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Abstract. We study digraphs preserved by a Maltsev operation, Malt-
sev digraphs. We show that these digraphs retract either onto a directed
path or to the disjoint union of directed cycles, showing that the con-
straint satisfaction problem for Maltsev digraphs is in logspace, L. (This
was observed in [19] using an indirect argument.) We then generalize
results in [19] to show that a Maltsev digraph is preserved not only by a
majority operation, but by a class of other operations (e.g., minority, Pix-
ley) and obtain a O(V 4

G)-time algorithm to recognize Maltsev digraphs.
We also prove analogous results for digraphs preserved by conservative
Maltsev operations which we use to establish that the list homomor-
phism problem for Maltsev digraphs is in L. We then give a polynomial
time characterisation of Maltsev digraphs admitting a conservative 2-
semilattice operation. Finally, we give a simple inductive construction of
directed acyclic digraphs preserved by a Maltsev operation.

1 Introduction

The study of relational structures and, in particular, digraphs preserved by cer-
tain operations from universal algebra became extremely important during the
last decade. The main driving force behind this is the algebraic constraint sat-
isfaction problem (CSP) dichotomy conjecture, which states that a constraint
satisfaction problem CSP(B) is tractable if the relational structure B is preserved
by a weak-near-unanimity (weak-NU) operation, and is NP-complete otherwise
[5, 6, 20]. Generalizing the dichotomy theorem of Hell and Nešetřil [16], the con-
jecture has been established for digraphs with no sinks and no sources by show-
ing that such digraphs are very structured, in fact, they retract onto a disjoint
union of directed cycles [3]. Other results relating the complexity of CSPs on
digraphs to the existence of operations that preserve the digraph can be found,
for example, in [2, 1].
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Once the tractability of a CSP is established, one also wishes to know the
fine-grained complexity of that CSP, i.e. is the CSP in some subclass of P,
such as L or NL? To establish the membership of a CSP in a complexity class
inside P it is important to study the structure of relational structures (and
digraphs) preserved by operations which are more “restrictive” than weak-NU
operations, i.e. operations that imply the presence of a weak-NU operation. Two
important results in this direction, which we will invoke, are that if a relational
structure is preserved by a majority operation, then the corresponding CSP is
in the complexity class NL [9]; and if CSP(B) is definable in Datalog and B is
preserved by a Maltsev operation, then CSP(B) is in L [10, 12].

We study the structure of digraphs preserved by a Maltsev operation, that we
call Maltsev digraphs. We show that these digraphs retract either onto the disjoint
union of directed cycles or to a directed path. This gives a direct proof that
the corresponding CSP is in constant width symmetric Datalog and therefore
in L. (Membership of these CSPs in symmetric Datalog, without the constant
width guarantee, was independently shown by Kazda [19], however, his proof is
rather indirect.) We then generalise other results in [19] to show that a Maltsev
digraph is preserved not only by a majority polymorphism, but also by a class
of polymorphism obeying certain restrictions (e.g. minority, Pixley). We also
extend the results to the conservative setting, i.e. we show that a conservative
Maltsev digraph is preserved by a class of conservative polymorphisms.

A generalization of the rectangularity [4] property of digraphs is introduced.
We call this rectangularity total rectangularity, and we establish that a digraph
is preserved by a Maltsev operation iff it is totally rectangular. Similarly, we
show that a digraph is preserved by a conservative Maltsev operation iff it is
universally rectangular, a specific form of total rectangularity.

We apply our results to the list homomorphism problem, LHOM, for directed
graphs. While the complexity of LHOM for undirected graphs is completely un-
derstood [13], for the directed version, the only result known is a P vs. NP
dichotomy [17]. We show that LHOM for Maltsev digraphs is in L.

It is shown that a digraph preserved by a Maltsev operation is also preserved
by a conservative 2-semilattice operation iff the digraph satisfies a certain com-
binatorial property. We note that if a structure is preserved by a 2-semilattice
operation, then CSP(B) is in Datalog and therefore in P [18]. We also charac-
terise Maltsev digraphs preserved by a conservative 2-semilattice operation and
show that these digraphs can be recognised in NL.

Finally, an inductive construction of directed acyclic graphs preserved by a
Maltsev operation is given. The main motivation behind this construction is
that we suspect that extending this construction to n-permutable digraphs (2-
permutable digraphs are precisely the Maltsev digraphs [15]) could make progress
towards identifying all list homomorphism problems for digraphs in L. We note
that in [13], an inductive construction of “conservative” n-permutable digraphs
is key to the identification of all graphs whose LHOM is in L.
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2 Preliminaries

2.1 Algebra

We describe the algebraic definitions for digraphs, however, note that these
definitions are straightforward to generalize to relational structures. Let G =
(VG, EG) and H = (VH , EH) be digraphs. A homomorphism from G to H is
a map f from VG to VH , such that for every edge (u, v) ∈ EG we have that
(f(u), f(v)) is an edge in H, i.e. (f(u), f(v)) ∈ EH . A digraph G is called a core
if every homomorphism from G to itself is an automorphism, i.e. a permutation
on VG. Let G′ be a subgraph of G. We say that G retracts onto G′ if there
is a homomorphism h : G → G′ such that h is the identity map on G′. For a
digraph H, we can then define CSP(H) as the class of all digraphs that admit a
homomorphism to H

An n-ary operation on a set A is a function f : An → A. Given a digraph G
and an n-ary operation f on VG, we say that f preserves G, or that f is a poly-
morphism of G, if for any n edges (u1, v1), . . . , (un, vn) ∈ EG (not necessarily dis-
tinct), the pair (f(u1, . . . , un), f(v1, . . . , vn)) ∈ EG. For an n-ary operation f , we
write f(x1, . . . , xn) ≈ f(y1, . . . , yn) if f(x1, . . . , xn) = f(y1, . . . , yn) for all possi-
ble values of the xi, yi, i = 1, . . . , r. A ternary operation m is Maltsev if it sat-
isfies m(x, x, y) ≈ m(y, x, x) ≈ y, Pixley if it satisfies m(x, x, y) ≈ m(y, x, x) ≈
m(y, x, y) ≈ y, majority if it satisfies m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ x,
and minority if it satisfies m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ y. A binary
operation ∗ is 2-semilattice if it satisfies x ∗ x ≈ x, x ∗ y ≈ y ∗ x ≈ x ∗ (x ∗ y).

2.2 Graph Theory

Since all graphs in the paper are directed, we use the terms graph and digraph
interchangeably. For a natural number n we write [n] = {1, 2, . . . , n}. An oriented
path is a sequence of, not necessarily distinct, vertices v1, . . . , vn such that for
every i ∈ [n − 1], either (vi, vi+1) (a forward edge) or (vi+1, vi) (a backward
edge) is an edge. We use the terms path and oriented path interchangeably. A
cycle is an oriented path with starting point v1 and endpoint vm such that either
(vm, v1) or (v1, vm) is an edge. The net length of a path P , net(P ), is the number
of forward edges minus the number of backward edges in P . A (reverse) dipath
is a sequence of, not necessarily distinct, vertices v1, . . . , vn such that for every
i ∈ [n−1], (vi, vi+1) ((vi+1, vi)) is an edge. A directed cycle is a dipath v1, . . . , vn
such that (vn, v1) is also an edge. For a (reverse) dipath P , we let len(P ) denote
the number of edges in P . We use the term simple dipath or (directed) cycle to
indicate that all vertices of the dipath or (directed) cycle are distinct.

A component of digraph G is a maximal subgraph, H, of G such that for
every pair of vertices u, v ∈ VH , there is an oriented path from u to v. A digraph
with one component is said to be connected. A digraph is a directed acyclic graph
(DAG) if it contains no directed cycles. A DAG G is layered if there exists q ∈ N
such that the vertices of G can be partitioned into q levels L0, . . . , Lq−1, such
that any edge of G goes from Li to Li+1, for some i = 0, . . . , q − 2.
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Let G be a digraph, and x a vertex of G. We define x+1 = {y ∈ VG : (x, y) ∈
EG}, and x−1 = {y ∈ VG : (y, x) ∈ EG}. We call a vertex v a source if v−1 = ∅,

and a sink if v+1 = ∅. If u and v are vertices of G, u
k→ v denotes the existence

of a dipath from u to v of length k; u→ v denotes u
1→ v.

3 Retracts of Maltsev digraphs

Definition 1 (totally rectangular). A digraph G is k-rectangular if the fol-
lowing implication holds for all vertices x, y, u, v:

x
k→ u & y

k→ u & y
k→ v ⇒ x

k→ v.

A digraph is rectangular if it is 1-rectangular, and totally rectangular if it is
k-rectangular for every k ∈ N.

It is not hard to verify that a Maltsev digraph must be totally rectangular, but
in Section 4 (see Corollary 1) we show that the two properties are equivalent.

Example 1. The digraph in Fig. 1 is rectangular but not 2-rectangular. While
the digraph in Fig. 4 is totally rectangular.
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Fig. 1. A rectangular digraph that is not 2-rectangular.

We now state the main result of this section.

Theorem 1. Let G be a totally rectangular digraph. If G is acyclic then G
retracts onto a simple dipath. Otherwise G retracts onto the disjoint union of
simple directed cycles.

The proof of Theorem 1 is a direct consequence of Lemma 4 below. We begin
with some definitions and simple observations.

Lemma 1. Let G be a digraph. Then G is layered iff for every pair of vertices
u, v in G, and any pair of oriented paths P and Q from u to v, it holds that
net(P ) = net(Q).

Definition 2. Let G be a digraph that contains a directed cycle. Let C be a
shortest directed cycle in G and assume it has length m. We say that G is
inconsistent if there exist two vertices u, v in G such that, there are two different
oriented paths of net lengths `1 and `2 from u to v such that `1 6≡ `2 mod m.
Otherwise we say that G is consistent.

Proposition 1. Let G be a digraph that contains a directed cycle. Let C be a
shortest directed cycle in G. Then G retracts onto C iff G is consistent.
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Lemma 2. Let G be a totally rectangular digraph and u, v be vertices in G.
Let P and Q be two dipaths in G from u to v, such that len(P ) > len(Q). Set
k = len(P ), ` = len(Q), and d = k − `. Then one of the following two cases
occurs:

1. If 2` > k, then G contains vertices u′, v′ and dipaths P ′, Q′ from u′ to v′ with
the following property: len(P ′) = `, len(Q′) = 2`−k, and len(P ′)−len(Q′) =
d;

2. If 2` ≤ k, then G contains a directed cycle of length d.

Proof. See Fig. 2. In the first case, let u′ be the vertex of P such that the
subpath Pu′v of P from u′ to v has length `. Let v′ be the vertex of P such that
the subpath Puv′ of P from u to v′ has length `. Applying the `-rectangularity of
G to Pu′v, Q, and Puv′ , we obtain the desired dipath P ′ with len(P ′) = `. The
other required dipath Q′ is the subpath of P from u′ to v′. Since k = 2`−len(Q′)
we have that len(Q′) = 2`− k, and len(P ′)− len(Q′) = `− (2`− k) = k− ` = d.

In the second case, the two paths P ′ andQ′ form a cycle of length `+(k−2`) =
d because 2` ≤ k.

u

v

u′

v′

P ′ Q
Q′

P u

v

u′

v′

P ′ Q
Q′

P

Fig. 2. Case 1 (left) and Case 2 (right) of Lemma 2.

Lemma 3. Let G be a totally rectangular digraph and u, v ∈ VG. Let P1 and
P2 be oriented paths in G from u to v. Assume that net(P1) > net(P2), and set
d = net(P1)− net(P2). Then there are vertices s, t ∈ VG and dipaths Q1 and Q2

in G from s to t, such that len(Q1)− len(Q2) = d.

Lemma 4. Let G be a connected totally rectangular digraph. If G is a DAG
then G retracts onto a simple dipath. Otherwise G retracts onto a simple directed
cycle.

Proof. Assume first that G is a DAG. We claim that G must be layered. Assume,
for a contradiction, that G is not layered. By Lemma 1, there exist u, v ∈ VG
and oriented paths P and Q from u to v, such that net(P ) 6= net(Q). Using
Lemma 3, we can assume that P and Q are dipaths of different length. Now we
repeatedly apply Case 1 of Lemma 2 as long as it is possible, and then applying
Case 2 yields a cycle, a contradiction. So G is layered.

Assume that G has levels L0, . . . , Lq−1. Fix vertices s ∈ L0 and t ∈ Lq−1,
and let O be any oriented path from s to t (such a path exists because G is
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connected). Applying the total rectangularity of G to appropriate subpaths of
O, it is easy to see that there exists a dipath D of length q− 1 from s to t in G.
Clearly, G retracts onto D.

Suppose that G contains a directed cycle. By Proposition 1, it is enough
to show that G is consistent. Assume this is not the case. Let C be a shortest
directed cycle in G, and assume it has length m. Because G is inconsistent, we
can find vertices u, v ∈ VG and oriented paths P1 and P2 from u to v, such that
net(P1) 6≡ net(P2) mod m. Set `1 = net(P1) and `2 = net(P2). Assume w.l.o.g.
that `1 > `2, and that u is a vertex of C. Note that if u is not a vertex of C, then
we fix a vertex c of C and find any oriented path S from c to u. Then attaching
S to P1 and P2 at vertex u gives us the desired oriented paths. Furthermore, we
can assume that `1−`2 = d < m, because if not, we can add C-loops from u to u
to P2 to increase its length by a multiple of m, until `1−`2 < m. Using Lemma 3
we obtain directed paths Q1 and Q2 such that len(Q1)− len(Q2) = d, and then,
by applying Lemma 2, we obtain a cycle of length d in G, a contradiction.

By Lemma 4, each connected component of G retracts either onto a sim-
ple dipath or to a simple directed cycle. The trivial observation that a dipath
homomorphically maps to a cycle completes the proof Theorem 1.

4 Characterisations, Polymorphisms and Algorithms

4.1 Rectangular Characterisations and Other Polymorphisms

In this section we generalise a technique of Kazda [19] to characterise digraphs
that admit Maltsev and conservative Maltsev polymorphisms as those which
are totally rectangular and universally rectangular respectively and to provide
polynomial time algorithms for recognising the relevant properties. Furthermore,
we show that Maltsev digraphs also admit many other polymorphisms, and under
certain conditions, they also admit conservative 2-semilattice polymorphisms.

Definition 3 (conservatively k-rectangular, universally rectangular).
We say that a graph is conservatively k-rectangular if it satisfies the following
sentence:

x→ x1 → · · · → xk−1 → u
y → y1 → · · · → yk−1 → u
y → z1 → · · · → zk−1 → v

⇒
{

There is a path x→ w1 → · · · →
wk−1 → v with wi ∈ {xi, yi, zi}
for each i.

(1)

A graph that is conservatively k-rectangular for all k ≥ 1 will be called universally
rectangular.

Example 2. The digraph in Fig. 4 is conservatively rectangular but not conser-
vatively 2-rectangular. While the digraph in Fig. 3 is universally rectangular.

Definition 4. Let G be a digraph. Define the binary relations R− on VG by x R−

y if x−1∩y−1 6= ∅. The dual relation R+ is defined by x R+ y if x+1∩y+1 6= ∅.
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Fig. 3. A universally rectangular digraph

The relation R+ is an equivalence relation on the set {x ∈ VG : x+ 6= ∅}, the
set of vertices of G that are not sinks. The relation R− is an equivalence relation
on the set {x ∈ VG : x− 6= ∅}, the set of vertices of G that are not sources. So it
makes sense to consider the respective factor graphs, this was observed in [19].
We use the notation G/R+ to denote the graph on the R+-classes of G. Given
R+-classes A,B, we write A→ B if there is some a ∈ A and b ∈ B with a→ b.
Similarly, G/R− denotes the same construction, but using the relation R−. Note
that G/R+ is not strictly an actual graph quotient of G, only a quotient of an
induced subgraph of G. Nevertheless, we sometimes refer to it as “the quotient
of G by R+”. The proof of the following lemma is routine.

Lemma 5. Let G be a rectangular digraph and k > 1.

1. G is `-rectangular for all ` = 1, . . . , k if and only if G/R+ is `-rectangular
for all ` = 1, . . . , k − 1.

2. If G is conservatively `-rectangular for all ` = 1, . . . , k then G/R+ is con-
servatively `-rectangular for all ` = 1, . . . , k − 1.

For a totally rectangular graph G, define G0 = G and Gi+1 = Gi/R
+,

i ≥ 1. From Lemma 5 it follows that Gi is defined for all positive integers i, and
eventually Gi will either be empty or a disjoint union of directed cycles (the only
situations that R+ can be trivial). We define G∞ = Gk, where k is such that
Gk = Gk+1 (i.e. G∞ is either empty or a disjoint union of directed cycles).

The next lemma is obtained by applying the Maltsev property to the columns
of the premise of (1).

Lemma 6. Let G be a digraph.

1. If G has a Maltsev polymorphism, then G is totally rectangular.
2. If G has a conservative Maltsev polymorphism, then G is universally rectan-

gular.

Lemma 7. Let a, b be vertices in a totally rectangular digraph G satisfying con-
servative 2-rectangularity and assume that neither a nor b is a source or sink. If
a/R+ ∩ b/R− is nonempty then either b ∈ a/R+ or a ∈ b/R−.

Proof. Let c ∈ a/R+ ∩ b/R−. There are vertices e, f, g, h such that {a, c} ⊆ e−1,
b ∈ f−1, a ∈ g+1 and {c, b} ∈ h+1. However G is conservatively 2-rectangular
so that there is either an edge from at least one of a, c to f or there is an edge
from g to at least one of {b, c}. Then 1-rectangularity shows that either there is
an edge from a to f or from g to b.



8 Catarina Carvalho, László Egri, Marcel Jackson, and Todd Niven

Theorem 2. Consider a property C of digraphs defined by the existence of poly-
morphisms t1, t2, . . . , tk (not necessarily distinct) satisfying a single equational
sequence

t1(x1,1, x1,2, . . . , x1,n1
) ≈ · · · ≈ tk(xk,1, xn,2, . . . , xk,nk

) ≈ x,

where {x1,1, . . . , x1,n1} = · · · = {xk,1, . . . , xk,nk
} and x ∈ {x1,1, . . . , x1,n1}. The

following statements are true provided that the equation x ≈ y does not follow
from C.

1. Let G be a totally rectangular digraph. Then G has property C if and only if
G∞ has property C.

2. Let G be universally rectangular. Then G has property C with each ti con-
servative if and only if G∞ has property C with each of the ti conservative.

The same conclusions can be made without the requirement that ≈ x be included
in the equational sequence, and if the polymorphisms are required to be idempo-
tent.

Proof. Our proof is very similar to the main proof in [19]; we use Lemma 5
rather than the assumption of the Maltsev property directly. We focus only on
the conservative case (not considered in [19]), as the non-conservative case is
obtained by following this proof and missing some steps. We give only a sketch
here.

It is easy to see that if G has conservative property C then so does G/R+

by defining ti(x1/R
+, . . . , xn/R

+) = ti(x1, . . . , xn)/R+. Thus, it suffices to show
that if G/R+ satisfies some conservative property C then so does G. This uses
only total rectangularity (to ensure that successive quotients are well defined).

The reverse direction is shown by backward induction over successive quo-
tients by R+: essentially, provided G/R+ has polymorphisms ti witnessing prop-
erty C, then so does G. This part of the argument is mostly identical to that
given in [19] (in the case of majority polymorphisms), except Lemma 7 is invoked
to guarantee a conservative choice of the polymorphisms.

It is useful to note that instead of explicit use of universal rectangularity,
this argument used only the fact that on each successive quotient by R+, both
rectangularity and the conclusion of Lemma 7 hold.

Some instances of polymorphisms satisfying the conditions of Theorem 2 are
majority, Maltsev and Pixley. In these cases G∞ always has the desired poly-
morphism, giving the following corollary.

Corollary 1. Let G be a digraph.

1. G admits a (conservative) Maltsev polymorphism iff it admits a (conserva-
tive) Pixley operation iff it is totally (universally) rectangular.

2. If G is totally (universally) rectangular then G admits a (conservative) mi-
nority polymorphism and a (conservative) majority polymorphism.
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Remark 1. The first part of Corollary 1 strengthens the result given in Lemma 4
of [11], for the case of digraphs. The relational clone 〈B〉 of a structure B is the set
of all relations that can be expressed with primitive positive first-order formulas
(i.e. only existential quantification, conjunction, and equality is allowed) from B.
When we restrict [11, Lemma 4] to digraphs, it can be stated as follows: A
digraph G is preserved by a Maltsev operation iff every binary relation in 〈G〉 is
rectangular. It is easy to see and well-known that every binary relation in 〈G〉 can
be expressed as BG(S, a, b) = {(h(a), h(b))|h is a homomorphism from S to G}
for a structure S with two distinguished vertices a and b. Then Corollary 1
implies that for a digraph G to be preserved by a Maltsev operation it is enough
to require that only those binary relations in 〈G〉 that can be expressed as
BG(S, a, b), where S is a directed path with initial vertex a and terminal vertex
b, are rectangular.

The above corollary yields an algorithm for verifying if a graph has a Maltsev
(or Pixley) polymorphism. Indeed, the rectangularity of a digraph is equivalent to
the following property of its adjacency matrix: when two rows (or two columns)
share a common 1 they are identical. On an n-vertex digraph this property may
be verified in O(n3) steps. A digraph has a Maltsev polymorphism if and only if
each (of at most n) successive quotient by R+ is rectangular, with the process
stopping once there are no R+-classes of size more than 1 (which happens after
at most n quotients). Overall this takes O(n4) steps (quadratic in terms of the
size of the adjacency matrix).

Universal rectangularity (equivalently, the existence of a conservative Maltsev
polymorphism) can also be verified in polynomial time by verifying total rectan-
gularity and conservative 2-rectangularity at each successive quotient by R+. In
fact, the proof of Theorem 2 is sufficiently constructive to construct the desired
polymorphisms (when they exist): simply work backwards from their definition
of G∞.

4.2 Conservative 2-Semilattice Polymorphisms

A disjoint union of directed cycles admits a conservative commutative binary
(ccb) polymorphism (which coincide with conservative 2-semilattice operations)
if and only if it contains no even cycles. This provides a case where Theorem 2
characterises a proper subclass of conservative Maltsev digraphs. In this section
we classify Maltsev digraphs admitting a ccb polymorphism. A corollary of the
result will be a sort of converse to Theorem 2: a Maltsev digraph with a ccb
polymorphism is necessarily conservative Maltsev (Proposition 2 below).

Consider any digraph G and let ∗ be any conservative commutative binary
operation on VG. The operation ∗ has an easy interpretation as a colouring of
the nondiagonal elements of the cartesian square V 2

G\{(v, v) | v ∈ VG}: the pair
(a, b) is coloured L if a ∗ b = a and R if a ∗ b = b; commutativity is equivalent to
(a, b) having different colour to (b, a). (The exclusion of the diagonal elements
is only for convenience.) We now examine the consequences of ∗ being a ccb
polymorphism.
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For any digraph G we define a structure—the ccb graph of G—on the non-
diagonal elements of the cartesian square V 2

G\{(v, v) | v ∈ VG}. The ccb graph
is a graph with two kinds of edges: “orienting” edges, which are directed, and
“straight” edges which are considered as having no direction.

– A (directed) orienting edge is placed from (a1, b1) to (a2, b2) if there are
parallel edges connecting each of the following pairs in G: a1 and a2; b1 and
b2; and b1 and a2 but not a1 and b2. The following diagram depicts two
situations that an orienting edge pointing from (a1, b1) to (a2, b2) can arise:

s ss s
-

-
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b2
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b2
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– An (undirected) straight edge is placed from (a1, b1) to (a2, b2) if there are
parallel edges connecting the following pairs: a1 and a2; b1 and b2; but not
a1 and b2 or a2 and b1.

A directed path in the ccb graph is a path of orienting edges and straight
edges, in which each orienting edge is traversed in a forward direction. We now
adopt the notation  to denote directed paths: note that (a, b)  (c, d) if and
only if (d, c)  (b, a). An important observation is: if (a, b) is not connected to
(c, d) in the ccb graph of G then the compatibility of the ccb operation with the
edges of G does not fail at the pairs (a, b) and (c, d). Thus the digraph G admits
a ccb polymorphism iff the ccb graph of G can be coloured by L and R such
that L and R are preserved across straight edges, L is preserved forward across
orienting edges and R is preserved backward across orienting edges. Expressed
in terms of  this becomes the following rules.

(L) If (u, v) is coloured L and (u, v) (x, y) then:
(1) (x, y) is coloured L.
(2) (y, x) is coloured R.

(R) If (u, v) is coloured R and (x, y) (u, v) then:
(1) (x, y) is coloured R.
(2) (y, x) is coloured L.

Theorem 3. A digraph G admits a ccb polymorphism ∗ if and only if for every
distinct a, b ∈ G, the ccb-graph of G does not contain a directed path both from
(a, b) to (b, a) and from (b, a) to (a, b). When a ccb polymorphism exists, it can
be constructed in a polynomial number of steps.

Proof. The forward implication is simply the statement that the colouring of the
ccb-graph must colour each pair (a, b) oppositely to its reverse (b, a), and the
colouring rules (L)(1)–(R)(2) must be obeyed.

Now we show the converse: assume that for every a, b ∈ G, the ccb-graph of
G does not contain a directed path from (a, b) to (b, a) and from (b, a) to (a, b).
We construct (in a polynomial number of steps) a successful colouring by L and
R, whence a ccb polymorphism.
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First phase. Begin by finding any pairs (a, b) from which there is a directed
path to the reverse pair (b, a) (obviously, such a path must contain an orienting
edge). In every case, colour (a, b) by R and (b, a) by L. By assumption, no pair
is coloured two different colours simultaneously.

Second phase. Routine arguments show that after phase 1, no uncoloured
pair is forced to be coloured by rules (L)(1)–(R)(2). Complete the colouring by
iterating the following process until all pairs are coloured: take any uncoloured
pair, (a, b) say, and colour it arbitrarily; colour any other pairs for which rules
(L)(1)–(R)(2) apply starting from (a, b).

Routine arguments show that, at each iteration, no pair is coloured twice by
different colours, hence the desired colouring (and ccb-polymorphism) is even-
tually achieved.

Note that the second property in Theorem 3 can be verified using Reachability
in the ccb-graph of G, so is solvable in nondeterministic logarithmic space. Hence
deciding if a digraph has a ccb polymorphism is in NL too.

Proposition 2. The following are equivalent for a Maltsev graph G:

1. G has a conservative commutative idempotent binary polymorphism;
2. G has a conservative commutative idempotent binary polymorphism and a

conservative Maltsev polymorphism;
3. G has a conservative Maltsev polymorphism and G∞ is empty or has no even

length cycles.

Proof. (2)⇒(3)⇒(1) follow from Theorem 2, because a disjoint union of directed
cycles has a ccb iff it has no even length cycles. For (1)⇒(2) we use Theorem
3 to prove a version of Lemma 7 with conservative 2-rectangularity replaced by
ccb. The routine proof, which we omit, uses the digraph in Fig. 4.
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Fig. 4. A Maltsev digraph with no conservative Maltsev polymorphism

Note that the digraph in Fig. 4 is easily seen to admit a conservative majority
polymorphism, a Maltsev polymorphism, but no conservative Maltsev polymor-
phism. So conservative majority cannot replace ccb in Proposition 2.

4.3 A simple inductive construction of Maltsev DAGs

In this section we provide a simple inductive characterisation of totally rect-
angular DAGs. We note that in [19, Corollary 16] Kazda gives an inductive
construction of Maltsev digraphs, however, this construction is not fully satisfy-
ing in the sense that it is non-deterministic, i.e. it does not specify how to obtain
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the desired preimages, and it is not clear if it can be made deterministic. The
construction described below consists of repeated applications of two straight-
forward steps (and their reverse versions) which clearly specify how to obtain
a new Maltsev digraph from an already constructed one by a certain copying
process. We need the following definitions.

Definition 5 ((Reverse) arborescence). An (reverse) arborescence is a di-
rected tree with root r such that every edge points away from (towards) r.

Definition 6 (∇(r, h) and ∆(r, h)). Let G be a digraph, r ∈ VG, and h ∈ N.
∇(r, h) (∆(r, h)) is defined to be the subgraph of G whose vertices and edges are
the vertices and edges of all (reverse) sub-dipaths of G which have initial vertex
r and length h. A vertex v ∈ ∇(r, h) − r (∆(r, h) − r) is called an endpoint of
∇(r, h) (∆(r, h)) if there is a (reverse) dipath of length h from r to v. Otherwise
v is called an inner vertex of ∇(r, h) (∆(r, h)).

Definition 7 (isolated ∇(r, h)). Let G be a digraph. Consider ∇(r, h) (∆(r, h))
for some r ∈ VG and h ∈ N. We say that ∇(r, h) (∆(r, h)) is isolated in G
if for every inner vertex v of ∇(r, h), both the in-neighbourhood and the out-
neighbourhood of v belongs to ∇(r, h) (∆(r, h)).

r

∇(r, 2)
2a

r
∆(r, 2) 2d

p

G G′ G′′

Fig. 5. Construction of a totally rectangular DAG.

We are ready to define the construction formally in Fig. 6. This construction
can be used, for example, to define a minority operation for a totally rectangular
DAG. Also, a more restricted version of the construction can be defined, but it
becomes slightly more technical.

Example 3. Consider the totally rectangular DAG G′′ in Fig. 5. To construct
it using the method in Fig. 6, we start with the dipath G and first apply Step
2a to G to obtain G′. Next we apply Step 2d to G′ obtain G′′. The thick edges
indicate the subgraphs ∇(r, 2) and ∆(r, 2), which are the subgraphs to be copied
and attached appropriately.

Theorem 4. The class of totally rectangular DAGs is the set of digraphs M
defined in Fig. 6.
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1. C contains dipaths of all possible lengths n ∈ N0;

2. C is closed under applying the following operations:

(a) Given a digraph G, let r ∈ VG and h ∈ N such that ∇(r, h) is an arborescence.
Let ∇′ be a copy of ∇(r, h). Join ∇′ to G by identifying the corresponding
endpoints of ∇′ and ∇(r, h). Let the resulting graph be G′;

(b) Given a digraph G, let r ∈ VG be such that r has exactly one incoming edge
(p, r), and h ∈ N such that ∇(r, h) is an isolated arborescence. Let ∇′ be a
copy of ∇(r, h) with root r′. Join ∇′ to C by identifying the corresponding
endpoints of ∇′ and ∇(r, h), and adding the edge (p, r′). Let the resulting
graph be G′;

(c) The reverse version of Step 2a (defined in the natural way);

(d) The reverse version of Step 2b (defined in the natural way).

3. M is the set of digraphs that can be obtained by taking disjoint unions of digraphs
in C.

Fig. 6. Inductive construction of the set M of totally rectangular DAGs.

5 Some Applications to the Constraint Satisfaction
Problem

The logic programming language Datalog is one of the main tools to solve CSPs
in P. The fragments of Datalog called linear and symmetric Datalog are con-
jectured to contain all CSPs in NL and L, respectively, see [7, 8, 14]. A minor
technicality is that it is actually the complement of a CSP that can be defined
in Datalog and its fragments, not the actual CSP.

By Theorem 1, the core of a Maltsev digraph is either a directed path or a
disjoint union of cycles, and for such digraphs the following is not difficult to
show.

Corollary 2. Let H be a Maltsev digraph. Then the complement of CSP(H)
can be defined in symmetric Datalog of constant width and therefore CSP(H) is
in L.

The list homomorphism problem for a digraph H, LHOM(H), is the following
decision problem. Given an input digraph G and for each vertex v ∈ VG a list
Lv ⊆ VH , determine if there is a homomorphism h from G to H such that for
each v ∈ VG, h(v) ∈ Lv. This problem is exactly CSP(Hu) where Hu is the
structure obtained by expanding the digraph H with unary relations U , where
U runs through all non-empty subsets of VH . Using Corollary 1, the following
corollary is easy to deduce.

Corollary 3. The complement of LHOM(H) for a conservative Maltsev digraph
H can be defined in symmetric Datalog, and therefore LHOM(H) is in L.
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