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Most computational models for gender classification use global information (the full face image) giv-
ing equal weight to the whole face area irrespective of the importance of the internal features.
Here, we use a global and feature based representation of face images that includes both global
and featural information. We use dimensionality reduction techniques and a support vector machine
classifier and show that this method performs better than either global or feature based repre-
sentations alone. We also present results of human subjects performance on gender classification
task and evaluate how the different dimensionality reduction techniques compare with human sub-
jects performance. The results support the psychological plausibility of the global and feature based
representation.
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1. Introduction

Most computational models of gender classification

use whole face images, giving equal weight to all

areas of the face, irrespective of the importance

of internal facial features. In this paper we eval-

uate the importance of global and local informa-

tion in a series of gender recognition experiments.

Global processing of faces is assumed to encode

coarse information like shape and configuration of

internal features, while featural processing utilises

more detailed representations of facial features, such

as the eyes and mouth. In psychological terms, the

latter implies an attentional component whereby

salient features are processed in more detail than

the coarse image. In this study we use these two

kinds of representation. Since face image data have

a very high dimensionality, we apply dimensional-

ity reduction techniques on the data before applying

a Support Vector Machine (SVM) to classify gen-

der. For comparison we use different dimensionality

reduction techniques, such as Principal Component

Analysis (PCA), Curvilinear Component Analysis

(CCA), and Self Organising Maps (SOM). Finally,

we present results of human subjects performance on

gender classification task and evaluate how the dif-

ferent dimensionality reduction techniques compare
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with human subjects performance. The main find-

ings of this study are as follows.

1. Gender classification of the global and featural

model is significantly better than either global

(full face) or featural models (eyes and mouth).

2. All three dimensionality reduction techniques

produced high classification rates, with PCA

performing slightly better than CCA and SOM.

However CCA, a nonlinear method, needed far

fewer variables compared to PCA.

3. Experiments with human subjects showed impres-

sive levels of gender recognition accuracy from

representations of single facial features (i.e., eyes

and mouths). This underscores the importance

of these specific features and supports the psy-

chological plausibility of the global and feature

based model discussed in this paper. Moreover,

there was some association between the errors

made by the models and those made by human

observers.

The remainder of the paper is organised as

follows. A brief introduction of the different dimen-

sionality reduction approaches used in this study is

presented in the next section. Related work is dis-

cussed in Sec. 3. Section 4 presents the global and

feature based method used for this study. Sections 5

and 6 present the computational and human experi-

mental results. We conclude with some discussion of

the results in Sec. 7.

2. Dimensionality Reduction

High dimensional data usually contain redundan-

cies and may have many irrelevant variables. Clas-

sifiers like neural networks may need huge networks,

with many free parameters, to cover the high dimen-

sional data. Networks, on such datasets, even if suc-

cessfuly trained, often perform badly on their test

sets. This bad generalization may be due to the

large number of free parameters representing irrele-

vant information. To learn relevant information from

such datasets, a large number of datapoints would be

needed, which is often impractical, and the training

time needed for learning also increases to a great

extent. This problem with high dimensional data

is often referred in the literature as the “curse of

dimensionality”.1

Due to correlations among the data, linear and

nonlinear, a D dimensional data may actually lie on a

(a)

(b)

Fig. 1. Linear and nonlinear data.

d dimensional manifold (D > d) and the true dimen-

sion or the Intrinsic Dimension of such data is said

to be d. For example a plane embedded in a three-

dimensional space, as shown in Image (a) in Fig. 1

has an Intrinsic Dimension value of 2 as data on two

axes are linearly dependent. Image (b) in Fig 1 shows

the well known three dimensional horseshoe data

distribution. However any point in the data can be

defined by a linear axis and a curvilinear axis, indi-

cating that its Intrinsic Dimension value is 2. The

problems, related to high dimensionality, can be cir-

cumvented by accounting the correlations among the

data and reducing the data to its Intrinsic Dimen-

sion. There is also evidence that redundancy reduc-

tion is an important part of sensory processing in

human brain.2
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2.1. Principal Component Analysis

Principal Component Analysis (PCA)3 is a popu-

lar dimensionality reduction technique that linearly

transforms a D dimensional data to a d dimensional

data, without significant loss of information, where

d ≤ D. PCA finds principal component axes in the

data cloud so that data dimension can be reduced by

projecting the data onto these axes. The first princi-

pal component would be in a direction, such that it

accounts for the maximum variance of the data. The

second principal component lies in a direction nor-

mal to the first principal component, and accounts

for as much of the remaining variance as possible.

The third principal component would be in a direc-

tion normal to the first two and so on.

2.2. Curvilinear Component Analysis

Curvilinear Component Analysis (CCA)4 is a recent

technique, which has the ability to account for strong

nonlinear correlations among the data. The idea of

CCA is to preserve distances in the input and out-

put spaces; all the possible distances between points

in the input space should match the respective dis-

tances in the output space. However, preservation of

larger distances may not be possible in the case of

nonlinear data, as a global unfolding of the man-

ifold is required to reduce the dimension. In this

case, it is important that at least local (smaller) dis-

tances should be preserved. For this, CCA uses a

neighborhood function which ensures the condition

of distance matching is satisfied for smaller distances

while it is relaxed for larger distances. Preservation

of smaller distances (local mapping) may then lead

to the stretching of larger distances (global unfold-

ing). The projection layer of CCA minimizes an error

function which is given as

E =
1

2

N
∑

i=1

N
∑

j=1

(

dX
i,j − dY

i,j

)2
Fλ

(

dY
i,j

)

∀ j 6= i (1)

where dX
i,j and dY

i,j are the Euclidean distances

between points i and j in the input space X and

output space Y respectively. Fλ(dY
i,j) is the neigh-

borhood function, selected such that it favors smaller

distances over larger ones. Minimizing the error func-

tion with respect to the point Yi in the output space

by a normal stochastic gradient would give the fol-

lowing update rule.

∇Yi = α(t)

N
∑

j=1

[

2Fλ(dY
i,j) − (dX

i,j − dY
i,j)F

′
λ(dY
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×
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]

(Yi − Yj

)

∀ j 6= i (2)

α(t) the learning rate, and the neighborhood func-

tion Fλ(dY
i,j) can be time varying.

The stochastic gradient update method of (2)

can be conceived as selecting a point Yi in the out-

put space, while the remaining points are pinned.

The selected point is moved (updated) according to

the average influence of all the pinned points. This

method of updating has the following drawbacks.4

• The computational cost is of the order of O(N 2)

as all the possible N(N − 1)/2 distances need to

be calculated at each time step.

• The sum of all influences may lead to an averag-

ing effect, which leads to a small update amount

resulting in slow convergence.

For these reasons CCA uses a different update

method, where the selected point is pinned while the

remaining points are moved according to its influ-

ence. Then, by ignoring the derivative part of (2),

the update rule of CCA can be written as:

∇Yj = α(t)Fλ

(

dY
i,j

) dX
i,j − dY

i,j

dY
i,j

(Yj − Yi) ∀ j 6= i.

(3)

The algorithm for projection of the training data

can be summarized as follows:

Calculate the Euclidean distances between

all pairs of points in the input space.

Initialize the points in the output space

randomly or using PCA.

Initialize epoch t = 0

For each epoch t,

Begin

Calculate alpha(t) and lambda.

For each point Y j in the output space,

Begin

∇Yj = α(t)Fλ

(

dY
i,j

) dX
i,j − dY

i,j

dY
i,j

(Yj − Yi)

∀ j 6= i
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End

Increment t

End

Mapping of a new point (test data) from the

input space X to the output space Y , in CCA,

involves reducing the error function of (1) and is iter-

ative in the same sense as the actual learning process.

However, the update rule is the stochastic gradient

of (2) without the derivative part. The algorithm for

projecting a new point can be summarized as follows:

Calculate the Euclidean distances between

the new test point and each training point.

Initialize the test point in the output

space randomly or using PCA.

Initialize epoch t = 0.

For each epoch t,

Begin

Calculate alpha(t) and lambda.

∇Yi = α(t)

N
∑

j=1

Fλ(dY
i,j)

dX
i,j − dY

i,j

dY
i,j

(Yi − Yj)

∀ j 6= i

Increment t

End

We use the first few variables obtained by the PCA

projection, for initialization of the points in the out-

put space. This initialization, rather than a ran-

dom one, induces some prior information about the

submanifold of the data. The learning rate and the

neighborhood width are calculated as an exponential

decay.

2.3. Self Organising Map

Self Organising Map (SOM)5 is a well-known nonlin-

ear method that learns a mapping from a D dimen-

sional input space X to a d dimensional output space

Y by using principles of Vector Quantization and

Topological Mapping.

3. Related Work

Issues in gender classification have stimulated a great

deal of research by psychologists and computer scien-

tists. While the research in Psychology6–8 has largely

been within the context of human visual process-

ing, and identifying key featural differences in males

and females, Computer Science research9–12 has been

geared more towards specific face identification. The

computational models range from using pixel-based

information to representations derived from geomet-

ric measurements. Studies also vary considerably in

the size of training sets used and in the type of fea-

tures present or absent (for example, some studies

use hair information while others do not). Never-

theless, most models, and specifically those that are

pixel-based, have used whole face images, where the

salience of specific facial features is not captured.

These can be termed as global models.

4. Face Representation

Hair, especially for females, forms a major part of

a facial image and has a dominating affect on clas-

sification. Abdi et al.8 reported gender classification

accuracy of 80% for hairless faces against 91.8% for

the same faces with hair information included. How-

ever, in our previous work,13 classification rates on

faces, with hair information removed was better than

that on faces with hair information. The performance

degradation on faces with hair information in our

experiments was due to the variability of hairstyles

in the dataset. Despite these disparate results, hair

can certainly be an important visual cue for gen-

der identification. The first image in Fig. 2 shows a

pictorial view of the difference in means of female

and male face images. The lighter the pixel lumi-

nance, the larger is the difference and the darker

the luminance, the smaller is the difference between

means. This pictorial view suggests that regions

around the face outline, chin, mouth, and above the

eyes carry discriminatory information. However, the

region around the face outline, with much brighter

luminance, carries greater discriminatory informa-

tion. This region signifies the presence or absence

of hair. The second and third images of Fig. 2 are

the pictorial views of the standard deviations within

Fig. 2. Pictorial views of difference measures.
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the female and male face images respectively. Again,

the lighter the pixel luminance, the larger is the stan-

dard deviation. These images, however, indicate that

the discriminatory information of the regions around

neck and face outline is variable to a large extent in

females and to a certain extent in males. From this

simple analysis, it can be said that hair information is

important. However, a psychologically plausible face-

representation should overcome the problem of vari-

able hairstyles.

In Fig. 2, the first image is the pictorial represen-

tation of the difference of the means, of female and

male face images. The second image is the standard

deviation within the female face images. The third

image is the standard deviation within the male face

images.

In Fig. 3, the three sub-images are obtained from

the original 128×128 image. A 32×64 image pertain-

ing to the eye region and a 32× 64 image pertaining

to the mouth region are extracted from the original

image. The third sub-image is a 64× 64 reduced res-

olution version of the original image.

In this study we use a global and feature based

representation of face images which embodies both

global and featural information. From a 128 ×

128 face image, three sub-images are obtained as

illustrated in Fig. 2. A 32 × 64 pixel strip per-

taining to the eyes region, taking the midpoint

Fig. 3. Extracting sub-images.

between the two eyes as a reference point, and a

32 × 64 pixel strip pertaining to the mouth region,

taking midpoint of the mouth as a reference point,

are extracted from each face image. These sub-

images represent salient featural information. The

third sub-image is a 64 × 64 reduced resolution ver-

sion of the original image and this represents global

information. In this study, the quantity of pixel infor-

mation is identical for featural and global representa-

tions. A similar type of face representation was also

used by Luckman et al.14 for their computational

model of familiar face recognition.

5. Computational Experiments

Experiments are carried out using 400 frontal face

(200 female and 200 male) greyscale images. The

faces are from the following databases: FERET,15

AR,16 and BioId.17 Three sub-images, as explained

in the previous section, are extracted for each of

the 400 faces. Histogram equalization is then applied

on all three sub-images to normalize for different

lighting conditions. We use five-fold cross validation,

with 320 faces (160 females and 160 males) for each

training set and 80 faces (40 females and 40 males)

for each test set, and report average classification

rates using an SVM18 classifier, with RBF kernel.

Before applying classification, dimensionality reduc-

tion techniques discussed in Sec. 3 are applied on the

sub-image data. For PCA reduction we use the first

few principal components, which account for 95%

of the total variance of the data. Since CCA has

the ability to reduce the dimensionality of strongly-

nonlinear data, we use an Intrinsic Dimension esti-

mation technique, the Correlation Dimension,19 and

reduce the data dimension to this Intrinsic Dimen-

sion. For SOM reduction, the subspace dimensional-

ity is chosen as 64 (8 × 8 output grid) for the whole

face and 36 (6 × 6 output grid) for eyes and mouth

sub-images.

First we present classification results on the sub-

images data. As shown in Table 1, all three sub-

images produced high classification rates, indicating

a surprisingly high amount of gender information in

each of them. The figures in parentheses indicate the

subspace dimensionality.

Classification is performed on the composite

data, obtained by combining the data from the

three sub-images. It can be seen from Table 2 that

PCA performed marginally better than CCA and
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Table 1. Average classification rates of the sub-images
by an SVM. Figures in parentheses are the number
of variables obtained after dimensionality reduction.

Feature PCA CCA SOM

Eyes 85.5% 82.75% 80.25%
(250) (22) (36)

Mouth 81.25% 81.55% 80.25%
(253) (22) (36)

Full face 87.5% 87.0% 83.25%
(256) (26) (64)

Table 2. Classification rates of the composite data
and original image data by an SVM. Figures in
parentheses are the number of variables obtained after
dimensionality reduction.

Feature PCA CCA SOM

Composite 92.25% 91.5% 89.75%
(759) (70) (136)

Original full face 86.5% 85.5% 83.25%
(283) (36) (81)

Fig. 4. Average classification rates on different features.

SOM. However, CCA uses far fewer variables (70)

than PCA (759). For a comparison, we also report

the classification rates of the data of the original

128× 128 faces.

It can be seen from Table 2 that the compos-

ite data, which includes both global and featural

information, performed significantly better than the

global model. Figure 4 shows that the composite data

outperformed all other data representations.

6. Human Experiments

6.1. Eye images

Mean performance accuracy for eye classifica-

tion was 77.25% (standard deviation = 5.42%).

Table 3. A comparison of classification accuracy rates
by human participants for mouth images classified incor-
rectly and correctly by the 3 computational models.

Model Incorrect Correct Human Human
Items items accuracy accuracy

(incorrect) (correct)

PCA 13 67 72.7% 78.4%
CCA 13 67 71.9% 78.6%
SOM 19 61 57.1% 83.8%

Chance performance on this task would be 50%

so participants performed well above chance. There

was no difference between male and female par-

ticipants in terms of their accuracy. In the items

analysis, gender recognition accuracy varied consid-

erably across the 80 eye images (range 13–100%

correct). Interestingly, there were very few sets of

eyes that elicited chance levels of recognition per-

formance. Rather, they tended to be correctly clas-

sified by the majority or incorrectly classified by

the majority. A major focus of interest with this

work is whether the classification errors of human

participants are associated with those of the compu-

tational models (PCA, CCA, and SOM) under gen-

eralization. We subdivided the 80 eye images into 2

groups based on whether each model had classified

the gender correctly. We then investigated whether

those items that were erroneously classified by the

model were less accurately classified by the 80 human

participants. This analysis is summarized in the table

below.

Although the accuracy of humans was always

higher for items that had been correctly classified

by the models, than that had been incorrectly classi-

fied, this difference was statistically significant only

for the SOM (p < 0.005). Since the data were not

normally distributed, differences were analyzed non-

parametrically (with Mann-Whitneys U Test). It

is notable that the SOM made more classification

errors than the two other models and this may be

why it predicts the human data more correctly. The

other two models made few errors overall and hence

the sample size is small.

6.2. Mouth images

Mean performance accuracy for gender classification

of mouth images was 75.4% (standard deviation =

5.7%). The fact that, once again, participants scored



1st Reading

April 11, 2005 16:8 00007

The Role of Global and Feature Based Information in Gender Classification of Faces 7

Table 4. A comparison of classification accuracy rates
by human participants for mouth images classified incor-
rectly and correctly by the 3 computational models.

Model Incorrect Correct Human Human
items items accuracy accuracy

(incorrect) (correct)

PCA 15 65 57.0% 79.7%
CCA 20 60 54.6% 82.4%
SOM 21 59 59.2% 81.2%

well above chance level suggests that information

useful for gender recognition can be derived from

specific facial features, even when represented at a

fairly low level of resolution. The overall accuracy

rate of the models and human participants is very

similar. As with the eye data, we compared human

performance on those mouth images that the model

had classified incorrectly and correctly. This data is

presented in Table 4.

Similar to the results on the Eye sets, the mean

accuracy of humans was always higher for items that

had been correctly classified by the models, than that

had been incorrectly classified. But, the differences

were significant at p < 0.001 or less for all 3 meth-

ods, showing that those items which the models fail

to categorize correctly are more likely to elicit gender

recognition errors in humans.

7. Discussion and Conclusion

Hair, especially for females, forms a major part

of the image and has a dominating affect on the

classification. Many males with long hair and females

with short hair were misclassified when the origi-

nal full face images are used. The global and fea-

ture based model largely solved this problem, by

reducing the affect of misleading hairstyles, while

not removing important hair information. Figure 5

shows examples of individual faces that are misclas-

sified when the original full face images are used and

classified correctly by the global and feature based

model.

The global and feature based model for gender

classification presented here performs significantly

better than the global and featural models individ-

ually. This model allows inspection of facial data

at various component levels and the results pre-

sented suggest that all components carry high lev-

els of gender information. We believe that this type

Fig. 5. Examples of misclassified faces due to hair.

of representation also acts as a weighting factor of

information, where highly variable discriminatory

information (like hair) alone does not affect classi-

fication. Importantly, the global and feature based

model captures an attentional component of human

face recognition, whereby a human observer may use

specific face feature cues to aid gender identification.

Our experiments with human subjects showed that

impressive levels of gender recognition accuracy were

obtained from low resolution representations of sin-

gle facial features (i.e., eyes and mouths). This under-

scores the importance of these specific features and

supports the psychological plausibility of the global

and feature based model discussed in this paper.

Moreover, there was some association between the

errors made by the models and those made by human

observers. This, again, supports the psychological

plausibility of these models although we will need

to replicate this in some new sets of feature images

that reflect a greater number of classification errors

by the 3 models. We hope that this approach will

also facilitate a useful comparison between the dif-

ferent dimensionality reduction techniques. Finally,

we note that the Performance of CCA, a nonlinear

technique, is comparable to PCA, with the added

advantage that it uses far fewer variables than PCA.
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