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Abstract

The central resource processed by the sensorimotor system of an organism is information. We propose an information-
based quantity that allows one to characterize the efficiency of the perception-action loop of an abstract organism model. It
measures the potential of the organism to imprint information on the environment via its actuators in a way that can be
recaptured by its sensors, essentially quantifying the options available and visible to the organism. Various scenarios
suggest that such a quantity could identify the preferred direction of evolution or adaptation of the sensorimotor loop of
organisms.
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Introduction

In view of the richness and complexity of behaviour of living

organisms, one is interested in formulating basic principles that

guide adaptive behaviour in organisms. Virtually any decision by a

living organism involves the processing of information. Thus,

information (in the quantitative sense of Shannon, which we

assume throughout the paper) is increasingly being identified as a

key property and resource in biological organisms.

A basic formulation of this principle is the Law of Requisite Variety

[1,2]. Links between neural complexity and information have been

identified [3,4], and recent work aims at modelling the

information processing throughout the perception-action loop of

agents [5–11].

The hypothesis that quantitative informational principles play an

important role is supported by mounting quantitative evidence that

organisms are investing a considerable amount of metabolic energy

to acquire or process information [12–18] A further link in a more

concrete setting is provided by recent models which indicate the

existence of Bayesian inference mechanisms in the brain which are, in

turn, directly driven by a free energy principle [19].

Information is relevant for finding food, navigation, and

learning from experience and different types of communication

[20,21]. It has been hypothesized that organisms would derive a

selective advantage by optimizing the organization of their sensory

and neural information processing according to suitable informa-

tional criteria [22–25]. The criterion of information optimization

provides a biologically plausible structuring power [26–28] and

could provide significant constraints on the possible structure and

dynamics of sensorimotor loops of viable organisms arising from

the process of evolution and development.

A particular interest lies in studying how structured behaviours

in organisms can emerge under the comparatively sparse feedback

provided by evolutionary selection. Typical for the modelling of

appropriate self-motivated learning and adaptation mechanisms is

the absence of an explicit external goal.

Homeostasis and its generalizations have been proposed to

model such mechanisms [29,30], including information-theoretical

criteria such as predictive information [31,32]. In addition,

relevant criteria have been generally motivated by the ‘‘flow’’

idea to find a suitable balance between surprise, challenge and

predictability, from the fields of psychology [33], machine learning

[34–36] and related fields [37,38]. A central observation is the

importance of embodiment for the emergence of intelligent

behaviour [39].

In the present paper, we investigate an information-theoretic

quantity, empowerment, as a hypothetical candidate for a possible

optimality principle behind the evolution and development of

sensorimotor loops. We explore the plausibility of this hypothesis

in a set of different scenarios, involving the discovery of

‘‘interesting’’ world states, simple homeostatic control, the

evolution of a sensor, and the emergence of context concepts in

a Sony AIBO robot, all arising from the same principle.

Methods

We study empowerment, an information-theoretic utility function

which is universal in the sense that it is independent from a specific

external task and derives solely from the properties of the

perception-action loop of an organism or agent and its interaction

with the environment. Empowerment was introduced in its

context-free form in [40]. It measures the capacity of the agent

to influence the world in a way that this influence is perceivable via

the agent’s sensors. Concretely, we define empowerment as the

maximum amount of information that an agent could send from

its actuators to its sensors via the environment, reducing in the
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simplest case to the external information channel capacity of the

channel from the actuators to the sensors of the agent. For a more

general consideration, empowerment needs to be formulated using

the perception-action loop and information flow formalism from

[5,9,41] based on the framework of Causal Bayesian Networks

[42]. We are looking for a principle that would, in absence of

overwhelming imprinted drives, provide natural behaviour

preferences that might contribute to modulate pre-imprinted

drives or help constituting generic homeostatic variables.

The study of such quantities is motivated by the ability of

organisms to select, from a large variety of possible behaviours

those that help them survive and adapt in a hostile world where a

single wrong action can lead to death. While one can expect

evolution to create biases towards certain types of behaviours, still

the populations available to the search process of biological

evolution are finite and often remarkably small compared to the

space of possible behaviours. An individual agent or an agent

population can attempt and explore only a small fraction of

possible behaviours during its lifetime.

However, the environment in which organisms have to prevail

is not random, but intricately structured. Different kinds of models

have been devised to capture this structure (e.g. [43]). Neverthe-

less, the existing domains differ significantly depending on

complexity, niche and embodiment of the organisms considered.

The present paper suggests that it could be possible to formulate

utility functions which are both universal and local: universal in the

sense that they are determined for different scenarios and agents in

a unified way and that they are relevant to a wide range of

scenarios, species, and ecological niches; local in the sense that

they are derived for agent states only inside a limited time horizon

from the current one, and thus able to provide swift feedback

about the utility of the present state.

If candidates for such universal utilities could be shown to exist,

they could provide organisms with a ‘‘guide’’ for survival-relevant

behaviour wherever more specific drives have not (yet) been

established. During evolution such quantities may then ‘‘crystal-

lize’’ into specialized established drives if they turn out to be

relevant. This then may provide a principle that helps to discover

relevant drives in evolution and development.

If one considers specific utility measures in various (including

biological) scenarios such as the nutrient concentration around a

bacterium, the social status of a chimpanzee in a group, or the

money in a bank account of a person, they have in common that

they quantify the options available to an organism or agent. In

Gibson’s ecological approach where an agent views its environ-

ment through perceptions and actions only [44], this can be

interpreted as the actions that an agent can perform and whose

outcome it can perceive through its sensors.

Under this perspective, we suggest using a generalized measure

of mobility as universal utility; mobility is known from game-

theoretical scenarios as the number of distinct actions that an

agent can select in a given situation. It counts the options of an

agent. Mobility is known as a powerful heuristic for a number of

strategy games (e.g. in the board game of Othello [45]). Also the

previously given examples of specific utility functions can be

interpreted in terms of mobility. To a sugar-feeding bacterium,

high sugar concentration means longer survival time and hence

more possibilities to move to promising locations and a higher

chance for reproduction, to a chimpanzee higher social status

means more mating choices and interaction, to a person more

money means more opportunities and more options.

All above examples comprise a drive towards states providing

more options, i.e. with more potential for control or influence. To

capture this notion quantitatively as a proper utility function, we

quantify the control an organism or agent has over its

environment. In the spirit of Gibson’s ecological approach, this

control is measured with respect to what the agent can actually

observe.

To cast this into a precise quantitative framework, we use the

language of information theory. We measure how much an agent

can do and perceive to be doing by measuring how much information

the agent can inject into the environment and recapture via its

own sensors. Importantly, the information an agent injects into the

environment is viewed solely in the light of what it can perceive

itself, and we distinguish this from what other agents or an all-

knowing observer would detect. The concept of ‘‘the environ-

ment’’ becomes thus a by-product of the interplay between the

agent’s sensors, actuators, and morphology. The utility function

we envisage becomes an intrinsic property of the individual agent’s

perception-action loop [46]. We suggest that this quantity,

empowerment, is a natural candidate for a universal utility and

investigate its properties in a representative selection of scenarios.

Context-Free Empowerment
Empowerment quantifies the agent’s potential ability to influence

the environment as measured by the capacity to ‘‘imprint’’

information onto the environment and later perceive the

information via the sensors. To measure this potential it is

necessary to disregard the actual behaviour of the agent and to

model how the agent could behave in principle (disregarding the

actual behaviour of the agent can be imagined as removing the

agent’s controller and studying the remaining ‘‘empty shell’’ which

is the agent’s body).

To do this, we formulate empowerment in an interventional

framework based on causal Bayesian networks [42,9]. Here, we

require the tracking of maximum potential information flow through

the system. This is complicated by the fact that Shannon

information is not additive. Therefore, for the purposes of

quantifying empowerment we provide the agent with an unlimited

source of unique randomness, i.e. which is uncorrelated with

anything else in the system. This allows us to track its flow through

the system since, wherever correlation (i.e., mutual information) is

found with the uncorrelated source, it must have flowed there from

that source (an approach to measure actual - as opposed to

potential - information flow is given in [41]).

The model is based on the causal Bayesian network model of

the perception-action loop of an agent in an environment [5,9].

To define the concept of empowerment in terms of a maximum

potential information flow, we first consider the simplest case of

the perception-action loop of an agent where the action selection

has been disconnected from the sensor input and is made

independently from it, specifically through the source of unique

randomness. We measure then how much information can at most

be sent through the environment from the actuators.

Figure 1 shows the corresponding Bayesian network:

At,Atz1,Atz2 are random variables denoting the agent’s action

at time t,tz1,tz2, analogously St,Stz1,Stz2 denote the agent’s

sensor states and Rtz1,Rtz2,Rtz3 the state of the environment at

the corresponding times, and Zt the source of independent

randomness, by which actions are selected. In the Bayesian

network formalism, each arrow is to be interpreted such that the

variable depends only on the probability conditional conditioning

of the target random variable on the variables at the origin of its

incoming arrows; for instance Rtz2 depends on the other

preceding variables only according p rtz2jatz1,rtz1ð Þ; in our

model, we interpret the arrows more strongly as actual causal

mechanisms, not just as observed probability conditionals [42].

Keep Your Options Open
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To measure empowerment, we are interested in maximizing the

information flow that the actuators can transmit to the sensors at a

later time step. For instance, if we consider 3-step empowerment in

Fig. 1, we are interested in asking how much information could be

potentially generated via actuations At,Atz1,Atz2f g:A3
t and

sent to the sensor Stz3 via the environment. This is measured by

maximizing the information flow over all independent ‘‘free will’’

distributions p at,atz1,atz2ð Þ over the actions. To make clear in

the Bayesian network formalism that we perform the maximiza-

tion over a joint distribution of actions, we introduce Zt as a joint

ancestor over the actions in question.

We thus obtain n-step empowerment as

An
t ?Stzn

� �
~ max

p at,...,atzn{1ð Þ
I At, . . . ,Atzn{1; Stznð Þ, ð1Þ

under the Bayesian network from Fig. 1. For random variables of

finite size (which we assume throughout), this quantity can be

computed by standard channel capacity optimization algorithms.

For this purpose, the causal effect of the actions on the sensor

values has to be measured.

The causal effect can be measured in general by using

independent random actions to probe independent samples of

the channel or by computing the full Bayesian model for the

channel. However, under certain conditions it can even be

attained without probing or intervention, using only observational

data with the help of Pearl’s interventional calculus [42]. A useful

special case of this is given in Appendix S4; it includes scenarios

where the whole system state at successive time steps can be

observed, such as is the case e.g. in simulations. Once the causal

effect is known, the channel capacity is computed directly using

the algorithm of Blahut [51].

Note that the quantity from (1) is open-loop as it does not utilize

feedback from sensor inputs after t to select its actions. Rather, the

actuation distribution is selected ‘‘blindly’’. It is possible to

generalize the approach to utilize feedback, though the compu-

tation becomes more intricate. Similarly, one could consider

interleaved variants of empowerment where one considers a

sequence of sensor readouts Stzn’,Stzn’z1, . . . where n’vn, i.e.

the readouts begin before the actuations are over. This will,

however, not play a role in the following discussion.

Note that the time horizon n captures the foresight of the

empowerment measure under the influence of the agent’s

actions. Only features of the environment that can be reached

by the actions inside this time horizon are detected by the

measure. If the environment is relatively homogeneous and

limited, empowerment grows only slowly with the horizon; for

instance, in a fully observable deterministic finite-dimensional

grid world, empowerment grows only logarithmically with n, but

any inhomogeneity (such as a locally increased set of options, e.g.

induced by the presence of an object that can be manipulated by

the agent) reached by the growing horizon is detected by a jump

in the empowerment value [40].

Contextual Empowerment
The previous section assumes that the environmental states

from which the agent starts when measuring the empowerment

are distributed according to some given probability. It does not

distinguish these states in the empowerment calculation. As

opposed to that, consider now for a moment the agent’s

empowerment when starting in different specific states. One finds

that, in general, empowerment as well as the action distribution for

which it is achieved varies from state to state. In this case the

action distribution which maximizes information flow can vary for

each individual state, and thus this state-specific empowerment is

never smaller (but in general larger) than the empowerment value

from last section which was calculated for a global distribution

over the states.

Formulating this state-specific empowerment implies access to

‘‘objective’’ state information. As opposed to that, one could

consider the empowerment value attainable under the weaker

condition of ‘‘subjective’’ information which is limited to the

agent’s sensoric history or part thereof. The advantage of the latter

is that it would be, at least in principle, available to the agent itself.

Both ‘‘objective’’ as well as ‘‘subjective’’ variants of empowerment

will be considered in the paper; if the agent sensor has access to full

state information, they coincide. And both are important special

cases of the more general concept of contextual empowerment

which we proceed to define in the following.

Define a context, denoted with a random variable C, as a

collection of random variables from the causal Bayesian network

which are non-descendants of the variables in An
t (and Zt). Define

the empowerment given a context C, denoted by An
t ?Stzn Cj

� �
, as

the average empowerment when context C~c is observed,

weighted by the probability of observing a particular realization

of the context:

An
t ?StznjC

� �
~
X
c[C

p cð Þ: An
t ?StznjC~c

� �
: ð2Þ

This can be interpreted as the channel capacity with side

information known to the sender (actuators) and the receiver

(sensors) [47]. Observing the context never decreases the non-

context maximum information flow, since the latter can be treated

as a special case where the side-information is not used:

Figure 1. n-step empowerment as the maximum information flow from the actions At, . . . ,Atzn{1f g:An
t to a sensory input variable St’

at time step t’wt. The maximization occurs over the joint distribution of the actions (indicated by the common parent Zt). The sensor input that the
agent itself perceives later is shown in the top row of the diagram as it is detached from the action selection used for empowerment.
doi:10.1371/journal.pone.0004018.g001
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An
t ?StznjC

� �
§ An

t ?Stzn

� �
: ð3Þ

The world information that an agent itself can access to increase

its contextual empowerment is filtered through the sensors and, in

general, limited. The most informative context for the agent would

be the global state Rt; if that is not available, the next best context

consists of the sequence of actions and the sensor inputs

St,At{1,St{1,At{2, . . .ð Þ going into the past. This history of the

agent’s interaction with its environment constitutes an upper limit

on what the agent can possibly know about the momentary state of

the world.

The state space of such a history, however, can become

extremely large. Therefore, for more practically relevant situations

we will propose the construction of a context automaton, a finite state

machine with limited memory, denoted again with a random

variable C, from empirical data. Its purpose is to provide an

approximative context for contextual empowerment. At each time

step the action At taken and the resulting sensor input Stz1 are fed

into the automaton. One now searches for an automaton which

incrementally and efficiently filters and compresses the history of

the agent’s interaction with the environment in a way that the state

C of the automaton, used as a context for empowerment, yields a

maximum increase of the contextual empowerment over the

context-free case. We will use such a construction as a context

automaton. Context automata are a generalization of the concept

of e-machines [48,49], parametrising the state transitions via freely

selectable actions.

The efficiency of the context automaton found can be evaluated

internally by the agent: it is the difference between the contextual

empowerment and the context-free empowerment. Both quantities

can be estimated without referring to any variables ‘‘outside’’ of

the agent and allow a fully ‘‘internalized’’ formulation of a context

automaton which can be found in an unsupervised way.

Results

We now adopt empowerment as a utility defined for each state

(context) of an agent and study how it shapes the agent’s state

space. As a utility, we consider empowerment as guiding the

agent to particular preferred states, either by internal behaviours

of the agent or by external pressures (say, evolution). Note that if

empowerment maximization is to be achieved by the agent’s

internal behaviours, the agent needs to keep track of its context.

We argue that empowerment provides a natural a priori utility

function for an agent by studying a variety of disparate scenarios.

While there is nothing special in applying specially designed utility

functions to optimize the behaviour of an agent with respect to a

task, empowerment is universal in the sense that it is always, no

matter what the scenario, defined in the same way via the

sensorimotor loop of the agent in its environment. In other words,

for a given perception-action loop and environment, empower-

ment systematically induces natural preferred states and, conse-

quently, (as we see in the pole-balancing scenario below)

behaviours. Universality is a key property of any viable model of

self-motivated or task-independent organism behaviour. In the

philosophy of universal utilities, any more specific task-dependence

sits on top of these natural tasks or ultimately emerges from them.

In [40], it has been shown that empowerment as a utility is

consistent with specialized measures of favourable system states

and that it also attracts an agent e.g. to world states where

manipulable objects are present in simple grid worlds. Here, we

consider several more intricate and relevant scenarios, beginning

with pole balancing.

A Pole-Balancing Scenario
A central claim is that empowerment strives towards states and

behaviours one would intuitively classify as ‘‘interesting’’ and

‘‘challenging’’. To investigate this, we study a simple continuous

dynamic task. Pole-balancing on a cart is a classical task from

control theory widely used as a simple testbed for various control

or learning algorithms. We use this well-known continuous model

as it is intuitive and easy to relate to the results. In this section, we

compute empowerment for the state space of the pole-cart system

and investigate the behaviour that results from local empowerment

maximization.

The pole-cart system consists of a wheeled cart that moves along

a straight and level track. A pole is hinged to the top of the cart. A

force can be applied to the cart, pushing it one way or the other

along the track. Conventionally, the goal is explicitly given and

consists in applying (or learning to apply) the force as to keep the

pole close to vertical. Here, however, we instead use only

empowerment as the utility to be maximized by the behaviour

of the system. Note that, once the system dynamics, as well as

actuators and sensors are given, empowerment is defined in the

usual, universal, way. Beyond that, no system-specific goal is given,

in particular no indication of the task that one intuitively expects to

be solved.

The pole-cart system is described by the cart’s position x, the

cart’s speed
:
x~ dx

dt
, the pole’s angle from the upright position h

(clockwise), and the angular speed of the pole
:
h~ dh

dt
. The variables

are related as following:

d2h

dt2
~

g sin h{a cos h{mp

:
h2l cos h sin h

l 4
3
{mpcos2h

� � ,where ð4Þ

a~
F

mpzmc

,and ð5Þ

mp~
mp

mpzmc

; ð6Þ

d2x

dt2
~

4
3

az 4
3

:
h2l{g cos h

� �
mp sin h

4
3
{mp cos2h

� � : ð7Þ

We use the constants given in Table 1 for our experiments. The

Euler integration method with step size t is used for updating the

state of the system through time. Although this method is

imprecise and unstable [50], we employ the method for

consistency because it is commonly used in the majority of

treatments of the pole-balancing problem. In any case, we do not

expect the essence of the results to significantly depend on the

precision of the integration method.

With the Euler integration, the state of the system at simulation

time step tz1 depends on the previous state at time step t as

following:

xtz1~xtzt
:
xt ð8Þ
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:
xtz1~

:
xt{t

d2x

dt2
tð Þ ð9Þ

htz1~htzt
:
ht ð10Þ

:
htz1~

:
ht{t

d2h

dt
tð Þ: ð11Þ

If hj j§ p
2
, then h is clipped to either respective boundary { p

2
or

p
2
, and

:
h is set to 0 – after falling onto the cart, the pole cannot

continue falling further. Note that for simplicity and consistency

with the diagrams such as Fig. 1, t denotes just the time index step,

not an absolute time measured in time intervals t.

Consider an agent which can apply force to the cart, and can

observe the results. We now study how the agent’s empowerment

depends on the state of the pole-cart system.

Available to the agent is the action of applying the force F or 2F

to the cart. Each action lasts for the time 3t and the force is kept

constant during that time. Assume that, starting at time step 0, the

agent performs a sequence of 10 actions, denoted by a random

variable A10
0 . After this sequence of ten actions the agent observes

part of the state of the system, namely the angle of the pole

S10~H10. To calculate empowerment, the angle variable H10 is

discretised into 101 equal bins ( hj jƒ p
2

rad). Using this model, we

will calculate open A10
0 ?S10

� �
for different initial states of the

system.

The system dynamics is sensitive to initial conditions. Therefore,

instead of initial states concentrated on one point, we need to

consider slightly perturbed ensembles of starting points to obtain

representative trajectory distributions. For an initial state

c~ x0,
:
x0,h0,

:
h0

� �
the ensemble consists of 54 states uniformly

distributed around the state in the 4-cube with side

0:002 : x0z0:001a,
:
x0z0:001b,h0z0:001c,

:
h0z0:001d

� �
,

where a,b,c,d[{2,{1,0,1,2. This ensemble is then used compute

the causal effect p s10jâ10
0 ,c

� �
by obtaining p s10ja10

0 ,c
� �

for each of

the 210 action sequences. Open-loop empowerment

open A10
0 ?S10 C~cj

� �
is then computed from the causal effect

as the channel capacity of the channel A10
0 ?S10 characterized by

p s10jâ10
0 ,c

� �
. The capacity is found with a precision of 1024 bit

using the iterative algorithm by Blahut [51].

Figure 2 shows how empowerment depends on the initial angle

h0 when the other three system variables start at zero. There is an

abrupt cutoff angle after which empowerment drops to zero. If the

pole starts at more than the critical angle from the vertical, the

applied force is not enough to influence the pole’s final position

after 10 time steps — the pole falls regardless of the agent’s

actions. The small deviations from monotonic growth of

Figure 2. Empowerment open A10
0 ?S10 H0~h0j ,

:
H0~0,X0~0,

:
X 0~0

� �
for 1001 equispaced initial angular deviations of the pole from

the vertical: h0[ { p
2 ; p

2

� �
rad.

doi:10.1371/journal.pone.0004018.g002

Table 1. Parameters to the dynamics of the pole-cart system.

Parameter Value

Gravitational acceleration (g) {9:81 m:s{2

Length of half of the pole (l) 0.5 m

Mass of the cart (mc) 1 kg

Mass of the pole (mp) 0.1 kg

Control force (F) 10 N

Integration time step (d) 0.02 s

doi:10.1371/journal.pone.0004018.t001
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empowerment as one moves towards h0~0 are not just due to

sampling error but also likely to partly arise from branching points

in the dynamics of the system.

If only the initial angle is varied while the other variables are

fixed to zero, then empowerment is highest for h0~0, i.e. for a

pole that starts vertically. This corresponds to the intuitive and

natural upright target state of conventional learning tasks.

Interestingly, the full picture becomes more intricate if we allow

the initial angular speed also to be varied. In that case, h0~0 is no

longer the state with maximum empowerment and, as Fig. 3

shows, there exist states away from h0~0 with slightly larger

empowerment (by 0.07 bit). These ‘‘off-centre’’ states correspond

to a pole which is leaning to one side, but which has an angular

speed that would quickly turn it towards the upright position (and

ultimately beyond). The results show that this special constellation

allows the system to reach a (slightly) larger variety of states in

n~10 action steps than the upright pole with zero angular speed.

This saddle-point property is robust with respect to the variation of

parameters of the cart-pole system. However, it depends on

including the cart in the model, as the effect disappears in a pure

pole-control scenario (without cart and with only torque control at

the base of the pole).

Thus, if we would selectively poise the system in these states, it is

these off-centre states that would turn out to have the highest

empowerment (which is not immediately expected). However,

once the system itself is required to attain maximum empower-

ment states, the situation changes.

In fact, it turns out that above ‘‘off-centre’’ maximum

empowerment states are unreachable through the intrinsic

dynamics of the agent: while one can externally set up the initial

state carefully to start in these states, it is not possible to devise an

internal action strategy that is able to reach them under the given

actuator dynamics. These states are similar to Garden of Eden

states (i.e. states with no predecessor) in dynamical systems in the

sense the agent has no way to reach these ‘‘off-centre’’ maximum

empowerment states by itself in a sustained run under its own

dynamics.

The picture is completed by considering the behaviour of an

agent that is entirely guided by its local n-step empowerment.

Assume that the agent controls the cart-pole system at each time

step as to maximize the 10-step empowerment of the following

state. As before, assume that the only two actions available are

applying the force of either 210 N or 10 N to the cart.

We base the control policy on just the pole’s momentary angle

and angular speed since the control model can be simplified by

transforming the system into one where the cart’s position and

speed are zero. We now consider the control that greedily

maximizes empowerment, as follows: for each combination of the

pole’s angle and angular speed we determine the successor state

that results when each of the available actions 210 N or 10 N are

applied. For each of the possible successor states we determine the

10-step empowerment. The greedy controller then selects that

action that results in the successor state with the highest expected

empowerment. Figure 4 shows the resulting action selection policy.

When the system is run under this greedy policy of

empowerment maximization, it turns out that the system indeed

performs classic pole-balancing (note that this works also on a

moving cart since the dynamics of the system is invariant to

constant velocity shifts). There is an expected and a less expected

aspect to this observation: on the one hand, a priori pole-

balancing appears to be an intuitive and natural task in the cart-

pole system. It coincides with a high level of options available to

Figure 3. Contour plot of empowerment open A10
0 ?S10 H0~h0j ,

:
H0~

:
h0,X0~0,

:
X 0~0

� �
as a function of the initial angle h0 and the initial

angular speed
:
h0 when the initial position and the speed of the cart are 0. Obtained for 3016301 equispaced initial positions h0,

:
h0

� �
.

doi:10.1371/journal.pone.0004018.g003
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the agent by the pole being poised in the unstable upright

position.

However, note that, on the other hand, empowerment is, while

quite close to the maximum, not strictly maximal at the upright

position h~0,
:
h~0

� �
, as we have seen in Fig. 3, since there exist

higher empowered states. These are however excluded by the

combination of the condition of a continuous running system

constraining the states which can be reached and reliably

maintained over time with the greedy policy for empowerment

maximization. Together, they manage to ultimately reduce the

dynamics to the fundamental pole-balancing problem. The ‘‘off-

centre’’ states that would theoretically maximize empowerment

cannot be realized nor sustained.

Furthermore, it should be noted that this greedy policy is local

in the following sense: there is a one step look-ahead on which

action selection will maximize 10-step empowerment, and the 10-

step empowerment has a look-ahead of 10 time steps, so the policy

has a local time horizon of 1+10 steps. However, there is no

‘‘overarching plan’’ to balance the pole. This global behaviour

emerges purely from the local empowerment-maximizing dynam-

ics of the system (this can be compared to the globalistic structure

of reinforcement learning models where not only the agent

rewards have to be explicitly designed, but where they also

essentially have to be propagated throughout the system to all

states [52]).

Again, it should be noted that there was no scenario-specific

hand-crafted task to balance the pole. The complete behaviour

derives from the generically formulated empowerment-maxi-

mizing policy, defined exactly same way as it would be for any

other system under consideration. We will highlight possible

implications of this property for homeostatic dynamics in the

Discussion.

Empowerment-Driven Evolution of Sensorimotor
Apparatus

While artificial systems typically have fixed sensors and

actuators, in biology these evolve over time and cannot be

assumed to stay unchanged. The evolution of sensors and the

sensorimotor loop has been hypothesized to be an important

driver of evolution [53]. An organism’s sensorimotor loop

contributes significantly to its success.

The question emerges whether it would be possible to quantify

the advantageous contribution of a particular sensorimotor loop

more immediately than can be achieved by the delayed

evolutionary feedback via selection. The importance of informa-

tion discussed earlier in the Introduction indicates that it could be

expected to be suitably correlated with an overarching fitness

advantage [54,55,56,18].

We now use empowerment to immediately measure the quality

of a perception-action loop and feed it directly as a fitness criterion

into a simple artificial evolution model. Any further constraints on

the agents are summarily captured by constraining the possible

structure and informational bandwidth of sensors and actuators.

This experiment extends earlier results from [56] and studies the

nature of the qualitative change of the resulting sensoric

morphologies as experimental conditions are gradually modified.

To apply empowerment in this scenario, one should note that it

strongly depends on the causal effect of the agent’s actions on the

future sensor input. The causal effect (for a brief definition of

causal effect, see Appendix S3 or, for a detailed exposition, see

[42]) is a function of the sensory mechanism p st r̂t

��� �
and the

actuatoric mechanism p rtz1 r̂t,
�� ât

� �
which can be interpreted as a

description of the agent’s embodiment: a description of how the

agent’s sensors and actuators interact with the environment. Thus

a way of modifying empowerment is to modify these mechanisms.

Figure 4. Action selection policy for maintaining high expected empowerment as a function of the angle h and the angular speed
:
h

of the pole. Obtained for 3016301 equispaced states. In the areas marked with ‘‘10 N ’’ and ‘‘{10 N ’’ the corresponding action should be chosen,
whereas in the two areas marked with neither of the actions can prevent the pole from eventually falling.
doi:10.1371/journal.pone.0004018.g004
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Depending on the concrete scenario, this can be realized as a

modification of the environment, the agent’s morphology and

actuators, the agent’s sensors, or all of them.

This section illustrates the idea specifically by evolving sensors

and actuators of an agent for different locations (i.e. contexts) in a

simulated world. Note that empowerment can be considered to

provide local and immediate feedback to the evolutionary

dynamics — our present evaluation is based on the short-term

value of empowerment rather than some longer-term delayed

fitness measure such as the survival of the agent in the

environment.

Consider an infinite two-dimensional square grid world. A

source is located at the centre of the grid. The source emits a

signal, the strength P of which in any cell of the grid is P dð Þ~d{2,

P 0ð Þ~2, where d is the Cartesian distance from the source.

An agent moves in the world occupying one cell at a time. The

sensor model consists of a number of detectors at fixed positions

relative to the agent. Each of these detectors samples the strength

of the signal P their position around the agent. The sensor then

identifies the one with highest strength. If several detectors

measure a maximal signal, the tie-breaker is to pick one at

random, with uniform probability. The available repertoire of

detectors around the agent will be varied according to the scenario

below.

Similarly to the detectors, the agent has a given repertoire of

actions. An action is a jump of the agent into a cell relative to the

agent (not necessarily just neighbouring cells). In addition, the

agent can choose as action not to move at all. We shall now

present two complementary scenarios: evolving a sensor for a

given actuator, and evolving an actuator for a given sensor.

Assume that the agent’s actuator has a fixed repertoire of just

five actions: stay in the current cell or move into one of the four

adjacent cells south, east, north and west (von Neumann

neighbourhood). We now investigate the best layout of the sensor

detectors so that the agent’s n-step empowerment is maximal.

For the experiment, we constrain the set of sensors to those

finding the cell with highest signal strength near the agent. As

mentioned above, each sensor is modelled as a set of sampling

points (detectors) arranged relative to the agent. For example, a

sensor measuring the local gradient surrounding the agent using

the von Neumann neighbourhood consists of four sampling

points:{(0, 21), (1, 0), (0, 1), (21, 0)}, denoting the cells directly

south, east, north and west of the agent to be sampled.

To find good sensors we search in the set of sensors using an

evolutionary algorithm. The algorithm treats each sensor layout as

an individual. The sampling points of any sensor are constrained

to lie within a fixed square with side b around the agent. The

maximum number of sampling points a sensor can have is fixed.

At any point in time, the returned state of a sensor identifies that

sampling point which measures the highest signal strength. Hence,

the number of sampling points is also the number of states of the

sensor Sj j.
We define the fitness F of a sensor as the 4-step open-loop

empowerment
4
0~ open A4

0?S4

� �
of the agent equipped with

the sensor. The fitness also includes a small penalty for the number

Sj j of sampling points used:

F~ 4
0{e Sj j, ð12Þ

where we set e~10{3. The penalty serves to select, among

essentially equivalent sensors those which are more economical

and have fewer sampling points. The exact value of the penalty

used here is arbitrary, though small.

The fitness of a sensor is evaluated for a particular initial

position of the agent in the world (for instance, the centre which is

at (0,0) in Cartesian coordinates). The required (interventional)

conditional probability distribution p s4 â4
0

��� �
that describes the

resulting state s4 of the sensor at the fourth time step after carrying

out the four actions is calculated exactly from the Bayesian

network [42]. The 4-step open-loop empowerment is then the

capacity of this channel characterized by the interventional

probability distribution. The capacity is found with 1024 bit

precision using the iterative algorithm by Blahut [51].

We initialize the population with five randomly generated

sensors. In every generation, the five best sensors produce five

offspring each. The size of the population is between 5 and 30.

Five best individuals from the parents and offspring are selected

into the next generation.

An offspring is produced from its parent by mutation. The

mutation operator supports two operations: (1) addition of a

sampling point, and (2) deletion of an existing sampling point. If

the sensor has no sampling points, the mutation operator always

adds a point. If the sensor has the maximum number of sampling

points, the mutation operator always deletes a point. Otherwise,

either a new point is added or an existing one is deleted with equal

probability.

To speed up the search and make it more efficient we have

incorporated ideas from simulated annealing and tabu search: (1)

the number of mutations performed is uniformly distributed

between 1 and 1z G mod 10ð Þ,where G is the generation number;

and (2) we do not add offspring which have been evaluated before

or are already present in the population. To sample the solution

space thoroughly we run the evolutionary algorithm at least 10

times for 1000 generations each. The best individuals are selected

across these runs.

We have evolved the sensor for different positions of the agent

in the world to illustrate how empowerment makes sensors and

actuators adapt to the niche in which the agent exists. We have

constrained the sensor to a maximum of 20 sampling points which

lie inside the square with side length 21 centred around the agent.

Figure 5 shows the best evolved sensors for different starting

positions of the agent. The positions shown begin with the agent at

the centre (denoted by distance 0 to the centre), as well as

displaced to the east by 1, 2, …, 20 cells. The artificial evolution

found essentially two qualitatively distinct types of sensors. For an

agent located near the signal source (up to a distance of 11 cells)

the sensors form nearly two-dimensional ‘‘blobs’’ which capture

more or less the absolute displacement from the source. However,

for the areas further away from the source (12 cells and more), the

sensors change character and collapse into roughly one-dimen-

sional circular segments centred approximately at the source and

which only capture the bearing to the source. This phenomenon

appears consistently also for other displacement directions (not

shown here), not only for vertical ones which are equivalent to the

horizontal ones due to symmetry, but also diagonal ones.

In earlier experiments investigating agent displacements

Dx,Dyð Þ from the centre [57], it turns the best sensor layouts for

starting positions (20,0), (10,10), (20,10), and (20,20) are stable in

the sense that, if the evolutionary experiment is repeated, the

resulting solutions remain almost exactly the same. Common to

these positions was that they are relatively far away from the

centre. Evolved sensor layouts for agents closer to the centre, e.g.

(0,0) and (10,0), are much more prone to variations while retaining

exactly the same empowerment and hence fitness. This suggests

that these solutions belonged to a plateau of the fitness landscape

that allows for some significant variety of optimal solutions.

Qualitatively, though, these layouts still consisted approximately of
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a blob of sampling points. The blob was typically centred at the

agent for the (0,0) starting position, and on the far left for the

(10,0), essentially covering the centre of the gradient field.

We now inspected the population of the evolutionary algorithm

more closely. This revealed that even in a distance d up to 11 from

the centre individuals with arced sensors can already be found in

the evolved population. However, with their smaller empower-

ment value, they are inferior to the blob sensors which constitute

the best solutions in this case. As d grows beyond 11, the advantage

of the blob sensors vanishes and the arced solutions start

dominating. This indicates a replacement of one major solution

niche by another on approximately continuous change of the

parameter d and this, in turn, a phenomenon analogous to a phase

transition in the transformation of the blob into the arc.

Since in the discussion we will return to this sensor evolution

scenario in a broader context, we briefly conclude the section by

mentioning the results from [57] concerning the complementary

task of evolving actuators which maximize empowerment for a

fixed sensor. Apart from that, that experiment was similar to the

sensor evolution experiment described above. The main observa-

tion was that, unlike the sensors, the evolved optimal actuators

exhibited a significant variety.

Summarizing, this section demonstrates that empowerment can

serve as an immediate guide for sensor and actuator evolution. In

particular, using empowerment as a fitness function allows

evolution to implicitly switch from one qualitative representation

of information to another one, namely from a ‘‘blob’’ sensor

measuring an absolute displacement vs. a bearing sensor in the

sensor evolution experiment. The switching was emphatically not

designed into the model but emerged through the empowerment

optimization and via a discontinuous shift from one solution niche

to another in the manner of a phase transition. In the Discussion,

we will present possible insights this may provide into the

abundance of sensory modalities in nature.

Relevant Contexts Induced by Empowerment
When considering contextual empowerment, we noted that, if a

context helps increase empowerment, then we expect the context

to be sharing information with the global state of the system. This

makes it possible for an agent to obtain an intrinsic meta-sensor for

features in the global state of the system that are relevant to

empowerment, purely by constructing a suitable context which

increases empowerment.

In this section we illustrate this idea using a hardware robot, the

Sony AIBO. The intention is to demonstrate that empowerment,

while being a completely intrinsic function, can be used to construct

contexts which correspond to external concepts, and can thus

assign an analogy of ‘‘meaning’’ [58–60] to the robot’s actions.

We use an AIBO ERS-210A robot dog. The robot is lying on a

desk (Fig. 6). We employ only one type of action, namely setting

the robot head’s tilt to a value in [21;1], and concentrate

exclusively on the infra-red (IR) sensor mounted in the head of the

robot and pointing along the longitudinal axis of the head. The

sensor measures the distance to an obstacle in front of the head.

The effective range is below 1 m. Moreover, the sensor is noisy, for

example, because of the reflections from the table.

In this experiment the AIBO performs a randomly chosen

action (set the head’s tilt to a randomly and uniformly chosen

value in [21;1]) every two seconds, and at the end of the two

second period, just before performing a new action, the IR sensor

reading is captured (the interval of two seconds is long enough for

the effect of an action to be independent of any previous actions.

This is to simplify the experiment for proof-of-concept purposes).

Every 200 actions a book is placed in front of the robot for 100

actions and then removed. The experiment lasts for 1000 actions.

Based on the captured data we calculate the average

empowerment by choosing a quantization of the actions and the

sensor inputs (see below for details). We base the empowerment

function on the effect of an action on the IR sensor 2 seconds later.

Empowerment is increased by the knowledge of whether the book

is present in front of the robot or not, because the causal effect of

an action on the sensor depends on the presence of the book in

front of the robot. The increase is different for different

combinations of the quantizations of action and sensory input.

In this experiment we distinguish three empowerment quanti-

ties: context-free empowerment – empowerment when no context is

used, book-contextual empowerment – empowerment where the state of

the book (the book is either present or absent) is used as the

context, and controller-contextual empowerment – empowerment where

the state of a suitably constructed context automaton (see the

section introducing contextual empowerment) is used as the

context.

There exists a context (namely, the presence or absence of the

book) that increases contextual empowerment. However, the

question is whether it is actually possible to create a context

automaton which has controller-contextual empowerment that is

Figure 5. A possible phase transition in the layout of best evolved sensors. Best evolved sensors for position d,0ð Þ are shown above, where
d[ 1,2, . . . ,20f g. The transition from clustered to arched layout occurs around d~12.
doi:10.1371/journal.pone.0004018.g005
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higher than the context-free empowerment, and whether the state

of such a context automaton would actually capture information

about the state of the book, thus serving as an indirect sensor for

the presence or absence of the book. Since we designed the

experiment so that the only external factor that would influence

empowerment is the state of the book, we expect this to be the

case.

We address these questions by performing an evolutionary

search to find a two-state context automaton that provides the

highest contextual empowerment and compare the controller-

contextual empowerment of the best automata with the book-

contextual empowerment.

The action (a tilt in the interval [21;1]) and the sensor input (a

distance in the interval [0;1], measured by the infra-red sensor)

two seconds after the action has been taken are quantized into bins

of equal size. The number of bins used for the action quantization

may be different from the number of bins used for the sensor

input. This quantization creates two discrete random variables: the

action A and the sensor input S. The presence or absence of the

book in front of the robot is denoted by a random binary variable

B. The experiment generates a single time series

at,bt,stð Þt~0,1,...,1000 from which all quantities are later calculated.

The underlying causal Bayesian network is A?S/B. The

context-free empowerment A?Sð Þ and the book-contextual empowerment

A?SjBð Þ are calculated from the network using the total joint

distribution p a,s,bð Þ~
P999

t~0 f At~a,Bt~b,Stz1~sð Þ, with f

denoting the empirical frequencies of the given event combina-

tions a,s,bð Þ.
The context automaton is a deterministic finite-state automaton

with a binary state C and uses the momentary sensor input and

action as input. At each time step t the automaton performs a time-

independent mapping st,at,ctð Þ. ctz1ð Þ. The underlying causal

Bayesian network is similar to the above book-contextual case

except that C is used instead of B : A?S/C. Analogously, we

calculate the controller-contextual empowerment as A?SjCð Þ.
Due to undersampling, the theoretic assumption that C and A

are independent does not hold in general if the context automaton

C is extracted from an empirically sampled finite time series.

Therefore, when evolving context automata (mappings) to

maximize the controller-contextual empowerment, we add a

bottleneck-type penalty term [61] to the empowerment value, and

use the modified expression A?SjCð Þ{bI A; Cð Þ, here with

b= 1, as fitness function. This quantity penalizes the empower-

ment for a violation of the assumption of independence between A

and C. The above fitness function is again calculated from

p a,c,sð Þ~
P999

t~0 f Ct~c,At~a,Stz1~sð Þ, with f the empirical

frequencies.

We performed an evolutionary search for each combination of

Aj j[2,3, . . . ,15 and Sj j[2,3, . . . ,15 to find a two-state context

automaton with the highest controller-contextual empowerment.

The context-free empowerment for these cases lies in the interval

[0.52;2.03], the book-contextual empowerment in [0.61;2.15], and

the controller-contextual empowerment of the best evolved

controllers in [0.56;2.15]. As a general trend, it turns out that,

whenever there is a significant difference between context-free and

book-contextual empowerment, indeed context automata tend to

be found which achieve a controller-contextual empowerment

close to the book-contextual empowerment (Fig. 7). Thus, the

difference between book-contextual empowerment and the

context-free empowerment can be interpreted as a potential for

evolution to find a context automaton with high controller-

contextual empowerment.

Note that empowerment maximization using the context

automaton evolution leads to contexts corresponding to external

states, even while it only uses intrinsic data available to the robot.

As expected, this only happens when the effect of the robot’s

Figure 6. Setup of the experiment with the AIBO. From left to right the photographs show the minimal, zero, and maximal tilt of the AIBO’s
head.
doi:10.1371/journal.pone.0004018.g006

Figure 7. Empowerment gain (in bits) by a best evolved
context-automaton over the context-free empowerment
( A?SjCð Þ{ A?Sð Þ on the vertical axis) plotted vs. the
difference between book-contextual empowerment and con-
text-free empowerment ( A?SjBð Þ{ A?Sð Þ on the horizon-
tal axis).
doi:10.1371/journal.pone.0004018.g007
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actions on its sensors indeed depends on these external states. The

evolved context automaton is thus able to reconstruct aspects of

these external states. This can be considered as assigning a

rudimentary kind of ‘‘meaning’’ to the agent’s action-selection or

information processing mechanism.

Discussion

We wish to emphasize several salient points of the empower-

ment model. First of all, using empowerment to direct task-

independent behaviour is distinct in a number of relevant aspects

from the other methods suggested for that purpose. For instance,

the autotelic principle [38] or the learning progress [37] require

measures which are to some degree tailored to the problem at

hand and intertwined with the particular learning model. Other

perspectives for self-motivated behaviour range from reinforce-

ment learning, to homeostasis and autopoiesis principles

[35,29,62].

The latter are conceptually closer, as is the homeokinetic

approach [63,64] and a closely related information-theoretic

variant of that method, based on predictive information [32]

which considers maximizing predictive information in the system,

i.e. the information that the sensory past (or a part thereof) of the

agent has about its future. Similarly, other information-theoretic

quantities operating on the system dynamics, and other coordi-

nation measures, as well as excess entropy have been used

successfully to study the generation of intrinsically motivated

behaviour in embodied systems [65,11].

As opposed to these measures, empowerment quantifies (1) a

potential rather than an actual information flow in the system,

probing the ‘‘potentiality space’’ rather than the actual trajectory

as most task-independent functions do; (2), it looks at information

that could be generated specifically by the agent itself and then

injected into the system, rather than information (or entropy,

depending on the perspective from which it is considered) that is

generically produced somewhere in the system.

The fact that empowerment deals with what an agent could do

rather than what it actually does is conceptually a significant

difference to the other models since it implies that empowerment

does not depend on a particular action-selection mechanism or

controller. It derives only from the embodiment, i.e. on how the

agent is linked into the environment. The other approaches

consider the whole system dynamics and link the concrete agent

behaviour directly to their utility measure.

Importantly, in empowerment, the actuatoric dynamics plays a

role that is explicitly conjugate to the sensory dynamics, whereas

most approaches focus on the sensory time series while their

actuatorics is essentially implicit. This is due to the fact that, to

compute empowerment, the perception-action loop is treated in a

fundamentally causal way, in contrast to the other approaches

which limit themselves to observational, correlative measures. The

advantage is that, by this separation of sensors and actuators,

empowerment provides a very transparent measure of the role that

is played specifically by the agent as opposed to its environment.

However, this conceptual clarity comes at a price. The

downside of using empowerment is that, as a causal quantity, it

is significantly more difficult to compute than the other quantities

of this kind. In most of the above experiments, empowerment had

to be computed using a ‘‘detachable’’ world model that allowed to

reposition and retry certain behaviours in a particular situation.

An exception to that was the hardware AIBO scenario for the

discovery of relevant contexts, where however we had to set up the

experiment in a particular way (e.g. waiting for two seconds to

make sure that the effect of an action has taken place) and

combining it with the context automaton evolution to be able to

isolate the causal effect of the actions.

This means that, unlike the other approaches mentioned many

of which operate on-line, it is not straightforward to use

empowerment to generate per se exploratory or self-adaptive

behaviour. Empowerment identifies only the ‘‘importance’’ of

system states and does not prescribe how to reach them. Obviously,

such a rule can be easily derived, e.g. by greedy action selection, as

in the cart-pole system. However, to actually compute this, this

requires a more or less sophisticated world model. Since the

present paper studies empowerment from a proof-of-principle

perspective, it is not currently preoccupied with a efficient ways of

implementing the model (which are explored in separate work),

but rather with identifying the general and fundamental principles

at work and whether it makes sense to consider empowerment as a

universal utility.

In a variety of scenarios highlighting different aspects of possible

agent worlds, we have seen that empowerment identifies intuitively

Figure 9. n-step empowerment as the maximum information flow from the actions At, . . . ,Atzn{1f g:An
t to a sensory input variable St’

at time step t’wt. The maximization occurs over the joint distribution of the actions (indicated by the common parent Zt). The sensor input that the
agent itself perceives later is shown in the top row of the diagram as it is detached from the action selection used for empowerment.
doi:10.1371/journal.pone.0004018.g009

Figure 8. Perception-action loop as a Bayesian network. S –
state of the sensor, A – action performed by the actuator, M – state of
the memory of the controller, R – state of the rest of the agent-
environment system. The diagram can be read as follows: action At is
picked given sensor state St and memory state Mt, sensor state St is
obtained from the state of the rest of the agent-environment system Rt ,
and Rtz1 is obtained from Rt and At.
doi:10.1371/journal.pone.0004018.g008
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‘‘interesting’’ aspects. Previous work has shown that empowerment

identifies states which increase options e.g. by allowing the

manipulation of a box or finding areas in mazes or worlds which

strongly correlate with hand-selected performance measures

[40,66].

In the sensor evolution model, empowerment provided a model

for the emergence of qualitatively different sensors (blob vs. arc),

depending on the state (‘‘niche’’) of the agent. Especially important

was the cart-pole example in which empowerment provides the

system with a natural ‘‘pole-upright’’ homeostatic dynamics

without having to specify this explicitly as a task. In particular,

while a greedy empowerment maximization was determined

locally for each state, it nevertheless resulted in a global

homeostatic behaviour. There are some indications that this

property generalizes to other scenarios. In the AIBO experiment,

we showed that empowerment induces a relevant context from

which an agent may be able to induce a subjective ‘‘meaning’’ for

certain aspects of the environment.

Importantly, in all these experiments empowerment was

virtually defined in the same way. Once the system, the agent,

its sensors and actuators as well as their resolution is fixed, then,

for a given time horizon, empowerment is determined in the

precisely same fashion.

It is not obvious that the states favoured by empowerment

should match the intuitive expectation of good states: the

consistent observation of this phenomenon requires discussion.

Of course, it is easy to design explicit counterexamples: for

instance, in the cart-pole system one could imagine the specific

task of having the pole drop to the right side. While this is

generally easy to achieve, and is an unchallenging task compared

to the upright pole balancing, it might be a valid system goal.

Note, however, that if the agent starts in a highly empowered state

(upright pole), one has no difficulties to bring the system to the

desired target of having the pole fall to the right, while the

converse is not true.

This principle of identifying generically advantageous initial

states is a general property of empowerment. So, while

empowerment does not need to be correlated with an explicitly

given goal, being in a maximally empowered state is a good a

priori guess for an initial state that maximizes the agents’ chances

of homing into a suddenly emerging goal. It identifies states which

allow the agent to ‘‘keep its options open’’.

This makes empowerment a particularly suitable candidate

measure to identify advantageous states in scenarios where the

agent has to sustain itself over time — it identifies states of

particular sustainability for a given environment and sensorimotor

equipment (this is analogous to the role of the free energy principle

for the brain from [19] which has been proposed, among other, to

prevent phase transitions deleterious to the system’s organization).

Such a setting, in turn, is highly relevant for biological systems and

could lead to understand how homeostatic variables can emerge

intrinsically in a biological system with a given sensorimotor

equipment. If biological adaptation would indeed aim at

maximizing sustainability over various time scales according to a

principle such as empowerment maximization, then it might be

possible that novel homeostatic variables could emerge from an

evolution of regulative processes that implement dynamics similar

to empowerment maximization. Thus, this could provide an

insight how the evolution of the rich set of homeostatic and

regulatory variables on all levels of living organisms is directed,

providing a powerful principle for biological self-organization.

It is unlikely to expect that a quantity such as empowerment is

measured and optimized directly in biology, i.e. that a strong

principle of empowerment maximization would hold. A weak form

of the principle, however, might be possible: analogously to the

optimized information transmission in neurons [67,17,16], over

time evolution might result in organisms that implement a suitable

informationally optimal dynamics, at least to some approximation.

In that case, quantities such as empowerment could provide

transparent insight into the selection pressures that guide the

emergence of successful information processing architectures on all

levels of biology.

The main free variable of the empowerment model is the

temporal horizon. Its depth determines not only the ‘‘foresight’’ of

the empowerment measure, but also to which extent one can

model the focusing on a target. As illustration, consider a predator

homing in on its prey: the predator’s short-term empowerment is

reduced due to its energy and time expenditure, however, on

successful capture and consumption of the prey, the predator’s

long-term empowerment is again increased as its life span is

prolonged and, hence, the predator’s potential to continue

carrying out actions in the future. More generally, if one considers

only sustainable systems (the ones typical to biology), then with a

sufficiently large temporal horizon the homing in on specific

targets is covered by the maximum empowerment principle.

As seen in the sensor evolution scenario, empowerment can

drive sensor and actuator ‘‘morphology’’ evolution. Since the

value of empowerment involves properties of both the actuators

and the sensors, it provides an immediate measure for the

efficiency of the perception-action loop and a direct gradient for

adaptation without requiring the achievement of specific life tasks

for the given organism. Of course, in general there will be

metabolic, bandwidth or morphological constraints, which can be

readily incorporated in the constraints on sensor and actuator

evolution. But, given such constraints, a quantity such as

empowerment provides an immediate gradient for the adaptation

or evolution of sensorimotor loops. The alternative would be

selection via survival, where the success of a particular sensori-

motor loop would be only determined after prolonged time and

thus would entail indirect and often significantly delayed feedback

concerning the performance of a given sensorimotor loop.

The simple principle of empowerment maximization together

with the size constraint on the sensor placement in the sensor

evolution scenario highlights further interesting aspects: the sensor

structure changes qualitatively, from a blob to an arc as the agent

moves from one ‘‘niche’’ to another. Thus even this simple model

provides an indication how the emergence of a rich variety of

biological sensors specifically adapted to their particular sensory

niche might be guided by some universal, for instance empower-

ment-like principle.

On the other hand, this scenario has been shown earlier to

exhibit much less selection pressure when actuators were evolved

[57]. In this case, many quite different, but equally empowered

designs were found. This was due to the fact that the actions were

selected freely by the agent (apart from bandwidth, there were no

restrictions on the actuators) and thus the actuators had more

freedom in producing their information than the sensors have in

extracting information from the environment. This can be loosely

interpreted in the way that information that can be produced by

the actuators of an agent is of a ‘‘higher quality’’ than that which

can be extracted by the sensors; the behaviour of an active agent

exhibits a signature. This leads, in turn, to a reduced selection

pressure during actuator evolution, as the agent can use the

significant control over its actions to compensate differences in

actuator setups. In the biological reality, however, actuators suffer

from very significant energetic and mechanical limitations and

costs. We thus expect that once these factors are included, these

will end up producing a significant additional selection pressure on
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the morphology and operation of actuators. On the other hand, if

substantial energetic or morphological constraints are absent, we

do indeed predict that the evolution of actuators under

empowerment will experience significantly less specific selection

pressures than the evolution of sensors.

The experiment with the AIBO robot shows that empowerment

is able to provide an agent with an intrinsic concept of relevant

features (contexts) in the environment. The context found from a

time series observed internally by the robot sensors matched well

the externally determined presence or absence of a book. For the

presence/absence of the book to be relevant to the robot, it has to

have an influence on the robot’s perception-action loop. In this

view, if the book is not perceived, but also if it does not modulate

the influence of the agent on the world, the context change is not

considered relevant to the agent.

Returning to the original question, we asked whether it is

possible to formulate universal utilities for (specifically biological)

agents. If it were possible, this could provide some both universal

and local guiding principle for the adaptation of biological systems.

We have seen above that there are a number of candidates for this.

The present paper, in particular, studies the suitability of

empowerment for that purpose.

Such a hypothesis requires a discussion why an evolutionary

process should at all, on the long run, end up with some universal

utility emerging to guide its direction. While the present paper

does not attempt to suggest a particular mechanism by which this

could be attained, in the case of empowerment we can propose

some hypothetical paths for the emergence of such a phenomenon.

Probably the most direct one can be discussed in the context of the

homeostatic effect mentioned earlier this section. A sustainable

system (as typical for biology) needs to be ‘‘prepared’’ for a certain

set of perturbations and needs to be able to counteract them with a

maximal probability of success. A measure such as empowerment

could then emerge as a result of this selection pressure. Note that

this implies that sensors that better identify the dangerous

perturbations, and actuators that better counteract them will then

also be favoured by the selection process. In other words, the a

priori structure of sensors and actuators could incorporate much of

the evolutionary ‘‘experience’’ of relevant perturbations, and an

agent’s life-time adaptation would then just fine-tune the balance

by maximizing e.g. empowerment or a related quantity.

Once equipped with certain sensorimotor properties, actions

which cannot be distinguished via the sensors, or sensory

modalities that cannot be affected by the actions at some time

scale are likely to degenerate away, as information processing is

energetically costly [12]. It thus makes sense to hypothesize that, in

an approximately stable equilibrium of evolution and individual

adaptation, an agent will be to some degree in a state of optimality

with respect to empowerment; the plasticity of the control

mechanism would lead the agent into a state where the actuators

can exploit the perceivable sensory bandwidth to the fullest.

Where not, one would expect the sensors to degenerate over

evolution if they do not provide a selective advantage or the

actuators to be enhanced if they do. One mechanism for this could

be the discovery of novel modes of actuation and manipulation

which provide the agent with additional degrees of freedom.

It should be noted that we say nothing about how empower-

ment would be computed by evolution or during the adaptation of

the concrete organism. In an artificial computational model one

can carry out explicit calculations of the quantities associated with

empowerment. However, in biology a phenomenon such as

empowerment maximization may originally play a guiding role in

the discovery of novel sensorimotor modalities, but may then, on

the long run, be effectively condensed over time into the form of

natural homeostatic drives such as hunger, pain avoidance, or

temperature regulation. In particular, the consideration of a

universal utility such as empowerment does not necessarily provide

us with a biological mechanism, but only with a principle. On the

other hand, attaining such a principle could be enormously

beneficial as it could be useful to make predictions, to guide our

search for the concrete underlying biological mechanisms or even

to help construct plausible biologically inspired artificial systems.

Information regarding Figures 8 and 9 can be found in the

Appendix S2 and S4.
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