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Abstract This paper deals with the issue of buy-in thresholds in portfolio op-
timization using the Markowitz approach. Optimal values of invested fractions
calculated using, for instance, the classical minimum-risk problem can be unsat-
isfactory in practice because they lead to unrealistically small holdings of certain
assets. Hence we may want to impose a discrete restriction on each invested frac-
tion yi such asyi > ymin or yi = 0. We shall describe an approach which uses a
combination of local and global optimization to determine satisfactory solutions.
The approach could also be applied to other discrete conditions - for instance
when assets can only be purchased in units of a certain size (roundlots).
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1 Introduction

In this paper we consider the standard approach to portfolio optimization proposed
by Markowitz (1952,1959). We suppose that, for a set ofn assets, we have the
mean returns ¯r1, ..., r̄n and then×n variance-covariance matrixQ based on a past
performance history. If a portfolio is defined by the invested fractionsy1, ...,yn

then its expected return,R, and its riskV are denoted by

R= r̄Ty and V = yTQy. (1)

Initially, we shall require the invested fractions to satisfy

n

∑
i=1

yi = 1 (or equivalentlyeTy = 1 where eT = (1,1, ...,1) ). (2)

In its simplest form, the problem of choosing invested fractions to obtain a mini-
mum risk portfolio with expected returnR= Rp can be expressed as a quadratic
programming problem

Minimize yTQy s.t. rTy = Rp and eTy = 1. (3)

If we wish to exclude the possibility of short-selling we must add inequality con-
straints as in

Minimize yTQy s.t. r̄Ty = Rp, eTy = 1 and yi ≥ 0, i = 1, ..,n. (4)

In practice we might want to put a non-zero lower bound,ymin, on eachyi either
to avoid transaction costs on very small trades or simply because a seller imposes
some minimum threshold on the purchase of each asset. However, if we simply
replace the inequalities in (4) byyi ≥ ymin for i = 1, ...,n then we exclude the
possibility that making no investment in an asset might be better than acquiring
some (possibly rather arbitrary) minimum holding. The constraint we would like
to apply instead is one of the form

either yi = 0 or yi ≥ ymin. (5)

This kind ofbuy-in thresholdconstraint is discussed, for instance, by Jobst et. al.
(2001) and Mitra et. al. (2003). A standard way of dealing with the minimum-
risk problem with buy-in thresholds is by findingy1, ...,yn andz1, ...,zn to solve a
mixed integer quadratic programming problem (MIQP) such as

Minimize yTQy s.t. r̄Ty = Rp, eTy = 1 and yi ≥ ziymin, i = 1, ..,n (6)
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with additional constraints, fori = 1, ..,n,

1≥ zi ≥ 0 and zi is integer. (7)

Branch-and-bound methods are typically used to solve problems like (6), (7) as
discussed, for instance, by Mitra et. al. (2003). We shall say a little more about
this in section 5; but our main purpose in this paper is to demonstrate the possi-
bility of solving problems with buy-in threshold constraints by means of a global
minimization approach which involves continuous rather than discrete variables.
We introduce the function

φ(yi) = 4
yi(yi −ymin)

y2
min

. (8)

This function is non-negative whenyi ≤ 0 or yi ≥ ymin and 0> φ(yi)≥−1 when
yi is in the unacceptable range betweenymin and zero. Hence we can replace (6),
(7) by the problem

Minimize yTQy s.t. rTy = Rp, eTy = 1 and yi ≥ 0, i = 1, ..,n (9)

with the additional nonlinear (and nonconvex) constraints

φ(yi)≥ 0, for i = 1, ...,n. (10)

We can expect (9), (10) to have several local solutions at which some of the con-
straints (10) will be binding with eitheryi = 0 or yi = ymin. As a first attempt
at investigating global solutions of this problem we shall use a penalty function
approach. Our reason for adopting this somewhat old-fashioned technique is that
it enables us to apply theDIRECT method described by Jones et. al. (1993) and
Jones (2001). This is an algorithm for unconstrained1 global minimization that we
have used successfully in other applications (Bartholomew-Biggs et. al. (2003,
2005)).

In order to construct a penalty function corresponding to (9), (10) we shall handle
the positivity constraints onyi by introducing new optimization variablesx1, ...,xn

and then usingyi = x2
i , i = 1, ...,n in all subsequent expressions. The penalty

function that we seek to minimize is then

F = yTQy+ρ(eTy−1)2 +ρ(
r̄Ty
Rp

−1)2 +µ
n

∑
i=1

ψ(yi)2 (11)

1DIRECT cannot deal with problems with equality constraints. Thereis however a version
which handles problems with inequality constraints and we shall have a little more to say about
this in a later section.
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where
ψ(yi) = Min(0,φ(yi)), i = 1, ...,n (12)

and whereρ andµ are suitably large positive penalty parameters.

We can apply a similar approach to the maximum return problem

Minimize − r̄Ty s.t. yTQy= Va and eTy = 1 (13)

whereVa denotes an acceptable level of portfolio risk. If we wish to exclude short-
selling and also include buy-in threshold constraints then we can do so by treating
x1, ...,xn as variables, settingyi = x2

i and minimizing the penalty function

F =−r̄Ty+ρ(eTy−1)2 +ρ(
yTQy

Va
−1)2 +µ

n

∑
i=1

ψ(yi)2 (14)

whereψ(yi) is given by (12).

The next section gives a brief outline ofDIRECTand then, in section 3, we present
some numerical results obtained by applyingDIRECT to (11) and (14). Section
4 introduces a variant of (11) to deal with theroundlot problem. In section 5,
we discuss other approaches to similar portfolio selection problems and we also
identify topics for further investigation.

2 DIRECT

In practice, most methods which seek the global minimum of a functionF(x) are
applied in some restricted region of variable-space, typically in a “hyperbox”

l i ≤ xi ≤ ui .

The algorithmDIRECT (Jones et al (1993), Jones (2001)) works by systematic
division of the original search region into smaller sub-boxes. In the limit, as the
number of iterations becomes infinite, it will sample the whole region and, in that
sense, the algorithm is guaranteed to converge.DIRECT performs well in practice
because of the way it chooses which sub-boxes to explore first. This frequently
enables it to get a reasonable approximation to a global minimum in a fairly small
number of iterations (after which a more rapidly convergent local minimization
method can be used to obtain the solution to greater accuracy).

We begin by outlining howDIRECT works for a one-variable problem and then
we show how the ideas can be extended to two or more variables. Consider the
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problem of finding the global minimum ofF(x) for 0≤ x≤ 1. Initially, DIRECT
divides the range[0,1] into three equal parts and evaluates the function at their
midpoints. The sub-range which has the least function value is then trisected and
F is calculated at the centre point of all the new ranges. We then have a situation
like that shown in Figure 1.

F

F
F

F
F

0___________________|___________________|_______|_______|______1

Figure 1:One iteration of DIRECT on a one-variable problem

There are now trial ranges of two different widths, namely,1
3 and 1

9. For eachof
these widths,DIRECT considers the one with the smallest value ofF at the centre
as a candidate for further subdivision. If we suppose for the moment that both
candidates are trisected then the outcome could be as depicted in Figure 2.
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A B C D E F G H I J

Figure 2:Two iterations of DIRECT on a one-variable problem

After this second iteration there arethree candidate range-sizes,1
3, 1

9 and 1
27;

and for each of these, the one with smallest centralF-value is considered for
further subdivision. In Figure 2, the candidate intervals would be DE, AB and EF.
Continuation of this process amounts to a systematic exploration the whole range,
giving priority to the most promising regions.
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The distinctive and effective feature ofDIRECT is the way it identifies which of
the candidate ranges are “promising”. Suppose thatd1, ..,dp are thep different
range-sizes at the start of an iteration. Suppose also thatFj denotes the smallest of
the mid-point function values in ranges of widthd j . DIRECTwill trisect the range
containingFj only if a “potential optimality” test is satisfied. This test is based
upon Lipschitz constants(i.e. bounds on the magnitude of the first derivative
of F) and is described fully by Jones et. al. (1993). Briefly, the test is aimed
at avoiding any waste of computing effort on the subdivision of ranges which
on present evidenceare unlikely to contain the global optimum. The potential
optimality test discourages unneccessarily close examination of ranges containing
local minima but ensures that large unexplored ranges can always be revisited.

The ideas outlined for a one-variable problem are the basis ofDIRECT for prob-
lems in two or more variables as first proposed by Jones et. al. (1993). For a
two-variable problem, the original search region is now a rectangle rather than a
line segment2. The initial subdivision is into three sub-boxes by trisection along
the longest edge. The objective function is evaluated at the centre of each sub-box
and the size of a sub-box is taken as the length of its diagonal. The box with
the smallest central value ofF is subdivided by trisection along its longest side3

and the process of identification and subdivision of potentially optimal boxes then
continues as in the one-variable case.

The further extension ofDIRECT to deal with problems inn variables can easily be
inferred from the above discussion of the one and two dimensional cases simply by
rephrasing the previous paragraph in terms of hyper-rectangles and hyperboxes.

Experience in a number of practical situations has shown thatDIRECT can get
good estimates of global optima quite quickly. Since it only uses function values,
it can be applied to non-smooth problems or to those where the computation of
derivatives is difficult. One drawback, however, is that there is no hard-and-fast
convergence test for stopping the algorithm. One can simply let it run for a fixed
number of iterations or else choose to terminate if there is no improvement in the
best function value after a prescribed number of function evaluations. Neither of
these strategies, however, willguaranteethat enough iterations have been done to
identify the neighbourhood of the global optimum.

It should be emphasised, of course, that many other global optimization algo-
rithms exist and the implementation of minimization methods involving (11) and
(14) does not rely exclusively on the use of any particular method.

2By a suitable change of variables this rectangle can conveniently be made into a unit square
3Refinements for subdividing boxes with several longest sides are given by Jones et. al. (1993).
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3 Numerical results

We now give some demonstration examples involving small portfolios. Specif-
ically, for a group of five real-life assets we use historical stock market data to
generate mean returns ¯r and a variance-covariance matrixQ. We then solve prob-
lem (4) (or problem (13) with the addition of positivity constraints) and, on the
basis of these computed solutions, we specify a value forymin and seek a modified
portfolio to satisfy the buy-in threshold constraints (5). We do this by seeking
global minima of the penalty functions (11) or (14).

As mentioned above, (11) and (14) are actually treated as functions of artificial
variablesxi with the invested fractions being taken asyi = x2

i to prevent solutions
involving short-selling. In the interests of clarity, however, the descriptions of
numerical results will be expressed entirely in terms of theyi variables.

3.1 Minimum-risk solutions with buy-in threshold

For the five assets in our sample problem, the vector of mean returns is

r̄ = (−0.056, 0.324, 0.343, 0.132, 0.108)T .

The variance-covariance matrix is

Q≈


2.4037 −0.0222 0.5230 0.2612 0.6126

−0.0222 1.8912 0.0442 0.0020 0.4272
0.5230 0.0442 1.7704 0.2283 0.3103
0.2612 0.0020 0.2283 4.4812 −0.1134
0.6126 0.4272 0.3103 −0.1134 7.7490

 .

The values in ¯r imply that a reasonable choice of target return isRp = 0.25%. The
corresponding solution to (4) has invested fractions

y1 ≈ 0.132, y2 ≈ 0.368, y3 ≈ 0.345, y4 ≈ 0.117, y5 ≈ 0.037 (15)

giving a portfolio riskV ≈ 0.6894.

We note that (15) includes a relatively small investment in asset five and so we
consider (11) withymin = 0.05 and penalty parametersρ = 103 andµ = 1. At
the minimum of (11) we expecteither thaty5 will be near zeroor thaty5 ≈ 0.05.
That is, we expect a change of about±0.03 in y5. In order to maintain the total
investment∑yi = 1, this means there could be a compensating change of up to
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±0.03 in any of the other invested fractions. Therefore we shall seek theglobal
optimum of (11) in the hyperbox defined by

0.1≤ y1 ≤ 0.16; 0.34≤ y2 ≤ 0.4; 0.31≤ y3 ≤ 0.37; (16)

0.09≤ y4 ≤ 0.15; 0≤ y5 ≤ 0.06. (17)

We have used intuitive arguments about the preliminary solution (15) to set quite
tight bounds on the invested fractions. This is worth doing as it can be expected
to speed up convergence to the global minimum of (11). However it should be
understood that the problem could still be solved if wider bounds than (16), (17)
were set.

Before usingDIRECT it is interesting to apply a standard quasi-Newtonlocal min-
imization method to (11). Specifically we use a BFGS algorithm (Broyden, 1970a,
1970b). If we start from the midpoint of the region (16), (17), where (11) has a
value of about 2.49, the quasi-Newton method converges to a minimum with

y1 ≈ 0.152, y2 ≈ 0.381, y3 ≈ 0.348, y4 ≈ 0.118, y5 ≈ 0 (18)

where (11) has a value approximately 0.7005. The portfolio risk is 0.7001 and the
return is 0.25%, as required.

We now applyDIRECT to (11) within the same hyperbox (16), (17). After 10
iterations it gives a point where (11) has a value of about 0.6949. This is already
appreciably better than the function value at (18) which implies that the optimum
found by the quasi-Newton method is only a local solution. The invested fractions
given byDIRECT after 20 iterations are

y1 ≈ 0.122, y2 ≈ 0.369, y3 ≈ 0.339, y4 ≈ 0.111, y5 ≈ 0.058 (19)

with a portfolio risk of 0.6935. This approximate solution hasy5≈ 0.05 in contrast
to (18), which hasy5 ≈ 0.

Although DIRECT has fairly easily obtained a better solution than the quasi-
Newton method, it may not be very efficient at finding optima to high accuracy.
This is partly because it does not use derivatives and partly because it only sam-
ples function values at the centres of hyperboxes. A common strategy, therefore,
is to run a quasi-Newton method from the best point located byDIRECT, in order
to refine the approximate solution. If we apply this strategy to the estimate (19),
we find that an accurate global minimum of (11) has a value of about 0.691 and
involves the invested fractions

y1 ≈ 0.125, y2 ≈ 0.364, y3 ≈ 0.344, y4 ≈ 0.116, y5 ≈ 0.05. (20)

Here the target return 0.25% is still achieved and the portfolio risk is 0.6906.
This is only slightly worse than the risk for the portfolio (15) which was obtained
without considering the buy-in threshold constraint (yi = 0 oryi ≥ 0.05).
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3.2 Maximum return with buy-in threshold

For this example we use the same dataset as in the previous section and take
the acceptable risk asVa = 0.75 which is slightly higher than the minimum risk
associated with an expected return of 0.25%. The solution of the maximum return
problem (13) without short-selling is

y1 ≈ 0.0462, y2 ≈ 0.4022, y3 ≈ 0.4162, y4 ≈ 0.1053, y5 ≈ 0.0299 (21)

giving a portfolio return of 0.2877%.

To obtain a portfolio in which all non-zero invested fractions are greater than or
equal to 0.05 we minimize (14) withymin = 0.05,ρ = 103 andµ= 1. A reasonable
box to search in is

0≤ y1 ≤ 0.06; 0.36≤ y2 ≤ 0.44; 0.38≤ y3 ≤ 0.46; (22)

0.06≤ y4 ≤ 0.12; 0≤ y5 ≤ 0.06. (23)

When started from the midpoint of the region (22), (23), the quasi-Newton method
finds a minimum at

y1 ≈ 0.0034, y2 ≈ 0.4037, y3 ≈ 0.4112, y4 ≈ 0.1529, y5 ≈ 0.0030 (24)

where (14) has a value of about 0.6472. Twenty iterations ofDIRECT in the same
box, however, produce the much lower value,F =−0.276. This occurs when

y1 ≈ 0.0578, y2 ≈ 0.399, y3 ≈ 0.419, y4 ≈ 0.0746, y5 ≈ 0.0494. (25)

Hence it is better fory1 andy5 to be near 0.05 rather than near zero, as they are in
the local solution (24) produced by the quasi-Newton method.

If we use the quasi-Newton method to refine the approximate global minimum
(25) we get the more accurate result

y1 = 0.05, y2 ≈ 0.396, y3 ≈ 0.417, y4 ≈ 0.0869, y5 = 0.05. (26)

Here the portfolio return is about 0.2855%, which is only slightly worse than was
possible when (5) is not enforced.

3.3 Discussion and extensions

The two previous examples provideprima facieevidence that global minimization
of the penalty functions (11) and (14) can be used to solve portfolio optimization
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problems involving disjoint constraints like (5). To strengthen that evidence, we
first point out that the success ofDIRECT as a global minimizer of (11) does not
depend on us restricting the search to a small hyperbox such as (16), (17). For
instance, if we applyDIRECT to (11) using the same data as in section 3.1 but
with the much larger search region

0≤ yi ≤ 0.5, for i = 1, ..,5 (27)

then, after about 100 iterations, we obtain a point similar to (19). This can be re-
fined to the accurate solution (20) by a few quasi-Newton iterations. Similarly, the
maximum-return problem in section 3.2 can also be solved by applyingDIRECT
to (14) in the hyperbox (27) rather than (22), (23). This takes about 150 iterations
of DIRECT followed by quasi-Newton refinement.

We now describe a more general way of using (11) for problems with larger num-
bers of assets. In spite of the comments in the preceding paragraph, the approach
we propose does make use of a preliminary solution of (4), as outlined below.

Find values ˆyi to solve (4).
Obtain new trial values ˜yi by

ỹi =


0 if ŷi = 0
ymin if 0 < ŷi ≤ ymin

ŷi if ŷi > ymin

Minimize (11)using y1, ..,yn as variablesby applyingDIRECT in the hyperbox

yi = 0 if ỹi = 0
ỹi −ymin≤ yi ≤ ỹi +ymin if ỹi > 0

Minimize (11)using x1, ...,xn as variablesby a quasi-Newton method
(starting from the solution obtained byDIRECT)

We can avoid theyi = x2
i transformation when minimizing (11) withDIRECT be-

cause the hyperbox limits ensure that short-selling will not occur. However the
final refinement should be done in terms of the artificial variablesxi because the
quasi-Newton method does not put any restrictions on theyi .

Table 1 shows the results of applying the strategy to a ten-asset problem, using
ymin = 0.05. The final section of Table 1 shows that the constraint (5) can be
satisfied for a relatively small increase in risk. We emphasise again that the use
of a global optimizer likeDIRECT is important. If we had attempted to solve the
problem simply by applying a quasi-Newton method to (11) usingxi =

√
ỹi as a

starting point then we would only have obtained a local solution withy1, y4, y5

andy7 all at the limiting value 0.05 and a substantially higher risk value of 0.411.
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Table 1:Ten asset problem with buy-in threshold constraint

Solution from (4)
y≈ (0.054,0.227,0.185,0.055,0.035,0.098,0.007,0.099,0.2,0.041)

Risk≈ 0.384

Minimizing (11) with ρ = 1000,µ= 1 (usingDIRECT)
y≈ (0.071,0.227,0.180,0.055,0.05,0.066,0.0,0.104,0.197,0.05)

Risk≈ 0.392

Minimizing (11) with ρ = 1000, µ= 1 (usingDIRECT + q-N refinement)
y≈ (0.058,0.215,0.173,0.06,0.05,0.096,0.0,0.098,0.2,0.05)

Risk≈ 0.387

As a final example we consider a 50 asset problem withymin = 0.03. Calculated
portfolios to give minimum risk for an expected return of 0.1% are summarised
in Table 2. The entries in the table show how the distribution of non-zero invested
fractions changes as the threshold constraint (5) is taken into account.

Table 2:Fifty asset problem with buy-in threshold constraint

Assets with Assets with Assets with
0 < yi < 0.03 yi = 0.03 yi > 0.03

Solution from (4) 1,8,15, - 12,17,18,
34,44,47 19,20,31

Risk≈ 0.744 & 50

Minimizing (11) (q-N only) - 8,12,15, 1,17,19,20,
with ρ = 5000,µ= 1 34,44,50 31,47

Risk≈ 0.778

Minimizing (11) (DIRECT) - 47, 50 1,8,12,15,
with ρ = 5000,µ= 1 17,18,19,20,

Risk≈ 0.764 31

Minimizing (11) (DIRECT + q-N) - 15,47 1,8,12,17,
with ρ = 5000,µ= 1 18,19,20,31,

Risk≈ 0.757 50

In the results in Table 2 we observe how the smaller investments in the solution
of (4) are re-allocated when we consider the extended function (11). When (11)
is minimized by the quasi-Newton method we only get a local solution with six
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of the yi fixed at the threshold value 0.03. Fifty iterations of DIRECT yield an
improved portfolio with only two of theyi on the non-zero boundary. From here,
a further local refinement gives the still better result in the last section of the table.

The approach introduced in this section will be discussed further in section 5.
Before that, however, we briefly consider the application of a similar strategy to
another variant of the portfolio selection problem.

4 Roundlot constraints

The invested fractionsyi obtained at the solution of a minimum-risk problem must,
in practice, be converted to actual numbers of shares, bonds etc that are to be
purchased. If the total investment isM and if the price of asseti is pi then the
number of items in the holding of asseti should be

ai =
Myi

pi
. (28)

Obviouslyai must be an integer: and, more likely, it must be a multiple of some
lot sizesuch as 10 or 100. This will mean that we will have to round the values of
yi obtained by solving (4). In effect we want to apply a constraint

ai is a multiple of some integer lot sizeLi . (29)

If we define

θ(yi) =
Myi

pi
−bMyi

pi
c, (30)

wherebvc denotes the integer part of a real valuev, then we want the invested
fractions to satisfy the constraints

φ(yi) = θ(yi)(1−θ(yi)) = 0 for i = 1, ..,n. (31)

Therefore, following the ideas proposed above, we could consider solving the
minimum risk problem with roundlot constraints by minimizing

yTQy+ρ(eTy−1)2 +ρ(
r̄Ty
Rp

−1)2 +µ
n

∑
i=1

φ(yi)2. (32)

However, if the optimalyi are to be adjusted to satisfy the roundlot constraints
then the conditioneTy = 1 may not hold precisely – i.e., we may not be able to
convert all of our investment into assets. We can only require thateTy≤ 1; and
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this means that we must use another definition of risk (see, for instance, Mitchell
& Braun, 2002), namely

V =
yTQy
(eTy)2 . (33)

Therefore a penalty function for the roundlot constrained problem is

yTQy
(eTy)2 +ρ[Min(0,1−eTy)]2 +ρ(

r̄Ty
Rp

−1)2 +µ
n

∑
i=1

φ(yi)2. (34)

We can now approach the minimum risk problem with constraint (31) as follows.

Find values ˆyi to solve (4).
Obtain new trial values ˜yi from

ỹi =


0 if ŷi = 0
Li if 0 < ŷi ≤ Li

ŷi if ŷi > Li

Solve (34)using y1, ..,yn as variablesby applyingDIRECT in the hyperbox

yi = 0 if ỹi = 0
ỹi −Li ≤ yi ≤ ỹi +Li if ỹi > 0

We do not use a quasi-Newton minimization of (34) as a refinement step because
φ(yi) depends onθ(yi) which is non-differentiable.

As an illustrative example we consider the five- and ten-asset problems from sec-
tions 3.1 and 3.3 respectively. For simplicity we shall take the valuesM = 1000
and pi = 1, Li = 10 in (28), (29) fori = 1, ..,n. This means that, ideally, we
want theyi which minimize (34) to have zeros in the third and subsequent deci-
mal places. Some solutions are given in Tables 3 and 4, both of which compare
portfolios calculated with and without roundlot constraints.

In each case, the inclusion of constraint (31) only produces a small increase in
risk compared with the solution of (4). It is interesting to note, however, that the
portfolios obtained using (34) arenotwhat would be obtained simply by rounding
the invested fractions from (4) to the nearest multiple of 10. Indeed, for these
two examples, if theyi were obtained by such nearest rounding they would not
be acceptable because they would not giveeTy ≤ 1 and because the expected
portfolio return would not be the target value 0.25%. Therefore the minimization
of (34) offers a reasonable basis for determining the best way to obtain a practical
solution from the invested fractions which solve (4).
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Table 3:Five asset problem with roundlot constraint

Solution from (4)
y≈ (0.1319,0.3686,0.3452,0.1168,0.0374)

∑yi = 1, Risk≈ 0.69

Minimizing (34) with ρ = 1000, µ= 1
y≈ (0.140,0.370,0.350,0.110,0.030)

∑yi = 1, Risk≈ 0.6908

Table 4:Ten asset problem with roundlot constraint

Solution from (4)
y≈ (0.054,0.227,0.185,0.055,0.035,0.098,0.007,0.099,0.2,0.041)

∑yi = 1, Risk≈ 0.3843

Minimizing (34) with ρ = 1000, µ= 1
y≈ (0.050,0.230,0.190,0.050,0.030,0.10,0.010,0.090,0.20,0.040)

∑yi = 0.99, Risk≈ 0.3847

5 Discussion and conclusions

In this paper we have suggested a way of handling disjoint constraints (buy-in
thresholds and roundlot constraints) occurring in portfolio selection problems.
The approach, which is justified by some numerical experience, involves the in-
troduction of nonconvex constraints – defined by (8), (10) for buy-in thresholds
and by (30), (31) for roundlot constraints. We have then solved the resulting non-
linear programming problems (e.g. (9), (10)) by applying an unconstrained global
optimization procedure to the penalty functions (11), (14) and (34). We have cho-
sen to useDIRECT (Jones et. al., 1993) as the global optimization procedure, but
other methods could be used instead.DIRECT does have the advantage of being
a non-gradient method, which is useful for the problem in section 4 where the
formulation of the roundlot constraint involves a non-differentiable function (30).

The solution techniques proposed in this paper are essentially prototypes and,
although the results reported in sections 3 and 4 are quite promising, there is
still scope for further investigation and improvement. We present a discussion
below which “works outwards” from quite specific points about the algorithmic
steps in sections 3 and 4 to a broader critique of the approach itself and finally
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a consideration of other ways that have been (or could be) used to approach the
problems we are concerned with.

We first of all acknowledge that the algorithms outlined in sections 3 and 4 are
simple and rather pragmatic. The starting guess and box-size for applyingDI-
RECT to a penalty function is generated from a solution of (4) on the basis of two
plausible but unchecked assumptions. These are
(a) Any assets excluded from the portfolio given by (4) will not figure in the so-
lution which takes account of buy-in thresholds.
(b) To accomodate the constraints (5), the changes to non-zero invested fractions
ŷi will be confined to the range[−ymin, ymin].
On the basis of (limited) numerical tests, these assumptions seem to be justified
whenymin is small. Further investigation may show a need for a more sophisti-
cated way of providing initial conditions for the global minimization.

We cannot claim that use of penalty functions like (11), (14) or (34) is the best
way to solve a nonlinear programming problem. Since they feature the classical
squared penalty term for violated constraints, their minima are only approxima-
tions to the true constrained solutions which become exact only asρ andµ ap-
proach infinity. For our purposes in this paper, the solutions we have obtained
using fixed values ofρ andµ have been adequate for demonstrating the viability
of our approach. But it might be more appropriate to use exact penalty functions
obtained by replacing the squared-penalty terms by absolute values, as in

F = yTQy+ρ|eTy−1|+ρ| r̄
Ty
Rp

−1|+µ
n

∑
i=1

|ψ(yi)|. (35)

For ρ and µ “sufficiently large”, the minimum of (35) coincides with the con-
strained solution of the minimum risk problem. We note thatDIRECT would still
be a suitable algorithm for seeking the global minimum of this non-differentiable
function.

Our underlying reason for using a penalty function approach was thatDIRECTwas
originally proposed by Jones et.al. (1993) as a method for unconstrained global
optimization. However, a version ofDIRECT for inequality constrained problems
has also been developed (Jones, 2001) and this could be an alternative method
for nonlinear programming problems arising in minimum-risk portfolio selection
with buy-in constraints. We cannot applyDIRECT to problem (9), (10) because
the method cannot handle equality constraints; but we can apply it to the modified
formulation

Minimize
yTQy
(eTy)2 s.t. r̄Ty≥ Rp, eTy≤ 1 and yi ≥ 0, i = 1, ..,n (36)
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with the additional nonlinear constraints

φ(yi)≥ 0, for i = 1, ...,n. (37)

This problem is less restrictive than (9), (10) because it allows portfolio return to
exceed the targetRp if this would imply a decrease in risk. Note also that this
problem allowseTy < 1 – i.e. we might keep some of our capital as cash – and so
the risk is defined by (33).

The version ofDIRECT for inequality constraints, described by Jones (2001), can
also handle integer variables and so it can be applied to an inequality constrained
version of (6), (7), namely

Minimize
yTQy
(eTy)2 s.t. r̄Ty≥ Rp, eTy≤ 1 and yi ≥ ziymin, i = 1, ..,n (38)

with additional constraints

1≥ zi ≥ 0 and zi is integer for i = 1, ..,n. (39)

In this problem, the highly nonlinear constraint (37) is avoided but at the cost of
introducing additional integer variablesz1, ...,zn. It remains a matter for further
investigation whether (38), (39) is preferable to (36), (37) – and whether either or
both are superior to the penalty function approach used in this paper.

To handle the maximum-return problem with buy-in threshold constraints we
could apply the appropriate version ofDIRECT to one of

Minimize − r̄Ty s.t.
yTQy
(eTy)2 ≤Va, eTy≤ 1 and yi ≥ 0, i = 1, ..,n (40)

and φ(yi)≥ 0, for i = 1, ...,n. (41)

or, introducing extra variablesz1, ...,zn,

Minimize − r̄Ty s.t.
yTQy
(eTy)2 ≤Va, eTy≤ 1 and yi ≥ ziymin, i = 1, ..,n (42)

and 1≥ zi ≥ 0 and zi is integer for i = 1, ...,n. (43)

A nonlinear programming form of the minimum-risk problem with roundlot con-
straints is

Minimize
yTQy
(eTy)2 s.t. r̄Ty≥ Rp, eTy≤ 1 and yi ≥ 0, i = 1, ..,n (44)
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and φ(yi) = 0, for i = 1, ...,n. (45)

whereφ(yi) is given by (31). However this problem cannot be dealt with usingDI-
RECTbecause of the unavoidable equality constraints (45). Since these constraints
are also non-differentiable, the problem will not be easily solved by other standard
constrained minimization methods. However we can set up another formulation
using integer variablesz1, ...,zn which are related to the invested fractions, using
the notation of section 4, via

yi = zi
pi

M
.

Thezi must be non-negative and bounded above by the greatest integer which does
not exceedM/pi . Hence we can pose the problem as

Minimize
yTQy
(eTy)2 s.t. r̄Ty≥ Rp, eTy≤ 1 (46)

and zi is integer and 0≤ zi ≤ bM
pi
c for i = 1, ..,n. (47)

This problem is in a form suitable for solution byDIRECT.

In conclusion, we mention some other methods for solving minimum-risk prob-
lems with buy-in thresholds and/or roundlot constraints. The problem defined by
(6), (7) is a mixed integer quadratic programming problem (MIQP). The other
problems in this section (i.e., (38), (39) and (40), (41) and (44), (45) ) are general
mixed integer nonlinear programming problems (MINLP). If the objective func-
tion is convex – as is the case for (6), (7) – then such problems can be solved by
branch-and-bound techniques. These approaches involve solutions of a relaxed
form of the problemwithoutthe integer constraint followed by solutions in which
the zi are fixed at integer values which bracket the non-integer solutions of the
relaxed problem. If the objective function is non-convex then branch-and-bound
can still be used, but convergence may only be to a local solution. A general
purpose MINLP method is given by Fletcher & Leyffer (1994) while Mitchell
& Borchers (1997) describe some branch-and-bound algorithms suitable for 0-1
MINLP such as (44), (45). Other software for solving MINLP problems is listed
on http://www.gamsworld.org/minlp/solvers.htm.

Very efficient solution methods have been developed for mixed integerlinear pro-
gramming (MILP) problems and these can handle extremely large numbers of
variables (Bixby et. al., 2000). Mitra et al (2003) quote results obtained with
an effective MIQP solver called FortMP (Ellison et. al. 1999). While these in-
volve problems which are not so large as those solved by MILP they are still
considerably larger than the 50 variable example we have quoted in section 4 –
and this remark raises a significant question about the specific approach that we
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have presented in the paper. It has never been claimed – even by its originators –
thatDIRECT is a suitable method for large-scale optimization. It is well-enough
suited to problems in tens of variables; but, even though it lends itself quite well
to parallel implementation, it does not seem likely to be developed into a method
for problems in many hundreds of unknowns. Unfortunately, practical portfolio
selection problems will typically involve hundreds, or even thousands, of assets.

DIRECT has played a valuable part in the work described in this paper because it
has enabled us to do an initial feasibility study regarding the effectiveness of the
nonlinear constraint function (8) for handling disjoint restrictions like (5). How-
ever, rather than applyingDIRECT to the penalty function (11), it might be better
to apply a general nonlinear programming algorithm (e.g. an SQP technique) to
the problem (9), (10). Because this problem is likely to have many local solutions,
it would be appropriate to solve (9), (10) within the framework of a multi-start ap-
proach, as proposed by Rinooy Kan & Timmer (1987a, 1987b). This method
seeks the global optimum by performing many local minimizations from different
starting guesses, using cluster analysis to ensure good coverage the region of in-
terest by avoiding initial guesses that are too close together. On the basis of local
minimizations already carried out, the method generates a Bayesian estimate of
the number of minima that might still be undiscovered: and when this is suffi-
ciently small the algorithm stops. Obviously there is a significant computational
cost associated with finding many local solutions of (9), (10): but, equally, con-
siderable effort may be expended in solving subproblems in a branch-and-bound
approach to (6), (7). Hence, an interesting future project would be a study of
methods for the minimum risk problem with buy-in threshold constraints: this
would feature a numerical comparison between multi-start approaches involving
continuous optimization problems like (9), (10) and branch-and-bound techniques
for corresponding mixed-integer optimization problems such as (6), (7). Such an
investigation could of course be extended to other portfolio selection problems
with buy-in thresholds or roundlot constraints.
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