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Abstract: We present the first robust measurement of the one-dimensional Lyman alpha
(Ly-α) forest bispectrum using the complete extended Baryon Oscillation Spectroscopic Survey
(eBOSS) quasar sample, corresponding to the sixteenth data release (DR16) of the Sloan
Digital Sky Survey (SDSS). The measurement employs an FFT estimator over 12 redshift bins,
ranging from z = 2.2 to z = 4.4, and extends to scales of 0.017 (km/s)−1. The used sample
consists of 122,066 quasar spectra; however, only the first six redshift bins contain sufficient
data to extract a physical bispectrum. To validate and correct the bispectrum measurement,
we use synthetic datasets generated from lognormal and 2LPT mocks. Additionally, we
detect clear evidence of correlations between SiIII absorption lines and the Ly-α forest within
the bispectrum signal, which we model using an extension of the approach applied to the
analogous one-dimensional power spectrum signal. In this context, the pipeline developed
for this study addresses the impact of instrumental and methodological systematics and is
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ready for application to larger spectroscopic datasets, such as those from the Dark Energy
Spectroscopic Instrument (DESI). Finally, we compare the signal to a simple perturbation
theory model, where a χ2 analysis shows a reasonable fit for specific bispectrum configurations
with z ≤ 3.2; suggesting that higher-order one-dimensional statistics in the Ly-α forest can
complement cosmological inference based on the power spectrum in future analyses.
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1 Introduction and summary of main results

The intergalactic medium (IGM) resides in the low-density regions between galaxies and is
important to various astrophysical disciplines. Understanding IGM has been essential since
the pioneering work of Gunn and Peterson [1] in the 1960s, in which it was first used to test
models of structure formation on the smallest comoving scales (see also [2–5]). Variations in
the IGM’s density are observed in quasar (QSO) spectra as a continuous series of absorption
features. Although various atomic transitions serve as biased tracers of this density field, the
strongest signal arises from the Lyman-alpha (Ly-α) transition of neutral hydrogen atoms
within the IGM. These absorption features in QSO spectra are referred to as the Ly-α forest,
commonly studied at redshifts between 2 and 5 (see [6] for a review).
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The small-scale IGM distribution is captured in the fluctuations of the Ly-α forest
superimposed on the quasar continuum, defined as the QSO’s unabsorbed spectrum. These
fluctuations can be analyzed through different summary statistics, either in Fourier or real
space. One approach in Fourier space is through the three-dimensional power spectrum
(P 3D), a correlation between QSO absorption across multiple lines of sight separated by small
angles on the sky (see, for example, [7–10]). Due to the observational nature of the Ly-α
forest, there is a high-resolution dataset along lines of sight with a limited sample in the
transverse directions, which poses a technical challenge for measuring the P 3D. The advent
of new Ly-α forest surveys with a greater number of lines of sight, such as the Dark Energy
Spectroscopic Instrument (DESI) [11, 12], offers a realistic prospect of measuring the P 3D.

A more straightforward approach is to study the Ly-α forest power spectrum averaged over
the line of sight, known as the one-dimensional power spectrum (P 1D). Early measurements of
P 1D can be found in [13–16]. In more recent years, medium-resolution surveys have measured
P 1D using data from the Sloan Digital Sky Survey (SDSS) ([17]), the Baryon Oscillation
Spectroscopic Survey (BOSS) and the extended BOSS (eBOSS). These analyses started with
catalogues of O(103) spectra [18], to conclude with the larger SDSS DR9 (BOSS) sample used
in [19] or the SDSS DR16 (eBOSS) data in [20]. More recently, P 1D was measured using the
first DESI data using a Fast Fourier Transform (FFT) approach ([21]) and compared with the
quadratic maximum likelihood estimator (QMLE) approach from [22] (or [19] for BOSS); both
methods yield consistent results. Moreover, high-resolution P 1D measurements have also been
made using SQUAD data ([23], O(4 × 102 spectra)), KODIAK ([24], O(3 × 102) spectra), and
XQ-100 data ([25], O(1×102) spectra). Further examples of P 1D analysis are found in [26–33].

The P 1D analysis provides valuable information on structure formation, as seen in [34–37].
It is also a tool for studying neutrino masses, as demonstrated by [38–40]. To extract more
information from Ly-α forest data, one can either use higher-order Lyman series (e.g., [41, 42])
or higher-order statistics such as the one-dimensional bispectrum (B1D).

In this work, we focus on higher-order statistics, specifically the bispectrum, which
provides a complementary description of non-Gaussian features in the Ly-α forest. The
bispectrum quantifies correlations between three Fourier modes, offering insight into the
non-linear processes shaping the large-scale structure of the universe ([43–46]). Zaldarriaga
et al. [47] mention that gravitational growth induces correlations between large-scale modes
and small-scale power, which can be demonstrated through the bispectrum. These three-point
correlations can also distinguish between fluctuations caused by large-scale structure in the
matter distribution and those arising from non-gravitational processes, such as variations
in the continuum emission of quasars. Other physically interesting phenomena can be
studied using higher-order statistics, including the recent parity study by [48] employing
the four-point correlation function.

Several studies in the literature have explored the use of the Ly-α bispectrum. Notably,
Viel et al. [49] measured B1D using 27 high-resolution quasar spectra in the redshift range of
2.0 to 2.4, and concluded that the signal was not strong enough to use it for a cosmological
analysis. In contrast, the works of [47] and [50] measured a three-point correlation, which is
not exactly what we will define as the B1D. All these contemporary studies [49–51] discuss
the advantages of a bispectrum analysis, either to break degeneracies between the mean
flux transmission, F , and the amplitude of the power spectrum, or to improve constraints
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on the model parameters via the joint analysis with the power spectrum [50]; as well as to
constrain primordial non-Gaussianities [51]. The accuracy achieved in [49] is reported to be
within the 50% relative to the preferred ΛCDM model at the time, while the authors of [50]
emphasized the need for a more detailed study of systematics affecting the bispectrum, before
it can be considered for cosmological analysis. These two aspects, improved accuracy and
understanding of systematic errors, are two of the main goals of this work. In [52], the three-
point correlation function was measured using hydrodynamical simulations, decomposing the
Ly-α forest into multiple Voigt profile components (clouds). Another interesting work by [53]
measured the squeezed-limit cross-bispectrum between the Ly-α power spectrum and the
long-wavelength quasar overdensity using simulations. This approach is similar to the position-
dependent power spectrum approach ([54]). Additionally, [55] attempted to place stringent
constraints on primordial non-Gaussianity by analyzing the measured 3D bispectrum of the
Ly-α forest. In [56], they further pursued non-Gaussianity testing, this time by incorporating
the three-dimensional 21 cm bispectrum and examining the cross-bispectrum between the
21 cm brightness temperature and Ly-α transmitted flux fields. With this background on the
Ly-α bispectrum (B1D) established, we can now describe the main results of this work.

Our primary result is the first measurement of the one-dimensional bispectrum in the
Ly-α forest using data from a large galaxy spectroscopic survey, specifically the eBOSS DR16
dataset. We estimate the B1D signal in 12 redshift bins, although only six of these bins yield
sufficient statistical significance. After carefully analyzing the noise and other systematics,
we show that the signal is compatible with simple models based on either second-order
perturbation theory (2OPT) or synthetic mocks generated using LogNormal and second-order
Lagrangian Perturbation Theory (2LPT) simulation methods. Figure 1 summarizes our main
results on the B1D measurement from eBOSS.

Three-point correlations are defined over triangular configurations in real or Fourier space.
In the case of B1D, the function is supported over colinear triangles, defined by two momentum
scales (q0, q1). The left panel of figure 1 shows the full B1D for all triangular configurations,
while the right panel focuses on the isosceles triangles. These isosceles configurations,
corresponding to the diagonal in the q0-q1 plane, exhibit the strongest bispectrum signal.
Although a more detailed discussion will follow, there is clear redshift evolution in the signal,
consistent with the 2OPT model. Moreover, as seen in the density plot in the left panel,
periodic darker regions are observed, which result from the cross-correlation between the
absorption of the Ly-α and the Siiii quasar emission lines. Another notable result is the
first measurement of the one-dimensional bispectrum in the sidebands, caused by metals on
the red side of the Ly-α peak. Finally, the pipeline presented in this work can be directly
applied to the next generation of large-scale spectroscopic Ly-α surveys, such as DESI [12],
or the high-resolution quasar data from SQUAD [23].

The rest of the paper is structured as follows: in section 2, we present the three-point
statistic formalism and the pipeline to perform the B1D measurement, as well as the theoretical
model of the bispectrum based on second-order perturbation theory. Section 3 focuses on
data analysis. In the following section, we describe the generation of synthetic spectra
using Gaussian random field methods and Lagrangian perturbation theory, extending to
mildly nonlinear scales. The treatment of statistical and systematic uncertainties for the
B1D measurement is detailed in section 5. In section 6, we present our measurements using

– 3 –



J
C
A
P
0
6
(
2
0
2
5
)
0
1
5

0.001 0.0025 0.005 0.0075 0.01
q0 (km/s) 1

0.001

0.0025

0.005

0.0075

0.01
q 1

 (k
m

/s
)

1

7

6

5

4

3

2

1

0

q 0
q 1

B
1D

(q
0,

q 1
)

1e 2
eBOSS    z = 3.0

0.002 0.004 0.006 0.008 0.010
q  (km/s) 1

10 2

10 1

q2 B
1D

(q
)

z = 2.4
z = 3.0

Theory
Isosceles

Figure 1. One-dimensional bispectrum in the Ly-α forest using eBOSS DR16 data. Left: 2D B1D

measurement for all triangle configurations along the line of sight at a redshift of z = 3.0. The dark
areas are caused by the cross-correlations between Ly-α and Siiii. Right: the 1D signal is obtained by
extracting data from the diagonal of the 2D signal. The data points with error bars depict the B1D

measurements for isosceles triangles (q0 = q1). Results are presented for two specific redshift bins:
one at z = 2.4 (blue) and the other at z = 3.0 (red). The variation in amplitude between these signals
is attributed to the evolution of the B1D with redshift. The solid lines, corresponding to the same
redshifts as the data points, represent the theoretical modeling of the signal based on second-order
perturbation theory. These measurements were made by applying eq. (2.9). The error bars are derived
from the square root of the diagonal of the bootstrap covariance matrix and systematic uncertainties
added in quadrature.

eBOSS DR16 data, along with comparisons to the second-order perturbation theory mode.
Finally, in the last section we provide conclusions.

2 Overview of the data and the bispectrum formalism

2.1 Observational dataset

The DR16 quasar catalogue includes 750,132 confirmed quasars [57], covering wavelengths
from 3,600 Å to 10,400 Å, with a spectral resolution of ∆λ = 0.11 Å. The dataset spans
a redshift range of 0.0 < z < 6.0. For this paper, we focus only on quasars with a Ly-α
forest visible in their spectra, applying a redshift cut of zLy-α ≥ 2.1. This subset consists of
193,346 quasar spectra with Ly-α forests, visually confirmed redshifts, and covering the range
2.1 < z < 4.8. Furthermore, we limit the wavelength range to 3, 650 Å < λ < 7, 235 Å to
avoid the CCD camera edges. For quasars with multiple observations, we use the combined
spectra from all exposures on a given plate. To study redshift dependence, we consider a
sub-sample with 2.2 < z < 4.4, divided into 12 bins of size ∆z = 0.2, with magnitudes in
the r-band between 16.25 and 22.75.

Furthermore, 117,458 spectra containing Damped Lyman Alpha systems (DLA) were
identified by [58] within the same redshift range. To detect more DLAs, we apply a simple
DLA finder, which first calculates the observed flux power spectrum (fPk) and, using the
continuum flux, computes the transmission power spectrum (TPk). If ⟨TPk⟩/⟨fPk⟩ ≥ 2.5,
the spectrum is flagged as containing a DLA, followed by manual visual inspections. In some
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cases, these visually inspected spectra exhibit significant portions of the Ly-α forest being
cut, resulting in the exclusion of those quasars from the sample.

Finally, 27,117 quasar spectra with Broad Absorption Lines (BALs) have been identi-
fied [57]. The final catalogue for our analysis excludes these BAL quasars, identified by a
non-zero BI_CIV flag, reducing the final sample to 166,229 Ly-α quasars.

2.2 Methodology

The starting point consists of cleaning the initial sample. To that end, we first remove spectra
with fewer than 50 pixels in the forest or where the mean spectral resolution is larger than
85 km/s. Moreover, since sky lines affect the P 1D and B1D by increasing the pixel noise,
we mask several sky lines in each forest �,1 and instead of removing the entire pixel, we
interpolate between neighboring pixels. This interpolation is performed before computing
the continuum fit to avoid affecting it. However, once we calculate the delta field from the
fitted continuum, we set the corresponding sky-line pixels to zero before performing the
Fourier transform. We assess the impact of this masking scheme when discussing systematics.
Additional steps for cleaning the initial dataset include accounting for galactic extinction and
discarding bad spectra, which we define as those with a negative mean flux or no pixels in the
Ly-α forest region. Finally, for the initial dataset, we mask DLAs using the catalogue from [58],
at the redshift zabs, in the range [λC −W/2, λC +W/2], where λC = (1 + zabs)λLy-α and W

is the equivalent width given by equation (20) of [27], W = 7.3(1 + zabs)
√
NHI

/1020 cm−2 Å.
Additional DLA systems identified by our simple DLA finder are removed from the sample.

For the B1D analysis, we restrict the Ly-α forest region to the range 1050 Å < λR.F. <

1180 Å to avoid contamination of the correlation functions by astrophysical effects near
the quasars [20]. We use a pixel size in velocity units of ∆v(λ) = 69 km/s. This forest
region is shown for an average quasar in figure 2. We assume an average signal-to-noise
ratio SNR,2 greater than 1.0.

The Ly-α forest region spans a redshift range ∆z ∼ 0.4 for quasars at zLy-α = 2.4,
∆z ∼ 0.5 at zLy-α = 3.2, and ∆z ∼ 0.6 at zLy-α = 4.4. To reduce redshift correlations,
it is common to split the forest into three subregions (each containing about 170 pixels
per QSO spectrum for the eBOSS sample) and assign them to different redshift bins when
calculating P 1D ([19–21]). However, in this work, we divide the forest into chunks for each
line of sight and assign each chunk to its corresponding redshift bin. These chunks correspond
to consecutive, non-overlapping sub-forests of different lengths. Each chunk spans at most
∆z = 0.2. In addition to the previous cuts, each chunk must pass two further cuts. To
improve the quality of the P 1D and B1D estimations, we select chunks with SNR greater
than 2 and exclude chunks with fewer than 50 pixels, a different approach from [20]. We are
now ready to calculate the quasar continuum for each individual chunk.

1Formally, sky removal implies a convolution of the masks with the field in Fourier space. However, we
assume it acts locally, so we only remove the sky lines before extracting the delta field and applying the Fourier
transform. Sky lines are emission lines produced by various processes in Earth’s atmosphere, which emit light
at specific wavelengths. We use the list of sky lines from https://github.com/igmhub/picca/tree/master/etc.

2We define SNR as ⟨f(λ)/σp(λ)⟩, where f(λ) is the observed flux and σp(λ) is the estimate of the standard
deviation of the flux.
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Figure 2. Example of a synthetic quasar spectrum at z = 2.64 (gray line) in the rest-frame. The
color lines cover our defined forest region, λR.F. ∈ [1050, 1180] Å, which lies between the quasar’s Ly-β
(1025.72 Å) and Ly-α (1215.67 Å) emission lines. On the top panel, the blue, red and black lines
represent, respectively, the quantity C(λ)F (λ) measured using PICCA, PCA and the true continuum
in the mocks. The bottom panel shows the average ratio of the continuum fitting and the true
continuum (solid lines), as well as the dispersion from the average (shaded bands).

2.2.1 Continuum fitting

The observable quantity in the Ly-α forest is the transmission, F = e−τ , where τ is the optical
depth. By definition, it is also expressed as the transmitted flux fraction F (λ) = f(λ)/C(λ),
where f(λ) is the observed flux and C(λ) is the unabsorbed quasar flux. One can define
the transmission fluctuation, or “delta” field, δF(λ), by

δF(λ) = F (λ) − F (λ)
F (λ)

= f(λ)
C(λ)F (λ)

− 1, (2.1)

where F (λ) = ⟨f(λ)/C(λ)⟩ is the transmission ensemble average and ⟨·⟩ denotes the ensemble
average.

Different strategies can be used to compute the δF field. For example, one may choose to
estimate the product C(λ)F (λ), as done with the public code PICCA �,3 or independently
estimate the C(λ) and F (λ) functions, as is done when fitting the continuum using Principal
Component Analysis (PCA) [59]. In this work, we test both methods for measuring the

3The Package for IGM Cosmological-Correlations Analyses (PICCA) is available at https://github.com/i
gmhub/picca.
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δF(λ) field using mock spectra and compare them with the true continuum. For the PCA
method, we employ the empca code [60]. Interestingly, we find that with this PCA code, we
are not directly measuring C(λ), but rather the product C(λ)F (λ), similar to the PICCA
method. We observe that calculating ⟨f(λobs)/PCA(λobs)⟩λobs

, with PCA(λobs) the PCA
model, closely approximates unity for each wavelength in the forest. This indicates that
⟨f(λobs)/PCA(λobs) − 1⟩λobs

∼ ⟨δF(λobs)⟩, confirming that the PCA method, as we use it in
this analysis, truly measures C(λ)F (λ). To capture as much variance as possible with the
PCA, we normalize each quasar spectrum so that its integral over the forest is equal to a
constant, where the value of the constant is chosen to have an integrate flux of one. This
step is repeated independently for each line of sight.

Figure 2 compares the C(λ)F (λ) quantity obtained using both the PICCA and PCA
methods for a simulated quasar, compared to its true continuum. In both cases, the
errors are below 10%, with smaller discrepancies in the central regions of the spectra and
increasing towards the edges, particularly near the Ly-α and Ly-β peaks. Generally, the
method employing PICCA, as described in detail in [21, 61, 62], appears to provide greater
homogeneity over the forest region compared to PCA. This stability is evident as PICCA
does not exhibit the long-mode features seen in the PCA results, especially below ∼ 1,120 Å.
These features in the PCA method arise from the selection of eigenvectors used for spectrum
reconstruction, where higher principal components correct the mean spectrum of each quasar.
As a result, using more principal components introduces greater features in the continuum
relative to the true continuum. The emergence of features before λ = 1, 120 Å suggests
that, on average, absorption lines around λ = 1, 070 Å are shallower, while those around
λ = 1, 100 Å are deeper compared to absorption lines at λ ≥ 1, 120 Å, where the depth
remains generally constant. Regardless of the continuum fitting choice, it introduces a bias
to both the P 1D and B1D signals. Continuum fitting generally suppresses the P 1D signal
relative to the true continuum, particularly on large scales. With PICCA, this suppression is
approximately 3%, while with PCA, it is about 5%. We further discuss these biases in the
continuum fitting methods when addressing systematics in the bispectrum. The suppression
of the B1D signal varies depending on the triangle configuration used, but generally exceeds
that of the P 1D signal, as discussed in section 4. Despite PICCA demonstrating a smaller
deviation from the true continuum, we opt to use the PCA method for continuum extraction,
as it provides a clearer redshift evolution of the B1D signal compared to PICCA. In fact,
we observe little redshift evolution when using PICCA. With the continuum fitting method
established, we can proceed to calculate the delta field, accounting for the contributions of
various absorbers involved in the Ly-α forest.

2.2.2 FFT 1D power spectrum

As will become evident in the next section, where we introduce an estimator for the 1D
bispectrum of the “delta field”, δF(λ) from eq. (2.1), it is also necessary to estimate the 1D
power spectrum. Therefore, we begin by deriving the P 1D. As discussed in [18, 20, 21], the δF
field in the Ly-α region can be decomposed into several contributions: one component from the
Ly-α peak absorption and another originating from metal absorption. Metal contributions in
the Ly-α forest analysis can be further classified into two types: those redward (i.e., at larger
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wavelengths) of the Ly-α peak, known as side-bands, and those within the Ly-α region itself.
The absorptions redward of the Ly-α peak are independent of the Ly-α peak absorption and
are know as side-bands. We define side band one (SB1) in the range 1270 Å < λR.F. < 1380 Å
and side band two (SB2) for 1410 Å < λR.F. < 1520 Å. Metal absorptions within the Ly-α
region are primarily due to the Siii (λSiii = 1, 190 Å) and Siiii (λSiiii = 1, 206.50 Å) emission
lines. These metal features are correlated with Ly-α absorption lines and generate oscillations
in both the power spectrum and the bispectrum. In summary, the delta field in the Ly-α
region can be expressed as a sum of the following contributions:

δF(λ) =
(
δLy-α(λ) + δSiii/Siiii(λ) + δSB1/SB2(λ)

)
W(λ,R,∆λ) + δn(λ), (2.2)

where δn represents noise fluctuations, and the function W accounts for the spectrograph
resolution, which we will characterize later. The 1D Ly-α power spectrum can be estimated
from this decomposition by applying a fast Fourier transform (FFT) to δF for each chunk
separately. The delta pixels are assumed to be equally spaced to allow the use of a simple FFT
algorithm. The eBOSS quasar catalogue provides a constant pixel width of ∆[log(λ)] = 10−4,
corresponding to ∆v(λ) = c ln(10)∆[log(λ)] = 69 km/s in velocity units. As a result, the
Fourier space wave-vector, k = 2π/∆v, is measured in (km/s)−1.

We now define an estimator for the P 1D. In the absence of instrumental effects, the
P 1D can be written as the product of two Fourier-transformed δF(λ), namely (2π)δD(k −
k′)P raw = ⟨δF(k)δF(k′)⟩, where δD(k) is the 1D Dirac delta function. However, when all
contributions to the delta field from eq. (2.2) are included, the raw power spectrum becomes

P raw(k) =
(
PLy-α(k) + PLy-α−Siii/Siiii(k) + P SB1/SB2(k)

)
W 2(k,R,∆v) + Pn(k). (2.3)

In this decomposition, PLy-α, PLy-α−Siii/Siiii , P SB1/SB2, and Pn represent the power spectra
corresponding to the components δLy-α, δSiii/Siiii , δSB1/SB2, and δn, respectively, as defined in
eq. (2.2). The estimation of the power spectrum, accounting for the different absorbers in
the Ly-α forest, was first studied in [18]. The window function W , which characterizes the
spectrograph’s spectral response and pixel width, is defined in [19] as

W (k,R,∆v) = exp
(

−(kR)2

2

)
× sin(k∆v/2)

k∆v/2 , (2.4)

where R is the spectrograph resolution measure in (km/s)−1. This estimator for the P 1D

is our starting point to construct the 1D bispectrum.

2.3 Ly-α bispectrum formalism and estimator

Before constructing an estimator for the Ly-α B1D, let us first review some general properties
of three-point statistics in cosmology. The 3D matter three-point correlation function (3PCF),

ξ(3)(x0,x1,x2) ≡ ⟨δ(x0)δ(x1)δ(x2)⟩,

measures the correlation between overdensity triplets in a sample. It depends on 9 degrees
of freedom (dofs), which naturally define the vertex coordinates of a triangle in real space.
Statistical homogeneity (or equivalently, translation invariance, which allows us to choose one
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vertex as the origin) reduces this dependence to 6, which can be interpreted as the two vector
sides of the triangle (r1 = x1 − x0, r2 = x2 − x0). Statistical isotropy further reduces the
number of variables to 3, which we choose to be the lengths of the two sides of the triangle
(|r1| and |r2|) and their corresponding opening angle (µ = r1 · r2).

The bispectrum, B(k0,k1,k2), is simply the Fourier transform of the 3PCF. In terms
of an ensemble average over the δ fields, it reads

⟨δ(k0)δ(k1)δ(k2)⟩ =
∫
d3x0d

3x1d
3x2 e

i(x0·k0+x1·k1+x2·k2)⟨δ(x0)δ(x1)δ(x2)⟩

=
∫
d3x0 e

ix0·(k0+k1+k2)
∫
d3r1d

3r2 e
i(r1·k1+r2·k2)ξ(3)(r1, r2)

= (2π)3 δD(k0 + k1 + k2)B(k0,k1,k2), (2.5)

where we have used the homogeneity of the 3PCF. In the last equality, we applied the
definition of the Dirac delta function, δD, whose consequence is that the k-vectors must
form a triangle. Therefore, the bispectrum also has 6 dof when statistical homogeneity
is assumed, and it is further reduced to 3 variables when isotropy is taken into account.
As in real space, the resulting isotropic bispectrum can be expressed in terms of the two
side lengths of triangles in k-space (k1 = |k1|, k2 = |k2|) and their corresponding opening
angle (α = k1 · k2). From symmetry arguments, one may expect the signal in Fourier
or configuration space to peak for isosceles triangles in random data, with three notable
configurations: equilateral, squeezed (when the opening angle approaches zero), and spread
(when one side equals the sum of the other two). These configurations are also prominent
in Ly-α analysis, as we will demonstrate later.

When restricted to a one-dimensional distribution (e.g., the Ly-α forest along the line
of sight), the triangle configurations in both configuration and Fourier space collapse into
a single line. In other words, the cosine of the opening angle (α) reduces to ±1, leaving
only two independent variables. Formally, we split the k space into parallel (k∥ ≡ q) and
perpendicular (k⊥) directions. Using the 3D-to-1D Fourier space relation (see, e.g., [63, 64])

f (1d)
q =

∫
dk2

⊥
(2π)2 f

(3d)
k∥=q,k⊥

,

the 1D Bispectrum from equation (2.5) reduces to

⟨δ(q0)δ(q1)δ(q2)⟩ = (2π) δD(q0 + q1 + q2)B(q0, q1, q2), (2.6)

where Dirac’s delta function imposes the linear restriction q2 = −q0 − q1.

2.3.1 FFT bispectrum estimator for Ly-α

As we proceeded with the P 1D, the 1D bispectrum can be estimated by applying the FFT
algorithm on δF from eq. (2.2) for each chunk, and by estimating the ensemble average of
the third moment of δ(∆v) values. In the absence of instrumental effects (such as noise and
spectrograph resolution), the B1D can be simply written as the real part of eq. (2.6), namely:

Braw(q0, q1, q2) = ⟨Re[F(δ(∆v0)) · F(δ(∆v1)) · F(δ(∆v2))]⟩,
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where F(δ(∆v)) represents the Fourier transform of δF(∆v), binned into pixels of width ∆v
over the Ly-α forest region. As a reminder, momentum conservation, or equivalently the
presence of Dirac’s delta function, enforces the closure of the momentum variables over the
line of sight, restricting the 1D bispectrum to depend on two variables. We select q0 and q1
as these variables. As a result, the noiseless raw bispectrum is given by:

Braw(q0, q1) = ⟨Re[δF(q0)δF(q1)δF(−q0 − q1)]⟩.

Notice that it is not necessary to compute the bispectrum over the entire two-dimensional
plane because there are several symmetries in the signal. Since δ(∆v) is real, it follows that
δ(−q) = δ∗(q). Consequently, the bispectrum exhibits the following symmetries

B(q0, q1) = B(q1, q0) = B∗(−q0,−q1),
B(q0, q1) = B∗(−q1, q0 + q1) = B∗(−q0, q0 + q1),
B(q0, q1) = B(−q0 − q1, q1) = B(q0,−q0 − q1). (2.7)

Thus, we only need to compute Braw(q0, q1) for q0, q1 ≥ 0 and can use the first of the above
symmetries to construct the full q-dependence shown in figure 1.

When considering the other effects in the delta field that lead to the decomposition in
eq. (2.2), the associated third moment in Fourier space simplifies to

Braw(q0, q1) =
(
BLy-α(q0, q1) +BLy-α−Siii/Siiii(q0, q1) +BSB1/SB2(q0, q1)

)
·W (q0, R,∆v)W (q1, R,∆v)W (q0 + q1, R,∆v)
+Pn(q) [P raw(q0) + P raw(q1) + P raw(q0 + q1)] − 2P 2

n(q). (2.8)

In this decomposition, BLy-α and BSB1/SB2 are the auto-bispectra associated with the trans-
mission fluctuation fields δLy-α and δSB1/SB2, respectively, with the same definition as the
real part of eq. (2.6) for the corresponding delta field. The transmission fluctuation field
attributed to noise fluctuations, δn, introduces two contributions to the bispectrum signal,
as previously discussed in the literature (see, for example, [65, 66]). The first contribution
arises from the cross-term between the noise power spectrum and the raw power spectrum,
while the second term comes from the quadratic power of the noise power spectrum in
eq. (2.8). Moreover, the auto and cross-correlations between Siii and Siiii are subdominant
and therefore neglected. All cross terms between two delta fields of Siii/Siiii and one delta
field of Ly-α, as well as cross terms with noise fluctuations and side-band metals, are also
neglected. The only non-negligible cross terms are

BLy-α−Siii/Siiii(q0, q1) ≈ 2Re[δLy-α(q0)δSiii/Siiii(q1)δLy-α(−q0 − q1)]
+Re[δLy-α(q0)δLy-α(q1)δSiii/Siiii(−q0 − q1)],

which corresponds to the correlated absorptions of the Ly-α with either Siii or Siiii.
The final FFT estimator for the 1D bispectrum is computed as an average over all

available Ly-α forests within a given chunk. Since, at present, we are unable to independently
extract the BLy-α(q0, q1) and BLy-α−Siii/Siiii(q0, q1) components of eq. (2.8), we combine them
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by defining B1D(q0, q1) =
〈
BLy-α(q0, q1) +BLy-α−Siii/Siiii(q0, q1)

〉
. Thus, from eq. (2.8), we

conclude that the estimator for B1D is

B1D(q0, q1) =
〈
Braw

q0,q1 −Pn(q) [P r(q0)+P r(q1)+P r(q0 +q1)]+2P 2
n(q)

W (q0,R,∆v)W (q1,R,∆v)W (q0 +q1,R,∆v)

〉
−BSB1/SB2(q0, q1),

(2.9)
where we use the shorter notation P r ≡ P raw. The eq. (2.9) is our final estimator to measure
the 1D bispectrum.

The bispectrum, B1D, is divided into different redshift bins to account for its evolution,
as discussed in section 6. The negative sign in the bispectrum is consistent with the findings
of [49], and we demonstrate that this negative sign persists for other combinations of q0 and
q1. Furthermore, Zaldarriaga et al. [47] suggested that the negative sign might result from
higher-order correlations arising due to gravitational growth.

In this work, we focus on two specific triangle configurations: the isosceles and the special
case of the squeezed limit. As mentioned by [65] and [67], the triangle configurations with
the most prominent signals are those that share a common q-vector (q1 = n · q0), where n is
an integer. In appendix A, we will verify that these two configurations yield the strongest
signals. Isosceles triangles are characterized by q1 = q0, and we have adopted the definition
of the squeezed limit from [51].

• Configuration 1 (isosceles) : q1 = q0

B(q) = Re[⟨δ(q)δ(q)δ∗(2q)⟩]

• Configuration 2 (squeezed) : q0 = q − qmin and q1 = −q − qmin

B(q) = Re[⟨δ(q − qmin)δ∗(q + qmin)δ(2qmin)⟩]. (2.10)

Formally the squeezed limit is when qmin → 0, but in practice one cannot take that limit
given the forest finite range. Therefore, one may use the first bin of the delta field, in order
to avoid nonphysical signals, we take qmin as the second bin. In the following, we present
the flux bispectrum as a function of the wavenumber q = q0. Hereafter, we will refer to
the bispectrum of isosceles triangles as B1D, while for the squeezed limit bispectrum, we
will use B1D

SQ. In the case of the Ly-α forest, configurations close to the squeezed limit may
offer an interesting approach for studying primordial non-Gaussianities (e.g., [51, 53, 55]) or
consistency conditions when compared with the power spectrum (see, for example, [68–70]).

2.4 Theoretical description of B1D

For the modelling, we use the theoretical expressions of [49], which relate the flux power
spectrum and bispectrum using second-order perturbation theory (2OPT). In the Fluctuating
Gunn-Peterson Approximation (FGPA), the flux can be related to the density field as

F = exp{−A(1 + δIGM)β}, (2.11)

where A and β depend on redshift. β = 2 − 0.7(γ − 1), and γ is the power-law index of
the gas temperature-density relation, whose values are reported in [71, 72]. This model
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assumes that redshift space distortions are not important and neglects thermal broadening
and instrumental noise. As a future line of work, we can overcome this assumption using
the ideas developed in [73–75]. Furthermore, the model assumes that at the scale of interest
δIGM = δDM = δ, together with a Taylor expansion of the density field to second order,
namely δ(x) = δ(1)(x) + δ(2)(x). Using FGPA such that (1 + δ)β = 1 + βδ + β(β − 1)/2 δ2,
we finally get the following expression for the delta field

δF ≈ b1[δ(1)(x) + δ(2)(x)] + b2
2
(
δ(1)(x)

)2
, (2.12)

with b1 = −Aβ and b2 = −Aβ(β − 1 −Aβ). The expression for the Ly-α bispectrum follows
then by projecting the 3D bispectrum ([65]) along the line-of-sight, namely

B(q0, q1, q2) =
(12

7 c1 + c2

)
p(q0)p(q1) + c1

[(
q0q1 − 2

7q
2
0

)
p(−1)(q0)p(q1) (2.13)

+
(
q1q0 − 2

7q
2
1

)
p(−1)(q1)p(q0) + 6

7q
2
0q

2
1p

(−1)(q0)p(−1)(q1)
]

+ cyc.(0, 1, 2),

where c1 = 1/b1, c2 = b2/b
2
1 and p(q) is the 1D-Power Spectrum. The spectral moments

p(−1)(q) are given by

p(ℓ)(q) = |q|2ℓp(q) + 2ℓ

∫ ∞

|q|
k−2ℓ−1p(k) dk, (2.14)

in this case ℓ = −1.
We develop eq. (2.13) for both Configuration 1 and Configuration 2. It is essential to

consider the sign in the above equations for all q values and account for the symmetry between
p(qi) and p

(−1)
i (q). [49] demonstrated that the optimal values that match with synthetic

spectra are A = 0.48 and γ = 1.5. In our results, we fit the values of c1 and c2 for the full
2D B1D signal, considering all triangle configurations.

3 Data analysis and P 1D assessment

The instrumental effects in eBOSS have been extensively investigated in previous studies
related to the measurement of P 1D (see, for example, [19–21]). However, the impact of these
effects on B1D estimation remains unexplored. For this reason, we begin by analyzing these
effects in the context of our study. Specifically, we focus on the impact of spectral resolution,
instrumental noise, and the metal (side-bands) bispectrum. In addition, we provide a brief
overview of our final sample selection and present the P 1D estimate within the Ly-α forest,
comparing it with previous measurements to assess the effectiveness of our pipeline.

3.1 Summary of the Ly-α sample

As mentioned in section 2.1, our Ly-α forest sample consists of 166,229 quasars. After
removing BALs, missing DLAs, or bad spectra using our DLA finder, Ly-α forests with less
than 50 pixels, and applying the SNR cut, the sample is reduced to 122,066 quasars. Since we
work with chunks (correspond to consecutive, non-overlapping sub-forests of different lengths)
to measure the B1D, we improve the quality of the low/high-redshift chunks by considering
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Figure 3. Window function for B1D measurements in the isosceles or squeezed limit configurations.
We restrict to a maximal suppression of 80%, which results in a maximal scale of q ≈ 0.01 (km/s)−1

(q ≈ 0.017 (km/s)−1) for the isosceles (squeezed) triangles.

CCD-observed wavelengths in the range 3770 Å ≤ λobs ≤ 6687 Å. After removing chunks with
SNR < 2 and discarding those where the mean spectral resolution exceeds 85 km/s, our final
Ly-α forest chunk sample contains 151,621 chunks. For SB1, we have 256,751 chunks.

3.2 Spectrograph resolution

The window function correction, as expressed in eq. (2.4), encompasses two effects on the
measurement of P 1D and B1D: one due to pixelization (spectrum binning or pixel width)
and the other due to spectrograph resolution. While this correction has been thoroughly
investigated for SDSS P 1D measurements [18–20], its application to B1D measurements
remains unexplored. Eq. (2.4) shows that the influence of the spectrograph resolution R is
modeled by a Gaussian function. We determine R following the same analysis performed by
Chabanier et al. [20] (see also [19] for a detailed description), which accounts for corrections
to R as a function of CCD position, fiber number, and wavelength. We then apply this
correction to each pixel in every spectrum. Figure 3 shows the average window correction for
the two configurations defined in (2.10). These corrections reveal that both resolution and
pixelization suppress the isosceles bispectrum signal by just over 80% at q = 0.01 (km/s)−1.
For the squeezed limit bispectrum, the suppression exceeds 90%, similar to that of P 1D. The
maximum value of q varies depending on the triangle configurations and the Nyquist-Shannon
limit: kNyquist = π/∆v = 0.045 (km/s)−1. However, we choose kmax = 0.02 (km/s)−1 for P 1D

and B1D
SQ (qmax = 0.017 (km/s)−1), as the impact of the spectrograph resolution becomes

very strong beyond this value. For Configuration 1, we set qmax = 0.01 (km/s)−1 due to
the spectrograph’s resolution (see A).

3.3 Noise bispectrum measurement

3.3.1 Estimator of noise power spectrum

One of the systematics that significantly impacts the P 1D measurement signal at small scales
is the noise power spectrum Pn. Therefore, it is essential to accurately estimate it. Over
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the years, two methods have been employed to calculate the Pn: the first involves directly
estimating it from the pipeline’s noise, while the second utilizes an exposure difference method.
For our bispectrum estimation, we opt for the exposure difference method, which is extensively
applied in previous work [19–21]. For each redshift bin, we first fit P raw on q-modes above
q = 0.02 (km/s)−1 with an exponential decay plus a constant P raw

lim . We then compute the
ratio β between P pipeline

n and P raw
lim . Our pipeline noise is then defined by Pn = P pipeline

n

when β < 1, and Pn = P pipeline
n /β otherwise.

3.3.2 Characterization of noise in the bispectrum signal

To demonstrate that the raw bispectrum signal originates from a non-trivial source, we
compare it with two distinct, trivial signals. The first comparison is with noise fluctuations
as defined by eq. (2.2), with its power spectrum computed using the exposure difference
method. This time, our aim is to determine the bispectrum associated with the noise
fluctuations, again using the exposure difference method. Specifically, we seek to measure
Bdiff(q0, q1, q2) = Re[F(n(∆v0)) · F(n(∆v1)) · F(n(∆v2))] + · · · , assuming a Gaussian random
field with zero mean, though its dispersion may explain some of the power in the raw data
signal. However, as seen in figure 4, this is not the case. Here, F(n(∆vi)) represents the
Fourier transform of the normalized exposure difference spectrum, whose power spectrum is
expected to be an accurate estimator of Pn in the coadded spectrum. Furthermore, Pn is
found to be scale-independent, as expected for white noise. In the case of white noise, its
bispectrum is expected to be zero, as shown by the red line in figure 4. The second comparison
is with a bispectrum signal obtained by shuffling the delta field at the pixel level (Bshuffled

forest ).
We shuffle each pixel of the delta field randomly, similar to what was done in [49], with the
main difference being that they shuffled absorption features instead of pixels, thus preserving
the smallest structures. Since we aim to distinguish the raw signal from this other delta field
configuration on large scales, we perform the shuffling at the pixel level. Again, the raw signal
is not consistent with this shuffled configuration on scales below q ≲ 0.01, as shown in figure 4.
To identify the source of bias in the Bshuffled

forest signal, we computed the same for the side-bands.
In this case, we found no bias, as the Bshuffled

forest,SB1 signal was consistent with zero. Thus, we
conclude that the bias arises from the background power associated with the side-bands.

One might wonder which term in eq. (2.9) dominates the signal (excluding Bmetals).
Figure 5 illustrates the contributions from the terms in eq. (2.9). The largest contribution
to B1D comes from the term Braw, while the second contribution comes from the term
Pn ·

∑2
i=0 Praw(qi), as the value of Pn is high, amplifying the sum of the P raw(qi) signal.

This second term enhances the Braw signal, while the third term represents an asymptote
to the combined signal of the first two terms. In the case of mocks, the Pn is even smaller
than in eBOSS, so the B1D is dominated entirely by the Braw signal. We plot the average of
Braw, Pn ·

∑2
i=0 P

raw(qi), and 2P 2
n , computed over the Ly-α forest. As expected, the noise is

white, and the term 2P 2
n is scale-independent. The term Pn ·

∑2
i=0 P

raw(qi) is important, as
it amplifies the B1D signal, while in the mocks, it is irrelevant given the low noise level. For
comparison, figure 5 also shows the raw bispectrum. We select qmax = 0.01 (km/s)−1 because
at higher modes, the effect of the spectrograph resolution becomes significant, suppressing
almost 80% of the signal, although this percentage depends on redshift, with a larger effect
at lower redshifts.
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noise (circles reds). The plot represent Configuration 1. The bias present in the randomized bispectrum
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signal (blue dots). The blue line is a asymptote of the raw bispectrum signal. The red line contribute
significantly of the raw bispectrum signal at small scales. The error bars come from the square root of
the diagonal of the bootstrap covariance matrix.
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3.4 Side-band bispectrum

In section 2.2.2, we discussed the absorption lines redward of the Ly-α emission line caused by
metals. These absorptions produce a background power in the 1D Ly-α power spectrum. A
similar effect occurs in the case of the Ly-α bispectrum. We assume that the cross-correlation
between Ly-α absorption and metals in the side-bands is negligible. In both side-bands
that we consider, the delta field (δF(λ)|SB) can be expressed as a combination of metal
absorption lines and noise fluctuations. Consequently, the calculation of the metal side-bands
bispectrum can be written as:

B1D
SB(q0, q1) =

〈
Braw

q0,q1 |SB − Pn(q)|SB ·
[∑2

i=0 P
raw(qi)|SB

]
+ 2P 2

n(q)|SB

W (q0, R,∆v)W (q1, R,∆v)W (q0 + q1, R,∆v)

〉
. (3.1)

This uncorrelated background cannot be directly estimated through bispectrum measurements
in the Ly-α wavelength region. To address this issue, we measure the bispectra in the side-
bands and subtract them from the Ly-α bispectrum, measured over the same redshift range.
This approach has been extensively examined for the power spectrum analysis [19–21]. Notice
that the method is purely statistical, using a distinct sample of quasars to compute both the
Ly-α and metal bispectra within a specific redshift range. In the case of what we call side band
one (SB1), the bispectrum includes contributions from all metals with wavelengths greater
than 1380 Å, with significant contributions from Si iv and C iv absorption lines. Conversely,
our side band two (SB2) contains only C iv absorptions. Therefore, we subtract only the
SB1 signal from the Ly-α bispectrum, while using SB2 primarily for consistency checks.
We estimate the metal bispectrum over the same observed wavelength range as the Ly-α
bispectrum, meaning we use a quasar sample with a lower redshift range than the sample used
to estimate the Ly-α bispectrum. For example, in the first redshift bin, 2.1 < zLy-α < 2.3, we
measure the bispectrum in SB1 (corresponding to 3770 Å < λobs < 4012 Å) using quasars with
zqso ∼ 2.0, while for the Ly-α bispectrum we use quasars with zqso ∼ 2.2. The measurement
for isosceles triangles is shown in figure 6. A total of 256,751 chunks were analyzed, undergoing
the same cuts as applied to the quasar spectra in the Ly-α forest analysis. The top panel
shows the B1D

SB1 stacking across all redshift bins (black dots with error bars), while the
red dots represent the bispectrum signal in SB2, from a sample of 237,985 chunks. As
expected, the amplitude of the B1D

SB2 signal is smaller than that of B1D
SB1, since SB2 excludes

the Si iv absorptions. The bottom panel shows B1D
SB1 for different redshift bins. Figure 7

illustrates the results for the squeezed limit bispectrum. Similar to the isosceles triangles,
the signal amplitude of B1D

SQ|SB2 is smaller than that of B1D
SB1. This configuration clearly

displays the oscillations caused by the C iv doublet absorptions on the Si iv forest. Once
again, the black dots with error bars in the upper panel represent the stack of all redshift
bins of B1D

SB1, while the red dots show the B1D
SQ|SB2 signal. The bottom panel illustrates

B1D
SB1 for different redshift bins.

The solid lines represent the fit to the bispectrum shape of the side-bands. The fitting
procedure we employed is inspired by the recent work on DESI [21], and carefully explained
in [76]. However, it was originally intended for measuring the side-bands power spectrum, and
we have adapted this approach to analyze the side-bands bispectrum. Similar to this previous
work on DESI, we account for the absorptions of the Si iv and C iv doublets. According
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Figure 6. 1D bispectrum measured in the side-bands regions SB1 and SB2 for isosceles triangles.
Top: average of the B1D

SB over all redshift bins. The solid lines represent the fitted model given by
eq. (3.2). Bottom: B1D

SB1 as a function of redshift. Each redshift bin is fitted using the product of the
fitting in the top panel and a first-degree polynomial in which the two parameters are free. The error
bars come from the square root of the diagonal of the bootstrap covariance matrix.
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Figure 7. 1D bispectrum measured in the side-bands regions SB1 and SB2 for squeezed limit triangles.
Top: average of the B1D

SQ SB over all redshift bins. The solid lines represent the fitted model given by
eq. (3.2). Bottom: B1D

SQ SB1 as a function of redshift. Each redshift bin is fitted using the product of
the fitting in the top panel and a first-degree polynomial in which the two parameters are free. The
error bars come from the square root of the diagonal of the bootstrap covariance matrix.

to NIST data ([77]), the Si iv doublets are located at λSi iva
R.F. = 1, 393.76 Å and λSi ivb

R.F. =
1, 402.77 Å, while the C iv doublets are at λC iva

R.F. = 1, 548.202 Å and λC ivb
R.F. = 1, 550.774 Å.

The C iv doublet has a separation of r = ∆vC iva,b = 499 km/s, while the Si iv doublet has
a separation of s = ∆vSi iva,b = 1933 km/s. The presence of an absorption doublet in the
side-bands induces oscillations in the bispectrum signal. The periodicity of these oscillations
depends on the separation of the doublets. When two absorption doublets are present in
the same side-band, the periodicity of the oscillations also depends on both the sum and
difference of the separations of the doublets. In the top panels of figures 6 and 7, both
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side-bands show significant oscillations caused by the C iv doublet, along with large-scale
oscillations due to the difference in the doublet spacing. As expected, the SB1 signal shows
additional oscillations due to the Si iv absorptions. The model for B1D

SQ consists of a sum
of a power law and oscillating functions:

B1D
SB1,model = A ·

(
q

q2

)−ϵ

+
∑

i

Bdoublet,i(q, qi, Ai, ai, ψi). (3.2)

In the isosceles configuration, where there is a 2q dependence, the oscillations induced by
a doublet have a frequency characterized by the wavenumber 2q = 2π/∆vi. For example, in
the top panel of figure 6, the first bump of B1D

SB1 corresponds to 2q = 2π/s = 0.0016 (km/s)−1,
and the second bump to 2q = 2π/r = 0.0062 (km/s)−1. In the case of the squeezed limit
configuration, while there is also a 2q dependence, it does not affect the signal because q is
a minimum value, behaving like a constant. In this case, the frequency of the oscillations
is given by q = 2π/∆vi. In this configuration, the oscillation due to the difference in the
velocities of the doublets becomes more evident, as seen in the first bump of the B1D

SQ|SB2
signal at 2q = 2π

s−r = 0.0021 (km/s)−1. We model the doublet oscillations using damped
sinusoidal functions as follows:

Bdoublet,i(q, qi, Ai, ai, ψi) =
∑

i

Aie
−ai

(
q
qi

)
sin
(

2π
(
q

qi

)
+ ψi

)
. (3.3)

In the case of isosceles triangles, qi =
(

π
s ,

π
r ,

π
s+r ,

π
s−r

)
. For squeezed limit triangles, qi =(

2π
s ,

2π
r ,

π
s+r ,

π
s−r

)
. The terms (s + r) and (s − r) are derived from a simple model that

approximates the transmitted flux contrast (δF) in the presence of two doublets with velocity
separations s and r, i.e., δF ∼ δ(v) + aδ(v + s) + bδ(v + r), where the factors a and b

indicate the relative strengths of the absorptions of the doublets compared to the background
absorption. When calculating the bispectrum of this transmitted flux contrast, oscillating
functions arise that vary as (s + r) and (s − r).

The SB1 fitted function is then used to derive the redshift dependence of the side-band
bispectrum, shown in the bottom panels of figures 6 and 7. For each redshift bin, we fit the
product of the global SB1 fitted function and a first-order polynomial. This fit should not be
used for rigorous scientific conclusions, as the χ2

ν values indicate that the model based on the
SB1 fitting function does not fully represent the observed data. However, it is sufficient for
providing a baseline estimate. We performed the fit independently for each configuration.
The fitted parameters are generally consistent between the two configurations, except for the
parameters A and Ai, which primarily affect the amplitude of the doublet oscillations.

3.5 1D power spectrum assessment

As shown in eq. (2.9), calculating the bispectrum requires estimating the power spectrum,
which includes both the noise power spectrum and the side-band power spectrum (SB1
only), as indicated in eq. (2.3). The power spectrum allows us to assess the quality of our
data analysis and the efficiency of our pipeline for calculating the bispectrum (B1D). This
is done by comparing our P 1D estimation with previous measurements. While numerous
P 1D measurements have been made in the Ly-α forest, some of which were mentioned in
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1D flux power spectrum in eBOSS DR16 data for twelve redshift bins.

Figure 8. 1D flux power spectrum in eBOSS DR16 data for twelve redshift bins. Left: comparison
between the measurement performed in this work and that of the eBOSS DR14 data [20]. Our
measurement with points and error bars, the DR14 measurement with shaded colored areas. The
ratio between DR16 and DR14 measurements is showed in the bottom panel. The striped grey area in
the bottom panel represent the centered error bar (added in quadrature) of the ratio averaged over all
shown redshift bins. We found the same discrepancies reported in [21] at large scales with respect to
DR14 data, but we are unable to determinate the source of this difference. Right: same comparison,
but this time between the measurement performed in this work and that of the DESI data [21]. Both
signals show a good agreement for all redshift bins considered. Solid lines in both panels represent the
fitted model given by eq. (3.5). The error bars present in our measurements come from the square
root of the diagonal of the bootstrap covariance matrix.

section 1, we opted to compare our results with previous measurements from the eBOSS
DR14 data ([20]) and the most recent measurements from the DESI early data release ([21]),
which draws from large quasar surveys. The FFT estimator for the 1D power spectrum is
calculated as an average over all available Ly-α forests in the measurement sample. From
eq. (2.3), the P 1D estimator is defined as:

P 1D(k) =
〈P raw(k) − Pn(k)

W 2(k,R,∆v)
〉

− Pmetals(k). (3.4)

Figure 8 (left) shows the comparison between our P 1D estimate (represented by dots
with error bars) and the eBOSS DR14 data (shaded lines) for different redshift bins. The
percentage difference between them is approximately 15% at large scales (k < 0.01 km/s). A
similar discrepancy was reported in [21], though their comparison was between DESI and
eBOSS DR14 data. Like them, we are unable to determine the source of this discrepancy. In
our case, the continuum fitting provided by PCA also affects the P 1D signal at large scales,
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but its effect is insufficient to account for the magnitude of this difference. However, at small
scales, both measurements are consistent within the error bars, suggesting that we have
accurately estimated the noise power spectrum and corrected for the spectrograph resolution
present in the window function, as these are the main factors influencing small scales.

We also compare our measurement with the DESI early data release in figure 8 (right).
Overall, both measurements are in good agreement across the k range when considering the
error bars, with a percentage difference of around 5%. The largest difference is observed
around k ∼ 0.013 km/s, likely due to the oscillation of P 1D

SB1 in that region compared to
the eBOSS data.

We made a fit to the P 1D using the fiducial power spectrum function proposed in [78]
given by:

kP (k, z)
π

= A
(k/k0)3+n+α ln k/k0

1 + (k/k1)2

( 1 + z

1 + z0

)B+β ln k/k0

, (3.5)

where k0 = 0.009 (km/s)−1 and z0 = 3.0. The continuous thin colored lines in both plots
of figure 8 show the fitting.

4 Synthetic data correction

In this section, we examine the biases introduced at each step of the data analysis and assess
their impact using simulated spectra. Our goal is to characterize their effect on the B1D,
considering continuum fitting, masking of pixels affected by sky lines, and absorption from
DLAs as well as noise and spectrograph resolution.

4.1 Mocks

CoLoRe [79], which stands for Cosmological Lofty Realisation, is a package designed to
produce various cosmological tracers of the same underlying matter fluctuations, such as
spectroscopic galaxies, weak lensing, and CMB lensing. Additionally, it can generate Ly-α
absorption features in the spectra of high-redshift quasars, which is of particular interest
for this work. Although CoLoRe can produce skewers in transmitted flux fraction, its “raw”
output requires significant post-processing before it can be considered a realistic representation
of the Ly-α forest. For this purpose, we use LyaCoLoRe �4 [80], which is capable of generating
realistic skewers of transmitted flux fraction. CoLoRe generates the density field from an
initial power spectrum using two approaches. The first is based on an initial Gaussian field,
where a lognormal approximation is employed to model the physical density, which can help
understand the linear evolution of the field. The second approach uses a formalism called
Lagrangian Perturbation Theory (LPT) [81], which extends to mildly non-linear scales. In
CoLoRe, both first- and second-order LPT (2LPT) methods are available. We estimated
the bispectrum using both approaches, and our results indicate that the signals agree within
the error bars, with deviations of less than 10% at large scales in both configurations. One
would naively expect the bispectrum to be sensitive to the different prescriptions for the
non-linear evolution of matter density perturbations in the mocks. However, the fact that

4Public software available at https://github.com/igmhub/LyaCoLoRe.
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both approaches result in a similar bispectrum suggests that signal is dominated by the
mapping from density field to the skewers’ flux. In conclusion, we choose the simplest
and least computationally expensive method, the lognormal approach, to discuss results
based on these mocks.

The output skewers from LyaCoLoRe require the addition of instrumental noise and a
combination with a QSO continuum before the spectra can be considered realistic. This can
be carried out using the desisim package �.5 Desisim produces QSO continuum using the
SIMQSO package �,6 where the continuum is generated by applying a broken power law and
adding emission lines, modeled by Gaussian distributions. In addition, small-scale power can
be added to account for clustering on scales up to 100 kpc/h [80], which is smaller than the
minimal scale in the bispectrum analysis presented here. Absorption lines in the Ly-α quasar
spectra are added by quickquasars �7 (a DESI code within desisim), by multiplying the
continuum templates with the transmitted flux of the raw mocks. Furthermore, quickquasars
can introduce noise to the spectra, metal absorption lines, DLAs, BALs, and tune the pixel
width of the wavelength in the spectra. For more details, see [82].

To understand the impact of systematic errors, such as sky lines, DLA contamination,
and the continuum fitting procedure, we generated mock noiseless spectra that replicate the
numerical density of Ly-α forest chunks per redshift bin. DLA contamination is introduced
using a random catalogue. We created five independent realizations with different initial
conditions. For each realization, we generated two sets of spectra: one that includes DLA
information and the other that does not.

4.2 Continuum-fitting correction

As mentioned in 2.2, we decided to estimate the continuum fitting using PCA. Since we
only perform PCA on the blue side of the Ly-α forest, what we are actually estimating is
C(λ)F (λ). PCA produces a series of eigenvectors ordered by the fraction of the sample
variance they explain. In principle, each eigenvector is a linear combination of the input
fluxes. The quasar continuum is produced through the following equation:

CF i,m(λR.F.) = f(λR.F.) +
m∑

j=1
αijξj(λR.F.). (4.1)

where f(λR.F.) is the mean observed flux, and ξi(λR.F.) represent the eigenvectors. We
construct the continuum using three principal components.8 The continuum-fitting procedure
systematically distorts the measured C(λ)F (λ) by suppressing large-scale modes in the B1D

measurement. We observed that suppression of the B1D signal at small wavenumbers increases
as the number of eigenvectors increases. We tested up to 5 eigenvectors and found that the
signal suppression exceeded 25%. Thus, we decided to use only 3 eigenvectors. This choice

5Public software available at https://github.com/desihub/desisim.
6Public software available at https://github.com/desihub/simqso.
7Public software available at https://github.com/desihub/desisim/blob/main/py/desisim/scripts/quickquasars.py.
8We initially decompose into 10 eigenvectors but only use the first 3 modes, which in total capture around

30% of the variance. Notice that this methodology is different from constructing the PCA with 3 eigenvectors
from the begging, which did not capture well the Ly-α peak.

– 21 –

https://github.com/desihub/desisim
https://github.com/desihub/simqso
https://github.com/desihub/desisim/blob/main/py/desisim/scripts/quickquasars.py
https://github.com/desihub/desisim
https://github.com/desihub/simqso
https://github.com/desihub/desisim/blob/main/py/desisim/scripts/quickquasars.py


J
C
A
P
0
6
(
2
0
2
5
)
0
1
5

0.002 0.004 0.006 0.008 0.010
q  (km/s) 1

0.90

0.95

1.00

1.05

1.10

1.15

1.20
B

1D TR
U

EC
O

N
T

/B
1D PC

A
Isosceles

z = 2.2
z = 2.4
z = 2.6

z = 2.8
z = 3.0
z = 3.2

0.005 0.010 0.015 0.020
q  (km/s) 1

0.95

1.00

1.05

1.10

1.15

1.20

1.25

B
1D

S
Q

TR
U

EC
O

N
T

/B
1D

S
Q

PC
A

Squeezed
z = 2.2
z = 2.4
z = 2.6

z = 2.8
z = 3.0
z = 3.2

Figure 9. Ratios between the bispectrum obtained using true continuum (TRUECONT) and the one
derived with our PCA continuum fitting (PCA) on the combination of 5 mocks, for both triangular
configurations considered. Fitting functions are represented by continuous lines and used to correct the
bispectrum measurement. The correction is fitted with a four-degree polynomial. The error bars come
from the square root of the diagonal of the bootstrap covariance matrix between the five realizations.

reduces the impact of the continuum fitting and ensures that we can adequately capture the
diversity of the quasar sample (de la Cruz et al., in preparation).

We define the bias induced by the continuum-fitting as the ratio of the bispectrum
computed with the true continuum (TRUECONT) to the bispectrum computed using our
standard PCA-based continuum-fitting procedure:

bcont(q, z) = B1D
TRUECONT(q, z)
B1D

PCA(q, z)
. (4.2)

Figure 9 illustrates the measured bias. The top panel shows the isosceles configurations,
where suppression of the B1D signal is evident at small wavenumbers, with slightly excessive
power across the remaining wavenumbers. The bottom panel represents the squeezed-limit
configurations, where signal suppression is observed across all wavenumbers, with additional
suppression particularly noticeable at small wavenumbers. The correction is fitted with a
fourth-order polynomial dependence for 2.2 < z < 3.2. Overall, the impact of the continuum-
fitting become more significant in the estimation of the bispectrum compared to its effect
on the power spectrum, where the error is approximately 6%.

4.3 Spectrum pixel masking correction

In our pipeline for estimating the B1D signal, we masked pixels affected by sky lines or
DLAs present in the Ly-α forest. We set the affected pixels to a flux value of zero and
maintained this value throughout the transmission delta field. This pixel masking introduces
a q-dependent bias, which must be quantified.

We begin by estimating the correction due to the masking of the sky lines. We compare
the B1D measured from mocks with sky-line masking (SKYm) to mocks without masking
(PCA). The bias parameter used for the masking correction is defined as the ratio between

– 22 –



J
C
A
P
0
6
(
2
0
2
5
)
0
1
5

0.002 0.004 0.006 0.008 0.010
q  (km/s) 1

1.00

1.02

1.04

1.06

1.08

1.10

B
1D PC

A
/B

1D SK
Ym

Isosceles
z = 2.2
z = 2.4
z = 2.6

z = 2.8
z = 3.0
z = 3.2

0.005 0.010 0.015 0.020
q  (km/s) 1

1.00

1.02

1.04

1.06

1.08

1.10

B
1D

S
Q

PC
A

/B
1D

S
Q

SK
Ym

Squeezed
z = 2.2
z = 2.4
z = 2.6

z = 2.8
z = 3.0
z = 3.2

Figure 10. Ratio between the bispectrum obtained using unmasked sky lines pixels (PCA) and the
one with masked pixels (SKYm) on the combination of the 5 mocks, for both triangular configurations
considered. Four-order polynomial function are employed to fit the corrections in each redshift bin.
The error bars come from the square root of the diagonal of the bootstrap covariance matrix between
the five realizations.

the unmasked and masked bispectrum:

bSKYm(q, z) = B1D
PCA(q, z)

B1D
SKYm(q, z)

. (4.3)

For the two chosen triangle configurations, the masking effect is most pronounced at
large scales and decreases as it approaches smaller scales. Only the redshift bins at z = 2.2,
2.4, and 2.6 are affected by sky lines, while the redshift bins at z = 2.8, 3.0, and 3.2 remain
unbiased. These unbiased redshifts are consistent with the findings of [20], although their
analysis focused on the P 1D. To model this bias, we employ a fourth-order polynomial,
which is used for the final B1D correction. Figure 10 shows the bSKYm(k, z) effect for both
configurations. The left panel corresponds to isosceles triangles, while the right panel shows
the squeezed-limit triangle configuration.

DLAs are added at random locations in the Ly-α forest during the creation of the mocks.
For these initial results on the B1D, we are not focused on characterizing the completeness of
the DLA finder applied to the data. Instead, we use a ‘truth’ DLA catalogue for masking,
making it sufficient to use a random distribution to understand this effect. We mask the
‘truth’ catalogue using the same parameters as those applied to the observed DLA data
catalogue. We then compare the B1D measured from mocks with DLA masking (DLAm)
to mocks without masking (PCA). The bias parameter used for the masking correction is
defined as the ratio between the unmasked and masked bispectrum:

bDLAm(q, z) = B1D
PCA(q, z)

B1D
DLAm(q, z)

. (4.4)

Figure 11 shows the bDLAm(k, z) effect for both configurations. The top panel corresponds to
isosceles triangles, while the bottom panel represents the squeezed-limit triangle configuration.
In both configurations, there is a noticeable effect at small wavenumbers, which increases
with redshift. This is consistent with the expectation that DLA contamination in the Ly-α
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Figure 11. Ratio between the bispectrum obtained using unmasked DLAs pixels (PCA) and the one
with masked pixels (DLAm) on the combination of the 5 mocks, for both triangular configurations
considered. Four-order polynomial function are employed to fit the corrections in each redshift bin.
The error bars come from the square root of the diagonal of the bootstrap covariance matrix between
the five realizations.

forest increases with redshift. The impact of DLA masking is smaller compared to the
effect of sky-line masking. These results are in good agreement with the P 1D measurements
from eBOSS DR14 [20]. To model this bias, we employ a fourth-order polynomial, which
is used for the final B1D correction.

5 Systematic uncertainties estimation

We estimate the statistical uncertainty (σstat) of our averaged B1D measurement using the
diagonal of the bootstrap covariance matrix.9 For our dataset of N chunks, we form a
bootstrap dataset by randomly selecting N chunks with replacement. The covariance matrix
is then computed as follows:

CB1D
ij = 1

Nchunks

Nchunks∑
k=1

[
B1D

k (qi) − ⟨B1D(qi)⟩
]

·
[
B1D

k (qj) − ⟨B1D(qj)⟩
]
, (5.1)

⟨·⟩ means average over bootstrap realizations. In eq. (5.1) the B1D term can to be replaced
by B1D

SQ in the case of the squeezed limit. We generate 2000 bootstrap samples of the input
dataset and calculate the corresponding bootstrap covariance matrix. Figure 12 shows the
normalized bootstrap correlation matrix Cij/

√
CiiCjj , where we observe zero correlation

between adjacent wavenumbers. A slight correlation appears to grow from large to small
scales, but this is only seen at small wavenumbers, likely due to the systematics affecting the
initial q-modes. Convergence is achieved rapidly, and it may even be sufficient to use 200
bootstrap samples. Figure 13 illustrates the dependence of the error bars on the bispectrum
power. The low redshift bins are not clearly separated, and at redshifts z = 2.2 and z = 2.4,
statistical uncertainties intersect at small scales. This intersection is due to a significant

9We compute the bootstrap covariance matrix for both configurations independently, rather than across
the full 2D signal of the bispectrum.

– 24 –



J
C
A
P
0
6
(
2
0
2
5
)
0
1
5

0.001 0.0025 0.005 0.0075 0.01
qi (km/s) 1

0.001

0.0025

0.005

0.0075

0.01
q j

(k
m

/s
)

1

1.0

0.5

0.0

0.5

1.0

C
B

1D
ij

/
C

B
1D

ii
C

B
1D

jj

Isosceles    z=2.8

0.001 0.005 0.01 0.015 0.02
qi (km/s) 1

0.001

0.005

0.01

0.015

0.02

q j
(k

m
/s

)
1

1.0

0.5

0.0

0.5

1.0

C
B

1D SQ
ij

/
C

B
1D SQ

ii
C

B
1D SQ

jj

Squeezed    z=2.8
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Figure 13. The estimation of the relative statistical uncertainties on the flux bispectrum measurement,
for both triangular configurations considered.

increase in noise in the blue spectral band. The variation in the number of chunks present
in each redshift bin leads σ(q)/B1D to increase as a function of redshift. Furthermore, the
substantial change in amplitude at small scales compared to large scales is attributed to the
effect of the window function, where the spectrograph’s resolution directly impacts the results.

As explained in the previous sections, starting from eq. (2.8), the measurement of B1D

requires characterizing the impact of various instrumental and astrophysical contaminants.
Therefore, we need to associate systematic errors (σsyst) with our B1D estimate. The left
panel of figure 14 shows the systematic uncertainties for isosceles triangles across different
redshift bins and their relative values compared to statistical errors. The right panel of
figure 14 presents the systematic uncertainties for squeezed limit triangles in different redshift
bins and their relative values with respect to statistical errors. We identify seven systematic
uncertainties and made a conservative choice in defining these uncertainties:

• Continuum fitting: we assign a systematic error of 30 per cent times the bcont(k, z)
correction computed in 4.2.
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Figure 14. Estimation of the systematic uncertainties σsyst for different redshift bins in the two
triangular configurations considered. Each line sub-panel is associated to a systematic considered in
this work. The left panels of each triangular configuration show the absolute uncertainties, while the
right panels show the relative value between systematic uncertainties and statistical uncertainties σstat.

• Sky lines masking: the effect of the sky emission lines masking on the B1D measurement
was determined with synthetic data in 4.3. We define the systematic error associated
with each masking as 30 per cent of this correction.

• DLA masking: the effect of the DLAs masking on the B1D measurement was also
determined using synthetic data in 4.3. We define the systematic error associated with
each masking as 30 per cent of this correction.

• DLA completeness: we utilize the synthetic mock data described in section 4 to
investigate the impact of DLAs on the 1D bispectrum. We calculate the ratio between
mocks with DLAs and those without DLAs. This ratio shows a similar effect to the
one observed in the 1D power spectrum signal, with small wavenumbers being the most
affected. To address this, we employ a model presented by [83] to fit this ratio. Based
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on the DLA catalogue provided by [58], the authors report over 90% efficiency using
their CNN finder. However, as a conservative measure, we associate a 10% uncertainty
with the total impact of DLAs on our B1D signal.

• Side-band: we subtract the fitted side-bands bispectrum B1D
SB1,model, modeled and

computed in section 3.4, from the measured B1D in the Ly-α forest to account for metal
absorption. While one could use statistical uncertainty as the systematic uncertainty,
the bootstrap error estimates might not be accurate, potentially biasing the result.
Moreover, because the B1D

SB1,model signal depends on the number of side-band quasars in
the relevant wavelength range, the statistical estimate of metal power might be incorrect.
Projects like DESI will significantly improve the statistics in this area. Therefore, we
calculate the ratio between the bispectrum before and after removing the side-band
contribution. Allowing for the blending of metal lines as discussed in [30] and [27], we
assign a 10 percent error.

• Noise estimation: as discussed throughout this text, the noise level in the bispectrum
signal depends on both the raw power spectrum and the noise power spectrum, which
amplifies the P raw(k) signal. A straightforward method to characterize the noise effect
on the B1D signal involves multiplying the noise power spectrum by the raw power
spectrum. The procedure for determining the noise level in the quasar spectrum is
described in section 3.3. The noise level is corrected using the β term, which varies for
each redshift bin and dataset. We assign a systematic uncertainty to the resulting noise
power spectrum, equal to 30% of the (1-β) term times q · P (q). The maximum value
occurs at z = 2.2, as this is closer to the edge of the CCD.

• Resolution: to investigate the impact of the resolution on the B1D measurement, we
conducted a study similar to the one proposed in [20], focusing on the bispectrum
rather than the power spectrum. The window function W requires knowledge of the
spectral resolution R of the spectrograph, see eq. (2.4). To incorporate its systematic
uncertainty, we calculated the average resolution ⟨R⟩ across all the skewers contributing
to each redshift bin. The systematic uncertainty on the B1D signal is then given by(
2q3R∆R

)
· B1D. The cubic q-term makes the large q-modes more affected by this

uncertainty. The average resolution ⟨R⟩ also varies with respect to the redshift, from
79 km/s to 68 km/s with larger value for lower redshifts. The low-z bins are more
affected by this systematic.

The choice of a 30 percent impact for systematic uncertainty comes from considering a
random shift ranging between ‘100% of the correction’ and ‘no correction’, which we describe
using a uniform distribution between 0 and 1. The standard deviation of this distribution,
equal to 1/

√
12 ∼ 0.30, quantifies the spread among the possible values, resulting in a

systematic uncertainty equal to 30% of the correction.
We acknowledge that we have incorporated several ideas previously used to estimate

systematic uncertainty in the 1D power spectrum signal. While we have adapted these
ideas for the 1D bispectrum signal, we recognize there is still room for improvement in our
systematic uncertainty estimation. Continuum fitting could be enhanced either by using the

– 27 –



J
C
A
P
0
6
(
2
0
2
5
)
0
1
5

method employed by picca or by developing a new approach that introduces less bias into
the bispectrum signal. New galaxy surveys, such as DESI, will further reduce the effect of sky
line masking by minimizing the number of masked pixels (see [21]). Similarly, improvements
in the number of masked pixels for DLAs are expected. Significant progress is also anticipated
in the study of quasar identification with DLAs, leading to improved DLA completeness.
Additionally, the influence of other high-column density absorber systems, such as sub-DLAs,
small-DLAs, and Lyman Limit systems, should be considered. These systems have been
studied by [83] in the context of the power spectrum. We have shown that the modeling
of high column density absorbers can also be applied to the bispectrum, suggesting that it
should be effective for these other systems as well. As the statistics of quasars with side-bands
increase, the associated systematic error can be better characterized. We expect significant
improvements in noise estimation for the bispectrum signal, as new methods are developed to
quantify its effect. Regarding resolution, DESI is expected to yield considerable improvements.
Since σstat is quite large, the ratio between σstat and σsyst is small for all systematics.

In future work, we plan to explore new ideas and methods to better quantify systematic
effects. Specifically, we aim to investigate the impact of systematics using large samples of
more realistic synthetic data, which will provide us with a deeper understanding of their
effects on the bispectrum measurement.

6 Results: first measurement of the Ly-α B1D in eBOSS

The B1D measurement was performed using the pipeline described in section 2. Considering
all the corrections outlined in previous sections, the final estimation of the 1D bispectrum
incorporate the 2D signal from eqs. (4.2), (4.3) and (4.4) into the full bispectrum signal from
eq. (2.9). Our results will be presented for the two triangular configurations defined in section 2.
While this is primarily for visualization purposes, it is important to emphasize that the analysis
was conducted using the 2D bispectrum signal, encompassing all triangular configurations.

6.1 B1D measurement

Using the procedure described in the previous sections, we estimate the 1D bispectrum over
12 redshift bins, from zLy-α = 2.2 to 4.4, and over 17 Fourier modes, ranging from q = 1×10−3

to 0.01 (km/s)−1, for the isosceles triangle configuration. For the squeezed-limit triangle
configuration, we calculate 30 modes, ranging from q = 1 × 10−3 to 0.017 (km/s)−1, within
the same redshift range. We chose these q-limits because the effect of the window function
suppresses the bispectrum signal by 80%. We focus on the low redshift bins from zLy-α = 2.2
to 3.2 for both configurations, as the higher redshift bins exhibit a noisier bispectrum signal.
Figure 15 displays the 1D bispectrum measurement for the isosceles triangles at low redshift.
The error bars shown correspond to the square root of the diagonal elements of the bootstrap
covariance matrix, with systematic uncertainties added in quadrature. Our measurements
appear to be consistent with the previous results of [49], which used a redshift bin from
zLy-α = 2.0 to 2.4, with a signal characterized by large error bars, as shown by the gray
shaded line (see figure 15). The colored solid lines, corresponding to the different redshift
bins, represent the fit of the theoretical 2OPT model to the observed data. The theory was
fitted to the 2D bispectrum signal (see the left panel of figure 1), and the quality of the
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Figure 15. One-dimensional Ly-α bispectrum for isosceles triangles using eBOSS DR16 data, for
redshift bins from z = 2.2 to z = 3.2 (point with error bars). Solid lines represent the fit modeled
theoretically by eq. (2.14). The shaded gray area is the previous measurement by [49] in a redshift
range of 2.0 < z < 2.4. The error bars present in our measurements come from the square root of the
diagonal of the bootstrap covariance matrix and systematic uncertainties added in quadrature.

z 2.2 2.4 2.6 2.8 3.0 3.2
Isosceles 8.58 13.28 20.33 10.56 10.16 9.19

Squeezed-Limit 165.68 1199.94 1133.73 851.91 843.19 782.06

Table 1. The partial contribution to χ2 over the number of degrees of freedom for each redshift bin
using the best fit model in 2D. As visually appreciated in figures 15 and 16, the isosceles configurations
are closer to the simple analytical model than the squeezed ones.

fit was assessed by measuring the χ2 value for both the isosceles triangle configuration and
the squeezed-limit triangle configuration. The reduced χ2 value for both configurations is
presented in table 1. Given the number of degrees of freedom, the reduced χ2 value indicates
a poor fit between the data and the theory in both cases, with a stronger failing evidence in
the squeezed-limit configuration (see figure 16). In the case of isosceles triangles, we observe
a larger discrepancy between the data and the theory at a redshift of 2.6, which could be
due to an underestimation of a systematic effect impacting small scales. Figure 16 displays
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Figure 16. One-dimensional Ly-α bispectrum for squeezed limit triangles using eBOSS DR16 data
(points with error bars). Solid lines represent the fit modeled theoretically by eq. (2.14). The error bars
present in our measurements come from the square root of the diagonal of the bootstrap covariance
matrix and systematic uncertainties added in quadrature.

the B1D
SQ signal for the different redshift bins. The poor fit is likely due to the fact that the

squeezed-limit configuration depends on the delta field in the minimum Fourier mode (the
first Fourier mode, excluding the q = 0 mode). This mode is significantly influenced by
several systematics, as discussed in section 5, such as continuum fitting and pixel masking
due to DLAs or sky lines. The value of qmin in the B1D

SQ signal varies for each redshift bin,
increasing with redshift and ranging from qmin = 3.3 × 10−4 to 5.6 × 10−4 (km/s)−1.

We also theoretically modeled the bispectrum signal using mock data, but the results
were unsatisfactory. Given the error bars associated with the bispectrum signal, the χ2 value
indicated a poor fit for both configurations, despite the A and γ values being similar to
those of the observed data. Notably, the theoretical modeling of the squeezed-limit signal
produced results similar to those of the observed signal; this suggests that the poor fit in
this configuration may also be due to the limitations of the theoretical model. As noted
in [53], the squeezed-limit bispectrum encodes the impact of large-scale fluctuations on the
small-scale power spectrum, representing how the small-scale power spectrum “responds”
to large-scale fluctuations. We find that large-scale fluctuations are strongly affected by
systematics, while the 2OPT-based theoretical model may inadequately describe small scales.
In future work, we will explore the theoretical modeling provided by 2OPT in more detail.
It may be necessary to employ a different model or extend the model proposed by [49] by
accounting for factors such as peculiar velocities and thermal broadening.
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Figure 17. One-dimensional Ly-α bispectrum for redshift bins from z = 3.4 to z = 4.4 in the two
triangular configurations considered. Solid lines represent the fit theoretically modeled by eq. (2.14).
The error bars present in our measurements come from the square root of the diagonal of the bootstrap
covariance matrix and systematic uncertainties added in quadrature.

Data z-bin A γ Nchunks

eBOSS

2.2 0.39 ± 0.06 1.49 ± 0.50 39972
2.4 0.47 ± 0.08 1.48 ± 0.49 34511
2.6 0.53 ± 0.07 1.47 ± 0.43 25882
2.8 0.62 ± 0.07 1.50 ± 0.32 19537
3.0 0.69 ± 0.07 1.31 ± 0.32 13402
3.2 0.76 ± 0.12 1.38 ± 0.48 8335

Table 2. Parameter’s fitting to observed 1D bispectrum for all triple q-configurations for different
redshift bins. The γ value (power-law index of the gas temperature-density relation) is estimated from
the β parameter in eq. (2.11).

We also measured the bispectrum for the high redshift bins (3.4 < zLy-α < 4.4); however,
the signal was not significantly detected. The bispectrum signal for these redshift bins exhibits
large fluctuations around zero, making it challenging to obtain a reliable estimate (see the
upper panel of figure 17). In the case of the squeezed triangles (lower panel of figure 17), the
signal appears to shift toward positive values. This shift is more noticeable in the last two
redshift bins (zLy-α = 4.2 and 4.4). Nonetheless, due to the large error bars resulting from
the low number of chunks, it is difficult to confidently assert this observation.

The fit to the 2D bispectrum signal depends on the parameters c1 and c2, which can be
expressed as functions of A and β in eq. (2.11). We present the results of the fit in terms
of the A values. Instead of using β, we opted to use γ, the power-law index of the gas
temperature-density relation. The results are shown in table 2. Our results for z = 2.4 are
in agreement with previous measurements of the γ parameter reported by [71, 72], and [84],
with differences of less than 3%. [84] used high-resolution quasar spectra from the KODIAQ
dataset to estimate the γ parameter for redshift bins similar to those we have considered.
Overall, our results are comparable, with differences of less than 5%, except for the redshift
bins at z = 2.6 and z = 3.2, where the discrepancy is as high as 7%.
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6.2 SiIII cross-correlation

The correlated background due to absorption by Ly-α and Siiii from the same gas cloud along
the quasar line of sight has been studied in [18] and [19]. They explain that this correlation can
be estimated directly from the power spectrum signal. This suggests that we can extend this
idea to the bispectrum case as well. Consider two absorption lines, one due to Ly-α and one
due to Siiii. The Siiii absorption line is weaker than the Ly-α absorption by a factor of a and
has a separation of µ = 2271 km/s. We can write the total transmission fluctuation field as:

δF(v) = δ(v) + a · δ(v + µ), (6.1)

where δ(v) represent the Ly-α component. The Fourier transform of this total transmission
field is given by

δ̃F(k) = δ̃(k) ·
(
1 + a · eikµ

)
. (6.2)

The power spectrum is then P ∝ |δ̃F|2,

PF(k) = P (k)
(
1 + a2 + 2a cos (kµ)

)
, (6.3)

while the bispectrum is B ∝ Re[δ̃F(q0)δ̃F(q1)δ̃F(−q0 − q1)],

BF(q0, q1) = B(q0, q1)
[
1 + a3 + a(1 + a)

(
cos (q0µ) + cos (q1µ) + cos

(
(q0 + q1)µ

))]
. (6.4)

Eq. (6.4) describes the oscillations due to the Ly-α/Siiii cross-correlation for all triangle
configurations along the line of sight. This expression helps us describe the dark areas in
the left panel of figure 1. However, we need to model the signal originating solely from the
Ly-α forest. Although this modeling could theoretically be based on the approach explained
in section 2.4, the results may be insufficient, as a good fit is not achieved for all triangle
configurations, as previously shown. For this reason, we decided to model the B1D signal
independently for the two chosen triangle configurations. As a first step, let us derive the
appropriate expressions for these configurations from eq. (6.4).

Implementing the isosceles triangles configuration defined as q = q1 = q0,

B1D(q) = B1D
Ly-α(q)

[
1 + a3 + a(1 + a)

(
2 cos (qµ) + cos (2qµ)

)]
, (6.5)

now over the squeezed limit triangle configuration given by q0 = q− qmin and q1 = −q− qmin,

B1D
SQ(q) = B1D

SQ Ly-α(q)
[
1 + a3 + a(1 + a)

(
2 cos (qµ) cos (qminµ) + cos (2qminµ)

)]
. (6.6)

The bispectrum generated solely by Ly-α absorption lines is modeled using eq. (3.5).
Although this equation was originally designed to model kP 1D(k)/π, it provides a good fit to
the quantity −q2B1D(q) for either configuration. We independently fit B1D

Ly-α and B1D
SQ Ly-α, and

then fit the oscillating components of eqs. (6.5) and (6.6), respectively. Table 3 presents the
parameter results from eq. (3.5) for the P 1D and the two bispectrum configurations at z = 2.4.

We clearly detect, the oscillation pattern in the bispectrum due the Ly-α/Siiii cross-
correlation, see figure 18. For our first fit to B1D accounting for Siiii, we use a as a extra
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Signal k1 A n α B β

B1D 0.009 0.57 −3.52 −0.25 11.99 −9.69
B1D

SQ 0.89 0.46 −3.60 −0.10 9.79 −10.28

P 1D 0.9 0.31 −4.22 −0.11 13.24 −9.73

Table 3. Parameter’s fitting to observed 1D bispectrum oscillations for both q-configurations at
z = 2.4, as well as to power spectrum.
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Figure 18. Oscillations present in the 1D bispectrum measurement for the two triangle configuration
considered. The oscillations are induced by Ly-α/Siiii cross-correlation. The dotted lines correspond
to eBOSS DR16 data, while the solid lines show our best fit modelled by eqs. (6.5) and (6.6). The
bispectrum signal without oscillation is computed using (3.5), but fitting to the quantity −q2B1D(q).

free parameter of the fit. We found a remarkable improvement in χ2, from 38.35 to 8.26 at
z = 3.0, with similar results for other redshift bins. As in [18], after a very simple fit we
find that a ∼ 0.04, of course this value depends on the redshift.

The top panel of figure 18 shows the oscillations of isosceles triangles configuration
as described by eq. (6.5). The larges oscillations are produced by the term ‘2 cos (qµ)’,
with a frequency of q = 2π/µ. The term ‘cos (2qµ)’ induces smaller oscillations in the B1D

signal, with a frequency of q = π/µ. The vertical lines indicate the peaks of both induced
oscillations. The figure clearly shows the smaller amplitude oscillation at q = 4.1 × 10−3

and 6.9 × 10−3 (km/s)−1 in the estimated B1D signal. The lower panel corresponds to the
oscillations present in the B1D

SQ signal, modeled by eq. (6.6), where the oscillation frequency is
q = 2π/µ. Similarly, the vertical lines indicate the oscillation frequency.
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7 Conclusions

The Lyman alpha forest (Ly-α) is a unique high-redshift, multi-scale probe of the matter
distribution in the universe. It can be used to characterize the expansion history of the
universe on the largest scales, while also providing insights into the growth of structure,
the nature of dark matter, neutrino masses, and primordial features when focusing on the
smallest scales. A common approach to extract small-scale information is to use the two-point
correlation function in Fourier space along the line of sight, known as the 1D power spectrum
(P 1D). However, additional information can be obtained by using higher-order correlation
functions, whose signal becomes subdominant as the order increases. The next estimator to
the P 1D in this signal-to-noise hierarchy is the 1D bispectrum (B1D), which correlates three
pixels along the line of sight. Thus, an important question is whether we can measure the B1D

for the Lyman alpha forest using the current high-precision data from spectroscopic surveys.
In this context, we perform the first measurement of the Lyman alpha forest 1D bispectrum

using eBOSS DR16 data in the redshift range 2.2 < z < 4.4. A statistically significant
bispectrum signal is observed in the range 2.2 < z < 3.2, where the signal is negative,
smooth, and exhibits a clear dependence on the redshift. Moreover, the signal clearly reveals
oscillations due to the metal absorption lines (particularly from Siiii) in the Ly-α forest
region, which we effectively account for with a simple model. Our measurement encompasses
all possible triangle configurations up to a given maximal frequency, as shown in figure 1.
However, we focus on two specific triangle configurations: isosceles and squeezed limit.
Figures 15 and 16 display the bispectrum signal for these two configurations, respectively.

The computation cost of the bispectrum scales as O(n2), where n is the number of
pixels in each Ly-α sub-forest (chunk). For the redshift bin containing the largest number
of spectra (z = 2.2), the bispectrum calculation takes roughly 4 min on 128 CPU cores of
NERSC.10 The bootstrap computation for the covariance matrices, using 2000 realisations
for both bispectrum configurations, takes roughly 3 to 4 times longer than the bispectrum
calculation for all redshifts z ≤ 3.2 in all configurations. These two components represent
the most computationally intensive stages of the entire pipeline. From the computational
cost to run the analysis presented here, it is plausible to measure the bispectrum using our
pipeline on the final 5-year DESI data.

To assess the robustness of the B1D signal, we conduct a thorough investigation of
the systematic uncertainties that affect the measurement. We use adapted synthetic data
to correct for the impact of masking pixels affected by DLAs and sky lines, as well as to
account for the continuum fitting procedure that we choose. These mocks were processed
using the same pipeline as the observed data. The major source of uncertainty at small
scales arises from the spectrograph’s resolution and noise power estimation, with the latter
being dominant at low redshifts. In contrast, on the largest scales, the incompleteness of
the DLA catalogue is the primary source of uncertainty. There may also be uncertainty
due to the incompleteness of the BAL catalogue, but we leave a detailed study to a future
publication. Another systematic effect concerns metal absorption on the redder side of the
Ly-α peak (known as side bands). We perform the first measurement of the 1D bispectrum

10https://www.nersc.gov/
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for these side bands, with that defined closer to the Ly-α peak showing the highest power,
as in the P 1D case. We characterize this side-band bispectrum using oscillatory functions
of the Si iv and C iv doublets, and use it to remove the background power present in the
bispectrum signal of the Lyman-alpha forest.

To understand the shape and redshift scaling of the full 1D bispectrum signal, we use a
simple model based on second-order perturbation theory, which relates the power spectrum to
the bispectrum, together with a simple bias model. We find that this analytic description can
reproduce the slope of the estimated bispectrum for both the isosceles triangle configuration
and the squeezed limit. However, it cannot accurately reproduce the amplitude of the signal,
especially in the squeezed limit configuration where we expect non-linear physics to play a
major role. The quality of the fit was assessed by calculating χ2 for both isosceles and squeezed
configurations. In summary, the value of the reduced χ2 indicates a poor fit between the data
and the theory in both configurations, with stronger failing evidence in the squeezed-limit
configuration (see table 1). This is to be expected since the squeezed configuration needs
better modeling of the smallest scales as well as a better understanding of the involved
systematics in the measurement. However, with this simple modeling we are able to estimate
the power-law index γ of the gas temperature-density relation for different redshift bins, and
the values are in agreement with previous measurements reported in [71, 72], and [84].

We foresee two main avenues to improve the modeling of the bispectrum signal. One
approach is to use emulators from computationally expensive hydrodynamical simulations,
as recently done with a neural network emulator for the 1D power spectrum [85]. An
interesting second approach, which is widely used in the cosmological analysis of spectroscopic
discrete tracers (see [86] and references therein), would be to include EFT corrections in the
perturbation model and a more complete bias prescription. The EFT terms allow for the effect
of short-scale physics, as well as correcting on the largest modes via the infrared resummations,
showing encouraging results in recent studies of the 1D lya power spectrum [40, 87]. The
EFT approach adds several nuisance parameters that may not be well constrained by the
data. Therefore, informative priors from simulations may prove useful in order to perform
well with this analytical modeling. One advantage of this analytic modeling is the possibility
of including physics beyond the standard cosmological scenario, which will benefit from the
analysis using higher-order statistics (see, for example, [88]) and which may be unrealistic
to pursue with expensive hydrodynamical simulations.

Although we measure the bispectrum for the high redshift bins 3.4 < z < 4.4, the signal
is quite noisy and exhibits a tendency to change sign. Upcoming spectroscopic surveys, such
as DESI, will help clarify whether these high-reshift signals are statistical anomalies or related
to the evolution of mean transmission with redshift. We plan to refine our analysis using
DESI data, as improvements in noise calibration and spectral resolution, as shown by [21],
should enhance signal quality. Furthermore, extending the analysis to more sophisticated
analytic models, such as those ideas expressed above (see also [89]), in combination with a
clean bispectrum measurement using DESI data and the pipeline presented here, could allow
the use of the B1D to place additional constraints on cosmological and intergalactic medium
parameters, beyond those provided by the power spectrum alone. As happens with galaxies,
using higher-order correlations in addition to the power-spectrum analysis should reduce the
uncertainty on the cosmological parameters, through breaking degeneracies and extracting
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Figure 19. One-dimensional bispectrum for different triangles configurations. The qmax value for the
different configurations depends on the size of the forest.

more of the non-gaussian information in the data. It can also open the door to explore new
physics which cannot be seen by two-point statistics, such as parity [48].
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A Maximal q scale and signal for different triangle configurations

The bispectrum is constructed using triangles whose vertices are at modes q0, q1 and −(q0+q1).
Among all possible triangle configurations, some exhibit higher power, particularly those that
share a common q-mode. This phenomenon is explained in [65] and [67]. We verify this by
extracting the signal for different triangle configurations from the complete bispectrum signal
(see figure 1). Figure 19 shows the B1D for different common q-vectors (q1/q0 = 1, 2, 3, 4) and
the special case of the squeezed limit (eq. (2.10)). Since the shot-noise in the bispectrum signal
is derived from the power spectrum signal, the value of qmax for different triangle configurations
corresponds to the kmax value in the P 1D signal. This kmax value is determined by the size of
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the forest, the spectrograph resolution and the Nyqvist-Shannon limit (kNyqvist = π/∆v). In
our P 1D estimate, kmax = 0.02 (km/s)−1. According to eq. (2.9), the power spectrum includes
a term that depends on (q0 + q1). Since we have chosen triangles of the form q1/q0 = n,
where n is an integer, it follows that q0 + q1 = nq = kmax. Therefore, q = qmax = kmax/n.

References

[1] J.E. Gunn and B.A. Peterson, On the Density of Neutral Hydrogen in Intergalactic Space,
Astrophys. J. 142 (1965) 1633 [INSPIRE].

[2] U. Seljak et al., Cosmological parameter analysis including SDSS Lyα forest and galaxy bias:
Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy, Phys.
Rev. D 71 (2005) 103515 [astro-ph/0407372] [INSPIRE].

[3] M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark
matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-α
forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [INSPIRE].

[4] N. Palanque-Delabrouille et al., Hints, neutrino bounds and WDM constraints from SDSS DR14
Lyman-α and Planck full-survey data, JCAP 04 (2020) 038 [arXiv:1911.09073] [INSPIRE].

[5] S. Goldstein, J.C. Hill, V. Iršič and B.D. Sherwin, Canonical Hubble-Tension-Resolving Early
Dark Energy Cosmologies Are Inconsistent with the Lyman-α Forest, Phys. Rev. Lett. 131 (2023)
201001 [arXiv:2303.00746] [INSPIRE].

[6] M. McQuinn, The Evolution of the Intergalactic Medium, Ann. Rev. Astron. Astrophys. 54
(2016) 313 [arXiv:1512.00086] [INSPIRE].

[7] P. McDonald, Toward a measurement of the cosmological geometry at z ∼ 2: predicting Lyα
forest correlation in three dimensions, and the potential of future data sets, Astrophys. J. 585
(2003) 34 [astro-ph/0108064] [INSPIRE].

[8] A. Font-Ribera, P. McDonald and A. Slosar, How to estimate the 3D power spectrum of the
Lyman-α forest, JCAP 01 (2018) 003 [arXiv:1710.11036] [INSPIRE].

[9] R. de Belsunce, O.H.E. Philcox, V. Irsic, P. McDonald, J. Guy and N. Palanque-Delabrouille,
The 3D Lyman-α forest power spectrum from eBOSS DR16, Mon. Not. Roy. Astron. Soc. 533
(2024) 3756 [arXiv:2403.08241] [INSPIRE].

[10] M.L. Abdul-Karim, E. Armengaud, G. Mention, S. Chabanier, C. Ravoux and Z. Lukić,
Measurement of the small-scale 3D Lyman-α forest power spectrum, JCAP 05 (2024) 088
[arXiv:2310.09116] [INSPIRE].

[11] DESI collaboration, The DESI Experiment Part I: Science, Targeting, and Survey Design,
arXiv:1611.00036 [INSPIRE].

[12] DESI collaboration, Overview of the Instrumentation for the Dark Energy Spectroscopic
Instrument, Astron. J. 164 (2022) 207 [arXiv:2205.10939] [INSPIRE].

[13] T.-S. Kim, M. Viel, M.G. Haehnelt, R.F. Carswell and S. Cristiani, The power spectrum of the
flux distribution in the Lyman α forest of a large sample of UVES QSO absorption spectra
(LUQAS), Mon. Not. Roy. Astron. Soc. 347 (2004) 355 [astro-ph/0308103] [INSPIRE].

[14] R.A.C. Croft, D.H. Weinberg, N. Katz and L. Hernquist, Recovery of the power spectrum of
mass fluctuations from observations of the Lyα forest, Astrophys. J. 495 (1998) 44
[astro-ph/9708018] [INSPIRE].

– 37 –

https://doi.org/10.1086/148444
https://inspirehep.net/literature/48899
https://doi.org/10.1103/PhysRevD.71.103515
https://doi.org/10.1103/PhysRevD.71.103515
https://doi.org/10.48550/arXiv.astro-ph/0407372
https://inspirehep.net/literature/654710
https://doi.org/10.1103/PhysRevD.71.063534
https://doi.org/10.48550/arXiv.astro-ph/0501562
https://inspirehep.net/literature/675573
https://doi.org/10.1088/1475-7516/2020/04/038
https://doi.org/10.48550/arXiv.1911.09073
https://inspirehep.net/literature/1766235
https://doi.org/10.1103/PhysRevLett.131.201001
https://doi.org/10.1103/PhysRevLett.131.201001
https://doi.org/10.48550/arXiv.2303.00746
https://inspirehep.net/literature/2637726
https://doi.org/10.1146/annurev-astro-082214-122355
https://doi.org/10.1146/annurev-astro-082214-122355
https://doi.org/10.48550/arXiv.1512.00086
https://inspirehep.net/literature/1407436
https://doi.org/10.1086/345945
https://doi.org/10.1086/345945
https://doi.org/10.48550/arXiv.astro-ph/0108064
https://inspirehep.net/literature/575643
https://doi.org/10.1088/1475-7516/2018/01/003
https://doi.org/10.48550/arXiv.1710.11036
https://inspirehep.net/literature/1633393
https://doi.org/10.1093/mnras/stae2035
https://doi.org/10.1093/mnras/stae2035
https://doi.org/10.48550/arXiv.2403.08241
https://inspirehep.net/literature/2768458
https://doi.org/10.1088/1475-7516/2024/05/088
https://doi.org/10.48550/arXiv.2310.09116
https://inspirehep.net/literature/2710658
https://doi.org/10.48550/arXiv.1611.00036
https://inspirehep.net/literature/1495394
https://doi.org/10.3847/1538-3881/ac882b
https://doi.org/10.48550/arXiv.2205.10939
https://inspirehep.net/literature/2086621
https://doi.org/10.1111/j.1365-2966.2004.07221.x
https://doi.org/10.48550/arXiv.astro-ph/0308103
https://inspirehep.net/literature/625244
https://doi.org/10.1086/305289
https://doi.org/10.48550/arXiv.astro-ph/9708018
https://inspirehep.net/literature/458668


J
C
A
P
0
6
(
2
0
2
5
)
0
1
5

[15] R.A.C. Croft et al., Towards a precise measurement of matter clustering: Lyα forest data at
redshifts 2–4, Astrophys. J. 581 (2002) 20 [astro-ph/0012324] [INSPIRE].

[16] P. McDonald et al., The Observed probability distribution function, power spectrum, and
correlation function of the transmitted flux in the Lyman-α forest, Astrophys. J. 543 (2000) 1
[astro-ph/9911196] [INSPIRE].

[17] SDSS collaboration, The Sloan Digital Sky Survey: Technical Summary, Astron. J. 120 (2000)
1579 [astro-ph/0006396] [INSPIRE].

[18] P. McDonald et al., The Lyα forest power spectrum from the Sloan Digital Sky Survey,
Astrophys. J. Suppl. 163 (2006) 80 [astro-ph/0405013] [INSPIRE].

[19] N. Palanque-Delabrouille et al., The one-dimensional Ly-α forest power spectrum from BOSS,
Astron. Astrophys. 559 (2013) A85 [arXiv:1306.5896] [INSPIRE].

[20] S. Chabanier et al., The one-dimensional power spectrum from the SDSS DR14 Lyα forests,
JCAP 07 (2019) 017 [arXiv:1812.03554] [INSPIRE].

[21] C. Ravoux et al., The Dark Energy Spectroscopic Instrument: one-dimensional power spectrum
from first Ly α forest samples with Fast Fourier Transform, Mon. Not. Roy. Astron. Soc. 526
(2023) 5118 [arXiv:2306.06311] [INSPIRE].

[22] N.G. Karaçaylı et al., Optimal 1D Lyα Forest Power Spectrum Estimation — III. DESI early
data, Mon. Not. Roy. Astron. Soc. 528 (2024) 3941 [arXiv:2306.06316] [INSPIRE].

[23] M.T. Murphy, G.G. Kacprzak, G.A.D. Savorgnan and R.F. Carswell, The UVES Spectral Quasar
Absorption Database (SQUAD) data release 1: the first 10 million seconds, Mon. Not. Roy.
Astron. Soc. 482 (2018) 3458.

[24] J.M. O’Meara et al., The First Data Release of the KODIAQ Survey, Astron. J. 150 (2015) 111
[arXiv:1505.03529] [INSPIRE].

[25] S. López et al., XQ-100: A legacy survey of one hundred 3.5 ≲ z ≲ 4.5 quasars observed with
VLT/X-shooter, Astron. Astrophys. 594 (2016) A91.

[26] M. Walther et al., A New Precision Measurement of the Small-scale Line-of-sight Power
Spectrum of the Lyα Forest, Astrophys. J. 852 (2018) 22 [arXiv:1709.07354] [INSPIRE].

[27] N.G. Karaçaylı et al., Optimal 1D Lyα forest power spectrum estimation — II. KODIAQ,
SQUAD, and XQ-100, Mon. Not. Roy. Astron. Soc. 509 (2022) 2842 [arXiv:2108.10870]
[INSPIRE].

[28] V. Iršič et al., The Lyman α forest power spectrum from the XQ-100 Legacy Survey, Mon. Not.
Roy. Astron. Soc. 466 (2017) 4332 [arXiv:1702.01761] [INSPIRE].

[29] M. Viel, G.D. Becker, J.S. Bolton and M.G. Haehnelt, Warm dark matter as a solution to the
small scale crisis: New constraints from high redshift Lyman-α forest data, Phys. Rev. D 88
(2013) 043502 [arXiv:1306.2314] [INSPIRE].

[30] A. Day, D. Tytler and B. Kambalur, Power spectrum of the flux in the Lyman-α forest from
high-resolution spectra of 87 QSOs, Mon. Not. Roy. Astron. Soc. 489 (2019) 2536 [INSPIRE].

[31] V. Khaire et al., The power spectrum of the Lyman-α Forest at z < 0.5, Mon. Not. Roy. Astron.
Soc. 486 (2019) 769 [arXiv:1808.05605] [INSPIRE].

[32] E. Boera, G.D. Becker, J.S. Bolton and F. Nasir, Revealing Reionization with the Thermal
History of the Intergalactic Medium: New Constraints from the Lyα Flux Power Spectrum,
Astrophys. J. 872 (2019) 101 [arXiv:1809.06980] [INSPIRE].

– 38 –

https://doi.org/10.1086/344099
https://doi.org/10.48550/arXiv.astro-ph/0012324
https://inspirehep.net/literature/539692
https://doi.org/10.1086/317079
https://doi.org/10.48550/arXiv.astro-ph/9911196
https://inspirehep.net/literature/520246
https://doi.org/10.1086/301513
https://doi.org/10.1086/301513
https://doi.org/10.48550/arXiv.astro-ph/0006396
https://inspirehep.net/literature/541477
https://doi.org/10.1086/444361
https://doi.org/10.48550/arXiv.astro-ph/0405013
https://inspirehep.net/literature/649490
https://doi.org/10.1051/0004-6361/201322130
https://doi.org/10.48550/arXiv.1306.5896
https://inspirehep.net/literature/1239790
https://doi.org/10.1088/1475-7516/2019/07/017
https://doi.org/10.48550/arXiv.1812.03554
https://inspirehep.net/literature/1708033
https://doi.org/10.1093/mnras/stad3008
https://doi.org/10.1093/mnras/stad3008
https://doi.org/10.48550/arXiv.2306.06311
https://inspirehep.net/literature/2668163
https://doi.org/10.1093/mnras/stae171
https://doi.org/10.48550/arXiv.2306.06316
https://inspirehep.net/literature/2668119
https://doi.org/10.1093/mnras/sty2834
https://doi.org/10.1093/mnras/sty2834
https://doi.org/10.1088/0004-6256/150/4/111
https://doi.org/10.48550/arXiv.1505.03529
https://inspirehep.net/literature/1370082
https://doi.org/10.1051/0004-6361/201628161
https://doi.org/10.3847/1538-4357/aa9c81
https://doi.org/10.48550/arXiv.1709.07354
https://inspirehep.net/literature/1624665
https://doi.org/10.1093/mnras/stab3201
https://doi.org/10.48550/arXiv.2108.10870
https://inspirehep.net/literature/1909963
https://doi.org/10.1093/mnras/stw3372
https://doi.org/10.1093/mnras/stw3372
https://doi.org/10.48550/arXiv.1702.01761
https://inspirehep.net/literature/1512395
https://doi.org/10.1103/PhysRevD.88.043502
https://doi.org/10.1103/PhysRevD.88.043502
https://doi.org/10.48550/arXiv.1306.2314
https://inspirehep.net/literature/1238031
https://doi.org/10.1093/mnras/stz2214
https://inspirehep.net/literature/1758370
https://doi.org/10.1093/mnras/stz344
https://doi.org/10.1093/mnras/stz344
https://doi.org/10.48550/arXiv.1808.05605
https://inspirehep.net/literature/1687856
https://doi.org/10.3847/1538-4357/aafee4
https://doi.org/10.48550/arXiv.1809.06980
https://inspirehep.net/literature/1694731


J
C
A
P
0
6
(
2
0
2
5
)
0
1
5

[33] P. Gaikwad, R. Srianand, M.G. Haehnelt and T.R. Choudhury, A consistent and robust
measurement of the thermal state of the IGM at 2 ≤ z ≤ 4 from a large sample of Lyα forest
spectra: evidence for late and rapid He ii reionization, Mon. Not. Roy. Astron. Soc. 506 (2021)
4389 [arXiv:2009.00016] [INSPIRE].

[34] F.X. Linares Cedeño, A.X. González-Morales and L.A. Ureña-López, Ultralight DM bosons with
an axion-like potential: scale-dependent constraints revisited, JCAP 01 (2021) 051
[arXiv:2006.05037] [INSPIRE].

[35] N. Porqueres, J. Jasche, G. Lavaux and T. Enßlin, Inferring high-redshift large-scale structure
dynamics from the Lyman-α forest, Astron. Astrophys. 630 (2019) A151 [arXiv:1907.02973]
[INSPIRE].

[36] S. Bose et al., ETHOS — an Effective Theory of Structure Formation: detecting dark matter
interactions through the Lyman-α forest, Mon. Not. Roy. Astron. Soc. 487 (2019) 522
[arXiv:1811.10630] [INSPIRE].

[37] A. Borde et al., New approach for precise computation of Lyman-α forest power spectrum with
hydrodynamical simulations, JCAP 07 (2014) 005 [arXiv:1401.6472] [INSPIRE].

[38] N. Palanque-Delabrouille et al., Neutrino masses and cosmology with Lyman-α forest power
spectrum, JCAP 11 (2015) 011 [arXiv:1506.05976] [INSPIRE].

[39] C. Yèche, N. Palanque-Delabrouille, J. Baur and H. du Mas des Bourboux, Constraints on
neutrino masses from Lyman-α forest power spectrum with BOSS and XQ-100, JCAP 06 (2017)
047 [arXiv:1702.03314] [INSPIRE].

[40] M.M. Ivanov, M.W. Toomey and N.G. Karaçaylı, Fundamental Physics with the Lyman-α
Forest: Constraints on the Growth of Structure and Neutrino Masses from SDSS with Effective
Field Theory, Phys. Rev. Lett. 134 (2025) 091001 [arXiv:2405.13208] [INSPIRE].

[41] B. Wilson, V. Iršič and M. McQuinn, A measurement of the Lyβ forest power spectrum and its
cross with the Lyα forest in X-Shooter XQ-100, Mon. Not. Roy. Astron. Soc. 509 (2021) 2423
[arXiv:2106.04837] [INSPIRE].

[42] M. Dijkstra, A. Lidz and L. Hui, Beyond Lyman α: Constraints and Consistency Tests from the
Lyman β Forest, Astrophys. J. 605 (2004) 7 [astro-ph/0305498] [INSPIRE].

[43] S. Chongchitnan, The Lyman-α Forest as a tool for disentangling non-Gaussianities, JCAP 10
(2014) 034 [arXiv:1408.4340] [INSPIRE].

[44] M. Liguori, E. Sefusatti, J.R. Fergusson and E.P.S. Shellard, Primordial non-Gaussianity and
Bispectrum Measurements in the Cosmic Microwave Background and Large-Scale Structure, Adv.
Astron. 2010 (2010) 980523 [arXiv:1001.4707] [INSPIRE].

[45] R. Scoccimarro, The bispectrum: from theory to observations, Astrophys. J. 544 (2000) 597
[astro-ph/0004086] [INSPIRE].

[46] M.M. Ivanov, O.H.E. Philcox, G. Cabass, T. Nishimichi, M. Simonović and M. Zaldarriaga,
Cosmology with the galaxy bispectrum multipoles: Optimal estimation and application to BOSS
data, Phys. Rev. D 107 (2023) 083515 [arXiv:2302.04414] [INSPIRE].

[47] M. Zaldarriaga, U. Seljak and L. Hui, Correlations across scales in the Lyman α forest: Testing
the gravitational instability paradigm, Astrophys. J. 551 (2001) 48 [astro-ph/0007101]
[INSPIRE].

[48] P. Adari and A. Slosar, Searching for parity violation in SDSS DR16 Lyman-α forest data, Phys.
Rev. D 110 (2024) 103534 [arXiv:2405.04660] [INSPIRE].

– 39 –

https://doi.org/10.1093/mnras/stab2017
https://doi.org/10.1093/mnras/stab2017
https://doi.org/10.48550/arXiv.2009.00016
https://inspirehep.net/literature/1814384
https://doi.org/10.1088/1475-7516/2021/01/051
https://doi.org/10.48550/arXiv.2006.05037
https://inspirehep.net/literature/1800493
https://doi.org/10.1051/0004-6361/201936245
https://doi.org/10.48550/arXiv.1907.02973
https://inspirehep.net/literature/1742833
https://doi.org/10.1093/mnras/stz1276
https://doi.org/10.48550/arXiv.1811.10630
https://inspirehep.net/literature/1705490
https://doi.org/10.1088/1475-7516/2014/07/005
https://doi.org/10.48550/arXiv.1401.6472
https://inspirehep.net/literature/1278807
https://doi.org/10.1088/1475-7516/2015/11/011
https://doi.org/10.48550/arXiv.1506.05976
https://inspirehep.net/literature/1377183
https://doi.org/10.1088/1475-7516/2017/06/047
https://doi.org/10.1088/1475-7516/2017/06/047
https://doi.org/10.48550/arXiv.1702.03314
https://inspirehep.net/literature/1513092
https://doi.org/10.1103/PhysRevLett.134.091001
https://doi.org/10.48550/arXiv.2405.13208
https://inspirehep.net/literature/2789215
https://doi.org/10.1093/mnras/stab3017
https://doi.org/10.48550/arXiv.2106.04837
https://inspirehep.net/literature/1867897
https://doi.org/10.1086/382199
https://doi.org/10.48550/arXiv.astro-ph/0305498
https://inspirehep.net/literature/619599
https://doi.org/10.1088/1475-7516/2014/10/034
https://doi.org/10.1088/1475-7516/2014/10/034
https://doi.org/10.48550/arXiv.1408.4340
https://inspirehep.net/literature/1311449
https://doi.org/10.1155/2010/980523
https://doi.org/10.1155/2010/980523
https://doi.org/10.48550/arXiv.1001.4707
https://inspirehep.net/literature/843475
https://doi.org/10.1086/317248
https://doi.org/10.48550/arXiv.astro-ph/0004086
https://inspirehep.net/literature/545327
https://doi.org/10.1103/PhysRevD.107.083515
https://doi.org/10.48550/arXiv.2302.04414
https://inspirehep.net/literature/2630861
https://doi.org/10.1086/320066
https://doi.org/10.48550/arXiv.astro-ph/0007101
https://inspirehep.net/literature/546587
https://doi.org/10.1103/PhysRevD.110.103534
https://doi.org/10.1103/PhysRevD.110.103534
https://doi.org/10.48550/arXiv.2405.04660
https://inspirehep.net/literature/2784489


J
C
A
P
0
6
(
2
0
2
5
)
0
1
5

[49] M. Viel et al., The bispectrum of the Lyman α forest at z < 2–2.4 from a large sample of UVES
QSO absorption spectra (LUQAS), Mon. Not. Roy. Astron. Soc. 347 (2004) L26
[astro-ph/0308151] [INSPIRE].

[50] R. Mandelbaum, P. McDonald, U. Seljak and R. Cen, Precision cosmology from the Lyman-α
forest: Power spectrum and bispectrum, Mon. Not. Roy. Astron. Soc. 344 (2003) 776
[astro-ph/0302112] [INSPIRE].

[51] M. Viel, E. Branchini, K. Dolag, M. Grossi, S. Matarrese and L. Moscardini, Primordial
non-Gaussianities in the Intergalactic Medium, Mon. Not. Roy. Astron. Soc. 393 (2009) 774
[arXiv:0811.2223] [INSPIRE].

[52] S. Maitra, R. Srianand, P. Gaikwad, T.R. Choudhury, A. Paranjape and P. Petitjean, Three- and
two-point spatial correlations of IGM at z ∼ 2: cloud-based analysis using simulations, Mon. Not.
Roy. Astron. Soc. 498 (2020) 6100 [arXiv:2005.05346] [INSPIRE].

[53] C.-T. Chiang, A.M. Cieplak, F. Schmidt and A. Slosar, Response approach to the squeezed-limit
bispectrum: application to the correlation of quasar and Lyman-α forest power spectrum, JCAP
06 (2017) 022 [arXiv:1701.03375] [INSPIRE].

[54] C.-T. Chiang, C. Wagner, F. Schmidt and E. Komatsu, Position-dependent power spectrum of
the large-scale structure: a novel method to measure the squeezed-limit bispectrum, JCAP 05
(2014) 048 [arXiv:1403.3411] [INSPIRE].

[55] D.K. Hazra and T.G. Sarkars, Primordial Non-Gaussianity in the Forest: 3D Bispectrum of
Ly-α Flux Spectra Along Multiple Lines of Sight, Phys. Rev. Lett. 109 (2012) 121301
[arXiv:1205.2790] [INSPIRE].

[56] T.G. Sarkar and D.K. Hazra, Probing primordial non-Gaussianity: The 3D Bispectrum of Ly-α
forest and the redshifted 21 cm signal from the post reionization epoch, JCAP 04 (2013) 002
[arXiv:1211.4756] [INSPIRE].

[57] B.W. Lyke et al., The Sloan Digital Sky Survey Quasar Catalog: Sixteenth Data Release,
Astrophys. J. Suppl. 250 (2020) 8 [arXiv:2007.09001] [INSPIRE].

[58] S. Chabanier et al., The Completed Sloan Digital Sky Survey IV Extended Baryon Oscillation
Spectroscopic Survey: The Damped Lyα Systems Catalog, Astrophys. J. Suppl. 258 (2022) 18
[arXiv:2107.09612] [INSPIRE].

[59] I. Pâris et al., A principal component analysis of quasar UV spectra at z ∼ 3, Astron. Astrophys.
530 (2011) A50 [arXiv:1104.2024] [INSPIRE].

[60] S. Bailey, Principal Component Analysis with Noisy and/or Missing Data, Publ. Astron. Soc.
Pac. 124 (2012) 1015 [arXiv:1208.4122] [INSPIRE].

[61] H. du Mas des Bourboux et al., The Completed SDSS-IV Extended Baryon Oscillation
Spectroscopic Survey: Baryon Acoustic Oscillations with Lyα Forests, Astrophys. J. 901 (2020)
153 [arXiv:2007.08995] [INSPIRE].

[62] C. Ramírez-Pérez et al., The Lyman-α forest catalog from the Dark Energy Spectroscopic
Instrument Early Data Release, Mon. Not. Roy. Astron. Soc. 528 (2024) 6666
[arXiv:2306.06312] [INSPIRE].

[63] N. Kaiser and J.A. Peacock, Power spectrum analysis of one-dimensional redshift surveys,
Astrophys. J. 379 (1991) 482 [INSPIRE].

[64] V. Desjacques and A. Nusser, Redshift distortions in one-dimensional power spectra, Mon. Not.
Roy. Astron. Soc. 351 (2004) 1395 [astro-ph/0401544] [INSPIRE].

– 40 –

https://doi.org/10.1111/j.1365-2966.2004.07404.x
https://doi.org/10.48550/arXiv.astro-ph/0308151
https://inspirehep.net/literature/625583
https://doi.org/10.1046/j.1365-8711.2003.06859.x
https://doi.org/10.48550/arXiv.astro-ph/0302112
https://inspirehep.net/literature/612911
https://doi.org/10.1111/j.1365-2966.2008.14236.x
https://doi.org/10.48550/arXiv.0811.2223
https://inspirehep.net/literature/802558
https://doi.org/10.1093/mnras/staa2847
https://doi.org/10.1093/mnras/staa2847
https://doi.org/10.48550/arXiv.2005.05346
https://inspirehep.net/literature/1795943
https://doi.org/10.1088/1475-7516/2017/06/022
https://doi.org/10.1088/1475-7516/2017/06/022
https://doi.org/10.48550/arXiv.1701.03375
https://inspirehep.net/literature/1508836
https://doi.org/10.1088/1475-7516/2014/05/048
https://doi.org/10.1088/1475-7516/2014/05/048
https://doi.org/10.48550/arXiv.1403.3411
https://inspirehep.net/literature/1285922
https://doi.org/10.1103/PhysRevLett.109.121301
https://doi.org/10.48550/arXiv.1205.2790
https://inspirehep.net/literature/1114419
https://doi.org/10.1088/1475-7516/2013/04/002
https://doi.org/10.48550/arXiv.1211.4756
https://inspirehep.net/literature/1203275
https://doi.org/10.3847/1538-4365/aba623
https://doi.org/10.48550/arXiv.2007.09001
https://inspirehep.net/literature/1807803
https://doi.org/10.3847/1538-4365/ac366e
https://doi.org/10.48550/arXiv.2107.09612
https://inspirehep.net/literature/1888968
https://doi.org/10.1051/0004-6361/201016233
https://doi.org/10.1051/0004-6361/201016233
https://doi.org/10.48550/arXiv.1104.2024
https://inspirehep.net/literature/895650
https://doi.org/10.1086/668105
https://doi.org/10.1086/668105
https://doi.org/10.48550/arXiv.1208.4122
https://inspirehep.net/literature/1128417
https://doi.org/10.3847/1538-4357/abb085
https://doi.org/10.3847/1538-4357/abb085
https://doi.org/10.48550/arXiv.2007.08995
https://inspirehep.net/literature/1807780
https://doi.org/10.1093/mnras/stad3781
https://doi.org/10.48550/arXiv.2306.06312
https://inspirehep.net/literature/2668149
https://doi.org/10.1086/170523
https://inspirehep.net/literature/28660
https://doi.org/10.1111/j.1365-2966.2004.07879.x
https://doi.org/10.1111/j.1365-2966.2004.07879.x
https://doi.org/10.48550/arXiv.astro-ph/0401544
https://inspirehep.net/literature/643296


J
C
A
P
0
6
(
2
0
2
5
)
0
1
5

[65] S. Matarrese, L. Verde and A.F. Heavens, Large scale bias in the universe: Bispectrum method,
Mon. Not. Roy. Astron. Soc. 290 (1997) 651 [astro-ph/9706059] [INSPIRE].

[66] K.C. Chan and L. Blot, Assessment of the Information Content of the Power Spectrum and
Bispectrum, Phys. Rev. D 96 (2017) 023528 [arXiv:1610.06585] [INSPIRE].

[67] H. Gil-Marín et al., The power spectrum and bispectrum of SDSS DR11 BOSS galaxies — I.
Bias and gravity, Mon. Not. Roy. Astron. Soc. 451 (2015) 539 [arXiv:1407.5668] [INSPIRE].

[68] M. Peloso and M. Pietroni, Galilean invariance and the consistency relation for the nonlinear
squeezed bispectrum of large scale structure, JCAP 05 (2013) 031 [arXiv:1302.0223] [INSPIRE].

[69] S. Mooij and G.A. Palma, Consistently violating the non-Gaussian consistency relation, JCAP
11 (2015) 025 [arXiv:1502.03458] [INSPIRE].

[70] S. Goldstein et al., Squeezing fNL out of the matter bispectrum with consistency relations, Phys.
Rev. D 106 (2022) 123525 [arXiv:2209.06228] [INSPIRE].

[71] P. McDonald, J. Miralda-Escude, M. Rauch, W.L.W. Sargent, T.A. Barlow and R. Cen, A
measurement of the temperature-density relation in the intergalactic medium using a new
Lyman-α absorption line fitting method, Astrophys. J. 562 (2001) 52 [Erratum ibid. 598 (2003)
712] [astro-ph/0005553] [INSPIRE].

[72] G.C. Rudie, C.C. Steidel and M. Pettini, The Temperature-Density Relation in the Intergalactic
Medium at Redshift ⟨z⟩ = 2.4, Astrophys. J. Lett. 757 (2012) L30 [arXiv:1209.0005] [INSPIRE].

[73] A. Arinyo-i-Prats, J. Miralda-Escudé, M. Viel and R. Cen, The Non-Linear Power Spectrum of
the Lyman α Forest, JCAP 12 (2015) 017 [arXiv:1506.04519] [INSPIRE].

[74] J.J. Givans and C.M. Hirata, Redshift-space streaming velocity effects on the Lyman-α forest
baryon acoustic oscillation scale, Phys. Rev. D 102 (2020) 023515 [arXiv:2002.12296]
[INSPIRE].

[75] L. Verde, A.F. Heavens, S. Matarrese and L. Moscardini, Large scale bias in the universe. 2.
Redshift space bispectrum, Mon. Not. Roy. Astron. Soc. 300 (1998) 747 [astro-ph/9806028]
[INSPIRE].

[76] N.G. Karaçaylı et al., A framework to measure the properties of intergalactic metal systems with
two-point flux statistics, Mon. Not. Roy. Astron. Soc. 522 (2023) 5980 [arXiv:2302.06936]
[INSPIRE].

[77] A. Kramida, J. Reader et al., NIST Atomic Spectra Database, version 5.11, National Institute of
Standards and Technology, Gaithersburg, MD, U.S.A. (2009), https://physics.nist.gov/asd.

[78] N.G. Karaçaylı, A. Font-Ribera and N. Padmanabhan, Optimal 1D Ly α forest power spectrum
estimation — I. DESI-lite spectra, Mon. Not. Roy. Astron. Soc. 497 (2020) 4742
[arXiv:2008.06421] [INSPIRE].

[79] C. Ramírez-Pérez, J. Sanchez, D. Alonso and A. Font-Ribera, CoLoRe: fast cosmological
realisations over large volumes with multiple tracers, JCAP 05 (2022) 002 [arXiv:2111.05069]
[INSPIRE].

[80] J. Farr et al., LyaCoLoRe: synthetic datasets for current and future Lyman-α forest BAO
surveys, JCAP 03 (2020) 068 [arXiv:1912.02763] [INSPIRE].

[81] F. Bernardeau, S. Colombi, E. Gaztañaga and R. Scoccimarro, Large scale structure of the
universe and cosmological perturbation theory, Phys. Rep. 367 (2002) 1 [astro-ph/0112551]
[INSPIRE].

– 41 –

https://doi.org/10.1093/mnras/290.4.651
https://doi.org/10.48550/arXiv.astro-ph/9706059
https://inspirehep.net/literature/444067
https://doi.org/10.1103/PhysRevD.96.023528
https://doi.org/10.48550/arXiv.1610.06585
https://inspirehep.net/literature/1493807
https://doi.org/10.1093/mnras/stv961
https://doi.org/10.48550/arXiv.1407.5668
https://inspirehep.net/literature/1307220
https://doi.org/10.1088/1475-7516/2013/05/031
https://doi.org/10.48550/arXiv.1302.0223
https://inspirehep.net/literature/1217398
https://doi.org/10.1088/1475-7516/2015/11/025
https://doi.org/10.1088/1475-7516/2015/11/025
https://doi.org/10.48550/arXiv.1502.03458
https://inspirehep.net/literature/1344172
https://doi.org/10.1103/PhysRevD.106.123525
https://doi.org/10.1103/PhysRevD.106.123525
https://doi.org/10.48550/arXiv.2209.06228
https://inspirehep.net/literature/2151525
https://doi.org/10.1086/323426
https://doi.org/10.48550/arXiv.astro-ph/0005553
https://inspirehep.net/literature/546068
https://doi.org/10.1088/2041-8205/757/2/L30
https://doi.org/10.48550/arXiv.1209.0005
https://inspirehep.net/literature/1184085
https://doi.org/10.1088/1475-7516/2015/12/017
https://doi.org/10.48550/arXiv.1506.04519
https://inspirehep.net/literature/1376097
https://doi.org/10.1103/PhysRevD.102.023515
https://doi.org/10.48550/arXiv.2002.12296
https://inspirehep.net/literature/1782705
https://doi.org/10.1046/j.1365-8711.1998.01937.x
https://doi.org/10.48550/arXiv.astro-ph/9806028
https://inspirehep.net/literature/489359
https://doi.org/10.1093/mnras/stad1363
https://doi.org/10.48550/arXiv.2302.06936
https://inspirehep.net/literature/2632118
https://physics.nist.gov/asd
https://doi.org/10.1093/mnras/staa2331
https://doi.org/10.48550/arXiv.2008.06421
https://inspirehep.net/literature/1811821
https://doi.org/10.1088/1475-7516/2022/05/002
https://doi.org/10.48550/arXiv.2111.05069
https://inspirehep.net/literature/1964868
https://doi.org/10.1088/1475-7516/2020/03/068
https://doi.org/10.48550/arXiv.1912.02763
https://inspirehep.net/literature/1768711
https://doi.org/10.1016/S0370-1573(02)00135-7
https://doi.org/10.48550/arXiv.astro-ph/0112551
https://inspirehep.net/literature/568955


J
C
A
P
0
6
(
2
0
2
5
)
0
1
5

[82] H.K. Herrera-Alcantar et al., Synthetic spectra for Lyman-α forest analysis in the Dark Energy
Spectroscopic Instrument, JCAP 01 (2025) 141 [arXiv:2401.00303] [INSPIRE].

[83] K.K. Rogers, S. Bird, H.V. Peiris, A. Pontzen, A. Font-Ribera and B. Leistedt, Simulating the
effect of high column density absorbers on the one-dimensional Lyman α forest flux power
spectrum, Mon. Not. Roy. Astron. Soc. 474 (2018) 3032 [arXiv:1706.08532] [INSPIRE].

[84] K.N. Telikova, P.S. Shternin and S.A. Balashev, Thermal state of the intergalactic medium at
z ∼ 2–4, Astrophys. J. 887 (2019) 205 [arXiv:1910.13184] [INSPIRE].

[85] L. Cabayol-Garcia, J. Chaves-Montero, A. Font-Ribera and C. Pedersen, A neural network
emulator for the Lyman-α forest 1D flux power spectrum, Mon. Not. Roy. Astron. Soc. 525
(2023) 3499 [arXiv:2305.19064] [INSPIRE].

[86] DESI collaboration, DESI 2024 V: Full-Shape Galaxy Clustering from Galaxies and Quasars,
arXiv:2411.12021 [INSPIRE].

[87] M.M. Ivanov, Lyman α forest power spectrum in effective field theory, Phys. Rev. D 109 (2024)
023507 [arXiv:2309.10133] [INSPIRE].

[88] A. Aviles and G. Niz, Galaxy three-point correlation function in modified gravity, Phys. Rev. D
107 (2023) 063525 [arXiv:2301.07240] [INSPIRE].

[89] J. Chaves-Montero et al., ForestFlow: predicting the Lyman-α forest clustering from linear to
nonlinear scales, Astron. Astrophys. 694 (2025) A187 [arXiv:2409.05682] [INSPIRE].

– 42 –

https://doi.org/10.1088/1475-7516/2025/01/141
https://doi.org/10.48550/arXiv.2401.00303
https://inspirehep.net/literature/2742471
https://doi.org/10.1093/mnras/stx2942
https://doi.org/10.48550/arXiv.1706.08532
https://inspirehep.net/literature/1607759
https://doi.org/10.3847/1538-4357/ab52fe
https://doi.org/10.48550/arXiv.1910.13184
https://inspirehep.net/literature/1762079
https://doi.org/10.1093/mnras/stad2512
https://doi.org/10.1093/mnras/stad2512
https://doi.org/10.48550/arXiv.2305.19064
https://inspirehep.net/literature/2663831
https://doi.org/10.48550/arXiv.2411.12021
https://inspirehep.net/literature/2850044
https://doi.org/10.1103/PhysRevD.109.023507
https://doi.org/10.1103/PhysRevD.109.023507
https://doi.org/10.48550/arXiv.2309.10133
https://inspirehep.net/literature/2699671
https://doi.org/10.1103/PhysRevD.107.063525
https://doi.org/10.1103/PhysRevD.107.063525
https://doi.org/10.48550/arXiv.2301.07240
https://inspirehep.net/literature/2624470
https://doi.org/10.1051/0004-6361/202452039
https://doi.org/10.48550/arXiv.2409.05682
https://inspirehep.net/literature/2826565

	Introduction and summary of main results
	Overview of the data and the bispectrum formalism
	Observational dataset
	Methodology
	Ly-alpha bispectrum formalism and estimator
	Theoretical description of B**(1D)

	Data analysis and P**(1D) assessment
	Summary of the Ly-alpha sample
	Spectrograph resolution
	Noise bispectrum measurement
	Side-band bispectrum
	1D power spectrum assessment

	Synthetic data correction
	Mocks
	Continuum-fitting correction
	Spectrum pixel masking correction

	Systematic uncertainties estimation
	Results: first measurement of the Ly-alpha B**(1D) in eBOSS
	B**(1D) measurement
	Si(III) cross-correlation

	Conclusions
	Maximal q scale and signal for different triangle configurations

