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ABSTRACT 

1. The interactions between proinflammatory cytokines and bacterial 

lipopolysaccharide (LPS) on L-arginine transporter and inducible nitric oxide 

synthase (iNOS) activities were examined in rat cultured aortic smooth muscle cells.  

2. LPS induced a concentration (0.01 - 100 μg ml-1) and time- (8 - 24 h) dependent 

stimulation of nitrite production which was accompanied by a parallel increase in L-

arginine transport.  

3. Unlike LPS, activation of smooth muscle cells with either interferon-γ (IFN-γ, 100 

U ml-1), tumour necrosis factor-α (TNF-α, 300 U ml-1) or interleukin-1α (IL-1α, 

100 U ml-1) failed to stimulate L-arginine transport or increase nitrite accumulation.  

4. When applied in combination with LPS (100 μg ml-1) both IFN-γ and TNF-α, but 

not IL-1α, enhanced the effects observed with LPS alone. Furthermore, activation of 

cells with LPS and IFN-γ had no effect on uptake of the neutral amino acid L-

citrulline but selectively increased the Vmax for L-arginine transport 2.8-fold and 

nitrite levels from 24 ± 7 to 188 ± 14 pmol μg protein-1 24 h-1.  

5. The substrate specificity, Na+ and pH independence of saturable L-arginine 

transport in both unactivated (Km = 44 μM, Vmax = 3 pmol μg protein-1min-1) and 

activated (Km = 75 μM, Vmax = 8.3 pmol μg protein-1min-1) smooth muscle cells 

were characteristic of the cationic amino acid transport system y+. 

6. Cycloheximide (1 μM) abolished induction of L-arginine transport and nitrite 

accumulation in response to LPS and IFN-γ. In contrast, the glucocorticoid 

dexamethasone (10 μM, 24 h) selectively blocked nitrite production. 

7. Our results demonstrate that pro-inflammatory mediators selectively enhance 

transport of L-arginine under conditions of sustained NO synthesis by vascular 

smooth muscle cells. In addition, the differential inhibition of iNOS and L-arginine 
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transporter activity by dexamethasone suggests that distinct signalling pathways 

mediate induction of the cationic transport protein and iNOS. The close coupling 

between substrate supply and NO production may have important implications in 

the pathogenesis of several disease states including endotoxin shock.   
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INTRODUCTION 

Over production of nitric oxide (NO) by vascular smooth muscle cells  (Knowles et al., 

1990; Rees et al., 1990; Fleming et al, 1990; 1991) has been implicated as the major cause of the 

sustained hypotension (Kilbourn et al, 1990; Thiemermann & Vane, 1990; Wright et al., 1992) and 

hyporeactivity to various vasoconstrictor agents (Julou-Schaeffer et al., 1990; Fleming et al., 1990; 

Gray et al., 1991) in endotoxaemia. Under these conditions, synthesis of NO from its precursor L-

arginine is catalysed by the calcium/calmodulin-insensitive nitric oxide synthase (iNOS), which, 

unlike the constitutive endothelial calcium/calmodulin-dependent isoform (eNOS), is induced by 

pro-inflammatory cytokines and bacterial lipopolysaccharide (LPS; see Moncada et al., 1991). 

Expresssion of iNOS is time-dependent and susceptible to inhibition by cycloheximide, indicating 

a requirement for de novo protein synthesis (Knowles et al., 1990; Rees et al., 1990; see Moncada 

et al., 1991).  

Once induced, production of NO by this enzyme is blocked by inhibitors of NO synthase, 

including NG-monomethyl-L-arginine (L-NMMA) (Kilbourn et al., 1990; Thiemermann & Vane, 

1990, Wright et al., 1992), and its activity appears to be critically dependent on the availability of 

extracellular arginine (Beasley et al., 1991; Schott et al., 1993). Thus, the L-arginine transport 

system(s) may be a key target for regulating NO synthesis via the inducible L-arginine-nitric oxide 

pathway. In this regard we have shown previously that LPS induces a time- and dose-dependent 

stimulation of iNOS and L-arginine transporter activity in cultured J774 macrophages thereby 

providing a possible mechanism for sustaining substrate supply during periods of enhanced NO 

synthesis (Bogle et al., 1992a, Baydoun et al., 1993a).  

In this study we have further investigated this phenomenon and examined the effects of LPS 

in combination with other pro-inflammatory mediators, including the cytokines interferon-γ (IFN-

γ), tumour necrosis factor-α (TNF-α) and interleukin-1α (IL-1α) on L-arginine transport in 

correlation with the expression of iNOS in rat aortic smooth muscle cells in culture. Alterations in 
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the kinetics and specificity of L-arginine transport were also examined in unactivated and LPS 

and/or cytokine activated cells. A preliminary account of this work has been presented in abstract 

form (Baydoun et al., 1993b).   
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METHODS 

Cell culture 

Vascular smooth muscle cells were cultured from rat aortic explants as described by 

Campbell and Campbell (1993). Male Sprague-Dawley rats (250-300 g) were stunned and 

exsanguinated and the thoracic aorta dissected in Dulbecco's modified Eagle's medium (DMEM) 

supplemented with 4.4% NaHCO3, penicillin (100 units ml-1) and streptomycin (100 μg ml-1). 

Following removal of the adventitia and endothelium, each aorta was cut into 2mm2 segments and 

placed in a T-25 tissue culture flask containing DMEM, supplemented with 2mM glutamine and 10 

% foetal calf serum. Explants were left in culture for 14 days after which migrating and rapidly 

dividing cells were harvested with trypsin/EDTA (0.01/0.02 %) and cultured to confluence in a T-

75 flask. Cells were passaged weekly and used between passages 4 and 14. All isolates were 

identified as smooth muscle cells by phase contrast microscopy and immunostaining of smooth 

muscle α-actin, using mouse anti-α-actin antibody and anti-mouse IgG FITC conjugate (Sigma 

Chemical Co.; Skalli et al, 1986).  

 

Incubation of cells with LPS and/or cytokines 

Cells were plated at a density of 8x103 cells per well into 96 well plates for assays of nitrite 

and L-arginine transport. Confluent monolayers were activated either with a fixed concentration of 

LPS (100 μg ml-1) for various time points or with varying concentrations of LPS (0.01 - 100 μg ml-

1) for 24 h. In another series of experiments cells were exposed to IFN-γ (50 and 100 U ml-1), TNF-

α (100 and 300 U ml-1) or IL-1α (50 and 100 U ml-1) alone and in combination with LPS (100 μg 

ml-1). The effects of dexamethasone (10 μM) and the protein synthesis inhibitor cycloheximide (1 

μM) on transporter activity and expression of iNOS were examined over a 24 h period in cells 

activated with LPS (100 μg ml-1) and IFN-γ (50 U ml-1). The supernatant was removed from each 

well at the end of the incubation period, assayed for nitrite accumulation and L-arginine transport 
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was then measured in the cell monolayer incubated with Krebs. 

 

Nitrite accumulation 

Nitrite accumulation in the culture medium was determined colorimetrically by a 

diazotization reaction using the standard Griess reagent (Green et al, 1982), as described 

previously (Bogle et al., 1992a; Baydoun et al., 1993a).  

 

Measurement of L-arginine transport   

Unidirectional transport of L-arginine was measured in confluent smooth muscle cell 

monolayers. Cells were rinsed twice with a Hepes-buffered Krebs solution (mM: NaCl: 131; KCl: 

5.5; MgCl2: 1; CaCl2: 2.5; NaHCO3: 25; NaH2PO4: 1; D-glucose: 5.5; Hepes: 20; pH 7.4) 

maintained at 37oC.  In some experiments the pH of the Krebs solution was titrated with 0.1N HCl 

or 5N NaOH to achieve pH values ranging between pH 5 - 8. In sodium-free experiments, the 

Krebs was modified by replacing NaCl, NaHCO3 and NaH2PO4 with choline chloride, choline 

bicarbonate and KH2PO4, respectively. 

Uptake was initiated by adding 50 μl of Krebs (37oC) containing 100μM L-[3H]arginine (2 

μCi ml-1) to each well. Transport was linear for up to 3 min (see figure 4), and influx was measured 

over 30 s.  Plates were then placed on ice and cells rinsed three times with 200 μl ice-cold Krebs 

containing 10 mM unlabelled L-arginine. When the extracellular tracer D-[14C]mannitol was 

included in the incubation medium, recovery in cell lysates was <0.01 %. Cell protein was 

determined using Brilliant Blue G (Bradford, 1976), and radioactivity (dpm) in cell digests was 

measured by liquid scintillation counting. Transport was expressed in pmoles μg protein-1 min-1.  

Selectivity and kinetics of L-arginine transport 

Inhibition of L-arginine transport by competitor amino acids and L-arginine analogues was 

investigated by incubating cells with Krebs solution containing 100 μM L-[3H]arginine in the 
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absence or presence of a 10-fold excess of a given inhibitor (1 mM). In other experiments we 

examined the concentration-dependent (0.1 - 5 mM) inhibition of L-arginine (100 μM) transport by 

L-citrulline (a coproduct of NO synthesis). 

In kinetic experiments cells were incubated for 30 s with Krebs containing Na+ and 

increasing concentrations of L-arginine (0.005 - 1 mM). Data were analyzed using the computer 

programmes Enzfitter and Ultra Fit (Elsevier, Biosoft) and fitted best by a Michaelis-Menten 

equation plus a non-saturable linear component. 

 

Materials 

Tissue culture reagents were from Gibco (Paisley, U.K.). Recombinant murine IFN-γ was 

from Genzyme (Cambridge, U.K.). Human recombinant IL-1α and TNF-α were from British Bio-

technology (Abingdon, U.K.). Monoclonal anti-α smooth muscle actin, dexamethasone, 

cycloheximide, L-arginine, NG-nitro-L-arginine, NG-nitro-L-arginine methylester and LPS from 

Escherichia coli (serotype 0111:B4) were obtained from Sigma (Poole, U.K.). Other chemicals 

were from Sigma or BDH and of the highest analytical grade obtainable. Radioactive tracers, L-

[2,3-3H]arginine (36.1 Ci/mmol) and D-[14C]mannitol (49.3 mCi/mmol) were obtained from New 

England Nuclear, Dreieich, Germany. NG-monomethyl-L-arginine and NG-iminoethyl-L-ornithine  

were gifts from Wellcome Research Laboratories, Beckenham, U.K.  
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Statistics 

All values are means ± S.E. of measurements in at least three different cell cultures with 5-6 

replicates per experiment. Statistical analyses were performed using either an unpaired Student's t-

test or a multiple means comparison test (Harper, 1984) validated by comparison with the 

Newman-Keuls multiple range test in the statistical package SPP (Royston, 1984) with the overall 

confidence levels set at 95% (0.05). 
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RESULTS 

Induction of iNOS and L-arginine transport by LPS 

Incubation of smooth muscle cells with increasing concentrations of LPS (0.01-100 μgml-1) 

for 24 h resulted in a concentration-dependent accumulation of nitrite in the culture medium. The 

minimum concentration of LPS required to elicit this response was 10 μg ml-1 with 100 μg ml-1 

increasing nitrite levels from a basal value of 7.4 ± 1.7 to 318 ± 26 pmoles μg protein-1 24 h-1 

(Figure 1a). In parallel experiments, nitrite accumulation was detectable after 8 h (14 ± 5 pmoles 

μg protein-1) and increased to 221 ± 22 pmoles μg protein-1 after 24 h exposure to LPS (Figure 2a).  

In the same cell cultures, L-arginine transport was mediated against a 14-fold concentration 

gradient (data not shown) and enhanced in a concentration- and time-dependent manner by LPS 

(0.1-100 μg ml-1). At 100 μg ml-1 LPS increased transport from 6.8 ± 0.5 to 9.5 ± 0.4 pmol μg 

protein-1 min-1 (Figure 1b). Stimulation of transport was evident after a lag phase of 8 h, reaching a 

maximum at 12 h and sustained over a 24 h incubation period (Figure 2b). It is worth noting that, 

although the above effects were reproducible, particular batches of the same serotype (0111:B4) of 

LPS consistently failed to induce nitrite accumulation or L-arginine transport, presumably due to a 

variation in the content of endotoxin in different batches of LPS. This could account for the 

differences in sensitivity to LPS observed in our study and indeed explain the discrepancy in the 

literature regarding the ability of LPS alone to induce expression of iNOS in various cell types.  

 

Effects of cytokines and LPS on iNOS and L-arginine transport activity  

  Unlike LPS, incubation of smooth muscle cells with maximal concentrations of either 

IFN-γ (100 U ml-1), TNF-α, (300 U ml-1) or IL-1α (100 u ml-1) failed to cause any significant 

changes in nitrite levels or L-arginine transport (Table 1). In contrast, both accumulation of nitrite 

(310 % increase above basal) and L-arginine transport (63 % increase above basal) were markedly 

enhanced by IFN-γ (100 U ml-1) in combination with TNF-α (100 U ml-1), to a lesser extent by 
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IFN-γ (100 U ml-1) and IL-1α (100 U ml-1), but not by TNF-α (100 U ml-1) and IL-1α (100 U ml-1) 

(Table 1). All three cytokines in combination increased nitrite production and L-arginine transport 

to a similar extent as that caused by IFN-γ and TNF-α.  

When applied together with LPS (100 μg ml-1), both IFN-γ (100 U ml-1) and TNF-α (300 U 

ml-1), but not IL-1α (100 U ml-1), enhanced the effects observed with LPS alone. Under these 

conditions, elevations in nitrite accumulation (Figure 3a) and L-arginine transport (Figure 3b) 

induced by LPS and IFN-γ were significantly higher than rates induced by either LPS and TNF-α 

(Figure 3a and 3b) or TNF-α in combination with IFN-γ (Table 1).   

In order to establish whether LPS and IFN-γ selectively increased L-arginine transporter 

activity in vascular smooth muscle cells, we compared the time courses of L-arginine uptake and 

that of the neutral amino acid L-citrulline, in unstimulated and LPS/IFN-γ activated cells. Unlike L-

arginine, uptake of L-citrulline was unaffected following 24 h treatment with LPS (100 μg ml-1) 

and IFN-γ (50 U ml-1) (Figure 4). Furthermore, in contrast to our findings in J774 macrophages 

(Baydoun et al., 1994b), rates of L-citrulline transport were significantly lower than those of L-

arginine in smooth muscle cells. 

 

Dependency of iNOS and L-arginine transport induction on de novo protein synthesis 
 

In order to determine whether enhanced nitrite accumulation and L-arginine transport were  

dependent on de novo protein synthesis, cells were incubated for 24 h with LPS (100 μg ml-1) and 

IFN-γ (50 Uml-1) in the absence or presence of cycloheximide (1 μM, 24 h). The effects of the 

glucocorticoid dexamethasone (10 μM, 24 h) were also examined, since in the murine macrophage 

cell line J774 induction of iNOS and L-arginine transport were regulated differentially (Baydoun et 

al., 1993a). The stimulatory effects of LPS and IFN-γ on nitrite accumulation and L-arginine 

transport were abolished by cycloheximide, whereas dexamethasone only inhibited nitrite 

accumulation without significantly altering enhanced rates of L-arginine transport (Table 2). 
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Effects of LPS and IFN-γ on kinetics of  L-arginine transport 

Kinetic analysis of L-arginine transport was carried out to determine whether the enhanced 

uptake was due to a change in the velocity of transport (Vmax) or apparent affinity (Km) of the 

transporter for L-arginine. In these experiments the overall rates of L-arginine transport in control 

and LPS/IFN-γ stimulated cells were fitted best by a Michaelis-Menten equation plus a linear non-

saturable component (Figure  5). Activation of cells increased the Vmax for L-arginine transport 2.8-

fold, with no significant (P>0.05) change in Km (Table 3). The value of KD (non-saturable 

component) was also not increased significantly in activated cells (Table 3). 

Although entry of L-arginine was also mediated by a non-saturable component at higher 

substrate concentrations, the saturable component of transport accounted for ~ 75% of the total 

influx in unstimulated and LPS/IFN-γ stimulated cells at physiological L-arginine concentrations 

(100 μM).  

 

Characteristics of L-arginine transport in unstimulated and LPS/IFN-γ stimulated cells 

In both cell types, L-arginine transport was temperature-dependent and unaffected by 

changes in extracellular Na+ or pH (data not shown). As shown in Table 4, the specificity of L-

arginine transport was indistinguishable in unstimulated and LPS/IFN-γ activated cells. L-lysine, 

L-ornithine and L-arginine analogues, including the cationic NO synthase inhibitors L-NMMA and 

L-NIO, were the most effective inhibitors. In contrast, L-citrulline (figure 6) and other neutral 

amino acid analogues, selective for transport systems A (2-methylaminoisobutyric acid), L 

(phenylalanine, leucine), N (6-diazo-5-oxo-L-norleucine, glutamine) or ASC (cysteine), were poor 

inhibitors . As in endothelial cells (Bogle et al., 1992b) and J774 macrophages (Baydoun & Mann, 

1994), the neutral NO synthase inhibitors L-NNA and its methyl ester L-NAME were less effective 

inhibitors of L-arginine transport in both control and activated smooth muscle cells (Table 4). 
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DISCUSSION  

This study has examined the effects of pro-inflammatory mediators, including LPS and the 

cytokines IFN-γ, TNF-α and IL-1α on the inducible L-arginine-nitric oxide pathway in cultured rat 

aortic smooth muscle cells and has correlated changes in L-arginine transporter activity with 

expression of iNOS. The results obtained suggest that L-arginine transport and iNOS are coinduced 

in cells activated with LPS alone or in combination with proinflammatory cytokines. These 

observations extend a recent report showing that cytokines stimulate uptake of L-arginine and 

nitrite production in rat aortic smooth muscle cells (Durante et al., 1995) and are consistent with 

findings that iNOS is induced in these cells either by LPS alone (Marczin et al., 1993a, 1993b) or 

in combination with cytokines (Nakayama et al., 1992, 1994; Sirsjö et al., 1994). More 

importantly, our results demonstrate that induction of NOS in rat aortic smooth muscle cells is 

accompanied by a parallel increase in transport and thus supply of L-arginine into activated cells 

generating NO.  

We highlighted this phenomenon in a previous study in which we demonstrated that LPS-

stimulated macrophages showed an enhanced uptake of L-arginine (Bogle et al., 1992a; Baydoun 

et al., 1993a). We have now identified significant differences in the response of J774 macrophages 

and rat aortic smooth muscle cells to LPS and cytokines. Firstly, unlike J774 cells, in which 

activation of L-arginine transport was detectable at doses of LPS that did not stimulate nitrite 

release, the increase in L-arginine transport in smooth muscle cells was always paralleled by an 

increase in nitrite accumulation, suggesting a closer coupling between induction of the transporter 

and iNOS in these cells. Secondly, incubation of smooth muscle cells with LPS and either IFN-γ or 

TNF-α synergistically enhanced the actions of LPS, with IFN-γ and LPS being the most potent. In 

addition, L-arginine transport in these cells was also stimulated (63-136%) by cytokines but only 

when applied in combination. These findings are in contrast to those of Durante et al. (1995), who 

reported that IL-1ß and TNF-α independently enhance (10 - 30%) uptake of L-arginine in rat aortic 
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smooth muscle cells with no apparent synergism between cytokines.  

Indeed, although several reports have shown that expression of iNOS in vascular smooth 

muscle cells can also be induced by individual cytokines such as TNF-α (Busse & Mülsch., 1990; 

Koide et al., 1993, 1994; Nakayama et al., 1992), IL-1ß (Beasley et al., 1991; Kanno et al., 1993; 

Marumo et al., 1993), IL-α (Pomerantz et al., 1993; Marczin et al., 1993b) or IFN-γ (Koide et al., 

1993, 1994), we did not detect measurable nitrite release from smooth muscle cells incubated with 

either TNF-α, IL-1α or IFN-γ alone. Although the reasons for these differences are unclear, it is 

worth noting that the presence of contaminating traces of endotoxin in normal culture medium may 

synergise with added cytokines, giving rise to measurable nitrite levels. 

Consistent with our findings, other studies with rat aortic smooth muscle cells have reported 

that combinations of cytokines and/or LPS are essential for production of NO (Gross & Levi., 

1992; Geng et al., 1992; Marumo et al., 1993; Hattori et al., 1994; Sirsjö et al., 1994), and in 

human hepatocytes a combination of IFN-γ, TNF-α and IL-1β together with LPS appears to be 

mandatory for activation of iNOS (Nussler et al., 1993). Furthermore, when applied alone neither 

TNF-α (Marumo et al., 1993), IL-1α (Marumo et al., 1993), IL-1ß (Nakayama et al., 1992) nor 

IFN-γ (Sirsjö et al., 1994) were able to induce iNOS mRNA in rat aortic or pulmonary artery 

smooth muscle cells. Taken together these findings strongly suggest that induction of iNOS and L-

arginine transporter activity are critically dependent on the stimulus used, with an adequate 

combination of cytokines and/or LPS being essential for full activation of one or both pathways. 

These observations reflect possible differences in the molecular mechanism(s) mediating the 

actions of the various proinflammatory mediators, with their synergistic actions indicating that 

distinct signal transduction pathways may be used by each agent to induce iNOS and/or stimulate 

L-arginine transporter activity.  

Whilst the signalling events mediating activation of L-arginine transport await further 

investigation, considerable progress has been made in elucidating those associated with expression 
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of iNOS. The gene for iNOS has been cloned in several different cell types (see Knowles and 

Moncada, 1994; Sessa, 1994), including rat aortic smooth muscle cells (Nunokawa et al., 1993; 

Geng et al., 1994), and contains response elements for certain proinflammatory mediators such as 

IFN-γ (Xie et al., 1993; Lowenstein et al., 1993; Martin et al., 1994). Cytokines and LPS regulate 

expression of iNOS largely at the transcriptional level (Xie et al., 1992; Lorsbach et al., 1993; 

Martin et al., 1994) and do so either via the induction of an intermediary protein (Koide et al., 

1994) or by activating nuclear regulatory factors such as the interferon regulatory factor-1 (Martin 

et al., 1994) which enhance iNOS mRNA expression (Koide et al., 1993, 1994; Martin et al., 

1994). This hypothesis, substantiated by the fact that cycloheximide selectively inhibits TNF-α but 

not IFN-γ induced iNOS mRNA (Koide et al., 1994), could explain the the marked synergism 

observed in our study between TNF-α, LPS and IFN-γ.  

It is evident from our present results and our previous study in macrophages (Baydoun et 

al., 1993a) that the pathways responsible for the enhanced transporter activity are in part distinct 

from those leading to expression of iNOS. Dexamethasone selectively inhibits production of nitrite, 

whilst having no significant effect on transport, indicating that the gene for the L-arginine 

transporter is not sensitive to regulation by glucocorticoids. Similar to the enhanced production of 

NO, activation of L-arginine transport is sensitive to cycloheximide, demonstrating that de novo 

protein synthesis is essential for enhanced transporter activity. As in J774 cells (Bogle et al., 

1992a), the increased Vmax of L-arginine transport in activated rat aortic smooth muscle cells is 

consistent with an increased expression of transporter proteins. The fact that transport of L-

citrulline is unaltered by LPS and IFN-γ indicates that the increased expression of carriers for L-

arginine is selective for cationic amino acid transporter proteins.       

L-arginine entry in both unstimulated and LPS/IFN-γ activated smooth muscle cells was 

inhibited selectively by other cationic amino acids and by the NOS inhibitors L-NMMA and L-

NIO. Neutral L-arginine analogues, L-NNA and L-NAME were less effective inhibitors of L-
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arginine influx, confirming our previous study in J774 macrophages (Baydoun & Mann, 1994) and 

similar findings in RAW 264.7 macrophages (Schmidt et al., 1994). The transport selectivity in our 

study, which also employed transport system specific non-metabolized amino acid analogues, 

confirms recent reports for L-lysine and L-arginine in cultured rat aortic smooth muscle cells (Low 

et al., 1993; Durante et al, 1995). The characteristics, kinetic properties and pH- and Na+-

independence of L-arginine transport in unstimulated and activated smooth muscle cells in our 

study suggest that transport is mediated by the classical cationic amino acid transport system y+ 

(see reveiw by White, 1985), recently cloned from murine fibroblasts (MCAT-1, Km = 0.14 - 0.25 

mM) and expressed in Xenopus oocytes (Kim et al., 1991; Wang et al., 1991). It is worth noting, 

however, that two further highly homologous cationic amino acid transporters (MCAT-2A and 

MCAT-2B), with high selectivity but different affinity for L-arginine, have been identified in other 

cell types (Closs et al., 1993a, 1993b). Functionally, these proteins are distinguishable only by their 

affinity for L-arginine with MCAT-2B (Km = 0.25 - 0.38 mM) exhibiting a 10-fold higher affinity 

for L-arginine than MCAT-2A (Km > 4 mM). Thus the kinetic properties of MCAT-2B are difficult 

to discriminate from system y+ by simple kinetic analysis (Closs et al., 1993b). 

Although our data are consistent with L-arginine transport being mediated by system y+ in 

both unstimulated and activated smooth muscle cells, we cannot exclude the involvement of 

MCAT-2B nor can we account for total transport (saturable and linear) via system y+ alone. The 

apparently non-saturable component of transport noted in our study may occur via a low affinity 

cationic transport system, such as MCAT-2A. Although another study has identified two saturable 

components for L-arginine transport in unstimulated rat aortic smooth muscle cells (Durante et al., 

1995), we were unable to confirm the presence of two saturable pathways for L-arginine entry in 

either unstimulated or activated smooth muscle cells. Moreover, it is worth noting that Low et al. 

(1993) could only identify one saturable transport system for another cationic substrate, L-lysine. 

 In conclusion, the ability of LPS and cytokines to enhance transport of L-arginine under 
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conditions of increased NO production provides a unique mechanism for sustaining NO synthesis 

and may have important implications in the pathogenesis of endotoxin shock. Furthermore, the 

observation that dexamethasone selectively inhibits iNOS expression but not L-arginine transport 

has led to the realisation that the signalling pathways leading to the production of NO and 

enhanced transporter activity are distinguishable. Further studies of the signalling pathways 

mediating activation of L-arginine transport may permit the targeting of specific inhibitors to the 

cationic amino acid transporter(s), thereby providing a novel therapeutic approach for the 

management or prevention of the hypotension associated with an overproduction of NO generated 

following activation of iNOS. 
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Table 1 Cytokine-mediated induction of nitrite accumulation and L-arginine transport 

 

___________________________________________________________________________ 

Nitrite accumulation  L-arginine transport 

  (pmol μg protein-1 24 h-1)   (pmol μg protein-1min-1) 

___________________________________________________________________________ 

Control     22 ±  2.7    4.2 ± 0.6 

 

LPS 100 μg ml-1    44 ±  3.3*    4.8 ± 0.5  

TNF-α 300 U ml-1     9 ±  5.4    4.3 ± 0.3 

IL-1α 100 U ml-1    15 ±  6.5    4.5 ± 0.3 

IFN-γ 100 U ml-1    12 ±  5.9    3.8 ± 0.4     

 

TNF-α + IFN-γ    91 ± 24.3*    7.0 ± 0.8 

TNF-α + IL-1α     7 ±  4.3    4.8 ± 0.7 

IFN + IL-1α     25 ± 12.3    5.8 ± 0.8 

TNF-α + IFN-γ + IL-1α  106 ± 24.2*    7.1 ± 1.1 

___________________________________________________________________________ 

 

Cells  were exposed to TNF-α (300 U ml-1), IL-1α (100 U ml-1) and IFN-γ 

(100 U ml-1) either alone or in combination. Accumulation of nitrite in the 

culture medium was measured after 24 h, and transport of L-arginine was 

then determined over 30 s in the cell monolayers. Values are the means ± 

S.E. of 3 different cell cultures, *P<0.05 compared to control. 
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Table 2 Effects of cycloheximide or dexamethasone on nitrite accumulation and  

L-arginine transport in smooth muscle cells activated with LPS and IFN-γ 

 

___________________________________________________________________________

_ 

Nitrite accumulation  L-arginine transport 

 (pmol μg protein-1 24 h-1)   (pmol μg protein-1min-1) 

___________________________________________________________________________

_ 

Control    24.2 ±  7.5    3.9 ± 0.3  

LPS + IFN-γ  187.9 ± 13.8*+   7.8 ± 0.6*,NS 

LPS + IFN-γ   22.8 ±  4.1    4.6 ± 0.7 
+ cycloheximide 

LPS + IFN-γ   53.1 ±  6.2*   6.3 ± 0.4* 
+ dexamethasone 
___________________________________________________________________________
_ 

 
Cells were incubated with LPS (100 μg ml-1) and IFN-γ (50 U ml-1) in the 

absence or presence of cycloheximide (1 μM) or dexamethasone (10 μM). 

Accumulation of nitrite in the culture medium was determined after 24 h 

and transport of L-arginine was measured over 30 s in the cell monolayers. 

Values are the means ± S.E. of 4 different cell cultures. *P<0.05 compared 

to control values. NS not significantly different, and + = P<0.05 compared to 

LPS + IFN-γ + dexamethasone treated cells. 
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Table 3   Kinetic parameters for L-arginine transport in unstimulated and 

LPS/IFN-γ activated smooth muscle cells 

 

__________________________________________________________________________

_ 

 

Unstimulated   LPS/IFN-γ 

__________________________________________________________________________

_ 

  Km     μM     44.0 ± 6.0   75.0 ± 9.0 

  Vmax   pmol μg protein-1 min-1   3.0 ± 0.2    8.3 ± 0.7* 

  KD    pmol μg protein-1 min-1mM-1  6.3 ± 0.6    9.3 ± 2.1 

__________________________________________________________________________

__ 

 

Cells were exposed to LPS (100 μg ml-1) and IFN-γ (50 U ml-1) for 24 h. 

Transport of L-arginine was then measured over 30 s in both unstimulated 

and activated cells. Values are the means ± S.E. of 4 different cell cultures, 
 P<0.001. 
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Table 4 Selectivity of L-arginine transpor in unstimulated and LPS/IFN-γ 

activated smooth muscle cells 

 

__________________________________________________________________________ 

Initial rate of L-arginine transport (% Control) 

Unactivated   LPS + IFN-γ 

__________________________________________________________________________ 

L-arginine     40 ± 2*    39 ± 3* 

D-arginine     87 ± 3    94 ± 4 

L-lysine     49 ± 4*    45 ± 1* 

L-ornithine     43 ± 3*    48 ± 5* 

L-citrulline     95 ± 3    99 ± 6 

L-glutamine    106 ± 20    108 ± 14 

6-diazo-5-oxo-L-norleucine   94 ± 13   105 ± 9 

2-methylaminoisobutyric  104 ± 19   111 ± 8 
   acid     

L-cysteine    117 ± 17   114 ± 11 

L-phenylalanine     86 ±  3*     93 ± 5 

L-leucine     73 ± 5*    87 ± 3 

NG nitro-L-arginine    97 ±  5    97 ± 2 
   methyl ester        

NG nitro-L-arginine     84 ±  2*    89 ± 4 

NG iminoethyl-L-ornithine   47 ±  7*    40 ± 5* 

NG monomethyl-L-arginine   45 ± 10*    43 ± 7* 

___________________________________________________________________________ 

 

Transport of 100 μM L-arginine was measured over 30 s in the absence or 

presence of a 10-fold excess (1 mM) of a given inhibitor in both unactivated 

cells and cells activated with LPS (100 μg ml-1) and IFN-γ (50 U ml-1) for 

24 h. Data are expressed as a % of the respective control influx in 

unactivated (3.1 ± 0.2 pmol μg protein-1 min-1) and LPS/IFN-γ activated 

(7.7 ± 0.5 pmol μg protein-1 min-1) cells. Values are the means ± S.E. of 3 

different cell cultures, * P<0.05. 
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Figure Legends 

 

Figure 1  Concentration-dependent effects of LPS on nitrite accumulation (A) and L-arginine 

transport (B). Cells were exposed to LPS (0.01 - 100 μg ml-1) and the accumulation of nitrite in the 

culture medium assayed 24 h later. Transport of 100 μM L-arginine was then measured over 30 s in 

the cell monolayer incubated with Krebs. Values are the mean ± S.E. of 3 different cell cultures. 

 

Figure 2  Time course of induction of nitrite accumulation (A) and L-arginine transport (B) in cells 

treated with LPS (100 μg ml-1). Nitrite accumulation was measured at each time point and transport 

of 100 μM L-arginine was then measured over 30 s in the cell monolayer incubated with Krebs. 

Values are means ± S.E. of 3 different cell cultures. 

 

Figure 3  Effects of LPS on cytokine-stimulated changes in nitrite accumulation (A) and L-arginine 

transport (B). Cells were stimulated for 24 h with LPS (100 μg ml-1) alone or in combination with 

TNF-α (100 and 300 U ml-1), IL-1α (50 and 100 U ml-1) and/or IFN-γ (50 and 100 U ml-1).  Nitrite 

accumulation in the culture medium was determined over 24 h, and transport of L-arginine was 

measured in the cell monolayers. Values are mean ± S.E. of 3 different cell cultures, *P < 0.05 

compared to LPS alone.  

 

Figure 4.  Differential regulation of L-arginine and L-citrulline uptake by LPS and IFN-γ. The time 

course of 100 μM L-arginine (A) and L-citrulline (B) uptake was compared in unstimulated cells 

( , ) and cells activated ( , ) with LPS (100 μg ml-1) and IFN-γ (50 U ml-1) for 24 h. Values 

are the means ± S.E. of 3 different cell cultures. 

 

Figure 5  Effects of LPS and IFN-γ on the kinetics of L-arginine transport. Rates of total L-arginine 
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transport (0.005 - 1 mM) were measured in unstimulated cells ( ) and cells activated ( ) with 

LPS (100 μg ml-1) and IFN-γ (50 U ml-1) for 24 h.  The inset shows Eadie-Hofstee plots of saturable 

transport in unstimulated and activated cells, where V is the initial velocity (pmol μg protein-1 min-

1) and S is the substrate concentration (mM). Rectangular hyperbolae were fitted to the mean influx 

values weighted for the reciprocal  standard error. Values are the means ± S.E. of 4 different cell 

cultures. 

 

Figure 6.  Self- and cross-inhibition of L-arginine transport in (a) unstimulated and (b) LPS (100 

μg ml-1) and IFN-γ (50 U ml-1) activated smooth muscle cells. Transport of 100 uM L-arginine (30 

s) was measured in the absence or presence of increasing concentrations (0.1 - 5 mM) of either L-

citrulline ( , ) or L-arginine ( , ). Values are the means ± S.E. of 3 different cell cultures. 

 

 

 

 

 

 

 

 


