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 Lakatos’ Mathematical Hegelianism1
 

 In the preface to the Phenomenology of Spirit, Hegel claims that the knowledge found 

in the various special disciplines is (at the time of his writing) in one way or another 

defective.  History, mathematics and the natural sciences are all limited in their methods and 

therefore leave fundamental questions unanswered (and indeed unasked).  Consequently, 

Hegel thought, these specialisms must be completed, explained and in some manner 

subsumed by philosophy.  He was especially scathing about mathematics.  He took the 

subject matter of pure mathematics to be space and number (not an unnatural assumption for 

the time) and described this subject matter as “inert and lifeless” (§45; p. 26).  Mathematical 

thought, for Hegel, “moves forward along the line of equality” (ibid.).  In other words, 

mathematics consists of equations. There is nothing unstable or incomplete about an equation 

so there is no dialectical impetus to conceptual revision.  Therefore equations, for Hegel, do 

not get at the essence of anything.  Philosophical thought, on the other hand, does consider 

essences.  Any particular essence (i.e. the essence of anything smaller than the entire 

universe) is in some way incomplete and cries out to be included in some larger scheme.  

Thus philosophy is goaded onwards and upwards towards ever more comprehensive and self-

subsistent conceptions of the world.  In consequence, philosophers do not need ingenuity or 

creativity.  All they need do is steep themselves in the subject matter and thus become 

efficient vehicles for its internal necessity.  This does not happen with the “rigid, dead 

propositions” (ibid.) of mathematics.  Of these Hegel says, “We can stop at any one of them; 

the next one starts afresh on its own account, without the first having moved itself on to the 

next, and without any necessary connection arising through the nature of the thing itself” 

(ibid.).   

 In short, mathematics does not have the power of self-movement.  What this means is 

that, having got halfway through a proof, there is nothing in the nature of the case to 

determine what the next line should be.  Hegel (in common with his contemporaries) 

regarded Euclid’s Elements as the paradigmatic mathematical work.  In Euclidian geometry it 

is normal, in the course of a proof, to draw lines in addition to the original figure.  As the 

proof unfolds these lines turn out to have important roles to play, though a student seeing the 

proof for the first time may not be able to tell at the moment of their drawing what role would 

fall to which line.  This is because nothing in the original figure prompts one to draw this line 

rather than that.  In a modern algebraic proof one typically has to prove lemmas (intermediate 

results), the significance of which may only become apparent as the proof nears completion.  

Therefore, according to Hegel, a proof tells us more about the ingenuity of the mathematician 

than it does about the meaning of the theorem.  In Hegel’s words, “The movement of 

mathematical proof does not belong to the object, but rather is an activity external to the 

matter in hand” (§42; p. 24).  One way of putting the point is to observe that a given step in a 

proof immediately entails infinitely many further steps.  By what principle is the next line 

chosen out of this vast field of candidates?  A special case of this lack of essential connection 

between one line of a proof and the next is the fact that one theorem may have many proofs.  

                                                 
    

1
I am grateful to Dr. M. Inwood, Prof. K. Westphal and colleagues at the universities of Liverpool, Durham and 

Hertfordshire for their helpful comments on earlier drafts of this paper. 
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This is possible because (Hegel thought) a proof does not reveal an essence, but merely 

establishes a truth.
2
 

 I shall not here make very much of the philosophical side of Hegel’s contrast between 

philosophical and mathematical thought.  I shall argue instead that he radically misunderstood 

the nature of mathematics.  Some of this misunderstanding has unremarkable origins.  Some 

of his arguments were simply poor.  For example, he complains that in proofs of Pythagoras’ 

theorem, “the triangle is dismembered, and its parts consigned to other figures, whose origin 

is allowed by the construction upon the triangle.  Only at the end is the triangle we are 

actually dealing with reinstated” (§43; p. 25).  If the study of triangles were a discipline in its 

own right Hegel might have had a point.  However, in studying triangles one is really making 

a study of space (as Hegel’s own analysis of the subject matter of mathematics implies).  

Indeed, one can give this thought something of a Hegelian spin: the concept ‘triangle’ is not 

self-contained because triangles are related to other figures (there is, for example, a whole 

family of theorems concerning triangles inscribed within circles).  Hence, a narrowly focused 

‘triangle-ology’ would miss important truths about triangles.  When these omissions became 

unbearable triangle-ology would be overcome-by-yet-preserved-in general plane geometry.  

This thought is perhaps more obvious to the modern eye than to Hegel because we know that 

the study of (Euclidian) space led to the study of (Euclidian and non-Euclidian) spaces.  Non-

Euclidian geometry was developed (after Hegel’s time) to address a problem internal to 

Euclidian geometry (the independence of the parallel postulate).  To continue the Hegelian 

gloss, Euclidian geometry turned out to be incomplete and demanded its own sublation by a 

more general study.
3
  If we look beyond geometry, the contrast between the condition of 

mathematics now and in Hegel’s day is even more acute.  Mathematics in general (and 

analysis in particular) re-invented itself in the century following Hegel’s death.  Moreover it 

did so partly as a consequence of applying its own standards of rigour to itself.  It is hardly 

surprising, therefore, that the dialectical potential of mathematics is more obvious to us than 

to Hegel.
4
 

 The chief cause of Hegel’s erroneous dismissal of pure mathematics as a ‘dead’ 

discipline was not the age in which he lived, however.  The real problem was his assumption 

(a commonplace then as now) that the logic of mathematics is exhausted by the formal 

deduction of theorems from axioms.  Given this assumption, it follows that mathematics can 

                                                 
    2Here I follow Inwood’s (pp. 226-7) analysis of Hegel on proof.  Hegel returns to the point in the Science of 

Logic (vol. one, book I, p. 72; vol. two, section 3, chapter 2 A (b) ‘The Theorem’ p. 812) and in his treatment of 

Spinoza in the Lectures on the history of Philosophy (1.g pp. 488-9).  Hegel’s philosophical dialectic employs 

the traditional metaphysical notion of substance i.e. that which is complete in itself.  It turns out (as in Spinoza) 

that only the universe as a whole satisfies this condition absolutely.  Hegel’s criticism of Spinoza is that in his 

philosophy he tried to employ the formal (i.e. undialectical) methods of mathematics.  This criticism has its root 

in Descartes’ view that philosophy differs from geometry in that philosophers cannot begin with a set of self-

evident axioms.  Rather, the first and chief task of philosophy is (for Descartes) the analysis of concepts so that 

self-evident basic truths are made manifest (replies to second objections: AT VII 155-157). 
3 For a more detailed dialectical reconstruction of the development of non-Euclidian geometry, see Gaston 

Bachelard’s New Scientific Spirit. 

 
4 Hegel was more competent in mathematics than most philosophers.  He taught calculus at the Gymnasium and 

understood the state of the discipline well enough to support continental analysis against the geometrical 

methods of the Newtonian school (a debate in which he backed the right horse, though not necessarily for the 

right reasons).  I am indebted to Prof. Westphal on this point. 
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have no role in choosing the axioms from which it proceeds. These axioms must either be 

somehow absolutely self-evident, or they must be supplied by some other discipline.
5
  Hegel 

opts for the latter: 

 [Axioms] are commonly but incorrectly taken as absolute firsts, as though in 

and for themselves they required no proof...  If, however, axioms are more 

than tautologies, they are propositions from some other science...  Hence they 

are, strictly speaking, theorems, and theorems taken mostly from logic.
6
 

By ‘logic’, of course, Hegel means a philosophical reflection on essences.  It is by thinking 

about the essence of the triangular, the round, etc. that the first principles of geometry are 

established.  Thus, on Hegel’s view, mathematics receives its axioms from philosophy. 

 In fact the formal deduction of theorems from axioms is only part of the story of 

mathematical thought.  Mathematical results may be discovered empirically, groped for 

conceptually, modified in the light of proofs and counterexamples and subsumed under 

theories intended to solve some other problem entirely.  The final, polished, deductive proof 

typically appears late in the day, after a lengthy period of informal to-ing and fro-ing during 

which definitions are refined and axiom-candidates selected.  As the geometric example 

above suggests, mathematics looks far less dead, and far more dialectical, when we look 

beyond the formal, deductive proofs found in Euclid’s Elements and consider the whole of 

mathematical thinking.  Now, there have been a number of attempts to find dialectics in 

mathematics.
7
  Indeed, Hegel himself held that mathematics blundered into something 

dialectical with the development of the differential calculus.
8
  However, he thought that 

mathematics could neither understand its own success, nor repair its logical defects because 

mathematical thought is fundamentally undialectical.  In Hegel’s view, the logical difficulties 

associated with the calculus could only be solved if the requisite concepts were developed 

within a general dialectical logic.  This Hegel tried to do in the section of the Science of Logic 

headed ‘quantum’.  His approach makes sense because the calculus is, after all, the 

                                                 
    5Hegel did not consider the view that mathematical results are all conditional statements: if these axioms are 

true then those theorems follow.  The existence of this third option may be thought to dispose of the question of 

how we can know that our mathematical axioms are true.  However, the selection problem remains, even if it is 

admitted that axioms need not be true of anything but need only be ‘interesting’.  Some version of Hegel’s point 

will stand so long as it is conceded that some rational standard or goal guides the choice of axioms.  For we can 

always ask a) how it is that the axioms chosen meet the standard or serve the goal in view? and b) how was this 

goal settled on? 

    6The Science of Logic vol. two, section 3, chapter 2 A (b) ‘The Theorem’ (p. 808).  The logicist school 

(including Frege, Russell and the Tractatus-period Wittgenstein) tried to argue that the axioms of mathematics 

are not more than tautologies.  The effort is generally held to have foundered on Russell’s paradox and Gödel’s 

incompleteness results. 

    7See The Science of Logic vol. one, book I, section 2, chapter 2 C (c) ‘The Infinity of Quantum’ (pp. 252-

313).  Engels offered a popular version of the same theme in Anti-Dühring part I §xii-xiii.  For a wholly different 

attempt to read dialectics into mathematics see Peter Várdy ‘On the Dialectics of Metamathematics’ (Graduate 

Faculty Philosophy Journal vol. 17, 1994 pp. 191-216).  Moving the opposite direction, there is an attempt to 

build a mathematical model of dialectical logic in R.S. Cohen (ed.) Hegel and the Sciences (1984). 
8
 “[The infinitesimal] magnitudes have been defined as such that they are in their vanishing, not before their 

vanishing… or after their vanishing…  Against this pure notion it is objected… that such magnitudes are either 

something or nothing; that there is no intermediate state between being and non-being…  But against this it has 

been shown that… there is nothing which is not an intermediate state between being and nothing.  It is to the 

adoption of the said determination, which understanding opposes, that mathematics owes its most brilliant 

successes.”  (The Science of Logic vol. one, book I, section 1, chapter 1 ‘Being’ C ‘Becoming’ 1 Remark 4; 

pp. 104-5) 
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mathematics of change.
9
  In fairness we should record that the calculus was in logical disarray 

until late in the nineteenth century.  It was beyond argument that there was something about 

the calculus which mathematicians did not understand.  Naturally, Hegel produced a 

diagnosis that emphasises the alleged superiority of his own logical system.
10

  What matters 

for the present argument is that, for Hegel, the dialectical part of the job (the derivation of the 

requisite determinations of the notion) belongs exclusively to philosophy. 

 

Lakatos 

 In his Proofs and Refutations the Hungarian philosopher Imre Lakatos showed, using 

detailed examples, that there is a lot more to mathematical thought than the formal deduction 

of theorems from axioms.  What is more, his account of the additional, non-deductive part of 

mathematical thinking shares many of the features attributed by Hegel to dialectical (or 

‘philosophical’) cognition.  Indeed, Lakatos agreed with Hegel that the assumptions and 

methods of deductive mathematics stand in need of justification, and that this grounding must 

be dialectical in character.  However, he maintained that mathematicians can (and do) supply 

this need themselves.  He also differed from Hegel in thinking that perfect certainty cannot be 

achieved in mathematics any more than in physical science. 

 It is no secret that Lakatos’ analysis of mathematical thought owes much to Hegel.
11

  

Lakatos cited Hegel’s dialectic as one of the three ‘ideological’ sources of the Ph.D. thesis 

which eventually became Proofs and Refutations (the other two being Pólya’s mathematical 

heuristic and Popper’s critical philosophy).  He followed Hegel in using biological metaphors 

to express the idea that living systems of thought are constantly in flux, and therefore our 

grasp of such a system must have a corresponding dynamism.  Knowledge is said to grow; 

theories must survive childhood illnesses if they are to reach maturity.  In particular he argued 

that formal logic can only dissect dead theories (see Proofs and Refutations p. 3n3). 

 Proofs and Refutations is primarily a polemic against ‘formalism’ in the philosophy of 

mathematics.  ‘Formalism’ identifies mathematics with its ‘formal shadow’, that is, with the 

formal systems of axioms, proofs and theorems which are often, nowadays, its end-product.  

                                                 
9
 Here as everywhere Hegel aims to find order in the concrete rather than impose order upon it: “continuous 

magnitude, becoming, flow, etc.,… are formal in that they are only general categories which do not indicate just 

what is the specific nature of the subject matter [of calculus], this having to be learned and abstracted from the 

concrete theory, that is, the applications.”  (The Science of Logic vol. one, book I, section 2, chapter 2, C, (c) 

Remark 2 ‘The purpose of the Differential Calculus Deduced from its Application’; p. 302n). 
10

 The problem was to make sense of dxdy given that dy and dx are each equal to zero.  Hegel’s solution was 

to regard dy and dx as ‘moments’ whose nature is to vanish.  The solution settled on by mainstream 

mathematics was to abandon the dxdy notation altogether in favour of Cauchy’s ε-δ formulation.  This 

solution contains no dynamic elements of the sort envisioned by Hegel. 

    11Ian Hacking has already suggested a Hegelian influence in the metaphysics of Lakatos’s philosophy of 

science and his use of history in philosophical argument (“Imre Lakatos’s Philosophy of Science”).  John 

Kadvany (“A Mathematical Bildungsroman”) cites Hegel’s Phenomenology to explain the literary form of 

Proofs and Refutations.  All efforts to trace a line from Lakatos back to Hegel suffer from the difficulty that 

Lakatos learned his Hegel at a time when he was a convinced Marxist.  Consequently, the Hegel in Lakatos has 

been filtered through the Hungarian Marxist tradition of which Lukács is perhaps the most famous 

representative.  Moreover, it is difficult to judge the extent to which Lakatos was aware of the Hegelian-Marxist 

influence on his work.  While citing Hegel’s dialectic as an ‘ideological source’ of his essay Lakatos made no 

attempt to identify precisely what the contribution of this Hegelian tributary might have been.  See also Larvor 

(1998) pp. 23-29, 65-71, 102. 
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This leads (according to Lakatos) to the philosophical neglect of everything about 

mathematics not caught by formalisation.  It may also in time distort mathematical practice.  

Central to his critique of ‘formalism’ is his distinction between (in his own terminology) the 

‘heuristic’ and ‘deductivist’ styles of mathematics.
12

 

 

Heuristic Vs. Deductivism 

 Lakatos spelled out this distinction in what appears as the second appendix to Proofs 

and Refutations, entitled “The Heuristic Approach” (drawn from chapter three of his thesis).  

The prevailing ‘Euclidian’ or ‘deductivist’ methodology, according to Lakatos, requires 

mathematical work to be presented in a very particular manner: 

 This style starts with a painstakingly stated list of axioms, lemmas and/or 

definitions.  The axioms and definitions frequently look artificial and 

mystifyingly complicated.  One is never told how these complications arose.  

The list of axioms and definitions is followed by the carefully worded 

theorems.  These are loaded with heavy-going conditions; it seems unlikely 

that anyone should ever have guessed them.  The theorem is followed by the 

proof.  (p. 142) 

This ‘deductivist’ style is pernicious, according to Lakatos, because it hides the struggle 

through which the finely tuned theorem and its definitions were achieved.  The original 

problem, the first naïve conjecture and the critical process of its refinement are banished to 

history.  Meanwhile, the end-product is regarded as an infallible truth, hedged about as it is 

with proof-generated monster-barring definitions (‘monster-barring’ is Lakatos’ term for the 

trick of fending off putative counterexamples to a theorem by restricting the scope of its 

central terms).
13

 

 Part of the trouble is that students are required to take the repertoire of definitions and 

theorems on trust.  This authoritarianism is repugnant to Lakatos—it is not surprising that 

someone with Popperian sympathies should find fault with an intellectual culture that refuses 

to acknowledge the importance of criticism.  His main claim, however, is that the 

‘deductivist’ style permits a kind of degeneration, because it allows authors to ‘atomise’ 

mathematics, that is, to present proof-generated definitions separately and ahead of the proofs 

from which they were born.  This tearing apart of heuristic connections obscures the ‘problem 

situation’ from which the theorem and proof emerged.  The ‘deductivist’ style permits this 

because its authoritarianism relieves authors of the responsibility of motivating their work.  In 

‘Euclidian’ methodology a theorem need not have a point; all it needs is a proof.  Lakatos 

clearly suspected that some contemporary mathematics is indeed pointless:  

 Stating the primitive conjecture, showing the proof, the counterexamples, and 

following the heuristic order up to the theorem and to the proof-generated 

definition would dispel the authoritarian mysticism of abstract mathematics, 

and would act as a brake on degeneration.  A couple of case-studies in this 

                                                 
    12The quotation marks around ‘formalism’ mark the fact that Lakatos’ use of the term is broader than is usual 

in the philosophy of mathematics.  In his sense, Frege and Russell were formalists. 

    13The production of sophisticated definitions through criticism and proof-analysis is described in the main text of 

Proofs and Refutations, especially pp. 88-91. 

 Felix Klein distinguishes “Euclidian presentation” from that of certain French mathematicians, whose 

works “read just like a well written gripping novel”.  For Klein, as for Lakatos, this distinction reflects 

methodological differences (Elementary Mathematics from an Advanced Standpoint p. 84). 
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degeneration would do much good for mathematics.  Unfortunately the 

deductivist style and the atomization of mathematical knowledge protect 

‘degenerate’ papers to a very considerable degree. (Proofs and Refutations 

p. 154; see also p. 98n2) 

In Lakatos’ alternative style of mathematics—the ‘heuristic approach’—a ‘distilled’ history of 

the theorem and its proof is the chief part of the exposition.  This compressed and streamlined 

history starts not with definitions but with a problem or a question.  A naïve answer 

(‘primitive conjecture’) is offered, and criticised.  Through criticism the solution is improved 

and eventually the final result emerges.  Thus the result is motivated by the initial question 

and its technicalities are explained by the narrative of conjectures and criticism. 

 Lakatos offered as an example Seidel’s uniform convergence theorem (which states 

that a uniformly convergent sequence of continuous functions converges to a continuous 

function)
14

.  A normal, ‘Euclidian’ presentation of Seidel’s theorem starts by stating the 

definitions of continuity and uniform convergence: 

(1) A function f(x)  is continuous at a point 0x  if and only if for every real number 

0>ε  there is a real number 0>δ  such that |)f(x-f(x)>| 0ε  whenever 

|x-x>| 0δ . 

 

(2) A sequence of functions KK f ,f ,f ,f
n210

 converges uniformly to a limit 

function f  on an interval I if and only if for every real number 0>ε  there is 

a natural number N  such that for every x  in I, ε≤|f(x)-(x)f|
n

 whenever 

Nn ≥ . 

Students have to try to understand these definitions without knowing what if anything their 

point is, (readers of this paper who find these definitions impenetrable may take solace in the 

fact that this is the present point).  The proof follows and the definitions turn out to be exactly 

what one would need to prove just that theorem, but one is not told how those definitions 

were found, nor why this theorem is an important result. 

 An ‘heuristic’ presentation, by contrast, would tell a compressed version of the 

historical path from the earliest speculations about continuity through to Seidel’s theorem.  

Thus the definitions would lose their ex cathedra quality and would appear instead as natural 

solutions to real problems.  According to Lakatos, this theorem started life as an instance of 

the ‘Leibnizian principle of continuity’.  In this context, Leibniz’s principle suggests that the 

limit function of a convergent sequence of continuous functions is itself continuous.  This 

was accepted without proof, for it seemed obvious that what is true up to the limit must be 

true in the limit (Proofs and Refutations p. 128).  The Leibniz principle only came to be 

doubted when Fourier’s work on heat produced a family of counterexamples.  E.g.: 

In this case, the partial sums are continuous but the limit function is not.  At least, that is the 

case given the modern ε-δ definition of continuity.  That definition is usually credited to 

Cauchy, who also produced a purported proof of the Leibniz continuity-principle.  Thus, 

                                                 
    14Lakatos used the emergence of this theorem several times to illustrate his approach to mathematics and its 

history: twice in the appendices to Proofs and Refutations and once in “Cauchy and the Continuum” (collected 

papers volume II). 
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Cauchy’s attempt to rigorise analysis left mathematicians with a problem.  On the one hand, 

they had Cauchy’s proof of the Leibniz principle.  On the other hand, they had the Fourier 

counterexamples to it.  Seidel resolved the difficulty in his 1847 paper.  By analyzing 

Cauchy’s proof in the light of the counterexamples, Seidel was able to identify a hidden 

assumption.  He made this assumption explicit and gave it a name: uniform convergence.  

 It might be argued that Lakatos overstates the case regarding the dangers of the 

deductivist style to mathematics.  There may be some degenerate papers published, but 

mathematics does not seem to be in a general decline.  However, if mathematics is in good 

shape, it is because the referees of mathematical journals know enough about the state of the 

discipline to distinguish useful, interesting contributions from trite or pointless proofs.  In 

other words, referees carry an understanding of the heuristic background to formal proofs in 

their heads, and they use this knowledge to sift significant papers from degenerate ones.  

Lakatos’ recommendation, then, is that this part of mathematical rationality should be set 

down in print along with the formal proofs.  Until such heuristic reasoning is made explicit, it 

cannot be properly subjected to scrutiny, criticism and philosophical reflection.
15

 

 

Thesis-Antithesis-Synthesis 

 Once, in Proofs and Refutations (pp. 144-5), Lakatos couched this argument in (what 

he took to be) ‘Hegelian’ language: Seidel’s theorem is presented as the synthesis in a 

dialectical triad.  The thesis is the Leibniz continuity-principle.  The antithesis is the family of 

Fourier counterexamples.  The dialectical opposition was heightened and clarified by 

Cauchy’s ε-δ definition of continuity, which excluded the various available compromises, 

thereby preventing the thesis and antithesis from coexisting.  Seidel produced the synthesis by 

analysing the proof of the thesis in the light of the counterexamples.  In order to express the 

improved theorem and proof, he had to define a new concept, uniform convergence.  Thus, 

the process of proof and criticism is creative (pace Popper), giving rise to new conjectures 

and new, proof-generated concepts.  This is possible because the counterexamples do not only 

show that the naïve conjecture is false: they point to a specific problem, the solution of which 

leads to a new conjecture.  In ‘Hegelian’ jargon, the counterexamples do not stand in ‘bare 

opposition’ to the Leibniz principle, but rather offer a ‘determinate (i.e. specific) negation’ of 

it.  The synthesis in this three-step does not simply unite the best of the thesis and the 

antithesis.  Rather, the synthesis solves the problem posed by the antithesis for the thesis. 

 Lakatos acknowledged that even in this paradigmatic case, the ‘Hegelian’ vocabulary 

is just a way of talking about the episode that has drawbacks as well as advantages.  Lakatos’ 

mathematical ‘Hegelianism’ would be of little interest if it consisted only in his having once 

employed the three-step model of knowledge-growth.  It is a familiar fact that this pattern can 

be ‘found’ in almost any intellectual field if it is searched for with sufficient ingenuity.  

Indeed it would hardly count as Hegelianism, since Hegel never described his own logic in 

these terms.
16

  Any rigid, formal model of dialectical thinking would be unacceptable to 

                                                 
15

 One kind of degeneration identified by Lakatos is cheap generalisation: it is often the case that generalising a 

formula requires no insight and offers no illumination (Proofs and Refutations pp 80-81, 97-98).  Hegel makes 

exactly this complaint about generalisations of the binomial formula (The Science of Logic vol. one, book I, 

section 2, chapter 2, C, (c) Remark 2 ‘The purpose of the Differential Calculus Deduced from its Application’; 

p. 280n1). 
16

 Hegel used the three terms together only once, and then to castigate Schelling’s ‘schemetising formalism’ 

(here I am grateful to Prof. Westphal).  On the other hand, Hegel’s efforts to transcribe the music of reason were 
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Hegel and Lakatos alike (“One cannot describe the growth of knowledge… in ‘exact’ terms, 

one cannot put it into formulae”
17

).  However, Lakatos’ distinction between the deductivist 

and heuristic styles owes much more to Hegel than that. 

 To see the connection, we must move beyond the crude thesis-antithesis-synthesis 

formula.  Recall Hegel’s central criticism of mathematical thought as he understood it: 

 [Mathematical] proof,... follows a path that begins somewhere or other without 

indicating as yet what relation such a beginning will have to the result that will 

emerge.  In its progress it takes up these particular determinations and 

relations, and lets others alone, without its being immediately clear what the 

controlling necessity is; an external purpose governs this procedure. 

(Phenomenology of Spirit §44, p. 25) 

In fact, what Hegel describes here is mathematics in the deductivist style (indeed, it is clear 

from the surrounding text that Hegel has Euclid in mind).  To use Lakatos’ example, 

deductivist presentations of Seidel’s theorem and proof begin with the definitions of 

continuity and uniform convergence ‘without indicating as yet what relation such a beginning 

will have to the result that will emerge’.  The ‘controlling necessity’ is the heuristic 

background to the proof.  That is what explains the choice of ‘determinations’ (definitions 

and lemmas).  This ‘purpose’ is only ‘external’ because Euclidian methodology requires that 

the heuristic background be banished from the scene.  In other words, Hegel’s distinction 

between dialectical and so-called ‘mathematical’ reasoning is a direct ancestor of Lakatos’ 

distinction between the heuristic and deductive styles.  Hegel’s claim is that in dialectical 

reasoning, each stage grows out of and is explained by what came before.  There is no need to 

take definitions or ‘problems to solve’ on trust, in the hope that they will turn out to be just 

right for the job.  Lakatos’ claim is that mathematics done in the heuristic style has the same 

virtue. 

 Hence, Lakatos’ use of ‘Hegelian’ jargon was not casual.  Hegel’s dialectical logic is 

an attempt to represent the emergence of new concepts as a rational process, which is exactly 

what Lakatos wanted to achieve for mathematics.  Hegel’s method was to write a special kind 

of ‘distilled’ or ‘philosophically comprehended’ history (‘distilled’ is Lakatos’ word; 

‘philosophically comprehended’ is the Hegelian expression).  Such histories explain the 

advent of a new concept by portraying it as the solution to a logical problem.  These 

narratives can serve several purposes: they offer a reading of intellectual history; they can be 

didactically useful; and they can work as philosophical argument.  Lakatos saw his own essay 

in this idiom, “The dialogue form
18

 should reflect the dialectic of the story; it is meant to 

contain a sort of rationally reconstructed or ‘distilled’ history” (Proofs and Refutations p. 5, 

Lakatos’ emphasis).  As noted above, he intended it primarily as a philosophical argument 

against ‘formalism’ (“the school of mathematical philosophy which tends to identify 

                                                                                                                                                        
usually scored in waltz time.  Consequently, the thesis-antithesis-synthesis model probably comes as close to 

capturing Hegel’s logic as any formal model could.  But the main point remains the inadequacy of all formal 

models. 
17 Collected papers volume II pp. 136-7.  In a letter to Feyerabend Lakatos hotly denied that his rationalism was 

‘mechanical’.  In other words, Lakatos like Hegel thought that scientific rationality should find order in the 

subject matter rather than imposing some rigid methodology on it from without.  See Larvor (1998) pp. 80-88. 

 

    18Hegel of course did not present his own dialectical works in dialogue form.  In his view, human characters are 

superfluous to the development of the subject-matter. 
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mathematics its formal abstraction” Proofs and Refutations p. 1).  However, he also thought 

that recognition of dialectical patterns in mathematics would lead to better history and better 

pedagogy. 

 

Theorem and Proof 

 Part of Hegel’s criticism of mathematical thought was that theorems are not 

essentially related to their proofs.  The same theorem may have several different proofs.  It 

would seem that we can understand a mathematical hypothesis in advance of any attempt to 

prove it.  Another version of the same thought is Hegel’s complaint that the premises of a 

mathematical proof are not altered by its conclusion.  As above, Hegel is right on these points 

so long as we restrict our attention to the formal chains of reasoning found in deductivist 

expositions of mathematics.  However, Lakatos showed (following Pólya) that proofs and 

theorems may evolve together.  Starting with a hunch, a hypothesis or a problem one 

formulates a primitive conjecture.  In trying to prove this naive conjecture one may find some 

exceptions to it.  Now, a proof cannot be sound if its conclusion suffers exceptions.  

Therefore the proof must be examined, the error found and the premises adjusted accordingly. 

 This was the pattern in the example of uniform convergence mentioned above.  There the 

adjustment took the form of a proof-generated definition: the definition of uniform 

convergence emerged from Seidel’s analysis of Cauchy’s attempt to prove Leibniz’s 

principle.  In other words, the dialectical argument from Leibniz through to Seidel did bring 

about a change in the premises of the proof, namely, the introduction of the concept of 

uniform convergence. 

 The bulk of Proofs and Refutations is taken up with a dialogue in a fictional 

mathematics class.  The pupils discuss the Descartes-Euler formula 2=F+E-V  concerning 

polyhedra.  The hypothesis is that for any polyhedron the number of vertices (V) minus the 

number of edges (E) plus the number of faces (F) will always equal two.  This result is easy 

to check for the regular Platonic solids, but does it hold generally?  The first attempted proofs 

worked by showing that the formula is not affected by sawing corners off polyhedra for which 

it holds, nor by adding ‘roofs’ to their faces.  In other words, these proofs treated the formula 

as a theorem about solids that can be sliced like cheese.  The drawback with this approach is 

that it is difficult to check that all polyhedra can be generated out of the known solids by 

roofing and slicing.  Later proofs took a different route.  In these later thought-experiments 

the polyhedron is pumped up until it is spherical so that its edges form a map on a globe; or 

one side is replaced by a camera lens pointing inside; or one side is removed and the 

remaining sides stretched flat to form a plane network. 

 Crucially, these manipulations cannot be carried out on solids.  In introducing these 

new proofs, mathematicians quietly shifted from treating polyhedra as solids to treating them 

as closed surfaces.  This shift generated problems and questions of its own.  For example, it 

was now possible to speak intelligibly of polyhedral faces intersecting one another.  Thus a 

whole new class of polyhedra came to the attention of mathematicians.  It turned out that the 

Euler formula was true of some of these new shapes, but not of others.  In order to explain 

this fact it was necessary to develop the theory further still.  To cut a long story short, 

 The ‘theory of solids’, the original ‘naive’ realm of the Euler conjecture, 

dissolves, and the remodelled conjecture reappears in projective geometry if 

proved by Gergonne, in analytical topology if proved by Cauchy, in algebraic 

topology if proved by Poincaré.  (Proofs and Refutations p. 90) 
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In short, there may be an intimate relation between a theorem and its proof (pace Hegel).   

In order to see such a relation one must look for theorems that employ proof-generated 

concepts, for it is the process of conceptual refinement that ties theorem and proof together.  

A mature mathematical concept is (for Lakatos) produced through the diagnostic analysis of 

failed proofs and rejected theorem-candidates.  The theorems of Euclidean geometry do not 

qualify because their central concepts (circle, triangle, etc.) are not the results of any 

developed mathematical dialectic.  Rather they are simple idealisations of empirical forms.
19

  

If Hegel had Euclid in mind then it is not surprising that he saw no dialectical movement in 

mathematical thought.  In contrast, Seidel’s theorem cited above does illustrate the point.  

The theorem and its proof are the joint product of the emergence of the concept of uniform 

convergence.
20

  Now, the fact that a theorem and its proof may share a history does not 

amount to the comprehensive identity of process and product promised by Hegelian logic.  

We can still detach the theorem and employ it independently of its proof.  However, no 

special discipline meets this Hegelian standard, and none can.  The absolute unity of process 

and product is only to be expected of absolute knowledge.  The mere fact that the product of 

mathematical thinking is dead and formal does not show that the same is true of the thinking 

itself.  All living things excrete dead matter and leave corpses.  For the present purpose, it is 

enough to see that mathematics is not limited to the formal manipulation of concepts drawn 

from elsewhere.  Mathematics is able to generate new concepts of its own.  It has the power 

of self-movement. 

 

Understanding and Reason 

So far, then, Lakatos argues that there is a lot more to mathematical rationality than 

the mechanical deduction of theorems from axioms.  This informal, non-mechanical part of 

mathematical rationality turns out, on Lakatos’ account, to have much in common with 

‘philosophical’ or ‘dialectical’ thought as Hegel understood it.  That is why Hegel’s (largely 

well-taken) criticisms of ‘mathematical’ (i.e. deductivist) proof do not tell against proofs in 

Lakatos’ ‘heuristic’ style.  It is, then, hardly surprising that when the fictional students turn 

their attention away from the Euler formula in favour of methodology in general, they find 

themselves articulating a familiar Hegelian distinction. 

 Lakatos’ students learn that the word ‘polyhedron’ no longer means what it did at the 

outset.  Euler’s polyhedra were solids while Poincaré’s polyhedra are rather abstract algebraic 

objects (indeed Descartes and Euler counted solid angles where today we would count 

vertices
21

).  Once their attention has been directed to the topic of conceptual evolution, they 

come to see that the concept polyhedron has been in flux all along.  Originally, it contained 

only the Platonic solids and similarly simple and well-behaved geometrical objects.  Then 

(goes Lakatos’ story) mathematicians began to consider less straightforward objects, such as 

                                                 
19

 Or so it must have seemed to Hegel.  More recent research tells a more interesting story.  See Proofs and 

Refutations p. 49n1.  David Reed offers a reading of the Elements in which “The subject matter drives the 

argument.  Euclid is not free to select a set of postulates according to philosophical predisposition, pedagogical 

efficiency or a subjective sense of beauty in mathematics.”  (Figures of Thought p. 19). 
20 There are some clues in the oral folklore of contemporary mathematics.  Jean-Pierre Marquis reports that 

“There are very often many different proofs of one and the same result.  Many mathematicians feel that often one 

of these proofs provides ‘the real reason’ for a result...” (‘Tools and Machines’ p. 270n22). 

 

    21See Proofs and Refutations p. 6n1. 
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solids with tunnels through them, or objects hinged together along an edge.  The Euler 

formula does not hold for many of these items.  Therefore, if they count as polyhedra then 

they are counterexamples to the claim that the Euler formula holds for all polyhedra.  In the 

event, the class produced a new theorem: for simple polyhedra with simply-connected faces, 

the Euler formula holds (where ‘simple’ is a defined technical term).  Lakatos argues (p. 88) 

that this new theorem has the effect of tacitly expanding (or ‘stretching’) the meaning of 

‘polyhedron’.  Whereas the old polyhedron-concept only included simple solids, the new one 

embraces whole families of Swiss cheeses, step pyramids and other topological curiosities. 

 The point is that these complex objects with ring-shaped faces are only 

counterexamples after the new, expanded polyhedron-concept has displaced the old, narrow 

one.  Now, if it were the sole aim of mathematics to produce true theorems, it would seem 

that this stretching of the concept was a mistake.  For what was a true theorem has now 

acquired counterexamples and is therefore, strictly, false.  However, we are not satisfied with 

merely true theorems.  We want deep theorems.  The expansion of the polyhedron-concept to 

include objects with holes, steps and hinges does not only yield greater generality.  It exposes 

the fact that the phenomenon at hand is more properly topological than geometrical.  In 

general: 

 You cannot separate refutations and proofs on the one hand and changes in the 

conceptual, taxonomical, linguistic framework on the other.  Usually, when a 

‘counterexample’ is presented, you have a choice: either you refuse to bother 

with it, since it is not a counterexample in your given language L1, or you 

agree to change your language by concept-stretching and accept the 

counterexample in your new language L2...  According to traditional static 

rationality, you should make the first choice.  Science teaches you to make the 

second.  (p. 93) 

The thought that theoretical advances are inseparable from shifts of meaning is not, by itself, 

distinctively Hegelian.  It can be found in Quine, for example.  What is Hegelian is the 

contrast between ‘traditional static rationality’ (which insists that the meanings of terms 

should remain fixed for fear of committing the fallacy of equivocation), and the rationality of 

science (which accepts conceptual change as a concomitant of progress).  This distinction 

between a rationality of fixed concepts and a rationality of concepts in flux is a mathematical 

version of Hegel’s contrast between ‘understanding’ (Verstand) which “determines, and holds 

the determinations fixed”
22

 and ‘reason’ (Vernunft) which unpicks and reconfigures these 

determinations. 

 

Differences 

 Lakatos’ philosophy of mathematics never stabilised into a settled view.  One issue in 

particular seems unresolved: the question of mathematical ontology.  In Proofs and 

Refutations he describes, and seems to endorse, a ‘Hegelian’ view: 

 Mathematics, this product of human activity, ‘alienates itself’ from the human 

activity which has been producing it.  It becomes a living, growing organism, 

that acquires a certain autonomy from the activity which has produced it; it 

develops its own autonomous laws of growth, its own dialectic.  (p. 146) 

                                                 
    22Science of Logic preface to the first edition (p. 28). 
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The suggestion seems to be that the dialectical development of mathematical knowledge is 

coupled with (if not identical to) the dialectical evolution of mathematical reality.  This view 

has something in common with Popper’s emergentism.  For Popper, the content of thoughts, 

theories and propositions has an objective existence in the ‘third realm’.  Here, logical 

problems exist independently of our awareness of them.  This third realm (the other two being 

the material and the mental) supervenes upon the activities of humans and our machines.  

Crucially, Popper thought that numbers and mathematical structures also exist in this third 

realm.  However, Popper and Lakatos were both resolutely opposed to the crassly determinist 

Hegel found in the pages of The Open Society and Its Enemies.
23

  In a footnote, Lakatos adds: 

 My concept of the mathematician as an imperfect personification of 

Mathematics is closely analogous to Marx’s concept of the capitalist as the 

personification of Capital.  Unfortunately Marx did not qualify his conception 

by stressing the imperfect character of this personification, and that there is 

nothing inexorable about the realisation of this process.  On the contrary, 

human activity can always suppress or distort the autonomy of alienated 

processes and can give rise to new ones.  (p. 146n1) 

Lakatos did not believe progress in any area to be historically inevitable.  It is not only that 

mathematical work can be interrupted by inconvenient wars and neuroses.  Rather, the point 

is that intellectual problems do not determine their own solutions.  There may be several ways 

out of any given logical maze and no guarantee that the best will be chosen.  Indeed, there 

may be no criterion by which one solution can be identified as the best post hoc.  Moreover, 

Lakatos was a fallibilist regarding mathematics, science and philosophy.  The distant prospect 

of absolute knowledge was, for him, a mirage. 

 Still, the above passage suggests that Lakatos adopted some sort of emergentism.  

However, in another paper he opts for a kind of Platonism: 

 I have very strong feelings against Popper’s linguistic conventionalist theory 

of mathematics and logic.  I think with Kneale that logical necessity is a sort of 

natural necessity; I think that the bulk of logic and mathematics is God’s doing 

and not human convention.  (Philosophical Papers vol. 2 p. 127)
24

 

On this evidence it would appear that Lakatos’ mathematical dialectic is purely 

epistemological.  For him, mathematical knowledge grows and reinvents itself in order to 

improve our apprehension of a fixed mathematical reality: 

 As far as naive classification is concerned, nominalists are close to the truth 

when claiming that the only thing that polyhedra have in common is their 

name.  But after a few centuries of proofs and refutations, as the theory of 

polyhedra develops, and theoretical classification replaces naive classification, 

the balance changes in favour of the realist.  (Proofs and Refutations p. 92n1) 

In short, the little that Lakatos wrote on ontology was unclear and unremarkable.  It is 

unsurprising that he had little to say about mathematical ontology because the method of 

rational reconstruction gives no purchase on such questions.  The rational reconstruction of 

thought within thought cannot tell us anything about any reality that may lie outside our 

                                                 
    23Most Hegel scholars have clear views regarding the accuracy of the account of Hegel’s philosophy in The 

Open Society and Its Enemies.  I shall, therefore, resist the temptation to comment on the quality of Popper’s 

exegesis. 

    24This paper dates from 1960 and is therefore contemporaneous with the ‘Hegelian’ passages quoted earlier. 
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thinking.  Thus Lakatos was embarrassed by metaphysical questions because he combined 

realist doctrine with idealist philosophical method. 

 For Lakatos dialectical progress in mathematics is ‘quasi-empirical’.  By this 

expression he meant that general mathematical theories bear the same relationship to small 

mathematical facts as general physical theories do to small material facts.  Mathematical 

concepts develop through a cycle of conjecture, attempted proof, refutation and proof-analysis 

similar to that found in natural science.  It is for this reason that Lakatos is a fallibilist in 

mathematics as in natural science.  He was contemptuous of the ‘speculative proofs’ found in 

Hegel’s philosophy of nature because they seemed to suggest that infallible knowledge could 

be had, and without the pain of refutations too.  Hegel seems to have thought that dialectical 

logic supplies mathematics with concepts (determinations of the notion) which mathematics 

then spins (formally) into theorems.  Or rather, mathematics takes up forms found in nature 

and operates on them, but only as the understanding operates. It can rearrange but cannot 

transform.  Hence mathematics needs philosophy to show that these forms are not arbitrary 

but are in fact grounded in the deepest categories of reason.
25

  Lakatos thought that 

mathematics had to develop (and thereby ground) its own concepts using a ‘quasi-empirical’ 

dialectic because speculative proofs are not reliable.
26

  Moreover if taken seriously they 

freeze thought at whatever stage it happens to have reached.  In the case of the calculus, 

history seems to be on Lakatos’ side.  Hegel’s approach was to give a logical grounding to the 

calculus as it stood in his day.  Had his solution been adopted by mathematics we might never 

have had the great flowering of analysis and topology that has taken place since then. 

 An immediate consequence of Lakatos’ view is that formal and dialectical logic 

cannot be kept separate.  In Hegel’s logic a concept develops out of itself.  It does not need 

the formal machinery of theorem and counterexample because it contains its own opposite.  

There is thus a smooth progress from the seminal form of the concept to its final articulated 

state.  Formal logic plays no part in this development.  Equally, for Hegel, dialectical logic 

plays no part in mathematics proper.  Since Lakatos rejected speculative proofs, he had to 

locate the dialectical process in mathematics itself.  For him the development of mathematical 

thought is a perpetual struggle between the conservative tendency of formal logic and the 

revolutionary potential of dialectic.  That is why, for Lakatos, mathematical thought has the 

power of self-movement (and indeed, self-restraint).  Nevertheless, some of Hegel’s view of 

mathematics remains in good standing.  Mathematical thought may be alive, but 

mathematical propositions are tenseless
27

 and concerned with formal structure.  On the other 

hand, mathematical thought is a) temporal and b) directed by its content as well as by its 

form.  Consequently (in Lakatos’ view as in Hegel’s) mathematical thought cannot 

understand itself, and needs to turn to philosophy for illumination of its own workings.
28

 

                                                 
25

 Thus for Hegel it is unsurprising that mathematics should discover but fail to understand the ephemeral 

dy and dx because change (or more precisely, becoming) is everywhere in nature. 
26

 “Hegel and Popper represent the only fallibilist traditions in modern philosophy, but even they both made the 

mistake of reserving a privileged infallible status for mathematics” (Proofs and Refutations p. 139n1). 
27

 This is one reason why Hegel’s solution to the calculus problem could not stand.  Vanishing quantities are, 

presumably, tenselessly vanishing now.  As we have learned since, the mathematics of change need not itself 

have any elements in flux. 
28

 From what has been said here it may seem that mathematical thought is like a cat: a living organism, capable 

of self-movement, but incapable of self-understanding.  In fact, mathematical logic provides mathematics with a 

self-misunderstanding.  Mathematical thought is thus like a mechanist philosopher who has a model of himself, 

but one that fails to explain how he is able to produce such models. 
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 Hegel’s view that mathematics always was and always will be simply the science of 

abstract space and number sits oddly given that, in Hegel, every other kind of human thinking 

or activity eventually transforms itself into something else.  Only mathematics is excluded 

from the great ripening of the universe.  There are historical reasons why Hegel should think 

this: the capacity of mathematics for self-transformation is more obvious now than it was 

then.  Galileo famously observed that Aristotle would have changed his cosmology had he 

looked through a telescope, and that it is a better Aristotelianism to keep to Aristotle’s general 

methods than it is to cling to his detailed doctrines.
29

  In a similar spirit, I would suggest that 

present-day Hegelians abandon Hegel’s dogmatically undialectical philosophy of 

mathematics.  Then, they could recognise mathematics as a living body of thought, and its 

contribution to the development of human thinking in general could be properly understood. 

                                                 
    29Galileo Dialogue Concerning the Two Chief World Systems, trans. S. Drake (Berkeley, Calif.: University of 

California Press, 1953), 56.  Quoted in Losee, p. 57. 
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