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Abstract

This paper reviews important concepts from biology, Artificial Life and Artificial Intelligence and relates
them to research into synthesising societies. We distinguish between different types of animal and human
societies and discuss the notion of social intelligence. Consequences of social embeddedness for modelling
societies at different levels of social organisation and control are elaborated. We distinguish between
simulation models of societies and the synthesis of artificial societies. We explain why the Artificial Life
bottom-up approach is the most promising direction for reverse engineering of societies. The correspondence
between synthesised societies and natural (human, animal) societies is investigated, presenting a hierarchy
of synthesised societies with increasing indistinguishability between synthesised and human societies.

1 Artificial Life

“Artificial Life is the study of man-made
systems that exhibit behaviors character-
istic of natural living systems. It comple-
ments the traditional biological sciences
concerned with the analysis of living or-
ganisms by attempting to synthesize life-
like behaviors within computers and other
artificial media. By extending the em-
pirical foundation upon which biology is
based beyond the carbon-chain life that
has evolved on Earth, Artificial Life can
contribute to theoretical biology by lo-
cating life-as-we-know-it within the larger
picture of life-as-it-could-be.” ([Lan89])

The general method to build life-like artifacts is to
use natural and artificial systems as part of a com-
parative study. On the one hand artificial systems
serve as models of natural systems in order to in-
vestigate open questions in biology [TJ94], on the
other hand natural systems can serve as models for
the construction of artificial systems. For the lat-
ter we find many successful implementations as ‘im-
itations’ of sensorimotor behavior in animals (e.g.
snake-like robots [Hir93], walking machines imitat-
ing stick-insects [CBC94], fly-like robot vision sys-
tems [FPB91], LEGO robots showing cricket phono-
taxis [Web95], ant navigation with an autonomous
robot [MLP*98]). Whether one adopts a ‘strong’
(creating life) or ‘weak’ (modelling and simulating

life) attitude towards Artificial Life, the ‘products’,
in particular the physical (robotic) implementations
of Artificial Life research, can have a quality of their
own. Recent developments in synthetic pets (to give
a few examples: Sony: Aibo, a robotic pet dog; Om-
ron: Tama, a robotic cat dog; Cyberlife Technology:
Creatures, software pets; Mindscape: Virtual Petz,
virtual dogs, cats, and human babies) still show the
technical limitations, in particular the robotic exam-
ples, but they point towards a scenario where such
agents can exist side-by-side with us in our office en-
vironment, public places as well as private homes (see
issues of believability, anthropomorphism etc. which
support human’s perception of artifacts as ‘alive’ dis-
cussed in [Dau98]).

2 Emergence

In Artificial Life systems the term emergence is used
if any properties of a system (e.g. the behaviour of an
agent) arise from the system’s interactions with the
environment. Emergence is then neither a property
of the environment, nor the agent or its control sys-
tem. Usually the term is used with respect to levels
of organisation, where properties which the system
exhibits on a level A emerge from non-linear inter-
actions of components at the lower level B (includ-
ing other systems of the same type, the environment,
and components of the system). The issues whether
emerging properties need to be mowvel, or are inher-
ently unpredictable (from the analysis of interactions



at level B), are controversial.

Langton ([Lan89]) discusses emergence with re-
spect to the genotype-phenotype distinction. In biol-
ogy, the genotype is the genetic constitution (genome)
of an organism, while the phenotype refers to the to-
tal appearance of an organism (including behaviour),
determined by interaction during development be-
tween its genotype and the environment. Identical
genotypes might result in different phenotypes (cf.
identical twins are not totally identical in appearance
and behaviour), and similar phenotypes might result
from very different genotypes. Applied to machines,
Langton introduced the terms generalised genotype
(Gtype) and generalised phenotype (Ptype), see fig-
ure 1, a. As with biological organisms, the Ptype
of a machine cannot be predicted from its genotype
(unless Gtype, Ptype and environment are trivially
simple). Likewise, the Gtype cannot be ‘designed’
for a particular Ptype. A particular Ptype can usu-
ally only be achieved by trial-and-error experimenta-
tion (e.g. within a experimentally driven incremental
design methodology) and/or by using evolutionary
techniques.

Artificial Life systems are usually multi compo-
nent systems. Single components on any level of
granularity can be studied, e.g. components can be
rules, processes, behaviours, individuals. The bottom-
up Artificial Life approach of synthesising systems
is fundamentally different from the traditional top-
down approach of Artificial Intelligence (AI), as well
as different from the analytical approach in biology.
Braitenberg’s law of uphill analysis and downhill in-
vention points this out [Bra84].

“It is pleasurable and easy to create lit-
tle machines that do certain tricks. It is
also quite easy to observe the full reper-
toire of behavior of these machines — even
if it goes beyond what we had originally
planned, as it often does. But it is much
more difficult to start from the outside
and to try to guess internal structure just
from the observation of behavior. It is ac-
tually impossible in theory to determine
exactly what the hidden mechanism is with-
out opening the box since there are al-
ways many different mechanisms which
identical behavior. Quite apart from this,
analysis is more difficult than invention in
the sense in which, generally, induction
takes more time to perform than deduc-
tion: in induction one has to search for
the way, whereas in deduction one follows
a straightforward path.” [Bra84], p. 20.

Revealing the mechanisms underlying animal be-
haviour (let alone animal minds) is usually a long
and difficult endeavour. To give an example: observ-

ing an animal walking, climbing, swimming reveals
very little about the biological neural control struc-
ture generating this behaviour. Numerous different
controllers could be programmed which could gener-
ate a particular locomotion pattern, e.g. distributed
or hierarchical controllers. A successful method in
biology is the hypothetico-deductive approach, gener-
ating a hypothesis which is precise enough to make
predictions about the outcome in particular experi-
mental setups. Experimental setups on walking be-
haviour usually involve disturbing (interrupting, ma-
nipulating) the system and measure how the system
copes and return to its normal normal pattern (e.g.
involving obstacles or even leg amputation in stick
insects). The investigation of walking behaviour in
stick insects is a concrete example of the success of
this methodology ([Cru90]), and results were specific
enough to allow the construction of a robotic model
([DKS*98]).

What does this mean with respect to animal soci-
eties? First of all, large-scale ‘experimentation’ with
animal (in particular human) societies is difficult and
in the case of human societies certainly not desirable.
Also, animal societies are being influenced and con-
trolled by a huge number of factors and parameters
(see different levels of organisation and control in sec-
tion 3.4). Thus, relating the effects observed after
a local disturbance of the system to particular con-
trol parameters of the system is practically extremely
difficult, if not impossible. A straightforward way is
therefore, as Braitenberg! suggested on the level of
the individual, to synthesise social systems, as dis-
cussed in the next section. Most commonly compu-
tational (rather than physical) models are used as
models of societies. However, as we will later see,
building artificial societies in this way might be plea-
surable and (relatively) easy, but creating realistic
models has its own difficulties.

3 Artificial Societies

3.1 Modelling Human Societies

Artificial Societies as computational models of hu-
man (present or historical) societies have increasingly
gained attention in the social sciences. [CHT97] dis-
cuss the following potential contributions of computer
simulations to the social sciences:

e to direct attention to the study of emerging be-
havioural patterns, structures and social order

IPlease note that the Braitenberg vehicles are Gedanken-
experiments, neither computational nor robotic implementa-
tions. However, Braitenberg’s ideas on how to incrementally,
in a bottom-up manner, increase the complexity of a vehicle’s
behaviour — as it appears to the external observer — has sig-
nificantly influenced the development of agent controllers in
simulations and robots.



(e.g. cooperation, coordination, institutions,
markets, norms etc.)

e to overcome the difficulties of conventional ana-
lytical or empirical research methods and tech-
niques to investigate social dynamics and test
corresponding theories and models (e.g. world

models, population dynamics, in general: change,

evolution and complexity of social systems)

e to study decentralised and self-organised social
phenomena in increasingly unpredictable and
complex environments

Artificial Societies are usually understood as agent-
based models or ‘laboratories’ of social processes in
which “fundamental social structures and group be-
haviors emerge from the interaction of individuals
operating in artificial environments under rules that
place only bounded demands on each agent’s infor-
mation and computational capacity.” [EA96], p. 4.
The Sugarscape model described in [EA96] shows im-
pressive examples of modelling migration patterns,
economic networks, disease transmission and other
social processes.

The Journal of Artificial Societies and Social Sim-
ulation (JASSS) gives many examples of how artifi-
cial societies can help studying social processes rang-
ing from anthropology to economics.

Different software environments are available at
present for individual-based modelling (as opposed
to models based on mathematical equations) of so-
cieties, among the most widespread in the Artificial
Life and Social Simulation Community is the Swarm
Simulation System (http://www.swarm.org/).

3.2 Modelling Insect Societies: Self-
Organisation and Stigmergy

The term ‘societies’ is generally applied both to hu-
man and other animal societies, including social in-
sects. Social insects (e.g. termites, bees, ants) are
very well studied and two important theoretical con-
cepts are used to understand coordination in social
insect societies, namely self-organisation and stig-
mergy. Our fascination of social insect societies is
based on the fact that we observe many impressive re-
sults of coordination among individuals, rather than
complex behaviour at the level of the individual (e.g.
building of huge and complicated structures like ter-

mite mounds, cooperative transport, foraging behaviour

which seems to ‘optimally’ exploit environmental re-
sources and can adapt to changes dynamically, seem-
ingly complex ‘planning’ mechanisms necessary for
sorting behaviour, and many more). Recently, mod-
els of swarm intelligence and their applications to
problems like combinatorial optimisation and rout-
ing in communications networks have been studied

extensively (see [BDT99], [TB99]). The concept stig-
mergy was first developed by the French zoologist
Pierre-Paul Grassé in order to understand the emer-
gence of regulation and control in social insect so-
cieties. Stigmergy is a class of mechanisms medi-
ating animal-animal interactions [TB99]. According
to [BDT99] and [TB99] two of such mechanisms are
quantitative stigmergy and self-organised dynamics
and qualitative stigmergy and self-assembling dynam-
ics. Generally, the behaviour of each insect can be de-
scribed as a stimulus-response (S-R) sequence (even
for solitary species). If animals to not distinguish
between products of others’s activities and their own
activity, then individuals can respond to and interact
through stimuli. This does not require direct commu-
nication between individuals, individuals ‘communi-
cate’ indirectly, via the environment. In quantita-
tive stigmergy stimuli in the S-R sequence different
quantitatively. Pheromone fields and gradients are
examples of using quantitative stigmergy, e.g. the
construction of pillars by termites. Here, termite
workers impregnate soil pellets with pheromone and
the pellets are initially randomly deposited. The ini-
tial deposits and their diffusing pheromones increase
the attractiveness of the deposit. Once the deposits
reach a critical size, pillars or strips emerge through
a positive feedback loop (the more pheromones a pil-
lar emits, the more it becomes an attractor for more
deposits).

In qualitative stigmergy we have a discrete set of
stimuli types, i.e. during nest building wasps do not
add new cells at random. Locations with already ex-
isting three adjacent walls are preferred. Thus, once
particular structures are finished they serve as qual-
itatively distinct stimuli. This principle which we
observe on the level of animal-animal interaction can
also be observed in solitary insects like Paralastor sp.
wasps building a mud funnel: once the animal com-
pletes a particular stage in the building process, the
structure serves as a new stimulus and triggers dif-
ferent responses. Experimental manipulation of the
structure and the resulting response of the animal
confirms the S-R sequence underlying the behaviour.

The second concept important for understanding
social insect societies is self-organisation, or “a set of
dynamical mechanisms whereby structures appear at
the global level of a system from interactions among
its lower-level components. The rules specifying the
interactions among the system’s constituent units are
executed on the basis of purely local information,
without reference to the global pattern, which is an
emergent property of the system rather than a prop-
erty imposed upon the system by an external order-
ing influence” ([BDT99], p. 9). Not unsurprisingly
one of the first very successful Artificial Life research
projects studied the emergence of global patterns in
ants and robots ([DGF*91], [TGGD91], [DTB92]),



and has presumably shaped the understanding of the
concepts of emergence and self-organisation in Ar-
tificial Life as much as theoretical work did. Self-
organisation has four basic ingredients [BDT99]:

e Positive feedback. Amplification through pos-
itive feedback can result in a ‘snowball effect’.
Pheromones can increase the attractiveness of
particular locations, e.g. trail laying and trail
following in some ants species is used in recruit-
ment of a food source.

e Negative feedback. It counterbalances positive
feedback and in this way helps stabilising the
overall pattern. The exhaustion of food sources
or the decay of pheromones are examples of
negative feedback.

e Amplification of fluctuations. In order to find
new solutions self-organisation relies on random
walk, errors, random task-switching etc.

e Multiple Interactions. Individuals can make
use of the results of their own as well as of oth-
ers’ activities, but generally a minimal density
of (mutually tolerant) individuals is required.

In Artificial Life, the term collective behaviour is
generally used for group behaviour which is strongly
genetically determined and does not involve direct
communication between individuals, while the term
cooperative is used for group behaviour which requires
communication ([McF94]). Social insect societies and
models thereof are typical examples of collective be-
haviour. Despite the influence of genetic factors in
social insect behaviour, one should not forget that
insects are sophisticated and highly complex animals
which react dynamically and efficiently to state chan-
ges in the environment, themselves, or the colony.
Deborah M. Gordon characterises the organisation
of work, specifically task allocation, in social insect
colonies as follows: “Individuals constantly alter their
task status in two ways: they switch from one task
to another, or move between a resting state and the
active execution of some tasks. It is clear that both
intrinsic and extrinsic factors contribute to task al-
location. Individuals vary in predisposition to par-
ticipate in certain tasks, and the tendency to per-
form a particular task changes as the individual grows
older. Moreover, these age-dependent predilections
are strongly influenced by at least two types of exter-
nal cues: actions of other individuals, and events in
the colony’s environment.” ([Gor96], p. 122). Thus,
the individual and social life of an individual member
of a social insect society is very complex, and far from
fully understood (let alone its neurobiology). Com-
putational or robotic models of insects have always
been crude simplifications of the animal’s natural ca-
pabilities and behavioural (if not mental) capacities.

With respect to methodological issues, it is inter-
esting to note that many results on social insect so-
cieties have been obtained with perturbation experi-
ments, which in the case of insects is both experimen-
tally practical and ethically less controversial than
experiments with humans (cf. section 2).

3.3 Social Embeddedness

Artificial Life agents are said to be situated if they
are surrounded by their environment and if their be-
haviour depends on on-line, real world sensor data
which is used directly in a (usually behaviour-oriented)
control architecture. Socially situated agents are there-
fore agents that perceive and react to other agents.
In biology the term socially situated applies to both
social insect societies, as well as human societies.

Bruce Edmonds (1999) defines the notion of social
embeddedness as follows:

“An agent is socially embedded in a col-
lection of other agents to the extent that
it is more appropriate to model that agent
as part of the total system of agents and
their interactions as opposed to modelling
it as a single agent that is interaction with
an essentially unitary environment.” [Edm99].

A socially embedded agent needs to pay atten-
tion to other agents and their interactions individ-
ually. This definition was suggested for reasons of
practicality with respect to constructing agent sys-
tems [ED98]. However, for human animals who have
a primate mind which is specialised in predicting,
manipulating and dealing with highly complex so-
cial dynamics (involving direct relationships as well
as third-party relationships), and who possess lan-
guage as an effective means of preserving group co-
herence, ‘social grooming’ ([Dun93]), and communi-
cating about themselves and others in terms of stories
[Dau99b], social embeddedness becomes a conceptual
requirement for modelling human agents. Humans
are not only dealing with very complex relationships
but seem to have mental ‘models’ of themselves, oth-
ers and the social world (the interested reader is re-
ferred to literature on theory of mind and mindread-
ing, e.g. [Whi9l]). Humans, different from ants,
live in individualised societies (as do other species
of birds and mammals). An increasingly complex
social field and an increasing need to effectively com-
municate with each other were likely to be among
the important constraints in the evolution of human
minds. Following the widely accepted Social Intelli-
gence Hypothesis (e.g. [WB88]), and the recently sug-
gested Narrative Intelligence Hypothesis ([Dau99b]),
there are two interesting aspects to human sociality:
it served as an evolutionary constraint which led to an
increase of brain size in primates, this in return led to



an increased capacity to further develop social com-
plexity. Although it is still unknown why hominids
needed or chose to live in social groups, this feed-
back principle soon led to the development of highly
sophisticated levels of organisation and control and
human societies.

3.4 Levels of Organisation and Con-
trol

The terms anonymous and individualized societies
are used in biology in order to describe two differ-
ent types of social organisation. Social insects are
the most prominent example of anonymous societies
where group members do not recognize each other
as individuals but rather as group members. We do
not observe bees or termites searching for missing
members of their colony. Although individuals adopt
specific roles in a colony they do not show individu-
ality or ‘personality’ in the same way as e.g. puppies
in the same litter show. The situation is quite differ-
ent in individualized societies which primate societies
belong among. Here we find complex recognition
mechanisms of kin and group members. This gives
rise to complex kinds of social interaction and the
development of various forms of social relationships
and networks. On the behavioural level long-lasting
social bonding, attachment, alliances, dynamic (not
genetically determined) hierarchies, social learning,
development of traditions etc. are visible signs of in-
dividualized societies. In humans the evolution of
language, culture and an elaborate cognitive system
of mindreading and empathy are characteristics of
human social intelligence in individualized societies
([Dau97]). As a consequence of the latter, humans
are not only paying attention to other agents and
their interactions individually, but they use their men-
tal capacities to reason about other agents and social
interactions.

It is at present unclear to what extend the so-
cial intelligence of members of other animal species,
in particular very social species like monkeys and
Cetaceans, is similar or different from our own. Cul-
ture as such is unlikely to be a unique feature to
human societies, the acquisition of novel behaviours
in what we might then call ‘proto-cultures’ can be
observed in animals. To give an example: tradi-
tions have been observed among troops of Japanese

macaque monkeys ([Huf96]): Japanese macaques showed

several examples of the acquisition of innovative cul-
tural behaviours, e.g. sweet potato washing and wheat-
washing was invited in 1953 by a young female and
subsequently spreading to older kin, siblings, and
playmates, eventually to other members of the troop.
Other observed cultural behaviours are fish eating (as
many newly acquired food sources initially spreading
from peripheral males to adult females, then from

older to younger individuals), and stone handling or
stone play (initially spreading only laterally among
individuals of the same age). Subsequently all these
behaviours were passed down from older to younger
individuals in successive generations (tradition phase).
These examples clear show the influence of social net-
works on the transmission phase of novel behaviour:
the nature of the behaviour and social networks de-
termine how the behaviours are initially transmitted,
depending on who is likely to be together in a cer-
tain context and therefore is exposed to the novel
behaviour. Innovative behaviours of the kind de-
scribed here have been independently observed at
different sites. Various factors have been discussed
which influence cultural transmission: environmental
factors, gender, and age, and other social and biolog-
ical life history variables. For example, unlike potato
or wheat washing, stone handling declines when in-
dividuals mature.

The striking similarity of cultural transmission
of novel behaviour exhibited by Japanese macaque
monkeys and what we call human culture, questions
the uniqueness of human societies. Note, that this
behaviour is observed in monkeys, which do not show
complex forms of social learning like imitation, and
do not seem to posses higher-level ‘cognitive’ capac-
ities necessary for complex social forms of ‘primate
politics’ shown by non-human apes and humans (cf.
discussions on imitation, mirror-test, and theory-of-
mind). However, monkeys are excellent social learn-
ers (using widely non-imitative forms of social learn-
ing, e.g. social enhancement). Reader and Laland
(1999) therefore argue that the meme concept (usu-
ally treated as uniquely human, [Bla99]) can and
should also be applied to cultural transmission among
non-human animals. Animal societies can appear in
various forms. Human societies, human culture and
human minds reflect in many ways their evolutionary
origin in animal societies, animal culture and animal
minds.

In order to distinguish social behaviour in social
insect (anonymous) societies from human (individu-
alized) societies we previously proposed the following
definition of social intelligence and artificial social in-
telligence which could be applied to human societies:

Social intelligence is “the individual’s ca-
pability to develop and manage relation-
ships between individualized, autobiographic
agents which, by means of communica-
tion, build up shared social interaction
structures which help to integrate and man-
age the individual’s basic (‘selfish’) inter-
ests in relationship to the interests of the
social system at the next higher level. The
term artificial social intelligence is then
an instantiation of social intelligence in
artifacts.” [Dau99a], p. 130.
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Figure 1: a) Emergence of behaviour in anonymous
societies, b) emergence and feedback in individualised
societies of socially embedded human agents on dif-
ferent levels of social organisation

This definition of social intelligence clearly ap-
plies to societies which are typical for highly individ-
ualized societies (e.g. parrots, whales, dolphins, pri-
mates), where individuals interact with each other,
rather than members of an anonymous society. The
definition therefore contrasts with notions of swarm
intelligence and anonymous (e.g. social insect) soci-
eties (cf. section 3.2).

In [Dau99a] I suggested a hierarchy of different
levels of social organisation and control, inspired by

discussions on the development of social systems [HC95].

I distinguished between eusocial agents in anonymous
societies where mechanisms of stigmergy and self-
organisation (cf. section 3.2) result in a socially in-
tegrated systems?, and human (individualized) so-
cieties where the individual is part of different lev-

2Note that African naked mole-rats, mammals, show a eu-
social organisation similar to social insects, [SJA91]. Thus,
the eusocial form of organisation has evolved independently in
different taxa of animals.

els of social organisation (primary groups, secondary
groups, tertiary groups). The different ‘roles’ of a hu-
man as a individual, an autobiographic, social agent,
an economic agents and a cultural agent are con-
straint by different mechanisms of social control.

What the hierarchical system of social organisa-
tion presented in [Dau99a] did not address sufficiently
was the notion of social embeddedness as discussed in
section 3.3. Considering that humans 1) have differ-
ent roles and are socially situated on different levels
of social organisation of control, and 2) are socially
embedded in the sense that they can reason about
themselves and their conspecifics, results in a so-
phisticated system of feedback and self-organisation
among and between different levels of social organ-
isation, as indicated in figure 1, b. The individual
human and his/her behaviour on any of these levels
is influenced by his/her knowledge about other lev-
els, the levels cannot be clearly separated. Computa-
tional models of societies usually chose a particular
level of granularity, e.g. modelling agents in kinship
structures (primary groups according to the termi-
nology above, e.g. [Tre95]), larger economic markets
or settlements (comparable to secondary groups, e.g.
[DP95], [BGPM™95], see also special issue on com-
puter simulation in anthropology of JASSS, volume 2,
issue 3, 1999), and cultural development and the evo-
lution of memes (cf. tertiary groups, [Hal97]). Thus,
in Braitenberg’s words, simulating societies can be
‘pleasurable’, but the degree of ‘easiness’ depends on
how faithfully we intend to model human beings as
individuals, socially situated on different levels of so-
cial organisation, socially embedded in the sense that
his/her behaviour is influenced by experiences and
events on other levels of organisation. On an ab-
stract level of modelling societies we might constrain
agents to one particular level of granularity (and in
this way avoiding feedback from other levels), and we
could then observe effects of self-organisation result-
ing from positive and negative feedback, amplifica-
tion of fluctuations and multiple interactions (cf. sec-
tion 3.2). By introducing mechanisms of stigmergy
we could even observe collective behaviour and global
(temporal or spatial) patterns similar to those of so-
cial insect societies. But without modelling a socially
embedded agent possessing social intelligence as de-
fined above, we are unlikely to synthesise artificial
societies rather than simulation models of (selected
characteristics of) animal/human societies. However,
the more elaborate computer simulations of societies
become, the more we tend to label them as artifi-
cial societies. What evaluation criteria are useful in
order to characterise the similarity between real so-
cieties and artificial societies?

In order to shed some light on the notion of ‘sim-
ulating societies’ versus ‘synthesising artificial soci-
eties” we turn towards an issue which has been long



discussed in AT (‘revived’ through Artificial Life) namely

the problem of reverse bioengineering (how to syn-
thesise intelligence/life rather than analysing intelli-
gent/living systems).

4 Reverse Engineering

Reverse Engineering, distinguished from standard (for-
ward) engineering, is a widely used approach in soft-
ware engineering. The problem here is (in short) to
understand and extract the design of computer pro-
gramme code which is not written by yourself. Mov-
ing towards an area more related to animals (as phys-
ical systems), reverse engineering is also popular for
understanding products in order to redesign/improve
or copy them (information about the original design
process might be lost or inaccessible). The general
idea here is to start with the product (e.g. a clock,
a video camera etc.) and then to work through the
design process in the opposite direction and reveal
design ideas that were used to produce a particular
product ®. Stages in reverse engineering are system
level analysis (e.g. estimating system cost, predict
how system might work), subsystem analysis (e.g.
identifying individual systems and how they inter-
act), and finally component analysis where physi-
cal principles of components are identified. One ap-
proach towards analysing products is to regard the
system as a black box with input and output and to
identify how a) power, b) material and ¢) information
is transformed or preserved.

Is reverse engineering applicable to animals as
well as to artifacts? No matter how different the for-
ward processes for animals (‘design’ by natural evo-
lution) and artifacts (design by a human designer,
starting from a specification) are, can we apply the
reverse process to both kind of systems? Can we
identify criteria similar to power/material /information
in Reverse Bioengineering? In Dennett’s discussion
of such questions ([Den94]), he sympathises with the
view of biology as reverse engineering, since biology
tries to understand biological systems, its subsys-
tems and components, and how they interact and
work together. However, he argues that the top-
down process of reverse engineering of artificial sys-
tems used for software or hardware are not appro-
priate for reverse engineering of natural systems (re-
verse bioengineering). The bottom up methodology
of Artificial Life and the study of emergent effects is
Dennett’s favoured methodology for reverse bioengi-
neering. Deducing the internal machinery of a black

3Many publications are available on reverse engineering of
software, but very little about reverse engineering of physical
systems. This paragraph is therefore strongly based on lecture
notes kindly provided by William Harwin who is teaching re-
verse engineering in a course on mechatronics at University of
Reading.

box is far more difficult than deducing the internal
machinery of a system you synthesised (cf. Braiten-
berg’s law of uphill analysis and downhill invention
in section 2).

Forward engineering of artificial systems usually
tries to eliminate unforeseen and undesired side-effects,
namely emergent properties of how components lo-
cally interact with each other and the environment.
Reverse engineering of products can therefore be very
successful by decomposing the system into a system-
subsystem-component hierarchy with well-defined in-
teractions between elements on different levels, and
with well-defined functions of each of the elements
with respect to the whole system. A biological sys-
tem, e.g. a human being, is a functionally integrated
system which from a descriptive point of view can
be decomposed into cells, tissues, organs, body, but
this does not account for numerous self-organising
and emergent effects down to processes within each
cell. Elements in a biological system can have dif-
ferent functions. In evolutionary terms functions can
change, new elements can evolve, new interactions
between elements can occur. Thus, single functional
elements are very difficult to isolate, in living sys-
tems ‘side-effects’ often prevail over fixed functional
design. Thus, according to Dennett ([Den94]) Ar-
tificial Life is the most promising approach toward
reverse bioengineering.

What we said above about reverse engineering of
biological systems does naturally extend to societies.
Thus, using computer simulations as models in order
to understand natural societies as Reverse Socioengi-
neering is no more different from the use of Artifi-
cial Life models (in software or hardware) in order to
understand the behaviour of an individual (animal).
More and more researchers in the field of ‘individ-
ual artificial life systems’ have recognised the need
to build complete agents. Single aspects of an animal
can be identified and modelled separately in a system
which is, apart from that single aspect, very different
from the natural model. However, such systems have
often shown to be very limited in their explanatory
power with respect to the overall behaviour of the an-
imal. Building complete agents therefore tries to in-
tegrate as many aspects of the life of a natural system
in an artificial system. Also, complete agents might
ultimately not only simulate an animal, and appear
‘life-like’, but might develop as alternative life-forms.
Concerning societies, when would we tend to call a
system a true instance of a society rather than a sim-
ulation model? With respect to similarities between
natural and artificial systems, one of the most widely
discussed issues in AI (and Cognitive Science) is the
Turing Test, discussed in the next section.



5 Turing Test and Turing In-
distinguishability

In Alan Turing’s discussion of the question ‘Can ma-
chines think?’ he described an ‘imitation game’ which
later became known as the ‘Turing Test’ (TT). The
original formulation in [Tur50] of the imitation game
was as follows:

“It is played with three people, a man
(A), a woman (B), and an interrogator
(C) who may be of either sex. The in-
terrogator stays in a room apart from the
other two. The object of the game for
the interrogator is to determine which of
the other two is the man and which is the
woman. He knows them by labels X and
Y, and at the end of the game he says ei-
ther ‘Xis A and Yis B or ‘XisBand Y
is A?.”[Tur50]

In order to address the issue of machine intelli-
gence, Turing then suggested a variation of this test,
namely having a machine taking the part of A in this
game. The new question is then whether the inter-
rogator will “decide wrongly as often when the game
is played like this as he does when the game is played
between a man and a woman?” [Tur50].

In subsequent years, the standard interpretation
of the Turing Test is to consider the scenario of a hu-
man, a machine and an interrogator, and the question
whether a machine could ‘pass’ the test by communi-
cating (traditionally in written format, via typewriter
or computer) with the interrogator indistinguishably
from a human being. If, in a particular experimen-
tal setup over a limited period of time, the inter-
rogator is not able to distinguish between the two
candidates (machine and human) then the machine
is said to have ‘passed’ the TT. The machine (com-
puter programme) is then either passing or failing the
TT. Note, that this scenario of text-based, symbolic
communication, although not unrealistic (cf. pen-pals
or email-pals), substantially simplifies the process of
natural human-human communication.

Although the TT can be dismissed as a ‘trick’, in
the context of Artificial Intelligence and intelligent
machines, the TT can serve as an empirical criterion,
setting the empirical goal to generate human-scale
performance capacity [Har92]. In [Har00], [Har01]
Stevan Harnad extends the original TT scenario and
proposes a TT hierarchy in order to discuss several
degrees of indistinguishability instead of a yes/no eval-
uation. Note that each level subsume the capacities
shown at lower levels.

e t1: toy models of human total capacity

e T2: Total indistinguishability in symbolic (‘pen-
pal’) performance capacity (see standard inter-
pretation of TT)

e T3: Total indistinguishability in robotic (in-
cluding symbolic) performance capacity

e T4: Total indistinguishability in neural (includ-
ing robotic) properties

e T5: Total physical indistinguishability

t1 is according to Harnad [Har01] the level of toy
models, showing particular, narrow fragments of hu-
man capacity. All presently existing artificial sys-
tems have to be classified as t1 models. T2 refers to
the well-known standard interpretation of the TT, it
means that the machine is with respect to symbolic
performance (language) indistinguishable from a hu-
man being. Note however, that this is not limited
to a particular test-period, the hierarchy refers to
life-long performance. Systems at level T3 are indis-
tinguishable from humans with respect to ‘robotic’
performance, they show the same external sensori-
motor (robotic) functions, such systems can ‘mingle’
with humans without being detected as machines.
Systems at level T4 are indistinguishable from hu-
mans down to internal microfunctions, i.e. they pos-
sess artifical neurons, neurotransmitters etc. made of
synthetic material, but showing the same functions
(thus allowing e.g. organ transplantations between
humans and T4 systems). Finally, systems at level
T5 have identifical microphysical properties, they are
engineered out of real biological molecules, physically
identical to our own.

I suggest that the TT hierarchy, developed as a
conceptual construct facilitating discussions on the
synthesis and test of machine intelligence similar to
human intelligence, also provides a useful means to
discuss the issue of synthesising societies. I focus in
the following on human societies, but non-human an-
imal societies are included as well. The discussions
are based on what we said in section 3.4 about human
beings as individuals socially embedded in a hierar-
chy of social organisation and control.

e Stl: toy models of human societies. At present,
most existing systems of artificial societies and
social simulation show particular, specific as-
pects of human societies. None of the systems
shows the full capacity of human societies.

e ST2: Total indistinguishability in global dynam-
ics. Computational social systems in the not
too far future may show properties very similar
to (if not indinstinguishable) from human so-
cieties. In particular domains, systems at this
level might succeed to abstract from the biolog-
ical, individual properties of humans and de-
scribe their behaviour on higher levels of social



organisation and control, e.g. processes in eco-
nomics and cultural transmission might closely
resemble processes we observe in human soci-
eties. Such systems might be used effectively as
‘laboratories’ in order to understand processes
in historical and present societies, or might be
used for predictive purposes.

ST3: Artificial Societies. Total indistinguisha-
bility in social performance capacity. Societies
at this level have to account for the socially em-
bedded, individual and embodied nature of hu-

6 Conclusion

The field of using agent-based computer simulations
in social sciences and Artificial Life is still very young.
This paper reviewed concepts from biology, Artificial
Life and Artificial Intelligence relevant to simulating
or synthesising artificial societies. This might help 1)
avoiding to ‘invent the wheel twice’, 2) viewing the
field in the more global context of system analysis
and synthesis.

man beings. It might be possible that ‘embod- References
iment’ in the sense of structural coupling be- ) )
tween agent and environment can be achieved [BDT99] Eric Bonabeau, Marco Dorigo, and Guy

without requiring physical (robotic) embodiment
(see [Dau99a] and [QDNR99]). The performance
capacity of artificial societies at this level is in-
distinguishable from real societies, although the
specific ways how these systems interact / com-
municate with each other need not be similar to
or compatible with human societies. However,
these societies go beyond ‘simulation models’ of
societies, they truly are artificial societies.

ST4: Societies of Socially Intelligent Agents.
Artificial Societies at this level possess social in-
telligence like human beings do. This includes
cognitive processes in social understanding in
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