
1

Representing the behaviour of software projects using

multi-dimensional timelines

Austen Rainer

School of Computer Science

University of Hertfordshire

College Lane Campus

Hatfield

Hertfordshire AL10 9AB

U.K.

a.w.rainer@herts.ac.uk

Context: There are few empirical studies in the empirical software engineering research community

that describe software projects, at the level of the project, as they progress over time.

Objective: To investigate how to coherently represent a large volume of qualitative and quantitative

data on a range of project-level attributes as those attributes change over time.

Method: Develop a modelling technique, multi-dimensional timelines (MDTs) and undertake a

preliminary appraisal of the technique using examples from a longitudinal case study of a project at

IBM Hursley Park.

Results: MDTs can represent project-level attributes as they change over time, provided these

attributes, and the empirical data about them, can be located in time (an analytical requirement) and can

be represented in terms of the simple geometrical structures of points, lines and planes (a graphical

requirement). Changes in attributes are documented at the point in time at which the change occurs.

There are a number of ways in which an attribute can be represented on the MDT: as a quantitative

time series, as an event, as an event with label containing complex qualitative information, or as a

schedule. The MDT technique is currently not capable of representing relationships between different

attributes e.g. a causal relationship.

Conclusion: The initial appraisal of MDTs is encouraging, but further work is needed on the

development of the MDT technique and on its evaluation.

Keywords: case study, software project, multi-dimensional timeline, time series, qualitative data,

quantitative data

mailto:a.w.rainer@herts.ac.uk

2

1 Introduction

The widespread occurrence of software projects, together with the almost perennial concern as to the

success and failure of such projects (e.g. [1-8]) is evidence of the importance of projects to the IT and

software industries. In addition, a software project occurs over a period of time and changes during that

period, and intuitively one would expect projects with longer duration to be more susceptible to

change. Despite the importance of software projects, and the fact that they change as they progress,

there is surprisingly little research in the empirical software engineering research community that has

investigated actual software projects at the level of the project and as the project changes over time. (In

section 2 we review previous research that has investigated actual projects over time.) This lack of

investigation constrains our understanding of software engineering and software engineering

management.

Whilst there is a need to study projects at the level of the project, and as the project changes over time,

it is extremely challenging to conduct such studies. These studies are time-consuming and effortful and

hence costly. They produce large volumes of structured and unstructured data, much of it generated by

the project, and large quantities of this data would be need to be pre-processed (e.g. qualitative data

would need to be coded [9]) before it could be analysed using conventional approaches (e.g. statistical

software). In addition to the large volumes of data there would also be a large, complex and even

contradictory set of conceptualisations to consider, both those used by participants in the project and

those used by the researchers in their research programmes.

In this paper, we focus on one challenge: the concise representation of large volumes of diverse data

collected on a range of project-level attributes as those attributes change over time. We propose multi-

dimensional timelines (MDTs) as a technique for tackling that challenge and we use examples from a

58-week exploratory, longitudinal case study of a software development project at IBM Hursley Park

to demonstrate the use of the technique. The MDTs draw on a variety of types of evidence to, for

example, present quantitative data (e.g. number of design changes), event data (e.g. decisions) and

schedule data (e.g. durations and checkpoints).

We organise the remainder of this paper as follows: section 2 reviews related research on the study of

software project-level attributes over time, and the use of techniques to represent changes over time.

Section 3 introduces and briefly explains the multi-dimensional timeline technique. Section 4 describes

the design of the preliminary appraisal of the technique. Section 5 presents and discusses three

examples of MDTs. Section 6 then discusses the results of the appraisal and considers directions for

further research.

2 Related work

2.1 The investigation of software project behaviour over time

There have been a number of studies over the years that have investigated software projects, but there

have been few studies that have investigated the changes in project-level attributes over time of actual

projects. Starting with Abdel-Hamid and Madnick‟s seminal work [10] developing a system dynamics

model of software projects, there has been a growing interest in approaches to simulating the behaviour

of software projects over time (e.g. the series of International Workshops on Software Process

Simulation and Modeling, organised by Portland State University, USA) but work in this area tends not

to follow the progress of an actual project over time e.g. with a fine-grained longitudinal study.

Another body of research investigates the critical success factors for successful software projects [11],

but again work in this area tends not to follow the progress of actual projects over time, but instead

relies on survey studies (e.g. [12]) or analyses of previously collected datasets on project attributes

(such as van Genuchten‟s review of project plans [13]). Yet another body of work investigates the parts

of actual software projects. For example, in another classic study, Curtis et al. [14] investigated the

software design process, considering five behavioural layers of software design: the individual, the

3

team, the project, the organisation and the business milieu. Curtis et al.‟s study was based on interviews

with participants on 17 projects, again not investigating behaviour over time. Rodden et al. [15] has

compared process models with actual development. Waterson et al. [16] have studied the impact of

organisational and cognitive factors on the progress of commercial projects. Hesse et al. [17] has also

investigated actual behaviour of parts of projects against prescribed behaviour but again not over time.

The lack of study of software project behaviour over time constrains our understanding of software

engineering and software engineering management, and does so in at least three ways. First, it is

difficult for findings from studies of part of a software project to be properly appreciated within the

context of a whole project. This is indirectly recognised by researchers when they recognise the

potential impact of context on the results of their studies e.g. [18]. For example, it is generally

recognised that software code inspections are a cost effective method of identifying defects in software

code, but there are many projects that do not use software code inspections, and there may be certain

types of project behaviour that make using software code inspections difficult e.g. effort, resource and

time constraints. Second, it is difficult to develop a theory of software projects and their actual

behaviour, and to then test that theory. Third, there is a „vicious circle‟ in terms of methodology and

research effectiveness: until we study project-level attributes as they change over time we cannot learn

how best to study project-level attributes as they change over time; but it is also hard to judge which

project-level attributes are most valuable to study.

The „vicious methodological circle‟ is perhaps reflected in the methodological advice on the conduct of

empirical studies. A number of recent papers [9, 19-22] advise on how to study software behaviour and

technologies. These papers tend to treat time either as a property of the phenomenon being studied (e.g.

the lead time of a project) or of the study itself (e.g. the time to undertake the study). But the advice

does not extend to consideration of how to study a phenomenon over time. As a first example,

Runeson and Höst [19] refer to Yin‟s [23] variety of alternative structures for reporting case studies, of

which one structure is chronological. Besides recognising the chronological structure for reporting the

results of a case study, Runeson and Höst direct little attention at how to analyse a phenomenon over

time, or how to report findings involving time. As a second example, Seaman [9] acknowledges that

“Historical qualitative information can also be gained by examining documentation” ([9]; p. 558); but

other than recognising historical information, Seaman‟s article does not explicitly address the analysis

or reporting of behaviour over time.

2.2 The use of timelines in empirical software engineering

Whilst empirical software engineering researchers appear to lack an awareness of the importance of

investigating project behaviour over time, they do clearly consider time when investigating

phenomenon within a project. Bradac et al.‟s work ([24] but see also [25]) is particularly relevant here

because it is one of the few studies we are aware of that reports a time line analysis of coded-qualitative

data. Bradac et al.‟s study analysed a time diary maintained by a developer and the paper presents a

simple time line over 75 consecutive days indicating the task being undertaken by the developer (e.g.

plan development, design, code) and the state of that task (broadly, whether the developer was able to

work on the task, or was waiting on some input for that task). Walz et al. [26] report a simple time line

of project staffing together with a small number of “major events” over the four months during which

they videotaped the 19 design team meetings for their study.

A separate study also of relevance here is the work undertaken by Guindon [27, 28] to understand the

cognitive work undertaken by developers. Guindon used protocol analysis, with two developers

verbalising their thinking as they tackled a design problem. Guindon then classified the verbalised

reports, presented them as 90-minute time series, and compared the classification of actual cognitive

work against the prescribed work. She used the results to argue that developers undertake an

opportunistic approach to design rather than a structured, linear approach i.e. moving opportunistically

between modelling the problem, understanding the requirements, and high, medium and low level

solutions. Others (e.g. [29, 30]) have subsequently challenged Guindon‟s claims and proposed

4

alternative explanations; the important point here however is the way that Guindon has used a time-

series of categories of data, comparing work over time against prescribed phases, to underpin her

arguments.

Cook et al.‟s work ([31]; see also [32, 33] for related work) is helpful here as a point of contrast. Cook

et al. exploit readily available, existing data sources to support the historical analysis of an in-place

software process. Cook et al.‟s approach differs to ours in a number of respects however. They focus

on a process lower than the level of the project and on quantitative data only; and there is therefore no

explicit representation that integrates quantitative and qualitative data in a time line. Also, while they

collected data over time they do not report that data as a time series, although they do report a finite-

state machine model of the process. In section 5 of this paper, we take examples from one instance (a

project) whilst Cook et al. report on a large number of instances. Cook et al. recognise that it may not

be easy to integrate data from different sources. In the examples reported here, we use the relative week

number of the project as an index for integration of different data sources and different types of data.

There is a wide range of other studies that examine actual processes within software projects, but these

studies do not seem to report findings in terms of time lines involving qualitative and quantitative data,

or even quantitative time-series e.g. [14, 16, 17, 34-44]. As other examples: Heijstek and Chaudron

[45] visualise effort distributions for different stages in projects; and Wnuk et al. [46] visualise the

inclusion and exclusion of candidate features from the next release of a product. Neither of these

studies includes qualitative data, nor combines qualitative and quantitative data.

2.3 The use of timelines in other research disciplines

Other research disciplines recognise the importance of investigating a phenomenon over time. We

briefly focus on three areas of research: case study design [23], experimental and quasi-experimental

design [47], and qualitative data analysis [48]. Overall, whilst these areas recognise the importance of

investigating behaviour over time, these techniques are limited in various ways: they may be one

dimensional, or focus only on quantitative data, or not represent time at a uniform level of granularity,

or not consider time at a sufficiently low level of abstraction.

2.3.1 Case study design

Yin [23] suggests six structures for reporting case studies. Yin considers the chronological structure to

be relevant to explanatory, descriptive or exploratory research; recognises that case studies “generally

cover events over time” ([23]; p. 153); and also recognises that chronological structures are important

because “presumed causal sequences must occur linearly over time” ([23]; p. 153). Yin highlights one

pitfall to chronological structures: disproportionate attention is usually given to the early events with

insufficient attention directed at the later events.

2.3.2 Experimental and quasi-experimental design

Shadish et al. [47] devote a chapter of their book to discuss the interrupted time series design. For

Shadish et al., time series refers to a large series of observations made on the same variable

consecutively over time. The observations may be made on the same unit, or on different but similar

units. Interrupted time series allows the investigator to study the effect of a treatment that occurred at a

known point in time. If the treatment had an effect, then the observations after the treatment should

„behave‟ in a different way to the observations before the treatment. Implied within Shadish et al.‟s

discussion is the presence of events e.g. the introduction of the treatment. As the title of their book

indicates, Shadish et al. examine time series from the perspective of experimental or quasi-

experimental designs. In contrast, we are interested in time lines that combine qualitative and

quantitative data, and do so from the perspective of case study design which means that we have

inevitably small sample sizes. These contrasting perspectives may explain our broader and perhaps

more accommodating concept of time lines rather than Shadish et al.‟s time series.

5

2.3.3 Qualitative data analysis

Miles and Huberman [48] present a sourcebook of techniques and ideas for qualitative data analysis.

This sourcebook includes a range of techniques for “time-ordered displays” to aid within-case and

cross-case exploration and description. Miles and Huberman go on to explain that, for the qualitative

researcher, narratives are probably indispensable if we are to understand a complex chronology in its

full richness; but the problem is that going straight to an extended narrative from written-up field notes

runs the risk that the narrative is partial, biased, or simply “dead wrong” ([48]; p. 111). They write:

“Life is chronology. We live in a flow of events... the problems we face in understanding event

flows are those of sorting out the different domains of events, preserving the sequence, showing the

salience or significance of preceding events on following events – and doing all of this in an easily

visible display that lets us construct a valid chronology.” ([48]; p. 111; emphasis added)

In their sourcebook, Miles and Huberman present and discuss a range of techniques, the main ones

being event listing, critical incident chart, time-ordered matrix and time-ordered meta-matrix. For each

of these, Miles and Huberman present examples and advice on the application of the technique. We

summarise this advice in Table 1.

Table 1 Summary of four techniques for representing qualitative data over time

Type Comments

Event list (EL) Summary: A matrix that arranges a series of concrete events by chronological

time periods, sorting them into several categories.

 Benefit: ELs are easy to do and have good payoff in understanding any extended

process. They can be done at many different levels of detail.

 Time required: varies between 15 minutes to half a day to 5 hours of work

Critical incident

chart and timeline

(CICT)

Summary: ELs that are limited more sharply to critical incidents (e.g. incidents

that are important or crucial) and/or to an immediate setting

 Benefits: not stated, but the implication is that CICTs are useful for when one

wants to focus on critical, influential or decisive events.

 Time required: not stated

Time-ordered

matrix (TOM)

Summary: A more general form of the ELs. Has its columns arranged by time

period, in sequence, so that the investigator can see when particular phenomena

occurred. The basic principle is chronology. The rows depend on what else the

investigator is studying.

 Benefits: use a descriptive TOM when the data is fairly complete, to begin

developing possible explanations that can be tested

 Time required: if field notes have been coded, a TOM could be assembled in 2 –

3 hours, but more complex TOMs will take longer.

Time-ordered

meta-matrix

(TOMM)

Summary: Columns organised sequentially by time period; the rows need not be

ordered, but can have the cases in arbitrary order. Again, the basic principle is

chronology.

 Benefits: TOMMs are easy to do and work best when one wants to examine a

reasonably specific class of time-related events (or states) across cases.

 Time required: generally speaking, if one spends adequate time in specifying the

events and developing code, the analysis can go relatively quickly. In one

example provided, it took 3 hours to read the case reports, another 3 hours to

enter the data in a refined matrix, and then another hour for drawing conclusions

and writing up.

.

6

2.4 Summary of the preceding review

Software projects and their behaviour are very important however the change in projects over time is

not being investigated by the empirical software engineering research community. Indeed, on the basis

of the methodological advice published, it seems that the community lacks an awareness of the

importance of software project behaviour over time. Other fields of inquiry recognise the importance of

investigating behaviour over time and have presented a number of techniques for representing this

behaviour however these techniques are often limited in some way: they focus on quantitative data

rather than qualitative data; may not present multiple variables concurrently in time (instead focusing

on, for example, single time series), or do not maintain a consistent, low-level temporal granularity.

The investigation of software projects is extremely challenging in terms of (at least) the demand on

resources, the scale and complexity of the data that would be collected and analysed, as well as the

scale and complexity of possible conceptualisations of the projects. Indeed, these challenges may help

to explain the limited number of studies of software project behaviour over time.

One particular challenge is the concise representation of large volumes of diverse data collected on a

range of project-level attributes as those attributes change over time. This challenge motivates the work

we report here i.e. on the preliminary development of multi-dimensional timelines (MDTs) as a

technique for tackling that challenge.

3 Multi-dimensional timelines

A multi-dimensional timeline (MDT) is intended to visualise multiple sets of data over time with in

general each set of data being of a particular type e.g. a quantitative time-series, a schedule of phases, a

sequence of events, or some qualitative data. As we will show with the examples in section 5, MDTs

require data that can be represented in time and that can be represented using the simple geometrical

structures of points, lines and planes. The first of these requirements is, in a sense, an analytical

constraint; the second of these requirements is a graphical design constraint.

Broadly speaking an MDT is structured into one or more sections in the visual display. Each section

provides a graphical space to represent a set of data. A set of data is positioned in that space in a way

that is sensible for that type of data. For example, a quantitative time series could be positioned in the

space as a histogram, whereas a set of decisions may be positioned as a sequence of events. The MDTs

in section 5 provide a range of examples of how types of data are positioned in the sections/spaces.

Whilst each section possesses its own y-axis (where the meaning of that y-axis is specific to the type of

data), all sections share a common x-axis (time) which is needed in order to represent data as events in

time, and to synchronise different information in the MDT.

7

Figure 1 Simple, annotated example of a multi-dimensional timeline (MDT)

Figure 1 presents a simple, annotated example of an MDT. As already explained, the MDT is organised

into sections with all sections on the diagram ordered by a common x-axis shown at the foot of the

diagram. For the MDTs in section 5, the x-axis is ordered in weekly units, these units being appropriate

to that project. Other MDTs could use other units of time such as seconds, days, months, or years. Each

section has a title and a border, although the border is not shown.

The MDTs presented in section 5 were all created manually using Microsoft Excel (to generate the

quantitative time-series) and Microsoft PowerPoint (to prepare the visual displays). As a result,

quantitative time-series have been presented in the lowest section of an MDT, but this was solely for

convenience because it was easier to manually align other non-quantitative information (such as phases

and events) with the quantitative time-series, rather than the other way around. Where a section

presents multiple quantitative time-series, the y-axis can be used to represent more than one metric, as

we show with the workload and capability section in the MDT presented in Figure 2.

All objects in the diagram are accompanied by descriptive labels. Uncertainty over the start or

completion of an interval of time or the occurrence of an event are typically illustrated with question

mark (i.e. „?‟) or a thinner line preceding or succeeding a thicker line. Events are represented by filled

squares or unfilled circles. Shaded thick lines also indicate overrun.

In principle, it is good design to maintain a consistent notation within a MDT. The use of different

notations however helps to emphasise the principles of MDTs (i.e. to represent change over time for a

variety of types of data and entity) as distinct from the presentational style used in any particular MDT.

4 A preliminary appraisal of the multi-dimensional timeline technique

4.1 Research questions

Our general research question for this paper is:

8

GRQ1 How can multi-dimensional timelines be used to concisely represent the behaviour of a set of

project-level attributes as they change over time?

We decompose this research question into four more specific questions viz.

SRQ1 To what degree can MDTs accommodate different types of data?

SRQ2 To what degree can MDTs represent different types of change?

SRQ3 To what degree can MDTs accommodate different conceptualisations?

SRQ4 What are the requirements and limitations of multi-dimensional timelines?

In previous work [49] we identified and collected information on several projects at IBM Hursley Park.

For this paper, we use examples from one of the projects, Project B. We use the reference Project B to

remain consistent with previous work reported on this project e.g. [49-52]. Our previous work has used

visualisations to present information on software project behaviour and, specifically, software project

schedules. In the current paper, we formalise for the first time those visualisations as multi-dimensional

timelines.

4.2 An overview to Project B

Project B is one release of a middleware transaction processing system (here known as Product B) that

operates on mainframe computers. Other versions within the product family [53, 54] operate on mid-

range machines and workstations. The release preceding Project B introduced new transaction logging

functionality that required specific hardware to operate; hardware that was not commonly used by

customers.

Decision-makers in the product family recognised that the requirements of specific hardware for

transaction logging restricted the product‟s market, and they needed to correct this issue quickly.

Because major releases of the product typically occur in a rhythmic cycle of approximately 18 to 24

months (cf. [55]), a minor release was required to deliver a software alternative to the hardware-based

functionality. The primary purpose of Project B was to deliver this software alternative. In addition,

Project B also provided an opportunity to deliver some functionality that should have been delivered in

the preceding release, and some functionality that was planned to be delivered in the release that would

succeed Project B.

The product family decision-makers also recognised that it was more effective for the software

transaction logging functionality to be provided via the operating system rather than within Product B

itself. This was because the functionality would be more efficient to develop, but also because the

product would perform more efficiently when in operation. The operating system is maintained and

developed by a product area external to IBM Hursley Park but within IBM Corporation. The external

product area designed and coded the transaction logging function and Project B tested it. Project B is

also one of four successive projects which are costed as a group. This arrangement might affect the

planned staff levels for Project B.

Overall, Project B was considered a success and, as one criterion of this success, the release was

delivered when originally planned. Closer inspection of the project indicates that at least two features

were not delivered with the product, and that the quality of one of these features was lower than desired

when it was finally delivered to the market (via the World Wide Web) some weeks later.

9

4.3 The volume of data, and its diversity

Table 2 Summary of the range and depth of evidence collected for the project

Type Evidence Project B

Naturally-occurring evidence Meeting minutes, of which:

- Project status meetings

- Senior management meetings

- Project review (post-mortem)

51

49

1

1

 Project schedules 1

 Projector overheads (from presentations) 1

 Project documents, of which:

- Plans

- Other documents

6

3

3

 Risk assessments 2

 Project „contract‟ 1

Research-„generated‟ Interviews 8

evidence Researchers records of status meetings 2

 Feedback workshop questionnaires 1

 Total number of ‘documents’ 73

Table 2 indicates the range and depth of evidence collected, and analysis conducted on that evidence,

for Project B. A relatively large number of documents were collected and much of this documentation

was naturally generated by the project itself. The naturally occurring evidence was supplemented by

the conduct of interviews and a feedback workshop following the completion of the project.

The primary source of evidence used in the analyses was the minutes of project status meetings. Project

B held meetings attended by representatives of all the functional areas in the project. The status

meetings were the highest-level meetings within the respective projects, occurred regularly (typically

weekly or fortnightly), were typically attended by representatives from functional areas important to

the given project, and are a naturally occurring phenomenon (so that the researcher is not intruding on

the project). Overall, the status minutes provide a broad view of the project over the duration of the

project. Naturally, minutes do not record all that was discussed at a meeting, or even necessarily the

most important issues (e.g. for political reasons, a discussion at the meeting may not be reported in the

minutes), and such meetings are unlikely to discuss all the issues occurring within the project at the

time of the meeting. Despite these simplifications, the minutes provide a large volume of „rich‟

information about the project over the duration of the project, and this information appears rich enough

to provide substantive, longitudinal insights into progress in software development. Furthermore, the

minutes provide detail that is unlikely to be collected from other sources of data and that can also

indicate simple causal connections between events.

The feedback session was conducted approximately one year after the completion of the project. The

Project Leader and Project Assistant were present at the session. The session took the form of exploring

the study‟s findings with the Project Leader and the Assistant, so as to validate and clarify the findings.

Van Genuchten [13] adopted a similar approach in his study of software project schedules. More

recently, Applicability Checks (e.g. [56] referring to [57]) have been proposed as a method for

checking the relevance of a scientific study for practice. The feedback session therefore provides one

method of validation of the findings from this investigation. The feedback session also provided

additional information to help clarify and extend the analysis.

10

4.4 Definitions

In preparation for the examples given in section 5, we define three terms here: project-level attributes,

project workload and project capability.

The definition of project-level attributes rests on an appropriate definition of a project. There are a wide

variety of definitions of projects (see [58] for one review) of which a traditional definition is:

An endeavour in which human, material and financial resources are organized in a novel way, to

undertake a unique scope of work, of given specification, within constraints of cost and time, so as

to achieve beneficial change defined by quantitative and qualitative objectives. ([59], quoted in

[58])

As noted earlier, Curtis et al. [14] distinguished between five behavioural layers in software design, of

which one was the project, but did not provide explicit definitions of these layers. Because projects are

abstract entities it is difficult to make clean distinctions between the project and an activity or entity

within the project. Nevertheless, project-level attributes are attributes of the entity project (cf. [60]),

examples being: project duration, project schedule, and project budget. Some project-level attributes

are composites of a number of more specific attributes e.g. a project‟s schedule potentially includes

information on phases and milestones of the project. Inevitably, some of these attributes may be

aggregates of within-project attributes, or may be specified by more senior parts of an organisation e.g.

an acceptable project duration or overall budget.

Workload is represented in the MDTs in terms of features and design changes. (In Figure 2, these are

measured using the scale on the right of the figure, with range zero to 14.) Broadly, both features and

design changes are sets of market requirements of a piece of software which “... typically involve

changes and additions to multiple [software] subsystems” ([61]; p. 840). Whilst, in principle, features

refer to new functionality and design changes refer to modifications to existing functionality, in

practice there are no clear distinctions between a feature and a design change: in terms of code size, a

design change may be larger than a feature. At the feedback workshop, the Project Leader provided

more information on features and design changes:

1. Features are the work that is planned at the beginning of the project.

2. Changes in workload, once the project starts, are managed as design changes.

3. Some of the design changes accepted on to the project were actually features, and some of these

are larger in size that the 13 features originally planned. (This indicates how features and design

changes are not effective measures of process size or product size.)

4. There are two types of design changes:

 design changes that add function.

 design changes that remove function.

Both types involve work i.e. they increase workload on the project. The first type increases the

size of the product. The second type reduces the size of the product.

5. A very low number of design changes were expected for Project B (almost zero) in contrast to

the actual number that occurred on Project B.

Project capability is broadly defined as the ability to complete project workload at a given time in the

project. The concept of capability incorporates concepts of productivity and resource, and we use the

term capability rather than effort to imply that a project‟s ability to complete work is not just a function

of the number of staff on a project, or the amount of effort available.

For measurement purposes, capability is represented in the figures in terms of weekly resource levels.

(In the project documents for Project B, planned resource levels are recorded on a monthly basis, so

these have been converted to weekly resource levels for Figure 2. The scale on the left of the figure,

with range zero to 70, is used to measure weekly staff levels.) At the feedback workshop, the Project

Leader annotated an earlier version of Figure 2 to indicate the actual weekly staff levels for his project.

11

It is clear from Figure 2 that there are some slight increases in staff, but rather than adding people to the

project (cf. Brook‟s Law [62]), the Project Leader is able to delay the re-assignment of existing staff to

their new project (Project B+1). This is similar to Perry et al.‟s [63] observation that designers are

reassigned to higher priority projects, in this instance remaining with a project rather than being

assigned to another project.

5 Examples of the timelines

Figure 2 presents an MDT on the planned and actual schedule, workload and capability of Project B. It

is clear from the figure that a considerable amount of change occurred during the project and at

different periods of time in the project. For example:

1. The actual phases of work did not progress as planned, with phases completing later than

planned and phases progressing concurrently in contrast to the originally planned sequential

phases.

2. There was an increase in actual effort toward the end of the project

3. There were considerable increases in workload on the project, with the number of design

changes increasing from zero to 12. This is a near-100% increase in the combined number of

design changes and features, although this does not necessarily imply a 100% increase in the

actual amount of workload (because features and design changes are not reliable measures of

process size and product size). In addition to the increase in the number of design changes, note

the timing of these increases. The intended last week for accepting design changes was week 18,

close to the planned completion of the design/code phase, but at this point only five of the

eventual 12 design changes are accepted. (The remaining seven are being considered by week

18.) Some design changes are accepted after the apparent actual completion of the design/code

phase! This suggests that the design/code phase may actually progress for longer than

represented in Figure 2. The increase in design changes after the actual completion of the

design/code phase also suggests that the project is in multiple phases at any one time (cf. [63])

and that the plan does not represent these multiple phases accurately

The figure also indicates uncertainty, for example in terms of when phases start and complete and when

decisions were actually made.

A variety of different types of data are presented in the figure:

1. Quantitative time series e.g. design changes, staff levels.

2. Events e.g. decisions.

3. States e.g. phases.

4. Qualitative information, presented as an event with a label e.g. “Decision to proceed with

schedule & NOT to slip the GA [general availability] date”. (emphasis in original meeting

minutes)

In addition to the changes between the planned and actual progress of phases, note the frequency of

planned milestones for the project. With only two exceptions, the design complete milestone and the

functional verification complete milestone, all milestones are planned to occur during approximately

the last quarter of the project. Two of these milestones are project oriented (the system test and

integration complete milestones) whereas the other two milestones are business oriented (the

availability and announce checkpoints). Consequently, for long periods of the project there are no high-

level checks of how the project is progressing. This may be because progress in the design phase is

difficult to properly assess, and so even if there were milestones, these milestones would be ineffective.

Abdel-Hamid and Madnick [10]) argues that reports of actual progress often simply reflect the planned

progress because a more accurate assessment of actual progress is not possible.

12

Figure 2 Planned and actual schedule, workload and effort on Project B

0

10

20

30

40

50

60

70

-1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

Project week

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14 D

C
R

F
eatu

re

Workload & capability

Events
Decision to proceed with schedule
& NOT to slip the GA date

Design change cutoff

Schedule (planned)
Availability DCP

Integration test complete

Announce DCP
FV complete

Plan
Design
Sys Test

Design complete

System test complete Plan DCP

Schedule (actual)

Plan DCP

Plan
Design
Sys Test

?
?

All design change work
complete

Product shipped to manufacturing

Project
wrap-up
session

? ? ? ? ? FV complete

Availability
DCP

System test complete

Announce DCP

Integration test complete

Actual staff level

Design changes

Planned staff level

Planned & actual features

O
ri

g
in

al
ly

 p
la

n
n
ed

 s
ta

ff
in

g

13

-1 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

Project week

Indicators of project urgency

Teams are

working shifts

& weekends

Building of weekly

increments starts
Designer starts

„mission pay‟

Daily defect

screen team

meetings start

Major concerns re

project schedule

Designer

prioritising

defects

Request for

twice-weekly

builds

Categorising

defects

Push to fix defects

Determine specific areas

stopping test

Schedule (planned)
Availability DCP

Integration test complete

Announce DCP

FV complete

Plan
Design
Sys Test

Design complete

System test completePlan DCP

Schedule (actual)

Plan DCP

Plan

Design
Sys Test

?
?

Internal replans (w/ 1st plan)

1st plan 1st re-plan 7th re-plan5th re-plan
2nd re-plan

4th re-plan

3rd re-plan

?
6th re-plan

Decision to proceed with schedule

& NOT to slip the GA date

Events
Product shipped to manufacturing

-1 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

Project week

Indicators of project urgency

Teams are

working shifts

& weekends

Building of weekly

increments starts
Designer starts

„mission pay‟

Daily defect

screen team

meetings start

Major concerns re

project schedule

Designer

prioritising

defects

Request for

twice-weekly

builds

Categorising

defects

Push to fix defects

Determine specific areas

stopping test

Schedule (planned)
Availability DCP

Integration test complete

Announce DCP

FV complete

Plan
Design
Sys Test

Design complete

System test completePlan DCP

Schedule (planned)
Availability DCP

Integration test complete

Announce DCP

FV complete

Plan
Design
Sys Test

Design complete

System test completePlan DCP

Availability DCPAvailability DCP

Integration test completeIntegration test complete

Announce DCPAnnounce DCP

FV completeFV complete

Plan
Design
Sys Test

Plan
Design
Sys Test

Design completeDesign complete

System test completeSystem test completePlan DCPPlan DCP

Schedule (actual)

Plan DCPPlan DCP

Plan

Design
Sys Test

?
?

Internal replans (w/ 1st plan)

1st plan 1st re-plan 7th re-plan5th re-plan
2nd re-plan

4th re-plan

3rd re-plan

?
6th re-plan

1st plan1st plan 1st re-plan1st re-plan 7th re-plan7th re-plan5th re-plan5th re-plan
2nd re-plan2nd re-plan

4th re-plan4th re-plan

3rd re-plan3rd re-plan

?
6th re-plan

?
6th re-plan

Decision to proceed with schedule

& NOT to slip the GA date

Events
Decision to proceed with schedule

& NOT to slip the GA date

Decision to proceed with schedule

& NOT to slip the GA date

Events
Product shipped to manufacturing

Figure 3 Internal re-plans and indicators of project activity for the project

14

-1 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

Project week

1st plan 1st re-plan

3rd re-plan

7th re-plan4th re-plan 5th re-plan

2nd re-plan
Internal replans (w/ 1st plan)

Feature schedule (actual)

F03 D

F03 FV

F03 ST

F02 D

F02 FV

F02 ST

?

? ?

?

?

?

?
6th re-plan

?

Schedule (planned)

Plan
Design
Sys Test

Decision to proceed

with schedule & NOT

to slip the product

delivery date

Events

Schedule (actual)
Plan

Design
Sys Test

?
?

Design review held for

F02. Lead designer not

totally happy

Lead designer

modifying plans after

F02 design review

Rewrite of F03 would

mean a subsantial

increase in regression

testing

ST feel they have a

potential schedule

exposure on F03

Still unhappy with

final F03 design

Main F03 design

complete; not

promoted

Concern that F03

work by ext. proj.

is still not finished

Main F02 design

completed

Test cannot yet

predict quality of

F02 and F03

Concerns over F02. Customers

will hit many problems if they

use the feature

FV complete

-1 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

Project week

1st plan 1st re-plan

3rd re-plan

7th re-plan4th re-plan 5th re-plan

2nd re-plan
Internal replans (w/ 1st plan)

Feature schedule (actual)

F03 D

F03 FV

F03 ST

F02 D

F02 FV

F02 ST

?

? ?

?

?

?

?
6th re-plan

?

Schedule (planned)

Plan
Design
Sys Test

Schedule (planned)

Plan
Design
Sys Test

Plan
Design
Sys Test

Decision to proceed

with schedule & NOT

to slip the product

delivery date

Events

Schedule (actual)
Plan

Design
Sys Test

?
?

Schedule (actual)
Plan

Design
Sys Test

?
?

Plan

Design
Sys Test

?
?

Plan

Design
Sys Test

?
?

Design review held for

F02. Lead designer not

totally happy

Lead designer

modifying plans after

F02 design review

Rewrite of F03 would

mean a subsantial

increase in regression

testing

Rewrite of F03 would

mean a subsantial

increase in regression

testing

ST feel they have a

potential schedule

exposure on F03

Still unhappy with

final F03 design

Main F03 design

complete; not

promoted

Main F03 design

complete; not

promoted

Concern that F03

work by ext. proj.

is still not finished

Main F02 design

completed

Main F02 design

completed

Test cannot yet

predict quality of

F02 and F03

Test cannot yet

predict quality of

F02 and F03

Concerns over F02. Customers

will hit many problems if they

use the feature

Concerns over F02. Customers

will hit many problems if they

use the feature

FV completeFV complete

Figure 4 Actual feature schedule for two features of the project

15

Figure 3 presents an MDT on the planned and actual project schedule, together with the occurrence of internal

re-plans, indicators of project urgency and other events. The internal re-plans and indicators of project urgency

are the most interesting aspects of this timeline, because they further indicate changes on the project, the

frequency of those changes, and when the changes occurred. All of the indicators of project urgency actually

comprise qualitative information represented as a labelled event on the timeline.

The internal re-plans are changes to the project plan that do not require senior management approval. Of the

seven re-plans on Project B, 20 weeks of the project pass before the first re-plan occurs, but then six further re-

plans occur during the next 26 weeks. This is, on average, a change to the plan every month. (The exact week

when the sixth re-plan occurs is not known, but this does not affect the calculation of the average because we

know when the final re-plan occurs.)

Of the 13 indicators of project urgency, only one seems to be planned (the building of weekly increments from

week 22). Many of the other indicators are „situated‟, in that their presence depends on how the project

„unfolds‟, and as a result, these indicators cannot be planned for (although they might be expected). Most of the

indicators occur as the project approaches the planned completion of test (between weeks 37 and 43). At the

„centre‟ of these indicators (i.e. week 41), the project‟s management commit to the original product delivery

date, rather than seeking to re-negotiate (with senior management) a revised product delivery date.

Figure 2 illustrates the planned and actual behaviour of Project B at a project level. By contrast, Figure 4

compares the planned schedule at a project level with the actual schedule for two features being delivered in the

project, as well as related events and project re-plans. The feature schedules are not strictly at the project level,

but the MDT shows how project level attributes can be affected by within-project behaviour. The two features

(F02 and F03) were chosen because, of all the features and design changes in the project, these two features are

referred to most often in the minutes. The frequency of reference in the minutes is presumably because these

two features were discussed most frequently in the meetings and the frequency of discussion was presumably

because these two features were the most problematic features on the project.

Of seven re-plans on Project B, six of these relate to re-scheduling the phases of features F02 and F03. (The

other re-plan concerns the re-scheduling of feature F07.) Consistent with these re-plans, both features complete

their respective design/code phases, functional verification phases and system test phases later than originally

planned, and are the two features delivered via the World Wide Web. These two features most clearly impact

the project-level schedule.

The comments presented in the „Events‟ section of the figure indicate that both features experience significant

re-designs early in the project. In addition, designers of feature F03 are concerned that required work by an

external project will not be finished in time. This indicates that an external project may contribute to the delay in

completing the design of feature F03, because the designers are waiting on the delivery of code from that

project.

The events, the number of re-plans and the progress of the features‟ phases all suggest either that the capability

for these features is less than planned and/or the complexity, and hence workload, for these two features is

greater than planned.

6 Discussion

6.1 The research questions

In section 4 we presented a general research question and four specific research questions as a basis for the

preliminary appraisal of MDTs. In this section, we consider how the examples presented in section 5 „answer‟

these research questions. We begin with the specific research questions and then consider the general research

question.

SRQ1 To what degree can MDTs accommodate different types of data?

16

The example MDTs provided in section 5 indicate that MDTs can accommodate at least the following

types of data: events, such as decisions; states, such as phases; single and multi-variable quantitative

time series; qualitative data, in terms of events with labels; and coded qualitative data i.e. data that

has been categorised according to some classification system. Representing qualitative data is more

challenging and we return to this point in the discussion of SRQ4.

SRQ2 To what degree can MDTs represent different types of change?

The examples provided indicate that MDTs can represent at least the types of changes relating to the

types of data recognised for SRQ1. In addition, the MDTs can be used to infer other information: the

point in time at which a change occurs, such as a re-plan; the frequency of a recurring change, such as

the number of re-plans; and the period of time over which a change occurs. Through the use of

multiple sections in an MDT, different types of change can be represented concurrently e.g. internal

re-plans and changes in the number of design changes.

SRQ3 To what degree can MDTs accommodate different conceptualisations?

The structure of MDTs is such that provided a conceptualisation (such as planned or actual schedule,

workload, effort, defects) can be represented in terms of events occurring along a temporal dimension

then MDTs would appear to be able to accommodate them.

SRQ4 What are the requirements and limitations of multi-dimensional timelines?

The main requirement of MDTs is that the information to be represented (such as the type of data or a

change) must be located in time. Also, an MDT can be understood as a geometrical structure

consisting primarily of points, lines and planes; so beyond the requirement that information should be

locatable in time, it is also necessary for the information to be representable in terms of points (e.g. an

event like a decision), lines (e.g. a state like a phase) and planes (e.g. the „space‟ for a

conceptualisation, such as the y-axis on a quantitative time series or the space to record phases of a

planned schedule). There are also of course a variety of labels attached to these geometrical structures

and, in the examples presented in section 5, there is at least one type of data where the requirements

of an MDT that have just been stated are „stretched‟ i.e. when an MDT represents complex qualitative

information using labels, such as the series of events presented in Figure 4. In principle, this relatively

complex quantitative information could be presented on an MDT by coding the qualitative statement

into a set of categories and then representing each of these categories on the MDT, perhaps in their

own section of the MDT.

There are limitations to MDTs: they are currently unable to accommodate atemporal information; the

amount of information that can be represented on an MDT is limited by the size of the display e.g. an

A4 piece of paper; and MDTs do not currently support the representation of causal information,

although Figure 4 includes arrows representing the relationship between the internal re-plans and the

features that those re-plans concern.

GRQ1 How can MDTs be used to concisely represent the behaviour of a set of project-level attributes as

they change over time?

MDTs would appear to be able to represent project-level attributes as they change over time, provided

these attributes, and the empirical data about them, can be located in time and can be represented in

terms of the simple geometrical structures of points, lines and planes. Changes in attributes are

documented at the point in time at which the change occurs. Each attribute of the project would of

course need to be represented on the MDT, and there are a number of ways in which that can be done:

as a quantitative time series, as an event, as an event with label containing complex qualitative

information, or as a schedule.

17

6.2 Further evaluation of the multi-dimensional timeline technique

A number of papers (e.g. [22, 64-66]) have examined the degree to which researchers evaluate their own

technologies. The consensus from these papers was that insufficient evaluation was being conducted by

researchers of the software technologies that these researchers had developed. We have proposed the MDT

technique, but also recognise that there is a need for further evaluation of this technique. We have found that the

MDTs were useful for communicating the results of two case studies at IBM Hursley Park to the respective

project managers and project assistants, as well as to a small number of other stakeholders at IBM Hursley Park.

These experiences do not however constitute a formal evaluation.

A formal empirical evaluation would be difficult to design and conduct because the evaluator would need to

isolate a number of different sets of factors, for example: the underlying conceptual structure of the MDTs, the

graphic design of the visualisation itself, the phenomena being represented (e.g. software projects), the quality

and nature of the data available about that phenomena (e.g. qualitative and quantitative data, missing data, etc.),

the ability of the reader of the visualisation to understand the visualisation as a visualisation, and the ability of

the reader to reason about the phenomena being represented in the visualisation.

As a step toward a more formal evaluation in the future, we briefly consider: a review of software tools and

techniques for eventvisualisation by Chung et al. [67], and heuristics for the design of information visualizations

by Baldonado et al. [68].

According to Chung et al. [67], the temporal and spatial dimensions are the primary focus for many event

visualization techniques implemented in software tools. Chung et al. reviewed 24 techniques and tools that have

been produced between 1991 and 2003. These tools have been used in a wide variety of applications, including:

medicine, law enforcement, business and news, computer mediated communication, environmental studies and

entertainment. Many of these software tools support interactive exploration of the temporal and spatial

dimensions, and this interactive exploration can increase the speed and accuracy of understanding on the part of

the user. There are few evaluations of such tools however, and Chung et al. report only six examples. Given the

number of techniques and tools, and the range of their application, event visualisations that support a temporal

dimension appear to be valuable for communicating information about phenomena as well as reasoning about

those phenomena.

In the field of information visualisation, Baldonado et al. [68] have derived a set of eight heuristics for the use of

multiple views in information visualizations. These heuristics were derived from the analysis of existing

systems, the authors‟ own experiences of designing systems, and from participation in discussion at the CHI‟98

workshop on information exploration environments. The heuristics are presented here in Table 3. According to

Baldonado et al., the first four heuristics (diversity, complementarity, parsimony, and decomposition) provide

guidance on the selection of multiple views. These heuristics would therefore apply to the choice and content of

sections in an MDT. The last four heuristics (space/time resource optimization, self-evidence, consistency, and

attention management) provide guidance on the actual presentation of the visualization. These heuristics would

therefore apply to the graphical presentation of the content of sections of any MDT to the reader.

Baldonado et al. [68] also discussed the benefits and costs of each heuristic to the reader of the information

visualization as well as to the visualization designer. Further details on these issues can be found in Baldonado

et al.‟s paper [68].

18

Table 3 Heuristics for design of information visualizations [68]

Identifier Heuristic

Heuristics for selecting multiple views

Diversity Use multiple views when there is a diversity of attributes, models, user profiles,

levels of abstraction, or genres.

Complementarity. Use multiple views when different views bring out correlations and/or disparities

Decomposition Partition complex data into multiple views to create manageable chunks and to

provide insight into the interaction among different dimensions.

Parsimony Use multiple views minimally

Presentation and interaction of visualization

Space / Time

Resource

Balance the spatial and temporal costs of presenting multiple views with the

spatial and temporal benefits of using the views.

Optimization

Self-Evidence Use perceptual cues to make relationships among multiple views more apparent

to the user.

Consistency Make the interfaces for multiple views consistent, and make the states of multiple

views consistent.

Attention

Management

Use perceptual techniques to focus the user‟s attention on the right view at the

right time.

Given the above discussion, some of the issues around the evaluation of MDTs requiring further attention are:

1. To what degree can the MDT technique provide a representation of a project that is more concise than,

for example, a narrative or a time series? With further development of the time lines (e.g. a more

sophisticated notation), could the time line approach make detailed narrative descriptions either

unnecessary or at least less necessary?

2. To what degree can the MDT technique provide a representation of a project that effectively supports the

identification and evaluation of causal explanations in a project?

3. To what degree can the MDT technique represent different kinds of software engineering phenomena and

different kinds of evidence? As suggested by Figure 1, two fundamental requirements of the time line

approach are that entities and attributes of a phenomenon of interest can be represented as objects in time

(events) relative to each other, and that these objects can be represented using basic geometrical objects

(e.g. lines, points, possibly areas). Aside from these two requirements, the MDT technique appears to be

very flexible over the kinds of phenomenon that can be represented; but these assumptions require further

investigation and evaluation.

6.3 Further research

Further research in the MDTs is required in at least the following areas:

 Further develop the notation so that it can provide a richer representation of project-level behaviour.

 Develop a conceptual framework of events and MDTs.

 Better understand the limits of what MDTs can and cannot represent.

19

 Better understand the layers of abstraction appropriate for MDTs and how these layers can be related to

each other (perhaps similar to the concepts of the levels of a Data Flow Diagram).

 Develop guidelines on when the MDT technique should and shouldn‟t be used, and how MDTs can be

integrated with other kinds of representation.

 Determine the evidence most appropriate for these kinds of descriptions.

 Better understand how to integrate project-level attributes with attributes of processes within the project

and „above‟ the project.

 Provide a software tool for generating and manipulating MDTs
1
.

6.4 Conclusion

Little attention has been directed at modelling temporal aspects of the project-level attributes of software

projects. To model these aspects, we propose the use of multi-dimensional timelines (MDTs) that combine

quantitative and non-quantitative data to represent a range of project-related attributes relative to a common time

axis. We demonstrate the application of MDTs with examples from a longitudinal study of a software project,

Project B, at IBM Hursley Park. The examples show how the MDTs can represent qualitative data as events

over time, as well as schedule information (actual and planned) and quantitative time series all on the same

visualisation. MDTs seem to be capable of accommodating different types of data, representing different types

of change, and accommodating different conceptualisations. In general, MDTs would appear to be capable of

representing a variety of types of information provided that information and the empirical data about them can

be located in time and can be represented in terms of the simple geometrical structures of points, lines and

planes. We also briefly consider the range of visualisation techniques and tools being developed in the

information visualisation field as an indicator of the communicative and analytic benefits to visualising time;

and we also briefly consider heuristics for the design of information visualisations. Finally, we identify a range

of further work required on the proposed MDTs, in terms of the further development and evaluation of the

technique.

Acknowledgements

I would like to thank IBM Hursley Park and all of the project members of Project B for allowing me to study the

project and report the results of that study. In particular, I thank Paul Gibson and John Allan for their support at

IBM Hursley Park. I would also like to thank Professor Martin Shepperd for supervising my doctoral studies,

which forms the basis for the work reported here. Professor Per Runeson and Dr. Sarah Beecham provided very

constructive comments on an earlier draft of this paper. I thank also the anonymous reviewers for their insightful

and constructive comments on earlier versions of this paper.

References

[1] The Standish Group, "Chaos Report," 1994.

[2] The Standish Group, "Chaos: A Recipe for Success," 1999.

[3] The Standish Group, Extreme Chaos, 2001.

[4] The Standish Group, "Latest Standish Group Chaos Report Shows Project Success Rates Have Improved by 50%,"

2003.

[5] The Standish Group, "2004 Third Quarter Research Report," 2004.

[6] C. Jones, "Project Management Tools and Software Failures and Successes," Crosstalk, pp. 13-17, 1998.

[7] K. R. Linberg, "Software developer perceptions about software project failure: a case study," The Journal of

Systems and Software, vol. 49, pp. 177-192, 1999.

[8] J. D. Procaccino, J. Verner, S. P. Overmyer, and M. E. Darter, "Case study: factors for early prediction of software

project success," Information and Software Technology, vol. 44, pp. 53-62, 2002.

[9] C. B. Seaman, "Qualitative Methods In Empirical Studies Of Software Engineering," IEEE Transactions on

Software Engineering, vol. 25, pp. 557-572, 1999.

[10] T. K. Abdel-Hamid and S. E. Madnick, "Lessons learned from modeling the dynamics of software development,"

Communications of the ACM, vol. 32, pp. 1426-1438, 1989.

[11] J. S. Reel, "Critical Success Factors In Software Projects," IEEE Software, pp. 18-23, 1999.

[12] J. D. Procaccino, J. M. Verner, K. M. Shelfer, and D. Gefen, "What do software practitioners really think about

project success: an exploratory study," Journal of Systems and Software, vol. 78, pp. 194-203, 2005.

1
 We are investigating the use of the Processing language and environment; visit www.processing.org

20

[13] M. van Genuchten, "Why is software late? An empirical study of reasons for delay in software development,"

IEEE Transactions on Software Engineering, vol. 17, pp. 582-590, 1991.

[14] B. Curtis, H. Krasner, and N. Iscoe, "A field study of the software design process for large systems,"

Communications of the ACM, vol. 31, pp. 1268-1287, 1988.

[15] T. Rodden, V. King, J. Hughes, and I. Sommerville, "Process modelling and development practice," presented at

Third European Workshop on Software Process Technology (EWSPT'94), Villard de Lans, France, 1994.

[16] P. E. Waterson, C. W. Clegg, and C. M. Axtell, "The dynamics of work organisation, knowledge, and technology

during software development," International Journal of Human-Computer Studies, vol. 46, pp. 79-101, 1997.

[17] W. Hesse, U. Bittner, and J. Schnath, "Results From The IPAS Project: Influences Of Methods And Tools, Quality

Requirements And Project Management On The Work Situation Of Software Developers," Annual Review of

Automatic Programming, vol. 16, pp. 179-183, 1992.

[18] B. Kitchenham, G. Travassos, A. von Mayrhauser, F. Niessink, N. F. Schneidewind, J. Singer, S. Takada, R.

Vehvilainen, and H. Yang, "Toward an ontology of software maintenance," Journal of Software Maintenance:

Research and Practice, vol. 11, pp. 365-389, 1999.

[19] P. Runeson and M. Höst, "Guidelines for conducting and reporting case study research in software engineering,"

Empirical Software Engineering, vol. 14, pp. 131–164, 2009.

[20] B. Kitchenham, S. L. Pfleeger, L. Pickard, P. Jones, D. C. Hoaglin, and J. Rosenberg, "Preliminary guidelines for

empirical research in software engineering," IEEE Transactions on Software Engineering, vol. 28, pp. 721-734,

2002.

[21] B. Kitchenham, L. Pickard, and S. L. Pfleeger, "Case studies for method and tool evaluation," IEEE Software, vol.

12, pp. 52-62, 1995.

[22] N. Fenton, S. L. Pfleeger, and R. L. Glass, "Science and substance: a challenge to software engineers," IEEE

Software, vol. 11, pp. 86-95, 1994.

[23] R. K. Yin, Case Study Research: Design and Methods, 3rd edition ed: SAGE Publications, 2003.

[24] M. G. Bradac, D. E. Perry, and L. G. Votta, "Prototyping A Process Monitoring Experiment," IEEE Transactions

on Software Engineering, vol. 20, pp. 774-784, 1994.

[25] M. G. Bradac, D. E. Perry, and L. G. Votta, "Prototyping A Process Monitoring Experiment," presented at 15th

International Conference on Software Engineering, 1993.

[26] D. B. Walz, J. J. Elam, and B. Curtis, "Inside A Software Design Team: Knowledge Acquisition, Sharing, And

Integration," Communications of the ACM, vol. 36, pp. 63-77, 1993.

[27] R. Guindon, "Designing the design process: Exploiting opportunistic thought," Human-Computer Interaction, vol.

5, pp. 305-344, 1990.

[28] R. Guindon, "Knowledge exploited by experts during software system design," International Journal of Man-

Machine Studies, vol. 33, pp. 279-304, 1990.

[29] S. P. Davies, "Characterizing The Program Design Activity: Neither Strictly Top-Down Nor Globally

Opportunistic," 10, vol. 3, 1991.

[30] W. Visser, "Organisation Of Design Activities: Opportunistic, With Hierarchical Episodes," Interacting With

Computers, vol. 6, pp. 235-238, 1994.

[31] J. E. Cook, L. G. Votta, and A. L. Wolf, "Cost-Effective Analysis Of In-Place Software Processes," IEEE

Transactions on Software Engineering, vol. 24, pp. 650-663, 1998.

[32] J. E. Cook, "Process Discovery and Validation Through Event-Data Analysis," in Department of Computer

Science. Boulder: University of Colorado, 1996.

[33] J. E. Cook and A. L. Wolf, "Discovering models of software processes from event-based data," Software

Engineering Research Laboratory, Department of Computer Science, University of Colorado, Technical Report

CU-CS-819-96, November 1996 1996.

[34] B. Curtis, "Three problems overcome with behavioral models of the software development process," presented at

11th International Conference on Software Engineering, May 15-18th, Pittsburgh, Pennsylvania, 1989.

[35] M. Frese and W. Hesse, "The Work Situation In Software-Development - Results of An Empirical Study,"

Software Engineering Notes, vol. 18, pp. A65-A72, 1993.

[36] W. Hesse, "Theory And Practice Of The Software Process - A Field Study And Its Implications for Project

Management," presented at 5th European Workshop On Software Process Technology, 1996.

[37] G. M. Olson, J. S. Olson, M. R. Carter, and M. Storrosten, "Small Group Design Meetings: An Analysis Of

Collaboration," Human-Computer Interaction, vol. 7, pp. 347-374, 1992.

[38] C. B. Seaman and V. R. Basili, "Communication And Organization: An Empirical Study Of Discussion In

Inspection Meetings," IEEE Transactions on Software Engineering, vol. 24, pp. 559-572, 1998.

[39] J. Singer and T. Lethbridge, "Studying Work Practices To Assist Tool Design In Software Engineering," presented

at International Workshop on Program Comprehension, 1998.

[40] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, "An examination of software engineering work practices,"

presented at Centre for Advanced Studies Conference (CASCON'97), Toronto, November, 1997.

[41] I. Sommerville and S. Monk, "Supporting informality in the software process," presented at Third European

Workshop on Software Process Technology (EWSPT'94), Villard de Lans, France, 1994.

[42] I. Sommerville and T. Rodden, "Understanding the software process as a social process," presented at Second

European Workshop on Software Process Technology (EWSPT'92), Trondheim, Norway, 1992.

[43] I. Sommerville and T. Rodden, "Human, social and organisational influences on the software process," Lancaster

University, Technical Report CSEG/2/1995, 1995.

[44] R. van Solingen, E. Berghout, and F. van Latum, "Interrupts: Just A Minute Never Is," IEEE Software, vol. 15, pp.

97-103, 1998.

21

[45] W. Heijstek and M. R. V. Chaudron, "Evaluating RUP Software Development Processes Through Visualization of

Effort Distribution," presented at 34th Euromicro Conference Software Engineering and Advanced Applications

Year, Parma, Italy, 3rd - 5th September 2008, 2008.

[46] K. Wnuk, B. Regnell, and L. Karlsson, "Visualization of Feature Survival in Platform-Based Embedded Systems

Development for Improved Understanding of Scope Dynamics," presented at Requirements Engineering

Visualization (REV'08), Barcelona, Catalunya, Spain, 8th - 12th September 2008, 2008.

[47] W. R. Shadish, T. D. Cook, and D. T. Campbell, Experimental and quasi-experimenbtal designs for generalized

causal inference. Boston: Houghton Mifflin Company, 2002.

[48] M. B. Miles and A. M. Huberman, Qualitative Data Analysis, 2nd ed. London: SAGE Publications, 1994.

[49] A. W. Rainer, "An Empirical Investigation of Software Schedule Behaviour," in Department of Computing.

Bournemouth UK: Bournemouth University, 1999.

[50] A. Rainer and T. Hall, "Identifying the causes of poor progress in software projects," presented at 10th

International Symposium on Software Metrics (METRICS‟04), 2004.

[51] A. Rainer and M. J. Shepperd, "Investigating software project schedule behaviour," presented at EASE 98

Empirical Assessment and Evaluation in Software Engineering, Keele, UK, March 30 - April 1 1998, 1998.

[52] A. Rainer and M. J. Shepperd, "Re-planning for a successful project," presented at 6th International Software

Metrics Symposium (Metrics'99), Boca Raton, Florida, 4th - 6th November, 1999.

[53] J. D. McGregor, S. Jarrad, L. M. Northrop, and K. Pohl, "Initiating Software Product Lines," IEEE Software, vol.

19, pp. 24 - 27, 2002.

[54] K. Pohl, G. Böckle, and F. v. d. Linden, Software Product Line Engineering: Foundations, Principles and

Techniques: Springer Verlag, 2005.

[55] E. Carmel, "Cycle time in packaged software firms," Journal of Product Innovation Management, vol. 12, pp. 110-

123, 1995.

[56] R. L. Glass, "Making Research More Relevant While Not Diminishing Its Rigor," IEEE Software, vol. 26, pp. 96-

95, 2009.

[57] M. Rosemann and I. Vessey, "Toward improving the relevance of information systems research to practice: the

role of applicability checks," MIS Quarterly, vol. 32, pp. 1-22, 2008.

[58] J. R. Turner and R. Müller, "On the nature of the project as a temporary organization," International Journal of

Project Management 21 (2003) vol. 21, pp. 1–8, 2003.

[59] J. R. Turner, The handbook of project based management. . London: McGraw-Hill, 1993.

[60] B. Kitchenham, S. L. Pfleeger, and N. Fenton, "Toward a Framework for Software Measurement Validation,"

IEEE Transactions on Software Engineering, vol. 21, pp. 929-943, 1995.

[61] L. M. Taff, J. W. Borchering, and W. R. Hudgins Jr., "Estimeetings: Development estimates and a front-end

process for a large project," IEEE Transactions on Software Engineering, vol. 17, pp. 839-849, 1991.

[62] J. Brooks, F.P., The Mythical Man-Month, Anniversary Edition ed. Reading, Massachusetts: Addison-Wesley

Publishing Company, 1995.

[63] D. E. Perry, N. A. Staudenmayer, and L. G. Votta, "People, organizations, and process improvement," IEEE

Software, vol. 11, pp. 36-45, 1994.

[64] R. L. Glass, "The software research crisis," IEEE Software, vol. 11, pp. 42-47, 1994.

[65] W. F. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heniz, "Experimental Evaluation in Computer Science: A

Quantitative Study.," Journal of Systems Software., vol. 28, pp. 9-18, 1995.

[66] M. V. Zelkowitz and D. Wallace, "Experimental validation in software engineering," Information and Software

Technology, vol. 39, pp. 735-743, 1997.

[67] W. Chung, H. Chen, L. G. Chaboya, C. D. O‟Toole, and H. Atabakhsh, "Evaluatingevent visualization: a usability

study of COPLINK spatio-temporal visualizer," International Journal of Human-Computer Studies, vol. 62, pp.

127-157, 2005.

[68] M. Q. W. Baldonado, A. Woodruff, and A. Kuchinsky, "Guidelines for Using Multiple Views in Information

Visualization," presented at Working Conference on Advanced Visual Interfaces (AVI'00), Palermo, Italy 2000.

