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Abstract 
Models of associative memory usually have full connectivity or if diluted, random 
symmetric connectivity.  In contrast, biological neural systems have predominantly local, 
non-symmetric connectivity.  Here we investigate sparse networks of threshold units, 
trained with the perceptron learning rule.  The units are given position and are arranged 
in a ring.  The connectivity graph varies between being local to random via a small world 
regime, with short path-lengths between any two neurons.  The connectivity may be 
symmetric or non-symmetric.  The results show that it is the small-world networks with 
non-symmetric weights and non-symmetric connectivity that perform best as associative 
memories.  It is also shown that in highly dilute networks small world architectures will 
produce efficiently wired associative memories, which still exhibit good pattern 
completion abilities.  
  

1 Introduction 
There is a long history of research into the properties of random graphs, graphs in which 
the connectivity matrix is randomly configured, often with a specific probability of 
connectivity (Bollobas, 2001).  Recently there has been an explosion of interest in 
networks with non-random connectivity graphs, such as small world and scale free 
networks, as described in Section 2.6.  Such networks have interesting properties and 
their patterns of connectivity have also been found to be very common in real networks, 
both biological and otherwise.   There has also been a huge increase in our understanding 
of the connectivity pattern in real neuronal networks, as summarised in Section 2.7.  In 
this paper we report our own empirical investigation into the relationship between the 
pattern of connectivity and performance, in sparsely connected associative memory 
models.   The primary motivation for this investigation is to answer the following 
question: are there general principles that the connectivity pattern in an associative 
memory should adhere to in order to produce: i) good functionality and ii) parsimonious 
wiring. 
 



2 Background 

2.1 Associative Memory Model 
The standard neural network model of associative memory, the Hopfield network 
(Hopfield, 1982), is one of the most studied of all neural networks.  It offers a highly 
simplified model of how associative memory can function in a collection of units that 
have asynchronous dynamics and a simple update rule. This property led it to be 
considered as a very abstract model of some of the functionality in mammalian brains 
(Amit, 1989).  However, the full connectivity of the network implies that the model does 
not scale well.  Any physically realised, large scale Hopfield network will be difficult to 
build: the number of connections grows with the square of the number of units. 
Moreover, many of the assumptions of this model are problematic when it is considered 
as a model of brain function.  Specifically, the required symmetry of connections and the 
full connectivity do not find parallels in real neuronal systems.  More recent work 
(Davey, and Adams, 2004a) has established that some of the constraints of the Hopfield 
network can be relaxed, and that the learning rule can be much improved.   In the work 
reported here we use a version of the Hopfield network that maintains some of the 
appealing aspects of the model, such as simple dynamics, whilst adhering to some more 
biologically plausible assumptions.  In particular our models have some, or all, of the 
following characteristics: 
• Sparse, non-symmetric connectivity 
• A relatively well performing learning rule 
• Spatial positioning of the artificial neurons 
• Structured, non-random connectivity 

2.2 Dynamics 
Each unit in the network is a simple, bipolar, threshold device, summing its net input and 
firing deterministically.  The net input, or local field, of a unit, is given by: 
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Unit states may be updated synchronously or asynchronously.  Here we use 
asynchronous, random order updates.  Using a symmetric weight matrix and 
asynchronous updates ensures that the network will evolve to a fixed point.  However, in 
practice, the symmetric weight constraint can be relaxed without damaging the 
convergence properties (Chengxiang, Dasgupta, and Singh, 2000), and in many of the 



models discussed here the weights are not required to be symmetric.  In fact, as we show 
later, symmetric weights can be damaging to the performance of the network, at low 
levels of connectivity. 
If a training pattern 
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" µ  is one of the fixed points of the network then it is successfully 
stored, and is said to be a fundamental memory.  A network state is stable if, and only if, 
all the local fields are of the same sign as their corresponding unit, equivalently the 
aligned local fields, 
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2.3 Connectivity 

The networks analysed here have sparse connectivity, so that only a small fraction of all 
the possible N2 connections in an N unit network are present.  Equivalently the connection 
matrix 
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Cij{ } where Cij = 1 iff wij  is present and 0 otherwise , is sparse.  In general we do 

not require symmetric connectivity, so that C is not required to be a symmetric matrix.   
We do however make one simplification in the allowed patterns of connectivity: each unit 
in the network has the same number, k, of afferent (incoming) connections.   This is 
equivalent to requiring that the connection graph is regular.   The reason for this 
simplification is that the performance of the units in the network is, to some extent, 
determined, in a well understood way (see 2.4 below), by the afferent connectivity level.  
Since we are interested in the collective behaviour of functionally similar units, we give 
them identical levels of connectivity. 
As described earlier, we are interested in the spatial organisation of effective patterns of 
connectivity, and it is therefore necessary for the units in the network to have position.  
The simplest approach is taken, and the units are arranged in one dimension, and to avoid 
edge effects are placed in a ring.  We take the minimum path length between any two 
nodes to be the actual distance between them, giving a simple geometry.  Within this 
configuration there are two extremes of connection pattern.  Firstly the connections can 
be placed as locally as possible, giving a completely local network (Figure 1 left).  This is 
clearly the configuration that minimises wiring length.  Alternatively the connections can 
be placed completely randomly giving a random network (Figure 1 right). Between these 
two extremes are other architectures discussed in the Section 2.5. 
 



 
Figure 1:  The units arranged in a ring.  Left: a locally connected network and right: a random 
network.  In both cases the number of afferent connections is, k = 4.  Diagrams generated with the 
Pajek package (de Nooy, Mrvar, and Batagelj, 2005). 

2.4 Learning 

The standard learning rule in Hopfield networks is one-shot Hebbian.  This learning rule 
is attractive not only for its simplicity, but also because it gives networks that are 
tractable to analysis by the powerful tools of statistical physics.  However, in terms of 
producing good associative memories it is a rather poor choice, since there is no 
guarantee that the training patterns are actually learnt (even at low loadings).  There are, 
however, two other classes of learning rule that perform much more effectively: those 
based around the perceptron learning rule and those based on the pseudo-inverse matrix 
method.  These methods actually produce networks that perform very similarly (Davey, 
Hunt, and Adams, 2004b), and due to its simplicity we use perceptron based learning in 
our networks.  Given a training set 

! 

" µ{ } the training algorithm is designed to drive the 

aligned local fields of each unit the correct side of the learning threshold, T, for all the 
training patterns.  This is equivalent to requiring that 
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So the learning rule is given by: 
 
Begin with a zero weight matrix 
Repeat until all local fields are correct 
  Set the state of the network to one of the 
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  For each unit, i, in turn 
    Calculate 
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    If this is less than T then change the weights on connections into unit i according to: 
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The form of the update in (1) is such that changes are only made on the weights that are 
actually present in the connectivity matrix C, and that the learning rate is inversely 



proportional to the number of connections k.  Earlier work has established that a learning 
threshold T = 10 gives good results (Davey et al., 2004b). 
When the connectivity matrix is symmetric the learning rule can be modified to produce 
symmetric weights (Gardner, 1988).  This is simply achieved by modifying 
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w ji  whenever 
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wij  is changed.  The learning rule is then given by: 

Begin with a zero weight matrix 
Repeat until all local fields are correct 
  Set the state of network to one of the 

! 

" µ  

  For each unit, i, in turn 
    Calculate 
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    If this is less than T then change the weights between unit i and all other units, j, 
    according to: 
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We denote the symmetric learning rule SL and the non-symmetric rule NSL. 

As is well known, training a perceptron using NSL is a convergent process if a set of 
weights actually exists that embeds the training set (Hertz, Krogh, and Palmer, 1991).  If 
there are P patterns in the training set then the loading of the network, the number of 

patterns stored per connection, for each unit, is α = 
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P

k
.  We use random training sets, so 

the task of each perceptron is to learn the correct output for each of its P input vectors.  A 
perceptron can learn such a mapping if the two classes (those for which the desired output 
is +1 and those for which it is -1) to be learnt are linearly separable in R k.  In 1965 Cover 
(Cover, 1965) showed that this is likely to be the case for up to 2k random patterns (a 
loading of α = 2), with convergence as k becomes large.  The capacity of these networks 
of perceptrons is therefore determined by the level of connectivity and not the pattern of 
connectivity, and is thus not a subject of our experiments.  Surprisingly the capacity of 
the symmetric learning rule, for fully connected networks, can be shown by a theoretical 
argument, to be the same as that of the non symmetric network (Nardulli, and 
Pasquariello, 1991) (surprising because the symmetric network has only half the number 
of independent weights as its non-symmetric counterpart).  Empirical work has also 
shown similar capacity in the two learning rules for dilute, sparsely connected, networks 
(Davey et al., 2004a). 
However, the ability to store patterns is not the only functional requirement of an 
associative memory: the fundamental memories should also act as attractors in the state 
space of the dynamic system resulting from the recurrent connectivity of the network, so 
that pattern correction can take place.  And it is the case that the pattern of connectivity 
has a major influence on this capability (Komlos, and Paturi, 1993). The position is 
summarised in Figure 2.  For example, if the network graph is disconnected, then 
information cannot pass between these subgraphs.   Moreover if the network has only 
local connections, local domains of errors tend not to be corrected (Noest, 1989).   
 



 
k inputs ⇒ Capacity = 2k 

 

Figure 2: A perceptron with k inputs has a capacity of 2k.  A collection of recurrently 
connected perceptrons, each with k inputs will also have capacity 2k.  However the actual 
pattern correction performance of the network is influenced by the origin of these 
connections. 

 

2.5 Performance Measures 
We are interested in the performance of our networks as effective associative memories, 
so it is necessary to measure the pattern completion ability of the network.  We use two 
measures.  Once a network has been trained on a set of random patterns it is relatively 
straightforward to evaluate its pattern correction capabilities.  The well established 
method is to estimate the mean normalised radius of the basins of attraction of the 
fundamental memories, R.  In essence this is the maximum proportion of bits in a 
fundamental memory that can be randomised and then fully corrected by the network 
dynamics.  
Since the attractor basins cannot be expected to be Hamming hyperspherical (Storkey, 
and Valabregue, 1999), it is usual to take the minimum Hamming radius: 
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The mean radius of attraction over the patterns, R, can act as a measure of the quality of a 
particular associative memory.  It is also common for R to be normalised with respect to 
the size of the network, so that it lies between zero and one. 
For very small networks it is possible to exhaustively explore the state space (see, for 
example Personnaz, Guyon, and Dreyfus, 1986), in order to calculate R exactly, but for 
more realistic sizes the nature of the attractors is very hard to compute (Floréan, and 
Orponen, 1993; Kepler, and Abbott, 1988) and only empirical methods are available. 

A sample of states at a fixed distance, r, from a trained pattern, ξp, is made, and if all of 
them relax to ξp, it is concluded that R(ξp) is at least as big as r.  Clearly, the larger the 
sample size the higher the quality of the estimate; in all of our experiments the sample 

… 



size is 50.  An analysis of the effect of sample size on the estimate of R can be found in 
(Davey et al., 2004b). 
In our implementation we have slightly adapted the method of Kanter and Sompolinsky 
(Kanter, and Sompolinsky, 1987) in the calculation of R.  For each of the sample states 
chosen, a fixed fraction, m0, of the state is identical to the corresponding part of one of the 
stored patterns, ξp

 , and the rest of the state is random.  Initially a low value is taken for 
m0 and consequently it needs to be incrementally increased until all of the sample states 
relax to  ξp.  Averaging m0 over different stored patterns yields: 
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As is pointed out in (Kanter et al., 1987), for finite size associative memories, another 
factor needs to be considered.  The initial states used in this calculation may overlap one 
of the other stored patterns more closely than  ξ

p, and to compensate for this the 
definition of R is modified to: 
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where m1 is the overlap with closest of the remaining patterns.  This is a double average 
over both different sets of stored patterns and different sample states. 
So in our implementation, a fixed number of random starting points are chosen, each of 
which has a low overlap with a member of the training set (low average m0).  If, as is 
likely, the start state does not relax to that training pattern in one or more of the random 
cases, the value of m0 is increased (by 
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1
N

), and the search is repeated.  This continues 

until all random start states relax to the closest stored pattern.  This whole procedure of 
training the network with the same number of random patterns is repeated 50 times and 
the average value of R is reported.  The perfect attractor network has R = 1, which means 
that it is possible to move away from any stored pattern, and stay within its basin of 
attraction up to the point at which another stored pattern becomes nearer (see Figure 3).  
Note that the calculation of average attractor basin size for the trained patterns can only 
be undertaken when these patterns are themselves stable. 
 

p1 p2
r

r

p4

p3

 
Figure 3.  Calculating R.  In this figure p1, p2, p3 and p4 are fundamental memories.  The closest 
pattern in the training set to p1 is p2, at a distance of 2r.  Optimal performance occurs when all 
vectors within the hypersphere centred on p1 and radius r, are attracted to p1.  If all patterns stored 
in a network exhibit this performance, its normalised average radius basin of attraction, R, is 1. 

 



The second measure that we use is the Effective Capacity of the network, EC (Calcraft, 
2005).  The R value measures the performance of the network at a particular loading α, 
but it is also useful to measure the intrinsic capabilities of a specific pattern of 
connectivity, independently of the actual loading. The Effective Capacity of a network is 
a measure of the maximum number of patterns that can be stored in the network with 
reasonable pattern correction still taking place.  We take a fairly arbitrary definition of 
reasonable as correcting the addition of 60% noise to within an overlap of 95% with the 
original fundamental memory.  Varying these figures gives differing values for EC but 
the values with these settings are robust for comparison purposes.  For large fully 
connected networks the EC value is about 0.1 of the conventional capacity of the 
network, but for networks with sparse, structured connectivity EC is dependent upon the 
actual connection matrix C. 
The EC of a particular network is determined as follows: 
 
Initialise the number of patterns, P, to 0 
Repeat 

Increment P 
Create a training set of P random patterns 

 Train the network 
 For each pattern in the training set 
  Degrade the pattern randomly by adding 60% of noise 
        With this noisy pattern as start state allow the network to converge 
        Calculate the overlap of the final network state  

with the original pattern 
 EndFor 
 Calculate the mean pattern overlap over all final states  
Until the mean pattern overlap is less than 95% 
The Effective Capacity is P-1 
 

As with the R calculation, described above, the degraded fundamental memory may 
become closer to one of the other fundamental memories.  If this is the case then the 
degraded pattern is rejected, and another generated.  For implementation purposes, a 
binary search algorithm is used to search for the loading resulting in 95% or better recall, 
rather than simply increasing the loading from unity upwards (Calcraft, 2005).  Similar 
measures have often been used elsewhere, for example: partial capacity in (Komlos et 
al., 1993), error correcting ratio in (Gorodnichy, 1999) and effective retrieval (Kosinski, 
and Sinolecka, 1999).   



As symmetry of the weights is one of the issues that we investigate we make use of the 

standard symmetry measure for a matrix, defined as: 
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matrix this has value +1, for a random matrix it will be roughly 0, and for an anti-
symmetric matrix it will be -1. 

2.6 Non-Random Graphs 

The seminal paper of Watts and Strogatz (Watts, and Strogatz, 1998) formalised the 
notion of a Small World network.  The idea was inspired by work in the Social Sciences 
showing that there appeared to be only roughly 6 degrees of separation (by acquaintance) 
between any two people in North America (Milgram, 1967); this despite the fact that 
most people have a cliquish group of acquaintances, in the sense that any two of their 
acquaintances are also likely to be acquaintances.   The Small World Effect is therefore 
characterised as a network with short path lengths (the minimum number of arc traversals 
to get from one node to another), between any pair of nodes.  The simplest sort of 
network that displays this characteristic is a random network.  In a regular random 
network of N nodes, with each node having k connections, the number of first order 
acquaintances is k, second order is about k2, third order k3 and so on.  So in general the 
number of degrees of separation, D, to reach all N nodes in the network is given by 

setting 
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k
D

= N , which gives 
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D =
lnN

ln k
, so that D increases logarithmically with the size 

of the network – the small world effect.  However, random networks are not cliquish and 
require a relatively large amount of wiring.  Watts and Strogatz gave a mechanism for 
constructing networks that showed the small world effect, from local networks.  Their 
idea was to begin with a local network and then to rewire a small proportion, p, of these 
connections to random targets.  At even very low levels of rewiring, the mean path length 
between any pair of nodes drops to a value comparable to that of a random network: the 
rewired connections act as shortcuts through the network.  Figure 3 shows the earlier 
local network of Figure 1 rewired with a probability p = 0.1. 
 



 
Figure 4:  A small world network with rewiring p = 0.1. 

 
In fact it is now apparent that a slightly different version of the Watts and Strogatz 
network construction method leads to networks that are more amenable to theoretical 
analysis.  In this version, additional random connections are added, leaving all the local 
connections intact (Newman, 2000).  It is to these networks that the label Small-World 
Network is normally used.  However, we use the original formulation as it maintains the 
regularity of the connection graph. 
The cliquishness of a network can be formalised by its clustering coefficient, the average 
fraction of pairs of neighbours of a node, which are also neighbours.  Networks that show 
the small world effect, but which also have high clustering coefficients have been shown 
to be remarkably common.  Some examples include: networks of movie actors, where 
neighbours are defined by having been in the same movie, power grid networks, the 
Internet and from our point of view most interestingly, real neuronal networks, to which 
we turn to in the next Section.  
Other interesting networks that show the small world effect are so called Scale-Free 
networks (Barabasi, Albert, and Leong, 1999; Keller, 2005).   These are network models 
where the distribution of connections follows a power law (that is the frequency of nodes 
with connectivity k falls off as 
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k
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of the distribution of links in the World Wide Web.  Some nodes end up with very high 
levels of connectivity, and act as network hubs, that facilitate short path lengths.  Such 
networks can arise due to a preferential growth process in which nodes that are already 
well connected are favoured by new connections. 
 
 

2.7 Connectivity in Real Neuronal Networks 

The neuronal network of the nematode worm C. Elegans has been completely mapped.  It 
consists of 302 neurons and around 1000 connections   A recent analysis (Cherniak, 
1994) of the optimality of the positioning of the neurons (for the given connectivity and 
physical position of actuators and sensors in the worm) with respect to the total length of 



wiring (the sum of the length of neuronal fibre) has shown that no better positioning can 
be found by exhaustive search; a remarkable triumph for evolutionary optimisation.  The 
network also displays short path lengths, 2.65 steps between any two neurons, and a 
relatively high clustering coefficient of 0.28 (as against 0.05 in an equivalent random 
network).  In (Shefi, Golding, Segev, Ben-Jacob, and Ayali2, 2002) cultured in-vitro 
neuronal networks are studied.  They vary in size from N = 104 to N = 240.  Once again 
the networks show the small world effect and are relatively highly clustered. 
Larger neuronal networks found in more sophisticated animals are not as well understood.  
Nonetheless several studies have been undertaken into the positioning and connectivity of 
the neuronal systems.  Analysis of the mammalian cortex has been undertaken at two 
levels of granularity, firstly at the level of the positioning and connectivity of distinct 
functional areas such as V1 or V2 in the visual cortex.  And secondly at the level of 
individual neurons.  In the first case it has been shown that once again positioning is 
highly optimised (Cherniak, Mokhtarzada, Rodriguez-Esteban, and Changizi, 2004; 
Hilgetag, and Kaiser, 2004; Laughlin, and Sejnowski, 2003) to minimise connection 
length.  It has also been shown that the connectivity gives both a small world effect and a 
high clustering coefficient (Sporns, and Zwi, 2004).  The question of whether these 
neuronal systems show the characteristics of scale-free networks is still open, with 
opinions differing. (Eguiluz, Chialvo, Cecchi, Baliki, and Apkarian, 2005; Sporns et al., 
2004). 
At the level of individual neurons the connectivity pattern is so complex that only 
generalised statistics can be produced, see (Braitenberg, and Schüz, 1998) for a 
fascinating discussion. 
 

2.8 Eigenvalues of the Connection Matrix 

In the standard, fully connected Hopfield network the performance of the network can be 
theoretically predicted from the loading, α.  The larger α then the poorer will be 
performance.  So, for example, the maximum loading at which the training patterns are 
likely to be stable is known to be, approximately, α = 0.138 (Amit, Gutfreund, and 
Sompolinsky, 1985).  In a very interesting, but little known paper (Komlos et al., 1993) it 
is proved that in regular, sparsely connected Hopfield networks there is an analogous 
parameter that determines performance.  If 

! 

"
1
 and "

2
 are respectively the first and second 

eigenvalues of the connection matrix C, then the quantity 

! 

" +
#
2

#
1

 determines the 

performance of the network, in an direct analogy with α, in a fully connected network.  
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 acts as extra loading on the network, and in a regular, symmetric network 
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determiner of performance.  If the network has two or more disconnected subgraphs 
then
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 will also be equal to k.  This is the worst case, where information in one sub-

graph cannot pass to the other subgraph(s).  The better the connectivity properties of the 
graph, the lower will be
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 (for a fully connected network all the eigenvalues except the 



first are -1), and the better will be the performance of the network, at a given loading.  
Although the networks used here are not equivalent to sparse Hopfield networks (for 
reasons explained earlier in 2.1), it is highly likely that connectivity properties of the 
connection graph will also be important in determining performance.   Figure 5 gives the 
result of computing 
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 for 1000 unit networks with k = 60 at varying levels of rewiring.  

For the local network (p = 0) 
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 is only just less than 60 and so is very close to 

! 

"
1
 (

! 

"
1
 = 

k = 60).  The network is almost disconnected and will perform very poorly. From this 
point on it can be seen that, as expected, the connection properties of the network 
improve in a linear fashion with rewiring.  The randomly connected network (p = 1) does 
not have 
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 "
2
 = -1 (as would a fully connected network) as it is only sparsely connected. 

 

 
Figure 5:  1000 unit small world networks with 60 input connections.  Results are averages over 5 
runs at each value of the rewiring parameter, p. The second eigenvalue of the connection matrix is 
shown. 

3 Results 
The main result from the investigations presented here is that small world networks 
produce excellent performance in terms of both Effective Capacity and pattern 
completion ability, as measured by R, even for moderately low amounts of rewiring.  
Bohland and Minai (Bohland and Minai, 2001) and others (see Section 4) have looked at 
small world architecture versions of the standard Hopfield network.  Here we are 



investigating small world models of Hopfield style networks but trained using the 
Perceptron learning rule.  Figure 6 shows the value of R plotted against loading for both 
types of network and illustrates the significant difference in pattern completion 
performance that there is between the standard Hopfield Network (trained with one-shot 
Hebbian learning) and the version using the perceptron learning rule. (In all our results 
we do not show confidence limits as they are typically very small, order ±1% of the 
mean, and are hardly visible.  In fact the confidence intervals do not overlap in areas 
where the graphs are not asymptotically close to 1.)  
However, before we present our main small world results we need to decide the type of 
network connectivity and learning rule to use (see Section 2.4 for the two learning rules).  
In other words, should we be keeping both symmetric connectivity and symmetric 
learning, or are either of the non-symmetric versions better.  These results are given in the 
next section and the main results are then presented in section 3.2. 

 
Figure 6:  1000 unit networks with 60 input connections per node.  Results are averages over 50 
runs at each loading.  The attractor performances, R, for both the standard Hopfield Network (lower 
line) and the better performing Perceptron trained networks (upper line). 

3.1 Symmetric or non-symmetric learning and connectivity 

Here we have taken both the symmetric (SL) and non-symmetric (NSL) versions of the 
perceptron learning rule (Section 2.4) and combined them with symmetric and non-
symmetric connectivity (denoted SC and NSC respectively) to give three different types 
of network.  There are only three models since networks with non-symmetric connectivity 
cannot be trained using the symmetric learning rule.  Table 1 summarises these network 
types. 



 
TABLE 1: 

THE TYPES OF NETWORK CONNECTIVITY AND LEARNING RULE 
Name Connection Matrix Learning Rule 

NSC-NSL Non-Symmetric Non-Symmetric 
SC-NSL Symmetric Non-Symmetric 
SC-SL Symmetric Symmetric 

   

3.1.1 Small world models 
For each of the network types in Table 1, a 1000 unit network, configured as a ring with 
an initial arrangement of 60 nearest neighbour connections (30 either side) for each node, 
is constructed.  These were trained with sets of 18 random, unbiased patterns.  Each 
network type was then rewired with a varying probability, p, in steps of 0.1 up to full 
rewiring with p = 1.  The type of connectivity (symmetric or non-symmetric) was 
maintained during rewiring.  Figure 7 shows the R measure for each network type at each 
level of rewiring.  Figure 8 shows the values of Effective Capacity (EC) for each network 
type at each level of rewiring, but here the number of patterns is not pre-determined, since 
the number of patterns effectively stored is precisely what the EC value is measuring. 
For all graphs, the poorest performance is for local connectivity (p = 0) since such graphs 
are poorly connected with high path lengths between any pair of nodes.  As the amount of 
rewiring increases, the R value and the EC value increase for all networks.   The NSL 
networks peak at R = 1 earlier than the SL network, with the fully non-symmetric one 
performing best, indicating that less rewiring is needed to perfect the pattern completion 
performance for non-symmetric networks than for the fully symmetric network.  The EC 
values show the same relative performance, with the fully non-symmetric network having 
the highest Effective Capacity and the fully symmetric network the lowest.   
It is interesting to note the effect of the rewiring on the symmetry (σ) of the weights in the 
networks (see section 2.5 for the definition of σ).  This is shown in Figure 9.  Here the 
NSC-NSL network rapidly loses its weight symmetry, reducing to an extremely low level 
by full rewiring.  The other two networks maintain better symmetry, despite the non-
symmetric learning used in the SC-NSL network.  It is significant that the NSC-NSL 
network still performs so well despite its low level of weight symmetry: it has an R value 
of 1 and an almost maximal value of EC from a rewiring of 0.4 onwards while having a 
symmetry of ~0.3 or lower. 
 



 
Figure 7:  1000 unit, sparsely connected, small world networks with 60 input connections per node 
and a training set of 18 random patterns.  Results are averages over 50 runs at each value of the 
rewiring parameter, p. The attractor performances, R, for each of the three types of network is 
shown.  See Table 1 for an explanation of the legend. 

 
Figure 8:  1000 unit small world networks with 60 input connections per node.  Results are averages 
over 50 runs at each value of the rewiring parameter, p.  EC values for each of the three types of 
network are shown. 

 
 



Figure 9:  1000 unit small world networks with 60 input connections per node and a training set of 
18 random patterns.  Results are averages over 50 runs at each value of the rewiring parameter, p.  
Symmetry values, σ, for each of the three types of network are shown. 

 

3.1.2 Random models 

The results from the previous section show that with small world connectivity the fully 
symmetric model exhibits the poorest performance and the non-symmetric version the 
strongest.  The networks examined here have quite low connectivity, since we have only 
60 connections per unit in a 1000 unit network.  In order to investigate whether the 
relative performance applies to random networks and to explore what happens as the 
networks become more fully connected we measured R as we progressively increased the 
connectivity rate for each of the three network models.  Figure 10 shows the results. 
In Figure 10 we used 100 patterns and started each model at 100 connections per unit in a 
1000 unit network.  Initially with this large number of patterns to store, all three network 
models failed to pattern-complete.  As the number of random connections was increased, 
all three network models increased their R value, with the fully symmetric model lagging 
behind (at 200 connections SC-SL was only at R = 0.25, whereas the others have R values 
between 0.5 and 0.6).  Eventually all three networks attained R = 1 by 400 connections, 
which still represents a connectivity rate of 0.4. 
 



Figure 10:  1000 unit randomly connected networks with increasing input connections and a 
training set of 100 random patterns.  Results are averages over 10 runs at each value of the 
connectivity parameter, k. The attractor performances, R, for each of the three types of network are 
shown.  95% confidence limits are shown. 

 
Both of these subsections have demonstrated that the fully non-symmetric model, NSC-
NSL, performs better than its symmetric counterparts.  Hence we now focus exclusively 
on this model for all of our remaining results on small world networks. 

3.2 Performance of Small world Networks 

This section contains our principal results on small world networks, where we investigate 
how the values of network size, N, connectivity, k, and rewiring parameter, p, determine 
the performance of the network.  In the first subsection we vary k and p and look at the 
resultant values of pattern completion ability, R, and Effective Capacity, EC.  In the 
second subsection we perform a subset of this analysis with much larger networks. 
 

3.2.1 Effects of different connectivity and rewiring 
The results in this subsection involve investigating the loading differences in small world 
networks.  Figures 11 and 12 show the results obtained for R and EC respectively, when 
the models are rewired from a locally connected initial configuration.  Graphs are shown 
for 20, 40 and 60 connections per unit.  In Figure 11 the loading is the same for all three 
graphs, α, is set to 0.3.  This means that different numbers of patterns are used in each 
case.  For k = 20, there are 6 patterns, for k = 40 there are 12 while k = 60 has 18 patterns.  
The Effective Capcity results presented in Figure 12 do not have this complication:  the 
results show the number of patterns that are effectively stored.  Both Figures show the 
expected results, with the higher connectivity graph (k = 60) displaying the strongest 



performance.  As the rewiring is increased performance improves.  More rewiring is 
needed to produce perfect pattern completion for the lower connectivity set-up (k = 20).  
The effective Capacity plot shows that more patterns can be effectively stored with higher 
connectivity, but all of the graphs have basically flattened off by the same amount of 
rewiring, about p = 0.5. 
A close look at the comparison between Figures 11 and 12, shows that if perfect 
performance is desired, as measured by the pattern completion ability measure, R (see 
Figure 11), much more rewiring is needed for k = 20 than for k = 60 to get values of R 
approaching 1.  This is probably due to an artefact of the low connectivity and the way R 
is defined: a set of perceptrons will be likely to have similar performance if each unit has 
a relatively large number of inputs.  At the lower connectivity value (k = 20) the 
performance of some of the units in the network may be significantly below the average, 
and R requires correction by every unit. 
 If, however, a few incorrect bits are tolerated, as with Effective Capacity (see Figure 12), 
then the amount of rewiring needed to get more or less the top value is the same for all 
connectivity values at about 40-50% rewiring.  This should be taken as the more reliable 
result. 
 

 
Figure 11: 1000 unit small world networks with 20, 40 and 60 input connections per node and a 
training set of 6, 12 and 18 random patterns respectively (giving a loading of 0.3 in each case).  
Results are averages over 10 runs at each value of the rewiring parameter, p. The attractor 
performance, R,  for each of the connectivities are shown. 

 



 
Figure 12:  1000 unit small world networks with 20, 40 and 60 input connections per node.  Results 
are averages over 50 runs at each value of the rewiring parameter, p.  EC values for each of the 
connectivities are shown. 

 

 
Figure. 13.  Networks of size N = 1000 and N = 10,000, either with local connectivity only p = 0 
(lower two plots), or with p = 0.1, (upper two plots).  The attractor performance, R, is reported for 
different values of connectivity k.  In all cases the loading of the network is α = 0.3.  Results are 
averages over 10 runs. 

 

3.2.2 Network size effects 
In the final experiments we investigated the effect of changing the size of the network.  
Figure 13 shows the results.  Here the usual 1000 unit network is shown alongside a 



network one order of magnitude larger, at 10,000 units.  The two lower plots are for the 
networks with purely local connectivity, while the upper plots have just 10% rewiring.  
As can be seen, the small amount of rewiring has a dramatic effect on the pattern 
completion performance, in that both the upper graphs reach perfect pattern completion 
(R = 1) faster and earlier than the graphs of the purely locally connected networks.   
Comparing the 1000 unit network against the 10,000 unit network it is seen that for both 
values of p the 1000 unit network performs the best at each value of connectivity, k.  
Even so, all networks have reached perfect pattern completion (R = 1) by 800 connections 
per unit.  The reason that the larger network appears to be worse is that, for this extremely 
large network size, the number of connections relative to network size is extremely small.  
This means that it is hard for information to propagate through the network at such a low 
connectivity relative to network size.  In fact if you consider that the larger, 10,000 unit, 
network, with only 10% rewiring, still manages to perform almost perfectly with only 180 
connections, it represents quite an achievement.  In this configuration the network is 
storing 54 10,000-ary vectors, with each unit having only 180, mostly local, connections 
and it is still able to perform almost perfect pattern completion. A randomly connected 
network at this connectivity level of would perform just as well.  However, here we have 
almost perfect pattern completion with only a wiring length of about 12% of that of a 
random graph with this same level of connectivity. 
 

4 Related Work 
As described earlier in Section 2.8, the performance of the standard, sparse Hopfield 
network with a specific connection matrix, can be predicted from the relationship 
between the first two eigenvalues of this matrix.   Surprisingly this technique has not been 
applied to the subsequently proposed sparsely connected Hopfield networks.   
The first suggestion for using small world architectures with associative memory neural 
networks is in (Bohland, and Minai, 2001).  They empirically evaluate standard Hopfield 
networks of size N = 1000, with k = 150 and a loading of 0.15 (25 training patterns).  
They confirmed that the local network has poor performance and that with a rewiring of 
about p = 0.5 good performance is restored (on both contiguous and random correction).  
Similar results, with sparser networks, are presented in (McGraw, and Menzinger, 2003), 
where N = 5000 and k = 50.  They also give results for networks with a scale-free pattern 
of connectivity, which do a little worse than the random networks.  Similar networks are 
also used in (Morrelli, Abramson, and Kuperman, 2004) with N = 5000 and k = 100.  
Interestingly, the results suggest the network performance peeking at p = 0.4 and then 
falling a little, with the particular measure, efficacy, that they use.  Another interesting 
piece of work described in (Kim, 2004) takes the connectivity matrix of C. Elegans 
(discussed earlier in 2.7) and builds a Hopfield network with this connectivity.  Since the 
average degree of this network is roughly k = 14, it was also possible to build small world 
and scale free Hopfield networks with roughly similar connectivity.  It is found that the C. 
Elegans Hopfield network performs quite well: in fact better than a p = 0.1 small world 
network, but not as well as a random network.  It is also shown that if the clustering 
coefficient of the network graph is modified (by swapping edges between two pairs of 



connected vertices), then performance can be either improved, by decreasing clustering, 
or worsened by increasing clustering.  Small world networks, with biologically inspired, 
integrate and fire neurons have also been investigated, and here also, fairly high levels of 
rewiring are needed for good performance (Anishchenko, Bienenstock, and Treves, 
2005). 
Hopfield networks with scale free patterns of connectivity have also been investigated in: 
(Perez Castillo, Wemmenhove, Hatchett, Coolen, Skantzos, and Nikoletopoulos, 2004; 
Stauffer, Aharony, da Fontoura Costa, and Adler, 2003; Torres, Munoz, Marro, and 
Garrido, 2004) 
 

5 Discussion 
Finding good patterns of connectivity in sparse recurrent networks is an interesting 
problem.  Two competing factors need to be balanced: firstly the need for information to 
propagate globally in the network implies the need for distal connectivity, but secondly 
the desire for economical wiring promotes the reverse objective.  In this paper we have 
shown that it is possible to find a workable balance by having the majority of the 
connectivity local but also with a significant fraction between random locations.  Our 
results correspond with those reported for the standard Hopfield model, in that we 
generally require about 40% random connectivity for reasonably optimal pattern 
correction. It is worth noting that these levels of rewiring give networks that have many 
more random connections than the original examples of small world networks.  
Nonetheless there is still a considerable benefit in having more than half the connections 
between close neighbours.  The efficacy of rewiring is not, apparently, lost when the 
network becomes very large, as can be seen in the 10,000 unit network (Figure 13) when 
the local and p = 0.1 networks are compared.  
 
One of the interesting features of these large, but sparsely connected networks is that they 
show a clear performance difference between symmetric and non-symmetric weight 
conditions.  This is notable because in the normal, fully connected network there is no 
difference in performance between the two types of weight conditions, with symmetrical 
weights being considered preferable due to the clean dynamics.  It is thought that, in 
general, real neuronal systems do not have symmetric connectivity (Braitenberg et al., 
1998). 
 
We have, to some extent, answered our original research question: it is possible to 
produce efficiently wired associative memory networks with good functionality, using the 
Watts and Strogatz inspired rewiring approach.  Our results, however, raise another more 
fundamental question:  what is the most parsimonious network configuration, that is, what 
sort of network connectivity has both minimal wiring length and good performance.   
Early results suggest that configurations other than the small world networks may work 
even better.  In (Adams, Calcraft, and Davey, 2005) we report on the connectivity found 
by a genetic algorithm (GA) attempting to minimise wiring length and optimise 



performance.  The result was a pattern of connectivity in which the probability of a 
connection between two units fell in a roughly linear way with distance.  However the 
networks that the GA evaluated were much smaller than those discussed in this paper and 
direct comparisons cannot be made.   We are currently undertaking further work to throw 
more light on this fundamental question.  
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