadrature
operator

X =
1
2

(
a† + a

)
, X|x〉 = x|x〉, (2.9)

being the optical analog of mechanical position or linear
momentum. In this case tr∆x is not finite since |x〉 are
not normalizable 〈x|x′〉 = δ(x− x′).

In order to avoid this difficulty we can appreciate that
the P representative of |x〉〈x|, Px(α = x′+ iy′), does not
depend on y′. This is an observable property, for example
via the independence of statistics under displacements of
the measured state along this coordinate. Thus we can
rearrange Eq. (1.3) in the form

px = π

∫
dx′Px(x′)Q̃(x′), Q̃(x′) =

∫
dy′Q(x′, y′),

(2.10)
so that Eq. (2.2) is replaced by

px ≤ πQ̃maxtrx∆x, (2.11)

where Q̃max is the maximum of Q̃(x) when x is varied,
and

trx∆x =
∫

dx′Px(x′) =
∫

dx′Qx(x′), (2.12)

where Px, Qx are the representatives of ∆x, with

Qx(x′) =
1
π
|〈x|α = x′ + iy′〉|2

=
1
π

√
2
π

exp
[−2(x− x′)2

]
. (2.13)

This leads to trx∆x = 1/π and to the classical upper
bound

px ≤ Q̃max = pb, (2.14)

that does not depend on the outcome x.

1. Thermal-chaotic state

In order to look for violations of the bound (2.14) let us
consider that the measured state ρ is the thermal-chaotic
state whose expression in photon-number basis is

ρtc = (1− ξ)
∞∑

n=0

ξn|n〉〈n|, (2.15)

where ξ is a real parameter with 0 ≤ ξ < 1. These states
describe most classical light sources. The mean number
of photons ntc and the quadrature variance are

ntc =
ξ

1− ξ
, (∆X)2 =

1
4

(1 + 2ntc) , (2.16)

while the Q and Q̃ functions are

Q(α) = 1
π(ntc+1) exp

(
− |α|2

ntc+1

)
,

Q̃(x′) = 1√
π(ntc+1)

exp
(
− x′2

ntc+1

)
, (2.17)

so that the upper bound in Eq. (2.14) reads

pb =
1√

π(ntc + 1)
. (2.18)

The statistics of the quadrature measurement px =
|〈x|ρtc|x〉|2 is Gaussian

px =
1√

2π∆X
exp

[
− x2

2(∆X)2

]
, (2.19)

and the output most likely to break the bound (2.2) is
x = 0, since it maximizes px. This outcome will infringe
the bound provided that

p0 =
1√

π(ntc + 1
2 )

> pb =
1√

π(ntc + 1)
, (2.20)

which holds for every ntc. In particular for ntc = 0 (the
vacuum state) we have p0 = 0.80 and pb = 0.56, so that
the classical upper bound is very clearly surpassed by
100(p0 − pb)/pb = 43%.

The outputs x that contravene Eq. (2.14) are all x
such that

x2 < (∆X)2 ln

[
1 +

1
4 (∆X)2

]
. (2.21)

For ntc = 0 these are all x in the interval −0.42 ≤
x ≤ 0.42, which occur with a 60 % probability since∫ 0.42

−0.42
pxdx ' 0.60.

2. Squeezed vacuum

As a further example, when the measured state is the
squeezed vacuum the quadrature statistics has again the
Gaussian form (2.19), being the Q function

Q(x, y) =
1
π

4∆X

1 + 4(∆X)2
exp

[
−2x2 + 8(∆X)2y2

1 + 4(∆X)2

]
,

(2.22)
so that

Q̃(x) =

√
2

π[1 + 4(∆X)2]
exp

[
− 2x2

1 + 4(∆X)2

]
, (2.23)

and

Q̃max =

√
2

π[1 + 4(∆X)2]
. (2.24)
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The output most likely to break the bound (2.14) is x =
0, and in such a case the classical bound is surpassed for
all ∆X, since

p0 =
1√

2π∆X
> pb =

√
2

π[1 + 4(∆X)2]
. (2.25)

The most favorable situation is when ∆X is as small as
possible. For example, for ∆X = 0.1 we have p0 = 4.0
and Q̃max = 0.8, so that there is a percentage of violation
of 100(p0 − pb)/pb = 400% approximately. The outputs
x that contravene Eq. (2.14) are given by Eq. (2.21),
that for ∆X = 0.1 is the interval −0.18 ≤ x ≤ 0.18, that
represents the 93 % of all outcomes since

∫ 0.18

−0.18
pxdx '

0.93.

III. NONCLASSICAL STATES

In this section we derive classical bounds disclosing
nonclassical measured states. They can be derived from
the last equality in Eq. (1.3) by considering that for
classical states, i. e., for ordinary nonnegative functions
P (α) ≥ 0, we get

P (α)Qm(α) ≤ P (α)Qm,max, (3.1)

where Qm,max is the maximum of Qm(α). Applying this
to the last equality in Eq. (1.3) and taking into account
Eq. (1.2) we get the following upper bound for pm

pm ≤ πQm,max, (3.2)

that holds for every P (α) compatible with classical
physics. If this condition is violated for any m the state
is not classical. The bound becomes an equality when
the measured state is the coherent state |αm,max〉 with
Qm,max = Qm(αm,max).

Moreover, when the measured state is pure ρ = |ψ〉〈ψ|
we have that |ψ〉 is nonclassical if and only if there is at
least a measurement for which the classical bound (3.2)
is violated. The violation of bound (3.2) is clearly a suffi-
cient condition. This is also necessary since for every non-
classical |ψ〉 we can consider a POVM with ∆0 = |ψ〉〈ψ|.
In such a case the upper bound (3.2) is surpassed because
p0 = 1 while πQ0,max = |〈αmax|ψ〉|2 < 1, since otherwise
the equality |〈αmax|ψ〉| = 1 would imply that |ψ〉 is a
coherent state and thus classical.

Note that the POVM ∆α = |α〉〈α|/π defined by the
coherent states |α〉 (implemented in practice by double
homodyne and heterodyne detection) are useless for the
detection of nonclassical states, since πQα,max = 1 and
the bound (3.2) becomes trivial pα ≤ 1.

For the sake of illustration we particularize this ap-
proach to two meaningful practical situations. These are
photon number (Sec. III A) and quadrature measure-
ments (Sec. III B). Then we apply them to different
measured states (Sec. III C).

2 4 6 8 10

0.2

0.4

0.6

0.8

1

p
b,n

n

FIG. 1: Classical upper bound (3.5) for the probability of
detecting n photons on a classical state.

A. Photon-number measurement

For photon-number measurements ∆n = |n〉〈n| the Q
function is

Qn(α) =
1
π

exp(−|α|2) |α|
2n

n!
, (3.3)

and the maximum occurs at |α| = √
n

Qn,max =
1
π

exp(−n)
nn

n!
. (3.4)

If the measured state is classical, the photon number
statistics pn is thus bounded by

pn ≤ exp(−n)
nn

n!
= pb,n. (3.5)

This bound was previously derived in Ref. [2]. The upper
bound pb,n is the probability of detecting n photons in the
coherent state |α〉 with |α| =

√
n, which is the classical

state for which pn is maximum. In Fig. 1 we have rep-
resented pb,n as a function of n showing that for large n

it decays as pb,n ' 1/
√

2πn approximately, in agreement
with the Stirling approximation n! ' √

2πnnn exp(−n).

1. Independence of sub-Poissonian statistics

We can show that the nonclassical criterion on photon-
number measurements (3.5) is independent of sub-
Poissonian statistics. The deviation from Poissonian
statistics is usually assessed by the Mandel parameter
[1]

QM =
(∆n)2

〈n〉 − 1. (3.6)

The independence holds because: (i) there are sub-
Poissonian states that satisfy the classical bounds (3.5)
for all n, and (ii) there are super-Poissonian states that
infringe them. To show this let us consider the state in
the number basis,

ρ = (1− p)|0〉〈0|+ p|N〉〈N |, (3.7)
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with 0 < p ≤ 1 so that

〈n〉 = pN, (∆n)2 = N2p(1− p), (3.8)

and

QM = N(1− p)− 1. (3.9)

(i) For N = 1 this state is sub-Poissonian for all p with
QM = −p < 0, and satisfies the classical upper bounds
(3.5) for all n when p ≤ 1/e. (ii) For p < (N − 1)/N the
state is super-Poissonian since QM > 0, and infringes the
bound (3.5) when p > pb,N . These two requirements are
compatible since it holds that (N − 1)/N > pb,N for all
N > 1.

B. Quadrature measurement

As a further example we may consider the measure-
ment of the quadrature X in Eq. (2.9), so that ∆x =
|x〉〈x|. In such a case, from Eq. (2.13) we get πQx,max =√

2/π, and the classical upper bound for the statistics px

of the quadrature measurement is

px ≤
√

2
π

= pb, (3.10)

that does not depend on the output x. The maximum
is obtained for a coherent state |α〉 with (α + α∗)/2 =
x. For states with Gaussian px the infringement of Eq.
(3.10) is equivalent to squeezing of quadrature X since
the maximum of px is 1/(∆X

√
2π) and

1
∆X

√
2π

>

√
2
π
−→ ∆X <

1
2

= ∆Xvacuum. (3.11)

For non Gaussian px the situation can be different as
shown below.

This example is interesting since quadrature mea-
surements are more experimentally feasible than num-
ber measurements. For a further discussion about the
quantum-classical relation in terms of quadrature distri-
butions see Ref. [11].

C. Examples

Let us consider some meaningful simple examples of
states violating the classical upper bounds (3.5) and
(3.10).

1. Incoherent superposition of thermal and number

As a feasible state that can infringe Eq. (3.5) let
us consider the incoherent superposition of the thermal-
chaotic state in Eq. (2.15) and the photon number state
|n0〉

ρ = pρtc + (1− p)|n0〉〈n0|, (3.12)

where 0 ≤ p ≤ 1, leading to a photon-number statistics

pn = p(1− ξ)ξn + (1− p)δn,n0 . (3.13)

For example, for p = 0.5, n0 = 1, and ntc = 9 the proba-
bility of detecting a single photon is p1 = 0.545, while the
upper bound in Eq. (3.5) for n = 1 is pb,1 = 1/e = 0.368,
so we have a clear infringement of the classical condition
(3.5) by 100(p1 − pb,1)/pb,1 = 48%.

In this case the photon-number distribution (3.13) is
highly super-Poissonian with QM = 11.2. Furthermore,
we can easily show that there is no quadrature squeezing
since for quadrature operators

Xθ =
1
2

[
a† exp(−iθ) + a exp(iθ)

]
, (3.14)

we have in the state (3.12) that 〈Xθ〉 = 0 and

(∆Xθ)
2 =

1
2
〈n〉+

1
4

=
1
2

[pntc + (1− p)n0] +
1
4
. (3.15)

For the above parameters, n0 = 1, p = 0.5, ntc = 9,
we get (∆Xθ)2 = 11/4 for all θ, which is far above the
upper limit for squeezing (∆Xθ)2vacuum = 1/4. Finally, it
can be appreciated that there are no oscillations in the
photon-number distribution.

For the state (3.12) the origin of nonclassical behavior
is that P (α) is always more singular than a delta function
for all p 6= 1. This is because

P (α) = pPtc(α) + (1− p)Pn0(α), (3.16)

where

Ptc(α) =
1

πntc
exp

(
−|α|

2

ntc

)
, (3.17)

and

Pn0=1(α) =
(

1 +
∂

∂α

∂

∂α∗

)
δ(2)(α). (3.18)

Thus P (α) is more singular than a delta function since
otherwise we would be able to express Pn0=1(α) as a lin-
ear combination of two ordinary functions.

2. Photon-added thermal state

The previous states are associated with P representa-
tives more singular than a delta function. Next we con-
sider states with nonsingular P (α) function taking neg-
ative values. This is the case of the single-photon-added
thermal states that, in the photon-number basis, read [5]

ρ1 = (1− ξ)a†ρtca = (1− ξ)2
∞∑

n=1

ξn−1n|n〉〈n|, (3.19)

where ρtc, ξ and ntc are in Eqs. (2.15) and (2.16) respec-
tively.
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The P representative is well-behaved but nonpositive

P (α) =
1

πn3
tc

[
(ntc + 1) |α|2 − ntc

]
exp

(−|α|2/ntc

)
,

(3.20)
and the photon-number statistics is

pn = (1− ξ)2ξn−1n. (3.21)

For example for n = 1, 2 the classical upper bounds
(3.5) are surpassed provided that

p1 > pb,1 = 1/e ↔ ntc <
√

e− 1 = 0.65,

p2 > pb,2 = 2/e2 ↔ 0.30 ≤ ntc ≤ 0.82. (3.22)

Let us show that this nonclassical behavior is indepen-
dent of other nonclassical features. There is no quadra-
ture squeezing since for the rotated quadrature operators
Xθ in Eq. (3.14) we have (∆Xθ)2 = (3 + 4ntc)/4 > 1/4
for all θ. Also, it can be appreciated in Eq. (3.21) that
there is no photon-number oscillations. Finally, the Man-
del parameter is

QM =
2n2

tc − 1
2ntc + 1

, (3.23)

so we get super-Poissonian statistics for all ntc > 1/
√

2 =
0.71.

Therefore, the states with 0.71 ≤ ntc ≤ 0.82 are
nonclassical since p2 > pb,2, although they have super-
Poissonian statistics, present no squeezing, and have no
oscillatory statistics.

3. Coherent superposition of coherent states

Another interesting example is provided by the coher-
ent superposition of two coherent states with opposed
complex amplitude [12] (referred to as even and odd su-
perpositions [13])

|α±〉 = N±(|α〉 ± | − α〉), (3.24)

with

N+ =
exp(|α|2/2)

2
√

cosh(|α|2) , N− =
exp(|α|2/2)

2
√

sinh(|α|2) . (3.25)

In this case the P (α) is a distribution involving an in-
finite number of derivatives of the delta function, since
the normally-ordered characteristic function is a real ex-
ponential. For definiteness let us focus just on the even
states |α+〉.

For the even case |α+〉 we have the following photon-
number statistics

pn =

{
|α|2n

n! cosh(|α|2) for n even,

0 for n odd.
(3.26)

| |a

%
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FIG. 2: Percentage 100(p0 − pb)/pb of maximum violation
of the classical bound (3.10) (dashed line) and percentage of
squeezing 100(1− 2∆Xθ,min) in Eq. (3.32) (solid line) for the
even state (3.24) as functions of |α|.

Numerically it can be easily seen that this is inconsistent
with the upper bound in Eq. (3.5) for |α| ≥ 0.64. More-
over, for |α| >> 1 we have cosh(|α|2) ' exp(|α|2)/2 and
(always for even n)

pn ' 2
|α|2n

n!
exp(−|α|2), (3.27)

so that for |α|2 = n we get that pn is twice the upper
bound pb,n in Eq. (3.5).

Concerning quadrature measurements, let us consider
states with purely imaginary complex amplitude α =
±i|α| that have the following quadrature statistics

px = 4N2
+

√
2
π

cos2(2|α|x) exp
(−2x2

)
. (3.28)

For every |α| the maximum of px holds for x = 0 being
p0 = 4N2

+

√
2/π. In Fig. 2 (dashed line) we have rep-

resented the relative amount of violation of Eq. (3.10),
100(p0 − pb)/pb, as a function of |α|, showing a 100 %
violation for large |α|. This is because for |α| >> 1 we
have N2

+ ' 1/2 so that p0 ' 2
√

2/π, which is twice the
classical upper bound pb =

√
2/π. In Fig. 2 this is also

compared with the percentage of squeezing in the same
state (solid line).

Next we show that the even states infringe classical
bounds with super-Poissonian photon-number statistics
and with negligible quadrature squeezing. Concerning
photon-number statistics we have

〈n〉 = |α|2 tanh(|α|2),
〈n2〉 = |α|4 + |α|2 tanh(|α|2), (3.29)

so that

QM =
2|α|2

sinh (2|α|2) , (3.30)

and these states are always super-Poissonian (unless α =
0).
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Concerning quadrature squeezing, the minimum un-
certainty for rotated quadratures (3.14) in the state |α+〉
when θ is varied is

(∆Xθ)2min =
1
4

(
2|α|2 tanh |α|2 − 2|α|2 + 1

)
. (3.31)

The percentage of squeezing defined as

100
∆Xvacuum −∆Xθ,min

∆Xvacuum
= 100 (1− 2∆Xθ,min) ,

(3.32)
is represented in Fig. 2 as a function of |α|. These states
present squeezing only for small |α| being negligible for
|α| > 2. For instance, for |α| = 3 we have (∆Xθ,min)2 =
0.24999986, which means a fully negligible 2.75× 10−5%
squeezing, while Eqs. (3.5) and (3.10) are infringed by a
100% for the same state.

At difference with the preceding examples in this case
the 100 % violation of classical bounds for large |α| has
a simple explanation in terms of the oscillatory charac-
ter of the statistics (3.26) and (3.28). For large |α| the
number and quadrature statistics are the same of coher-
ent states (that would saturate the classical bounds) but
maximally modulated. Because of normalization, the
vanishing terms must be compensated by nonvanishing
terms reaching twice the coherent-state values. This fac-
tor of two leads to the 100 % violation of the classical
bounds.

Let us note that the criteria presented in this work re-
veal the nonclassical nature of these states for all α, but
specially clearly for large |α|. This is sharp contrast with
sub-Poissonian number statistics and quadrature squeez-
ing, that hold only for small |α|, as illustrated in Fig. 2
for example.

IV. EFFECT OF IMPERFECTIONS

One of the key features of this approach is that data
analysis is reduced to minimum. This favours obtaining
reliable results from non ideal measurements affected by
imperfections, such as damping, finite efficiencies, or fi-
nite sampling. We stress that this approach applies to
any measurement, both ideal and imperfect, so that ex-
perimental imperfections can be always embodied into
the measuring POVM. Nevertheless, since imperfections
usually deteriorate nonclassical properties it is reason-
able to investigate their effect on the above nonclassical
criteria.

A. Inefficient detection

For definiteness we consider real detectors affected by
field damping (with bath at zero temperature) and finite
quantum efficiency, which can be modeled by placing a
beam splitter of amplitude-transmission coefficient t =√

η in front of a perfect detector, where η ≤ 1 represents
both losses and efficiencies [14, 15].

h

p
t,1

p
b,1

=1/e

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

FIG. 3: pt,1 in Eq. (4.3) as a function of η for ntc = 0.7.

1. Nonclassical states

The effect of the beam splitter for the detection of non-
classical states can be easily accounted for by computing
the measured state after the beam splitter ρt as

ρt =
∫

d2αP (α)|tα〉〈tα|, (4.1)

where P (α) is the P function of the measured state. The
measured statistics becomes

pt,m = tr (∆mρt) = π

∫
d2αP (α)Qm(tα). (4.2)

Since the maximum of Qm(tα) when α is varied is the
same as the maximum of Qm(α) there is no change in
the classical upper bound in the right-hand side of Eq.
(3.2).

Nevertheless, imperfections affect the statistics replac-
ing pm by pt,m in the left-hand side of Eq. (3.2). This
can be easily seen, for example, for photon-added ther-
mal states (3.19). For inefficient detection the photon-
number statistics of the ideal case (3.21) for n = 1 is
replaced by

pt,1 = η
1 + 2ntc − ηntc

(1 + ηntc)
3 . (4.3)

In Fig. 3 we have represented pt,1 as a function of η
for ntc = 0.7. Decreasing η from η = 1 increases pt,1,
leading to break the classical bound (3.5) in the interval
0.30 ≤ η ≤ 0.89.

It is worth pointing out that, at difference with other
nonclassical tests, where imperfections degrade nonclassi-
cal behavior [15], in this case larger losses and decreasing
efficiencies may favour the observation of nonclassical be-
havior of measured states. This noticeable effect arises
because imperfections rearrange the probability distribu-
tion pn, so that with increasing imperfection some prob-
abilities may increase beyond the classical bounds, as is
the case of pt,1 in this example.



8

2. Nonclassical measurements

For nonclassical measurements we can follow two dif-
ferent strategies: (i) We can address the nonclassical be-
havior of the ideal POVM ∆m associated to η = 1. This
is the analog of the preceding subsection where we in-
vestigated the nonclassical properties of the input state
before being affected by imperfections. (ii) Alternatively,
as mentioned above we can examine the nonclassical be-
havior of the effective POVM ∆̃m embodying all imper-
fections as part of the measuring scheme.

(i) Concerning the nonclassical behavior of the ideal
POVM ∆m we can compute the effect of inefficiencies as

pt,m =
1
π

∫
d2αd2β s〈α|a〈β|Tρ⊗ ρ0T

†|β〉a|α〉sPm(α),

(4.4)
where |α〉s are coherent states in the signal mode (the
mode of the measured state ρ) and |β〉a are coherent
states in the auxiliary mode (the other input port of the
beam splitter assumed in the vacuum state ρ0), Pm(α) is
the P representative of the ideal measurement ∆m, and
T is the unitary transformation describing the effect of
the beam splitter, with

T †|β〉a|α〉s = |tβ + rα〉a|tα− rβ〉s, (4.5)

being r =
√

1− t2. This leads to the following form for
the statistics

pt,m = π

∫
d2αQ̃(α)Pm(α), (4.6)

where Q̃(α) is defined here as

Q̃(α) =
∫

d2βQ0(tβ + rα)Q(tα− rβ), (4.7)

Q0 and Q being the Q representatives of ρ0 and ρ, re-
spectively. Note that in the ideal case η = 1 (t = 1,
r = 0) Q̃(α) is the Q function of the measured state
Q̃(α) = Q(α). From Eq. (4.6) we can derive the classical
upper bound

pt,m ≤ πQ̃maxtr∆m, (4.8)

that holds for classical measurements with Pm(α) ≥ 0.
We can appreciate that finite quantum efficiencies modify
the classical upper bounds in comparison with the ideal
detection in Eq. (2.2) by replacing Qmax by Q̃max.

Let us illustrate this analysis with the example where
the ideal POVM is one-photon detection, ∆1 = |1〉〈1|
in the number basis, and the measured state is the one-
photon state |1〉. The case η = 1 was considered in Sec.
II A above. When η ≤ 1 we have

pt,1 = η, tr∆1 = 1, (4.9)

and

Q̃(α) =
1
π

[
η

(|α|2 − 1
)

+ 1
]
exp

(−|α|2) , (4.10)

so that

Q̃max =
η

π
exp

(
−2η − 1

η

)
, (4.11)

and the violation of the classical upper bound (4.8) oc-
curs provided that

exp
(
−2η − 1

η

)
< 1 ←→ η >

1
2
. (4.12)

Therefore, in this example the nonclassical behavior of
the ideal measurement is disclosed provided that the
quantum efficiencies are above 50 %.

(ii) Alternatively, if we embody decaying mechanisms
and inefficiencies in the effective POVM ∆̃m we get from
Eq. (2.2)

pt,m ≤ πQmaxtr∆̃m, (4.13)

where Qmax is the maximum of the Q function of the
measured state ρ. We can compute tr∆̃m taking into
account the effect of the beam splitter as in Eq. (4.1)

tr∆̃m =
1
π

∫
d2α〈α|∆̃m|α〉

=
1
π

∫
d2α〈tα|∆m|tα〉 =

1
t2

tr∆m, (4.14)

leading to

pt,m ≤ πQmax
1
η
tr∆m. (4.15)

We can appreciate that the effect of imperfections is sim-
ply expressed by increasing the classical upper bound by
a factor 1/η.

Let us illustrate this approach with the same example
of inefficient one-photon detection, (ideal POVM ∆1 =
|1〉〈1| and a one-photon state |1〉) so that after Eq. (2.7)
the classical bound (4.15) is

pt,1 = η ≤ 1
ηe

. (4.16)

Thus the effective POVM ∆̃m shows nonclassical behav-
ior when η > 1/

√
e = 0.6065.

We can appreciate that the two approaches (i) and (ii)
lead to two different bounds (4.8) and (4.15), as clearly
illustrated by the example of one-photon detection. We
stress that this difference is natural since the classical
bound (4.8) is sensitive to the nonclassicality of the P
representative of the ideal POVM ∆m, while the bound
(4.15) is sensitive to the nonclassical character of the P

representative of the effective POVM ∆̃m.

B. Finite sampling

When the number of measurements N is finite, the
probability pm becomes an statistical variable that can
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be expressed as pm(N) = k/N , where the integer k is
the number of outcomes m after N trials. (This anal-
ysis applies both to detection of nonclassical states and
measurements.) The dichotomic character of the mea-
surement (outcome m with probability pm and outcome
not m with probability 1−pm) implies that k follows the
binomial distribution

Pk(N) =
(

N
k

)
pk

m(1− pm)N−k, (4.17)

so we have

〈pm(N)〉 =
〈k〉
N

= pm,

∆pm(N) =
∆k

N
=

√
pm(1− pm)

N
. (4.18)

For all the above examples we have roughly pm ' 0.5, so
that for N ' 100 we have ∆pm/pm ' 0.1. Thus, even
for moderate number of trials, the uncertainty caused by
finite sampling is clearly below the amount of violation
of classical upper bounds pb,m, since (pm − pb,m)/pb,m

is at least five time larger than ∆pm/pm in the above
examples.

V. TWO-MODE OBSERVABLES

The above single-mode approach in Eq. (1.3) can be
easily generalized to two-mode observables by expressing
the statistics pm = tr(ρ∆m) as

pm = π2

∫
d2αd2βP (α, β)Qm(α, β), (5.1)

and

pm = π2

∫
d2αd2βPm(α, β)Q(α, β), (5.2)

where P , Q are the two-mode phase-space representatives
for the measured state ρ

ρ =
∫

d2αd2βP (α, β)|α, β〉〈α, β| (5.3)

Q(α, β) =
1
π2
〈α, β|ρ|α, β〉, (5.4)

Pm, Qm refer to the corresponding representatives of the
POVM ∆m, and |α, β〉 are two-mode coherent states.
The parameter m represents all the indices necessary
to label the outcomes. The maxima of Q(α, β) and
Qm(α, β) provide suitable upper bounds for the statis-
tics of classical measurements and states, respectively.

In this regard we note that for bipartite systems non-
classical P (α, β) is a necessary condition for entangle-
ment [16]. For definiteness we focus on the nonclassical
behavior of states. The analysis of nonclassical measure-
ments would be analogous.

A. Nonclassical states by photon-number detection

For the case of joint two-mode photon-number detec-
tion we get that for classical states the joint probability
of detecting n1 and n2 photons is simply bounded by the
product of the one-mode upper bounds

pn1,n2 ≤ pb,n1pb,n2 = exp[−(n1 + n2)]
nn1

1 nn2
2

n1!n2!
. (5.5)

The maximum for fixed n1 + n2 occurs when n1 = 0 or
n2 = 0 while the minimum occurs for coincident outputs
n1 = n2.

For the total number n = n1 +n2 the statistics is given
by

pn = π2

∫
d2αd2βP (α, β)

n∑
m=0

Qm,n−m(α, β), (5.6)

where

Qn1,n2(α, β) =
1
π2
|〈α|n1〉|2 |〈β|n2〉|2 , (5.7)

|n1,2〉 being number states in the corresponding modes.
It can be easily seen that

n∑
m=0

Qm,n−m(α, β) =
1
π2

|γ|2n

n!
exp(−|γ|2), (5.8)

with |γ|2 = |α|2 + |β|2. For fixed n the maximum occurs
for |γ|2 = n so that

n∑
m=0

Qm,n−m(α, β) ≤ 1
π2

nn

n!
exp(−n), (5.9)

and

pn ≤ nn

n!
exp(−n), (5.10)

which is equal to the single-mode counterpart (3.5).

B. Nonclassical states by quadrature-difference
measurement

Let us consider the measurement of the quadrature
difference X = X1 −X2, where X1,2 represent the same
quadrature operator in each mode, which is described by
the POVM

∆x =
∫

dx′|x + x′〉1〈x + x′| ⊗ |x′〉2〈x′|, (5.11)

where |x〉j are the eigenstates of Xj , j = 1, 2. In this
case we have

Qx(α1, α2) =
1

π2
√

π
exp

[−(x− x1 + x2)2
]
, (5.12)
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where xj is the real part of αj , so that

π2Qx,max =
1√
π

(5.13)

and the classical bound is

px ≤ 1√
π

= pb. (5.14)

Note that the two-mode bound does not depend on the
outcome x, being lower than the single-mode counterpart
(3.10). For states with Gaussian px the violation of this
bound is equivalent to ∆X < 1/

√
2. This is equivalent

to two-mode squeezing since for pairs of coherent states
it holds ∆X = 1/

√
2.

C. Example: two-mode squeezed vacuum

To illustrate these two-mode classical bounds let us
consider that the measured state is a two-mode squeezed
vacuum, that in the photon-number basis reads,

|ζ〉 =
√

1− ζ2

∞∑
n=0

ζn|n〉1|n〉2, (5.15)

where we have assumed real parameter ζ without loss of
generality. The statistic of the joint number pn,n and the
total number p2n are

pn,n = p2n =
(
1− ζ2

)
ζ2n, (5.16)

while the statistics of the quadrature-difference X =
X1 −X2 is Gaussian with

(∆X)2 =
1− ζ

2(1 + ζ)
. (5.17)

Numerically we have found that the classical bound
on joint-number measurements is always violated pn,n >
p2

b,n for some n when ζ > 0.41. The classical bound for
total number is never violated since p2n = pn,n ≤ pb,2n

for all ζ.
More specifically, for n = 1 we have p1,1 = (1−ζ2)ζ2 >

p2
b,1 = exp(−2) = 0.135 for all ζ in the interval 0.41 ≤ ζ ≤

0.91. The maximum violation occurs for ζ2 = 1/2 so that
p1,1 = 0.25 and there is an 85 % violation of the classical
bound. For the total number we have that the classical
bound is not surpassed since pb,2 = 2 exp(−2) = 0.27.

On the other hand the classical bound on quadrature
difference is always surpassed since the statistics is Gaus-
sian and ∆X < 1/

√
2 for all ζ. For example, for ζ2 = 1/2

(this is mean total number of photons 〈n〉 = 2) we have
p0 = 1.36 while the classical upper bound in Eq. (5.14)
is pb = 0.56, so that there is a percentage of violation
100(p0 − pb)/pb = 141% approximately. The outputs
x that contravene Eq. (5.14) are all x in the interval
−0.39 ≤ x ≤ 0.39, which represent a 82 % probability
since

∫ 0.39

−0.39
pxdx = 0.82.

VI. SPIN SYSTEMS

The above methods can be adapted to situations de-
scribed by finite-dimensional Hilbert spaces, exemplified
by spin-j systems. This can be readily done in terms
of SU(2) Q and P functions, which are defined after the
SU(2) coherent states |j, Ω〉 as [17]

ρ =
∫

d2ΩP (Ω)|j, Ω〉〈j, Ω|, Q(Ω) =
2j + 1

4π
〈j, Ω|ρ|j, Ω〉,

(6.1)
with d2Ω = sin θdθdφ, and

|j, Ω〉 =
j∑

m=−j

(
2j

m + j

)1/2

sinj−m
(

θ
2

)
cosj+m

(
θ
2

)

· exp[−i(j + m)φ]|j,m〉, (6.2)

where |j, m〉 are the eigenstates of the spin component j3
with eigenvalue m, while π ≥ θ ≥ 0, and π ≥ φ ≥ −π.
The analog of Eq. (1.3) is

pm =
4π

2j + 1

∫
d2ΩPm(Ω)Q(Ω)

=
4π

2j + 1

∫
d2ΩP (Ω)Qm(Ω), (6.3)

leading to the following bounds for classical measure-
ments

pm ≤ 4π

2j + 1
Qmaxtr∆m, (6.4)

(for finite-dimensional systems tr∆m is always finite),
while the upper bound for classical states is

pm ≤ 4π

2j + 1
Qm,max = pb,m. (6.5)

By construction the SU(2) coherent states are classical
both as measured and measuring states. For the POVM

∆Ω =
2j + 1

4π
|j, Ω〉〈j, Ω|, tr∆Ω =

2j + 1
4π

, (6.6)

the upper bound (6.4) is satisfied for all measured states
since

pΩ = Q(Ω) ≤ 4π

2j + 1
Qmaxtr∆Ω = Qmax, (6.7)

where Q(Ω) is the SU(2) Q function of the measured
state. Likewise, when the measured state is coherent
ρ = |j, Ω〉〈j, Ω| we have

pm =
4π

2j + 1
Qm(Ω), (6.8)

where Qm(Ω) is the SU(2) Q function of ∆m, so that
(6.5) is satisfied by all measurements.

For the sake of illustration next we consider some ex-
amples for the simplest cases j = 1/2, and j = 1.
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A. j = 1/2

For j = 1/2 the SU(2) coherent states read, in the
|j, m〉 basis,

|1/2, Ω〉 = sin
(

θ

2

)
|1/2,−1/2〉

+ cos
(

θ

2

)
exp(−iφ)|1/2, 1/2〉. (6.9)

Every state and POVM are of the form

ρ =
1
2

(σ0 + r · σ) , Q(Ω) =
1
4π

(1 + r ·Ω) , (6.10)

∆m = λm (σ0 + rm · σ) , Qm(Ω) =
λm

2π
(1 + rm ·Ω) ,

(6.11)
where σ are the Pauli matrices in the |j, m〉 basis, σ0 the
identity, r, rm are three-dimensional real vectors with
|r|, |rm| ≤ 1, Ω = (sin θ cosφ, sin θ sin φ, cos θ), and λm ≥
0.

Let us show that for j = 1/2 no state exhibits nonclas-
sical properties. This is because for every ∆m, and using
that tr (σjσk) = 2δj,k,

pm = tr (ρ∆m) = λm (1 + rm · r) ,

Qm,max =
λm

2π
(1 + |rm|) , (6.12)

so that pm > pb,m would imply rm · r > |rm|, which is
not possible since |r| ≤ 1.

Similarly, there are no measurements exceeding the
classical bounds since pm = λm(1 + rm · r), Qmax =
(1 + |r|)/(4π), and tr∆m = 2λm so that the viola-
tion of the classical bound (6.4) would be equivalent to
rm · r > |r|, which is not possible since |rm| ≤ 1.

This lack of nonclassical states agrees with the ap-
proach in Ref. [18] and with the fact that for j = 1/2
all pure states are SU(2) coherent states. On the other
hand, this is in sharp contrast with the fact that all pure
state have negative values of the SU(2) Wigner func-
tion [19]. Nevertheless, it is worth pointing out that for
finite-dimensional systems the SU(2) distributions such
as P (Ω) and the Wigner function are nor uniquely de-
fined in contrast with their infinite-dimensional counter-
parts [18, 19].

B. j = 1

For j = 1 the coherent states (6.2) are

|1, Ω〉 = sin2

(
θ

2

)
|1,−1〉

+
√

2 sin
(

θ

2

)
cos

(
θ

2

)
exp(−iφ)|1, 0〉

+ cos2
(

θ

2

)
exp(−i2φ)|1, 1〉. (6.13)

1. Nonclassical states

As a measurement revealing nonclassical states we can
consider the projection on the state |1, 0〉 (in the |j,m〉
basis)

∆0 = ρ0 = |1, 0〉〈1, 0|, (6.14)

with Q function

Q0(Ω) =
3
8π

sin2 θ, Q0,max =
3
8π

, (6.15)

so that the classical upper bound in Eq. (6.5) is pb,0 =
1/2. This is clearly violated when the measured state is
the same state ρ = ρ0, since in such a case p0 = 1 >
pb,0 = 1/2 and there is a 100 % violation of the classical
bound.

This agrees with the fact that the state |1, 0〉 in Eq.
(6.14) can be regarded as the limit of SU(2) squeezed
states [20, 21]. This also agrees with the result in Ref.
[18] stating that for j = 1 classical behavior (i. e.,
nonsingular positive P (Ω)) is equivalent to nonnegative
covariance-like matrix

Zk,` = 〈(jkj` + j`jk)〉 − δk,` − 〈jk〉〈j`〉. (6.16)

For the state |1, 0〉 in Eq. (6.14) we have [21]

Z =

( 1 0 0
0 1 0
0 0 −1

)
, (6.17)

so that the state is nonclassical.

2. Nonclassical measurements

We can provide an example of nonclassical measure-
ment. To this end we consider the measurement (in the
|j, m〉 basis) ∆0 = ρ0 = |1, 0〉〈1, 0|. As measured state
we consider the phase averaged equatorial SU(2) coher-
ent state

ρ =
1
2π

∫

2π

dφ|1, θ = π/2, φ〉〈1, θ = π/2, φ|, (6.18)

where |j, θ, φ〉 are the SU(2) coherent states. In the
|j, m〉〈j, m| basis this is

ρ =
1
4
|1, 1〉〈1, 1|+ 1

2
|1, 0〉〈1, 0|+ 1

4
|1,−1〉〈1,−1|, (6.19)

with Q function

Q(Ω) =
3

16π

(
1 +

1
2

sin2 θ

)
, Qmax =

9
32π

. (6.20)

The probability is p0 = 1/2, which is 167 % above the
classical bound in Eq. (6.4),

pb =
4π

2j + 1
Qmaxtr∆0 =

3
8
. (6.21)
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VII. CONCLUSIONS

We have provided feasible practical procedures to re-
veal the quantum nature of states and measurements. We
have illustrated them with the most practical measuring
schemes available, such as photon-number and quadra-
ture measurements.

The nonclassical tests proposed in this approach are
exceedingly simple since definite conclusions are obtained
without evaluation of moments, or any other more sophis-
ticated data analysis. This is reflected on the robustness
of these nonclassical criteria under practical imperfec-
tions, such as finite detection efficiencies and finite sam-
pling.

We have demonstrated that these nonclassical tests are
independent of other typical quantum signatures such as
sub-Poissonian statistics, quadrature squeezing, or oscil-
latory statistics.
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APPENDIX A: TRACE MEASUREMENTS

As we have shown above, the classical bounds for
measurements depend of the trace of the corresponding
POVM elements ∆m. Incidentally, the trace tr∆m is
proportional to the probability of the outcome m when
the input state is the one of maximum ignorance, ρ ∝ I,
where I is the identity

pm(ρ ∝ I) ∝ tr∆m. (A1)

When tr∆m depends on m this can be regarded as a kind
of prior bias, since some outcomes are more probable than
others even when the measured state presents in principle
no preference for any outcome.

In this Appendix we present two simple procedures
that allow us to determine tr∆m in practice. For sim-
plicity and without loss of generality we focus on the
single-mode case.

To this end we note that the identity can be expressed
as

I = 2
∫ ∞

0

drrρ(r), (A2)

where ρ(r) are phase-averaged coherent states (which
correspond to a laser output well above threshold [1])

ρ(r) =
1
2π

∫

2π

dφ|r exp(iφ)〉〈r exp(iφ)|, (A3)

and |r exp(iφ)〉 are coherent states |α〉 with α =
r exp(iφ). When illuminating the detector with phase-
averaged coherent states ρ(r) the measured statistics is
essentially the phase average of the Q function of ∆m,

pm(r) =
1
2

∫

2π

dφQm [r exp(iφ)] . (A4)

After Eq. (A2) the desired tr∆m can be determined by
repeating the measurement for different input states ρ(r)
by suitably varying the coherent amplitude r

tr∆m = tr (∆mI) = 2
∫ ∞

0

rdrpm(r). (A5)

Although this recall a tomographic reconstruction of ∆m

[8], this is not the case since the illuminating state already
carries the angular integration.

The same goal can be achieved following an slightly
different strategy. This is by illuminating the detection
system with thermal-chaotic states (2.15). The corre-
sponding Q function (2.17) is a Gaussian centered at the
origin of the complex plane and its width increases when
the average mean number of photons ntc increases. Thus
for ntc large enough the Q function of the thermal-chaotic
state will be approximately constant Q(α) ' Q0 on the
area where Pm(α) 6= 0, so that the statistics will be pro-
portional to tr∆m

pm = π

∫
d2αPm(α)Q(α)

' πQ0

∫
d2αPm(α) = πQ0tr∆m, (A6)

and

tr∆m = lim
ntc→∞

pm

πQ0
. (A7)

To illustrate this idea let us consider a one-photon de-
tector whose output is contaminated by the vacuum and
two-photon contributions

∆1 = q|0〉〈0|+ p|1〉〈1|+ q|2〉〈2|, (A8)

with tr∆1 = p+2q. When illuminated with the thermal-
chaotic state we get

p1 =
1

ntc + 1

[
q + p

ntc

ntc + 1
+ q

n2
tc

(ntc + 1)2

]
. (A9)

For example for p = 1, q = 0.1, and taking πQ0 =
1/(ntc + 1), we get for ntc = 100

tr∆1 = 1.2,
p1

πQ0
= 1.19, (A10)

i. e., only 1 % error.
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