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Abstract 
 
High capacity associative memory models with dilute 
structured connectivity are trained using naturalistic 
bitmap patterns.  The connectivity of the model is chosen 
to reflect the local spatial continuity of the data.  The 
results show that the structured connectivity gives the 
networks a higher effective capacity than equivalent 
randomly diluted networks.  Moreover the locally 
connected networks have a much lower mean connection 
length than the randomly connected network. 
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1. Introduction 
 
High capacity associative memory models can be 
constructed from networks of perceptrons, trained using 
the normal perceptron training procedure.  Such networks 
have a capacity much higher than that of the standard 
Hopfield network, and in fact their capacity is related to 
the capacity of a single perceptron.  A perceptron with N 
inputs can learn 2N random unbiased patterns, but this 
capacity (α = 2) is increased if the training set is 
correlated [1].  Moreover Lopez et al [2] showed that, 
even for unbiased patterns the capacity of the perceptron 
could be much higher than 2, if certain conditions were 
met in the training data. These improvements in capacity 
performance are matched by improvements in the 
performance in networks as associative memories: the 
attractor basin size of trained patterns can also be 
increased.  In this paper we are interested in networks 
with diluted connectivity, where an individual perceptron 
is connected to only a fraction of the other perceptrons in 
the network.  Diluting these networks on a random basis 
causes the capacity to fall in a roughly linear way with the 
fraction of connections removed [3].  However when 
connections are removed the training set of each 
perceptron in the network is changed, since the training 
set is then determined by the specific values of the 
perceptrons to which each unit is connected.  We are 

interested in whether characteristics of certain types of 
training data can be exploited by diluting the network 
connectivity in a definite, structured way.  In particular 
we investigate whether networks with a specific pattern of 
reduced connectivity can give enhanced performance with 
naturalistic, bitmap training patterns with inherent spatial 
continuity. 
 
 
2. Network Dynamics 
 
All the high capacity models studied here are 
modifications to the standard Hopfield network. The net 
input, or local field, of a unit, is given by: hi = wijS j

j ≠i
∑  

where S is the current state and  is the weight on the 
connection from unit j to unit i. The dynamics of the 
network is given by the standard update: , 
where is the heaviside function.  Unit states may be 
updated synchronously or asynchronously.  Here we use 
asynchronous, random order updates.  A symmetric 
weight matrix and asynchronous updates ensures that the 
network will evolve to a fixed point.  If a training pattern 

wij

′ S i = Θ(hi)
Θ

ξ µ  is one of these fixed points then it is successfully 
stored, and said to be a fundamental memory.  A network 
state is stable if, and only if, all the local fields are of the 
same sign as their corresponding unit, equivalently the 
aligned local fields, h , should be positive.   i Si
 
 
3. Network Topology 
 
Associative memory models based on the Hopfield 
architecture are usually fully connected, so that any 
spatial relationship between the units in the network is 
irrelevant.  Here, however, we arrange the units in the 
network into a two dimensional grid, as in a two 
dimensional SOM [4].  This therefore introduces a 
topology on the units in the network, and we can use this 
topology to define a distance between any two units in the 
network.  We use the square neighbourhoods (as is 
normally the case in a SOM), so that the 8-units in the 
immediate square around a unit are at distance one from 
that unit, as shown in Figure 1.  We say that the network 
has structured connectivity with d =1 if every unit is 



connected to every other unit at distance 1 and no others, 
d =2 if every unit is connected to every other unit at 
distance of not more than 2, and so on.  Note that this is a 
symmetric connection strategy.  Wraparound on the grid 
is not used, so that the edge units have fewer connections 
than the inner units. 
 

 
 
Figure 1: A small network in which neighbourhood 
connectivity has been established at a distance (d) of 1.  
Connections are shown for two neurons as an example. 
 
 
4. Training 
 
The networks are trained using a modification of the 
normal perceptron training rule that ensures symmetric 
weights.  The algorithm is: 
 
Begin with zero weights 
Repeat until all local fields are correct 

 Set state of network to one of the ξ   
p

 For each unit, i, in turn: 

  Calculate .  If this is less than T  
  then change the weights to unit i  
  according to:   

    ∀

hi
pξ i

p

wij +j ≠ i ′ w ij =
ξi

pξ j
p

N
′ w ji = w ji +

ξi
pξ j

p

N
 

 
Where  denotes the training patterns, and T is the 
learning threshold which here has the value of 0.  All 
weights on removed connections are fixed at zero. 

ξ p

 
 
5. Capacity results for Perceptron Networks 
 
A perceptron with N inputs can learn up to 2N random 
patterns, and as the correlation in the training set increases 
so does the capacity of the perceptron.  Imposing 
symmetry on the weights, in a network of perceptrons, 

does not affect this maximum capacity [5]. Even with 
uncorrelated training sets capacity may be greater than 
2N.  This occurs when correlated subsets of the training 
set have correlated outputs [2].  So, for example, if pairs 
of the training set are correlated and have the same output 
then the training set is more likely to be learnable.  Put 
simply, if similar patterns have the same label then a 
perceptron is more likely to be able to learn the 
classification.  The increasing capacity is shown in Figure 
2. 
 
 
6. Training Sets Used 
 
Two sets of training patterns, representing reasonably 
naturalistic images were created. All the generated 
patterns were 400 bits, 20 by 20 bitmap images.  The 
geometric data uses solid geometric shapes placed at 
random within the 2-dimensional grid. Each image is 
formed by four shapes: triangles, squares or circles.  The 
choice of shape is random and they may overlap but are 
clipped if they overrun an edge.  The character data 
consists of 20 by 20 character bitmaps.  Examples from 
these data sets are shown in Figure 3.  The geometric data 
set is roughly unbiased (bias, the proportion of +1�s is 
0.52), whereas the character data has a bias of 0.2.  Both 
sets have the desired characteristic of within pattern 
spatial continuity.  This can be seen in the mean local 
correlation of the data set, for different neighbourhood 
sizes, Tables 1 and 2.  For both data sets the correlation of 
individual bits with their neighbours decreases as that 
neighbourhood is increased.  
 
Neighbourhood Size, d Mean Local Correlation 
1 0.89 
2 0.83 
3 0.77 
4 0.72 
5 0.68 
Full Grid 0.5161 
 
Table 1: Mean Local Correlation for the Geometric Data 
 
Neighbourhood Size, d Mean Local Correlation 
1 0.87 
2 0.78 
3 0.74 
4 0.71 
5 0.70 
Full Grid 0.68 
 
Table 2: Mean Local Correlation for the Character Data 



 
 
 
Figure 2:  The capacity of a perceptron as the pair wise overlap of training patterns with the same output, R, is varied.  
With R = 0 the normal capacity of 2 is shown, but as R increases so does the capacity, approaching a limiting value of 4.  
Taken from Lopez et al [2]. 
 
 
 
 

  
 
 

  
 
Figure 3: Example bitmaps from the geometric (above) and character training sets. 
 
 
 
7. Results 
 
The networks used here are highly diluted, for example 
in networks with d = 1 (units connected to those in an 
immediate square neighbourhood) each unit is 
connected to no more than 8 other units, and corner 
units are connected to only 3 other units.  So with any 
training set it is very likely that some units will fail to 
train.  We therefore report the number of units that fail 
to train at a given loading and expect this figure to be 

lower for networks with structured connectivity than for 
those with the same level of random connectivity.  The 
network is trained for 1000 epochs, well beyond the 
number of epochs normally required for convergence at 
the kind of loadings we use here.  The number of units 
that have failed to converge at this point is counted. 
 



6.1 Geometric Data 
 
Figure 4 shows how the number of neurons that fail to 
train increases with the loading on the network.  For 
comparison the results for networks with equivalent 
levels of random connectivity are also shown in Figure 
5. The randomly connected networks show the expected 
pattern.  The capacity of such networks should be about 
2N where N is the number of inputs for each 
perceptron.  So that for the random network with a 
mean connection per neuron of just under 8 (equivalent 
to the d = 1 structured network) most units should fail 
with about 16 patterns � a loading of 16/400 or 0.04.  
However the structured network shows a very different 
pattern at this level of connectivity with a roughly linear 
increase in failed neurons as the loading increases, but 
no sudden jump in the failure rate.  Remarkably the d = 
3 network (each unit having roughly40 inputs) has a 

very low failure rate throughout the loading range � up 
to 100 patterns.  The equivalent randomly connected 
network has more than half the units failing to train 
with 75 patterns in the training set. 
 
6.2 Character Data 
 
The character data is biased and so the capacity of an 
individual perceptron should here be higher than for the 
unbiased geometric data.  However the dramatic benefit 
of structured local connectivity is even more apparent 
here, see Figures 6 and 7.  Once again the d =3 network 
shows very low failure rate across all loadings and even 
the d = 2 network has less than 25% failures at the top 
loading 
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Figure 4 Failed neuron count against increasing pattern load for networks constructed with structured connectivity at 
levels of 7.41, 21.09, 39.96, 63, and 89.25 mean connections per neuron (corresponding to d = 1, d =2 etc) and trained 
using geometric data.  Mean values over 5 runs at each loading are given. 
 



0

50

100

150

200

250

300

350

400

0.00 0.05 0.10 0.15 0.20 0.25

Loading (P/N)

N
um

be
r o

f f
ru

st
ra

te
d 

ne
ur

on
s

7.41 MCPN 21.09 MCPN 39.96 MCPN 63 MCPN 89.25 MCPN  
Figure 5 Failed neuron count against increasing pattern load for networks constructed with random connectivity trained 
using geometric data.  Mean values over 5 runs. 
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Figure 6: Failed neuron count against increasing pattern load for networks constructed with structured connectivity 
trained using character data.  Mean values over 5 runs. 
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Figure 7: Failed neuron count against increasing pattern load for networks constructed with random connectivity trained 
using character data.  Mean values over 5 runs. 
 
8. Discussion 
 
Much natural data shows spatial and/or temporal 
continuity and this aspect of the data could be exploited 
by an engineered or evolved system � artefactual or 
natural.  Here we have shown that a simple associative 
memory model, a network of perceptrons, can exploit 
the local correlation present in simple bitmap images.  
The effective capacity (tolerating a small number of 
failed units) of the networks with structured 
connectivity is much better than those with an 
equivalent number of random connections.   
A significant further benefit of the locally connected 
networks should also be noted.  The mean connection 
length is obviously much lower in these networks.  For 
example the d = 1 network has mean connection length 
of 1, whereas the randomly connected network in a 20 
by 20 grid has a mean connection length of about 9.3. 
This has significance for any physical instantiation of 
these networks. 
A possible criticism of the models used here is that a 
small number of neurons that fail to train has to be 
tolerated.  However it is straightforward to overcome 
this limitation.  The failed units may simply be given 
additional connectivity until they are able to learn their 
training set.  As long as the number of failed units is 
small this will not have a significant impact on the 
overall connectivity pattern.  The exploration of this 
idea is described in [6]. 
A more important problem with the idea of locally 
structured connectivity is that the pattern 
correction/completion behaviour of the network can be 
adversely affected.  The recall process may get stuck in 
patterns with large subdomains of errors [7].  The 
subdomain may not have enough distal input to 
overcome its locally stable configuration.  This issue 
may be addressed by introducing additional random 
connectivity and the results of doing this are promising 
[6, 8]. 

In summary this paper has described how structured 
local connectivity can increase the effective capacity of 
an associative memory and can produce large savings in 
the length of connections required. 
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