
A Comparative Analysis of High Performance Associative Memory Models
N.Davey, S.P.Hunt

Department of Computer Science,
University of Hertfordshire

Hatfield, Herts. AL10 9AB. United Kingdom
E-mail: {N.Davey, S.P.Hunt}@herts.ac.uk

WWW: http://www.cs.herts.ac.uk/~nngroup/

Abstract

Three variants of the Hopfield network are examined, each of which is trained using a different iterative
approximation of the pseudo-inverse rule. All three variants are known to have significantly higher
memory capacity than the standard Hopfield model. The performance measure employed in this study is
the average size of attractor basins. The three models are tested with both biased and unbiased random
data and under different memory loads. We find that a model employing an iterative local learning regime,
based upon the least mean squares learning rule, gives the best attractor performance, albeit at the expense
of increased training times.

1 Introduction

Associative memories based upon the original Hopfield
[1982] model suffer from low capacity, and have been
demonstrated to have poor attractor performance [e.g.
Storkey & Valabregue, 1999; Davey & Hunt, 1999].

If capacity were the only consideration in choosing an
associative memory model, then it would be tempting to
adopt Hopfield’s architecture and train it using the
pseudo-inverse rule [Kanter & Sompolinsky, 1987], to
give a memory with a maximum capacity of N - 1
patterns (where N is the number of nodes in the
network). However, there are other considerations:

• whether or not the learning rule is local;
• the ability to add patterns to a memory incrementally;
• size and shape of attractor basins;
• the network’s ability to correctly recall memories

when trained on sets of correlated patterns;
• the time it takes to train the network;
• the time it takes the network to converge during recall.

A learning rule is local if the amount by which a
connection weight, w ij , is to be updated at some time t,
may be calculated entirely from the information
available to the processing elements at either end of that
connection at time t. Kanter and Sompolinsky’s [1987]
original learning rule involves the calculation of a
pseudo-inverse, so it is not local; nor does it allow for
the incremental addition of patterns to a memory.

In this paper, we investigate the performance of three
high capacity variations of the basic Hopfield model of
associative memory. All three models employ learning
rules based around approximations to the pseudo-
inverse rule, and so have high capacity. Two out of the
three rules are completely local; all three allow the
incremental addition of patterns to a memory; and all
three guarantee the correct recall of trained patterns.

The first two models, iterative local learning and
iterative local learning with adjustable thresholds
(which we will refer to as LL and Adj LL respectively),
have already been demonstrated experimentally to have
high capacity and good attractor performance [Davey &
Hunt, 1999]. The third model, iterative local learning
with equal fields (referred to as LL-Equal), is a
refinement of the LL model which was not examined in
the earlier work, but which we have also confirmed has
high memory capacity.

The investigation presented here is focussed on the size
of attractor basins, the performance of networks trained
on highly correlated patterns, and the time taken to train
the networks under investigation.

2 Models Examined

In this section we take a set of Π, N-ary, bipolar (+1/-1)
training vectors, { p}. The N by N weight matrix is

denoted by W and the state of the i’th unit by Si

All the high capacity models studied here are
modifications to the standard Hopfield network. The net
input, or local field, of unit i, is given by:

hi = wijS j
j ≠i
∑

The next state of the unit is then given by:

Si (t + 1) =
1 if hi > i

−1 if hi < i

Si (t) if hi = i

where the threshold, I , is normally taken as zero. The
update can be synchronous or asynchronous. Here we
use asynchronous, random order updates. The weight
matrix is calculated using one-shot Hebbian learning:

wij =
1

N i
p

p=1

∏

∑ j
p

2.1 Iterative Local Learning (LL)

In this model we employ a learning rule proposed by
Diederich and Opper [1987]. The Hebbian learning rule
is modified to create a simple iterative scheme that will
converge to a weight matrix in which all the training
patterns are guaranteed to be stable. Learning here is
iterative and may take several epochs.

For training patterns to be stable, a sufficient condition
is that:

 W p = p for all p (assuming that all i = 0),

or, equivalently, for W = where is the matrix
whose columns are the p .

One solution to this is given by the projection learning
rule [Personnaz et al, 1986] which gives W = I

where I is the pseudo-inverse of . Fortunately there
is an iterative, and local, learning rule which converges
to the appropriate weight matrix. This is described by
the following algorithm :

Begin with a zero weight matrix

Repeat until all patterns are stable

Set the initial state of network to one of the p

For each unit, i, in turn

Calculate the net input to unit i, and hence its
next state.

If i wishes to change state, update its incoming
weights according to:

∆wij =

Si
pS j

p

N − 1

This algorithm will find a suitable weight matrix if one
exists [Diederich and Opper, 1987], at which point the
trained patterns are guaranteed to be stable. The
maximum useful capacity of such a network is N – 1
linearly independent patterns.

1.2 Iterative Local Learning with
Adjustable Thresholds (Adj LL)

In the normal Hopfield network, all thresholds are set to
zero. In the Adjustable Threshold Network [Schultz,
1995] an attempt is made to use thresholds to maximise
network performance once a weight matrix is in place.

The motivation for this method can be seen from a
consideration of a unit, i, in a trained network, whose
local field for each of four training vectors is: -3, -1, 5
and 7. If i has a zero threshold, its state will be –1 for
the first two patterns and +1 for the latter two. Schultz
proposes moving the threshold for each unit so that it
gives maximum separation between positive and
negative local fields; in this case that would mean
putting the threshold half way between –1 and +5,
giving i = +2. In general, the threshold for a unit, i, is
set half way between the positive and negative fields
with the smallest magnitudes, as given by:

i = hi
+ + hi

−

2
, where

hi
+ = min hi

p | hi
p ≥ 0{ }

hi
− = max hi

p | hi
p < 0{ }

If threshold adjustments are performed in this manner,
training patterns that were stable before adjustment
should remain stable after adjustment. Thus, variable
thresholds should be usable with any learning rule.

The weight matrix for an adjustable threshold iterative
local learning (Adj LL) network is determined in the
manner set out in section 2.1, and the thresholds are
then adjusted as described above. Adjusting thresholds
in this way should not change the stability of the learned
patterns, so the maximum capacity of this model should
also be N-1 linearly independent patterns.

1.3 Iterative Local Learning with Equal
Fields (LL-Equal)

Diederich and Opper [1987] propose a variant of their
iterative learning rule, in which the network is trained so
that the local field of each unit, for each trained pattern,
is +1 or –1 as appropriate. In contrast to the first
learning rule, all weights are updated on every
presentation according to:

∆wij =
1− hi

pSi
p()Si

pS j
p

N

This continues until the summative error, given by:

1− hi
pSi

p

i, p
∑

is sufficiently low (we take 0.1 as our convergence
threshold). Diederich and Opper [1987] demonstrate
that this learning rule will converge for up to N linearly
independent training patterns. Adjusting the thresholds
of such a network is pointless: when all local fields are
+1 or –1 the threshold of 0 is already correctly placed.

3 Measurement of Performance

The relationship between attractor basin size and
memory loading was tested first. Each of the three
models was trained with sets of random training
patterns, in which

∀i,p • prob (i
p= +1) = 0.5,

We also investigated the effect on attractor performance
of increasing the degree to which the patterns in the
training set were correlated. In order to do this, we
fixed the size of the training set at 30, and trained the
networks on sets of random patterns with different
degrees of bias, b, where:

∀i,p • prob (i
p= +1) = b, and

b ∈ {0.1, 0.2, 0.3, 0.4, 0.5}

Since we employ bipolar (±1) training vectors, we
would expect a training set with bias b to give the same
results as a training set with bias 1–b; thus, those
training sets which were generated with b = 0.5 may be
said to be unbiased, and those with b = 0.1 may be said
to be highly biased . Furthermore, the smaller we make
the value of b, the more highly correlated the (random)
patterns in the training set become.

3.1 Basins of Attraction

For useful pattern association to occur, the patterns
stored in an associative memory of the Hopfield type
must act as attractors. The ideal behaviour of such an
associative memory would be such that a given initial
state would relax to the nearest trained pattern. If the
trained patterns are not the only attractors then such
behaviour cannot be guaranteed. As is well known,
Hopfield type networks necessarily contain many
attractors not in the training set, such as inverses and
mixture patterns. Thus, an important question to ask of
a Hopfield type network is: what is the mean size of the
basins of attraction of the trained patterns?

Since the attractor basins cannot be expected to be
Hamming hyperspherical [Storkey & Valabregue,
1999], it is usual to take the minimum Hamming radius:

R(p) = inf q, p : q ∈Basin(p){ }

The mean radius of attraction,

R =
1

Π
R(p)

p∈Π
∑

,

can act as a measure of the quality of a particular
associative memory. It is also common for R to
normalised with respect to the size of the network, so
that it lies between zero and one:

′ R =
1

N
R

For very small networks it is possible to exhaustively
explore the state space (see, for example [Personnaz et
al, 1986]), in order to calculate R exactly, but for more
realistic sizes the nature of the attractors can only be
explored statistically. A sample (of size Γ), of states at
a fixed distance, r, from a trained pattern, p, is made,
and if all of them relax to p, it is concluded that R(p) is
at least as big as r. An incremental search over
increasing values of r provides an estimate for R(p).
Clearly, the larger the value of Γ the higher the quality
of the estimate.

For finite size associative memories, another factor
needs to be considered. Any random starting point may
have a relatively high overlap with many of the trained
patterns as well as the intended attractor and, to
compensate, we follow the method of Kanter and
Sompolinsky [1987] in the calculation of R, as described
below.

A series of initial states is chosen. In each case, a fixed
fraction, m, of the state is identical to the corresponding
part of one of the stored patterns, p , and the rest of the

state is random. If the value of m is high then the
network will relax to p for every one of those initial

states. The value of m is reduced until a value, m0, is
reached at which one or more initial states do not relax
to the desired state. Averaging m0 over different stored
patterns yields:

R = 1− m0

As is pointed out in [Kanter & Sompolinsky, 1987], the
initial states used in this calculation may overlap one of
the other stored patterns more closely than p , and to

compensate for this the definition of R is modified to:

R = 1−
1− m0

1− m1 ,

where m1 is the largest overlap with the rest of the
stored patterns.

In our implementation, the search for the value m0 is
undertaken from low m to high m. A fixed number, Γ,
of random starting points are chosen, each of which has
low overlap with the members of the training set (low
average m). If, as is likely, the start state does not relax
to the closest training pattern in one or more of the Γ
cases, the value of m is increased (by 0.01), and the
search is repeated. This continues until all random start
states relax to the closest stored pattern. This procedure
is performed for six different sets of stored patterns for
each network type: three sets of unbiased random
patterns, and three sets of biased random patterns.
Unless otherwise stated Γ has value 50.

The perfect attractor network has R = 1, which means
that it is possible to move away from any stored pattern,
and stay within its basin of attraction up to the point at
which another stored pattern becomes nearer (see Figure
1). Note that the calculation of average attractor basin
size for the trained patterns can only be undertaken
when these patterns are themselves stable.

p1 p2
rr

p4

p3

Figure 1 The closest pattern in the training set to p1 is
p2, at a distance of 2r. Optimal performance
occurs when all vectors within the
hypersphere centred on p1 and radius r, are
attracted to p1. If all patterns stored in a
network exhibit this performance, its
normalised average basin of attraction, R, is 1

4 Results

4.1 Attractor Basins and Loading

The first set of results, shown in Figure 2 (over page),
illustrate how the value of R decreases as the loading of
the networks increases. After a period of near perfect
performance under low loading, all three models show a
roughly linear fall-off. For unbiased patterns, the
performance difference between the different networks
is small. For example, when each network was trained
with sets of 50 unbiased patterns, the value of R was as
shown in Table 1

R Values

LL Adj LL LL-Equal

0.192 0.196 0.208

Table 1 Comparison of attractor basin size for sets of
50 unbiased patterns (averaged over 50
training sets in each case)

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30 35 40 45 50 55
Number of Patterns

R

LL
Adj-LL
LL-Equal

Figure 2. 100 unit networks and random prob(i
p = + 1) = 0.5 patterns. Results are the mean of 2 runs, at each loading

for each network. The vertical axis shows the normalised average basin of attraction, R

4.2 Comparative Performance

The next set of results, shown in Table 2 and Figure 3
illustrate how the R values for the three network models
vary as the patterns in the training set become more
correlated. Somewhat surprisingly, as the extent to
which patterns are correlated increases (i.e. the bias
decreases), the R values increase in all three models.
However, for the highly correlated patterns (bias = 0.1),
both LL and Adj LL models show a marked fall-off in
performance. The LL-Equal model also shows some
loss, but to a much lesser extent. As the training
patterns become more correlated the performance
difference between LL-Equal models and the other two
variants becomes clearer and clearer.

Bias LL Adj LL LL-Equal

0.5 0.558 0.576 0.615

0.4 0.613 0.59 0.644

0.3 0.706 0.697 0.736

0.2 0.869 0.850 0.930

0.1 0.399 0.408 0.796

Table 2 R values calculated for the three high
capacity models of 100 units, with 50 training
sets of 30 patterns, for each bias.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.50.40.30.20.1

Bias

R

LL
Adj LL
LL-Equal

Figure 3 Attractor performance of training sets with
different levels of pattern bias.

1.3 Effects of Sample Size ()

Since R is measured statistically, it is important to
investigate the effects of the sample size in the
calculation of R. Using training sets of 30 patterns
biased at 0.3, R was measured, firstly using the standard
value of Γ = 50, and then with a requirement of 100
sampled states being correctly attracted. As is expected,
the value of R computed for all three models is lowered.
However, the differential performance advantage of LL-
Equal is increased by this more detailed analysis.
Further experiments are underway to investigate the
asymptotic behaviour of R as Γ is increased.

LL Adj LL LL-
Equal

50 0.706 0.697 0.736

100 0.474 0.489 0.547

Table 3 R values calculated for the three high capacity
models of 100 units, with 50 training sets of 30 patterns
with bias 0.3, for different sample sizes, Γ.

0

10

20

30

40

50

60

70

80

90

5 10 15 20 25 30 35 40 45 50 55 60
Number of Patterns

E
p
o
c
h
s

LL

LL-Equal

Figure 4 The number of training epochs required by the two iterative training methods. For both networks the
reported figures are averages over five data sets.

1.4 Training Times

As already mentioned, the local learning rules are
incremental. Figure 4 shows the number of epochs
required to reach a weight matrix that gives stability for
all patterns in the training set. Results are averaged over
five runs at each increment in Π.

It is apparent that the standard iterative local learning
rule gives a linear increase in the required number of
training epochs as the number of training patterns
increases. The second form of iterative local learning,
however, shows an exponential increase in training time
as the size of the training set is increased.

5 Discussion

We have performed a systematic analysis of attractor
performance of the three models, and found that all of
them perform well. Up to N-1 patterns are stable and
will act as attractors at all loading levels. Adjusting the
thresholds of an iterative local learning network does
not appear to bring benefit. This, coupled with the fact
that it is inherently non-local (in that it depends upon
information gathered over many time steps), leads us to
conclude that threshold adjustment is not a worthwhile
technique for improving the performance of Hopfield-
type associative memories. However, the LL-Equal
model shows an improvement in performance over the
straightforward LL model. Interestingly, the differences
in attractor performance are most marked when the
models are required to deal with sets of highly
correlated training vectors.

It was apparent from our earlier work [Davey & Hunt,
1999] that the LL model had higher capacity and better
attractor performance than both the original Hopfield
model and the model proposed by Storkey and
Valabregue [1997, 1999]. What is clear from this series
of experiments is that, whilst the attractor performance
of the LL model is very good, the LL-Equal model is
considerably better, the only drawback to adopting this
model being the increase in training time.

Investigation of the learning rules employed in the LL
and LL-Equal models gives a clue as to the reasons for
the improvement in performance. The LL rule is
analogous to the Perceptron Convergence Procedure
[see Haykin, 1994, p.109], whilst the LL-Equal rule is
analogous to the Least Mean Square algorithm, or delta
rule [see Haykin, 1994, p.127]. Thus, in the LL case,
the decision boundary of each processing element is
moved until it produces an acceptable set of
classifications, whereas, in the LL-Equal case, a form of
error correction is employed to place the decision
boundary of each processing element in an ‘ideal’
position. It is therefore not entirely surprising that the
LL-Equal model has superior attractor performance.

As is well known, error-correction learning rules can be
costly in terms of training time, particularly when the
error target is very small. This is borne out by the
analysis of training times here. The LL model achieves
an approximation to the pseudo-inverse weight matrix in
linear time.

The addition of a requirement to drive all fields to unity
appears to result in learning times that rise exponentially
with increases in training set size. It remains to be seen
how great an impediment this will be to the adoption of
this rule for the training of associative memories to
perform real-world tasks.

6 References

[1] Davey, N. and S.P.Hunt (1999)
The Capacity and Attractor Basins of Associative
Memory Models.
Proceedings of the 5th International Work
Conference on Artificial and Natural Neural
Networks, IWANN 99 (J. Mira and J.V. Sánchez-
Andrés, eds.) Vol 1, pp 330-339, Berlin: Springer-
Verlag.

[2] Diederich,S. and M.Opper (1987)
Learning of Correlated Patterns in Spin-Glass
Networks by Local Learning Rules.
Physical Review Letters 58, 949-952

[3] Haykin, S. (1994)
Neural Networks: A Comprehensive Foundation
New York, NY: Macmillan

[4] Hopfield, J.J. (1982)
Neural networks and physical systems with
emergent collective computational abilities.
Proceedings of the National Academy of Sciences of
the USA, 79, 2554-2558

[5] Kanter,I. and H.Sompolinsky (1987)
Associative Recall of Memory Without Errors.
Physical Review A 35, 380-392

[6] Personnaz,L., I.Guyon and G.Dreyfus (1986)
Collective Computational Properties of Neural
Networks: New Learning Mechanisms.
Physical Review A 34, 4217-4228

[7] Schultz,A. (1995)
Five Variations of Hopfield Associative Memory
Network.
Journal of Artificial Neural Networks 2(3), 285-294

[8] Storkey,A., and R. Valabregue (1997)
Hopfield Learning Rule with High Capacity Storage
of Time-Correlated Patterns.
Electronics Letters 33(21), 1803-1804

[9] Storkey,A., and R. Valabregue (1999)
The basins of attraction of a new Hopfield learning
rule.
Neural Networks 12(6), 869 - 876

