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Abstract. Our work is concerned with finding optimum connection strategies in high-
performance associative memory models. Taking inspiration from axonal branching in 
biological neurons, we impose a displacement of the point of efferent arborisation, so that the 
output from each node travels a certain distance before branching to connect to other units. This 
technique is applied to networks constructed with a connectivity profile based on Gaussian 
distributions, and the results compared to those obtained with a network containing purely local 
connections, displaced in the same manner. It is found that displacement of the point of 
arborisation has a very beneficial effect on the performance of both network types, with the 
displaced locally-connected network performing the best. 

1 Introduction 

In recent work [1, 2] we have explored the pattern-completion performance of 
sparsely-connected associative memory models using a variety of different connection 
strategies. Our studies included networks in which the probability of a connection 
between any two nodes varied with distance according to Gaussian and exponential 
probability distributions. We concluded that when wiring costs are taken into account, 
relatively tight Gaussian and exponential connectivity distributions perform the best, 
and are considerably more efficient than small-world connection strategies based on 
the progressive rewiring of locally-connected networks. 
 In the present work, we explore the performance of sparsely-connected 
associative memories using a new connection strategy: that of displaced connectivity. 
This work is inspired by the work of Hertzog et al [3] on the synchronous spiking 
behaviour of neurons, in which they explore the use of local connectivity with a small 
lateral displacement, in a 2D neural ‘gas’. 
 Their work was concerned with establishing, in a locally-connected network, the 
displacement distance which would provide a compromise between mean connection 
length and the mean minimum path length (the minimum number of steps separating 
each pair of nodes averaged over the whole network), as used by Watts and Strogatz  
[4]. Our study is concerned with the effect of lateral displacement on the pattern-
completion performance of 1D associative memory models with local connectivity, 
and also with patterns of connectivity based on a Gaussian distribution. 

2 Network dynamics, training and performance measurement 

A network of perceptrons is arranged in a one-dimensional structure with wrap-
around at the ends (see Figure 1a), and is trained on sets of random patterns of length 



N, where N is the number of units in the network. The output of each unit is connected 
to the inputs of a fixed number, k, of other units. The networks used in the present 
studies have no symmetric connection requirement [5], and the recall process uses 
asynchronous random order updates, in which  the local field of unit i is given by:  
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where wij is the weight on the connection from unit j to unit i, and S )1( ±=  is the 
current state. The dynamics of the network is given by the standard update:    

)('
ii hS Θ= , where Θ  is the Heaviside function. Network training is based on the 

perceptron training rule [6] chosen for its higher resultant capacity than that of the 
standard Hopfield model. The rule is designed to drive the local fields of each unit the 
correct side of the learning threshold, T, for all the training patterns. Earlier work has 
established that a learning threshold of T = 10 gives good results [7].   
 Network performance is determined by measuring Effective Capacity [8] [9]. 
This is a measure of the number of patterns which a network can restore under a 
specific set of conditions. The network is first trained on a set of random patterns. 
Once training is complete, the patterns are each randomly degraded with 60% noise, 
before presenting them to the network. After convergence, a calculation is made of 
the degree of overlap between the output of the network, and the original learned 
pattern. The Effective Capacity of the network is the highest pattern loading at which 
this mean overlap for the pattern set is 95% or greater. The Effective Capacity of a 
network has been shown to track its underlying maximum theoretical capacity [9]. 

3 Gaussian connectivity with displaced efferent arborisation 

In the first part of our study we examine the performance of a network with a 
Gaussian connectivity distribution in which the point of efferent arborisation is given 
a progressively larger lateral offset. The biological basis for this model would be an 
axon emerging from each neuron, which then travels for a distance (equivalent to our  
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Fig. 1: Illustration of a locally-
connected network, a, and a network 
with displaced local connectivity, b. 
Both networks have 14 nodes, with 4 
efferent connections per node. 

Fig. 2:  Effective Capacity vs Gaussian σ 
in networks with a range of arborisation 
displacements, from 0 to 100. The 
network is built from 500 units with 50 
efferent connections per node. Results are 
averaged over 200 runs. 

a                b 



displacement distance) before arborisation. It then connects to other neurons with a 
Gaussian probability distribution of width σ. See Figure 1b, which illustrates the 
displacement of a small locally-connected network. In our simulations we give a 
random direction of travel to the emergent axon around the ring, so that it has an 
equal probability of travelling clockwise or anticlockwise around the ring before 
arborisation. 
 Figure 2 shows the results obtained with a network of 500 units with 50 efferent 
connections per node. Measurements of Effective Capacity were made for the 
following lateral displacements: 0, 20, 40 and 100 units, varying the Gaussian σ 
within the range 20 to 80 in each case. As may be seen, the effect of  introducing a 
progressively larger lateral displacement is to decrease the spread of the Gaussian 
required to produce a particular Effective Capacity. So, for example, to achieve an 
Effective Capacity of around 12, the non-displaced Gaussian requires a σ approaching 
30, while the Gaussian displaced by 20 units only requires a σ of around 20 to achieve 
a similar result. In other words, the greater the displacement, the less broad the 
required spread of connectivity at the point of arborisation to achieve a given 
performance. When the displacement reaches about 100 units, there appears to be no 
further advantage in broadening the Gaussian spread of connections (the maximum 
possible displacement around the ring is 250 units). 
 Although we can see from Figure 2 that all four plots achieve the same 
maximum  Effective Capacity of around 16, and that those with the greatest 
displacement reach the maximum value at lower values of σ, the effect of 
displacement on wiring cost is not immediately obvious. To clarify this, Figure 3 
shows the Effective Capacity of the four networks plotted against the corresponding  
mean wiring length of each network. In calculating wiring length here, we assume 
that the output of each node travels along a single connection until it arborises. 
 For comparison purposes, Figure 3 also depicts the results for a non-displaced 
progressively-rewired network (rewired in steps of 10% from 0 to 100%), which, as 
we have previously shown [1], performs less well than its Gaussian counterpart, and 
is the poorest performer here. 
 From the graph it may be seen that while all architectures are capable of 
attaining the highest Effective Capacity of about 16, there are considerable 
differences in wiring costs. The progressively-rewired network performs the worst, 
while the Gaussian networks show better and better performance as the arborisation 
point is progressively displaced. The network whose points of arborisation are 
displaced by 100 units achieves an Effective Capacity of around 15.5 at a mean 
wiring length of just 19 units, for example, whereas the non-displaced Gaussian 
reaches a mean wiring length of 60 before it achieves the same Effective Capacity. 
This represents a considerable gain. 

4 Local connectivity with displaced efferent arborisation 

The results in Figure 3, in which very tight Gaussian distributions with displaced 
arborisation perform well, suggest that we may also be able to obtain good 
performance  by   displacing  the  arborisation  point  in a  network  with  purely  local 
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Fig. 3:  Effective Capacity vs mean wiring length for a network of 500 units with 50 efferent 
connections per node. Architectures are based on a progressively-rewired network (rewired 
in steps of 10% from 0 to 100%), together with four networks with Gaussian distributions of 
varying width, each of whose point of efferent arborisation has a different lateral 
displacement, d, ranging from 0 to 100 units. Results are averaged over 200 runs. 

connectivity. To examine this question we measured the Effective Capacity of a 
locally-connected network of 500 units, each with 50 efferent connections, with 
lateral displacements in the range 0 to 200 units. Figure 4 shows the results. The first 
point on the graph represents the performance of the network with purely local 
connectivity (displacement is zero). This is poor, as expected. The first displacement 
of 10 units brings a small improvement, but then successive increases reap more 
considerable rewards, with a reasonably steep linear increase in Effective Capacity as 
the displacement is increased from 10 to 50 units in steps of 10. The response then 
flattens out at an Effective Capacity of around 16 by the time the displacement has 
reached 60 or 70. 
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Fig. 4:  Effective Capacity vs displacement for a locally-connected network of 500 units, 
each with 50 afferent connections. Results are averages over 200 runs. 

In order to see the effect of displacement of a locally-connected network on 
performance when wiring costs are taken into account, we again plot Effective 



Capacity against mean wiring length; and for comparison purposes we have included 
the displaced Gaussian and rewiring data from Figure 3. The results are shown in 
Figure 5. 
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Fig. 5:  Effective Capacity vs mean wiring length for a network of 500 units, with 50 
efferent connections per node. Architectures are based on a local network with increasing 
displacement from 0 to 100, a progressively-rewired network, and four networks with 
Gaussian distributions of varying width, each of whose point of efferent arborisation has a 
different lateral displacement, d, ranging from 0 to 100 units. Results are averaged over 200 
runs. 

As may be seen, the displaced-local network clearly outperforms all the others, 
reaching an Effective Capacity of more than 16 at a mean wiring length of 17 units. 
None of the other networks reach this level of Effective Capacity until their mean 
wiring lengths are considerably greater. 
 The displaced-local network thus appears to be an interesting contender when 
attempting to achieve good pattern-completion performance at low wiring costs.  
Moreover, the time which the associator takes to converge during recall appears to be 
comparable to other well-performing networks of its size (about 8 epochs in the above 
tests). 
 The reason for the improved wiring efficiency observed here in networks built 
with displaced connectivity appears to lie in the sharing of the efferent conduit. In 
order for an associative memory to perform well, each of its nodes must be connected 
to some of the nodes which are not immediately local to it [2]. This requirement for 
non-local connectivity, however, significantly adds to the mean wiring length of the 
network. But by using displaced efferent arborisation, non-local connectivity can be 
achieved at a very low wiring cost. 

5 Conclusion 

Our experiments establish the important result that by displacing the point of efferent 
arborisation in a sparsely-connected associative memory model, we can significantly 
reduce wiring costs while achieving the same pattern completion performance. 



 In networks with patterns of connectivity based on a Gaussian distribution, the 
effect of introducing a displacement of the point of efferent arborisation is to increase 
the Effective Capacity of the network. The improvement in performance is most 
noticeable with tight Gaussian distributions (σ = 20), where introducing a 
displacement of 20 units results in an increase in Effective Capacity from around 9 to 
just below 12. The overall effect of introducing a displacement of efferent 
arborisation in a network with Gaussian connectivity is to decrease the mean wiring 
length of the network at which a particular Effective Capacity is reached. In this 
respect the best results are achieved with the tightest Gaussian distributions and the 
largest displacements. 
 In the second set of experiments, the performance of a locally-connected 
network was measured at progressively greater displacements of the point of efferent 
arborisation. It was found that as the displacement was increased from 10 to 50 units, 
the Effective Capacity increased linearly from around 6 to 15, after which  little 
further improvement occurred. In terms of achieving a high Effective Capacity at low 
wiring costs, the displaced local network  performed the best, exceeding the results of  
the displaced Gaussian. At a displacement of 70 units the Effective Capacity of the 
displaced local network is 15.6, and has a mean wiring length of 14.4 units. Only the 
very tightest Gaussian distribution (σ = 20) with the greatest displacement 
(displacement = 100 units) came close to this, with an Effective Capacity of  15.5 and 
a mean wiring length of 19.0 units. 
 It thus appears that a network built using purely local connectivity with 
displaced efferent arborisation represents an exceedingly efficient connection strategy 
for the construction of associative memories. This strategy would be expected to pay 
dividends in any physical implementation of associative memories such as those 
considered here, whether biologically or silicon based. 
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