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Abstract—The irregular subarray design technique is gaining 

increasing attention for its excellent compromise between 

cost-effective design and good beamforming performance. In this 

article, a novel framework that incorporates a deep reinforcement 

learning (DRL) technique with a gradient-descent optimization 

method for phase-only pattern synthesis of domino-shaped 

irregular arrays is proposed. By employing the deep Q-network 

(DQN) technique to tile domino-shaped subarrays into an array 

aperture, the exact phase distribution over the aperture can be 

derived. Furthermore, to get better performance of the scanning 

radiation patterns as well as improve the optimization efficiency, a 

novel phase-only gradient-descent optimization method is 

integrated with the DRL training procedure to effectively evaluate 

the pattern synthesis performance of the tiling configuration. 

Through the proposed framework by combining DQN and 

phase-only gradient-descent iterative algorithm, the optimal 

configuration for the target radiation pattern can be efficiently 

optimized since the subarray tiling and optimization can be 

realized simultaneously. The good performance of the proposed 

framework is demonstrated in several case studies of 

16×16-dimensional domino-shaped arrays. Moreover, full-wave 

simulations are used to verify the calculations to demonstrate the 

practical reliability of the developed method.  

 
Index Terms—Sub-arrayed tiling, sidelobe suppression, pattern 

synthesis, gradient-descent. 
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I. INTRODUCTION 

HASE array antenna (PAA) is widely used in 

state-of-the-art telecommunication, dynamic holograms, 

radar technologies, and many other fields due to its excellent 

reliable and fast response beam manipulation ability. To 

guarantee effective propagation distance or spital resolution 

over the air, researchers have shown an increased interest in 

designing phase arrays with a larger number of individual 

antenna elements at higher frequencies [1]-[3]. Nevertheless, 

the densely packed T/R (Transmitter/Receiver) modules can 

lead to thermal deformation on the array aperture and 

subsequently deteriorate array transmission efficiency [4], [5], 

particularly when the dimension of the T/R module approaches 

or exceeds the size of an individual element. Furthermore, the 

high implementation cost of T/R modules also constitutes a 

significant portion of the overall system expenses. Therefore, it 

is highly desirable to reduce the number of T/R modules while 

maintaining the beamforming performance in the 

communication systems [6].  

In the last few decades, there has been an increasing interest 

in the investigation of various unconventional array antenna 

architectures, including thinned arrays [7]-[11], sparse arrays 

[8]-[14], and aperiodic tiling arrays [17]-[18], to provide a 

better trade-off between cost and performance. The thinned 

array technology enables amplitude modulation [7] or complex 

amplitude modulation [8], [9] to suppress sidelobes of patterns 

by selectively nulling the elements in the periodic array through 

the use of heuristic optimization or convex optimization 

techniques. However, simultaneously manipulating the 

amplitude and phase of antenna elements is a very challenging 

task with computation complexity in some scenarios compared 

to the phase-only array which is more systematic [10], [11].  

Another alternative approach is the sparse array technology, 

which fills antenna elements with a large spatial distance in an 

array aperture. This technology is capable of cancelling 

unnecessary grating lobes as well as reducing the impact of 

mutual coupling. By tuning the adjacent distances between 

elements, researchers can realize high-gain beam steering 

angular ranging from -70° to 70° with peak sidelobe level (SLL) 

lower than -15 dB [12]. Instead of straightforwardly optimizing 

inter-element spacing in the sparse array, hyperuniform 

disordered distribution provides an analytical solution to the 
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array design with excellent scanning performance [13], [14]. A 

reconfigurable reflectarray based on hyperuniform disordered 

distribution to achieve ±50° beam steering less than -7 dB SLLs 

is reported [14]. Although the previous sparse array is able to 

suppress SLL and achieve good beam steering performance, the 

resulted array antenna requires complicated feeding networks 

due to the distribution of the array elements [15], which also 

lead to the reduction in aperture efficiency [16]. In addition to 

sparse arrays and thinned arrays, aperiodic array methods such 

as the strip-projection method [17] can reduce the number of 

elements by generating an aperiodic lattice through Rodrigue’s 

formula while maintaining a low SLL within 30° scanning 

range. Penrose subarray tiling on aperiodic arrays can ensure a 

remarkable reduction in T/R modules across a wide scan angle 

[18]. However, the irregular number of elements in Penrose 

subarrays also increases the design complexity of the control 

circuits. 

The traditional subarray technology can simplify the 

fabrication process while maintaining high aperture efficiency. 

However, the limited angular scan range significantly hinders 

the application of this technology due to the large array spacing 

[19]. Alternatively, irregular but exact tilling subarray 

technology is proposed to strike a balance between array 

scanning performance and its feeding network complexity 

[20]-[22]. To fully cover the whole aperture without any gaps 

or holes, many advanced algorithms, such as Algorithm X [22], 

convex relaxation iteration programming (ICRP) [23], and 

weighted L1 norm iterative convex (WL1X) [24], have been 

implemented to accelerate the tiling speed. Based on the 

traversed search for tiling configurations, the local optimal 

solution can then be identified. However, both nonconvex 

optimization and convex optimization methods significantly 

increase the computational cost and time consumption when 

traversal searching for large-scale arrays [25]. Except for the 

subarray configuration optimization, some advanced antenna 

pattern synthesis algorithms, such as iterative Fourier transform 

[26], iterative gradient descent [27][28], and convex 

optimization [29], are investigated, aiming for the goal of 

cost-effective and accurate beamforming performance. 

However, combining pattern synthesis algorithms with 

heuristic optimization methods to find optimal tiling 

configurations becomes highly inefficient when dealing with a 

large number of tiling solutions. 

Recently, nonlinear electromagnetic (EM) problems have 

been successfully addressed thanks to the emergence of deep 

learning (DL) techniques. Examples include EM inverse 

scattering [30], the direction of arrival (DoA) estimation [31], 

remote object recognition [32], and computational 

electromagnetic (CEM) [33]. As one of the most rapidly 

developing branches of DL, deep reinforcement learning (DRL) 

has achieved breakthroughs in many fields such as gaming [34], 

self-driving [35], and healthcare [36]. Furthermore, more 

recently, DRL has gradually proven to be a highly effective and 

versatile framework for optimizing and exploiting phase 

antenna arrays. For instance, a framework based on deep 

Q-network (DQN) is employed to control the phase 

information of a conformal phased antenna array, enabling 

timely beam steering [37]. Also, the DQN-based agent can 

interact with numerical solvers to realize automated design for 

antenna array decoupling [38]. 

Inspired by previous pioneers’ work, we are motivated in this 

work to incorporate the DRL algorithm and gradient-descent 

optimization approach to the problem of tiling irregular phased 

arrays for desired radiation patterns. The proposed work aims 

to present a highly integrated and cost-effective framework for 

the pattern synthesis of irregular arrays, aimed to maximize 

gain in the target region and simultaneously minimize the peak 

sidelobe level (PSLL). To the best of our knowledge, this is the 

first time the DRL technique has been exploited in the design of 

pattern synthesis of exactly tiled irregular pattern arrays.  

The article is organized as follows: Section II provides an 

overview of the Deep Q-Network (DQN) and describes the 

procedure for irregular array partitioning using the DQN 

architecture. Additionally, this section introduces the 

phase-only gradient-descent optimization algorithm for pattern 

synthesis with subarray configurations. Then, the performance 

of the proposed framework is verified through examples of 

16×16-dimensional domino-shaped subarray configurations 

with pencil pattern synthesis and flat-topped pattern synthesis 

in Section III. Finally, the conclusion is presented in Section 

IV. 

II. PRELIMINARY 

A. Overview of Deep Q-Network 

Fig. 1 presents the schematic diagram of RL. It is about 

learning the optimal action in the environment to obtain 

maximum reward. Similar to how children learn from their 

surroundings by experimenting and observing the outcomes, 

this optimal behavior is acquired through engaging with the 

environment and noting its reactions [39]. 

At each time k, firstly, the agent receives the current state Sk 

and reward Rk. Secondly, it then chooses an action Ak forward 

to the environment according to the optimal decision policy 

πk(a|s). Finally, the environment updates the next environment 

state Sk+1 and rewards Rk+1 from the current action Ak. This 

iteration repeats until termination conditions are satisfied. In 

general, the agent’s goal is to maximize the cumulative reward 

in a loop by carefully selecting the action in each step. 

Q-learning is a model-free, value-based, off-policy RL 

algorithm that will find the optimal series of actions to take 

 
Fig. 1.  A generic RL framework with agent-environment interaction. 
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given the current state. It is based on the concept of learning the 

value of action-state pairs, known as Q-values. It represents the 

expected utility (total reward) of taking a particular action in a 

particular state and following the optimal policy thereafter [39]. 

The Q-value function under decision policy π can be expressed 

as: 

 

Q𝜋(𝑆𝑘, A𝑘) = 𝐄[𝑅𝑘+1 + 𝛾𝑅𝑘+1 + 𝛾2𝑅𝑘+1 + ⋯ |𝑆𝑘, A𝑘] (1) 

 

where E denotes the expectation and γ is the discount factor, 

which ranges from 0 to 1 to guarantee the sum converges. To 

update the Q-value efficiently, the Bellman equation is 

employed to explore the Q-value function as follows: 

 

Q𝑛𝑒𝑤(𝑆𝑘, A𝑘) = (1 − α)Q𝜋(𝑆𝑘, A𝑘) + α(𝑅𝑘+1 +
𝛾maxAQ(𝑆𝑘+1, A)) (2) 

 

where αRk+1 is the reward in k+1 step, (1-α)Q(Sk, Ak) represents 

the current value, αγmaxAQ(Sk+1, A) defines the maximum 

discount reward in the state Sk+1. 

Theoretically, Q-learning can find the optimal actions in a 

given environment by iteratively updating Q-values for 

state-action pairs. However, in practice, optimizing the decision 

policy πk(a|s) in traditional Q-learning algorithms is extremely 

challenging, especially in an environment with large state and 

action spaces. Deep Q-learning overcomes this limitation by 

employing a deep neural network, known as a Deep Q-Network 

(DQN), to approximate the action-value function [40]. The 

DQN takes the state as input and outputs the Q-values for all 

possible actions in that state, effectively generalizing the 

learning process across high-dimensional and continuous state 

spaces. In addition, the experience replay technique employed 

in DQN breaks the correlation between consecutive samples 

leading to more stable and efficient learning. 

To ensure a good estimate of the optimal Q-value during the 

training, two neural networks, the estimation network and 

target network, are used to approximate estimated Q-values 

Q(S, A; θ)  and target Q-values Q(S, A; θ′). By minimizing the 

temporal difference error between the Q(Sk, Ak; θ) and the 

Q(Sk+1, Ak+1; θ′), the Q-network is able to learn the expected 

rewards more accurately over time, aligning the Q-network’s 

predictions with the actual returns received from the 

environment. The loss function L(θ) can be expressed as: 

 

𝐿(𝑆𝑘, A𝑘, 𝑆𝑘+1|𝜃) = (r + 𝛾maxAQ(𝑆𝑘+1, A𝑘+1;  𝜃′) −
Q(𝑆𝑘, A𝑘;  𝜃))2  (3) 

 

where r is the reward at step k, and the weights and biases in the 

target network are updated periodically to allow the Q-network 

to converge more reliably. 

B. Implementation 

To create the environment for solving polynomino subarray 

tiling problems, we first need to streamline the data from the 

procedure of subarray tiling. In the present problem, 

successfully tiling the phased array while finding the optimal 

configuration for the expected radiation pattern is the primary 

objective. An example of a 4×4-dimensional array with a 

domino-shaped subarray exact tiling configuration is shown in 

Fig. 2. Horizontal or vertical domino-shaped subarray 

configurations are employed to tile the array. Each domino 

subarray can be represented by a binary coding vector, denoted 

as e1×16, wherein this vector contains two positions as 1 and the 

rest as 0. For instance, one of the domino subarrays (5, 9) 

presented in Fig. 2 is encoded as e1×16 = [0 0 0 0 1 0 0 0 1 0 0 0 

0 0 0 0], which represents that the fifth and ninth elements in the 

array are grouped as a subarray. All possible candidate 

subarrays then can be expressed as A ={A1, A2, …, A23, A24}, 

where ak is a binary coding vector e1×16. If a subarray layout L 

={A1, A2, A3, …, A8}8×16 of size 8×16, selected from A, has 

exactly one element in each column is 1 and the others are 0, 

this layout is exactly tiled. 

Therefore, the environment can be regarded as the tiling state 

of the 4×4 array grid, and the actions corresponding to filling 

subarrays from candidate subarray set A. At the beginning of 

each episode, the state matrix S0 is an empty 4×4 matrix. A 

random action Ak is then selected to fill the state space and 

generate the next state S1. This action-state loop continues until 

the termination conditions are met. The ɛ-greedy policy is 

adopted to explore more situations instead of exploiting what 

we have learned so far, which can be defined as: 

 

 
Fig. 3. Examples of action restriction in 4×4 array. (a) Successful exact tiling; 

(b) Failure tiling. 

 

 
Fig. 2.  Example of a 4×4 array with domino subarray tiling layout. 
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A𝑘 = {
argmaxQ𝜋(𝑆𝑘, A𝑘), with probability ɛ
random action, with probability 1 − ɛ

 (4) 

 

In addition, in contrast to conventional application scenarios 

of the DQN algorithm, the polyomino exact tiling problem with 

a given finite set of domino-shaped subarrays involves too 

many illegal actions, particularly when most of the area is 

occupied by the subarrays. Therefore, it is necessary to add 

some action restrictions during the training steps to accelerate 

convergence and make it easier for the model to learn the 

polynomial tiling problems. Two action constraint criteria are 

proposed to improve the training performance of DQN. First, a 

conventional action mask is employed to filter out impossible 

or unavailable actions. Specifically, for a given array,  instead 

of selecting an action from all possible actions candidate 

subarray set A, an action mask is applied to exclude illegal 

actions that cause overlapping with other subarrays in the state 

matrix. The application of an action mask can guarantee the 

selection of every time step in the available action space. 

Second, the terminal state condition is considered in the 

action constraint. The strategy for action restriction is that if a 

closed empty grid or three consecutive closed empty grids 

appear following an action, that action is retracted and a new 

action is selected. This process continues until the state matrix 

no longer exhibits such configurations or until all actions fail to 

meet the requirements.  

For the sake of clarifying the customized action restriction in 

the subarray tiling process, two examples of action selection in 

a 4×4-dimensional array are presented in Fig. 3. In the 

successful exact cover example shown in Fig. 3a, a random 

action, a0 is placed on the initial state space S0. Next, a vertical 

domino-shaped subarray is placed at the bottom of state S1, 

occupying the second column and third column. After placing 

the yellow subarray, the array has a single empty cell remaining 

at the left-bottom corner (fourth row, first column). This single 

empty cell makes it impossible to place any standard 

domino-shaped subarray to complete the tiling. Therefore, a 

new action 𝑎1
′′ replaces the first action 𝑎1

′  to fill state matrix S1. 

Similarly, action 𝑎2
′′  replaces action 𝑎2

′  to forward State S3. 

After 8 actions, the state matrix is fully tiled as shown in state 

S8. It is worth noting that although action constraints can 

significantly improve sample efficiency and facilitate easier 

learning of polyomino tiling problems, failures in tiling still 

occur at the beginning of the training process. Fig. 3b presents 

an example of failed tiling where all the actions (𝑎3
′ , 𝑎3

′′, 𝑎3
′′′, …) 

filling on state matrix S3 cannot tile the state S4 without leaving 

a closed empty grid or three consecutive closed empty grids. 

Therefore, this episode terminates after two steps of action. 

The reward function in DQN plays a crucial role in guiding 

the model to achieve the target results. In our design, shaping 

the agent’s behavior and facilitating policy learning to achieve 

optimal scanning performance with an exact tiling 

configuration is the goal. 

A tiling reward δk = 1 is provided for each step that tiles a 

subarray to the state matrix Sk to encourage the model to tile 

more subarrays in the array. Therefore, during training step k, 

the tiling reward δk = k.  

In addition to achieving irregular subarray tiling, SLL is one 

of the most important parameters which is used to evaluate the 

performance of irregular phase arrays. Thus, we consider the 

completion of the subarray structures and their corresponding 

SLL in the target angular range Θ = {(u, v) | ulow ≤ u ≤ uhigh , vlow 

≤ v ≤ vhigh} as the standard for the reward to the agent. u = 

sin(θ)cos(φ) ∈ [−1, 1], v = sin(θ)sin(φ) ∈ [−1, 1], and (θ, φ) 

represents the observation direction of far field. Low subscript 

and high subscript denote the lower and upper boundaries of the 

target angular range, respectively. In training step k, the reward 

Rk is composed of tiling reward δk and SLL reward ΔSLL by: 

 

Rk = k + ΔSLL (5) 

 

where ΔSLL represents the SLL difference between last 

training step k-1 and current training step k, which is expressed 

TABLE I 

PSEUDOCODE OF DQN-BASED ALGORITHM 

 

Algorithm I: DQN-based algorithm for exact tiling array aperture 

Input: Initial state space S, target radiation pattern F0(θ, φ) 

Output: Exact tiled array configuration and their corresponding phase 

distribution 

Initialization: Learning rate α, discount factor γ, ɛ-greedy ɛ, replay 

memory D, batch size B, estimation network with random weights θ and 

target network with random weights θ′ = θ, candidate subarray set A.  

Process: 

For episode = 1, 2, … , ζ do 

Initialize state space S0 

Update ɛ-greedy ɛ = ɛmin + (ɛmax - ɛmin)•exp(-ɛdecay•t) 

For k = 1, 2, … , ҡ do 

    If k = 1 

        Select a random action Ak ~ Uniform{A1, A2, A3… } 

    Else 

        Reset candidate subarray set A* with action restriction 

        With probability ɛ select a random action Ak from set A* 

        With probability 1- ɛ select Ak = argmax Q(Sk+1; θk) 

    End 

    Execute action Ak and obtain reward Rk 

    Store tuple <Sk, Ak, Rk, Sk+1> in D 

    Sample random mini-batch B from training set D 

    If terminate 

        Rk+1 = Rk 

    Else 

        Rk + γmaxAQ(Sk+1, Ak+1; θ'k+1)    

   Perform backpropagation step on loss function L(Sk, Ak, Sk+1 | θk) 

       Every N steps update θ' = θ 

End for 

End for 

 

TABLE II 

HYPER PARAMETERS OF DQN ALGORITHM 

 

DRL parameters Value 

Learning rate α 0.01 

Discount factor γ 0.9 

ɛ-greedy ɛmax 0.9 

ɛ-greedy ɛmin 0.01 

ɛ-greedy decay rate ɛdecay 0.001 

replay memory D 2000 

batch size B 64 

Number of episodes ζ 3000 

Number of maximum steps in each episode ҡ 128 
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as: 

 

ΔSLL = SLLk-1 – SLLk  (6) 

ΔSLL𝑘 = −20log10(
𝑚𝑎𝑥
𝑢,𝑣∉Θ

|𝐹𝑘(𝑢,𝑣)|

𝑚𝑎𝑥
𝑢,𝑣∈Θ

|𝐹𝑘(𝑢,𝑣)|
) (7) 

 

Here, Fk (u, v) is the radiation pattern of an array tiling k 

subarrays. For a specific single beam scanning problem, it can 

be defined by: 

 

𝐹(𝑢, 𝑣) = ∑ 𝑓(𝑢, 𝑣) ∑ 𝑒𝑗𝑘(𝑥𝑝𝑞𝑢+𝑦𝑝𝑞𝑣−𝑥𝑝
′ 𝑢0−𝑦𝑝

′ 𝑣0)𝑄
𝑞=1

𝑛
𝑝=1  (8) 

 

where (u0, v0) defines the center of scanning angle, f (u, v) is the 

radiation pattern of the element located at (xpq, ypq). n is the 

number of tiled subarrays, and Q represents the number of 

elements in the subarrays. As for the pattern synthesis problems, 

in training step k, we can first employ (22) - (28) to calculate the 

phase mask of the state matrix Sn. Subsequently, we can obtain 

its corresponding ΔSLL according to (6). Thus, the tuple <Sk, 

Ak, Rk, Sk+1> is the format of the training set. 

 In summary, the proposed framework aims to employ 

domino-shaped subarrays to tile the array aperture, while also 

achieving the lowest SLL at the beam steering angle of Θ. The 

DQN algorithm selects an action Ak to tile the state matrix Sk, 

resulting in a new state matrix Sk+1. The selection of Ak is 

dependent on the ɛ-greedy policy. For each episode, the 

algorithm terminates either when it reaches the maximum tiling 

steps or when illegal grids appear. After fully training the 

estimation networks, the agent is capable of quickly exact tiling 

the array aperture while adjusting the phase distribution of 

subarrays to scan the beam at the desired angles. The 

pseudocode of the DQN-based framework is shown in Table I. 

 In the training process, we train the network structure of our 

DQN model on the deep learning frameworks TensorFlow and 

Keras and the computer is configured as a single CPU and a 

single GPU. As shown in Table II, the learning rate α = 0.01, 

and the discount factor γ = 0.9. The initial ɛmax = 0.9. An 

exponential decay ɛdecay = 0.9 and minimum ɛmin = 0.01 is 

selected in the ɛ-greedy strategy to balance exploration and 

exploitation. The replay memory size D is configured to store 

up to 2000 past experiences, ensuring diverse training samples. 

A batch size of 64 is used for mini-batch gradient descent, 

optimizing the training efficiency. In addition, for this 

16×16-dimensional subarray tiling problem, the maximum 

number of steps in one episode is set to 128, since the array 

achieves exact tiling after 128 steps. Termination occurs either 

when there is no significant variation in loss and reward or 

when the maximum number of episodes (ζ = 3000) is reached. 

C. Gradient-Descent Optimization on Pattern Synthesis 

To guarantee reliable and precise pattern synthesis results, 

various pattern synthesis theories and methods have been 

investigated in the last decades. Among them, the 

gradient-descent optimization method updates the model 

parameters incrementally, which means it can converge to the 

optimal solution faster than other optimization algorithms. 

Suppose a phased array is composed of N elements, and the 

positions of the antenna elements can be expressed as xi and yi 

along x-axis and y-axis, respectively. The radiation pattern of 

antenna array F(θ, φ) can be donated by: 

 

F(θ, φ) = wH a(θ, φ) (9) 

 

where w = (ejΨ1, ejΨ2, …, ejΨN)T. Ψi (i = 1, 2, …, N) is the phase 

vector of the antenna elements. The superscript H defines the 

complex conjugate transpose, and the superscript T denotes the 

transpose. θ is the elevation angle, and φ is the azimuth angle. 

The element ai (θ, φ) is given by: 

 

ai (θ, φ) = f (θ, φ) e-jk0(xi sinθ cosφ + yi sinθ sinφ) (10) 

 

where f (θ, φ) is the element radiation pattern. k0 = 2π/λ0 is the 

wavenumber, and λ0 is the wavelength. To achieve pattern 

synthesis in the target beam region, we aim to minimize the 

following loss function: 

 

JMV(w) = ʃQs |F(θ, φ) – F0(θ, φ)ejζ(θ, φ)Fmax|2 dθdφ (11) 

 

where F0(θ, φ) is the target normalized amplitude pattern, Qs is 

the target beam region, and ζ(θ, φ) is the phase distribution of 

F(θ, φ). Fmax is the maximum value of |F(θ, φ)|. By tuning the 

complex-amplitude value of antenna elements using (11), the 

difference between the array radiation pattern and the target 

radiation pattern is minimized. This expression can be further 

simplified in the following manner: 

 

JMV(w) = wH Rs w - wH Rk - R
H 

k w + R0k (12) 

 

where Rs, Rk, and R0k can be expressed as: 

 

Rs = ʃQs a(θ, φ) aH(θ, φ) dθdφ 

Rk = Fmax ʃQs a(θ, φ) F0(θ, φ)e-jζ(θ, φ) dθdφ (13) 

R0k = F
 2 

max ʃQs F
 2 

0 (θ, φ) dθdφ 

 

More details regarding the process of deduction can be found in 

[28]. According to the gradient descent algorithm, the complex 

amplitude vector w is able to update itself to find the local 

minimum of loss function JMV(w). The iterative formula is 

given as follows: 

 

wk+1 = wk – η▽w JMV(w) (14) 

 

where η defines the learning rate, and k is an iteration index. To 

solve a partial complex vector gradient operator presented in 

(14), from the mathematical point of view, the analytic function 

JMV(w) of a complex variable w JMV(w) = g(z, z*) = u + iv is 

complex differentiable anywhere and must satisfy the 

Cauchy-Riemann conditions. Here, the operates on z* is the 

conjugate of z. For a differentiable function, the following 

partial differential operators can be defined according to the 

definition of Wirtinger derivatives [41]: 

 

∂g/∂z =  1/2 (∂JMV(w) /∂u – i ∂JMV(w) /∂v) 

∂g/∂z* =  1/2 (∂JMV(w) /∂u + i ∂JMV(w) /∂v) (15) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

 

It is also easily deduced from (15) that ∂z/∂z* = ∂z*/∂z = 0 and 

∂z/∂z = ∂z*/∂z* = 1, which indicates both z and z* can be 

treated as two independent variables in the g(z, z*). Hence, the 

derivatives ∂(wH Rs w)/∂wn, ∂(wH Rk)/∂wn, and ∂(R
H 

k w)/∂wn with 

respect to wn, are obtained through: 

 

∂(wH Rs w)/∂wn = ∂(∑m ∑n w
* 

m Rmn wn)/∂wn = ∑n w
* 

m Rmn (16) 

∂(wH Rk)/∂wn = ∂(∑n w
* 

n  Rn)/∂wn = 0 (17) 

∂(R
H 

k w)/∂wn = ∂(∑n R
* 

n  wn)/∂wn = R
* 

n  (18) 

 

Since Rs is a Hermitian matrix, ▽w (wH Rs w), ▽w (wH Rk), and 

▽w (R
H 

k w) can be reformulated as: 

 

▽w (wH Rs w) = R
T 

S  w* (19) 

▽w (wH Rk) = 0 (20) 

▽w (R
H 

k w) = R
* 

k  (21) 

 

Substituting (19)-(21) into (14), the following formulation is 

obtained: 

 

wk+1 = wk – η(R
T 

S  wk* + R
* 

k ) (22) 

 

which allows for straightforwardly iterative 

complex-amplitude vector w to minimize the loss function (11). 

Although the target beam region can be synthesized well 

according to (22), it is worth noting that large side lobes may 

occur during the iterations. To suppress the side lobes, the loss 

function is reformulated as follows: 

 

JMV(w) = ʃQs |F(θ, φ) – F0(θ, φ)ejζ(θ, φ)Fmax|2 dθdφ +  

               UʃQp |F(θ, φ)|2 W(θ, φ) dθdφ (23) 

 

where U is a constant weight coefficient to balance the weight 

of the side lobes region, W(θ, φ) is the weight coefficient for the 

angular direction (θ, φ), and Qp defines the side lobes region. 

Hence, the Rs is reformulated as: 

 

Rs = ʃQs a(θ, φ) aH(θ, φ) dθdφ +  

        UʃQp a(θ, φ) aH(θ, φ) W(θ, φ) dθdφ (24) 

 

The weight coefficient is adjusted according to the following 

formula: 

 

W(θ, φ) = |F(θ, φ)|/ ∑Qp |F(θ, φ)|  (25) 

 

For a given domino subarray consisting of N antenna 

elements in candidate sets A = {A1, A2, …, Ap}, there exists 

N/2 grouped elements, and each domino-shaped element shares 

the same complex amplitude value. In this way, an exact tiling 

subarray layout L = {A2, A3, Ai, …, Aj}N/2×N can be regarded as 

an (N/2, N)-dimensional matrix, where the row number 

corresponds to the number of grouped elements and the column 

number corresponds to the total number of elements in the 

array. Thus, the complex-amplitude vector w in a domino 

subarray can be expressed as: 

 

w = (w
H 

s L)H (26) 

 

where ws = (ejΨ1, ejΨ2, …, ejΨN/2)T is the complex-amplitude 

vector for the grouped elements in the domino subarray. 

Substituting (26) into (11), the JMV(w), Rs, Rk, and R0k can be 

reformulated as: 

 

JMV(w) = w
H 

s
 Rs w - w

H 

s
 Rk - R

H 

k ws + R0k 

Rs = ʃQs (La(θ, φ)) (La(θ, φ))H dθdφ +  

        UʃQp (La(θ, φ)) (La(θ, φ))H W(θ, φ) dθdφ 

Rk = Fmax ʃQs (La(θ, φ)) F0(θ, φ)e-jζ(θ, φ) dθdφ  

R0k = F
 2 

max ʃQs F
 2 

0 (θ, φ) dθdφ (27) 

 

In addition, to consider the situations where the simplified 

and cost-effective phase-only control architecture is preferred, 

we can divide each element in the complex-amplitude vector w 

by its magnitude, ensuring that only the phase of the element is 

updated in each iteration as follows: 

 

𝒘𝒌+𝟏 = [
𝑤1

𝑘+1

|𝑤1
𝑘+1|

,
𝑤2

𝑘+1

|𝑤2
𝑘+1|

, … ,
𝑤𝑁

𝑘+1

|𝑤𝑁
𝑘+1|

]T  (28) 

 

In summary, the steps of the proposed phase-only subarray 

synthesis algorithm are given in Table III. 

D. Complexity Analysis of the Proposed Algorithm 

Assume that the number of elements in the array is N and that 

the numbers of sampling points in the main beam and side lobe 

regions are L1 and L2, respectively. For the proposed algorithm, 

it requires (L1N2)/2 and 3N2(L1+L2)/4 complex multiplications 

to calculate Rk and Rs, respectively. In (14), it requires N2/4 

complex multiplications to calculate wk+1. Assume the proposed 

algorithm requires ξ iterations. The computational complexity 

of this algorithm is on the order of O[(5L1/4 + 3L2/4 + 1/4) ξ 

N2].  

The estimation network is designed as a multilayer 

convolutional neural network (CNN). Assume the estimation 

network has L layers and the number of input channels and 

output channels are C
i 

in and C
i 

out in the i-th layer, respectively. Mi 

donates the side length of the i-th layer, and the side length of 

each kernel is Ki in the i-th layer. Then, according to the 

TABLE III 

PSEUDOCODE OF PHASE-ONLY SUBARRAY SYNTHESIS ALGORITHM 

 

Algorithm II: Subarray-based synthesis algorithm for phase distribution 

manipulation  

Input: Initial phase vector of array elements w0, target radiation pattern 

of array F0(θ, φ) 

Output: Optimized phase vector of array elements wk+1 

Initialization: Learning rate η, and weight coefficient W(θ, φ) 

Process: 

While stopping criterion is not satisfied do 

Calculate F(θ, φ) according to wk 

Update the weight coefficient W(θ, φ)  according to (25) 

Calculate Rs, Rk, and R0k according to (27) 

Update the (k+1)-th wk+1 according to (22) 

Normalize the wk+1 according to (28) 

End while 
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convolutional operation theory in the CNN model [42], the 

computational complexity of i-th layer of the CNN model is on 

the order of O[C
i 

in·C
i 

out·M
i·Mi·Ki·Ki]. Thus, the computational 

complexity for the estimation network with L CNN layers and ξ 

iterations is on the order of O[ξ ∑
L 

i=1 C
i 

in·C
i 

out·M
i·Mi·Ki·Ki]. 

III. RESULTS AND ANALYSIS  

In order to assess the effectiveness of the proposed 

framework, the far-field radiation performance of several 

representative numerical examples, including pencil beam 

pattern synthesis and flat-topped beam pattern synthesis with 

domino-shaped subarrays, is implemented in the array aperture 

with dimensions of 16×16.  

A. Performance Evaluation of DQN Algorithm 

Calculating the loss between these two networks helps to 

improve predictions and enhance future decision-making. 

Similarly, the reward value defines the SLL of subarray 

configurations. The comparison of the performance of averaged 

rewards and losses without and with action limitations is 

presented in Fig. 4. According to Fig. 4a, it is clearly observed 

that the averaged rewards continue to increase until around 350 

iterations. After 350 iterations, the rewards stabilize, showing 

occasional fluctuations but maintaining a value of around 26.5. 

Meanwhile, the corresponding averaged losses converge to 2.5 

after 350 iterations. The low-averaged rewards and high 

averaged losses indicate that the agent has failed to learn how to 

achieve exact tiling in subarray configurations. 

On the contrary, there is a more noticeable and smoother 

upward trend in the performance of averaged rewards in the 

situation with action limitations compared to the no action 

limitation case. The rewards continue to increase until around 

700 iterations, reaching a value of around 140. Similarly, the 

averaged losses consistently decrease until 700 iterations, then 

stabilize at a much lower value compared to the no action 

limitation case. 

Hence, the action constraint helps guide the learning process 

more effectively, leading to higher rewards and lower losses, 

thereby improving the overall performance of the DQN 

algorithm in the given subarray tiling and optimization tasks. 

B. Synthesis of Irregular Arrays for Pencil Beam Pattern 

The dimension of the phased array is a 16×16-element array 

with 0.5λ0 interelement spacing. The domino-shaped subarrays 

are employed to tile the array aperture, and the phase 

distribution of the array is optimized by the proposed 

gradient-descent approach.  

The phase-only optimized tiling configurations of 

domino-shaped subarrays donated by different colors, as well 

as their combined normalized radiation pattern of arrays, are 

shown in Fig. 5 for three different scanning angles: (θ1 = 30°, φ1 

 
Fig. 4. Performance evaluation of the DQN algorithm applied in the 16×16 

domino-shaped subarray configuration when beam steering at (θ = 30°, φ = 

0°). Averaged rewards: (a) without adding action constraint; (b) with adding 

action constraint. Averaged loss: (c) without adding action constraint; (d) with 

adding action constraint.  

 

 
Fig. 5. Calculated results for phase-only optimized irregular arrays with single 

beam steering: (a), (b), (c) Optimized domino-shaped phase tiling topologies, 

and (d), (e), (f) their corresponding normalized radiation patterns. 

  

 
Fig. 6. Calculated results for phase-only optimized irregular arrays with 

dual-beam steering: (a), (b), (c) Optimized domino-shaped phase tiling 

topologies, and (d), (e), (f) their corresponding normalized radiation patterns. 

  

TABLE IV 

COMPARISON OF OPTIMAL SOLUTION FOR SINGLE BEAM PATTERN 

 

(θ, φ) 
PSLL (dB) 

Proposed method Algorithm in [43] 

(30°, 0°) -13.24 -12.6 

(45°, 45°) -11.92 -11.82 

(60°, 90°) -8.95 Not mentioned 
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= 0°), (θ1 = 45°, φ1 = 45°), and (θ1 = 60°, φ1 = 90°). As can be 

observed, the scanning angles agree well with the target ones, 

and the PSLL is successfully suppressed to -13.24 dB, -11.92 

dB, and -8.95 dB when array scanning to (θ1 = 30°, φ1 = 0°), (θ1 

= 45°, φ1 = 45°), (θ1 = 60°, φ1 = 90°), respectively.  

Fig. 6 depicts the phase excitations of arrays and their 

corresponding far-field radiation pattern. The PSLL is -10.83 

dB, -12.17 dB, and -6.96 dB when the beam is respectively 

steered to (θ1 = 45°, φ1 = 0°; θ2 = 45°, φ2 = 180°), (θ1 = 30°, φ1 = 

45°; θ2 = 30°, φ2 = 125°), and (θ1 = 60°, φ1 = 90°; θ2 = 60°, φ2 = 

270°). Similarly, the scanning performance of domino-shaped 

subarrays also maintains at acceptable levels in dual-beam 

steering cases. 

To evaluate the SLL suppression performance of our 

proposed method, we compare it with one of the state-of-the-art 

approaches in the literature [43]. As listed in Table IV, our 

method is still slightly better than the optimal configuration 

using a differential evolution algorithm (DEA) when scanning 

both at (θ1 = 30°, φ1 = 0°) and (θ1 = 45°, φ1 = 45°).  

From Fig. 5 and Fig. 6, it can be observed that as the 

elevation angle θ increases, the scanning performance 

gradually decreases. The phase mismatch caused by the 

subarray configurations can be regarded as the main factor for 

the deterioration of scanning performance [43]. Additionally, 

the PSLL in dual-beam steering cases is higher than the values 

observed in single-beam steering cases. 

C. Synthesis of Irregular Arrays for Flat-Topped Beam 

Pattern 

A flat-topped beam pattern is crucial for scenarios requiring 

uniform gain across an angular region without any nulls. The 

synthesized flat-topped beam patterns with beamwidth of 20°, 

40°, and 60° on the 16×16-dimensional phased array with 0.5λ0 

interelement spacing are given in Fig. 7. Figures 7a to 7c 

represent the optimized domino-shaped phase tiling topologies 

for arrays with flat-topped radiation patterns with beamwidths 

of 20°, 40°, and 60°, respectively. The middle layer shows the 

results comparing the synthesized and desired radiation 

patterns. The black solid line represents the calculated radiation 

pattern of the optimized array, while the red dashed line is the 

target pattern. It can be observed that the PSLL is suppressed to 

below -10 dB in all three cases. In addition, the fluctuation in 

the main beam region with a beamwidth of 20° is less than 1 

dB, whereas the 40° and 60° wide beam patterns exhibit more 

significant fluctuations. The enlarged views of the main beam 

regions further highlight these fluctuations, demonstrating the 

challenges in maintaining a perfectly flat-topped pattern as the 

beamwidth broadens. 

The optimized configurations according to the proposed 

framework successfully synthesize radiation patterns that 

closely match the desired flat-topped beam shapes across 

various beamwidths. This indicates that the proposed method is 

capable of achieving high fidelity in beam pattern synthesis, 

ensuring the designed arrays perform as intended for different 

beamwidth requirements. 

D. Verification on Practical Irregular Reflect Array 

The practical reliability of theoretical results based on the 

proposed optimal configurations is verified by the 

consideration of practical irregular reflect arrays with real unit 

cells. Thus, the 16×16-dimensional reflect array is considered, 

where a ridge-waveguide-based structure is employed as a 

single unit cell. The detailed geometry information of the unit 

cell is shown in Fig. 8a and 8b. This structure is composed of a 

 
Fig. 7. Calculated results for phase-only optimized irregular arrays with 

flat-topped beam patterns: Optimized domino-shaped phase tiling topologies 

with beamwidths of (a) 20°, (b) 40°, and (c) 60°, along with their 

corresponding normalized radiation patterns with beamwidths of (d) 20°, (e) 

40°, and (f) 60°. Enlarged normalized radiation patterns are shown for (g) 20°, 

(h) 40°, and (i) 60°. 

  

 
Fig. 8. Geometric design of ridge-waveguide-based unit cell: (a) perspective 

view and (b) top view. The corresponding geometry parameters of the design 

are as follows: H = 25 mm, W = 12.5mm, l = 3 mm, t = 0.5 mm, d = 4 mm. (c) 

Reflection amplitude and phase of unit cell operating at 12 GHz. 
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ridge waveguide and a copper pad. A full 360° reflection phase 

variation of the unit cell at 12 GHz is achieved by simply 

controlling the height of the copper pad within the ridge 

waveguide structure. Fig. 8c presents the detailed EM 

responses of the unit cell versus the position of the copper pad. 

The magnitude of the reflection amplitude is over -0.4 dB, 

which indicates that this structure can be regarded as a 

phase-only variation reflecting unit cell. 

As shown in Fig. 9, three examples of previous optimal 

configurations based on the irregular reflect array are simulated 

in the High-Frequency Structure Simulator (HFSS). The 

y-polarized plane wave illuminates the surface along the -x axis, 

and all x, y, and z directions assume an open space condition. 

Due to the unavoidable mutual coupling effects between 

elements as well as the mismatch between the elements’ real 

pattern model and the elements’ isotropic pattern model, the 

normalized pattern in the sidelobe region is slightly different 

from the ideal pattern. While the normalized pattern in the main 

lobe region is in reasonable agreement with the ideal one. 

IV. CONCLUSION 

In this paper, a novel optimization model is developed for the 

pattern synthesis of domino-shaped subarray configurations, 

satisfying constraints on the target beam-scanning radiation 

patterns with low PSLL. Since the subarray tiling 

configurations and the pattern synthesis are optimized 

simultaneously, this optimization problem is efficiently solved 

by incorporating the proposed gradient-descent algorithm into 

the DQN model. The calculated results from the case studies of 

the synthesis of pencil beam patterns and flat-topped beam 

patterns demonstrate the good performance of the developed 

method. The practical reliability of the proposed model is 

verified by performing comparisons between the results of 

full-wave simulations in HFSS and theoretical calculations. It 

should be noted that the developed framework is not limited to 

domino-shaped subarray tiling problems and it applies to other 

polyomino-shaped configurations. 
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