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Preventive maintenance
Oiling the wheels is
almost as effective as
turning the clock back
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1 Scheduling preventive maintenance (PM)

The following ideas are due to Lin, Zuo & Yam

� Frequency of system failure depends on its age.

Number of failures between t � a and t � b is
� b

a
h�t�dt

where h�t� is the hazard rate function .

� PM makes system’s effective age � calendar age.

A system enters service at time t � 0

First PM is at time t1 � x1.

Just before PM, effective age y1 � calendar age x1.

Just after PM, effective age is b1x1, for some b1 � 1.

From t1 till next PM at t � t2, effective age is

y � b1x1 � x� where 0 � x � t2� t1�
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Failure rate after PM may not be same as a genuinely younger
system.

- number of failures between t � 0 and t � t2 is
� x1

0
h�x�dx�

� x2

0
a1h�b1x1 � x�dx�

Here x2 � t2� t1 and a1 is a constant � 1

The effective age just before PM at time t2 is

y2 � b1x1� x2

PM reduces this to b2y2, where b1 � b2 � 1.

Thus, between t2 and t3,

effective age is

y � b2y2 � x � b2b1x1 �b2x2� x�

where 0 � x � x3 � t3� t2;

and number of failures is� x3

0
a2a1h�b2y2� x�dx

for some a2 � 1.
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Generalising, for k � 1� ���n,

yk = effective age just before k-th PM at time tk.
xk � tk� tk�1, the k-th PM interval

This implies

tk �
k

∑
i�1

xi (1.1)

yk � bk�1yk�1� xk � �
k�1

∑
j�1

Bjx j�� xk (1.2)

where Bj �Πk�1
i� j bi.

xk � yk�bk�1yk�1� (1.3)

Cumulative hazard rate

Hk�t� �
�

Akh�t�dt where Ak �Πk�1
i�1 ai�

Number of failures between tk�1 and tk is

Hk�yk��Hk�bk�1yk�1��
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Now suppose PM takes place n�1 times
- the n-th PM is a system replacement.

For an optimal PM schedule we minimize

C�y� �
Rc

T

�
γr ��n�1�� γm∑n

k�1�Hk�yk��Hk�bk�1yk�1��

yn�∑n�1
k�1�1�bk�yk

(1.4)

where

γr �
Cost of system replacement

Cost of PM

γm �
Cost of minimal system repair

Cost of PM

Rc reflects lifetime cost (multiple of one PM cost)

T is the total life of the system

Hence C�y� is mean cost of operating the system.
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Lin, Zuo & Yam have proposed a semi-analytic method for
finding yk to minimize (1.4).

Their approach also optimizes n, the number of PM

They quote results when hazard rates are Weibull functions

h�t� � βtα�1 with β� 0 and α� 1 (1.5)

We use numerical methods to minimize mean cost
- initially we get optimum n by explicit enumeration.

We need to avoid yk � 0
- so introduce transformation yk � u2

k and minimize

C̃�u� �
γr ��n�1�� γm∑n

k�1�Hk�u2
k��Hk�bk�1u2

k�1��

u2
n�∑n

k�1�1�bk�u2
k

�
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We consider example hazard rates of the form

h�t� � β1t
α�1 �β2; with β1� β2 � 0 and α� 1� (1.6)

for various choices of α�β1 and β2.
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Figure 1: Sample hazard-rate functions h�t�

We use cost ratios

γm � 10 and γr � 1000 (1.7)

�� system much more expensive to replace than to repair or
maintain.
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C̃�u� minimized by Newton’s method for fixed n

∇C̃�u� and ∇2C̃�u� obtained via fortran90 AD module �����

(Brown, Christianson)
- reverse accumulation approach for AD
- interface with ����� simplifies coding of changes to PM
model

Solution of SPM1 when n � 7.
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Figure 2: Optimal solution to SPM1 for n � 7

- plots effective age against time
- instantaneous decrease every time PM occurs.
- system becomes effectively younger at each PM.
- intervals between PM get shorter
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Newton iterations show that C̃�u� is non-convex
- function may have several local minima.

There are trivial multiple solutions due to y � u2

To test for multiple distinct solutions, we applied the global
method DIRECT (Jones) to C̃.

DIRECT is derivative-free and seeks global minimum in hy-
perbox defined by bounds on variables.
- systematically subdivides initial box
- only explores potentially optimal regions

After obtaining a solution u�1� ���u
�

n (e.g. by Newton’s method)
we use DIRECT in the box

0 � ui � 2ū where ū �
1
n

n

∑
i�1

u�i �

To date we have not found better minimum of C̃
- suggests Newton’s method is indeed finding the global mini-
mum of mean cost for each n.
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2 Minimizing mean cost for varying n
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Figure 3: Solutions of SPM1 for various n
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Figure 4: Solutions of SPM2 for various n
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Figure 5: Solutions of SPM3 for various n

In each graph the minimum with larger n is spurious

- optimal effective-ages imply negative PM intervals!
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It is better to optimize w.r.t. PM intervals:
Let v1� ���vn be optimization variables and set

y1 � x1 � v2
1 (2.1)

and, for k � 2� ����n�

xk � v2
k; yk � bk�1yk�1� xk� (2.2)

This ensures the x’s and y’s are all non-negative.

Now
C̄�v� �C�y� (2.3)

where C�y� is mean cost function (1.4)

We can minimize C̄�v� by Newton method & �����
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Figure 6: Solutions of SPM1 using C̄�v� for various n
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3 Minimizing mean cost w.r.t. n

We want to find the optimum number of PM without explicit
enumeration.

Use continuous variable ν for number of PMs

Let n denote the integer part of ν and set θ� ν�n.
- obviously θ� 1 (but θ may be � 1).

There are n�1 complete PMs and one partial PM

Partial maintenance reduces effective age to

yn�θ�yn�bnyn� � �1�θ�θbn�yn � b̃nyn

instead of bnyn.

There is a system replacement at effective age yn�1

- (relative) cost of repairs between tn�1 and tn�1 is

γm�Hn�yn��Hn�bn�1yn�1��Hn�1�yn�1��Hn�1�b̃nyn���

Time elapsed between tn�1 and tn�1 is

yn�bn�1yn�1� yn�1� b̃nyn�
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Let N be the maximum number of PMs

We need optimization variables y1� ����yN and ν.

Now perform the following calculations.

n � �ν�; θ� ν�n; b̃n � 1�θ�θbn (3.1)

Rc � γr ��ν�1�� γm

n

∑
k�1

�Hk�yk��Hk�bk�1yk�1��

�γm�Hn�1�yn�1��Hn�1�b̃nyn�� (3.2)

T � yn�
n�1

∑
k�1

�1�bk�yk � yn�1� b̃nyn� (3.3)

C�y�ν� �
Rc

T
� (3.4)

C�y�ν� is continuous but non-differentiable
- there are jumps in derivatives because

∂C
∂yk

� 0 for ν� k�1;
∂C
∂yk

�� 0 when ν� k�1�
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We want to minimize C�y�ν� subject to the constraint that PM
intervals are non-negative
- therefore we require

yk�bb�1yk�1 � 0 for k � 1� ���n�1 (3.5)

and yn�1� b̃nyn � 0� (3.6)

This means the number of constraints depends on ν.

We also want ν to be an integer and so

θ�1�θ� � 0� (3.7)

Minimizing (3.4) subject to (3.5), (3.6), (3.7)
- use non-differentiable exact penalty function

C�y�ν��ρ1

n

∑
k�2

��yk�bk�1yk�1���

�ρ1��yn�1� b̃nyn����ρ2�θ�1�θ��� (3.8)

where �z�� denotes Min�0�z�.
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Better to use PM intervals as variables
- we extend C̄�v� to include the extra variable ν.

We calculate C̄ by first setting

x1 � v2
1; y1 � x1;

and then, for k � 2� ���n,

xk � v2
k; yk � bk�1yk�1� xk�

We then use (3.1) – (3.3) and finally set

C̄�v�ν� �
Rc

T
� (3.9)

Scheduling problem is to minimize (3.9) subject only to the
equality constraint (3.7).

This can be solved by minimizing

C̄�v�ν��ρ2�θ�1�θ��� (3.10)

We can seek (global) minimum of (3.10) by DIRECT.
- global because ρ2�θ�1�θ�� may produce multiple local min-
ima when θ� 0 or θ� 1.
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A semi-heuristic approach, based on restarts

Algorithm A
Choose a range nmin � n � N

Choose starting values v̂k, k � 1� ����N.

Set starting value

ν̂�
nmin�N

2
�

Choose box-size 	∆vk� 	∆ν, for DIRECT as

∆vk � 0�99v̂k� k � 1� ���N; ∆ν�
N�nmin

2
�

After M iterations of DIRECT perform a restart
- search re-centred on �v�k�ν

�� – best point so far.

Box-size is reset to

∆vk � Max�1�0�99v�k�� k � 1� ���N;

∆ν� Min�ν��nmin�N�ν��

Re-starts continue until M DIRECT iterations give
change � 0�01% in the value of C̄.
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Algorithm A was applied to SPM1 – SPM3 with

nmin � 1� N � 20� M � 100

Starting guesses

v̂1 � 5� v̂k � Max�0�9v̂k�1�1�� k � 2� ���N

Penalty parameter in (3.10) was ρ2 � 0�1.

Results

C̄ Number of PM DIRECT iterations Restarts
SPM1 124.59 9 400 3
SPM2 148.76 11 500 4
SPM3 82.665 5 300 2

Table 1: Scheduling solutions with Algorithm A

These optima agree with results from minimizing C̃ by New-
ton’s method for fixed values of n.
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Sensitivity of solutions to changes in repair and replacement
cost
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Figure 7: Solutions of SPM1 for various γm� γr

Optimal n increases as the repair cost comes closer to PM cost.

Conversely, optimal n decreases as relative cost of repair in-
creases.

Optimal n increases and decreases with γr.
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4 A differentiable alternative to (3.10)

Fletcher’s ideal penalty function solves

Minimize F�x� s.t. ci�x� � 0� i � 1� ���m

by unconstrained minimization of

E�x� � F � cT �AAT ��1Ag�ρcTc (4.1)

where g � ∇F�x�

A is the Jacobian matrix whose rows are∇ck�x�T for k� 1� ���m.

It would be good to use this in Algorithm A
- instead of the non-smooth penalty function

We could then refine DIRECT estimates of the global solution
by using a gradient-based method

Another change in formulation is needed ...
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N is the largest number of PM permitted

Optimization variables are effective ages y1� ���yN

- together with extra quantities θ1� ���θN .

The θk lie between 0 and 1
- to indicate if k-th PM is complete or partial.

k-th PM reduces effective age from yk to b̃kyk where

b̃k � 1�θk �θkbk�

Hence repair cost between tk and tk�1 is

γm�Hk�1�yk�1��Hk�1�b̃kyk���

Total cost of all PMs is
N�1

∑
k�1

θk

So lifetime cost of the system is

Rc � γr �
N�1

∑
k�1

θk � γm�
N�1

∑
k�1

Hk�1�yk�1��Hk�1�b̃kyk���

Life of the system is

T � yN �
N�1

∑
k�1

�1� b̃k�yk�

Rc and T are defined in terms of y1� ����yN �θ1� ����θN and are
differentiable. Hence cost function

C̃�y�θ� �
Rc

T
(4.2)

is also differentiable.
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We need to minimize C̃�y�θ� subject to

θk�1�θk� � 0� k � 1� ���N (4.3)

(so no partial PMs in an optimum schedule)

Clearly (4.3) is differentiable.

Minimizing (4.2) subject to (4.3) can be expected to produce a
solution where for some n� N

θk � 1� k � 1� ���n;

θk � 0� yk � yk�1� k � n�1� ���N�

For the problem of minimizing (4.2) subject to (4.3) the ideal
penalty function turns out to be

E�y�θ� �C�y�θ��
N

∑
k�1

θk�1�θk�

1�2θk

∂C
∂θk

�ρ
N

∑
k�1

θ2
k�1�θk�

2
�

This is differentiable and its global minimum gives an optimal
PM schedule.

Global minimum can be estimated by DIRECT and refined by
a fast local gradient method.
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5 Conclusions

� We can do PM scheduling via numerical methods as well as
analytical approach of Lin, Zuo and Yam.
- may be important when hazard rates are not simple

� Use of AD makes it easy to implement changes in problem
formulation.

� Can treat number of PMs as a continuous variable.
- Algorithm A applies global minimization to a non-smooth
function. Gives promising results.

� A variant of Algorithm A could use Fletcher’s ideal penalty
function E�y�θ�
- permits solution refinement by a gradient method.

Even though E�y�θ� involves ∇C�y�θ�
- and so ∇2C�y�θ� is involved in ∇E�y�θ� -
∇E can be obtained using AD (Christianson)
- implementation remains a topic for further work
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