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Imitation With ALICE: Learning to Imitate
Corresponding Actions Across Dissimilar
Embodiments

Aris Alissandrakis, Chrystopher L. Nehaniv, and Kerstin Dautenhahn

Abstract—Imitation is a powerful mechanism whereby Inthe area of social learning, an animal learns benefiting from
knowledge may be transferred between agents (both biological the presence of or the experiences of another animal, and such
and artificial). Key problems on the topic of imitation have j,f,ences may support adaptation. Biologists and psycholo-
emerged in various areas close to artificial intelligence, including . - L .
the cognitive and social sciences, animal behavior, robotics,g'StSWho study social l_eam'ng 'n.ar_"mals usugllywantto know
human_computer ir‘“:eractior]l embodied inte”igence’ software Whethel’ nonhuman an|maIS can imitate behaV|0rS they Observe.
engineering, programming by example and machine learning. This provides an opportunity to both investigate the cognitive
Artificial systems used to study imitation can both test models gpilities of animals and compare them to those of humans, and

of imitation derived from observational or neurobiological data 154 tg help understand the role of social interactions in the de-
on imitation in animals and then apply them to different kinds .
velopment of patterns of behavior.

of nonbiological systems ranging from robots to software agents. I Ay : . .
A crucial problem in imitation is the correspondence problem  Many theories of imitation are discussed in the literature. In

mapping action sequences of the demonstrator and the imitator the following, we discuss two particularly influential and rele-
agent. This problem becomes particul_arly obvious when the two yant examples.
agents do not share the same embodiment and affordances. This  gyne proposestring parsingas a theory of imitation, which
paper describes a new general imitation mechanism called Action . . o
Learning for Imitation via Correspondence between embodiments separate; the copying of beha\{loral organization .from an un-
(ALICE) that specifically addresses the correspondence problem. derstanding of cause and effect in observed behaviors [14]. The
The mechanism is implemented and its efficacy illustrated on the recurring patterns in the visible stream of behavior (composed
“‘chessworld” testbed that was created to study imitation from an  of structurally ambiguous strings) are detected and then used
agent-based perspective, i.e., by a particular agent in a particular 14 j|d a statistical sketch of the underlying hierarchical struc-
environment. . . .
ture, which in turn may aid to comprehend cause and effect. The
_Index Terms—Correspondence problem, embodiment, imita- |inear sequence elements might represent simple behaviors rec-
tion, machine leaming. ognizable by the animal or discriminably different states of the
physical world affected by the behavior. His theory, however
|. INTRODUCTION interesting, is highly underspecified with respect to the actual
. . .__underlyingmechanismsThe work presented in this paper has
A CHARACT.ERIST.'C of many social animal SPECIESyaan partly inspired by this theory and develops computational
e.g., dolphins, chimpanzees, humans, and other apesal&orithms for imitation of observed behaviors.
' Another promising theory of imitation that makes testable
Pedictions is Heyes and Ray’s Associative Sequence Learning
}B?SL) theory [29], [31]. This theory assumes that a sequence of
tion units composes the behavior to be imitated rather than it
being unitary. The resolution of these action units can vary, de-
ending on the observer’s perception. In order for an observer
imitate a sequence, ASL requires two processes to success-

. . ly take place. The horizontal process associates the repre-
programming paradigm [6], [17], [35]. On the other han entations of these action units in a successive chain, so that

imitation also plays a crucial part in the development of huma%server knows what the sequence “looks like.” The vertical

and some other a”'m"?"s. as SOC"’.il beings. Robots or softw fGcess associates directly or indirectly each of the sensory rep-
systems that possess imitative skills are therefore an import entations of the action units to appropriate motor represen-

step toward truly social artifacts (see [18], [19], and discussio&&ions, so that the observer can know how to perform the se-

in [20]). guence. In our work, the vertical associations are captured by a
correspondence librargsee Section IV), while the temporal se-
Manuscript received January 30, 2002; revised July 23, 2002. This paper ence of demo_nStrator aCt|On$ reIate; to the horizontal process
recommended by Associate Editor B. J. Oommen. _ of ASL. ASLs primary purpose is to stimulate the development
The authors are with the Computer Science Department, Adaptive Systefifsother testable models of imitation and guide analytic exper-
Research Group, University of Hertfordshire, Hatfield, Hertfordshire AL10Q . .
9AB, U.K. (e-mail: a.alissandrakis@herts.ac.uk). iments. One of the strengths of ASL is that it can also be ap-

Digital Object Identifier 10.1109/TSMCA.2002.804820 plied to relativelyperceptually opaquactions, i.e., facial ex-

the ability to learn from others by imitation (see [30], [31]
[39], and [53]). Inspired by nature, over the past decade, m

researchers have attempted to design life-like social age
i.e., software or robotic artifacts that are able to learn fro
each other or from human beings by imitation [4], [8], [10]
[19], [26], [27], [33], [34], [43]. On the one hand, a robot or

software program that a human can teach simply by showi
or demonstrating what needs to be done is an exciting n
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pressions, that yield dissimilar sensory inputs when observadlls can be captured and reproduced in a computer program.
and when executed. One of the weak points of ASL is that it doAs the human subject performs the skill, his or her actions are
not address effects on the environment; however, our framewoecorded along with the situation that gave rise to the action.
(see Section II) allows this to be handled using appropriate métlog of these records is used as input to a learning program.
rics. The learning program outputs a set of rules that reproduce the

Note that the above two theories are complementary: Hey@glled behavior. This method can be used to construct automatic
and Ray’s ASL theory aims to detect and copy sequentféﬂ’mm' systems for complex tasks for which classical control
ordering, whereas Byrne’s string parsing aims to extraieory is inadequate. In [48], experiments are described where
hierarchical organization or structure from sequential orderin@flight simulator was modified to log the actions of human sub-
and thereby copy at higher hierarchical levels. In Byrne ad@cts as they were flying the aircraft. These logs were then used
Russon’s terms [15], ASL deals with action-level imitation@S input to an induction program that produced a decision tree
whereas string parsing with program-level imitation. from which autopilot code was derived.

Many robotics researchers are inspired from biology for cre- A radically different approach to computer programming has

ating controllers for autonomous robots. Imitation is a powerf Ievello%eéjE&nlc?e tl?? e?rly 1?:130;;ncalmflgramrrmr?1?nit;1y T)X'
learning tool when social interaction either between humans a%@ngsrgstrati)o[ P]L%D SbScS;u:g thee useesr Cdaerﬁlg?\it?ates eiar)rq les
robots or even in multirobot systems takes place. Having a rol5j r( ) P

observe and learn to perform a task from an experienced teacher < desired behavior to the computer. The concept is that if
lz%e user knows how to perform a task on the computer, he or

presents a more flexible and adaptive solution than explicit pro- .

gramming of each behavior. The learning process can be fa f should not need to learn a computer Iang_uage in order to de-

as no direct teaching is required; the expert, by just performiﬁ ribe how to carry out the task. Presented W'th anumber of ex-

and demonstrating the task, can pass the required knowle Ie;, the computer ShOUId be able to derive a program corre-
nding to the user actions as they were performed and then be

to the robot, which in turn may be used as a demonstrator a o 10 either repeat them or generalize the program to also work
imitated by other robots, as shown in [9]. Robotics research. : P g 12 brog W

imitation often separates the mechanism from the social diméﬂ-’rg’im”a.r situation.s [.35].' .Only-rec.:el_ﬁtly. have re;earchers in this
sion of imitation, developing architectures that (usually using"’}:{ea noticed the S|m|Iar|t|e_s W'Fh Imitation st.u_d|es, and there are
vision system) identify salient features in the movements o oy ly a few PBE systems msplre'd by cognitive frameworks so
model and map them to appropriate motor outputs of the rol;%[' One of them, Learning Algorithms from Worked Examples

imitator [33], [34]. Focusing on the question lebéwto imitate (LAWE), was developed by Furse as a computer program that

given a particular robotic system and a specified task Ieads”??)plemems an imitation algorithm that operates according to

very diverse control approaches that are difficult to generali? me prtlﬂmplesls;‘lrmllgdrf to the ones required for Byme's string
across different platforms and contexts. An exception to thishgrsing theory [ ]’. [24]. . . e
The actuakmbodimenof biological or artificial agents plays

the architecture Dynamical Recurrent Associative Memory Ag critical role for intelligence, learning, and other issues studied
chitecture (DRAMA) forlearning by imitatiorthat has been ap- . ! '
( ) goy b “Nouvelle Al” or “Embodied Al” (see [13] and [44]). Un-

plied to different robot platforms and contexts and is describi? h K on imitation that eith idesadh
in [7] and [8]; see also studies with physical and simulat € otherwork on Imitation that either provides ocmap-
ping between demonstrator and imitator or assumes that they

robots in [27]. . : . . . .
[27] share identical embodiments, our work systematically investi-

Learning by imitationis the area of study that investigategyates constructive solutions of the correspondence problem be-
how an agent can exploit imitation as a means of acquirigaan dissimilar embodiments (see Section I1).

knowledge, having solved the problem of how to imitate [27]. 1he general framework that will be used for imitation across
In the scenario discussed in [10], a robot learns properties §fsimilar embodiments is presented in Section II. The exper-
its environment by following another robot around, imitating it§,antal testbed (the “chessworld") is described in Section IIl,
trajectory on a hilly landscape. In[11], itis shown that providingyjje jn Section IV, the generic imitating mechanism of ALICE
a robot with the ability of imitating a teacher agent enhances ts iniroduced. Experiments with ALICE implemented in the

performance at learning the rudiments of a synthetic proto-l3fessworld platform are presented in Section V and discussed
guage. Imitation here can either be the means of enhancing th&ction VI. Conclusions follow in Section VII.

learning capabilities of the agent, as in the two previous exam-
ples, or more commonly is used to share a common context and
replicate the actions of an experienced teacher. II. GENERAL FRAMEWORK

Recently, there has been increasing interest in the use of imiyn order to study how to imitate, we must first define more
tative learning for the control of humanoid robots [6], [12], [36]precisely what we mean by imitation within the context of
[49]. Besides the ergonomic benefits when functioning in envihis work. A classical definition of imitation by Thorndike is
ronments designed for humans, a humanoid robot can inspirqe'aming how to do an act from seeing it done” [51]; however,
sense of familiarity that improves the social dimension of thgjis definition is very open ended. We prefer Mitchell's more
interaction, and having the ability to imitate, a humanoid robgfetajled definition, which allows for nonbiological agents
can be more believable and useful in social situations. and is necessary for imitation research in robotics/computer

Imitation is also increasingly studied in software systemscience. The following requirements are to be satisfied as
Behavioral clonings a method by which human subcognitiveevidence of imitation [38]:
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i) Something C (copy) is produced by an organism and/behavior to be imitated a beginning and an end. The imitator

machine, where also has to decide on a suitable time (and place) to imitate, i.e.,
i) C is similiar to something else M (model); whether a previously or currently observed behavior would be
iii) Regristration of M is necessary for the production of C;appropriate to carry out in the current context, and perhaps (if
iv) C is designed to be similiar to M. this is applicable) how many times to repeat.

Imitation is a powerful learning mechanism, and a more gen-
eralagent-based approaahust be used in order to identify theC. What to Imitate

most interesting and significant problems, rather than the PrevaThare are several aspects of a behavior that could be imi-
lentad hocapproaches used in most imitation robotics researg}ed It may be preferable to imitastates actions or desir-

so far. Traditional approaches concentrate on finding an appie effectsof an observed behavior (or some combination of
priate mechanism for imitation and developing a robot-contrmese) [16], [41], [42]. The structure of the knowledge trans-
architecture that identifies salient features in the movementsfgﬁred poses another problem, as there can be a distinction be-
an (oft(?n V|su.aII_y observed) mOdgl and maps them approfilieen different modes of imitation. Byrne and Russon propose
ately (Y""? a built-in and usuall_y static method) to m‘,’t‘?f QUtpuﬁvo different kinds of imitationgrogram levebndaction leve)

pf the imitator (cf. one of thelflr.st examples of robotlp |m|tat|'or£lS opposite ends of a spectrum, i.e., copying the organizational
in [33] and [34]). Model and imitator are usually notinteracting, .+ re of the behavior versus copying the surface form of the
with each other, nor do they share and perceive a common C@ip 4. ior [15]. As a general consequence of this, an agent is re-

text. Fur.thermore, the social dimension of imitation (_an_d COEf_uired to have the ability to build hierarchical structures in order
responding issues of when and why an agent should 'm'tate}dsexhibit program-level imitation

usually ignored. Effectively, this kind of approach limits itself to
answering the question bbw to imitatefor a particular robotic
system and a particular imitation task. This has led to many
verse approaches to robot controllers for imitative learning that!n addition to deciding who, when, and what to imitate, an
are difficult to generalize across different contexts and differef@ent must employ the appropriate mechanisms to learn and
robot platforms. carry out the necessary imitating actions. The embodiment of
In contrast to the above, the agent-based approach for ithe agent and its affordances will play a crucial role, as stated in
itation considers the behavior of an autonomous agent in refg€ correspondence problem
tion to its environment, including other autonomous agents. TheGiven an observed behavior of the model, which from a
mechanisms underlying imitation are not separated from the §ven starting state leads the model through a sequence (or
havior-in-context, including the social and nonsocial envirohlerarchy) of subgoals in states, action, and/or effects, one
ments, motivations, relationships among the agents, the ageAt4st find and execute a sequence of actions using one’s own
individual and learning history, etc. [21]. Such a perspecti\@OSSib'y dissimilarembodiment, which from a corresponding
helps unfold the full potential of research on imitation and helg$arting state, leads through corresponding subgoals—in
in identifying challenging and important research issues. TKerresponding states, actions, and/or effects, while possibly
agent-based perspective has a broader view and includes fR&Ponding to corresponding evei9]-{42].
central questions in designing experiments on research on imiJ his statement of the correspondence problem draws atten-
tation: who'to imitate,whento imitate,whatto imitate,howto tion to the fact that the agents may not necessarily share the
imitate, and how tevaluatea successful imitation. A system-Same morphology or may not have the same affordances even
atic investigation of these research questions can show the filfong members of the same “species.” This is true for both bi-

(5%. How to Imitate and the Correspondence Problem

potential of imitation from an agent-based perspective. ological agents (e.g., differences in height among humans) and
artificial agents (e.qg., differences in motor and actuator proper-
A. Who to Imitate ties). Having similar embodiments and/or affordances is just a

special case of the more general problem.
It is important that the imitating agent chooses its demon-

strator in such a way that engaging in an imitating behavigr How to Evaluate the Imitation Attempt

would benefit the imitator in some way. There is no need to t t to imitate the d trator’s behavior. th
imitate other agents whose tasks and needs are not relevant cfr"f an attempt to imitate the demonstrator s behavior, there

beneficial. If the agent has to choose among several demonsﬂ%@qs tobea measure to eval_uqte the pehaworal ma‘."h'f‘g- The
Q_mce of an appropriate metric is very important, as it will be

tors, some evaluation of the performance of the appropriate i dt ture th i fthe diff bet f d
havior(s) by the possible candidate models is required befor3C 10 capiure the notion ot tne difierence between performe
d desired actions as well as the difference between attained

choice is made. Note that the demonstrator is not required to P& . ) .
aware of the fact that the performed behavior is a model for tﬁ@d desired states [41], [42]. The evaluation might be performed

imitator, although this might help in providing feedback on thglther by the imitator, the demonstrator, or an external observer.
succesé of imitation To show how the above issues come together for an imitating

agent, let us consider the following example of a robot painter. If
this robot observes several human workers in a house construc-
tion site, it makes sense to choose to imitate a human that paints
Once a suitable demonstrator is found, the imitating agent ltag walls instead of a human electrician, whose work is not rele-
to segment the entire demonstrator behavior, assigning to thamt to the role assigned to this robot. If there is a choice among

B. When to Imitate



ALISSANDRAKIS et al.: IMITATING WITH ALICE: LEARNING TO IMITATE ACROSS DISSIMILIAR EMBODIMENTS 485

several painters, a brief evaluation of their individual work is re
quired, based on criteria like how well they cover the wall sul
face, or whether they are messy and spill paint on the floor. Tt
painting behavior should be imitated only if and when a wa
needs painting. The robot painter can choose to imitate at
tion level replicating the exact same sequence of paint strok
on the wall as the demonstrator. Alternatively, it can choose
emulate the demonstrator, not necessarily using the same
quence or type of actions (for example, throwing a bucket
paint on the wall), but aiming for the same overall result of co\ (a)
ering the wall evenly with paint. The robot must plan a sequence
of actions and send appropriate control signals to its motors amgl 1. lllustrating the effect of having dissimilar embodiments. The same
actuators in order to move its limbs. The actual embodiment dgmonstrator Queen (darker color moves) is imitated (lighter color moves) by
the robot, its shape, the number and size of its limbs, togetf{@y2 Bishop and (b) a Knight.
with the choice of a painting tool (a wider, larger brush will
cover a greater surface but a smaller brush might be more pagso benefits from having a simple discrete environment with
cise), will play a crucial role, and a solution (even partial) to thgell-defined and precise rules.
correspondence problem must be found and used. Finally, as Fhe range of possible behaviors by the chess agents is
possible evaluation measure, all the wall surfaces should havsited to movement-related ones. As a demonstrator performs
been covered, with no paint stains on the nearby windows @fandom walk on the board, an imitator observes the sequence
the floor carpet. of moves used and the relevant displacement for each one of
Research on imitation in robotics usually takes the approagtem and then tries to imitate this, starting from the same point.
of studying learning by imitation assuming that an artifact Considering the moves sequentially, the agent will try to match
already possesses the skill to imitate successfully and in tuem, eventually performing a similar walk on the board. This
exploits this ability as a means to acquire knowledge [LOmitative behavior is performed after the completion of the
[11], [27]. This paper addresses the complementary approaabdel behavior with no obstacles present, neither static (e.g.,
of trying to imitateor learning how to imitatethe study for walls) nor dynamic (e.qg., other chess pieces), besides the edges
specifying the necessary mechanisms by which obserugithe board which can obstruct movement.
and executed actions are matched, so that the agent can use
imitation to learn how to perform useful behavior [18]. W&y yse of Different Granularities in Addressing What to
investigate how different such attempts at imitation can kanitate
evaluated and quantified and illustrate possible mechanisms
for solving the correspondence problem between demonstratof he data on the demonstrator's behavior can be structured
and imitator. Differences in embodiment between animals agfd presented in a variety of ways, effectively reflecting dif-
robotic and software systems make it more difficult but nderent levels of complexity. More specifically, depending on the

necessarily impossible to acquire corresponding behaviors. salience of the moves, important qualitative differences can be
observed. We are going to discuss briefly three different levels

of granularity of successively increasing levels of resolution:

(b)

lll. | NTRODUCING CHESSWORLD 1) end-point level
2) trajectory leve]

In order to study the five main issues in imitation mentioned 3) path level
above, we introduce the generic testbedtloéssworldimple- Considering only the starting and final locations, all the in-
mented using the Swarm multiagent simulation system. Prelitermediate squares visited by the demonstrator will be ignored,
inary results using this testbed were reported in [1] and [2]. Tlaad we will define this as usingnd-point level granularityAs
inspiration behind it comes from the need to create a shared anesult, the trail of the agent as it tries to reach the overall des-
vironment for interacting agents of different embodiments arithation can be qualitatively very different from the one shown
affordances. In the rules of the game of chess, each player cbythe demonstrator, although the behavior to be imitated is the
trols an army of chess pieces consisting of a variety of differesame in respect to the overall result. The imitator emulates the
types with different movement rules (see Section IlI-D). Weverall goal (i.e., cumulative displacement) of the demonstrator
borrow the notion of having different types of chess pieces al{leee Fig. 2).
to move according to different movement rules, and we treatlf the imitator considers a list of locations to be reached
them as agents with dissimilar embodiments moving on the fsequentially, corresponding to the ones visited by successive
miliar checkered board (see Fig. 1). The actual two-player gamm@ves of the demonstrator, the trail will be considerably
of chess is not studied, as it is not relevant to our work on inmore similar to the model one. We will define this as using
itation. Instead, we use pairs of dissimilarly embodied imitatarajectory-level granularity In this case, as the effects of the
and demonstrator agents to illustrate some interesting reseanttividual movements (displacements) are considered sequen-
problems in imitation, and we make use of the familiar contesillly (instead of in terms of their cumulative effect), a more
of chess in a generic way. Besides the familiarity, chesswordtailed imitating behavior can emerge. This can be thought of
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One-norm

(a) (b)

Fig. 2. lllustrating the effect of using different granularities. A Bishop (lighte
color moves) imitates a demonstrator Queen (darker color moves) using
trajectory-level granularity and (b) end-point level granularity.

o ) . Fig. 3. Different metrics measuring the distance between current location
as program-level imitation with the task of reaching each of the, 0) and subgoal locatiotw, y). The vertical axes are normalized.

sequential locations as subgoals.

In the game of chess, a piece can move to a new square
long as there are no obstacles in the way. In the current v
sion of chessworld, no obstacles exist, nor do pieces take ot
pieces. We use the usual mental image of the pieces as slid
on the board, with the exception of the Knight jumping to i
new location instantly, to definpath-level granularity More
precisely, path-level granularity targets the list of locations, ir
cluding not only the ones visited by the demonstrator as a t
sult of its movements, but also the intermediate ones (if any
It represents a greater level of resolution than trajectory-lev (a) (b)

granularity. Path-level granularity can be thought as similar to

action-level imitation, trying to replicate the trajectory of theig. 4. lllustrating the qualitative effect of using different metrics. King

demonstrated actions as closely as possible. The Characte@iqj‘ter color _moves)' imitates a demonst(atplf Queen (dar_ker color moves)

the resulting imitation depends on the granularity, and the s§ind (&) Euclidean distance norm and (b) infinity norm metric.

cess depends on how important the extra details are (see Sec- ] . .

tion 11I-B). from mathematical analysis (e.g., [47]) were used. The distance
In the current work, perception is very much simplified?€tween any two squar¢s:, y1) and (2, y2) on the chess-

The demonstrator's behavior is preprocessed and segmerite@rd is the following.

according to the granularity to be used before being presented@mming norm (or one-norm):

(noise-free) to the imitator agent. Generally, perception and the

segmentation of actions are very important research issues in

robotics, cognitive science, and computer vision, but the naturegclidean distance (or two-norm):

of the chessworld testbed allows us to abstract these away and

to concentrate on issues specific to imitation. V(w1 — 22)2 + (y1 — y2)?

|z1 — 22| + [y1 — yo|

B. Use of Different Metrics for Evaluating Imitation Attempts  Infinity norm:

In the previous section we described the possible resulting
imitations in qualitative terms since we have not yet defined
various notions of what a successful imitation is in the chess-The different metrics provide different notions of distance as
world context. The agent behavior is composed of a sequenceisalized in Fig. 3. An example of the gaulitative effect of using
moves and each move results in a displacement on the board dfferent metrics is shown in Fig. 4.
tween the current and the previous location. Therefore a reasonin some cases, the imitator can get “blocked,” i.e., unable to
able way to measure imitation success in this context is to meget closer to a subgoal by any single move, depending on the
sure the distance between the square the imitator agent moweztric used. For example, the infinity norm value for a subgoal
to and the analogous square visited by the demonstrator, ittkesated diagonally to the current location to a Rook is the same
ally that distance being zero for every salient displacementiymlue as the current location, and therefore, the metric cannot be
demonstrated behavioral sequence. Other possible metrics (dugther reduced.
nongeometric, behavioral metrics) could be also used, includingTable | shows all possible cases in which such “getting
very complex ones [41]. stuck” can happen. Although this is caused because the default

There are various ways to measure the distance between dlgorithm (see Section 11I-C) examines on§ingle moves
points on the plane, and for this work, three well-known metrigather tharsequences of movasevertheless, it illustrates that

max{|z1 — z2|, [y1 — y2|}.
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TABLE | King uses a related set that allows movement to all directions
ALL POSSIBLE SITUATIONS, GIVEN BY A DESIRED DISPLACEMENT (. y), but onIy at one square at a time. Thaight has a very distinct
WHERE NO POSSIBLE SINGLE MOVE CAN REDUCE THE VALUE OF THE . . . .
METRIC. HERE, (i, y) |S THE DISPLACEMENT OF THENEXT SUBGOAL style of moving, jumping to the Opp.OSIte end Of any23or 3
RELATIVE TO THE CURRENT LOCATION x 2 rectangle. Th®awnis omitted, since according to the rules
Metric of chess, it can only move a single square to only one direc-
; ; tion, thus having significantly restricted movement capabilities
Hamming Euclidean Infinity norm ’ . g .g . y P
Rook =y for even simple imitation tasks.
Bishop x=0 or y=0 @1,0)or 0£1)  (£1,0) or (0.£1) We indicate compass direction and magnitude of individual
Queen moves notationally as follows: e.g., NW5, displacement of five

King - ---
Kmght (#1,0) or (0,£1) (#£1,0) or (0,£1)

units diagonally to the northwest or S1E2, displacement one unit
south and two units east (by a Knight), etc.

Assigning the demonstrator and the imitator agents to be
instances of different chess pieces creates a dissimilar em-
the choice of metrics can be crucial for the evaluation arddiments scenario that requires solving the correspondence

(£1,0) or (0.£1)
or (£1 1)

character of attempts at imitative behavior. problem. The default algorithm will produce either a single ac-
tion, or more probably a sequence of actions, corresponding to
C. Default Imitation Algorithm each action in the demonstrator sequence, while attempting to

Given a sequence of demonstrator moves, the imitating ag§|.,|gcessive.ly reduce the distance to the next subgoal (according
has a list of locations on the board to be reached sequentidfiytne metric used) at each step. _
(depending on the chosen granularity), as well as a way to evallf moving to the target square cannot be achieved perfectly
uate the imitation success for each of them (according to tHé€ to embodiment issues (i.e., the agent cannot move to that
chosen metric). To generate a sequence of moves that will §g1are due to its movement rules), the focus of the default al-
fine an appropriate imitating behavior, a simple algorithm witgorithm will move_to the_ next subgoal, having the current error
no elements of planning or learning can be used. The foIIowiﬁé’F’ed to the desired displacement. The demonstrator and the

lines of pseudocode effectively outline this default algorithm:'m'tator have the same initial starting point, but for the rest of
the imitation attempt, no correction takes place to put the imi-

tator back on the trail, allowing these errors to accumulate.

For example, let us consider a Queen as the demonstrator that
performs the action E3 (move three squares to the east). If the
imitator is another Queen, the algorithm will simply produce the
sequence [E3]. The same sequence will be produced if the im-
itator is a Rook. If the imitator is instead a King, the algorithm
will produce the sequence [E, E, E] (three sequential moves of
a single square to the east). If the imitator is a Bishop, the al-
gorithm will produce [NE, SE] or [SE, NE]. Note that due to
embodiment limitations (the Bishop cannot occupy the target
square as it is of different color), moving according to either ac-
tion sequence, the imitator cannot reach the desired square ex-
actly, but only an adjacent one. Similar embodiment issues occur
for an imitator Knight using the sequences [N1E2] or [S1EZ2].

Although a corresponding imitation sequence is produced by
the default algorithm and performed by the imitator, no learning
and no association between demonstrator and imitator actions
D. Effects of Dissimilar Embodiment takes place at this stage. The most crucial limitation of using

If the demonstrator and imitator chess pieces are of the safiyy this default algorithm to generate the imitating sequences is
type, then the process is very straightforward (for trajector$he lack of any planning. While every move in the produced se-
level granularity). For each move of the demonstrator resultifiyence reduces the distance toward the current subgoal, a choice
in a displacement on the board, the imitator will use the sarfiéa different move might be more beneficial in the long term,
exact move to achieve the same displacement. The same rel§&ding to a better location for subsequent subgoals but at the
toire of movements warrants very similar use of them, givens@me time undesirably increasing the distance to the current
displacement to achieve, but in the case of dissimilar embd#tbgoal. Such alternatives could potentially increase the imita-
iment, more complex solutions can emerge with different déon performance of the imitator agent. For example, the Knight,
grees of success. which cannot achieve a displacement to an adjacent square using

The movement rules for the chess pieces are an interesting
combination. Th&kookcan in a single action, move an arbitrary To avoid confusion interpreting the action names, the entire Knight action
number of squares but only horizontally or vertically, while thet iS{EIN2, E1S2, WIN2, W1S2, N1E2, N1W2, S1E2, SI\We avoid
Bishopmoves only diagonally. Th@ueenin a sense uses a su multiple names for actions such as E2N1 and N1E2, which both would corre-

< ] - 2“"spond to hopping two squares east and one square north, or, equivalently, one
perset of movement rules combining both their sets, while thguare north and two squares east.

DEFAULT IMITATION ALGORITHM PSEUDOCODE

1. Observe demonstrator's moves.

2. Convert perceived moves to a sequence
of subgoals for imitation depending on
granularity.

3. For each subgoal displacement ( z, y):
3a. Choose a possible move that maxi-
mally decreases the metric distance to
(z, y).
3b. Repeat step 3a until subgoal
is reached or there is no move that
strictly reduces further the distance
to subgoal.

4. Move to next subgoal in sequence, if
any, and repeat step 3, else stop.
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this default algorithm (see Table I) can do so if it were allowetd a point in the workspace, even if that action was performed
to temporarily increase its distance to the target. before from the same initial configuration; solving the inverse
kinematics again would be wasteful in such a scenario.

V. INTRODUCING ALICE
) ) B. Second Component
Planning and learning can be added to the system by in-

creasing the complexity of the algorithm, but such an approachhc only the sequences produced by the ggnerating method
might be more specific than generic, depending much re used to build-up the correspondence library, the perfor-
the problem domain and the context. To address this in gpnce of the imitator would be directly limited by the choice of

easy-to-generalize way, we introduce ALICE as a geneH&e algorithm, although possible improvement of the response
mechanism for building up correspondences basecaon time required would be observed, as discussed in the previous
generating method for attempts at imitation by examining tlpéalragraph: Moreqver, some of the stored imitator sequences, al-
history of such attempts (cf. Byrne’s string parsing approach ough valid solutions to the correspondence problem related to

imitation [14)). Preliminary resus using the ALICE mechall® demonstrator's actions, may become invalid in certain con-
nism implemented in the chessworld were reported in [2]. texts. The second componento elps to overcome these

Metaphorically speaking, the correspondence library thg&fficulties: The i_miFat(_)r agent can examine its own history _to
ALICE builds up functions as a kind of “refractive Iookingd'scover further imitative sequences without having to modify

glass” or “prism” through which to transform a demonstrator@" improvg the generating algorithm used. We define this his-
behavior into the repertoire of the imitator's own actions ry as a,“SF of actions that were performed SO far by the ggent
constrained by its embodiment. Such a library of action corr}Q’—h'le imitating the demonstrator together with these actions’

spondences can be employed when imitating (cf. the natu@%ﬂv? ﬁ_ﬁects (alsq deSSitile EFeCtS on the er(;viron:]n ent). This
imitation of humans by dolphins [28] or robotic imitation [40], ind of history provides valuable experience ata that ALICE
%adw then use to extract useful mappings to improve and add to
e

[41]). Mechanisms and correspondences of this type are a T .
relevant to the imitation of perceptually opague behaviars the correspondence relation library created up to that point. The

to sensory motor correspondences [31], to the extraction of {ﬁ'@thOdS for actually extracting this information can vary and
structure of demonstrated behavior [14], [52], and to new%llSO managing the sequences that are found can depend on ad-

mechanisms for the perception of actions and affordances fgﬁ _nal met“cs (el.g., I;reep onll)(/ the shr)rtf]st sequence that can
its direct mapping to motor actions via “mirror neurons” [5],aC leve a particular efiect, or keep only the top ten sequences
[25], [46] according to some performance measure).

There are a variety of existing machine learning techniquesWhen every possible demonst'ra.tgr action has begn en-
addressing experience-based learning, for example, re.(ﬁq_untered at Ie;ast once, we can |n|t.|ally say that the'l|br§1ry
forcement learning [50], case-based reasoning [32], inducti_\?ecomplete W'thf at least one _cbalmdcljdate correspond_mg 'Ln'
learning [45], [48], or learning of behavioral histories [37], anbtat%r sequenlce or ev?ry possI ed emonsltra.tor agnon, ut
others. Our intention here is not to develop a particular n ch a complete set of correspondence re a“?”s etween a
and efficient machine-learning algorithm. Instead, we propo gmqnstrator a.nd an Imitator cannot.n(.ece.ssanly gqara}ntee a
and systematically study a general framework for learning &Qngstently satisfying performance of imitation, evenin S_'mP'e
imitate by solving the correspondence problem. Clearly, thfgVIronments. A_COWE_SF;]O_ndIng Selzjquenc;: mhay be |nva||ccjj(;nda
framework could easily be combined with these or many oth erent context in which it was observed when it was a N
machine-learning techniques to the library. It becomes apparent that as the world resolution

ALICE consists of two components on top of the arbitrar?nd complexity increases, context becomes more relevant
generating method used and therefore, the variety and quality of the correspondence

' relations becomes more important. Using the mechanism that
A. First Component extracts sequences from the history as an ongoing feature
can address this, as it will continue to enrich the individual

When the imitator observes a new demonstrator action 1t onings with more alternatives that possibly provide better
seen before, the imitator can relate the result of the generatiig ;iions. This second ALICE component relates to Byrne’s
method used to that action. This relation is then placed in tEﬁ'ing parsing theory [14] as it discovers underlying structures

library of correspondencésUsing the entries in the library y,5¢ can pe used as alternative correspondence solutions on a
instead of performing the generating method for aCt'OrRﬁogram-level imitation

already observed is very often less computationally expensive 5 summary of the ALICE mechanism is given by the fol-
especially as the complexity of the algorithm that producngwing high-level pseudocode:

the matching behavior increases. For example, consider a ten

degree of freedom robot arm in the real world that has to SOI)&‘?_ICE MECHANISM PSEUDOCODE

the inverse kinematics equations for moving the manipulaterOnsider the demonstrator behavior as a

2perceptually opaque behaviors [31] are perceived very differently when ob-Sequence of actions.
served than when being performed, e.g., tongue protrusion or winking, but figr each of these demonstrator actions:

singing. o _ _ « If the demonstrator action has not
3At each stage in its growth, a library of correspondences is an example of

(partial) relational homomorphism between the abstractautomataassociated?p(:*‘en observed before, create new entry

the demonstrator and the imitator [40], [41]. in the correspondence library and add
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TABLE I
PossIBLE CORRESPONDENCES FORIFFERENT IMITATOR TYPES THAT ARE
FOUND USING THE DEFAULT ALGORITHM AS THE GENERATING METHOD
(EucLIDEAN DISTANCE METRIC USED). Disp. IS THE RELATIVE DISPLACEMENT
EFFECT OF THEACTION SEQUENCE GIVEN THE DEMONSTRATORTYPE,
ACTION AND EFFECT, THE POSSIBLE SEQUENCESWITH THEIR EFFECTS FOR
EACH IMITATOR TYPE ARE SHOWN ABOVE. NOTE THAT NEITHER THE BISHOP
NOR THE KNIGHT CAN ACHIEVE THE EXACT DESIRED DISPLACEMENT

Demonstrator Action Disp
Queen E3 (+3.,0)

Queen [E3] (+3,0)
Rook [E3] (+3,0)
King [E.E.E] (+3.0)
 [NESE] ,
Bishop o |SENE] (+2,0)
[N1E2] (+2,+1)

Knight [SIE2] +2.1)

sequence of imitator actions found by
the generating method.

e If entry already exists, select and

use an appropriate action sequence from

Tmitator Sequence Disp. %
%

(d)

; Fig. 5. Four different possible corresponding sequences (a) [N1E2, S1E2,
the.corre'spondence I|brary: WIN2, EIN2], (b) [EIN2, EIN2, E1S2, EIN2], (c) [EIN2, WIN2, N1E2,
Examine history by considering sequences S1E2], and (d) [S1E2, N1E2, WIN2, EIN2] that can be used by the Knight
of actions performed by the imitator so to imitate the action NE4 (displacement to the northeast of 4 units) by the

far. demonstrator Queen (or Bishop). These can be found only if ALICE augments

the default algorithm.
For each of these sequences: 9

« If the sequence produces same (or

perhaps similar) effects to known ef- value of the metric not only decreases but also increases as
fects of some known demonstrator action, a result of certain actions. In Fig. 5, four different possible
include sequence as an alternative to solutions to the correspondence problem for a Knight imitating
the corresponding entry in the library. a Queen (or Bishop) performing a particular diagonal move

are shown. All result in the imitator achieving the same
displacement as the imitator, although each follows a different
In CheSSWOr|d, the choice of the default algorithm as the irﬂ'ajectory_ Note that the two seguences C) and d) can become
itation sequence generating method was made purely for sigyalid if the imitator is too close to the upper or lower
plicity and therefore, ALICE, as a generic approach, can augidges of the board, respectively, so having many alternative
ment our initial choice of mechanism instead of repIaCing ié.equences for each entry in the Correspondence |ibrary can
The generating method is not a very complex one, but as meyg yseful.
tioned above, in another setting, the cost of recalculating insteadtig. 6 shows a possible development of an ALICE correspon-
of using an already found solution could be considerable, agdnce library used by a Knight to imitate a Queen. At each of
the use of a correspondence library is therefore a desirable fgg:time instances shown, every observed demonstrator action is
ture. noted as a point at the appropriate vertical and horizontal coordi-
In chessworld, the Bishop cannot use the sequence [Nfates of its resulting displacement. These can be either negative
SE] to imitate the Queen action E3 (see Table II) if the piece ¢s positive relative to the current location of the chess piece. If
CUrrently located along the northern edge of the board. |n3t%qeast one of the Correspondence sequences found so far ac-
of using the generating algorithm in such a situation in ordgbmplishes that exact displacement, a dark color tone is used.
to find an alternate solution, it would be desirable already f@therwise, a ||ght one is used. The Shape that s|ow|y emerges

several possible alternative sequences, e.g., [SE, NE], torBgtes to the set of actions observed so far and the type of the
also included in the correspondence library. Note that usiggmonstrator.

any of these two sequences will not move the agent to the

_de_sire_d target square, b_ut instead t(_) an adjacent square. Perfect V. EXPERIMENTS PERFORMED

imitation cannot be achieved for this demonstrator action due . ) ]

to the imitator’s embodiment limitations as a Bishop, but if ThiS section describes the experiments performed to assess
the imitator agent had a Knight embodiment instead, thefd-!CE using the chessworld simulation.

do exist possible imitating sequences that can achieve such a ,

displacement besides [N1E2] or [S1E2] (see again Table f); Methodology and Experimental Set-Up

e.g., [W1N2, N1E2, N1E2]. This kind of sequence cannot In order to test the hypothesis that agents with dissimilar
be found using the default-generating algorithm because #mbodiments can improve performance when solving the
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fect the performance we chose to allow them for several rea-
x sons. First, such unexpected errors in the absolute location of the
= " pi e o > - |||' -+ current square do not change the absolute location of the target

T I N target square was not reached exactly. Although these errors af-

" o o square; the problem is only slightly modified. Second, this dis-
placement error can both complicate the imitator’s task but also
possibly simplify it by placing the agent in a better location (de-
pending on its movement rules)Third, in nature (barring the
intervention of a teacher), no resetting or relocation of an imi-
tator occurs during the course of an attempt at imitation.
r g al > The metric used in these experiments is the Hamming norm. It
1 0 was observed that the choice of metric (from among Hamming,
T Euclidean, and infinity norm) for the algorithm does not affect
- t=35  significantly the quantitative performance measures used by us
* ' to evaluate the performance. Qualitatively, however, the char-
acter of resulting imitative behaviors does vary with different

il 'I'. . metrics (see Section lll, e.g., Fig. 4).

- ul + u + ﬂ > The following performance measufesere used in order to
" " " provide an overall view of the imitation attempt.
| AR

+ 1
-
"
o
+ 1
-+
n
@
+*
-
n
n
(=3

1) Displacement Performance Measuréhe imitation
metric used by the default algorithm takes into account dis-
tance, so the first performance measure focuses on that aspect
Fig. 6. Possible development of an ALICE correspondence library used

a Knight to imitate a Queen. At every simulation step, the Knight attempts @_‘ the behavior. It _measures th_e Success_ N minimizing th(_a
imitate a Queen sequence of moves. The correspondence build-up is showdiffance to successive subgoals in a behavioral sequence, using
intervals of five simulation steps, left to right, top to bottom. At the displacemeefrror divided by initial distance to each subgoal, according to

coordinates (indicated with respect to horizontal and vertical axes in the figur }? ; o sl ~at
or each observed demonstrator action, dark or light color tones indicate whethe metric, giving an indication of how close to each SUbgoaI

at least one of the corresponding sequences for this entry satisfies the imitatidg imitator was.

criteria perfectly or not, respectively. Given that the demonstrator to be imitated  pjgp| men rformance m red
is a Queen, the shape that slowly emerges is composed of the vertical, horizontal, splacement performance Measuré4s(dervor /dotat)-

and diagonal directions that characterize its movement rules. derror_is the_re_r_nair!ing distance to the current subgoal.
diota; 1S the initial distance to the current subgoal.

S ) Subgoal Performance Measur&or each demonstrator
correspondence problem in imitation, the chessworld testbg uence of moves, we can measure the number of subgoals

was gsed to pr.owde. dissimilar embodied ggents engagding iy ieved over the total number of subgoals. This is an indication
imitation behavior, with ALICE as the generic mechanism fo

i - o df how many subgoals in the behavioral sequence the imitator
solving the correspondence problem. Statistical significance Y g d

. . ; anaged to achieve (depending on the granularity).
improvement of performance is expected when ALICE is userﬁ1 g (dep 9 , 9 )
Subgoal performance measureiiShieved/Mtotal -

together with the default algorithm as an improved generating ! . .
method, compared with using the default generating method "achieved IS the number of subgoals achieved by the imi-

t=40

on its own. tator. . L
. ntotal 1S the total number of subgoals in this demonstrator
In each experiment, a demonstrator agent performs a random sequence

walk on the chessboard, which other agents must in turn imitate

. . . . The implementation of the second component of ALICE re-
The demonstrator in every case is embodied as a Queen, Wh'ﬁ?res a specification of a method to extract sequences from the
is the chess piece with the least limiting movement rules. Tht P q

choice was made to give the demonstrator sequences the greatest

di et ibl the cl ic ch . In order to correct the error and place the agent back on the trail, the imitator
Iverse variety possible among Ine classiC CNess PIECES.  4id have to use a corrective move that is not part of the normal repertoire.

In the experiments described here, the salient perceptual detia would add unclassified events in the agent’s history and complicates the

i i i _ e of ALICE, since the history would no longer be linear. For ALICE to use
are presented to each imitator agent in trajectory-level grarllgch a history, these corrective events would have to be removed first and their

larity. This presents a middle ground between simplifying (€.@sects accounted for, as this corrective type of “move” would not be allowed
end-point-level granularity) and complicating (e.g., path-levéy the agent's movement rules, and these moves would therefore be invalid for

granularity) the task. This also takes advantage of the natuff§1agent. No such correction method is used here.

: : : >Besides the two measures given here, another possible performance measure
segmentation of actions in chess. The length of the demons”% Id be sspeed performance measumeeasuring how many moves the imitator

behavior for each run was 3000 moves. The imitators perceiv@@d for each subgoal, against how many moves the demonstrator used. The
this random walk segmented into 300 sequences of ten movégmnonstrator speed for a given sequence depends on the granularity level. For

. example, in trajectory-level granularity, we have one move per subgoal, in path-
Both the demonstrator and the imitators start from the Sandge| granularity many subgoals per move, and in end-point granularity, many

initial square. During the course of each run, because of tieves per subgoal. In the chessworld scenario, the imitating agents are severely

dissimilar embodiments. it is possible that displacement errdifgited by their embodiment and movement rules and since the metrics used by
’ generating method do not consider at all how fast the chess pieces move, this

- . th
can appear. _The |m|tator.W|II then ha\_/e to r_eaCh the next ta.r%?formance measure is not used here, although it could be used in a slightly
square starting from a different starting point, as the previonsdified setting.
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Knight without ALICE

imitating agent’s history. This is a design issue and can be ac- ™
complished in a variety of ways depending on the platform. In
the current chessworld scenario, a very simple method is used §
At every simulation time step, we consider a moving window o § o |
variable length (two to four actions) scanning the history back- i
ward. The agent is assumed to have knowledge of the effect:
for each of its own actions in the particular embodiment reper-
toire, and the overall effect of each such sequence can therefor .am
be known. If that exact effect is noted as the result of a demon-
strator action already presentin the correspondence library, ther ! ~
the found sequence is also included in that entry. For example, demonstrated sequences
the Knight is able to discover how to move to adjacent squares @
in this manner. Note that we require an exact match of effec
(displacement in this case) but could also allow for near match
(according to some metric, depending on the action effects cc
sidered). Only solutions for previously seen problems will b
added, since there is no reason to overload the corresponde
library with perhaps unnecessary data—the imitator has no priz
knowledge of the complete set of demonstrator actions.
The maintenance of the correspondence library is also delig

T % :
erately simple in the present scenario. There is no limit to ho%
many correspondences can exist for a single demonstrator ~ ««
tion, and no kind of sorting on these corresponding sequenc

D%

takes place. When the imitator looks up a known demonstrat 3

g

%

lacement performant

Y ]

110% . Knight using ALICE

0%

nce mea:

0%

t perform
]
®

. . A demonstrated Issnl.qu ences - .
action, a randomly selected best-so-far solution is returned, )
more than one exists. (b)
Fig. 7. Displacement performance measure for a Knight imitating a Queen
B. Results and Interpretation of the Results (average for same demonstrator random walks). At each simulation step, the

agent attempts to imitate a demonstrator move sequence. For each sequence,
Each of the plots in the following figures shows the imitathe average displacement performance measure value of ten different simulation

; s that used the same overall random walk for the demonstrator is plotted. The
tion attempts for a random walk of the demonstrator on t@%;ndard deviation for each sequence is shown as a dotted line. In (b), the ALICE

chessboard by the different kind of chess pieces. At each sichanism was used together with the generating method: the default algorithm
ulation step, the agent attempts to imitate a demonstrator maews used on its own in (a).

sequence. For each sequence, the average performance measure
value of ten simulation runs is plotted. The standard deviationafient is using only the default algorithm as the generating
this measure for these ten runs is shown as a dotted line. A vafethod, a partially successful, yet not perfect performance is
of 100% shows perfect imitation according to the performanegtained (displacement performance measure average below
measure used. Plot (@) in every figure shows the performance36f6, subgoal performance measure average below 20%,
the generating method used on its own, and plot (b) shows thath not showing improvement). For the same demonstrator
performance if the ALICE mechanism is used together with theehavior, when the ALICE mechanism compliments the
default-generating method. generating method and the use of the correspondence library
1) King and Rook as ImitatorsAgents embodied as eitheris introduced, eventually, an overall level of generally perfect
King or Rook chess pieces can imitate perfectly the randgperformance is achieved.
walks of a demonstrator Queen according to the displacemenSimilar experiments were carried out using, instead of ten
and subgoal performance measures described above. Buotts with the same demonstrator random walk, ten runs of dif-
pieces can easily reach every subgoal; the King using repeafeent demonstrator random walks for each case. As shown in
single-square moves and the Rook using a pair of horizontal dfid. 9, the results were similar.
vertical moves for every diagonal displacement required. TheAfter approximately 75 imitation attempts, the performance
correspondence problem in this case is a relatively simple atifference becomes and remains highly statistically significant
and since the imitators can perform perfectly with the defaulising two-sample t-tests, assuming unequal varianees,
algorithm only, itis not necessary to use the ALICE mechanism.001; variances were not homogeneous according tomax
2) Knight as Imitator: Solving the correspondence problemiests).
for the Knightimitating the Queen is more interesting as this em- Although one would expect a perfect performance level after
bodiment does not prevent the agent from moving to any squdne correspondence library is complete (in the sense that all pos-
on the chessboard, but many of these solutions are impossiblsitidle demonstrator moves have been observed and appropriate
find using only the default algorithm as a generating method. correspondence sequences noted), some glitches can be sporad-
Figs. 7 and 8 illustrate the improvement in performandeally observed. As noted in Section 1V, this is not so unex-
(using the displacement performance and subgoal performapeeted: The chessworld dimensions (eight by eight squares) are
measures respectively) that is attained with ALICE. When thestrictive enough to make some of the correspondences invalid



492 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 4, JULY 2002

120% Kmght without ALICE 110% Kmght without ALICE

g
#
g
#

=]
#
8
#

&
&

ub-goal performance measure
3
Z
displacement performance measure
=) 3
2 Z

g
b

-t = D%
m 251 1 51 101

151 Mm 251
demonstrated sequences

@ @

1 151
demonstrated sequences

Knight using ALICE L X 10% . Knight using ALICE

g8
7

8
Ed

g
El

displacement performance measure
-]
z

=]
&

%
0 251 1 51 101

1 81 101

151 201 251
demonstrated sequences

(b) (b)

Fig. 8. Subgoal performance measure for a Knight imitating a Queen (averdgg. 9. Displacement performance measure for a Knight imitating a Queen
of same demonstrator random walks) (a) without ALICE and (b) using ALICKaverage for different demonstrator random walks) (a) without ALICE and
For each sequence, the average subgoal performance measure value ofbjensing ALICE. For each sequence, the average displacement performance
different simulation runs that used the same overall random walk for timeeasure value of ten different simulation runs that each used a different
demonstrator is plotted. demonstrator random walk is plotted.

151
demonstrated sequences

because of the boundaries. These glitches in the performaggfation sequence-generating methods. Depending on the spe-
level seemed to occur when the demonstrator moves close:fg: affordances of the embodiment, the contribution of ALICE
the edges of the board, and the imitator does not have an appiGmproving the imitating performance can be either significant
priate corresponding sequence for these actions in this contxtonly complementary.

To test that this is the case, we repeated the experiment with thEThe movement affordances of sequences of moves for the

same demonstrator random walk happening in the center b &aior King and Rook embodiments allow them to attain

much larger chessboard so that such situations would not argﬁy single move displacement achievable by a demonstrator
and indeed, the performance level, once the correspondenc ll|J
3

b h h perfectl hi , , een and as such allow a perfect performance according to
rary has enough per ec_ty matc Ing entries, remains constanfly performance measures used, although these solutions to the
at 100%. This is shown in Fig. 10.

i<h ) The imi bodi correspondence problem are qualitatively different from the
_331 B|sh0p as Imlaator.r;l' € |m|t?j'cpr dem 0 |me;]nt asl @demonstrated model and from each other [see, for example,
Bishop chess piece has the major disadvantage that only Ralf 41y The perfect performance cannot be further improved
the locations on the chessboard can be visited. There a g the ALICE mechanism, although ALICE can reduce the
no improved solutions to the correspondence problem tn‘?éed to generate the imitating sequences already constructed

cannot be found by using only the default algorithm as g iqusly, and instead exploit the correspondence library (see
generating method. The ALICE mechanism yields no notice,ion V).

able performance improvement (as seen in Figs. 11 and 122Although the Bishop's embodiment affords a complemen-
since the demonstrator in the random walk visits a significap

t o .
amount of inaccessible locations. Performing t-tests showed o4 subset of moves to that of the Rook, it is severely disad-

statistically significant difference of performanges 0.05) vantaged in comparison to other pieces/embodiments since it
ysig P 9ex 0.09)- cannot reach half of the positions on the board, whereas all the

other pieces can. The generating method can already get the
Bishop as close as possible to the target square, and no signifi-

Examining the different chess pieces as imitator agent ewant performance difference is noted when ALICE is used, be-
bodiments established that the ALICE mechanism is useful sides the benefits of using a correspondence library, as described
solving the correspondence problem when augmenting simplarlier.

VI. SUMMARY OF RESULTS
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Fig. 10. Displacement performance measure for a Knight imitating Eig. 11. Displacement performance measure for a Bishop imitating a Queen
Queen (unconstrained context, average for same demonstrator random wdkgrage for same demonstrator random walks) (a) without ALICE and (b) using
(a) without ALICE and (b) using ALICE. For each sequence, the averadd.ICE. For each sequence, the average displacement performance measure
displacement performance measure value of ten different simulation runs theitie of ten different simulation runs that used the same overall random walk
used the same overall random walk for the demonstrator is plotted. The sdorethe demonstrator is plotted.

demonstrator random walk as in Figs. 7 and 8 takes place in the center of a 100

x 100 squares chessboard.
VII. CONCLUSIONS

The Knight embodiment is a good example of a seemingly

complicated repertoire of moves that nevertheless can succesdMtation and behavioral matching can serve as fundamental

fully mimic all the possible demonstrator actions once the corrgomponents for behavior acquisition both in humans and ani-

-d‘ﬂgls but also in artificial systems. Agent embodiment, together

require imitating sequences by the Knight that cannot be foultf the use of different metrics and subgoal granularities can
by the default algorithm. ALICE is shown to significantly im-affect the success and character qf t.he imitation observed. In
prove the performance. Once most of the demonstrator actiGider for an agent to successfully imitate, the correspondence
have been performed and the initial correspondence library &ioPlem needs to be solved, finding appropriate mappings be-
tries have been created, we can expect a gradual improvemt@_ﬁen Iits own actions and the ones of_a dem_onstrator agent
of performance, resulting in a permanent near-perfect level With @ possmly dissimilar embodiment. Itis posmble to build up
performance when all the possible demonstrator actions h&v&olution to the correspondence problem incrementally while
been observed and suitable correspondences found, eithef@gning from observing a demonstrator over time. A correspon-
the default-generating method or the mechanism that extra@@ice serves as a “refractive looking-glass” through which an
additional correspondence sequences from the history. It is iffserved demonstrator’s behavior is transformed to yield sim-
portant to have many alternative correspondence sequenced!@r but possibly not quite the same, action sequences for the
each demonstrator action since some of the imitative sequenig@iator. This allows the imitator to get along, using the affor-
may be invalid in a different context from the one in whictflances of its own embodiment, while exploiting observations of
they were originally observed. The originalx88 chessboard the behavior of others in its environment.

can be restrictive to that effect and that results in the observedVe showed how an imitator agent with ALICE exposed to
glitches of the otherwise constant performance level of the iriie demonstrator behavior in the chessworld can build up useful
itator. If the agents are placed in a larger chessboard where plagtial solutions to the correspondence problem, i.e., mapping
edges no longer obstruct the performance of the correspondihg demonstrator actions to those it can perform in its own par-
seguences, the imitator performance level, once a complete d¢mular embodiment to achieve similar effects, exhibiting highly
respondence library was attained, was never subject to glitclsescessful imitating performance. Effectively, ALICE provides
due to contextual factors. a combination of learning and memory to help solve the corre-
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tion to extract useful correspondence sequences from the his-
tory were simple, but the methods used in another setting will
depend upon the structure of the personal history that the agents
keep.

In the chessworld implementation of the ALICE mechanism,
both the correspondence library and the imitator agent’s history
were relatively simple, since there was only a small set of ac-
tions (chess moves) with a single type of effect (displacement
on the chessboard). The history kept track only of the relative
displacements caused by the imitator's own actions. The method
ik =2k to extract correspondences from history involved looking for se-

' B ' emonstrated sequences guences of bounded length that always perfectly achieve the cor-
@ responding effect according to the metric used. The correspon-
dence library was visualized using vertical and horizontal axes

Bishop without ALICE

performance measure
& g 8 g
® ® ® ®

]
#

sub-goal |

. Bishop using ALICE on the two-dimensional (2-D) plane, and no sorting or mainte-
: nance of the correspondence library entries was needed.
N T R Lo : However, in a different environment with more complex

g
=

agents, a more complex implementation of the ALICE mecha-
nism might be necessary, dealing with actions that may have not
only one, but also many diverse type of effects. For example, if
the agents not only move in the environment but also interact
directly with it (e.g., by being able to pick up objects and move
them around), then a more complex implementation of the
history is required for keeping track of the imitator actions and
all the resulting effects. The mechanism to extract correspon-
dences would have to be able to cope with such a history. The
(b) extracted sequences for a correspondence library entry would

Fig. 12. Subgoal performance measure for a Bishop imitating a Que_re%qulre some form of sorting when that action correspondence

(average for different demonstrator random walks) (a) without ALICE and (b$ Used, according to a performance evaluation metric.
using ALICE. For each sequence, the average subgoal performance measufeor future work, we plan to bring ALICE to more complex

‘r’:r':é%ﬂJfaqk‘iff{ﬁgtdﬂmg@g ons ptlr;?ttezf‘Ch used a different demo”“”f@%tbe_ds, study the requirements for the method that extracts al-
ternative corresponding sequences from the history of the im-
itator in more complex settings, address issues of perception,

spondence problem. There is generalization in that learned cgggmentation, context, self-repair (via self-imitation of previous

responding action sequences can be reused by the imitatoptimal behavior), and use more advanced machine learning
new situations and contexts. Due to its generic nature, ALIGBchniques as components for ALICE.

can be implemented in a variety of ways, not depending onScaling up toward more real-world platforms, we describe

a specific generating method or the platform used. Contray[3] some early work in progress implementing the ALICE

to the traditional approach in the robotics research on imitgrechanism on a robotic arm simulation. In this case, the demon-

tion that concentrates on creating dedicated control architggrator and imitator agents are robotic arm manipulators that can
tures ignoring the social dimension of imitation, a more genenghve different numbers of joints and/or lengths of these joints,
agent-based approach considers the behavior of particular @gerating in a 2-D workspace.

tonomous agents in relation to each other and their environment,

using various agent-specific metrics and perceptual saliency cri-

teria. Our work here, while not specifically addressintger-
action, could form the basis for harnessing imitation in richer A. Alissandrakis would like to thank Y. Dimitriadi for per-
social interactions among artifacts or between artifacts and la@nal inspiration. The authors would like to thank the anony-
mans. This work could lead to a better understanding of aninmabus reviewers for their constructive comments.

imitation or to the improved design of imitation algorithms for
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