Algebraic Hierarchical Decomposition of Finite
State Automata:
Comparison of Implementations for

Krohn-Rhodes Theory

Attila Egri-Nagy and Chrystopher L. Nehaniv

University of Hertfordshire, School of Computer Science
College Lane, Hatfield, Herts AL10 9AB, United Kingdom
{A.Nagy | C.L.Nehaniv}@herts.ac.uk

The hierarchical algebraic decomposition of finite state automata (Krohn-
Rhodes Theory) has been a mathematical theory without any computational
implementations until the present paper, although several possible and promis-
ing practical applications such as automated object-oriented programming in
software development [B], formal methods for understanding in artificial intelli-
gence [6], a widely applicable integer-valued complexity measure [8I7], have been
described. As a remedy for the situation, our new implementation, described
here, is freely available [2] as open-source software. We also present two different
computer algebraic implementations of the Krohn-Rhodes decomposition, the
V' UT and holonomy decompositions [A3], and compare their efficiency in terms
of the number of hierarchical levels in the resulting cascade decompositions.

The difficulties of computational implementations of the Krohn-Rhodes de-
composition come from the fact that mathematical proofs do not consider com-
putational feasibility, i.e. the space and time complexity of the required calcu-
lations. This problem is especially acute in semigroup theory, where semigroups
have so many elements. We represent a semigroup by a set of generators (the
transformations induced by the input symbols of the automaton) instead of
Cayley-table, finite presentation, or explicit enumeration of all elements; trans-
formations are represented as mappings on the set n = {1,...,n}. This internal
representation is still human-readable as well since it coincides with the mathe-
matical notation. Transformations are stored as 1-dimensional arrays. The con-
tent of the cell with index 7 is the image of i. This way the multiplication of
transformations can be done in time linear in the number of elements in X. As
usual, for getting fast set operations, subsets are represented as bitvectors en-
coding characteristic functions. For deciding whether element is contained in a
set or not, hashtables are used.

Two different decompositions have been implemented in this work. The VUT
technique and the holonomy decomposition were chosen since they are inherently
different, representing distinct classes of algorithms, and their proofs are close to
an algorithmic description. The V U T method is one of the earliest proof tech-
niques []. Tt works with semigroups and uses the right regular representation
for the resulting cascaded components. The main idea of the algorithm is that
we iteratively decompose the semigroup into two possibly overlapping subsemi-



groups (a left-ideal and a proper subsemigroup). The iteration ends when the
components are left-simple or cyclic semigroups. The list of the components in
order form the cascaded product. The inefliciency of the V U T algorithm orig-
inates from the iterative step: V' and T may overlap and thus subcomponents
may appear again and again. Therefore the standard V' U T technique cannot
be used for practical purposes: due to its redundancy it may produce even more
components than the order of the characteristic semigroup (e.g. the full trans-
formation on 4 points has 4* = 256 elements and its decomposition has 401
components). Getting more elements than n™ for an automaton with n states is
far from being efficient. We implemented the V' UT method as a package for GAP
.

The holonomy method works by the detailed study of how the characteristic
monoid of an automaton acts on the automaton’s state set. It looks for and
cascades holonomy groups, i.e. subgroups of the syntactic monoid permuting
certain sets of subsets of the state set. Isomorphic holonomy groups may be rep-
resented in one equivalence class thus avoiding repetitions in the wreath product.
Therefore the holonomy algorithm was chosen and further optimized by using
a more direct constructive method for holonomy groups instead of brute force
breadth-first search based implementation. Due to the experimental nature of
the method, it was implemented as standalone software [2].

References

1. GAP — Groups, Algorithms, and Programming, a system for computational discrete
algebra Version 4.3. (http://www.gap-system.org)., 2002.

2. Attila Egri-Nagy and Chrystopher L. Nehaniv. GrasperMachine, Computational
Semigroup Theory for Formal Models of Understanding, experimental software
packages. (http://graspermachine.sf.net)., 2003.

3. Samuel Eilenberg. Automata, Languages and Machines, volume B. Academic Press,
1976.

4. Kenneth Krohn, John L. Rhodes, and Bret R. Tilson. Algebraic Theory of Machines,
Languages, and Semigroups (M. A. Arbib, ed.), chapter 5, The Prime Decomposition
Theorem of the Algebraic Theory of Machines, pages 81-125. Academic Press, 1968.

5. Chrystopher L. Nehaniv. Algebraic engineering of understanding: Global hierar-
chical coordinates on computation for the manipulation of data, knowledge, and
process. In Proc. 18th Annual International Computer Software and Applications
Conference (COMPSAC 94), pages 418-425. IEEE Computer Society Press, 1994.

6. Chrystopher L. Nehaniv. Algebra and formal models of understanding. In
Masami Ito, editor, Semigroups, Formal Languages and Computer Systems, vol-
ume 960, pages 145-154. Kyoto Research Institute for Mathematics Sciences, RIMS
Kokyuroku, August 1996.

7. Chrystopher L. Nehaniv and John L. Rhodes. The evolution and understanding
of hierarchical complexity in biology from an algebraic perspective. Artificial Life,
6:45-67, 2000.

8. John L. Rhodes. Applications of Automata Theory and Algebra via the Mathematical
Theory of Complexity to Finite-State Physics, Biology, Philosophy, Games, and
Codes. (Univ. California Berkeley Math Library 1971), unpublished book.



	Algebraic Hierarchical Decomposition of Finite State Automata:Comparison of Implementations for Krohn-Rhodes Theory
	Attila Egri-Nagy cl@@auth, Chrystopher L. Nehaniv

