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Delay difference feedback memristive map:
dynamics, hardware implementation and application
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Quanli Deng, Chunhua Wang, Yichuang Sun Senior Member, IEEE, Gang Yang

Abstract—The delay of state variable plays a crucial role in
chaotic systems. However, it has not received sufficient attention
in discrete memristor-based maps. This paper presents a study
on the effects of delay feedback in the discrete memristive
system, proposing a generalized delay difference feedback mem-
ristive map. The dynamical behaviors influenced by control
parameters, delay length and initial conditions, are explored
through four discrete memristive maps. The Kaplan-Yorke di-
mension is utilized as an indicator to investigate the chaotic
dynamic variations induced by the delay length within memristive
maps. Furthermore, digital circuits for the proposed systems
are designed and implemented, with hardware experimental
results that are consistent with numerical simulations, thereby
verifying the effectiveness of the digital circuit-based system
and providing a foundation for hardware-based delay difference
system design. Additionally, the chaotic series are integrated into
the particle swarm optimization for tackling obstacle avoidance
path planning. The superiority of the designed delay difference
feedback memristive maps is highlighted through comparisons
with several classical chaotic maps, showcasing their enhanced
performance in terms of the speed and cost efficiency in solving
the path planning task.

Index Terms—discrete memristor, delay feedback, hyperchaos,
hardware implementation, path planning.

I. INTRODUCTION

CHAOS is a ubiquitous phenomenon in nature emerging
from nonlinear systems. Chaotic systems exhibit several

unique properties, including sensitivity to initial conditions,
topological transitivity, and a density of periodic orbits. These
unique features have inspired extensive research across var-
ious academic fields and have led to applications in a wide
range of industrial domains [1]–[3]. Chaotic systems can be
simulated using two main approaches: differential equations
for continuous time variables and difference equations for
discrete time variables. Discrete-time chaotic maps offer sev-
eral advantages in modeling chaotic phenomena, including
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algorithmic simplicity, rapid computation, and flexibility in
hardware implementation [4]–[6]. Consequently, research on
discrete-time chaotic maps holds an significant position in both
academic and industrial applications [7]–[9].

The memristor, a novel electronic component characterized
by both nonlinearity and memory properties, has seen increas-
ing applications in recent years such as in-memory computing
[10]–[12], bio-inspired circuit [13]–[15], and chaotic systems
[16]–[18], contributing significantly to advancements in these
fields. Particularly, memristor models based on discrete-time
maps have attracted widespread attention. Bao et al. proposed
a circuit model comprising a sampling switch, a memristor,
and a capacitor, constructing a discrete-time iterative map
using the discrete Euler algorithm and exploring the chaotic
characteristics of the model through various numerical sim-
ulations [19]. Fu et al. proposed a method that uses the
difference in state variables as the input to the memristor
to construct a memristor-based Hénnon map model, based
on which they subsequently designed the iterative map with
analog circuits [20]. To address the issues of discontinuous
chaotic intervals and low Lyapunov exponents in chaotic
maps, Lai et al. introduced a memristor-based hyperchaotic
map capable of generating cubic attractors and ultra-boosting
behaviors, effectively increasing the complexity of the chaotic
system [21]. Yuan et al. focused on networks composed of dis-
crete memristors with various topological structures, proposing
different network configurations coupled with chaotic maps
via memristors, and demonstrated the large chaotic parameter
space of the proposed models through numerical simulations
[22]. Despite the vigorous research and promising results in
the application of memristor in chaotic maps, several critical
issues remain unresolved. Notably, the phenomenon of time
delay, which is prevalent in dynamic systems, has not yet
received adequate attention.

Time-delay is a common phenomenon in various physical
systems, such as biological systems, chemical reactions, and
mechanical systems. It arises due to various factors such as
signal transmission, processing time, or physical distances.
Time-delay can profoundly affect the stability and dynamic
behavior of nonlinear systems. In particular, the introduction
of time-delay feedback into chaotic systems can lead to the
emergence of complex dynamics, including chaos, hyper-
chaos, and even hyperchaos with multiple positive Lyapunov
exponents [23]–[25]. Unlike continuous systems, where the
introduction of time delay results in an infinite-dimensional
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state space, the incorporation of time delay in discrete-time
maps expands the system’s state space while maintaining it
within finite dimensions [26]. Buchner and Zebrowski studied
the stability and chaos of the Logistic chaotic map under
delay feedback, and explained the reason why the control
the delayed chaotic system failed due to enhancement chaotic
dynamics. [27]. Gentile et al. investigated the impact of
time-delay feedback in discrete-time maps through frequency
domain analysis, deriving analytical conditions under which
the system undergo period-doubling bifurcations and Neimark-
Sacker bifurcations [28]. Liu and Miao introduced a method
for incorporating time delays in discrete-time chaotic systems
to eliminate the dynamical degeneration phenomenon observed
in digital chaotic maps, successfully producing a delayed
discrete chaotic map with high complexity [29]. Liu et al.
further employed the time-delay feedback to propose a novel
method for constructing hyperchaos based on one-dimensional
chaotic maps combined with modulo operations, resulting in a
chaotic system with enhanced complex properties [30]. It can
be observed that the introduction of time-delay into discrete
systems can facilitate the enhancement of chaotic dynamics
with more intricate characteristics.

However, the aforementioned researches on time-delay
chaotic map have not yet incorporated memristors. As a non-
linear device, integrating of memristor into chaotic maps can
enhance the dynamic characteristics of these systems. To date,
time-delay memristive maps remain unreported. Consequently,
in order to improve the dynamic characteristics of memristive
chaotic maps, we propose the study of delay feedback mem-
ristive map. Firstly, we design a generalized delay difference
feedback memristive map (DDFMM). A stability analysis of
the equilibrium points of the DDFMM is conducted. Further-
more, four distinct discrete memristor models incorporating
hyperbolic tangent, absolute value, quadratic, and exponential
functions in their conductance relationships are utilized as case
studies to explore the impact of delay feedback. Moreover,
the dynamical behaviors are examined numerically through
various perspectives, including phase portraits, Lyapunov ex-
ponents (LEs), bifurcation diagrams (BDs), and Kaplan-Yorke
dimensions (DKY). The influence of delay on dynamics of dis-
crete memristive systems is intuitively captured by DKY, where
an increase in DKY signifies enhanced dynamical behaviors.
Calculations reveal that for all four DDFMMs, DKY consis-
tently increases with the delay length, indicating a continuous
rise in the dynamical behaviors of these systems. Finally, the
obstacle avoidance path planning task is tackled by DDFMMs
generated chaotic series-based optimization algorithm, demon-
strating the superiority of DDFMMs in enhancement of chaotic
dynamics. The contributions of this article are outlined as
follows.

1) The time-delay induced dynamical behavior enhancement
in discrete memristive system is studied, with four maps
employing distinct memristor models serving as illustrative
case studies.

2) Hyperchaotic attractors generated by the DDFMMs are
experimentally implemented on a Field-Programmable Gate
Array platform.

3) The DDFMM-based particle swarm optimization tack-

les the obstacle avoidance path planning task, showcasing
the DDFMMs’ superior randomness compared to traditional
chaotic maps.

The remainder of this study is organized as follows. Section
II describes the discrete memristor models and the general-
ized delay difference feedback memristive map. Section III
investigates the dynamical behaviors of the delay difference
feedback map across four different memristor models. Section
IV focuses on the digital implementation using FPGA tech-
nology. Section V designs the DDFMM-based particle swarm
optimization for obstacle avoidance path planning. Finally,
Section VI summarizes the whole work and provides further
research directions.

II. MODEL DESCRIPTION

A. Discrete memristor models

From the perspective of circuit theory, a memristor is a two-
terminal nonlinear device that can exhibit pinched hysteresis
loops under periodic stimulus [31]. The discretized memristor
(DM) model can be obtained by applying the Euler differ-
ence method to continuous memristor formulations. An ideal
discrete memristor can be mathematically represented by{

vn = M(qn)in
qn+1 = qn + in

(1)

where vn, in, and qn are the sampling values of voltage,
current, and charge at the n-th iteration, and M(qn) represents
the sampling value of memristance at the n-the iteration.

The following investigation delves into the dynamics of
memristive maps when subjected to delay difference feedback,
employing four distinct differential memristor models. These
discrete memristor formulations encompass the hyperbolic
tangent function-based memristor (T-DM), the absolute value
function-based memristor (A-DM), the quadratic function-
based memristor (Q-DM), and the exponential function-based
memristor (E-DM). The mathematical representations of these
four DM models are listed in Table I. Notably, the formulations
for A-DM and Q-DM stem from the work presented in [32].
For a comprehensive understanding of the dynamical behaviors
specific to the A-DM and Q-DM, readers can refer to the
content in [32].

TABLE I
MATHEMATICAL MODELS OF DMS

DM name DM equation

T-DM


vn = (tanh(qn − 1)

− tanh(qn + 1) + 0.5)in

qn+1 = qn + in

A-DM
{
vn = (abs(qn)− 1)in

qn+1 = qn + in

Q-DM

{
vn = (2.4q2n − 0.8)in

qn+1 = qn + in

E-DM

{
vn = (0.025qn − e−q2n )in

qn+1 = qn + in

Drawing upon the test scheme outlined in [33], we under-
take the hysteresis loop analysis in the v-i plane by connecting
a discrete current source with the input terminals of each
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of the four differential DM models. Specifically, we employ
a discrete current signal denoted as in=0.1sin(ωn), where n
represents the discrete time index. By varying the frequency
ω, we numerically simulate the resulting voltage-current rela-
tionships using MATLAB and present the outcomes in Fig.1.
The observations reveal that all four DM models are capable
of exhibiting the hysteresis loops centered at the origin in
the v-i plane. Furthermore, as the frequency ω increases,
the area enclosed by the hysteresis loop lobes decreases
monotonically. These numerical findings conclusively manifest
that these four DM models possess the characteristic properties
of memristors.
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Fig. 1. Frequency-dependent pinched hysteresis loops of four DMs by
applying a discrete current in=0.1sin(ω n) A (a) T-DM, (b) A-DM, (c) Q-DM,
and (d) E-DM.

B. Delay difference feedback memristive mapping model

Given their unique nonlinear characteristics, DMs have been
harnessed to generate chaotic maps. In this study, we introduce
the delay effect into the DM-based maps, resulting in a novel
structure known as delay difference feedback memristive map
(DDFMM), as illustrated in Fig.2. This framework involves
utilizing the difference between the state variable x at the
current iteration n and its value from D iteration prior, n−D,
as the input to the DM. Subsequently, the output of the DM,
scaled by a proportional controller k, serves as the input for the
subsequent iteration of the model. By adopting this schematic
structure, the delay effects on the DM maps are explored.

Z-DZ-D

xn

xn-D

Z-1Z-1

kk
xn+1

M(qn)

Fig. 2. Schematic structure of the DDFMM.

With the schematic structure depicted in Fig.2, where Z−D

represents the discrete delay of D iteration steps and Z−1

denotes one iteration step delay. The equation of the simple

delay difference feedback memristive map can be described
as {

x(n+ 1) = kM(q(n))(x(n)− x(n−D))
q(n+ 1) = q(n) + x(n)− x(n−D)

(2)

where k denotes a proportional controller, D is the delay
length, xn and yn are the state variables at the n-th iteration.

The map (2) can be formally expanded [27] to a set of D+2
equations as

x(n+ 1) = kM(q(n))(x(n)− z1(n))
q(n+ 1) = q(n) + x(n)− z1(n)
z1(n+ 1) = z2(n)
. . .
zD−1(n+ 1) = zD(n)
zD(n+ 1) = x(n)

(3)

The stability of a discrete iteration map can be characterized
using its fixed points. According to (3), the fixed points of the
system can be calculated by

x = kM(q)(x− z1)
q = q + x− z1
z1 = z2
. . .
zD−1 = zD
zD = x

(4)

Clearly, the fixed point can be expressed as

S = (x∗, q∗, z∗1...D) = (0, η, 0) (5)

where η represents an arbitrary constant. The Jacobian matrix
at the fixed point S can be derived as

J =



kM(η) 0 −kM(η) 0 0 . . . 0
1 1 −1 0 0 . . . 0
0 0 0 1 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

1 0 0 0 0 . . . 0


(6)

The characteristic polynomial can be deduced from the
Jacobian matrix at S as

P (λ) = (1−λ)[(−λ)D(kM(η)−λ)+(−1)D+7kM(η)]. (7)

In the given equation (7), λ1 = 1 is explicitly stated, and the
remaining eigenvalues λ2...(D+2) are solutions to the polyno-
mial (−λ)D(kM(η)− λ) + (−1)D+7kM(η) = 0. According
to the theory of stability of iteration maps [34], a fixed point
is considered stable if the absolute values of all eigenvalues
of the Jacobian matrix at the fixed point are less than 1. In
this condition, we have one eigenvalue λ1 which lies exactly
on the unit circle. The stability of the fixed point, therefore,
depends on the locations of the other eigenvalues λ2...(D+2)

relative to the unit circle. The positions of these eigenvalues
are influenced by the proportional controller gain k, the delay
length D and memristor function M(η). Therefore, the fixed
points for the model may be unstable or critically stable.
This underscores the importance of carefully selecting these
parameters to achieve desired dynamical behaviors in the delay
difference feedback memristive map.
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III. NUMERICAL SIMULATION RESULTS

We substitute the different forms of DM models in Table I
into (3) to obtain four distinct DDFMM models. These models
are denoted as T-DDFMM, A-DDFMM, Q-DDFMM, and E-
DDFMM, respectively.

A. Delay length-dependent dynamics

Set the parameter k=1 and initial values for x and q both
as 0.1. Keep the history values of the delay variables at
zero. Numerical simulations are conducted by varying the
delay length D. The resulting attractors are depicted in Fig.3,
obtained through iterating the discrete maps for 5000 steps. For
the T-DDFMM, quasi-periodic attractors are observed when
the delay length D is set to 1, and 2. Continuing to increase D
to 3, the system transitions to exhibiting chaotic attractor. For
the A-DDFMM, Q-DDFMM and E-DDFMM models, increase
in D induces a sequential transition from periodic to quasi-
periodic and subsequently to chaotic dynamics.
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Fig. 3. Phase portraits of attractors of (a) T-DDFMM with D=1(quasi-
periodic), 2(quasi-periodic), 3(chaotic); (b) A-DDFMM with D=1(stable),
4(quasi-periodic), 5(chaotic); (c) Q-DDFMM with D=1(stable), 4(quasi-
periodic), 5(chaotic); (d) E-DDFMM with D=1(stable), 2(quasi-periodic),
3(chaotic).

The Kaplan-Yorke dimension serves as a critical metric for
analyzing dynamical systems, particularly within the domain
of chaos theory. It provides a quantitative evaluation of the
fractal dimension of attractors present in the systems. The
DKY, which is derived from the Lyapunov exponents λ, can
be computed using the following formula

DKY = k +

∑k
i=1 λi

|λk+1|
(8)

where k is the index of the largest LE that is positive, and λi

represents the i-th LE.
The DKY of the four DDFMMs, calculated by varying the

delay length D, are illustrated in Fig.4. Each plot displays
numerical result for DKY as dots, while the accompanying line
represents the polynomial fitting curve. The fitted parameters
for these curves are summarized in Table II. From the results

of polynomial fitting, it can be observed that the relationship
between the delay length D and the DKY aligns closely with a
first-order liner relationship. The systems exhibit increasingly
pronounced nonlinear dynamics as D grows, highlighting the
intricate interplay between the delay length and the dynamics.

According to the definition of LE, it is given by the
equation:

LEi = lim
N→∞

1

N
ln(|λi(ΦN )|) (9)

where λi(ΦN ) represents the i-th eigenvalue of the matrix
ΦN = J0J1 . . . JN−1, with J denoting the Jacobian matrix of
the system (3). Utilizing the algebraic theory, the determina-
tion of a matrix is equivalent to the product of its eigenvalues,
leading to

|J | =
D+2∏
i=1

λi(J) = (−1)D+2(A−B) (10)

where A = kM(q), B = kM ′(q)(x − z1). Assuming
square metrics M1,M2,. . .,MN are of the same dimension, we
derive the equation of |M1M2 . . .Mn|=|M1| · |M2| . . . |MN |.
Consequently, we can obtain:

|ΦN | =
D+2∏
i=1

λi(ΦN )

= |J0| · |J1| . . . |JN−1|
= (−1)(D+2)N (A−B)N

(11)

Combing (9) with (11), we have

D+2∑
i=1

LEi =

D+2∑
i=1

lim
N→∞

1

N
ln|λi(ΦN )|

= lim
N→∞

1

N
ln|

D+2∏
i=1

λi(ΦN )|

= lim
N→∞

1

N
ln|(−1)(D+2)N (A−B)N |

= ln|A−B|

(12)

Applying the same analytical approach, we can determine the
total value of LEs for the system with an increased delay
length D to (D +∆D), where ∆D represents the increment.
The calculation is presented as follows:

(D+∆D)+2∑
i=1

LEi =

(D+∆D)+2∑
i=1

lim
N→∞

1

N
ln|λi(ΦN )|

= lim
N→∞

1

N
ln|

(D+∆D)+2∏
i=1

λi(ΦN )|

= lim
N→∞

1

N
ln|(−1)((D+∆D)+2)N (A−B)N |

= ln|A−B|
(13)

The sum of LEs after increasing D by ∆D can also be
expressed as:

(D+∆D)+2∑
i=1

LEi =

D+2∑
i=1

LEi +

(D+∆D)+2∑
i=D+3

LEi (14)
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Combining (12), (13) with (14), we have

(D+∆D)+2∑
i=D+3

LEi = 0 (15)

From the characteristic equation of the Jacobian matrix, in-
creasing in D does not result all eigenvalues being equal to 1,
which implies that not all of the increased LE will be zero. It
can be inferred that two cases satifying the equation (15) as
follows:{

LED+3 = 0 for ∆D = 1
∃LEi > 0, i ∈ [D + 3, (D +∆D) + 2] for ∆D > 1

(16)
Therefore, when the increment ∆D > 1, the values of
LED+3 . . . LE(D+∆D)+2 must include at least one positive
number. Consequently, as D increase, the count of positive
LEs increases, ultimately leading to an increase of DKY with
increasing D.
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Fig. 4. Delay length dependent Kaplan-Yorke dimension for (a) T-DDFMM,
(b) A-DDFMM, (c) Q-DDFMM, and (d) E-DDFMM.

TABLE II
PARAMETERS OF THE POLYNOMIAL FITTED CURVE

DM name slope y-intercept
T-DM 1.55 0.68
A-DM 0.25 0.57
Q-DM 0.16 0.58
E-DM 0.71 0.62

B. Parameter-dependent dynamics

With the delay length fixed at 5 and the initial conditions for
state variables x and q set to 0.1 and 0.1, the historical values
of the delay variables are maintained at zero. The dynamics in-
fluenced by the proportional controller k are examined through
the Lyapunov exponent spectrum and bifurcation diagram of
state variable x. The LEs are calculated utilizing the Wolf’s
Jacobian matrix-based algorithm, which provides a rapid and
accurate numerical computation. The bifurcation diagram is
obtained by evaluating the local maximum value of the state
variable x. The numerical simulation results are presented in

Fig.5, where for clarity, only the first three LEs are displayed.
For the T-DDFMM, as depicted in Fig.5(a), periodic attractors
emerge when k is set within the interval [0.5,0.68]. Quasi-
periodic attractors are observed for k values in the range
(0.68,0.79]. A chaotic attractor with one positive LE arises
for k in the range (0.79,0.8], and hyperchaotic attractors with
two positive LEs are produced in the range (0.8,1], with the
exception of the periodic window at k ∈ [0.85, 0.865]. In
the case of the A-DDFMM, as shown in Fig.5(b), a chaotic
region is identified for k ∈ [0.947, 0.96] and a hyperchaotic
region with two positive LEs for k ∈ [0.97, 1]. The A-
DDFMM, as illustrated in Fig.5(c), exhibits a narrow chaotic
parameter range for k ∈ [0.96, 1]. Within this range, chaotic
attractors with a single positive LE are generated for k in
[0.96,0.972], and hyperchaotic attractors with two positive
LEs are produced within k ∈ [0.972, 0.987] ∪ [0.995, 1]. For
the E-DDFMM, as shown in Fig.5(d), chaotic behavior is
observed for k in the interval [0.867,0.965], and hyperchaotic
attractors with two positive LEs are obtained for k in the
range [0.965,0.997]. The bifurcation diagrams for variable x
corroborate the findings from the LEs, thereby validating the
correctness of the numerical simulations of LEs.

Fig. 5. Parameter k-relied LEs and state variable x bifurcation diagrams with
D=5, for (a) T-DDFMM, (b) A-DDFMM, (c) Q-DDFMM (d) E-DDFMM.

The variation of DKY with respect to parameter k is
illustrated in Fig.6. By observing of the figure, it can be
seen that as the parameter k increase, the system changes
dynamically from periodicity to chaos. The variation of DKY
with k is consistent with the variation of LEs. For further
investigating the variation of DKY with respect to parameters,
a two dimensional map is calculated by varying D and k,
as depicted in Fig.7. In this figure, the color intensity of the
space corresponds to the magnitude of DKY, with brighter
shades of blue indicating the larger values of DKY. It is
evident from the visualization that an increase in both D and
k generally results in a trend towards the maximum values of
DKY. This observation suggests that the geometric complexity
and fractal nature of the chaotic attractors within the DDFMMs
are influenced by the simultaneous increase in the delay length
and the proportional control parameter, indicative of a more
intricate dynamical behavior as these parameters are adjusted.

In addition to using the methods of DKY and LEs to capture
the complexity of the system, we can further quantify it by
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Fig. 6. Parameter k-relied DKY with D=5, for (a) T-DDFMM, (b) A-
DDFMM, (c) Q-DDFMM (d) E-DDFMM.

Fig. 7. Delay length and parameter k-relied Kaplan-Yorke dimensions for (a)
T-DDFMM, (b) A-DDFMM, (c) Q-DDFMM (d) E-DDFMM.

calculating the entropy of the system’s state variables. In this
study, we select spectral entropy and C0 complexity, two
indicators for assessing the complexity of chaotitc sequences,
to investigate how variations in the parameter k influence the
system’s complexity. Fig.8 illustrates the effects of modifying
the parameter k on the spectral entropy and C0 complexity
of the four DDFMMs. The results indicate that the spectral
entropy and C0 complexity of the DDFMMs increase with
the parameter k. This suggests that the complexity of the
DDFMMs is enhanced as the parameter k is adjusted, which
is consistent with the results obtained from the DKY and LEs
analyses.

C. Initial value-dependent dynamics

With the delay length D and parameter k set to 5 and 1,
respectively, and the historical values of the delay variables
maintained at zero, the dynamics that depend on the initial
values of state variables are examined. Distinct values for
the state variables are chosen to investigate their influence
on the dynamical behaviors. Fig.9 illustrates the coexisting
attractors when x(0)=0.1 and q(0)=±0.5, respectively. The
figure demonstrates that coexisted symmetric chaotic attractors
can be obtained in all four DDFMMs by selecting appropriate
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Fig. 8. Results of complexity variation with respect to k reflected by (a)
spectral entropy, (b) C0 complexity.

initial conditions. In the figure, the attractors depicted in
light blue, referred to as downward chaos (DCH), represent
the trajectories that originate from q(0)=-0.5. Conversely, the
attractors portrayed in bright purple, named as upward chaos
(UCH), correspond to trajectories initiated from q(0)=0.5.
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Fig. 9. Coexisted symmetric chaotic attractors for (a) T-DDFMM, (b) A-
DDFMM, (c) Q-DDFMM (d) E-DDFMM, where light blue dots indicate tra-
jectories initiating from q(0)=-0.5 and bright purple dots represent trajectories
initiating from q(0)=0.5.

For the specified parameter settings, the attraction basins of
the DDFMMs are drawn by examining every initial state in
the x(0)-q(0) plane. The results of this analysis are graphically
represented in Fig.10. In this figure, the bright and dark blue
regions correspond to the downward chaos and upward chaos,
respectively. The orange region indicates the presence of stable
points, while the white region in Fig.10(c) denotes unbounded
regions. It is evident that the coexistence of symmetric chaotic
attractors in the DDFMMs is significantly influenced by the
initial values of q(0).

IV. FPGA-BASED HARDWARE IMPLEMENTATION

The implementation of chaotic maps in FPGA-based digital
circuits has garnered significant interest due to the advantages,
such high computational speed, robust stability, and the ease
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Fig. 10. Basins of attraction for (a) T-DDFMM, (b) A-DDFMM, (c) Q-
DDFMM (d) E-DDFMM.

with altering system parameters and initial conditions [35]–
[38]. This study presents the FPGA-based implementation
of the proposed DDFMMs. The flow block diagram for the
FPGA-based implementation of the model described by (3)
is shown in Fig.11. There are three blocks in the FPGA-
based hardware implementation. The DDFMM Module is
used for iteration calculation of state variables. The Data
Transfer Module is used for preparing data for digital to analog
transformation. And the DAC Module is used for the analog
output.

q
qn

qn

Fig. 11. Block diagram of FPGA-based DDFMM.

The iterative calculations and output preparation operations
are executed on the Xilinx xc7z020clg400-1 platform. The de-
signed discrete iteration systems operate at a clock frequency
of 50 MHz, with the Verilog Hardware Description Language
employed to develop the program code. A 32-bit fixed-point
decimal format, comprising of 1 sign bit, 6 integer bits, and
25 decimal bits, is employed. As illustrated in Fig.9, it it
noteworthy that the maximum values of stable variables x
and q are both less than 4. Therefore, using an integer bit
greater than 2 can avoid the risk of data overflow during the
calculation process. To enhance the operational robustness, we
adopt 6 integer bits, thereby guaranteeing that data overflow
is avoided. Additionally, in addressing rounding errors, a con-
sistent downward rounding approach is employed, discarding
an portion exceeding 25 decimal bits. While this introduces
some degree of error, it is acceptable for implementation of

this digital system. However, in specific applications, such
as image encryption and secure communication, which have
stringent requirements for data integrity, further optimization
of the decimal processing is deemed necessary.

In the DDFMM Module, the state variables x and q at the
n-th iteration are denoted as xn and yn, respectively. The
delay state variables at the n-th iteration are represented by
z1n . . . zDn, with D being the delay length. For the hardware
implementation, we chose a delay length of D=5, a parameter
k=1 and initialized the values of x and y as 0.1 and 0.5,
respectively. To ensure the orderly output of internal data
within the module, we adopted a finite state machine approach
to implement operations such as multiplication and addition in
the DDFMM models. For multiplication, we employed fixed-
point multiplication, which involves multiplying 32-bit signed
numbers and storing the result in a 64-bit temporary variable.
Subsequently, we truncated the sign bit and bits ranging from
the 56th to the 25th position of this temporary variable to
form the final 32-bit multiplication result. After completing the
multiplication operation and function computations, all data is
subjected to addition and subtraction according to the model’s
equation to obtain the final output result.

Furthermore, the hyperbolic tangent function of the T-
DDFMM is achieved through an approximation technique as
delineated in [39]. The absolute value function, a component
of the A-DDFMM, is efficiently implemented in FPGA by as-
sessing the sign bit of the state variable qn. For the implemen-
tation of Q-DDFMM in FPGA, a fixed-point multiplication
approach is adopted. The implementation of the E-DDFMM
is similar to aforementioned methods, but one of its unique
difficulties lies in achieving the exponential function while
optimizing hardware resource expenditure. In this context, the
methodology proposed in [40] is embraced, which facilitates
the transformation of the exponential function with base e into
one with base 2 for computation purposes.

q q

q q

Fig. 12. FPGA-based implementation for (a) T-DDFMM, (b) A-DDFMM,
(c) Q-DDFMM (d) E-DDFMM, with delay length D=5.

In the DAC module, we used the dual-port DAC device,
AD9767, which has a precision of 14 bits. To meet this
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requirements, we retain the sign bit and concatenate the bits
27 to 14 to form the output data of DAC.

The oscilloscope captured hardware experimental results
for each DDFMM model are shown in Fig.12. Observations
form the hardware implemented phase portraits in xn − qn
plane aligns with the numerical simulated red trajectories in
Fig.9. These experimental results demonstrate the feasibility
and simplicity of digital FPGA-based implementation, and
also manifest the correctness of the mathematical models of
DDFMMs.

V. APPLICATION IN CHAOTIC PSO-BASED PATH PLANNING

Obstacle avoidance path planning is a critical challenge
for autonomous systems, requiring efficient and robust al-
gorithm to navigate complex dynamic environments. Chaotic
systems, characterized by their sensitivity to initial conditions,
unpredictability, and ergodicity, offer unique advantages for
generating diverse and adaptive trajectories. The randomness
inherent in chaotic maps is utilized to initialize populations
in optimization algorithm, significantly enhancing efficiency
and enabling the algorithm to avoid local optima [41]. Fur-
thermore, the integration of chaotic systems with dynamic
window approaches have proven effective in improving the
robot’s navigation capabilities through narrow passages and in
avoiding obstacles in dynamic environments [42]. Addition-
ally, the variability introduced by chaotic systems aids in gen-
erating smoother trajectories, thereby avoiding sharp turns and
abrupt changes in direction [43]. Therefore, integrating chaotic
dynamics into algorithms for path planning can enhance the
system’s adaptability, robustness, and efficiency.

The particle swarm optimization (PSO) algorith was in-
spired by the swarm behavior such as fish and bird schooling
in nautre [44]. The PSO-based algorithm has emerged as a
promising approach in addressing obstacle avoidance path
planning. However, traditional PSO algorithms often suffer
from premature convergence and limited global search capabil-
ities, which can hinder their effectiveness in highly nonlinear
and multimodal search spaces. To address these limitations,
chaotic PSO variants have been developed, leveraging the
inherent randomness, ergodicity, and sensitivity to initial con-
ditions of chaotic systems. These characteristics enable chaotic
PSO to enhance global exploration, avoid local optima, and
improve the diversity of solutions [45]. In this study, we
propose a DDFMM-based PSO algorithm designed to execute
the obstacle avoidance path planning tasks. By using chaotic
sequences to initialize the initial position and initial velocity
of the particle swarm, the random initialization characteristics
of chaos are integrated into the PSO algorithm. During the
iterative process of particle swarm optimization, each update
of particle position incorporates a chaotic random sequence,
introducing randomness into the update process to enhance the
algorithm’s ability to explore the state space.

Creating a swarm of particles with population of N , where
each particle represents a potential solution. The initial val-
ues of particle population are crucial, as they influence the
subsequent search trajectory and the quality of final solution.
To ensure the ergodicity and randomness in the initialization

process, chaotic series generated by the DDFMM are utilized
for setting the initial positions and velocities of the particles.
Let the velocity and position of the i-th particle at time
t+1 be denoted as vt+1

i and xt+1
i , respectively. Each particle

maintains an individual best position (pbesti) that it has
visited so far during its search. Additionally, a global best
position (gbest) is tracked, representing the best position found
among all particles in the swarm. The particles move towards
both their individual and global best positions with a certain
probability, aiming to discover the authentic global optimum
in the solution space. The equations for updating the position
and velocity of the i-th particle are as follows.

vt+1
i = vti + c1 · r1 · (pbesti − xt

i) + c2 · r2 · (gbest− xt
i)

xt+1
i = xt

i + vt+1
i

(17)
where learning factors c1 and c2 regulate the influence of
the individual best position and global best position on the
movements, respectively. The random number r1 and r2,
which lie between 0 and 1, introduce randomness in the
solution search process. These random numbers are obtained
by performing a modulo 1 operation on the state variable in
DDFMM.

The convergence analysis of the PSO algorithm is a signifi-
cant and intricate task. Clerc and Kennedy have introduced
an analytical approach for assessing PSO convergence by
simplifying the PSO system (17) down into a one-dimensional
particle system [46]. During the convergence analysis, the
randomness terms, which are confined within the range [0,1],
can be disregarded [46]. By applying the method proposed by
Clerc and Kennedy, which involves substituting c = c1 + c2
and ut = p − xv+1 (where p is the global best position), we
can obtain the following equation:

Yt+1 = AYt (18)

where
A =

[
1 c
−1 1− c

]
(19)

The convergence of the PSO algorithm is determined by the
eigenvalues of the matrix A, which are computed as follows:

λ1,2 = 1− c

2
±

√
c2 + 4c

2
(20)

Crucially, when c=4, a bifurcation occurs in (18). The con-
vergence of the PSO algorithm is guaranteed if 0 < c < 4.
To ensure the convergence of the PSO algorithm in this
work, we set c1 and c2 both to 1.5. This choice of learning
factors ensures that the PSO algorithm converges to the global
optimum.

To demonstrate the global optimization capabilities of the
DDFMM-based PSO algorithm, we conducted a simulation
experiment in which the algorithm was used to find the
minimum value of the Griewank function. Finding the global
minimum of the function serves as evidence that the algorithm
has obtained the global optimal solution [47]. The Griewank
function is formulated as follows:

f(x) = 1 +
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos(
xi√
i
) (21)
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Fig. 13. Global optimization of the Griewank function using DDFMM-based
PSO algorithm (a) fitness variations with iteration (b) particle initial positions
with red color and final positions with blue color.

where n is the dimension of the search space. This function
achieves its global minimum value of 0 when each xi equals 0
[48]. The Griewank function is a multimodal function, featur-
ing numerous local optima, which makes it is often used in the
research of PSO algorithm to verify the global optimization
ability of the algorithm [49]. The simulation results are shown
in Fig.13. The fitness variations with iteration are depicted
in Fig.13(a), which shows that the fitness value decreases to
0 within 500 iterations, indicating that the PSO algorithm is
converging to the global optimum. For further illustrate, we
take the EDDFMM-based approach as an example to illustrate
the initial positions and the final converged positions of its
particles in Fig.13(b). The particle initial positions are shown
in red, while the final positions are displayed in blue in
Fig.13(b). The final positions of the particles are concentrated
around the global optimum, demonstrating the effectiveness of
the DDFMM-based PSO algorithm in global optimization.

The procedure of the DDFMM-based PSO in obstacle
avoidance path planning is outlined in Algorithm 1.

Algorithm 1 DDFMM-based PSO for Obstacle Avoidance
Path Planning

1: Initialize positions and velocities of particle population
with DDFMM.

2: Set parameters: maximum number of iterations T , number
of particles N , learning factors c1, c2, inertia weight ω.

3: for t = 1 to T do
4: for each particle i do
5: Evaluate the cost function Ci of particle i based on

the path length and obstacle avoidance.
6: if Ci is lower than the personal best pbesti then
7: Update pbesti to the current position of particle i.
8: end if
9: if Ci is lower than the global best gbest then

10: Update gbest to the current position of particle i.
11: end if
12: Update the velocity vi and position xi of particle i

based on (17) with chaotic series.
13: end for
14: end for
15: Return the path corresponding to the global best position

gbest.

The performance evaluation is this application is carried out
using a cost function that assesses three critical factors: the
path length, the path smoothness and the degree of obstacle
violations. These factors are combined to form the total cost,
which guides the optimization process. The path length is a
fundamental metric that measures the total distance traveled
along the planned path. It is calculated by summing the
Euclidean distance between consecutive points on the path:

L =

n−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 (22)

where (xi,yi) and (xi+1,yi+1) are the coordinates of con-
secutive points on the path. The path smoothness is another
important factor that evaluates the curvature changes along
the path, ensuring that the path is not overly jagged or erratic.
It is calculated as the sum of the absolute difference in the
second-order differences of the path coordinates:

S =

n−1∑
i=2

(|(xi+1−2xi+xi−1)
2+(yi+1−2yi+yi−1)

2|). (23)

This metric penalizes paths with high curvature changes,
promoting smoother trajectories. The obstacle violation term
ensures that the planned path does not intersect with any
obstacles. This term is calculated differently for circular and
polygonal obstacles. For circular obstacles, the violation de-
gree is calculated based on the distance from each point on
the path to the obstacle center. If the distance d is less than
the obstacle radius r, a penalty is imposed

v = max(1− d

r
, 0) (24)

The total violation penalty for circular obstacle is the sum
of these penalties for all points on the path that are within
the obstacle radius. For polygonal obstacles, the violation is
determined by checking if any segment of the path inter-
sect with any edge of the polygon. For each path segment
(xi, yi) to (xi+1, yi1 ) and each edge of the polygon (xj , yj)
to (xj+1, yj+1), we use the line-line intersection formula to
check for intersections:

t =
(xi−xj)·(yj−yj+1)−(yi−yj)·(xj−xj+1)

(xi−xi+1)·(yj−yj+1)−(yi−yi+1·(xj−xj+1))

u =
(xi−xj)·(yi−yi+1)−(yi−yj)·(xi−xi+1)

(xi−xi+1)·(yj−yj+1)−(yi−yi+1·(xj−xj+1))
.

(25)

If t ≥ 0 and t ≤ 1 and u ≥ 0 and u ≤ 1, then the path segment
intersects with the polygon edge. In this case, a predefined
penalty value is added to the total violation penalty. The total
violation penalty is the sum of violation penalties for both
circular and polygonal obstacles. Therefore, total cost z is
calculated by combining these factors with appropriate weight
parameters:

z = L · (1 + β · violation + γ · S) (26)

where β and γ are weight parameters that balance the impor-
tance of avoiding obstacles and maintaining path smoothness,
respectively. A higher value of β indicates a greater emphasis
on obstacle avoidance, while a higher value of γ prioritizes
path smoothness. These parameters are set as β=0.7 and γ=0.3,
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Fig. 14. Simulation of PSO-based obstacle avoidance path planning.

which indicate a prioritization of obstacle avoidance over path
smoothness in this study.

Set the maximum number of iterations T to 50 and the
number of particles N to 30. A simulation of the PSO-
based path planning is conducted in MATLAB, where ten
obstacles with random positions and shapes are placed within
a 100×100 square space. Fig.14 demonstrates the trajecto-
ries obtained using original, classical chaotic map-based and
DDFMM-based PSO algorithms, under the aforementioned
parameter settings. It can be observed that all the paths in
the figure successfully avoid obstacles, achieving the obstacle
avoidance path planning functionality. A summary of the path
length, smoothness, and success rates over 50 independent
experiments for different methods is presented in Table III. The
DDFMM-based method demonstrate superior performance in
terms of path length, smoothness and success rate compared to
the original PSO and other classical chaotic map-based PSO
variants. For instance, the EDDFMM-PSO achieves the short-
est path length and the highest success rate while maintaining
a relatively low smoothness value. These results underscore
the superior randomness and exploration capabilities of the
DDFMMs, which enable the PSO algorithm to find more
efficient and feasible paths in complex environments.

TABLE III
RESULTS COMPARISON FOR DIFFERENT METHODS BASED-PSO

Method path length smoothness success rate
Original-PSO 150.217 154.242 0.80
Logistic-PSO 154.174 97.478 0.76

Sine-PSO 140.307 132.316 0.80
Tent-PSO 136.939 83.988 0.84

TDDFMM-PSO 132.438 57.368 0.90
ADDFMM-PSO 132.540 50.506 0.88
QDDFMM-PSO 136.189 76.781 0.92
EDDFMM-PSO 131.833 73.694 0.94

VI. CONCLUSION AND OUTLOOK

The time-delay effect in nonlinear systems can increase
the number of positive LEs, thereby engendering hyperchaos

with multiple positive LEs and enriching the dynamical be-
haviors of nonlinear systems. In discrete memristive maps,
the role of delay dynamics has not been thoroughly inves-
tigated. This study introduces a novel discrete memristive
system with delayed feedback and examines its dynamical
behaviors across four distinct memristor models. Numerical
simulations, focusing on control parameters, delay length,
and initial conditions, reveal that the dynamics of the sys-
tem varies with increasing the delay length. Additionally,
the proposed model is realized using a FPGA-based digital
platform, with hardware experimental results substantiating the
design’s practicality and providing a foundation for subsequent
hardware-oriented research on discrete delay memristive maps.
This study also presents a DDFMM-based PSO algorithm to
address the obstacle avoidance path planning. The simulation
results demonstrate the superior randomness of the DDFMMs.
Looking ahead, our future research will focus on the design of
intricate memristive delay systems with multiple positive LEs
and the investigation of chaos control strategies.
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