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Application of neural networks to the inverse light

scattering problem for spheres

Zbigniew Ulanowski, Zhenni Wang, Paul H. Kaye and lan K. Ludlow

A new approach suitable for solving inverse problems in multi-ange light scattering is presented.
The method takes advantage of multidimensional function approximation capability of radial basis
function (RBF) neural networks. An algorithm for training the networks is described in detail. It is
shown that the radius and refractive index of homogenous gpheres can be recovered accurately and
quickly, with maximum relative erors of the order of 103 and mean errors as low as 10°. The
influence of the angular range of avail able scattering data on the loss of information and inversion
acauracy is investigated and it is $hown that more than two thirds of input data can be removed
before substantial degradation of accuracy occurs.
Key words: Light scattering, particle sizing, sphere, inverse problem, neural network, radial

basis function.

1. Introduction
Over the last hundred or so yeas gred advances have been made in developing the dedromagnetic
theory of scatering from particulate matter. Accurate predictions of the properties of scatered
eledromagnetic fields - the dired scatering problem - are now possble in many situations. Rigorous
solutions exist for numerous particle types, such as homogeneous and inhomogeneous gheres,
ellipsoids, cylinders, generalised axisymmetric particles and others. Of far greaer pradicd
importance, however, is the determination of properties of particles from the knowledge of scatered
fields - the inverse scatering problem. Solving this type of problem is required in numerous
applicaions, ranging from astronomy and remote sensing, through aeosol and emulsion
characterisation, to non-destructive analysis of single particles and living¢ells.

Unfortunately, the inverse problem has proven to be much less tradable, even for the smplest
particle shapes. This is partly becaise in many cases inverse problems do not have unique solutions

and are therefore ill-posed. Ladk of rigorous lutions has motivated the development of methods
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based on approximate models of scattering for some particle geometries, for example, asauming that
the particles are week (Rayleigh-Debye) scaterers or that diffradion alone can adequately describe
the interadion process The reader is referred to the large body of existing literature and several
monographs for further details.>8 However, when such methods are inappropriate, empirica
procedures have to be used which are based on generating solutions to the dired problem (after
making assumptions concerning the shape, internal structure of the particle, etc.) and matching these
solutions to experimental data.1-3.9.10 These procedures can ke very sow, difficult to implement and
require substantial computing resources. Attempts to apply numerica optimisation methods to asgst
the fitting processhave been only moderately succesul so far. Two major difficulties are goparent.
The first one is the presence of numerous locd solutions necesstating the use of cumbersome and
dow global optimisation methods. The seand dfficulty arises in cases where scatering data is
"noisy" or distorted, for instance when it originates from single, small particles. Under such
circumstances urious lutions appea, leading to large erors in the determination of particle
parameter$l-13

A natural starting point for attempts to solve the inverse scatering problem for fine particlesis the
smple cae of a single, homogeneous, non-absorbing sphere. If a plane incident wave of known
wavelength and state of polarisation and a known medium surrounding the particle ae assumed, the
scatering from the particle can be completely described using two parameters, namely its radius and
refradive index. The dired problem can then be solved using the series expansions of the Lorenz-
Mie theory.>7 In addition, if we asume that the irradiance of the light scatered by the particle is
measured in one plane only, then the scattering can be described by a function of the scatering angle
(defined as the angle between the diredion of the incident wave and the diredion of observation).
This arrangement leads to a one-dimensional scatering "pattern” which is representative of the
properties of the particle and has been used as a basis for charaderisation of both single particles and
particle distributions.1-38 The present study is confined to such a scatering geometry. However,
extending it to more genera cases, with larger numbers of parameters, should not present major
difficulties, as long as solutions to the direct problem are available.

One motivation behind the present study has been the observation that simple least squares fitting
methods often fail to locate mrred solutions for noisy and/or distorted scatering data. Minimising a

merit function of the type:
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where 1(8,)) is atheoreticd value for the scatered light irradiance d the scettering angle 6, M(6)) is
ameasured quantity proportional to the scattered irradiance a the angle 6; and c is an instrumental
constant (usually not known acarrately), is often an unsatisfactory approac.211.12 Using additional
information, such as the positions of the pe&s in the light scatering pattern,214 or weighting the
data in various ways! can leal to substantial improvements, although these gproacies are still
heuristic to some etent. A promising method, which diredly yields particle radius but may
eventually lead to a full inverse solution, is based on transforming the patternsin a set of Legendre or
Gegenbauer polynomias.1517 Particle size distributions as well as complex refradive indices can be
obtained under some @nstraining conditions by combining empiricd and analyticd (eigenfunction)
methods.8 In the mntext of the present study it is sgnificant that visual comparison of experimental
and theoreticd data - taking advantage of intrinsic data seledion and processng capabilities of the
human brain - often produces good results, even where other approaches fail .2 These fads indicae
that a degreeof, possbly quite mmplex, data pre-processng is required before methods such as least
squares fitting or numericd optimisation can be succesdully applied. On this basis it can be
conjedured that artificial neural networks sould be well suited to solving the present problem.
Indeed, recent work on the determination of particle size distributions!8 and particle dassfication!®
using multi-angle light scattering data, as well as ealier studies on the recovery of size distributions
from badkscatering?? have shown that neural networks can ke used to solve some dasss of inverse
problemsin light scatering. Moreover, the neural network approach may eventualy yield severa by-
products, e.g.: data reduction methods, optimal data olledion methods, efficient algorithms for
comparing theoreticd and experimental data and, last but not least, insights into the theory of
scattering.

An approach to solving inverse problems in multi-angle light scatering based on radial basis
function (RBF) neura networks is proposed. The method takes advantage of the capability of the
RBF networks to approximate multidimensional functions. A detailed investigation of the technique
for the cae of homogeneous, sphericd particles is presented. A step-by-step algorithm for training

the networks is described. Testing of the networks is carried out using data generated from the



Lorenz-Mie theory. Several scding and weighting schemes for the scatering data ae investigated.

The influence of the angular range of available scattering data on inversion accuracy is also studiec

2. Neural network algorithm
In the context of the present study the inverse scatering problem can be stated as follows. If a
homogeneous particle, immersed in a given externa medium, is illuminated by light of a given
wavelength and state of polarisation, the intensity of scatered light at angle 6 with resped to the
forward dredion is a function of the radius and the refradive index (r, n) of the particle. This
function can be given as:

1(8) =F(6, r,n), 2)
where the function F is defined by the Lorenz-Mie theory.>7 Given a vedor of discrete
measurements x of scatered light intensity 1(8) at m different scatering angles 6, the inverse
scatering problem isto determine values of r and n from the measurements x. In other words, it isto
find an inverse function f = F* such that r and n can be determined by f(x). In the atificial neural
network approach a set of discrete intensity patterns 1(0) generated from the Lorenz-Mie theory
together with the parameters r and n are used as network training examples in order to form an
approximation of the inverse function f. It will be assumed that the patterns are sufficiently dense to
avoid spatial aliasing.

A radia basis function (RBF) neural network has smple achitedure consisting of only one
hidden layer. Fig. 1 shows a generalised architecure of such a network with m inputs, N hidden
nodes and k outputs. The hidden nodes are radia basis functions and the network output is smply a
linea summation of the weighted basis functions. The radial basis function w(x, ¢) is a non-linea
function solely dependent on aradial distance || X - ¢ ||, where c is the function's "centre". In general,
the distance nead not be Euclidean, athough it often is, as in the cae of the present study. The
implementation of an RBF network includes sleding the basis function form and parameters and
finding the weights.

Suppose the function to be gproximated is f : x— y , where x O R™ and y O R¥. The RBF

network approximation of , f, will have the following form:

y=T09=3 W @ (x.c)+b, ®



where x 0 R™ isthe input vedor, y 0 R¥ isthe output vedor, N is the number of hidden nodes, w;
O R* isaweight vedor, w(x, ¢) are radial basis functions corresponding to the hidden nodes in Fig.
1, ¢, 0 R™ isa cetre veaor, and b [0 R¥ is a bias vedor. The bias vedor is used to compensate for
the difference between the mean of the output vector and the corresponding target.

A previous gudyl9 described a simplified RBF network in which the basis functions are made

w = ex;{—w], (4)

where [x —c;| is Euclidean distance and d; are the widths. This smplification esentially consists in

Gaussian and take the form:

making the receptive fields of the basis functions gphericd, while in general they can be dlipsoidal.
The reason for the use of this model is to reduce @mmplexity, which is particularly important in the
high-dimensional applicaion considered here. Although the smplificaion could affed network
performance, acaracy can be remvered by scding the input data to compensate for the danged
receptive fields.

Given a sufficient number of input and output examples, x; and y; , respedively, the RBF network

can be trained by forming the interpolation:
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where Sis the number of example input/output pairs. The unknown parameters in this model are the
weight vedors w;, the caitre vedors ¢, the widths d; and the bias vedor b. If the ceitres and the
widths are known, training is a matter of solving the following linear equation:

Y. ¥, . ¥Ys]l = [wiwz ... wy]® + ba, (6)
wherey, =[y,, ¥, .- Yu]' isthej-th example output vedor, w; = [wy; Wy ... W, |7 isthei-th rode

weight vedor, b = [b, b, .. b]T is the bias vedor ([.]T7 denotes matrix transpose),

a=[1 1 .. 1] and @ isameatrix of i-th node radial basis functions cadculated for the j-th example

input vector:
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If the bias vedor is included in the weight matrix, then Eg. (6) can be written in the following

compact form:

Y=W, o, (7)

where

Y=[y, Y, ... Ysl,
W, =[w, w, ... w, b,

The network is trained by obtaining the least squares lution of Eq. (7). Consequently, the weights

W, = YO, (O P (8)

are given by

Before the weights are computed, the cantres and the widths must be dhosen. To maximise acaracy,
ead training input is made to be a cetre, and, as a result, the number of hidden nodes in the RBF
network is equal to the number of training input vedors, i.e. N = S Since the widths d; control the
degreeof overlapping of the m-dimensional Gaussan functions, they control the generalisation abili ty
of the RBF network. In order to dbtain good generalisation, the choice of the width d; should ensure
that the i-th besis function responds to inputs furthest from its centre ¢j. However, this requirement

conflicts with the need to approximate functions locdly. To satisfy these opposing demands, dj can



be cdculated as the diff erence between maximum and minimum Euclidean distances from the centre

vectorgj to all other training inputs, namely:

d = d(n}ffux” ¢ —¢- min

where d isa mnstant. As a result, the wider the data spread, the larger the width and the network is

¢ - ||), i=12,...S. ©)

automaticdly adjusted to different input data. The mnstant d has, typicdly, the value of one but it
can be altered to provide "fine tuning” of the network.

Within the framework provided by Eq. (5), the inverse scatering problem can be solved by
unsupervised training (using only the inputs) consisting of seleding the centres and cdculating the
widths from Eq. (9), followed by supervised training (using the inputs and the outputs) to determine
the weights from Eq. (8).

3. Neural network testing
Simulations were onducted uwsing theoreticd data generated from the Lorenz-Mie theory. A
wavelength of 0.5145um, incident light polarised perpendicularly to the scatering plane and a
refradive index of the surrounding medium (water) of 1.336 were assumed. Discrete ranges of
parameter values, n [0 [1.5, 1.7] (dimensionlesy, and r [0 [0.5, 1.5] micrometers, were used to
construct a matrix of parameter pairs, eat with a @rresponding normalised intensity pattern x(0).
For logarithmically scaled data the patterns were calculated from:

x(8) =1-log|S (0)* + log|S (B)[*, (10)
where S;(0) is the dement of the scatering matrix corresponding to perpendicular polarisation.>’
Note that, dnce|§(9)|2 < |§(0)|2, X(0) < 1 and x(0)=1. The motivation kehind the use of this ding
was that, generally, measurement acarracy of scatering functions such as S;(0) is much better in
terms of relative values (for different scatering angles) as opposed to absolute ones - the
measurements are "differential”. For linear data the patterns were calculated from:

X(6) = gOS O av
where g(0) is an appropriate weighting function. The intensity patterns, sampled between 0° and 180
° with 2° intervals, produced a set of input vedors with 91 elements. The parameters r and n formed

a 2-element output vedor. That is, the inverse function was a mapping f: R%1 — R2 (m=91, k= 2).



For use with data truncated at the forward and badkscatering regions network models with
correspondingly smaller input vector dimensiom&ere constructed.

Where indicated, the input vedors were scded into a 91-dimensional unit hypercube. The linea
data input vedors were normalised to give amean of one over 6 [0 [0°, 18C°], or the gpropriate
truncated range, by dividing with a mean taken over all the dements of the input vedor. The tests
compared several scaling and weighting schemes for the input vectors, including:

1. Logarithmic normalised to 1 @&t 0°.

2. Linear ¢(8) = 1) scaled into a hypercube.

3. Linear weighted witlgy(6) = (sinE))2 :
4. Linear weighted witg(8) = (sinE))4 :
5. Linear weighted witly(6) = (sinE))6 .

A two-stage gproximation configuration was used to maximise acacracgy. The first stage RBF
network, trained with data chosen from the following range of parameters: n 0 [1.5, 1.7] and r [
[0.5, 1.5] um, was used for global approximation. Its output was then used to seled which locd
approximation network to use. The seand stage networks, performing locd approximation, were
trained using subsets of the data. Up to 455 mairs (65 radius and 7 refradive index values) of
input/output vedors of the data were used to train the first stage, global approximation network. For
the second stage the training data was divided into subsets covering 10 overlapping ranges of r,
typically with 144 pairs in each subset (there was no subdivision in tems of

The number of hidden nodes was chosen to be equal to the number of training samples (N=9S) in
al networks. The i-th input vedor was chosen as the caitre of the i-th hidden node. The basis
function width for the i-th node of RBF network was cdculated as the difference between the
maximum and minimum distances from the i-th centre vedor to al other centres, as defined in Eq.
(9). Theleast squares training method of Eq. (8) was then used. Test data were seleded such that all
parameter pairs were surrounded by training data pairs in order to eliminate edge dfeds. All the
network algorithms were implemented using the MATLAB™ ver. 4.2 software with the Neura

Networks Toolbox ver2 (The MathWorks, Inc.).



4. Results and discussion

In the two-stage @nfiguration used in this gudy the goproximation ability of the second-stage, locd
networks depends on the acaracy with which the first stage, global network classfies the data into
corred ranges (in terms of the radiusr in for the examples iown in this paper). A failure to classfy
the data acarrately might result in forcing the use of a locd network outside the range of output
vedors for which it was trained. This would be likely to result in large gproximation errors at the
seoond stage. To test the dasdfication ability of the global network, approximation errors were
computed for several spatia distributions of training points. It was found that optimum performance
was acdhieved for non-uniform distributions, with deaeasing dstances between the points for
increasing output parameters. In addition, training point density was increased nea the boundaries of
the locd networks. The best results were obtained for input vedors sded linealy, ag(6) = (sin©
)4 weighting function and the width constant d of 1.4. Approximation errors for the global network
are presented in Fig. 2 as a function of the output parameters. Examination of the results giown in
the figure reveds that the lines representing the distance from the test point (true solution) to its
approximation generaly do not cross network boundaries - in other words, the global network
correctly classifies the test data.

The influence of input data scding and weighting on approximation acaracy was investigated by
comparing the five scding and weighting schemes detailed in the previous ®dion. Locd network
approximation errors were wmputed for all the schemes by combining results from 10 sub-networks.
Summarised results are shown in Table 1. It can be seen that the best overall result is for linea data
weighted with a g(6) = (sin 9)4 function, closely followed by (sin 9)6. In contrast, unweighted input
data, both linear and logarithmic, gave poor performance.

Table 1. Relative approximation errors for local networks using five data

scaling schemes (results combined from 10 local networks)
000000DoO00oooo0ooooooooooooooooog

Scale and Radius error (%) Refr. index error (%)
Scheme weighting oopoooooad oobooooogn
Mean Max. Mean Max.
0000O0bO0bO0bO0ob0obO0obO0obO0obO0obO0obOOobOOooOOooOO
1 log 0.0266 0.8243 0.0253 1.6833

2 linear, hypercube 0.1301 4.0570 0.0395 2.5768

3 linear, (sinB)2 0.0278 1.2762 0.0155 0.8739

4 linear, (sing)* 0.0016 0.1106 0.0012 0.0765

5 linear, (sin@)8 0.0023 0.2170 0.0016 0.0752
000000DoO00oooo0ooooooooooooooooog



It is interesting to dbserve that weighting functions of the type (sin 8)P ocaur in the Gegenbauer
transforms which have recently been used to obtain particularly smple representations of angular
scatering data and which form the basis of a promising new inversion method.1617 The inclusion of
the (sin6)° weighting functions gives emphasis to angular regions where the intensity of light
scatered from sphericd particles is very sensitive to parameter values, which may acount for the
results of the present study. Moreover, both the forward- and the badk-scatering regions are
reduced in magnitude, which is a valuable feaure since these regions are asent or distorted in the
case of experimental data due to the presence of incident light. Therefore, these results suggest that
the common pradice of usng unweighted linea or logarithmicdly scded data in particle light
scattering measurements may have to be reassessed.

Relative goproximation errors for the combined locd networks are shown in Fig. 3 as a function
of the output parameters r and n. The existence of high values of approximation error for isolated
cases of test data (for example, for r=1.3 and n=17 in Fig. 3) stemmed from "anomalous’
charader of individual test input vedors. In these caes the input vedors were found not to be
varying smoothly between the training data points. This finding illustrates a problem common to
most neura networks - to minimise arors training examples must adequately represent all cases that
the network is to approximate. Therefore, performance ca be improved by locdly increasing the
density of training data. In particular, the large erors along the n=1.7 boundary could be reduced
quite easily in this way.

Since the forward- and badk-scatering regions are asent or distorted in experimental data, the
locd networks were dso trained and tested with incomplete input vedors. Data was removed from O
° upto, but not including, a variable scatering angle, referred to here a a forward truncation angle,
and/or between a backscattering truncation angle and 18C. Approximation errors for such
incomplete data ae shown in Fig. 4. There was a gradual reduction in acarracy with increasing data
loss up to the forward truncaion angle of about 100° or when up to 130° was removed from the
badkscatering region. After that the reduction was more rapid. While the initial deterioration was
dow, the fad that the arors did increase indicated that the truncaion of scatering intensity data in
angular form resulted in some loss of information. From the pradicd point of view, however, the
acaracy achievable even with alarge lossof data was gill high. For example, maximum errors were

1% and mean errors were below 0.01% with less than a haf of the input data available. An



examination of Figures 4(a) and (b) reveds that, for data weighted with (sin 9)4, the forward and
badkscatering angular regions 0° to about 30° and 120 to 18(C°, respedively, do not appea to
contribute much to the solutions. Moreover, not al of the ceitral 30° to 120° region is required to
maintain high acairacgy, as $own in Fig. 4(c): 60° to 120 is aufficient. Further tests (not shown)
revealed that similar accuracy could be obtained when only thie W data region was used.

Typicd computation times required for training the networks and particle parameter recovery are
shown in Table 2. The evaluations used Matlab 4.2 running on a 166MHz Intel 80586 pocessor (the
training time includes data scding and normalisation but not the input veaor computation from the
Lorenz-Mie theory). One global network and 10locd networks, as described in the previous
sedion, were used with complete (91-element) input data vedors <ded acordingly to scheme 4
from Table 1. The parameter area ©vered by the networks was 0.5um < r < 1.5ymand 1.5<n<
1.7. Ascan be seen, training the networks took lessthan a minute. What is more important, size and
refradive index recovery took typicdly only 0.1 second. The cmputations could be further speeded

up by using purpose-written software, truncated data or a faster processor.

Table 2. Computation time for global and local RBF networks.

goooooooooooooooooooao

Phase Training (s) Solving (s)
goooooooooooooooooooao

Global@ 46.8 0.079

Localb 10.4 0.023
goooooooooooooooooooao
a455 hidden nodes
b 10 subnets, each with 144 nodes

5. Conclusions

Radia basis function reural networks offer a fast and acarate method of solving the inverse
scatering problem for small sphericd particles. The reamvery of both the size and the refradive index
of particles from angle-dependent light scettering data is possble. Maximum relative arors of the
order of 103 and mean errors as low as 10 are eaily achievable. To put these results into a more
tangible context, the radius errors correspond to absolute erors of lessthan 0.1nm on average and
2nm maximum for particle diameters. The maximum errors can be further reduced by locdly
increasing the dengity of training data. Computations with truncated scatering data show that the

absence of scatering data from substantial parts of the 0° to 180° angular range - two thirds or more



- results in only a modest degradation of acarragy. Size ad refradive index recovery is fast, taking
typicdly 0.1 second on an average desktop computer. Training the networks is rapid too - for the
case presented here it took about a minute. The successwith the (sin )P weighting function, most
notably for p =4, suggests that in experimental work involving angle dependent scatering such
weighting may have greater merit than the traditional linear or logarithmic scaling of data.

The parameter space overage (e.g. the size parameter range) can be extended relatively easly
either by simply expanding the range of the training data or, preferably, by adding further locd sub-
networks (the latter approach would involve asmaller computational penalty). Likewise, extending
the present technique to cases involving larger numbers of parameters (for example, complex
refradive index, multi-layered spheres, etc.) should not present magjor difficulties, aslong as lutions
to the direda problem are available. RBF networks are particularly appropriate in this context, since
increasing the number of dimensions ould not grealy incresse the computational burden. Size
distribution recmvery may also be possble, athough, in common with other methods, acaracy is
likely to be dependent on the width and the shape of the distribution.

Z. Ulanowski was supported by a grant from the Engineering and Physicd Sciences Research

Council during this work.
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hidden node

Fig. 1. Architecture of RBF networks.
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Fig. 2. Approximation errors for the global network shown as a function of the output
parameters (radius r and refradive index n). Absolute arors are represented as lines joining the
test point and the crresponding approximation (the line length represents the magnitude of the
error). The training data points are shown as snal redangles and the boundaries of the 10
overlapping locd networks as verticd lines. The input vedors were scded linealy and the

weighting function used wag6) = (sin 9)4. The value of the width constashtvas 1.4.
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Fig. 3. Approximation errors for the locd networks $iown as a function of the output

parameters r (radius) and n (refradive index). Results from 10 locd networks were
combined and relative arors cdculated separately for r () and n (b). The input vedors

were scded linealy, the weighting function used was g(0)

constand was 1.
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Fig. 4. Approximation errors for the locd networks trained and tested with incomplete
(truncaed) data. The arors are shown as a function of the truncation angle. The data is
between the forward scatering truncation angle and 180 in (a), between 0° and the
badkscatering truncation angle in (b) and between the forward truncaion angle and 120
°in (c). Mean (open symbols) and maximum relative arors (filled symbols) for the
radius (r) and the refradive index (n) are given. The input vedors were scaed linealy,
the weighting function used wgéd) = (sin 9)4 and the width constadtwas 1.



