
482 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 4, JULY 2002

Imitation With ALICE: Learning to Imitate
Corresponding Actions Across Dissimilar

Embodiments
Aris Alissandrakis, Chrystopher L. Nehaniv, and Kerstin Dautenhahn

Abstract—Imitation is a powerful mechanism whereby
knowledge may be transferred between agents (both biological
and artificial). Key problems on the topic of imitation have
emerged in various areas close to artificial intelligence, including
the cognitive and social sciences, animal behavior, robotics,
human–computer interaction, embodied intelligence, software
engineering, programming by example and machine learning.
Artificial systems used to study imitation can both test models
of imitation derived from observational or neurobiological data
on imitation in animals and then apply them to different kinds
of nonbiological systems ranging from robots to software agents.
A crucial problem in imitation is the correspondence problem,
mapping action sequences of the demonstrator and the imitator
agent. This problem becomes particularly obvious when the two
agents do not share the same embodiment and affordances. This
paper describes a new general imitation mechanism called Action
Learning for Imitation via Correspondence between embodiments
(ALICE) that specifically addresses the correspondence problem.
The mechanism is implemented and its efficacy illustrated on the
“chessworld” testbed that was created to study imitation from an
agent-based perspective, i.e., by a particular agent in a particular
environment.

Index Terms—Correspondence problem, embodiment, imita-
tion, machine learning.

I. INTRODUCTION

A CHARACTERISTIC of many social animal species,
e.g., dolphins, chimpanzees, humans, and other apes, is

the ability to learn from others by imitation (see [30], [31],
[39], and [53]). Inspired by nature, over the past decade, many
researchers have attempted to design life-like social agents,
i.e., software or robotic artifacts that are able to learn from
each other or from human beings by imitation [4], [8], [10],
[19], [26], [27], [33], [34], [43]. On the one hand, a robot or a
software program that a human can teach simply by showing
or demonstrating what needs to be done is an exciting new
programming paradigm [6], [17], [35]. On the other hand,
imitation also plays a crucial part in the development of humans
and some other animals as social beings. Robots or software
systems that possess imitative skills are therefore an important
step toward truly social artifacts (see [18], [19], and discussions
in [20]).

Manuscript received January 30, 2002; revised July 23, 2002. This paper was
recommended by Associate Editor B. J. Oommen.

The authors are with the Computer Science Department, Adaptive Systems
Research Group, University of Hertfordshire, Hatfield, Hertfordshire AL10
9AB, U.K. (e-mail: a.alissandrakis@herts.ac.uk).

Digital Object Identifier 10.1109/TSMCA.2002.804820

In the area of social learning, an animal learns benefiting from
the presence of or the experiences of another animal, and such
influences may support adaptation. Biologists and psycholo-
gists who study social learning in animals usually want to know
whether nonhuman animals can imitate behaviors they observe.
This provides an opportunity to both investigate the cognitive
abilities of animals and compare them to those of humans, and
also to help understand the role of social interactions in the de-
velopment of patterns of behavior.

Many theories of imitation are discussed in the literature. In
the following, we discuss two particularly influential and rele-
vant examples.

Byrne proposesstring parsingas a theory of imitation, which
separates the copying of behavioral organization from an un-
derstanding of cause and effect in observed behaviors [14]. The
recurring patterns in the visible stream of behavior (composed
of structurally ambiguous strings) are detected and then used
to build a statistical sketch of the underlying hierarchical struc-
ture, which in turn may aid to comprehend cause and effect. The
linear sequence elements might represent simple behaviors rec-
ognizable by the animal or discriminably different states of the
physical world affected by the behavior. His theory, however
interesting, is highly underspecified with respect to the actual
underlyingmechanisms. The work presented in this paper has
been partly inspired by this theory and develops computational
algorithms for imitation of observed behaviors.

Another promising theory of imitation that makes testable
predictions is Heyes and Ray’s Associative Sequence Learning
(ASL) theory [29], [31]. This theory assumes that a sequence of
action units composes the behavior to be imitated rather than it
being unitary. The resolution of these action units can vary, de-
pending on the observer’s perception. In order for an observer
to imitate a sequence, ASL requires two processes to success-
fully take place. The horizontal process associates the repre-
sentations of these action units in a successive chain, so that
observer knows what the sequence “looks like.” The vertical
process associates directly or indirectly each of the sensory rep-
resentations of the action units to appropriate motor represen-
tations, so that the observer can know how to perform the se-
quence. In our work, the vertical associations are captured by a
correspondence library(see Section IV), while the temporal se-
quence of demonstrator actions relates to the horizontal process
of ASL. ASLs primary purpose is to stimulate the development
of other testable models of imitation and guide analytic exper-
iments. One of the strengths of ASL is that it can also be ap-
plied to relativelyperceptually opaqueactions, i.e., facial ex-

1083-4427/02$17.00 © 2002 IEEE

ALISSANDRAKIS et al.: IMITATING WITH ALICE: LEARNING TO IMITATE ACROSS DISSIMILIAR EMBODIMENTS 483

pressions, that yield dissimilar sensory inputs when observed
and when executed. One of the weak points of ASL is that it does
not address effects on the environment; however, our framework
(see Section II) allows this to be handled using appropriate met-
rics.

Note that the above two theories are complementary: Heyes
and Ray’s ASL theory aims to detect and copy sequential
ordering, whereas Byrne’s string parsing aims to extract
hierarchical organization or structure from sequential ordering,
and thereby copy at higher hierarchical levels. In Byrne and
Russon’s terms [15], ASL deals with action-level imitation,
whereas string parsing with program-level imitation.

Many robotics researchers are inspired from biology for cre-
ating controllers for autonomous robots. Imitation is a powerful
learning tool when social interaction either between humans and
robots or even in multirobot systems takes place. Having a robot
observe and learn to perform a task from an experienced teacher
presents a more flexible and adaptive solution than explicit pro-
gramming of each behavior. The learning process can be faster
as no direct teaching is required; the expert, by just performing
and demonstrating the task, can pass the required knowledge
to the robot, which in turn may be used as a demonstrator and
imitated by other robots, as shown in [9]. Robotics research in
imitation often separates the mechanism from the social dimen-
sion of imitation, developing architectures that (usually using a
vision system) identify salient features in the movements of a
model and map them to appropriate motor outputs of the robot
imitator [33], [34]. Focusing on the question ofhow to imitate
given a particular robotic system and a specified task leads to
very diverse control approaches that are difficult to generalize
across different platforms and contexts. An exception to this is
the architecture Dynamical Recurrent Associative Memory Ar-
chitecture (DRAMA) forlearning by imitationthat has been ap-
plied to different robot platforms and contexts and is described
in [7] and [8]; see also studies with physical and simulated
robots in [27].

Learning by imitationis the area of study that investigates
how an agent can exploit imitation as a means of acquiring
knowledge, having solved the problem of how to imitate [27].
In the scenario discussed in [10], a robot learns properties of
its environment by following another robot around, imitating its
trajectory on a hilly landscape. In [11], it is shown that providing
a robot with the ability of imitating a teacher agent enhances its
performance at learning the rudiments of a synthetic proto-lan-
guage. Imitation here can either be the means of enhancing the
learning capabilities of the agent, as in the two previous exam-
ples, or more commonly is used to share a common context and
replicate the actions of an experienced teacher.

Recently, there has been increasing interest in the use of imi-
tative learning for the control of humanoid robots [6], [12], [36],
[49]. Besides the ergonomic benefits when functioning in envi-
ronments designed for humans, a humanoid robot can inspire a
sense of familiarity that improves the social dimension of the
interaction, and having the ability to imitate, a humanoid robot
can be more believable and useful in social situations.

Imitation is also increasingly studied in software systems.
Behavioral cloningis a method by which human subcognitive

skills can be captured and reproduced in a computer program.
As the human subject performs the skill, his or her actions are
recorded along with the situation that gave rise to the action.
A log of these records is used as input to a learning program.
The learning program outputs a set of rules that reproduce the
skilled behavior. This method can be used to construct automatic
control systems for complex tasks for which classical control
theory is inadequate. In [48], experiments are described where
a flight simulator was modified to log the actions of human sub-
jects as they were flying the aircraft. These logs were then used
as input to an induction program that produced a decision tree
from which autopilot code was derived.

A radically different approach to computer programming has
developed since the early 1980s, calledprogramming by ex-
ample(PBE) [17]. It is also sometimes calledprogramming by
demonstration(PBD) because the user demonstrates examples
of the desired behavior to the computer. The concept is that if
the user knows how to perform a task on the computer, he or
she should not need to learn a computer language in order to de-
scribe how to carry out the task. Presented with a number of ex-
amples, the computer should be able to derive a program corre-
sponding to the user actions as they were performed and then be
able to either repeat them or generalize the program to also work
in similar situations [35]. Only recently have researchers in this
area noticed the similarities with imitation studies, and there are
only a few PBE systems inspired by cognitive frameworks so
far. One of them, Learning Algorithms from Worked Examples
(LAWE), was developed by Furse as a computer program that
implements an imitation algorithm that operates according to
some principles similar to the ones required for Byrne’s string
parsing theory [14], [24].

The actualembodimentof biological or artificial agents plays
a critical role for intelligence, learning, and other issues studied
in “Nouvelle AI” or “Embodied AI” (see [13] and [44]). Un-
like other work on imitation that either provides anad hocmap-
ping between demonstrator and imitator or assumes that they
share identical embodiments, our work systematically investi-
gates constructive solutions of the correspondence problem be-
tween dissimilar embodiments (see Section II).

The general framework that will be used for imitation across
dissimilar embodiments is presented in Section II. The exper-
imental testbed (the “chessworld”) is described in Section III,
while in Section IV, the generic imitating mechanism of ALICE
is introduced. Experiments with ALICE implemented in the
chessworld platform are presented in Section V and discussed
in Section VI. Conclusions follow in Section VII.

II. GENERAL FRAMEWORK

In order to study how to imitate, we must first define more
precisely what we mean by imitation within the context of
this work. A classical definition of imitation by Thorndike is
“learning how to do an act from seeing it done” [51]; however,
this definition is very open ended. We prefer Mitchell’s more
detailed definition, which allows for nonbiological agents
and is necessary for imitation research in robotics/computer
science. The following requirements are to be satisfied as
evidence of imitation [38]:

484 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 4, JULY 2002

i) Something C (copy) is produced by an organism and/or
machine, where

ii) C is similiar to something else M (model);
iii) Regristration of M is necessary for the production of C;
iv) C is designed to be similiar to M.
Imitation is a powerful learning mechanism, and a more gen-

eralagent-based approachmust be used in order to identify the
most interesting and significant problems, rather than the preva-
lentad hocapproaches used in most imitation robotics research
so far. Traditional approaches concentrate on finding an appro-
priate mechanism for imitation and developing a robot-control
architecture that identifies salient features in the movements of
an (often visually observed) model and maps them appropri-
ately (via a built-in and usually static method) to motor outputs
of the imitator (cf. one of the first examples of robotic imitation
in [33] and [34]). Model and imitator are usually not interacting
with each other, nor do they share and perceive a common con-
text. Furthermore, the social dimension of imitation (and cor-
responding issues of when and why an agent should imitate) is
usually ignored. Effectively, this kind of approach limits itself to
answering the question ofhow to imitatefor a particular robotic
system and a particular imitation task. This has led to many di-
verse approaches to robot controllers for imitative learning that
are difficult to generalize across different contexts and different
robot platforms.

In contrast to the above, the agent-based approach for im-
itation considers the behavior of an autonomous agent in rela-
tion to its environment, including other autonomous agents. The
mechanisms underlying imitation are not separated from the be-
havior-in-context, including the social and nonsocial environ-
ments, motivations, relationships among the agents, the agent’s
individual and learning history, etc. [21]. Such a perspective
helps unfold the full potential of research on imitation and helps
in identifying challenging and important research issues. The
agent-based perspective has a broader view and includes five
central questions in designing experiments on research on imi-
tation:who to imitate,whento imitate,what to imitate,how to
imitate, and how toevaluatea successful imitation. A system-
atic investigation of these research questions can show the full
potential of imitation from an agent-based perspective.

A. Who to Imitate

It is important that the imitating agent chooses its demon-
strator in such a way that engaging in an imitating behavior
would benefit the imitator in some way. There is no need to
imitate other agents whose tasks and needs are not relevant or
beneficial. If the agent has to choose among several demonstra-
tors, some evaluation of the performance of the appropriate be-
havior(s) by the possible candidate models is required before a
choice is made. Note that the demonstrator is not required to be
aware of the fact that the performed behavior is a model for the
imitator, although this might help in providing feedback on the
success of imitation.

B. When to Imitate

Once a suitable demonstrator is found, the imitating agent has
to segment the entire demonstrator behavior, assigning to the

behavior to be imitated a beginning and an end. The imitator
also has to decide on a suitable time (and place) to imitate, i.e.,
whether a previously or currently observed behavior would be
appropriate to carry out in the current context, and perhaps (if
this is applicable) how many times to repeat.

C. What to Imitate

There are several aspects of a behavior that could be imi-
tated. It may be preferable to imitatestates, actions, or desir-
ableeffectsof an observed behavior (or some combination of
these) [16], [41], [42]. The structure of the knowledge trans-
ferred poses another problem, as there can be a distinction be-
tween different modes of imitation. Byrne and Russon propose
two different kinds of imitation (program levelandaction level)
as opposite ends of a spectrum, i.e., copying the organizational
structure of the behavior versus copying the surface form of the
behavior [15]. As a general consequence of this, an agent is re-
quired to have the ability to build hierarchical structures in order
to exhibit program-level imitation.

D. How to Imitate and the Correspondence Problem

In addition to deciding who, when, and what to imitate, an
agent must employ the appropriate mechanisms to learn and
carry out the necessary imitating actions. The embodiment of
the agent and its affordances will play a crucial role, as stated in
thecorrespondence problem:

Given an observed behavior of the model, which from a
given starting state leads the model through a sequence (or
hierarchy) of subgoals in states, action, and/or effects, one
must find and execute a sequence of actions using one’s own
(possibly dissimilar)embodiment, which from a corresponding
starting state, leads through corresponding subgoals—in
corresponding states, actions, and/or effects, while possibly
responding to corresponding events[40]–[42].

This statement of the correspondence problem draws atten-
tion to the fact that the agents may not necessarily share the
same morphology or may not have the same affordances even
among members of the same “species.” This is true for both bi-
ological agents (e.g., differences in height among humans) and
artificial agents (e.g., differences in motor and actuator proper-
ties). Having similar embodiments and/or affordances is just a
special case of the more general problem.

E. How to Evaluate the Imitation Attempt

For an attempt to imitate the demonstrator’s behavior, there
needs to be a measure to evaluate the behavioral matching. The
choice of an appropriate metric is very important, as it will be
used to capture the notion of the difference between performed
and desired actions as well as the difference between attained
and desired states [41], [42]. The evaluation might be performed
either by the imitator, the demonstrator, or an external observer.

To show how the above issues come together for an imitating
agent, let us consider the following example of a robot painter. If
this robot observes several human workers in a house construc-
tion site, it makes sense to choose to imitate a human that paints
the walls instead of a human electrician, whose work is not rele-
vant to the role assigned to this robot. If there is a choice among

ALISSANDRAKIS et al.: IMITATING WITH ALICE: LEARNING TO IMITATE ACROSS DISSIMILIAR EMBODIMENTS 485

several painters, a brief evaluation of their individual work is re-
quired, based on criteria like how well they cover the wall sur-
face, or whether they are messy and spill paint on the floor. This
painting behavior should be imitated only if and when a wall
needs painting. The robot painter can choose to imitate at ac-
tion level replicating the exact same sequence of paint strokes
on the wall as the demonstrator. Alternatively, it can choose to
emulate the demonstrator, not necessarily using the same se-
quence or type of actions (for example, throwing a bucket of
paint on the wall), but aiming for the same overall result of cov-
ering the wall evenly with paint. The robot must plan a sequence
of actions and send appropriate control signals to its motors and
actuators in order to move its limbs. The actual embodiment of
the robot, its shape, the number and size of its limbs, together
with the choice of a painting tool (a wider, larger brush will
cover a greater surface but a smaller brush might be more pre-
cise), will play a crucial role, and a solution (even partial) to the
correspondence problem must be found and used. Finally, as a
possible evaluation measure, all the wall surfaces should have
been covered, with no paint stains on the nearby windows or
the floor carpet.

Research on imitation in robotics usually takes the approach
of studying learning by imitation, assuming that an artifact
already possesses the skill to imitate successfully and in turn
exploits this ability as a means to acquire knowledge [10],
[11], [27]. This paper addresses the complementary approach
of trying to imitateor learning how to imitate, the study for
specifying the necessary mechanisms by which observed
and executed actions are matched, so that the agent can use
imitation to learn how to perform useful behavior [18]. We
investigate how different such attempts at imitation can be
evaluated and quantified and illustrate possible mechanisms
for solving the correspondence problem between demonstrator
and imitator. Differences in embodiment between animals and
robotic and software systems make it more difficult but not
necessarily impossible to acquire corresponding behaviors.

III. I NTRODUCING CHESSWORLD

In order to study the five main issues in imitation mentioned
above, we introduce the generic testbed ofchessworld, imple-
mented using the Swarm multiagent simulation system. Prelim-
inary results using this testbed were reported in [1] and [2]. The
inspiration behind it comes from the need to create a shared en-
vironment for interacting agents of different embodiments and
affordances. In the rules of the game of chess, each player con-
trols an army of chess pieces consisting of a variety of different
types with different movement rules (see Section III-D). We
borrow the notion of having different types of chess pieces able
to move according to different movement rules, and we treat
them as agents with dissimilar embodiments moving on the fa-
miliar checkered board (see Fig. 1). The actual two-player game
of chess is not studied, as it is not relevant to our work on im-
itation. Instead, we use pairs of dissimilarly embodied imitator
and demonstrator agents to illustrate some interesting research
problems in imitation, and we make use of the familiar context
of chess in a generic way. Besides the familiarity, chessworld

Fig. 1. Illustrating the effect of having dissimilar embodiments. The same
demonstrator Queen (darker color moves) is imitated (lighter color moves) by
(a) a Bishop and (b) a Knight.

also benefits from having a simple discrete environment with
well-defined and precise rules.

The range of possible behaviors by the chess agents is
limited to movement-related ones. As a demonstrator performs
a random walk on the board, an imitator observes the sequence
of moves used and the relevant displacement for each one of
them and then tries to imitate this, starting from the same point.
Considering the moves sequentially, the agent will try to match
them, eventually performing a similar walk on the board. This
imitative behavior is performed after the completion of the
model behavior with no obstacles present, neither static (e.g.,
walls) nor dynamic (e.g., other chess pieces), besides the edges
of the board which can obstruct movement.

A. Use of Different Granularities in Addressing What to
Imitate

The data on the demonstrator’s behavior can be structured
and presented in a variety of ways, effectively reflecting dif-
ferent levels of complexity. More specifically, depending on the
salience of the moves, important qualitative differences can be
observed. We are going to discuss briefly three different levels
of granularity of successively increasing levels of resolution:

1) end-point level;
2) trajectory level;
3) path level.
Considering only the starting and final locations, all the in-

termediate squares visited by the demonstrator will be ignored,
and we will define this as usingend-point level granularity. As
a result, the trail of the agent as it tries to reach the overall des-
tination can be qualitatively very different from the one shown
by the demonstrator, although the behavior to be imitated is the
same in respect to the overall result. The imitator emulates the
overall goal (i.e., cumulative displacement) of the demonstrator
(see Fig. 2).

If the imitator considers a list of locations to be reached
sequentially, corresponding to the ones visited by successive
moves of the demonstrator, the trail will be considerably
more similar to the model one. We will define this as using
trajectory-level granularity. In this case, as the effects of the
individual movements (displacements) are considered sequen-
tially (instead of in terms of their cumulative effect), a more
detailed imitating behavior can emerge. This can be thought of

486 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 4, JULY 2002

Fig. 2. Illustrating the effect of using different granularities. A Bishop (lighter
color moves) imitates a demonstrator Queen (darker color moves) using (a)
trajectory-level granularity and (b) end-point level granularity.

as program-level imitation with the task of reaching each of the
sequential locations as subgoals.

In the game of chess, a piece can move to a new square as
long as there are no obstacles in the way. In the current ver-
sion of chessworld, no obstacles exist, nor do pieces take other
pieces. We use the usual mental image of the pieces as sliding
on the board, with the exception of the Knight jumping to a
new location instantly, to definepath-level granularity. More
precisely, path-level granularity targets the list of locations, in-
cluding not only the ones visited by the demonstrator as a re-
sult of its movements, but also the intermediate ones (if any).
It represents a greater level of resolution than trajectory-level
granularity. Path-level granularity can be thought as similar to
action-level imitation, trying to replicate the trajectory of the
demonstrated actions as closely as possible. The character of
the resulting imitation depends on the granularity, and the suc-
cess depends on how important the extra details are (see Sec-
tion III-B).

In the current work, perception is very much simplified.
The demonstrator’s behavior is preprocessed and segmented
according to the granularity to be used before being presented
(noise-free) to the imitator agent. Generally, perception and the
segmentation of actions are very important research issues in
robotics, cognitive science, and computer vision, but the nature
of the chessworld testbed allows us to abstract these away and
to concentrate on issues specific to imitation.

B. Use of Different Metrics for Evaluating Imitation Attempts

In the previous section we described the possible resulting
imitations in qualitative terms since we have not yet defined
various notions of what a successful imitation is in the chess-
world context. The agent behavior is composed of a sequence of
moves and each move results in a displacement on the board, be-
tween the current and the previous location. Therefore a reason-
able way to measure imitation success in this context is to mea-
sure the distance between the square the imitator agent moved
to and the analogous square visited by the demonstrator, ide-
ally that distance being zero for every salient displacement in
demonstrated behavioral sequence. Other possible metrics (e.g.,
nongeometric, behavioral metrics) could be also used, including
very complex ones [41].

There are various ways to measure the distance between two
points on the plane, and for this work, three well-known metrics

Fig. 3. Different metrics measuring the distance between current location
(0; 0) and subgoal location(x; y). The vertical axes are normalized.

Fig. 4. Illustrating the qualitative effect of using different metrics. King
(lighter color moves) imitates a demonstrator Queen (darker color moves)
using (a) Euclidean distance norm and (b) infinity norm metric.

from mathematical analysis (e.g., [47]) were used. The distance
between any two squares and on the chess-
board is the following.

Hamming norm (or one-norm):

Euclidean distance (or two-norm):

Infinity norm:

The different metrics provide different notions of distance as
visualized in Fig. 3. An example of the qaulitative effect of using
different metrics is shown in Fig. 4.

In some cases, the imitator can get “blocked,” i.e., unable to
get closer to a subgoal by any single move, depending on the
metric used. For example, the infinity norm value for a subgoal
located diagonally to the current location to a Rook is the same
value as the current location, and therefore, the metric cannot be
further reduced.

Table I shows all possible cases in which such “getting
stuck” can happen. Although this is caused because the default
algorithm (see Section III-C) examines onlysingle moves,
rather thansequences of moves; nevertheless, it illustrates that

ALISSANDRAKIS et al.: IMITATING WITH ALICE: LEARNING TO IMITATE ACROSS DISSIMILIAR EMBODIMENTS 487

TABLE I
ALL POSSIBLESITUATIONS, GIVEN BY A DESIREDDISPLACEMENT (x; y),
WHERE NO POSSIBLESINGLE MOVE CAN REDUCE THEVALUE OF THE

METRIC. HERE, (x; y) IS THE DISPLACEMENT OF THENEXT SUBGOAL

RELATIVE TO THE CURRENT LOCATION

the choice of metrics can be crucial for the evaluation and
character of attempts at imitative behavior.

C. Default Imitation Algorithm

Given a sequence of demonstrator moves, the imitating agent
has a list of locations on the board to be reached sequentially
(depending on the chosen granularity), as well as a way to eval-
uate the imitation success for each of them (according to the
chosen metric). To generate a sequence of moves that will de-
fine an appropriate imitating behavior, a simple algorithm with
no elements of planning or learning can be used. The following
lines of pseudocode effectively outline this default algorithm:

DEFAULT IMITATION ALGORITHM PSEUDOCODE
1. Observe demonstrator’s moves.
2. Convert perceived moves to a sequence

of subgoals for imitation depending on
granularity.

3. For each subgoal displacement ():
3a. Choose a possible move that maxi-
mally decreases the metric distance to
().
3b. Repeat step 3a until subgoal
is reached or there is no move that
strictly reduces further the distance
to subgoal.

4. Move to next subgoal in sequence, if
any, and repeat step 3, else stop.

D. Effects of Dissimilar Embodiment

If the demonstrator and imitator chess pieces are of the same
type, then the process is very straightforward (for trajectory-
level granularity). For each move of the demonstrator resulting
in a displacement on the board, the imitator will use the same
exact move to achieve the same displacement. The same reper-
toire of movements warrants very similar use of them, given a
displacement to achieve, but in the case of dissimilar embod-
iment, more complex solutions can emerge with different de-
grees of success.

The movement rules for the chess pieces are an interesting
combination. TheRookcan in a single action, move an arbitrary
number of squares but only horizontally or vertically, while the
Bishopmoves only diagonally. TheQueenin a sense uses a su-
perset of movement rules combining both their sets, while the

King uses a related set that allows movement to all directions
but only at one square at a time. TheKnight has a very distinct
style of moving, jumping to the opposite end of any 23 or 3

2 rectangle. ThePawnis omitted, since according to the rules
of chess, it can only move a single square to only one direc-
tion, thus having significantly restricted movement capabilities
for even simple imitation tasks.

We indicate compass direction and magnitude of individual
moves notationally as follows: e.g., NW5, displacement of five
units diagonally to the northwest or S1E2, displacement one unit
south and two units east (by a Knight), etc.

Assigning the demonstrator and the imitator agents to be
instances of different chess pieces creates a dissimilar em-
bodiments scenario that requires solving the correspondence
problem. The default algorithm will produce either a single ac-
tion, or more probably a sequence of actions, corresponding to
each action in the demonstrator sequence, while attempting to
successively reduce the distance to the next subgoal (according
to the metric used) at each step.

If moving to the target square cannot be achieved perfectly
due to embodiment issues (i.e., the agent cannot move to that
square due to its movement rules), the focus of the default al-
gorithm will move to the next subgoal, having the current error
added to the desired displacement. The demonstrator and the
imitator have the same initial starting point, but for the rest of
the imitation attempt, no correction takes place to put the imi-
tator back on the trail, allowing these errors to accumulate.

For example, let us consider a Queen as the demonstrator that
performs the action E3 (move three squares to the east). If the
imitator is another Queen, the algorithm will simply produce the
sequence [E3]. The same sequence will be produced if the im-
itator is a Rook. If the imitator is instead a King, the algorithm
will produce the sequence [E, E, E] (three sequential moves of
a single square to the east). If the imitator is a Bishop, the al-
gorithm will produce [NE, SE] or [SE, NE]. Note that due to
embodiment limitations (the Bishop cannot occupy the target
square as it is of different color), moving according to either ac-
tion sequence, the imitator cannot reach the desired square ex-
actly, but only an adjacent one. Similar embodiment issues occur
for an imitator Knight using the sequences [N1E2] or [S1E2].1

Although a corresponding imitation sequence is produced by
the default algorithm and performed by the imitator, no learning
and no association between demonstrator and imitator actions
takes place at this stage. The most crucial limitation of using
only this default algorithm to generate the imitating sequences is
the lack of any planning. While every move in the produced se-
quence reduces the distance toward the current subgoal, a choice
of a different move might be more beneficial in the long term,
leading to a better location for subsequent subgoals but at the
same time undesirably increasing the distance to the current
subgoal. Such alternatives could potentially increase the imita-
tion performance of the imitator agent. For example, the Knight,
which cannot achieve a displacement to an adjacent square using

1To avoid confusion interpreting the action names, the entire Knight action
set isfE1N2, E1S2, W1N2, W1S2, N1E2, N1W2, S1E2, S1W2g. We avoid
multiple names for actions such as E2N1 and N1E2, which both would corre-
spond to hopping two squares east and one square north, or, equivalently, one
square north and two squares east.

488 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 4, JULY 2002

this default algorithm (see Table I) can do so if it were allowed
to temporarily increase its distance to the target.

IV. I NTRODUCING ALICE

Planning and learning can be added to the system by in-
creasing the complexity of the algorithm, but such an approach
might be more specific than generic, depending much on
the problem domain and the context. To address this in an
easy-to-generalize way, we introduce ALICE as a generic
mechanism for building up correspondences based onany
generating method for attempts at imitation by examining the
history of such attempts (cf. Byrne’s string parsing approach to
imitation [14]). Preliminary results using the ALICE mecha-
nism implemented in the chessworld were reported in [2].

Metaphorically speaking, the correspondence library that
ALICE builds up functions as a kind of “refractive looking
glass” or “prism” through which to transform a demonstrator’s
behavior into the repertoire of the imitator’s own actions as
constrained by its embodiment. Such a library of action corre-
spondences can be employed when imitating (cf. the natural
imitation of humans by dolphins [28] or robotic imitation [40],
[41]). Mechanisms and correspondences of this type are also
relevant to the imitation of perceptually opaque behaviors2 and
to sensory motor correspondences [31], to the extraction of the
structure of demonstrated behavior [14], [52], and to neural
mechanisms for the perception of actions and affordances and
its direct mapping to motor actions via “mirror neurons” [5],
[25], [46].

There are a variety of existing machine learning techniques
addressing experience-based learning, for example, rein-
forcement learning [50], case-based reasoning [32], inductive
learning [45], [48], or learning of behavioral histories [37], and
others. Our intention here is not to develop a particular new
and efficient machine-learning algorithm. Instead, we propose
and systematically study a general framework for learning to
imitate by solving the correspondence problem. Clearly, this
framework could easily be combined with these or many other
machine-learning techniques.

ALICE consists of two components on top of the arbitrary
generating method used.

A. First Component

When the imitator observes a new demonstrator action not
seen before, the imitator can relate the result of the generating
method used to that action. This relation is then placed in the
library of correspondences.3 Using the entries in the library
instead of performing the generating method for actions
already observed is very often less computationally expensive,
especially as the complexity of the algorithm that produces
the matching behavior increases. For example, consider a ten
degree of freedom robot arm in the real world that has to solve
the inverse kinematics equations for moving the manipulator

2Perceptually opaque behaviors [31] are perceived very differently when ob-
served than when being performed, e.g., tongue protrusion or winking, but not
singing.

3At each stage in its growth, a library of correspondences is an example of a
(partial) relational homomorphism between the abstract automata associated to
the demonstrator and the imitator [40], [41].

to a point in the workspace, even if that action was performed
before from the same initial configuration; solving the inverse
kinematics again would be wasteful in such a scenario.

B. Second Component

If only the sequences produced by the generating method
were used to build-up the correspondence library, the perfor-
mance of the imitator would be directly limited by the choice of
the algorithm, although possible improvement of the response
time required would be observed, as discussed in the previous
paragraph. Moreover, some of the stored imitator sequences, al-
though valid solutions to the correspondence problem related to
the demonstrator’s actions, may become invalid in certain con-
texts. The second component of ALICE helps to overcome these
difficulties: The imitator agent can examine its own history to
discover further imitative sequences without having to modify
or improve the generating algorithm used. We define this his-
tory as a list of actions that were performed so far by the agent
while imitating the demonstrator together with these actions’
relative effects (also possible effects on the environment). This
kind of history provides valuable experience data that ALICE
can then use to extract useful mappings to improve and add to
the correspondence relation library created up to that point. The
methods for actually extracting this information can vary and
also managing the sequences that are found can depend on ad-
ditional metrics (e.g., keep only the shortest sequence that can
achieve a particular effect, or keep only the top ten sequences
according to some performance measure).

When every possible demonstrator action has been en-
countered at least once, we can initially say that the library
is complete with at least one candidate corresponding im-
itator sequence for every possible demonstrator action, but
such a complete set of correspondence relations between a
demonstrator and an imitator cannot necessarily guarantee a
consistently satisfying performance of imitation, even in simple
environments. A corresponding sequence may be invalid in a
different context in which it was observed when it was added
to the library. It becomes apparent that as the world resolution
and complexity increases, context becomes more relevant
and therefore, the variety and quality of the correspondence
relations becomes more important. Using the mechanism that
extracts sequences from the history as an ongoing feature
can address this, as it will continue to enrich the individual
mappings with more alternatives that possibly provide better
solutions. This second ALICE component relates to Byrne’s
string parsing theory [14] as it discovers underlying structures
that can be used as alternative correspondence solutions on a
program-level imitation.

A summary of the ALICE mechanism is given by the fol-
lowing high-level pseudocode:

ALICE MECHANISM PSEUDOCODE
Consider the demonstrator behavior as a

sequence of actions.
For each of these demonstrator actions:

• If the demonstrator action has not
been observed before, create new entry
in the correspondence library and add

ALISSANDRAKIS et al.: IMITATING WITH ALICE: LEARNING TO IMITATE ACROSS DISSIMILIAR EMBODIMENTS 489

TABLE II
POSSIBLECORRESPONDENCES FORDIFFERENTIMITATOR TYPESTHAT ARE

FOUND USING THE DEFAULT ALGORITHM AS THE GENERATING METHOD

(EUCLIDEAN DISTANCE METRIC USED). Disp. IS THERELATIVE DISPLACEMENT

EFFECT OF THEACTION SEQUENCE. GIVEN THE DEMONSTRATORTYPE,
ACTION AND EFFECT, THE POSSIBLESEQUENCESWITH THEIR EFFECTS FOR

EACH IMITATOR TYPE ARE SHOWN ABOVE. NOTE THAT NEITHER THEBISHOP

NOR THEKNIGHT CAN ACHIEVE THE EXACT DESIREDDISPLACEMENT

sequence of imitator actions found by
the generating method.
• If entry already exists, select and
use an appropriate action sequence from
the correspondence library.

Examine history by considering sequences
of actions performed by the imitator so
far.

For each of these sequences:
• If the sequence produces same (or
perhaps similar) effects to known ef-
fects of some known demonstrator action,
include sequence as an alternative to
the corresponding entry in the library.

In chessworld, the choice of the default algorithm as the im-
itation sequence generating method was made purely for sim-
plicity and therefore, ALICE, as a generic approach, can aug-
ment our initial choice of mechanism instead of replacing it.
The generating method is not a very complex one, but as men-
tioned above, in another setting, the cost of recalculating instead
of using an already found solution could be considerable, and
the use of a correspondence library is therefore a desirable fea-
ture.

In chessworld, the Bishop cannot use the sequence [NE,
SE] to imitate the Queen action E3 (see Table II) if the piece is
currently located along the northern edge of the board. Instead
of using the generating algorithm in such a situation in order
to find an alternate solution, it would be desirable already for
several possible alternative sequences, e.g., [SE, NE], to be
also included in the correspondence library. Note that using
any of these two sequences will not move the agent to the
desired target square, but instead to an adjacent square. Perfect
imitation cannot be achieved for this demonstrator action due
to the imitator’s embodiment limitations as a Bishop, but if
the imitator agent had a Knight embodiment instead, there
do exist possible imitating sequences that can achieve such a
displacement besides [N1E2] or [S1E2] (see again Table II),
e.g., [W1N2, N1E2, N1E2]. This kind of sequence cannot
be found using the default-generating algorithm because the

Fig. 5. Four different possible corresponding sequences (a) [N1E2, S1E2,
W1N2, E1N2], (b) [E1N2, E1N2, E1S2, E1N2], (c) [E1N2, W1N2, N1E2,
S1E2], and (d) [S1E2, N1E2, W1N2, E1N2] that can be used by the Knight
to imitate the action NE4 (displacement to the northeast of 4 units) by the
demonstrator Queen (or Bishop). These can be found only if ALICE augments
the default algorithm.

value of the metric not only decreases but also increases as
a result of certain actions. In Fig. 5, four different possible
solutions to the correspondence problem for a Knight imitating
a Queen (or Bishop) performing a particular diagonal move
are shown. All result in the imitator achieving the same
displacement as the imitator, although each follows a different
trajectory. Note that the two sequences c) and d) can become
invalid if the imitator is too close to the upper or lower
edges of the board, respectively, so having many alternative
sequences for each entry in the correspondence library can
be useful.

Fig. 6 shows a possible development of an ALICE correspon-
dence library used by a Knight to imitate a Queen. At each of
the time instances shown, every observed demonstrator action is
noted as a point at the appropriate vertical and horizontal coordi-
nates of its resulting displacement. These can be either negative
or positive relative to the current location of the chess piece. If
at least one of the correspondence sequences found so far ac-
complishes that exact displacement, a dark color tone is used.
Otherwise, a light one is used. The shape that slowly emerges
relates to the set of actions observed so far and the type of the
demonstrator.

V. EXPERIMENTSPERFORMED

This section describes the experiments performed to assess
ALICE using the chessworld simulation.

A. Methodology and Experimental Set-Up

In order to test the hypothesis that agents with dissimilar
embodiments can improve performance when solving the

490 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 4, JULY 2002

Fig. 6. Possible development of an ALICE correspondence library used by
a Knight to imitate a Queen. At every simulation step, the Knight attempts to
imitate a Queen sequence of moves. The correspondence build-up is shown in
intervals of five simulation steps, left to right, top to bottom. At the displacement
coordinates (indicated with respect to horizontal and vertical axes in the figures)
or each observed demonstrator action, dark or light color tones indicate whether
at least one of the corresponding sequences for this entry satisfies the imitation
criteria perfectly or not, respectively. Given that the demonstrator to be imitated
is a Queen, the shape that slowly emerges is composed of the vertical, horizontal,
and diagonal directions that characterize its movement rules.

correspondence problem in imitation, the chessworld testbed
was used to provide dissimilar embodied agents engaging in
imitation behavior, with ALICE as the generic mechanism for
solving the correspondence problem. Statistical significance in
improvement of performance is expected when ALICE is used
together with the default algorithm as an improved generating
method, compared with using the default generating method
on its own.

In each experiment, a demonstrator agent performs a random
walk on the chessboard, which other agents must in turn imitate.
The demonstrator in every case is embodied as a Queen, which
is the chess piece with the least limiting movement rules. This
choice was made to give the demonstrator sequences the greatest
diverse variety possible among the classic chess pieces.

In the experiments described here, the salient perceptual data
are presented to each imitator agent in trajectory-level granu-
larity. This presents a middle ground between simplifying (e.g.,
end-point-level granularity) and complicating (e.g., path-level
granularity) the task. This also takes advantage of the natural
segmentation of actions in chess. The length of the demonstrator
behavior for each run was 3000 moves. The imitators perceived
this random walk segmented into 300 sequences of ten moves.

Both the demonstrator and the imitators start from the same
initial square. During the course of each run, because of the
dissimilar embodiments, it is possible that displacement errors
can appear. The imitator will then have to reach the next target
square starting from a different starting point, as the previous

target square was not reached exactly. Although these errors af-
fect the performance we chose to allow them for several rea-
sons. First, such unexpected errors in the absolute location of the
current square do not change the absolute location of the target
square; the problem is only slightly modified. Second, this dis-
placement error can both complicate the imitator’s task but also
possibly simplify it by placing the agent in a better location (de-
pending on its movement rules).4 Third, in nature (barring the
intervention of a teacher), no resetting or relocation of an imi-
tator occurs during the course of an attempt at imitation.

The metric used in these experiments is the Hamming norm. It
was observed that the choice of metric (from among Hamming,
Euclidean, and infinity norm) for the algorithm does not affect
significantly the quantitative performance measures used by us
to evaluate the performance. Qualitatively, however, the char-
acter of resulting imitative behaviors does vary with different
metrics (see Section III, e.g., Fig. 4).

The following performance measures5 were used in order to
provide an overall view of the imitation attempt.

1) Displacement Performance Measure:The imitation
metric used by the default algorithm takes into account dis-
tance, so the first performance measure focuses on that aspect
of the behavior. It measures the success in minimizing the
distance to successive subgoals in a behavioral sequence, using
error divided by initial distance to each subgoal, according to
the metric, giving an indication of how close to each subgoal
the imitator was.

Displacement performance measure is .
is the remaining distance to the current subgoal.
is the initial distance to the current subgoal.

2) Subgoal Performance Measure:For each demonstrator
sequence of moves, we can measure the number of subgoals
achieved over the total number of subgoals. This is an indication
of how many subgoals in the behavioral sequence the imitator
managed to achieve (depending on the granularity).

Subgoal performance measure is .
is the number of subgoals achieved by the imi-

tator.
is the total number of subgoals in this demonstrator

sequence.
The implementation of the second component of ALICE re-

quires a specification of a method to extract sequences from the

4In order to correct the error and place the agent back on the trail, the imitator
would have to use a corrective move that is not part of the normal repertoire.
This would add unclassified events in the agent’s history and complicates the
use of ALICE, since the history would no longer be linear. For ALICE to use
such a history, these corrective events would have to be removed first and their
effects accounted for, as this corrective type of “move” would not be allowed
by the agent’s movement rules, and these moves would therefore be invalid for
the agent. No such correction method is used here.

5Besides the two measures given here, another possible performance measure
could be aspeed performance measure, measuring how many moves the imitator
used for each subgoal, against how many moves the demonstrator used. The
demonstrator speed for a given sequence depends on the granularity level. For
example, in trajectory-level granularity, we have one move per subgoal, in path-
level granularity many subgoals per move, and in end-point granularity, many
moves per subgoal. In the chessworld scenario, the imitating agents are severely
limited by their embodiment and movement rules and since the metrics used by
the generating method do not consider at all how fast the chess pieces move, this
performance measure is not used here, although it could be used in a slightly
modified setting.

ALISSANDRAKIS et al.: IMITATING WITH ALICE: LEARNING TO IMITATE ACROSS DISSIMILIAR EMBODIMENTS 491

imitating agent’s history. This is a design issue and can be ac-
complished in a variety of ways depending on the platform. In
the current chessworld scenario, a very simple method is used.
At every simulation time step, we consider a moving window of
variable length (two to four actions) scanning the history back-
ward. The agent is assumed to have knowledge of the effects
for each of its own actions in the particular embodiment reper-
toire, and the overall effect of each such sequence can therefore
be known. If that exact effect is noted as the result of a demon-
strator action already present in the correspondence library, then
the found sequence is also included in that entry. For example,
the Knight is able to discover how to move to adjacent squares
in this manner. Note that we require an exact match of effects
(displacement in this case) but could also allow for near matches
(according to some metric, depending on the action effects con-
sidered). Only solutions for previously seen problems will be
added, since there is no reason to overload the correspondence
library with perhaps unnecessary data—the imitator has no prior
knowledge of the complete set of demonstrator actions.

The maintenance of the correspondence library is also delib-
erately simple in the present scenario. There is no limit to how
many correspondences can exist for a single demonstrator ac-
tion, and no kind of sorting on these corresponding sequences
takes place. When the imitator looks up a known demonstrator
action, a randomly selected best-so-far solution is returned, if
more than one exists.

B. Results and Interpretation of the Results

Each of the plots in the following figures shows the imita-
tion attempts for a random walk of the demonstrator on the
chessboard by the different kind of chess pieces. At each sim-
ulation step, the agent attempts to imitate a demonstrator move
sequence. For each sequence, the average performance measure
value of ten simulation runs is plotted. The standard deviation of
this measure for these ten runs is shown as a dotted line. A value
of 100% shows perfect imitation according to the performance
measure used. Plot (a) in every figure shows the performance of
the generating method used on its own, and plot (b) shows the
performance if the ALICE mechanism is used together with the
default-generating method.

1) King and Rook as Imitators:Agents embodied as either
King or Rook chess pieces can imitate perfectly the random
walks of a demonstrator Queen according to the displacement
and subgoal performance measures described above. Both
pieces can easily reach every subgoal; the King using repeated
single-square moves and the Rook using a pair of horizontal and
vertical moves for every diagonal displacement required. The
correspondence problem in this case is a relatively simple one
and since the imitators can perform perfectly with the default
algorithm only, it is not necessary to use the ALICE mechanism.

2) Knight as Imitator: Solving the correspondence problem
for the Knight imitating the Queen is more interesting as this em-
bodiment does not prevent the agent from moving to any square
on the chessboard, but many of these solutions are impossible to
find using only the default algorithm as a generating method.

Figs. 7 and 8 illustrate the improvement in performance
(using the displacement performance and subgoal performance
measures respectively) that is attained with ALICE. When the

(a)

(b)

Fig. 7. Displacement performance measure for a Knight imitating a Queen
(average for same demonstrator random walks). At each simulation step, the
agent attempts to imitate a demonstrator move sequence. For each sequence,
the average displacement performance measure value of ten different simulation
runs that used the same overall random walk for the demonstrator is plotted. The
standard deviation for each sequence is shown as a dotted line. In (b), the ALICE
mechanism was used together with the generating method; the default algorithm
was used on its own in (a).

agent is using only the default algorithm as the generating
method, a partially successful, yet not perfect performance is
attained (displacement performance measure average below
80%, subgoal performance measure average below 20%,
both not showing improvement). For the same demonstrator
behavior, when the ALICE mechanism compliments the
generating method and the use of the correspondence library
is introduced, eventually, an overall level of generally perfect
performance is achieved.

Similar experiments were carried out using, instead of ten
runs with the same demonstrator random walk, ten runs of dif-
ferent demonstrator random walks for each case. As shown in
Fig. 9, the results were similar.

After approximately 75 imitation attempts, the performance
difference becomes and remains highly statistically significant
(using two-sample t-tests, assuming unequal variances,

; variances were not homogeneous according to
tests).

Although one would expect a perfect performance level after
the correspondence library is complete (in the sense that all pos-
sible demonstrator moves have been observed and appropriate
correspondence sequences noted), some glitches can be sporad-
ically observed. As noted in Section IV, this is not so unex-
pected: The chessworld dimensions (eight by eight squares) are
restrictive enough to make some of the correspondences invalid

492 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 4, JULY 2002

(a)

(b)

Fig. 8. Subgoal performance measure for a Knight imitating a Queen (average
of same demonstrator random walks) (a) without ALICE and (b) using ALICE.
For each sequence, the average subgoal performance measure value of ten
different simulation runs that used the same overall random walk for the
demonstrator is plotted.

because of the boundaries. These glitches in the performance
level seemed to occur when the demonstrator moves close to
the edges of the board, and the imitator does not have an appro-
priate corresponding sequence for these actions in this context.
To test that this is the case, we repeated the experiment with the
same demonstrator random walk happening in the center of a
much larger chessboard so that such situations would not arise,
and indeed, the performance level, once the correspondence li-
brary has enough perfectly matching entries, remains constantly
at 100%. This is shown in Fig. 10.

3) Bishop as Imitator:The imitator embodiment as a
Bishop chess piece has the major disadvantage that only half
the locations on the chessboard can be visited. There are
no improved solutions to the correspondence problem that
cannot be found by using only the default algorithm as a
generating method. The ALICE mechanism yields no notice-
able performance improvement (as seen in Figs. 11 and 12)
since the demonstrator in the random walk visits a significant
amount of inaccessible locations. Performing t-tests showed no
statistically significant difference of performance ().

VI. SUMMARY OF RESULTS

Examining the different chess pieces as imitator agent em-
bodiments established that the ALICE mechanism is useful in
solving the correspondence problem when augmenting simple

(a)

(b)

Fig. 9. Displacement performance measure for a Knight imitating a Queen
(average for different demonstrator random walks) (a) without ALICE and
(b) using ALICE. For each sequence, the average displacement performance
measure value of ten different simulation runs that each used a different
demonstrator random walk is plotted.

imitation sequence-generating methods. Depending on the spe-
cific affordances of the embodiment, the contribution of ALICE
in improving the imitating performance can be either significant
or only complementary.

The movement affordances of sequences of moves for the
imitator King and Rook embodiments allow them to attain
any single move displacement achievable by a demonstrator
Queen and as such allow a perfect performance according to
the performance measures used, although these solutions to the
correspondence problem are qualitatively different from the
demonstrated model and from each other [see, for example,
Fig. 4(b)]. The perfect performance cannot be further improved
using the ALICE mechanism, although ALICE can reduce the
need to generate the imitating sequences already constructed
previously, and instead exploit the correspondence library (see
Section IV).

Although the Bishop’s embodiment affords a complemen-
tary subset of moves to that of the Rook, it is severely disad-
vantaged in comparison to other pieces/embodiments since it
cannot reach half of the positions on the board, whereas all the
other pieces can. The generating method can already get the
Bishop as close as possible to the target square, and no signifi-
cant performance difference is noted when ALICE is used, be-
sides the benefits of using a correspondence library, as described
earlier.

ALISSANDRAKIS et al.: IMITATING WITH ALICE: LEARNING TO IMITATE ACROSS DISSIMILIAR EMBODIMENTS 493

(a)

(b)

Fig. 10. Displacement performance measure for a Knight imitating a
Queen (unconstrained context, average for same demonstrator random walks)
(a) without ALICE and (b) using ALICE. For each sequence, the average
displacement performance measure value of ten different simulation runs that
used the same overall random walk for the demonstrator is plotted. The same
demonstrator random walk as in Figs. 7 and 8 takes place in the center of a 100
� 100 squares chessboard.

The Knight embodiment is a good example of a seemingly
complicated repertoire of moves that nevertheless can success-
fully mimic all the possible demonstrator actions once the corre-
spondence problem is solved. Many of the demonstrator actions
require imitating sequences by the Knight that cannot be found
by the default algorithm. ALICE is shown to significantly im-
prove the performance. Once most of the demonstrator actions
have been performed and the initial correspondence library en-
tries have been created, we can expect a gradual improvement
of performance, resulting in a permanent near-perfect level of
performance when all the possible demonstrator actions have
been observed and suitable correspondences found, either by
the default-generating method or the mechanism that extracts
additional correspondence sequences from the history. It is im-
portant to have many alternative correspondence sequences for
each demonstrator action since some of the imitative sequences
may be invalid in a different context from the one in which
they were originally observed. The original 88 chessboard
can be restrictive to that effect and that results in the observed
glitches of the otherwise constant performance level of the im-
itator. If the agents are placed in a larger chessboard where the
edges no longer obstruct the performance of the corresponding
sequences, the imitator performance level, once a complete cor-
respondence library was attained, was never subject to glitches
due to contextual factors.

(a)

(b)

Fig. 11. Displacement performance measure for a Bishop imitating a Queen
(average for same demonstrator random walks) (a) without ALICE and (b) using
ALICE. For each sequence, the average displacement performance measure
value of ten different simulation runs that used the same overall random walk
for the demonstrator is plotted.

VII. CONCLUSIONS

Imitation and behavioral matching can serve as fundamental
components for behavior acquisition both in humans and ani-
mals but also in artificial systems. Agent embodiment, together
with the use of different metrics and subgoal granularities can
affect the success and character of the imitation observed. In
order for an agent to successfully imitate, the correspondence
problem needs to be solved, finding appropriate mappings be-
tween its own actions and the ones of a demonstrator agent
with a possibly dissimilar embodiment. It is possible to build up
a solution to the correspondence problem incrementally while
learning from observing a demonstrator over time. A correspon-
dence serves as a “refractive looking-glass” through which an
observed demonstrator’s behavior is transformed to yield sim-
ilar, but possibly not quite the same, action sequences for the
imitator. This allows the imitator to get along, using the affor-
dances of its own embodiment, while exploiting observations of
the behavior of others in its environment.

We showed how an imitator agent with ALICE exposed to
the demonstrator behavior in the chessworld can build up useful
partial solutions to the correspondence problem, i.e., mapping
the demonstrator actions to those it can perform in its own par-
ticular embodiment to achieve similar effects, exhibiting highly
successful imitating performance. Effectively, ALICE provides
a combination of learning and memory to help solve the corre-

494 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 4, JULY 2002

(a)

(b)

Fig. 12. Subgoal performance measure for a Bishop imitating a Queen
(average for different demonstrator random walks) (a) without ALICE and (b)
using ALICE. For each sequence, the average subgoal performance measure
value of ten different simulation runs that each used a different demonstrator
random walk for the demonstrator is plotted.

spondence problem. There is generalization in that learned cor-
responding action sequences can be reused by the imitator in
new situations and contexts. Due to its generic nature, ALICE
can be implemented in a variety of ways, not depending on
a specific generating method or the platform used. Contrary
to the traditional approach in the robotics research on imita-
tion that concentrates on creating dedicated control architec-
tures ignoring the social dimension of imitation, a more general
agent-based approach considers the behavior of particular au-
tonomous agents in relation to each other and their environment,
using various agent-specific metrics and perceptual saliency cri-
teria. Our work here, while not specifically addressinginter-
action, could form the basis for harnessing imitation in richer
social interactions among artifacts or between artifacts and hu-
mans. This work could lead to a better understanding of animal
imitation or to the improved design of imitation algorithms for
robots.

The ALICE mechanism requires a) the addition of a corre-
spondence library and b) that the agent is able to keep track of its
actions along with a mechanism to extract additional useful cor-
respondences from its personal history. The contents and devel-
opment of the correspondence library will depend on the types
and effects of actions that the demonstrator and imitator agents
are capable of, depending on their embodiments, and also on
experience. The methods used in the chessworld implementa-

tion to extract useful correspondence sequences from the his-
tory were simple, but the methods used in another setting will
depend upon the structure of the personal history that the agents
keep.

In the chessworld implementation of the ALICE mechanism,
both the correspondence library and the imitator agent’s history
were relatively simple, since there was only a small set of ac-
tions (chess moves) with a single type of effect (displacement
on the chessboard). The history kept track only of the relative
displacements caused by the imitator’s own actions. The method
to extract correspondences from history involved looking for se-
quences of bounded length that always perfectly achieve the cor-
responding effect according to the metric used. The correspon-
dence library was visualized using vertical and horizontal axes
on the two-dimensional (2–D) plane, and no sorting or mainte-
nance of the correspondence library entries was needed.

However, in a different environment with more complex
agents, a more complex implementation of the ALICE mecha-
nism might be necessary, dealing with actions that may have not
only one, but also many diverse type of effects. For example, if
the agents not only move in the environment but also interact
directly with it (e.g., by being able to pick up objects and move
them around), then a more complex implementation of the
history is required for keeping track of the imitator actions and
all the resulting effects. The mechanism to extract correspon-
dences would have to be able to cope with such a history. The
extracted sequences for a correspondence library entry would
require some form of sorting when that action correspondence
is used, according to a performance evaluation metric.

For future work, we plan to bring ALICE to more complex
testbeds, study the requirements for the method that extracts al-
ternative corresponding sequences from the history of the im-
itator in more complex settings, address issues of perception,
segmentation, context, self-repair (via self-imitation of previous
optimal behavior), and use more advanced machine learning
techniques as components for ALICE.

Scaling up toward more real-world platforms, we describe
in [3] some early work in progress implementing the ALICE
mechanism on a robotic arm simulation. In this case, the demon-
strator and imitator agents are robotic arm manipulators that can
have different numbers of joints and/or lengths of these joints,
operating in a 2–D workspace.

ACKNOWLEDGMENT

A. Alissandrakis would like to thank Y. Dimitriadi for per-
sonal inspiration. The authors would like to thank the anony-
mous reviewers for their constructive comments.

REFERENCES

[1] A. Alissandrakis, C. L. Nehaniv, and K. Dautenhahn, “Learning how to
do things with imitation,” inProc. Amer. Assoc. Artif. Intell. Fall Symp.
Learning How to Do Things, 2000, pp. 1–6.

[2] , “Through the looking-glass with ALICE—Trying to imitate using
correspondences,” inProc. First Int. Workshop Epigenetic Robotics:
Modeling Cognitive Development Robotic Syst., Lund, Sweden, 2001,
pp. 115–122.

[3] , “Do as I do: Correspondences across different robotic embodi-
ments,” inProc. Fifth German Workshop Artif. Life, Lübeck, Germany,
2002, pp. 143–152.

ALISSANDRAKIS et al.: IMITATING WITH ALICE: LEARNING TO IMITATE ACROSS DISSIMILIAR EMBODIMENTS 495

[4] P. Andry, P. Gaussier, S. Moga, J. P. Banquet, and J. Nadel, “Learning
and communication via imitation: An autonomous robot perspective,”
IEEE Trans. Syst., Man, Cybern., Pt. A, vol. 31, pp. 431–442, Sept. 2001.

[5] M. Arbib, “The mirror system, imitation, and the evolution of language,”
in Imitation in Animals and Artifacts, K. Dautenhahn and C. L. Nehaniv,
Eds. Cambridge, MA: MIT Press, 2002, pp. 229–280.

[6] C. G. Atkeson, J. G. Hale, F. Pollick, M. Riley, S. Kotosaka, S. Schaal, T.
Shibata, G. Tevatia, A. Ude, S. Vijayakumar, E. Kawato, and M. Kawato,
“Using humanoid robots to study human behavior,”IEEE Intell. Syst.,
vol. 15, pp. 46–56, Aug. 2000.

[7] A. Billard, “DRAMA, a connectionist model for robot learning: Exper-
iments on grounding communication through imitation in autonomous
robots,” Ph.D. dissertation, Dept. Artif. Intell., Univ. Edinburgh, Edin-
burgh, U.K., Oct. 1998.

[8] , “Imitation: A means to enhance learning of a synthetic protolan-
guage in autonomous robots,” inImitation in Animals and Artifacts,
K. Dautenhahn and C. L. Nehaniv, Eds. Cambridge, MA: MIT Press,
2002, pp. 281–310.

[9] A. Billard and K. Dautenhahn, “Experiments in learning by imita-
tion—Grounding and use of communication in robotic agents,”Adapt.
Beh., vol. 7, pp. 415–438, 1999.

[10] , “Grounding communication in autonomous robots: An experi-
mental study,”Robot. Auton. Syst., vol. 1–2, no. 24, pp. 71–81, 1998.

[11] A. Billard, G. Hayes, and K. Dautenhahn, “Imitation skills as a means to
enhance learning of a synthetic proto-language in an autonomous robot,”
in Proc. AISB Symp. Imitation Animals Artifacts. Edinburgh, U.K., 1999,
pp. 88–95.

[12] C. Breazeal and B. Scassellati, “Infant-like social interactions between
a robot and a human caretaker,”Adapt. Beh., vol. 8, 2000.

[13] R. Brooks,Cambrian Intelligence. Cambridge, MA: MIT Press, 1999.
[14] R. W. Byrne, “Imitation without intentionality. Using string parsing to

copy the organization of behavior,”Animal Cogn., vol. 2, pp. 63–72,
1999.

[15] R. W. Byrne and A. E. Russon, “Learning by imitation: A hierarchical
approach,”Beh. Brain Sci., vol. 21, pp. 667–709, 1998.

[16] J. Call and M. Carpenter, “Three sources of information in social
learning,” inImitation in Animals and Artifacts, K. Dautenhahn and C.
L. Nehaniv, Eds. Cambridge, MA: MIT Press, 2002, pp. 211–228.

[17] A. Cypher, Ed.,Watch What I Do: Programming by Demonstra-
tion. Cambridge, MA: MIT Press, 1993.

[18] K. Dautenhahn, “Trying to imitate—A step toward releasing robots from
social isolation,” inProc. From Perception to Action Conf., Lausanne,
Switzerland, 1994, pp. 290–301.

[19] K. Dautenhahn, “Getting to know each other—Artificial social intelli-
gence for autonomous robots,”Robot. Auton. Syst., vol. 16, pp. 333–256,
1995.

[20] K. Dautenhahn and C. L. Nehaniv, Eds.,Imitation in Animals and Arti-
facts. Cambridge, MA: MIT Press, 2002.

[21] K. Dautenhahn and C. L. Nehaniv, “The agent-based perspective on im-
itation,” in Imitation in Animals and Artifacts, K. Dautenhahn and C. L.
Nehaniv, Eds. Cambridge, MA: MIT Press, 2002, pp. 1–40.

[22] J. Demiris and G. Hayes, “Imitative learning mechanisms in robots and
humans,” inProc. Fifth Eur. Workshop Learning Robots, Bari, Italy,
1996, pp. 9–16.

[23] , “Active and passive routes to imitation,” inProc. AISB Symp. Im-
itation Animals Artifacts. Edinburgh, U.K., 1999, pp. 81–87.

[24] E. Furse, “A model of imitation learning of algorithms from worked
examples,”Cybern. Syst., Special issue on “Imitation in Natural and
Artificial Systems”, vol. 32, no. 1–2, pp. 121–154, 2001.

[25] V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, “Action recognition
in the premotor cortex,”Brain, vol. 119, pp. 593–609, 1996.

[26] P. Gaussier, S. Moga, J. P. Banquet, and M. Quoy, “From perception–ac-
tion loops to imitation processes: A bottom-up approach to learning by
imitation,” Appl. Artif. Intell. J., Special issue on “Socially Intelligent
Agents”, vol. 12, no. 7–8, pp. 701–729, 1998.

[27] G. Hayes and J. Demiris, “A robot controller using learning by imita-
tion,” in Proc. SIRS, Second Int. Symp. Intell. Robotic Syst., Grenoble,
France, 1994, pp. 198–204.

[28] L. M. Herman, “Vocal, social, and self imitation by bottlenosed dol-
phins,” in Imitation in Animals and Artifacts, K. Dautenhahn and C. L.
Nehaniv, Eds. Cambridge, MA: MIT Press, 2002, pp. 63–108.

[29] C. M. Heyes, “Transformational and associative theories of imitation,”
in Imitation in Animals and Artifacts, K. Dautenhahn and C. L. Nehaniv,
Eds. Cambridge, MA: MIT Press, 2002, pp. 501–524.

[30] C. M. Heyes and B. G. Galef, Jr., Eds.,Learning in Animals: The Roots
of Culture. New York: Academic, 1993.

[31] C. M. Heyes and E. D. Ray, “What is the significance of imitation in
animals?’,”Adv. Study Beh., vol. 29, pp. 215–245, 2000.

[32] I. L. Kolodner,Case-Based Reasoning. San Mateo, CA: Morgan Kauf-
mann, 1993.

[33] Y. Kuniyoshi, H. Inoue, and M. Inaba, “Design and implementation of
a system that generates assembly programs from visual recognition of
human action sequences,” inProc. IEEE Int. Workshop Intell. Robots
Syst., 1990, pp. 567–574.

[34] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by watching: Ex-
tracting reusable task knowledge from visual observations of human
performance,”IEEE Trans. Robot. Automat., vol. 10, pp. 799–822,
Nov. 1994.

[35] H. Lieberman, Ed., “Special issue on ‘Programming by example’,” in
Commun. ACM, 2000, vol. 43, pp. 72–114.

[36] M. J. Matarić, “Getting humanoids to move and imitate,”IEEE Intell.
Syst., vol. 15, pp. 18–24, July/Aug. 2000.

[37] F. Michaud and M. J. Mataric´, “Representation of behavioral history for
learning in nonstationary conditions,”Robot. Auton. Syst., vol. 29, pp.
187–200, 1999.

[38] R. W. Mitchell, “A comparative-developmental approach to under-
standing imitation,”Perspectives Ethol., vol. 7, pp. 183–215, 1987.

[39] J. Nadel and G. Butterworth, Eds.,Imitation in Infancy. Cambridge,
U.K.: Cambridge Univ. Press, 1999.

[40] C. L. Nehaniv and K. Dautenhahn, “Of hummingbirds and helicopters:
An algebraic framework for interdisciplinary studies of imitation and its
applications,” inInterdisciplinary Approaches to Robot Learning, Sin-
gapore: World Scientific, 2000.

[41] , “Like me?—Measures of correspondence and imitation,”Cybern.
Syst.: Int. J., vol. 32, no. 1–2, pp. 11–51, 2001.

[42] , “The correspondence problem,” inImitation in Animals and Ar-
tifacts, K. Dautenhahn and C. L. Nehaniv, Eds. Cambridge, MA: MIT
Press, 2002, pp. 41–62.

[43] M. N. Nicolescu and M. J. Mataric´, “Learning and interacting in
human–robot domains,”IEEE Trans. Syst., Man, Cybern. A, vol. 31,
pp. 419–430, Sept. 2001.

[44] R. Pfeifer and C. Scheier,Understanding Intelligence. Cambridge,
MA: MIT Press, 1999.

[45] J. R. Quinlan,C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kauffman, 1993.

[46] G. Rizzolatti and M. A. Arbib, “Language within our grasp,”Trends
Neurosci., vol. 21, no. 5, pp. 188–194, 1998.

[47] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York:
McGraw-Hill, 1976.

[48] C. Sammut, S. Hurst, D. Kedzier, and D. Michie, “Learning to fly,” in
Imitation in Animals and Artifacts, K. Dautenhahn and C. L. Nehaniv,
Eds. Cambridge, MA: MIT Press, 2002, pp. 171–190.

[49] S. Schaal, “Is imitation learning the route to humanoid robots?,”Trends
Cogn. Sci., vol. 3, pp. 233–242, 1999.

[50] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[51] E. L. Thorndike, “Animal intelligence: An experimental study of the
associative process in animals,”Psychol. Rev. Monogr. 2, pp. 551–553,
1898.

[52] A. Whiten, “Imitation of sequential and hierarchical structure in
action: Experimental studies with children and chimpanzee,” in
Imitation in Animals and Artifacts, K. Dautenhahn and C. L. Nehaniv,
Eds. Cambridge, MA: MIT Press, 2002, pp. 191–210.

[53] T. R. Zentall, “Imitation and other forms of social learning in animals:
Evidence, function, and mechanisms,”Cybern. Syst., Special Issue on
“Imitation in Natural and Artificial Systems”, vol. 32, no. 1–2, pp.
53–96, 2001.

Aris Alissandrakis received the M.Eng. degree in
cybernetics from the Department of Cybernetics,
University of Reading, Reading, U.K., in 1999.
He is currently pursuing the Ph.D. degree at the
Adaptive Systems Research Group, Computer
Science Department, University of Hertfordshire,
Hertfordshire, U.K. His research interests include
artificial life and imitation in artificial systems.

496 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 4, JULY 2002

Chrystopher L. Nehaniv received the Ph.D. degree
in mathematics from the University of California,
Berkeley, in 1992.

He is currently Professor of mathematical and
evolutionary computer sciences at the University of
Hertfordshire, Hertfordshire, U.K. He has taught,
lectured, and conducted interdisciplinary research
at various universities in the United States, Japan,
Great Britain, and Hungary. He is Associate Editor
of the journalBioSystemsand Director of the U.K.
Engineering and Physical Science Research Council

Network on Evolvability in Biological and Software Systems.

Kerstin Dautenhahn received the Ph.D. degree from
the Biological Cybernetics Department of the Uni-
versity of Bielefeld, Bielefeld, Germany, in 1993.

She is currently a Reader in artificial intelligence
with the Adaptive Systems Research Group at
the University of Hertfordshire in England. She
previously worked at GMD, St. Augustin, Germany,
and the VUB AI-Lab, Brussels, Belgium. Since
1993, she has initiated and led research projects
on socially intelligent agents and social robotics.
Currently, she directs the Robotics and Interactive

Systems Laboratory at the University of Hertfordshire, Hertfordshire, U.K.,
and is Associate Editor of the journalAdaptive Behavior.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

