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Introduction—Ten-dimensional N ¼ 1 supergravity
coupled to super Yang-Mills was introduced in the early
1980s in [1–3]. Beyond serving as a “mother” theory for a
host of lower-dimensional supergravity theories, it is
particularly important for the low-energy description of
the type I and heterotic superstring theory. Recently [4,5],
the framework of generalized geometry was used as a
convenient packaging tool to provide a simplified descrip-
tion of this theory (building on earlier works [6–9]). In
particular, this simplifies significantly the structure of the
four-fermion terms in the action, which are well known to
be one of the major complications in formulating super-
gravity theories.
In this Letter we make the next step forward and present

a full Batalin-Vilkovisky (BV) action of the theory. We
partially leverage the fact that the BV formulation was
already constructed for a very special sector in the gener-
alized-geometric moduli space, namely, when the general-
ized metric (defined below) is frozen to be the identity
operator. This leads to a topological theory (“dilatonic
supergravity”), whose BV description was built in [10].
Nevertheless, generalizing this description to the non-

topological case of physical supergravity is tricky, partly
due to the higher-fermion terms in both the action and
supersymmetry transformations, which make the calcu-
lation substantially more involved. Another complication
is caused by the fact that the field space is naturally the
total space of a vector bundle, and the fermionic fields
(the dilatino, gravitino, and gaugino) do not correspond
to coordinates on this field space, but rather describe
elements of the fibers (this is a consequence of the fact

that they are sections of the spinor bundle whose very
definition requires a choice of metric). This problem
is typically dealt with by passing to the vielbein
description of the metric. Here we take a more direct
geometric approach and simply work with the vector
bundle structure directly. This leads to some significant
simplifications—for instance, the algebra of local super-
symmetries (13) does not feature any Lorentz terms on
the rhs as these are canceled by the term coming from the
nonzero curvature on this vector bundle.
Consequently, the BV action (19) is much simpler than

one would a priori expect. Still, checking explicitly that
it satisfies the classical master equation is not easy.
Consequently, we do not give a full proof of this fact
but only provide various evidence in favor of its validity.
A complete proof is left for a future work.
Although immensely important for the purpose of

quantization, the BV analysis of supergravity has so far
been mostly restricted to the D ¼ 4 case [11] (more
recently see also [12,13]). To the best of our knowledge
the present Letter is the first instance when the BV action
for a higher-dimensional supergravity has been constructed
in the background independent component field formalism
(as opposed to the pure spinor superfield approach, see [14]
and references therein).
We conclude the Introduction by highlighting the fact

that the BV formulation of the N ¼ 1 D ¼ 10 case is
particularly interesting in that it is directly linked to the
work [15] of Costello-Li, since it provides the starting
point for their twist of supergravity; for more details see
the last section.
Bosonic field content—We first recall the generalized-

geometric description of supergravity, based on [4,7].
We refer the reader to these works for more details and
conventions.
The theory itself is defined in terms of a transitive

Courant algebroid E [16,17] over a ten-dimensional base
space M. Locally, this is given by a vector bundle

E ≅loc TM ⊕ T�M ⊕ ðg ×MÞ; ð1Þ
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with g a Lie algebra with an invariant pairing denoted by Tr.
Sections of E thus correspond to formal sums of a vector
field, a 1-form, and a g-valued function. This structure is
equipped with a bracket, pairing, and a map a∶E → TM
given by

½X þ αþ s; Y þ β þ t� ¼ LXY þ ðLXβ − iYdαþ Tr t dsÞ
þ ðLXt − LYsþ ½s; t�gÞ;

hX þ αþ s; Y þ β þ ti ¼ αðYÞ þ βðXÞ þ Tr st

aðX þ αþ sÞ ¼ X:

Let H denote the line bundle of half-densities on M,
and H� be the space of its invertible (i.e., everywhere
nonvanishing) sections. The bosonic field content of the
theory then consists of the following fields: (i) a general-
ized metric G, i.e., a symmetric endomorphism E → E
satisfying G2 ¼ 1; and (ii) an invertible half-density σ ∈H�.
The generalized metric induces an orthogonal splitting

E ¼ Cþ ⊕ C− into its�1 eigenbundles. Wewill denote the
frames of Cþ and C− by ea; eb;… and eα; eβ;…, respec-
tively. We shall make a further assumption that h·; ·ijCþ has
signature (9, 1) and admits spinors, and ajCþ∶Cþ → TM is
an isomorphism.
Denote the space of such generalized metrics by M.

The last two conditions provide the bridge to the
ordinary description of the field content, as under the
identification (1) any Cþ takes the form

�
xþ

�
ixgþ ixB −

1

2
TrAixA

�
þ ixAjx∈TM

�
⊂ E ð2Þ

for some Lorentzian metric g, Kalb-Ramond 2-form B, and
G-connection 1-form A. The dilaton function ϕ is encoded
in σ via

σ2 ¼
ffiffiffiffiffi
jgj

p
e−2ϕ; ð3Þ

where
ffiffiffiffiffijgjp

stands for the standard metric density.
Consider now the “tautological” bundle Cþ → M,

whose fiber at G is the space ΓðCþÞ. Any small change
G ⇝ G0 ≔ Gþ δG induces a small deformation of the
subbundle Cþ ⇝ C0þ. Since the orthogonal projection
E → Cþ gives an isomorphism C0þ → Cþ (see the follow-
ing picture), we have an identification of the nearby fibers
of Cþ, i.e., a connection.

A straightforward calculation shows that the curvature of
this connection is

Fðδ1G; δ2GÞ ¼
1

4
½δ1G; δ2G�∶ΓðCþÞ → ΓðCþÞ; ð4Þ

where δ1;2G are two infinitesimal variations of G, i.e.,
vectors at TGM. Analogously we obtain a connection and
curvature on C− → M.
Fermions and supersymmetry—Denoting the Majorana-

Weyl spinor bundles for Cþ by S�, the fermionic field
content of the theory is

ρ∈ΓðΠSþ ⊗ HÞ; ψ ∈ΓðΠS− ⊗ C− ⊗ HÞ; ð5Þ

where Π denotes the parity shift. As shown in [4], these
fields encode the usual dilatino and gravitinoþ gaugino,
respectively. Note that we define the fermions as half-
densities.
Since ρ and ψ are sections of bundles which themselves

depend on the generalized metric, the classical field space
has the structure of (the total space of) a vector bundle

S0 → M ×H�; ð6Þ

whose fiber at ðG; σÞ is

ΓðΠSþ ⊗ HÞ × ΓðΠS− ⊗ C− ⊗ HÞ: ð7Þ

Since the bundles S� are naturally associated to Cþ, it
follows that S0 carries a connection inherited from the ones
on C� → M. Its curvature is

Fðδ1G; δ2GÞρ ¼ 1

8
δ1Ga

βδ2Gbβγ
abρ;

Fðδ1G; δ2GÞψα ¼ 1

8
δ1Ga

βδ2Gbβγ
abψα þ 1

2
δ½1Ga

αδ2�Ga
βψ

β:

ð8Þ

Note that this has the form of a Lorentz transformation.
In order to write down kinetic terms for the fermions we

again recall the construction from [4,7]. A generalized
connection D [18] is said to belong to the class LCðG; σÞ if
it is torsion-free and preserves both G and σ. Such
connection exist but are not unique [19]; however, there
exist objects constructed out of G, σ, and D∈LCðG; σÞ,
which are independent of the choice of the representative
D∈LCðG; σÞ and thus only depend on G and σ. The most
important are (i) the generalized scalar curvatureR, (ii) the
generalized Ricci tensor Raβ, (iii) the Dirac operator
=D ¼ γaDa in =Dρ and =Dψα, (iv) the operator Dα in Dαρ
and Dαψ

α, and (v) the operator D when acting on
any f∈C∞ðMÞ.
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This allows us to construct the following action func-
tional S0 [4] on the space S0:

S0 ¼
Z
M
Rσ2 þ ψ̄α=Dψα þ ρ̄=Dρþ 2ρ̄Dαψ

α

−
1

768
σ−2ðψ̄αγabcψ

αÞðρ̄γabcρÞ

−
1

384
σ−2ðψ̄αγabcψ

αÞðψ̄ βγ
abcψβÞ; ð9Þ

which is invariant under the local supersymmetries, i.e.,

δϵGab ¼ δϵGαβ ¼ 0; δϵGaβ ¼ δϵGβa ¼
1

2
σ−2ϵ̄γaψβ;

δϵσ ¼ 1

8
σ−1ðρ̄ϵÞ;

δϵρ ¼ =Dϵþ 1

192
σ−2ðψ̄αγabcψ

αÞγabcϵ;

δϵψα ¼ Dαϵþ
1

8
σ−2ðψ̄αρÞϵþ

1

8
σ−2ðψ̄αγaϵÞγaρ; ð10Þ

The supersymmetry parameter ϵ is here a function on S0,
which for any given field configuration ðG; σ; ρ;ψÞ takes
value in ΓðΠS− ⊗ HÞ (note that this bundle itself depends
on G). Formula (10) thus define a vector field δϵ on S0—
more precisely the first and second pair of formulas express
the horizontal and vertical parts of this vector field,
respectively. This is the general meaning of the formulas
for supersymmetry variations [20].
Similarly, we note that any section ζ∈ΓðEÞ induces an

infinitesimal automorphism of E. This is usually expressed
via the generalized Lie derivative operator Lζ and again
produces a vector field δζ on S0 which preserves the
functional S0. Note that this action is reducible, as LDf ¼ 0

for any f∈C∞ðMÞ.
Let us now turn to the algebra of the symmetries.

As usual, its most interesting part corresponds to the
commutator of two supersymmetries. On the bosonic
fields we have

½δϵ1 ; δϵ2 � ¼ δϵ þ δζ; ð11Þ

where we defined

ζa ≔
1

4
σ−2ϵ̄2γ

aϵ1; ϵ ≔ −
1

2
=ζρþ δϵ1ϵ2 − δϵ2ϵ1; ð12Þ

while on the fermions

½δϵ1 ; δϵ2 �ρ ¼ δϵρþ δζρ −
1

2
=ζð=Dρþ…Þ;

½δϵ1 ; δϵ2 �ψα ¼ δϵψ
α þ δζψ

α þ
�
1

4
ϵ½2ϵ̄1� −

1

2
=ζ

�
ð=Dψα þ…Þ;

ð13Þ

where the last parentheses contain the equations of
motion of ρ and ψ , respectively. Note that this provides
a significant simplification when compared to the usual
formulas (cf. [1]).
As usual, the calculations leading to (13) are relatively

lengthy and involve a generous handful of Fierz iden-
tities. Notably, since the formula (10) really correspond
to horizontal and vertical parts of the vector field δϵ
on S0, the corresponding commutator on fermions picks
up an extra term (in addition to the “naive” commutator
of variations), coming from the curvature (8).
This removes all the terms which look like Lorentz
transformations and which would be present in the
vielbein formulation. [Note that Lorentz transformations
are not expected to appear in (13) as they are not
symmetries of the metric tensor formulation of the
theory.] We postpone the details of the calculation to
a future work [21].
BV field space—To construct the BV space we start with

the classical field space, add ghosts and ghosts for ghosts
corresponding to local symmetries, and then adjoin the
corresponding antifields. This yields the BV space

FBV ≔ T�½−1�S; ð14Þ

where S → M ×H� is the vector bundle whose fiber at
ðG; σÞ is

ΓðΠSþ ⊗ HÞ × ΓðΠS− ⊗ C− ⊗ HÞ
× ΓðΠS− ⊗ HÞ½1� × ΓðEÞ½1� × C∞ðMÞ½2�: ð15Þ

Here [n] signifies the degree shift and corresponds to the
ghost number. The overall parity is the sum of the super-
degree (bosonic or fermionic) and the parity of the ghost
degree. Elements of the fiber (15) correspond to the
fermionic fields ρ and ψ , the supersymmetry ghost e,
the diffeomorphism ghost ξ, and the ghost for ghost f,
respectively. To summarize, our field content up to now
consists of

G∈ΓðE� ⊗ EÞs.t. × G2 ¼ 1 and G� ¼ G;

σ ∈ΓðHÞ every where nonvanishing;

ρ∈ΓðΠSþ ⊗ H; Þ
ψ ∈ΓðΠS− ⊗ C− ⊗ HÞ;
e∈ΓðΠS− ⊗ HÞ½1�;
ξ∈ΓðEÞ½1�;
f∈C∞ðMÞ½2�: ð16Þ

In particular, the fields G, σ, e, and f are even and the rest
is odd.
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The space FBV also includes the dual antifields, whose
most convenient description is as follows. We start by
noting that, following the discussion above, S carries a
natural connection and hence a splitting of its tangent
spaces into horizontal and vertical parts. This gives an
identification

T�½−1�S ≅ π�ðT�½−1�ðM ×H�ÞÞ ⊕ π�S�½−1�; ð17Þ

of bundles over S, where π∶S → M ×H� is the projec-
tion. We will describe the fibers of the first and second
summand by the dual coordinates G�, σ�, and ψ�, ρ�, ξ�, e�,
f�, respectively. More concretely, for any configuration
ðG; σ;ψ ; ρ; ξ; e; fÞ we have

G� ∈T�
G½−1�M ≅ ΓðCþ ⊗ C− ⊗ H2Þ½−1�;

σ� ∈ΓðHÞ½−1�;
ψ� ∈ΓðΠSþ ⊗ C− ⊗ HÞ½−1�;
ρ� ∈ΓðΠS− ⊗ HÞ½−1�;
ξ� ∈ΓðE ⊗ H2Þ½−2�;
e� ∈ΓðΠSþ ⊗ HÞ½−2�;
f� ∈ΓðH2Þ½−3�: ð18Þ

Here we used the fact that infinitesimal deformations of G
correspond to deformations of Cþ; and any nearby
deformed C0þ is the graph of a vector bundle map Cþ →
C− (see the picture above). We also used the identifications
C� ≅ C�

�, E
� ≅ E, and S�� ≅ S∓. Note that ψ�, ρ�, and ξ�

are even and the rest is odd.

BV action—We now claim that the BV extension of the supergravity action (9) is

S ¼
Z
M
Rσ2 þ ψ̄α=Dψα þ ρ̄=Dρþ 2ρ̄Dαψ

α −
1

768
σ−2ðψ̄αγabcψ

αÞðρ̄γabcρÞ − 1

384
σ−2ðψ̄αγabcψ

αÞðψ̄βγ
abcψβÞ

þ σ�
�
Lξσ −

1

8
σ−1ðρ̄eÞ

�
þ G�

aβ

�
ðLξGÞaβ þ

1

2
σ−2ðēγaψβÞ

�
þ ρ̄�

�
Lξρþ =Deþ 1

192
σ−2ðψ̄βγabcψ

βÞγabce
�

þ ψ̄�
β

�
ðLξψÞβ þDβeþ 1

8
σ−2ðψ̄βρÞe − 1

8
σ−2ðψ̄βγaeÞγaρ

�
þ ē�

�
Lξeþ

1

16
σ−2ðēγaeÞγaρ

�

þ
	
ξ�; Df þ 1

2
Lξξ



−
1

8
ξ�aσ−2ðēγaeÞ þ

1

2
f�
�
Lξf þ 1

8
σ−2ðēγaeÞξa −

1

6
hξ;Lξξi

�
−

1

64
σ−2ðēγaeÞðψ̄�

βγ
aψ�βÞ

−
1

32
σ−2ðēψ�

βÞðēψ�βÞ − 1

64
σ−2ðēγaeÞðρ̄�γaρ�Þ: ð19Þ

Following the usual BV machinery the form of this
action is essentially read off from what was discussed
before: the linear terms in antifields include both (10) and
the generalized diffeomorphisms, as well as the “structure
coefficients” of the symmetry algebra [first part of the rhs
of (13)], while the terms quadratic in antifields quantify the
failure of the symmetries to close off-shell [last part of the
rhs of (13)]. Finally, an important nontrivial check is
provided by the fact that when taking G ¼ 1 (and after a
constant rescaling of ρ) the expression (19) matches the BV
action for the dilatonic supergravity [10]. This can, in
particular, be used to determine the terms in (19) containing
the ghost-for-ghost f, which account for the reducibility
of our description of generalized diffeomorphisms (which
is the same regardless of whether G ¼ 1 or not) [22].
Our result also structurally matches theD ¼ 4 supergravity
BV analysis in [11].
That being said, we note that although highly suggestive,

the above arguments do not provide a full proof that the
classical master equation is indeed satisfied. However, even
after performing additional nontrivial checks (which are too

lengthy to report on here) we have not found any indication
that the formula (19) is incomplete or incorrect in any way
and hence we are highly confident in its validity. The full
proof of this fact is left for a future work.
Conclusions and outlook—We have found the BVaction

for the N ¼ 1 supergravity in 10 dimensions, in general,
coupled to a super Yang-Mills sector. It looks somewhat
likely that with further effort one might succeed in perform-
ing a similar BV analysis for the type II supergravity. One
should also be able to derive the corresponding results for
the lower-dimensional supergravities via consistent trunca-
tions. Using our results one could proceed to look for a
perturbative solution to the quantum master equation in
order to investigate the quantum nature of the supergravity
theories. It would also be interesting to relate the present
BV formulation to superstring field theory. We leave these
questions for future work.
In [23] Costello and Li suggested a procedure of twisting

supergravity. Their twist starts by taking the BV formulation
of supergravity and then expanding the BV action S around
its critical point [24] which has a nonzero value of the
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supersymmetry ghost e. In particular it was conjectured
in [15] that the (holomorphic) twist of type I supergravity on
a Calabi-Yau fivefold is described by the Z2-fixed locus of
the BCOV theory [25] coupled to the SO(32) holomorphic
Chern-Simons theory. The present Letter could be used to
put this conjecture on more solid ground by completing the
BV description of (the two-derivative part of) its starting
point, i.e., type I supergravity.
Following this philosophy, let us look more closely at the

critical points of the BV action (19) (for any gauge group).
The corresponding equations are easy to find and are shown
in the Appendix. In particular setting to zero all the fields
except for G, σ, and e these equations reduce to

Raβ ¼ =De ¼ Dαe ¼ ēγae ¼ 0: ð20Þ

This is the condition for the background ðG; σÞ to be
supersymmetric, with the extra requirement that ēγae ¼
Raβ ¼ 0. (Note that the vanishing of the generalized scalar
curvature R follows from the Lichnerowitz formula [4,7].)
The Eq. (A4) can be therefore regarded as a generalisation
thereof. This, in particular, suggests an interesting modi-
fication of the condition for the existence of a parallel
spinor (leading in the classical case to, e.g., Calabi-Yau
manifolds) to one of the form

Dαe ¼ 1

16
σ−2eðψ̄�

αeÞ: ð21Þ

We recall here that both spinors e and ψ� are even
(commuting).

Acknowledgments—C. S.-C. and F. V. are supported by an
EPSRC New Investigator Award, Grant No. EP/X014959/1.

Data availability—No data were created or analyzed in
this study.

[1] E. Bergshoeff, M. de Roo, B. de Wit, and P. van
Nieuwenhuizen, Nucl. Phys. B195, 97 (1982).

[2] G. F. Chapline and N. S. Manton, Phys. Lett. 120B, 105
(1983).

[3] M. Dine, R. Rohm, N. Seiberg, and E. Witten, Phys. Lett.
156B, 55 (1985).

[4] J. Kupka, C. Strickland-Constable, and F. Valach, arXiv:
2410.16046.

[5] J. Kupka, C. Strickland-Constable, and F. Valach, Phys.
Rev. Lett. 134, 111601 (2025).

[6] W. Siegel, Phys. Rev. D 48, 2826 (1993).
[7] A. Coimbra, C. Strickland-Constable, and D. Waldram,

J. High Energy Phys. 11 (2011) 091.
[8] M. Garcia-Fernandez, Commun. Math. Phys. 332, 89 (2014).
[9] A. Coimbra, R. Minasian, H. Triendl, and D. Waldram,

J. High Energy Phys. 11 (2014) 160.
[10] J. Kupka, C. Strickland-Constable, and F. Valach, Phys.

Rev. D 111, 046020 (2025).
[11] L. Baulieu, M. P. Bellon, S. Ouvry, and J.-C. Wallet, Phys.

Lett. B 252, 387 (1990).
[12] A. S. Cattaneo, N. Moshayedi, and A. S. Funcasta, arXiv:

2412.14300.
[13] A. S. Cattaneo and F. Fila-Robattino, arXiv:2503.07373.
[14] M. Cederwall, Pure spinors in classical and quantum

supergravity, in Handbook of Quantum Gravity (Springer,
Singapore, 2023), 10.1007/978-981-99-7681-2_47.

[15] K. Costello and S. Li, Adv. Theor. Math. Phys. 24, 1723
(2020).

[16] Z.-J. Liu, A. Weinstein, and P. Xu, J. Diff. Geom. 45, 547
(1997).

[17] P. Ševera, arXiv:1707.00265.
[18] A generalized connection is a map D∶ΓðEÞ × ΓðEÞ →

ΓðEÞ satisfying Dfuv¼fDuv, DuðfvÞ¼fDuvþðaðuÞfÞv,
and Dh·; ·i ¼ 0. Any such connection also naturally acts on
half-densities via Duσ ¼ LaðuÞσ − 1

2
σtrðDuÞ, where L is the

usual Lie derivative.
[19] M. Garcia-Fernandez, Adv. Math. 350, 1059 (2019).
[20] In other words, notice that δϵρ corresponds to the difference

of two sections of two different bundles (corresponding to G
and Gþ δϵG, respectively). In order to make sense of this
one needs to provide the identification of these two bundles,
which is where the connection on S0 is used.

[21] J. Kupka, C. Strickland-Constable, and F. Valach (to be
published).

[22] As seen in [4] this corresponds to the reducibility of the
gauge transformations of the B field.

[23] K. Costello and S. Li, arXiv:1606.00365.
[24] By a point we mean a point in the even part F even

BV of the
supermanifold FBV , i.e., a configuration with all odd fields
vanishing.

[25] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa,
Commun. Math. Phys. 165, 311 (1994).

End Matter

Appendix: Critical points of the BV action—We are
interested in critical points of S on F even

BV . Since all the
terms in S contain an even number of odd fields, we can
first consistently set them all to zero before performing
the variation. The equation of motion for ξ� then
becomes

Daf −
1

8
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The equation of motion for ρ� then reduces to

=De ¼ 0: ðA3Þ

A straightforward (and very short) calculation using formulas from [4] then shows that the remaining equations are

0 ¼ Raασ
2 þ 1

4
ρ̄�γaDαe −

1

4
ēγaDαρ

� −
1

2
ψ̄�
αDae −

1

4
ψ̄�
αγabDbe −

1

4
ēγabDbψ�

α;

0 ¼ Rσ2 þ 1

2
ψ̄�
αDαe −

1

2
ēDαψ�

α þ
1

32
σ−2ðēψ�

αÞðēψ�αÞ;

0 ¼ Dαe −
1

16
σ−2eðψ̄�

αeÞ;

0 ¼ Dαψ�
α − =Dρ� −

1

4
σ−2ξ�aγae −

1

32
σ−2γaeðψ̄�

αγ
aψ�αÞ − 1

16
σ−2ψ�

αðēψ�αÞ − 1

32
σ−2γaeðρ̄�γaρ�Þ;

0 ¼ Daξ�a þDαξ�α: ðA4Þ
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