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Abstract

Let n be the number of independent variables of a function f � and let W � S respectively
be the time and space bounds for the joint evaluation of ff�rfg using automatic di�eren�
tiation with reverse accumulation� In this note� we examine an extension of the technique
of reverse accumulation which allows the automatic extraction of the Hessian of f � The
method allows the parallel evaluation of all rows of the Hessian matrix in about �W time
units and �S space units on each of n processors� or sequential row�by�row evaluation in
about �nW time units and �S space units on a single processor� The approach described
here is intended for use with operator overloading �for example in Ada	 and allows the
conventional coding of the target function f �






�� Introduction and Summary� Automatic di�erentiation with reverse accumula�
tion can be used to obtain the gradient vector of a function of many variables� The striking
advantage of reverse accumulation is the economy of e�ort� If the computational cost of
evaluating f is Wf then rf can be evaluated at an additional cost of about �Wf ��� x���
�
This cost does not explicitly depend upon the number of independent variables in f �which
may be very large	� but merely on the complexity of the computational graph of f �

Reverse accumulation is an alternative to gradient computation using forward accumu�
lation ��� x���
� A naive approach to forward accumulation results in a gradient calcula�
tion with linear cost in the number of partial derivatives� However� a more sophisticated
approach to storing and manipulating sparse data structures yields considerable improve�
ment� in particular dramatically sublinear computational costs for the forward gradient
calculation �
� Table 
 p �
��
�

As with forward accumulation� reverse accumulation allows all parallel processing per�
mitted by the computational graph in the evaluation of f to be exploited in the evaluation
of rf �

The disadvantages of reverse accumulation are the heavy run�time storage requirements
�a naive approach to reverse accumulation gives a storage cost proportional to the number
of nodes in the computational graph� ie proportional to the number of arithmetic operation
executions required to calculate f	� and the high degree of sophistication required from
the implementor of the reverse accumulation package �overloaded arithmetic operators or
pre�compiler generated code must be used to manipulate fairly sophisticated dynamically
allocated data structures�	 Dixon ��
 suggests that these disadvantages will tend to become
less compelling as the commercial cost of memory decreases and the computer�science
expertise of numerical analysts �and of their tools	 increases�

In this note� we examine an extension of the technique of reverse accumulation which
allows the automatic extraction of the Hessian Hf of f �

Let n be the number of independent variables of the function f � and let W � S re�
spectively be the time and space bounds for the joint evaluation of ff�rfg using reverse
accumulation� Then the extended method of reverse accumulation described here allows
the subsequent evaluation of an arbitrary directional second derivative of the form �Hf	u
�where u is a constant vector	 in about �W time units and �S space units� An arbitrary
set of such directional derivatives may be evaluated serially or in parallel�

In particular� once the function value and gradient vector have been calculated� the
method allows the parallel evaluation of all rows of the Hessian matrix in about �W time
units and �S space units on each of n processors� or sequential row�by�row evaluation in
about �nW time units and �S space units on a single processor�

We give an example for which the Hessian has an intrinsic computational cost of at
least �

�
nWf � which shows that this bound is within a constant factor of being tight�

As with the gradient� all parallelism in the calculation of f permitted by the computa�
tional graph can also be exploited in the calculation of the Hessian�

The ability to calculate an accurate directional second derivative at a time cost of a few
function evaluations is extremely useful in� for example� an optimization using a truncated
Newton method which contains a conjugate gradient algorithm �

�

Methods similar to that discussed here have been developed by M� Iri et al ��
��
 and in�
dependently by B�W� Stephens and J�D� Pryce �


 and are used by PADRE� and DAPRE

�



respectively� Our approach is intended to be used with operator overloading �for example
in Ada	� and allows the direct compilation of target functions coded in conventional pro�
gramming notation� whereas PADRE� and DAPRE are pre�compilers� Techniques for
obtaining automatic Hessians by reverse accumulation using operator overloading have
also been developed by A� Griewank et al ��
� and are implemented in C�� as the pack�
age ADOL�C� The details of graph representation and manipulation appear very di�erent
to those described here� but the underlying algorithms are quite similar�

This report is organized as follows� In the next section� we describe a method� based on
operator overloading� for the automatic run�time generation of the computational graph
corresponding to a function evaluation� In section � we show how this construction can be
used to reverse�accumulate the gradient vector� So far the material is quite standard� Sec�
tion � investigates the opportunities for parallelism in the reverse accumulation algorithm�
Section � presents the promised extension to second derivatives� In section � we give the
time and space calculations� In section � we compare these theoretical bounds with those
observed for a serial implementation of the algorithm in Ada� In the �nal section� we review
the situation and draw conclusions concerning the present relationship between numerical
analysis and computer science�

�� Automatic Construction of the Computational Graph� We assume that the
calculation of the function f�x�� � � � � xn	 can be broken into a sequence of simpler �atomic�
operations thus�

for i from n � 
 upto m do
xi � fi�x�i�� � � � � x�ini

	
enddo
fxm � f�x�� � � � � xn	g

where for each i � n� ni is the arity of fi and �i is a map from f
� � � � � nig into f
� � � � � i�
g�
In practice� each fi will generally be a unary or binary arithmetic operation �such as

plus� times� sine� square root� etc�	
Where the evaluation of f is coded in conventional �in�line	 form in a language which

permits operator overloading� a list representing the sequence of atomic operations can
be built as the function is evaluated� The operators from which the code for f is built
are overloaded to append information about themselves and their arguments and results
to the list dynamically as a side e�ect� Their arguments and return values �as well as all
intermediate variables	 are no longer REALs� but pointers to list items obtained from a
heap�

Each list item contains a value identifying the operator which placed this item on the
list �and returned a pointer to this item	� a REAL value �which represents the result
of performing the operation	� a list of pointers to other items �which correspond to the
arguments of the operator	� and possibly some housekeeping information �such as pointers
and counters�	 A global environment pointer points to the �current	 �nal list item�
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Initially� items corresponding to the parameters x� � � � xn are created and placed on the
list� When the evaluation of f is complete� the �nal list item will contain the return value
xm for f �

Actually� the list of atomic operators built in this way is a linearization of the compu�
tational graph� The computational graph is the directed acyclic graph with nodes labelled
from 
 to m and with an arc from node j to node i i� j � Ti where Ti � Image �i�
Note that we allow multiple arcs from j to i in the computational graph� corresponding to
repeated arguments of fi� Note also that �in accordance with convention	 the arcs in the
computational graph have the opposite sense to the pointers in the implementation�

By using a more highly concurrent data structure such as a sibling trie �
�
 rather
than a list for housekeeping� overloading can be used to produce a representation of the
computational graph which is more suited to parallel evaluation of the target function f �

Subgraphs of the computational graph �however the graph is represented	 correspond
to invocations of user�provided or library subprograms�

The code for f may also contain control statements� This means that the structure
of the computational graph may depend on the parameter values� In particular� iterative
loops are �unwrapped�� which means that successive values of a single variable correspond
to separate nodes in the computational graph� This contributes to the high run�time
storage requirement mentioned above� However� since only the most recent value of a
variable is ever required in subsequent construction of the graph� the working�set of the
overloaded program for f requires space for only one item corresponding to each active
stack or register variable� This is only a small multiple of the working�set storage required
by the conventional program for f � and modern virtual�memory systems are capable of
handling the �archived� items e�ciently�

Since program variables are pointers� variable assignments are implemented as pointer
assignments� No additional copying or duplication of the list items takes place �except in
the case of pre�accumulation� which is discussed in section ��	

Generally the structural dependence of the computational graph upon the parameter
values causes no harm� but two points should be noted�

First� the use of control statements to de�ne a piecewise�smooth function means that
automatic di�erentiation will return the gradient of the smooth piece containing the current
argument ��� x���
� As pointed out by Kedem ��
� if the function is poorly programmed�
this may not be the intended result in boundary cases�

Second� the evaluation of variables which are used only to determine the �ow of con�
trol �and which are not functionally composed into f	 means that not every node need
be reachable from node m in the computational graph� This can also happen if the pro�
grammer is careless� There is an implication here for garbage�collecting the corresponding
graph nodes� We return to this point in section ��

If the function is programmed in a language which does not support operator over�
loading� the same e�ect can be achieved less elegantly by using a precompiler to convert
operator invocations to function evaluations with correct dynamic side�e�ects �see for ex�
ample ��
�	

�� Reverse Accumulation of the Gradient� De�ne �xi � �xm��xi for 
 � i � m�
�In evaluating �xi we de�link xi from its dependence on the xj with j � Ti and regard xi as
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an independent variable� and x� � � � xn as �xed�	
The vector ��x�� � � � � �xn	 is just rf � Clearly �xm � 
� and by the chain rule�

�xj �
X
i�j

�xi
�fi
�xj

where
�fi
�xj

�
X

fp��ip�jg

�Dpfi	�x�i�� � � � � x�ini
	

Note that �fi��xj � � unless j � Ti� Thus each arc leading out from j in the computational
graph contributes exactly one term to �xj� So we can compute rf as follows�

for i from 
 upto n do
�xi � �

enddo
for i from n � 
 upto m do

xi � fi�x�i�� � � � � x�ini
	

�xi � �
enddo
fxm � f�x�� � � � � xn	g

�xm � 

for i from m downto n� 
 do

for p from 
 to ni do
�x�ip � �x�ip � �xi � �Dpfi	�x�i�� � � � � x�ini

	
enddo

enddo
f��x�� � � � � �xn	 � �rf	�x�� � � � � xn	g

To implement this� we alter the de�nition of the list items in the representation of the
computational graph� so as to add a REAL �eld for the corresponding �xi and storage for
a representation of rfi�x�i�� � � � � x�ini

	� These partial derivatives of the atomic operations
fi may be represented explicitly as numerical values� or may already be implicit in the
operation identi�er and argument list �for example if fi�x� y	 � x � y then D�fi�x� y	 � y�	
The �xi are initialized to zero as items are generated and placed on the list�

We evaluate the gradient by calling an accumulate routine at the end of the code
evaluating f � This accumulate routine begins at node m by initializing �xm� and then
propagates the appropriate summations back up all arcs leading into node m� It then
moves to node m � 
 and repeats the propagation process� and so on for each node�
working backwards through the list� The accumulate routine can perform node�by�node
garbage collection as it moves down through the list�

The time and space requirements of this algorithm are discussed quantitatively in
section ��

�� Parallel Evaluation and Pre�accumulation of the Gradient� Two imple�
mentation optimizations of gradient accumulation are possible� First� we can recover any
parallelism in the calculation of f by allowing the accumulation algorithm to be active at
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more than one node at a time� The condition for correct evaluation is that accumulation
from node j must not begin until accumulation has completed at all nodes i for which
there is an arc from j to i�

To ensure this we could� for example� associate a �use count� with each list item�
indicating the number of arcs leading out of the corresponding node� This count �initialized
to zero	 is incremented as the list is built �as each new item is placed on the list� the use
count of each item pointed at by the argument list is increased by one�	 The count is
decremented by the accumulate algorithm �as the accumulation algorithm propagates a
summation term to a list item representing an argument� the use count of that argument
item is decreased by one�	 As soon as the use count of a list item reaches zero� the
accumulation algorithm is free to begin propagation �potentially in parallel	 from that
node�

As mentioned earlier� care must be taken in garbage collection if this parallel approach is
used� Nodes which are not reached by the propagation process �ie which already have a use
count of zero when the accumulation begins	 must be collected by a separate mechanism�

The second optimization allows us to recover some space early at the expense of a little
processing time� At any time we can �pre�accumulate� an arbitrary sub�section of the
graph� in practice usually a section corresponding to an invocation of a user or library
sub�program�

This is done by removing from the list all items placed there by the sub�program� and
replacing them by a single item representing the sub�program� and containing �pointers to	
its parameters� return value� and gradient vector� This item is calculated by allowing the
accumulation routine to run from the item corresponding to the result of the sub�program
back as far as �local copies of	 the parameters to the sub�program�

In e�ect� we are treating the sub�program as an atomic operation� and calculating its
gradient using reverse accumulation �on the �y�� The bene�t of this is that the space
occupied in the computational graph by the sub�program is drastically reduced� This
saving may be very dramatic if many iterated values of intermediate variables are involved
in the calculation�

The cost of using pre�accumulation in this way is that when the item corresponding to
the sub�program is itself �later	 accumulated in the calculation of rf � up to an additional
ni multiplies are required in the inner loop of the accumulation �for p from 
 upto ni	�
where ni is the number of parameters to the sub�program� If pre�accumulation were not
used� these multiplies would be avoided since the correct setting of the �xi corresponding
to the sub�program return value �rather than the setting to 
 by the pre�accumulation	
would ensure that the correct multiples were calculated in the �rst place�

However� provided the number of parameters ni is small compared to the number
of items initially generated by the subprogram �ie the number of items removed from the
graph when pre�accumulating the sub�program	� this optimization may be highly desirable�
at least for some sub�programs� In practice� a variant �longer	 format of list element to
that used for atomic operations would be used to contain the result of a pre�accumulated
sub�program�

Where a sub�program returns more than one output parameter value� the corresponding
pre�accumulation must be performed once for each such output parameter� and the result
of each such pre�accumulation is represented by a corresponding item in the graph� The
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overhead of making multiple traversals of overlapping portions of the graph can make pre�
accumulation unattractive in such a case� In particular� if the number of output parameters
is greater than the number of input parameters to the subprogram� it is more e�cient to
use forward accumulation� When overlapping pre�accumulations are used� items generated
by the sub�program must not be removed from the graph until they have been released by
all the relevant pre�accumulations�

Pre�accumulations can also be nested in an arbitrary fashion� It is perhaps worth
remarking that the immediate pre�accumulation of every �atomic	 operation produces an
algorithm equivalent to forward accumulation�

�� Reverse Accumulation of the Hessian� To extend the reverse accumulation
algorithm� we begin by noting that we can calculate u�rf for an arbitrary constant vector
u � �u�� � � � � un	 by re�writing the gradient accumulation algorithm in the �computationally
ine�cient	 forward form as follows�

for i from 
 upto n do
wi � ui

enddo

for i from n � 
 upto m do
xi � fi�x�i�� � � � � x�ini

	
wi � gi�x�i�� � � � � x�ini

� w�i�� � � � � w�ini
	

enddo
fxm � f�x�� � � � � xn	� wm � u�rf�x�� � � � � xn	g

where

gi�x�w	 �
niX
p��

w�ip�Dpfi	�x�i�� � � � � x�ini
	

Induction shows that at each stage�

wi � u�
�xi
�x�

� � � �� un
�xi
�xn

�

We regard this as an algorithm for calculating wm � u�rf�x�� � � � � xn	� and apply
reverse accumulation to this to evaluate the directional second derivative r�u�rf	 �
u��r�rf	 � �Hf	u� This requires us to evaluate the quantities �wm��xj and �wm��wj�

First we show by induction that �wm��wj � �xj for 
 � j � m� Clearly �wm��wm �

 � �xm� and if �wm��wi � �xi for all i � j then

�wm

�wj

�
X
i�j

�wm

�wi

�gi
�wj

�
X
i�j

�xi
�fi
�xj

� �xj

since
�gi
�wj

�
X

fp��ip�jg

�Dpfi	�x�i�� � � � � x�ini
	 �

�fi
�xj

�

�



Next we de�ne �wj � �wm��xj for 
 � j � m� Since none of the fi or gi has xm as an
argument� we have �wm � �� and the chain rule gives

�wj �
X
i�j

�
�xi
�gi
�xj

� �wi

�fi
�xj

�

but
�gi
�xj

�
X
k�i

wk

��fi
�xj�xk

where
��fi

�xj�xk
�

X
fp��ip�kg

X
fq��iq�jg

�DpDqfi	�x�i�� � � � � x�ini
	

since ��fi��xj�xk � � unless j� k � Ti� Thus

�wj �
X
i�j

��
� �wi

�fi
�xj

� �xi
X
k�i

wk

��fi
�xj�xk

��
	 �

Using these formulae� we see that directional second derivative �Hf	u can be calculated
using the following algorithm�

for i from 
 upto n do
�xi � �
wi � ui
�wi � �

enddo

for i from n � 
 upto m do
xi � fi�x�i�� � � � � x�ini

	
�xi � �
wi � �
for p from 
 to ni do

wi � wi � w�ip � �Dpfi	�x�i�� � � � � x�ini
	

enddo
�wi � �

enddo
fxm � f�x�� � � � � xn	� wm � �u�rf	�x�� � � � � xn	g

�xm � 

for i from m downto n� 
 do

for p from 
 to ni do
�x�ip � �x�ip � �xi � �Dpfi	�x�i�� � � � � x�ini

	
�w�ip � �w�ip � �wi � �Dpfi	�x�i�� � � � � x�ini

	
for q from 
 to ni do

�w�ip � �w�ip � �xi � w�iq � �DpDqfi	�x�i�� � � � � x�ini
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enddo
enddo

enddo
f��x�� � � � � �xn	 � �rf	�x�� � � � � xn	� � �w� � � � � �wn	 � r�u�rf	�x�� � � � � xn	g

An alternative way of deriving this algorithm for calculating the directional second
derivative �Hf	u is to �unfold� the reverse accumulation of the computational graph of
xm so as to obtain an explicit computational graph for

�x � u��x� � � � �� un�xn

and then apply reverse accumulation to this �augmented	 graph in order to obtain r�x �
�Hf	u� �This is the derivation given in ��
 for their Algorithm C�	

However� this alternative derivation leads to just the same algorithm� since

��x

��xi
� wi and

��x

�xi
� �wi

To see the �rst equality� note that

wi � �u�
�xi
�x�

� � � �� un
�xi
�xn

	

so it su�ces to show for 
 � j � n that

��xj
��xi

�
�xi
�xj

which is �almost	 obvious� For the second equality� note that wm � �x identically as
functions of �x�� � � � � xn	 so

��x

�xi
�

�wm

�xi
� �wi by de�nition�

In fact� not only the values but the calculations performed to obtain them are the same�
For example� going backwards through the �reversed	 part of the augmented graph for the
�xi calculating ��x���xi is the same as going forwards through the original graph for the xi
calculating wi� Finally� the two passes through the augmented graph can be re�combined
so as to reproduce exactly the algorithm already given above�

To implement this algorithm for the directional second derivative we add further �elds
to the list items� two REALs to contain the values for �wi and wi� and space to repres�
ent the second derivative values for the atomic operation fi� For the majority of binary
and unary arithmetic and special functions� these values are trivially computed from the
operation result and gradient� The inner loops can then be completely unfolded� and the
multiplication by �xi distributed over the q�summation�

We also modify the code for the overloaded operators and for the accumulate routine
so that they propagate the appropriate summations�
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If u � ei� the i�th unit vector� then the algorithm returns the i�th row of the Hessian�
The entire Hessian can be calculated by using n passes of the algorithm� one for each row�
This can be done in parallel on n processors� or serially by n passes on a single processor�

In the case where a single processor is used� some time savings can be easily made� The
computational graph constructed on the �rst pass can be re�used for subsequent passes� as
can the calculated values of the �xi� and useful multiples of the atomic operation derivative
values�

In the parallel case� these values can be pre�calculated and broadcast� along with the
graph structure� to each of the processors� Thereafter the computation of the Hessian
proceeds in parallel with no interlocking� Alternatively� the n rows of the Hessian could
instead be calculated completely independently� In this case absolutely no interlocking of
the processors is required� However the communication cost is likely to be �considerably	
lower than the cost of re�computing the function and gradient�

As with the gradient� all parallelism in the calculation of f permitted by the compu�
tational graph can also be exploited in the calculation of the Hessian� If we are re�using
the computational graph� then additional information must be placed in the nodes as the
graph is built� recording the trace through the graph of each individual processor�

	� Performance of the Reverse Accumulation Algorithm� In this section
we analyze the incremental computational cost of calculating a single directional second
derivative� as a multiple of the cost of calculating the function and gradient�

We consider the total amount of time which the algorithm spends processing the list
element corresponding to fi� and show that for each elementary atomic operation the w�x�
ratio is at most two� ie that the time spent calculating wi and �wi is at most twice the time
spent calculating xi and �xi�

We assume that each atomic operation is either a univariate special function� or a
bivariate arithmetic operation� The arithmetic operations are plus� minus and times� We
assume that x�y is overloaded as x � r�y	 where r�y	 � 
�y� �It turns out that this is not
particularly ine�cient�	

We also make the assumptions that multiplies t take a lot longer than adds a� that
special functions s and their �rst derivatives s� take longer than multiplies� and that divides
d take at least one and a half times as long as multiplies�

We assume that the second derivatives s�� of special functions can be evaluated in less
time than it takes to evaluate the special function and its �rst derivative together�

a �� t �t � �d t � s t � s� s�� � s� s�

We ignore the cost of cache misses and of pointer manipulation� including garbage
collection� and interprocessor communication costs� �In section � we shall argue that this
assumption need not be as simplistic as it may seem�	

Let us now consider each atomic operation in turn� For plus and minus� the �rst
partial derivatives are unity� and the second partial derivatives are zero� These operations
therefore require no multiplies� One add is required to calculate xi� two to accumulate �xi�
one to calculate wi and two to accumulate �wi� The w�x�ratio for plus and for minus is
therefore one�
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For times� the �rst partial derivatives are available as parameters and the two non�zero
second partial derivatives are unity� Times therefore requires one multiply to calculate xi�
�t��a to accumulate �xi� �t�a to calculate wi and �t��a to accumulate �wi� The w�x�ratio
for times is therefore

�t� �a

�t� �a
� � �

a

�t
� � since a �� t�

Reciprocal requires a divide to calculate the operation value� and an additional multiply
to calculate each of the two derivatives� The remaining operations come from propagating
the accumulations� Reciprocal therefore requires d to calculate xi� �t�a to accumulate �xi�
t to calculate wi and �t� �a to accumulate �wi� The w�x�ratio for reciprocal is therefore

�t� �a

d� �t� a
� ��

However� if more than one second directional derivative is being calculated� a multiply can
be saved from the cost of accumulating �wi subsequently by storing �xi �D�r�xj	 instead of
D�r�xj	�

Divide is a reciprocal and a times� that is� d�t to calculate xi� �t��a to accumulate �xi�
�t� a to calculate wi and �t� �a to accumulate �wi� The w�x�ratio for divide is therefore



t� �a

d� �t� �a
� ��

Again� if more than one second directional derivative is being sought� a multiply can be
salvaged from the numerator�

We note in passing that if divide is calculated and accumulated directly as a single
operation �instead of being overloaded as a reciprocal and a times	 then we save t�a from
the denominator and �t from the numerator� although we still require the storage cost for
�ve REAL values�

Special functions are similar to reciprocals� A function which requires s to calculate xi
and s� � t � a to accumulate �xi requires t to calculate wi and s�� � �t � �a to accumulate
�wi� The w�x�ratio for this operation is therefore

s�� � �t� �a

s � s� � t� a
� � since s�� � s� s�� t � s� t � s��

Under our assumptions� therefore� and assuming no pre�accumulation� the incremental
cost of evaluating �Hf	u is less than twice the cost of evaluating ff�rfg by reverse
accumulation� In particular� all n rows of the Hessian can be evaluated by evaluating the
n directional derivatives �Hf	ei�

We now give an example to show that this approach is within a constant factor of being
optimal� Let f be the function of n variables de�ned by

f�x	 � �x � x	�

rf � ��x � x	x
Hf � ��x � x	I � ��x � x	�







The computational cost of f is �n � 
	t � �n � 
	a� and rf by reverse accumulation
requires an additional ��n � 
	t � �na� The additional computational cost of evaluating
Hf �by whatever means	 is at least �

�
n�n � 
	t�

As far as storage space is concerned� for the gradient accumulation each list item
requires at least two REALs and one or two pointers� �If xi and �xi share storage ��� x��

�
then space is required to store derivative values calculated during the forward sweep�	
E�cient Hessian accumulation requires at most another four REALs to store the derivatives
of the unary operators� and the new accumulated values wi� �wi� �In fact� as mentioned
earlier� we would store �xi �D�fi�xj	 rather than the unscaled second derivative�	

The storage requirement for the reverse accumulation of the Hessian together with
the function value and gradient is therefore less than three times that required for the
evaluation of the gradient alone�

Again� it should be emphasized that this storage requirement is proportional� not to
the storage requirement for the conventional program for evaluating f alone� but rather
to the �potentially vast	 number of arithmetic operations required by such an evaluation�
Nevertheless� as remarked in section �� the working set �fast RAM	 storage requirement for
the reverse accumulation algorithm is proportional to the working set storage requirement
for the conventional program� �The crucial point is that the set of active items at each
point on the reverse pass is the same as it was at the corresponding point on the forward
pass�	 The bulk of the graph can therefore be stored in �slow� sequential access	 archive
store�

Pre�accumulation of a sub�graph can still be used to salvage storage space as the al�
gorithm proceeds� but the time penalty is now considerably more severe because the second
derivatives must also be pre�accumulated� and this requires ni passes forward and back�
ward through the portion of the graph corresponding to the sub�program� There is also a
storage penalty associated with pre�accumulation of the Hessian� since all the �non�zero	
second derivatives of the sub�program must be stored�

In the full case �where all n�i second derivatives are non�zero	 pre�accumulation will
produce a worthwhile storage saving only if the number of items mi corresponding to the
sub�program is large relative to n�i �

However� if we do have mi large relative to n�i � then there may actually be a positive
time bene�t to using pre�accumulation of the Hessian� provided that the number k of
second directional derivatives required is large compared with ni�

To see this� argue as follows� Let W ��
i be the computational cost of one complete pass

�forward and backward	 through the sub�program graph accumulating a row of second
derivatives� The cost of pre�accumulating all the second derivatives for the sub�program is
thus niW

��
i � Subsequent accumulation of a pre�accumulated sub�program with ni paramet�

ers will now require up to an additional n�i multiplies in the innermost loop of the reverse
accumulation� Consequently the cost of subsequently accumulating k directional second
derivatives if pre�accumulation has been used is niW

��
i � kn�i t �where t is the cost of a mul�

tiply	� whereas the cost without pre�accumulation is kW ��
i � The use of pre�accumulation

will therefore result in a time saving provided that W ��
i is large relative to n�i t and that k

is large relative to ni �for example it su�ces that W ��
i � �n�i t and k � �ni	�

The foregoing analysis assumes that the sub�program has a full matrix of second partial
derivatives� If the Hessian of the sub�program is sparse� then pre�accumulation may give


�



a performance bene�t even under weaker conditions�
An alternative form of pre�accumulation can be exploited to save storage space �but

not processing time	 in the case where k � 
� provided the direction u is known in advance
of the pre�accumulation�

In this case� we can unwrap the innermost loop in the algorithm� as described in section
�� If the multiplication by �xi is distributed over the q�summation� the q�summation can
then itself be performed when the sub�graph corresponding to the subprogram is initially
built� since all the wi are known at this time�

When the pre�accumulation is performed we need only calculate and store the ap�
propriate linear combination of rows of the sub�program Hessian� We end up storing ni
components� which represents a space saving provided mi is large relative to ni �rather
than n�i as before�	

For the subsequent reverse sweep of accumulation the time overhead of accumulating a
directional second derivative is nit� This is tolerable provided W ��

i is large relative to nit�
but cannot represent a time saving�

In view of the fact that archive store is relatively plentiful in modern computer systems�
it would appear that the principal advantage of pre�accumulating Hessians occurs where
this enables a time saving to be made� as described above�


� Implementation in Ada� The serial form of the extended method of automatic
di�erentiation has been implemented in Ada by the author� The total amount of Ada
code involved is of the order of ��� lines� The data types do not depend upon the number
of independent variables or computational steps� The implementation is similar to that
for the sparse forward accumulation �also implemented in Ada at the Hat�eld Numerical
Optimization Centre �

��
	� but the details are simpler�

As an example� we give the measured cpu times in milliseconds for the Helmholtz
energy function

f�x�� � � � � xn	 � RT
nX
i��

xi log
xi


� bTx
� xTAxp

�bTx
log


 � �
 �
p
�	bTx


 � �
�p
�	bTx

with n � 
��� The computation was carried out on a Sun ��
�� using VADS ��� Ada� The
resulting graph has 
�� ��� items corresponding to independent variables and constants�
and an additional ��� �
� items corresponding to elementary operations�

The following table shows the cpu times when software library functions are used to per�
form �oating point operations� The �rst column gives the actual cpu time in milliseconds�
the second column gives the same �gures normalized relative to the �rst row�

���� ��� calculate f using conventional real arithmetic

���� ��� build graph of f using overloaded operations

��� � dismantle graph

���� ��� re�use graph to calculate f

���� ��� accumulate gradient rf

����� ��� accumulate directional second derivative 	Hf
u
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As an alternative to dismantling and re�building the computational graph when the
parameter values are changed� we can re�calculate new xi values using the old graph�
provided that the structure of the graph is not changed by the change in parameter values
�see section �	� This is the �gure given as �re�use graph� above�

By entering into the graph items corresponding to relational operators we can check
that the shape has not in fact changed� and signal an exception if it has�

As these �gures illustrate� when software �oating point operations are used� the over�
heads due to overloading� graph traversal� indirect address �pointer	 manipulation and
�oating�point assignment of intermediate results are not high� and the ratios between the
various cpu times give good agreement with the values predicted by the theoretical analysis
in section ��

When hardware support for �oating point operations is used� a di�erent picture emerges�
Here are the corresponding cpu time �gures when use of the MC����
 �oating point co�
processor is enabled on the Sun�

��� ��� calculate f using conventional real arithmetic

���� ��� build graph of f using overloaded operations
��� �� dismantle graph

��� ��� re�use graph to calculate f

��� ��� accumulate gradient rf

���� ��� accumulate directional second derivative 	Hf
u

The ratios between the measured cpu times are dependent upon the target hardware�
operating system� compiler and mathematical library� For comparison� here are the corres�
ponding cpu time measurements for native ADA on a VAX�VMS �with built in hardware
support for �oating point	�

�� ��� calculate f using conventional real arithmetic

��� ��� build graph of f using overloaded operations

�� ��� dismantle graph

��� ��� re�use graph to calculate f

��� ��� accumulate gradient rf

��� ���� accumulate directional second derivative 	Hf
u

These �gures show a dramatic ratio of one to ten between the times for the conventional
real arithmetic calculation of f and that using overloaded operators� The time spent
performing �oating point arithmetic �as distinct from assignments	 is a small fraction of
the total cpu time� and the cpu time for performing an accumulation is almost directly
proportional to the number of times the graph is traversed� The given ratios are relatively
insensitive to the value of n over the range �� to 
���


�



In all the �gures quoted above� the directional second derivative was calculated by re�
traversing the graph �forward and backward	 following the accumulation of the gradient�
In fact this calculation can be done for a single second directional derivative without
requiring these additional sweeps� Nevertheless� the graph manipulation still represents a
signi�cant overhead� and we are investigating possible hard and soft support for automatic
di�erentiation which would reduce this overhead in the same way as specialized support
for �oating point arithmetic reduces the cpu time required for these operations�

�� Discussion and Conclusion� We have described a way of extending the reverse
accumulation method for automatic di�erentiation so as to provide e�cient calculation
of the Hessian� This method has been implemented in Ada using operator overloading�
and the observed performance agrees well with the theoretical prediction� although graph
manipulation overheads are high when �oating point hardware is used� Nevertheless� the
method is su�ciently fast and accurate to be usefully applied to real problems� Only
minimal alterations to the target function code and optimization code are required to
allow the automatic Hessians to be incorporated� In particular� no restrictions are placed
upon the use of Ada data or control structures in target function code�

The Ada language is a natural implementation choice for a system such as that de�
scribed here� in view of the excellent support which it o�ers for �oating point arithmetic�
However� two remarks should be made�

First� Ada does not allow the assignment operator to be overloaded� This requires
the programmer to insert explicit calls to type conversion routines� after reads and before
prints� and possibly elsewhere� Nor does Ada provide a guarantee to call a �user de�ned	
�deconstructor� routine when a variable instance is de�allocated� This limits the ability of
the automatic di�erentiation package to detect certain types of user error� and also limits
the opportunity to pass hint information about which variables are �about to become	
active to the memory management system� The use of a language such as C�� allows
reverse accumulation to be implemented much more transparently�

Second� the implementation of parallel versions of reverse accumulation techniques will
clearly assume increasing importance� The extent to which the multitasking approach
used by Ada is adapted to the parallel processing requirements of function evaluation with
reverse accumulation is unclear� Implementing graph nodes as objects in a language such
as C�� may lead to signi�cantly improved performance�

In contrast with forward accumulation� the method of reverse accumulation associates
the gradient and Hessian components with the target function parameter list rather than
directly with the returned result� This can have unfortunate consequences�

For example� consider a �nite element approach to solving a di�erential equation�
Typically this involves calculating the values and gradients of a large number of com�
ponent functions� each of which involves only a small number of the independent variables�
Moreover� the number of elementary functions involved in calculating a single component
is generally very small compared with the total number of independent variables� In such
a case� unless prior use is made of the �explicitly known	 sparse form of the gradient and
Hessian� a great deal of time is wasted initializing and subsequently examining components
of items corresponding to independent variable parameters which are not �in fact	 involved
in the particular component computation�
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The data structures and accumulation techniques needed in order to present gradient
and Hessian components to the user in �explicitly	 sparse form are similar to those ap�
propriate for sparse forward Hessian accumulation� and are almost identical with those
required by the pre�accumulation techniques discussed above� Much work remains to be
done in this area�

We conclude with two remarks of a more general nature� First� the method of auto�
matic di�erentiation described here underlines the bene�ts to numerical analysts of using
what were until comparatively recently regarded as computer�science concepts� operator
overloading� dynamic data management �with garbage collection	� and pointer�oriented
�rather than array�oriented	 concurrent data structures�

Second� there is a clear imperative to computer scientists� Even quite small computer
systems should be designed in such a way that they are capable of e�ciently supporting
structures which embody these concepts� At present this is not the case� In particular�
high�performance support should be provided for the pre�fetching of a stream of operands to
cache from a potentially vast backing store �say an optical disk	 by moving down dynamic
chains of pointers according to �xed access rules� This would allow the cache�miss rate
and pointer manipulation overhead for automatic di�erentiation by reverse accumulation
to be reduced to practically nothing�
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