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Abstract: Sludge management in petroleum refineries is a costly and complex challenge,
posing environmental risks and health hazards for humans. This study explores sludge
incineration as a viable energy recovery method, using a case study from an Iranian refin-
ery. Analysis of 15 sludge samples via bomb calorimetry revealed an average heat value
of 3100 kcal/kg, which declines with increased moisture content, while higher chemical
oxygen demand (COD) enhances energy yield. Over five years, 4000 tonnes of accumu-
lated sludge presented an energy potential of 12,400 Gcal. Statistical modeling, including
polynomial regression and response surface methodology (RSM), mapped sludge storage
profiles and predicted calorific values based on COD and moisture variations. The results
indicate anaerobic digestion at greater depths reduces organic matter, lowering energy po-
tential. Differential scanning calorimetry (DSC) analysis confirmed key thermal transitions,
supporting sludge incineration as an effective waste-to-energy strategy. Implementing this
approach within a circular economy framework can optimize refinery waste management
while reducing pollution, though proper combustion byproduct control is essential for
sustainability and regulatory compliance.

Keywords: incineration; sludge management; sustainability; waste–energy nexus; response
surface methodology; artificial intelligence

1. Introduction
The waste–energy nexus concept encapsulates the innovative approach of turning an

environmental challenge into an advantageous opportunity. The water–energy nexus can
be considered as part of the circular economy framework [1], which both share common
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principles related to the efficient use and management of resources, promoting sustain-
ability, and minimizing environmental impacts. The management of industrial sludge, a
byproduct of wastewater treatment [2], poses substantial challenges, particularly in the
context of petroleum refineries. They face a more pronounced dilemma in handling the
considerable volumes of sludge generated, leading to elevated costs [3]. The implications
extend beyond financial consideration, encompassing environmental and health hazards
for on-site personnel, including the potential for carcinogenic effects [4]. Wastewater treat-
ment plants produce sewage sludge rich in organic matter, presenting energy conversion
opportunities [3,4]. Wastewater sludge incineration represents a promising possibility
for harnessing energy from a significant byproduct of industrial processes. As industrial
wastewater treatment facilities grapple with the management and disposal of sludge, the
concept of incineration emerges as a sustainable solution with the added benefit of energy
generation [5–8]. Heat conversion methods, such as gasification, solid fuel generation, and
incineration, utilize the heat capacity of organic molecules [9]. Despite challenges from high
chemical oxygen demand (COD) and low biological oxygen demand (BOD), along with
oil-resistant properties, thermal processes remain a widely adopted strategy for sewage
sludge management [10,11]. Chemical sludge from refinery plants, using an American
Petroleum Institute (API) treatment system, contains petroleum chemicals and oil [12]. The
API system, widely employed for oil extraction from water, uses grease traps based on
particle density disparities [13]. Controlled burning of accumulated sludge generates en-
ergy but produces hazardous byproducts, including ash and air pollution [14,15]. Figure 1
illustrates a transverse sectional diagram of an API separator. It shows the separation
process of oil and sludge from wastewater. The separator features an inlet and an outlet,
each equipped with adjustable weirs, which help regulate the water flow. The grit trap
collects heavier particles, while the parallel plate assembly enhances the separation of oil
globules from the water. An oil skimmer is used to remove the separated oil layer from
the surface, while sludge settles at the bottom for removal. The design helps in efficiently
separating oil and solids from wastewater [16].

Figure 1. Transverse sectional diagram of an API (American Petroleum Institute) separator, illustrat-
ing its key components and operational flow. (Description: The system consists of an inlet, adjustable
weirs, a grit trap, a parallel plate assembly for enhanced oil–water separation, an oil skimmer to
remove floating oil layers, and an outlet for treated water. The diagram highlights the separation of
oil globules from wastewater, the settling of sludge, and the controlled discharge of effluent to ensure
effective removal of contaminants).
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Figure 2 depicts a flowchart showing the waste-to-energy process involving sludge
thermal recovery. The collected sludge is first directed into a burning reactor. The reactor
produces ash, flue gas, and steam. The ash can be sent to a landfill, while the flue gas
undergoes air pollution control before being released through a stack. The steam produced
drives a turbine, which generates energy. This flowchart highlights the interconnected
steps involved in converting sludge into usable energy while managing emissions and
waste byproducts [14–16].

Figure 2. Schematic representation of multiple processes involved in the waste-to-energy conversion
of sludge through thermal recovery. (Description: The collected sludge is fed into a burning reactor,
where it undergoes combustion, generating ash, flue gas, and steam. The ash is directed to landfills,
while the flue gas passes through an air pollution control system before being released via a stack.
Simultaneously, the steam drives a turbine, leading to energy production. Blue solid lines represent
primary material and energy flows, showing the direct transformation pathways of sludge into useful
products or byproducts. Dashed lines indicate secondary or controlled processes, such as emission
treatment, ensuring compliance with environmental standards. Blue rhombus: a decision point for
directing flue gas, ash, and steam to proper treatment).

Within the domain of sludge thermal recovery research, various efforts focus on
estimating calorific value. Thipkhunthod et al. in Bangkok, Thailand, approximated urban
sewage sludge’s calorific value, incorporating ash in their models [17]. Shen et al. analyzed
sludge components, developing models for predicting biomass calorific value [18]. Yin
created regression models for biomass heating value prediction based on supplementary
experiments [19]. Nhuchhen and Salam used analytic approaches to predict high-calorific-
value sludge, enhancing prediction accuracy with an error function [20]. Wzorek explored
sludge’s energy generation potential by combining it with high-value waste materials [21].
Rios et al. proposed an empirical formula correlating electricity output, methane gas
calorific value, and organic matter in sewage treatment plants [22]. Ongen et al. assessed a
fixed bed gasifier’s efficiency in extracting energy from chicken manure and oily sludge [23].

The management of hazardous solid waste, particularly petroleum oily sludge (POS),
generated by the petroleum refinery industries has been a significant environmental chal-
lenge. Various studies have investigated the treatment and disposal approaches for POS
to minimize its environmental impact. Singha and Deka [24] highlight that POS is the
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predominant solid waste produced during petroleum refining, containing complex mix-
tures of hydrocarbons, heavy metals, persistent organic compounds, and emulsions. For
every 1000 tons of crude oil processed, around 5 tons of POS are generated. To mitigate
environmental pollution, proper treatment technologies, such as freezing, thawing, centrifu-
gation, and ultrasonic treatment, are employed before disposal. The waste management
process involves reducing POS production, recovering oil, and finally disposing of the
residual POS.

Dereli et al. [25] examine the incineration of gaseous and liquid hazardous wastes from
used lubricating oil refineries. Their research focuses on achieving a zero-waste approach
by combusting hazardous wastes along with natural gas. The study demonstrates the
effectiveness of incineration at temperatures above 850 ◦C to achieve complete combustion
and minimize harmful byproducts. The research further emphasizes the importance of
material selection to withstand thermal stresses in the incinerator’s combustion chamber.

Wan et al. [26] explore the combustion characteristics of oily sludge in a fluidized bed
reactor, focusing on emissions of nitrogen and sulfur pollutants and the migration of heavy
metals like Cr, Ni, Cu, Zn, Cd, and Pb. The findings indicate that increasing temperatures
and excess air ratios enhance emissions of nitrogen and sulfur pollutants. The study also
reveals that a strong oxidizing atmosphere reduces heavy metal volatilization, with the
migration and stability of heavy metals being influenced by their chemical forms in the ash.

Sahu et al. [27] discuss the complexities associated with the increasing production
of petroleum refinery sludge, which contains hazardous compounds like cyanides and
ammonia. They emphasize the potential of anaerobic digestion (AD) as a sustainable
treatment option despite challenges related to sludge toxicity. The study outlines different
AD strategies such as co-digestion and bioaugmentation, highlighting their effectiveness in
mitigating sludge and recovering biogas.

Panda and Jain [28] focus on the detrimental environmental effects of untreated
oil refinery effluents, which contain water-in-oil and oil-in-water emulsions as well as
polyaromatic hydrocarbons. Given the growing energy demand, the study advocates
for the integration of biorefineries into oil refineries to remediate sludge into valuable
byproducts. Techniques like advanced oxidation processes, microwave-assisted wet air
oxidation, and Fenton oxidation are discussed as viable treatment options to improve
biodegradability and reduce the toxic effects of refinery sludge.

Collectively, these studies illustrate a range of treatment technologies and method-
ologies aimed at reducing the environmental impact of petroleum refinery sludge. They
emphasize the need for effective treatment technologies, recovery of valuable byproducts,
and sustainable waste management practices that align with the growing demand for
cleaner and more efficient energy sources.

Mokhtar et al. [29] found a high HHV (higher heating value)
(20.5 MJ/kg = 4900 kcal/kg) due to hydrocarbons, while the present study reports
3090 kcal/kg = 12.9 MJ/kg, linking sludge to waste-to-energy processes. Both highlight
sludge composition, treatment challenges, and environmental concerns, promoting sus-
tainable waste management strategies. The unification of our study emphasizes refining
sludge characterization for optimized energy recovery and environmental sustainability.
While Mokhtar et al. did not evaluate the effect of COD on the heat value of the sludge.
The study [29] and Barneto et al. [30] both focus on oil refinery sludge characterization,
emphasizing its energy potential and thermal behavior. While our study evaluates the
calorific value (3090 kcal/kg = 12.9 MJ/kg) and sludge composition for waste-to-energy
applications, Barneto et al. use thermogravimetric analysis to model sludge degradation
and recovery potential. The unification lies in their shared goal of optimizing sludge uti-
lization for sustainable energy and reducing environmental impact. However, the present
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study introduces a novel aspect by evaluating the effects of moisture percentage and COD
variations across different storage zones, providing new insights into sludge characteriza-
tion and management. Also, the research by Crelier and Dweck [31] addresses the impact
of moisture content on oil sludge processing, particularly in thermal treatment methods.
While Crelier and Dweck focus on how water content influences pyrolysis by affecting
enthalpy and thermal balance, our study introduces new aspects by evaluating moisture
percentage variations across different storage zones and their correlation with COD levels.
Additionally, our research examines how these factors impact sludge properties before
treatment, providing a broader understanding of sludge composition dynamics. The unifi-
cation lies in understanding how moisture content alters sludge behavior during thermal
processing, with our study offering novel insights into sludge variability before treatment,
aiding in optimizing sludge management for sustainable energy recovery.

While existing literature often focuses on experimental methods in conventional
wastewater treatment, the potential energy value of refinery sludge has been largely over-
looked. This research addresses that gap by analyzing triangular interpolation plots of heat
value profiles and performing a detailed case study on API sludge, aiming to uncover its
energy potential. Refinery plant waste management and scheduling, a complex and often
contentious issue in oil-rich countries, is a key focus of this study. This research seeks to
determine the calorific value of accumulated sludge, develop statistical models to map
sludge storage profiles, and provide practical managerial insights. The issue of refining
plant waste scheduling has been underexplored by previous researchers, particularly in the
context of optimizing waste-to-energy processes in countries with abundant oil resources.
Figure A1 highlights the research novelties of this study: (1) spatial profiling of sludge to
reveal energy heterogeneity across depths and zones; (2) development of predictive models
using COD and moisture via RSM and regression; and (3) practical application of results to
support energy recovery in refineries under circular economy principles.

By exploring the relationship between sludge incineration and energy generation,
this study aims to turn a critical waste management problem into an opportunity for
energy recovery. This research employs a case study of wastewater treatment practices
at a petroleum refinery in Iran, aiming to provide a comprehensive assessment of sludge
management. More specifically, the objectives of this study are as follows: (1) to determine
the calorific value of sludge at various depths, (2) to establish transverse and longitudinal
profiles of sludge storage using statistical modeling, and (3) to organize the available
resources for effective presentation and storage of managerial insights. By addressing these
objectives, this study contributes to a better understanding of how refinery waste can be
managed to minimize environmental impact while maximizing energy recovery potential.

2. Materials and Methods
Figure 3 shows the research roadmap for sludge-to-energy evaluation in oil refineries.

It includes data collection from five sites, experimental analysis of COD, moisture, and
calorific values, statistical modeling via regression and RSM, thermal behavior study using
DSC, and energy recovery assessment for incineration feasibility.

Fifteen sludge samples were systematically collected from five locations (P1–P5) within
a 0.2 km diameter refinery sludge site during the summer of 2018 when ambient temper-
atures reached approximately 30 ◦C. Using a valve tube for sludge coring, samples were
taken at three consistent depths—0.3 m, 0.6 m, and 0.9 m—resulting in a total of 15 sampling
points. This depth-based sampling strategy ensured a comprehensive understanding of
sludge characteristics across varying depths and spatial locations. The collected samples
were then subjected to both experimental and numerical analysis. COD ranged from 27,000
to approximately 37,000 mg/kg, moisture content varied between 6% and 16%, and calorific
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values fluctuated from 2000 to 4000 kcal/kg. Analytical methods, including calorimetry,
COD measurement, and DSC thermograms, confirmed a negative correlation between
moisture content and energy potential. This carefully structured sampling and analysis
process provides a robust foundation for assessing the environmental conditions and fuel
potential of the sludge across the studied area. The reported ranges correspond to all
samples collected from the various sampling points.

Figure 3. The research roadmap of this study.

Samples were collected during the winter of 2021 over two consecutive days during
regular operational hours at the refinery facility.

To understand and potentially mitigate the impact of petroleum oily sludge, this
study began with data gathering. Sampling points were strategically chosen within the
refinery process to collect sludge samples. Researchers gathered data on various sludge
characteristics, ensuring a comprehensive understanding of its composition and properties.
This step is critical, as it provides the foundational data for further analysis.

Following data collection, the sludge underwent experimental analysis aimed at
breaking down its chemical structure. This stage is illustrated through a simplified chemical
reaction where hydrocarbons react with oxygen, producing water, carbon compounds,
and other byproducts. This reaction aims to reveal the sludge’s chemical composition and
explore possible decomposition pathways. Through these experiments, this study evaluates
the potential for treating or repurposing the sludge, moving closer to environmentally
sustainable solutions.

Once experimental data were obtained, this study moved to the statistical and fun-
damental analysis stage. Here, statistical methods were applied to identify patterns and
correlations within the data, offering deeper insights into the behavior and characteristics
of the sludge under various conditions. This analysis not only strengthens the experimental
findings but also enables researchers to refine their approach, creating a feedback loop that
optimizes data gathering and experimental protocols. The roadmap includes two feedback
loops. One loop connects experimental analysis to the data-gathering phase, allowing re-
searchers to adjust sampling and refine experiments as new insights emerge. The other loop
connects the statistical analysis back to data gathering, ensuring that each phase informs the
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next, leading to iterative improvements. Overall, this roadmap offers a clear, structured ap-
proach to understanding and managing petroleum oily sludge, aiming for environmentally
friendly treatments and a deeper scientific understanding of this industrial byproduct.

As illustrated in Figure A2, the multistage philosophy of applied methods begins with
strategic sludge sampling and laboratory characterization, followed by thermal behavior
analysis, predictive modeling, and RSM optimization, and concludes with integration into
circular economy goals for refinery sustainability.

2.1. Case Study

The present examination centers on an oil refinery in Iran dedicated to processing gas
for separation and purification purposes. The extraction of H2S gas, acting as a souring
agent, takes place from the predominantly sweet gas produced by the refinery. The case
study Gas Refinery is located 35 km from Sarakhs and 165 km from Mashhad, in the
northeast of Khorasan province. The refinery currently consists of five gas processing units,
three sulfur recovery units, two oil stabilization units, one sour water recovery unit, a
wastewater treatment facility, and other auxiliary installations. The refinery’s wastewater
treatment unit was constructed to recycle wastewater from the restaurant and sanitation
facilities, as well as part of the industrial wastewater from sour water stabilization units,
hydrocarbon tank drainage, and contact towers, with a treatment capacity of 500 m3/day of
wastewater. However, another portion of the untreated wastewater is sent to evaporation
ponds (as the target of this study) and ultimately to the surrounding lands of the refinery.
Due to the high groundwater table in the area and the prolonged accumulation of untreated
industrial wastewater, there is also a possibility of sewage infiltration from the Gonbadli
village’s sanitary facilities and runoff from agricultural lands in the region. The effluent
produced during the washing phase of the separation columns undergoes treatment within
the API system. Resultant sludge contains notable volumes of petroleum, acidic chemicals,
moisture, and organic substances. Figure 4 provides an illustrative representation of the
essential organizational framework for sludge management at this refinery [32].

Figure 4. Hierarchical sludge management process, from collection to disposal. Description: It
includes treatment possibilities, waste reduction, separation, transfer, safeguarding, and resource
conservation. The framework ensures efficient, sustainable sludge handling in refinery operations.
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This study, conducted in summer 2018 with an average temperature of 31 ◦C, ana-
lyzed annual weather patterns, including cloud cover, precipitation, humidity, temperature
comfort levels, and beach/pool suitability. Overcast conditions dominate in winter, transi-
tioning to clear skies by July–August. Precipitation peaks at 2.54 cm in January, dropping to
0 cm in mid-summer, while humidity remains minimal year-round. Temperature comfort
varies from cold in winter to sweltering in July–August. The beach/pool suitability score
peaks at 8.7 in July, highlighting optimal conditions for outdoor activities. Overall, the
climate shows distinct seasonal variations with dry, clear summers ideal for recreation [33].

2.2. Experimental Methods

Table 1 presents a summary of the equipment and procedures used in this study
for the quantification of COD, the determination of sludge heat value, and moisture
content analysis. The table provides details on the specific measurement items, the devices
employed, the corresponding procedures, and relevant references for each analysis. For
determining the sludge’s heat value, a PARR1266 calorimeter bomb from PreiserScientific
(US) was utilized, following the ASTM-D294 standard [34]. For COD measurement, a
COD analyzer from Yatherm Scientific Company (India) was used, examining both water
and wastewater according to standard practices. Moisture content was detected using a
Schaller Humimeter FS-4.1, with an examination method similar to that of COD, using
Standard methods for the examination of water and wastewater. In a comparable fashion,
the sampling technique employed a valve tube for sludge coring B10104 that was invented
by Raven, an American corporation.

Table 1. The tools and procedures used in this study.

Measurement Item Devices Procedures Reference

Sludge’s heat value PARR1266; calorimetry bomb;
PreiserScientific (US) ASTM-D294 [34]

COD measurement Yatherm Scientific Company
COD analyzer; (Indian)

Standard methods for the examination
of water and wastewater [35]

Moisture content detection Schaller; Humimeter FS-4.1 Standard methods for the examination
of water and wastewater [36]

This detailed table ensures a comprehensive understanding of the tools and method-
ologies adopted in the experimental phase of the investigation, highlighting the rigorous
approach taken to achieve accurate and reliable measurements. In this study, Differential
scanning calorimetry (DSC) thermograms were obtained to characterize the refinery plant
sludge, using the Perkin Elmer DSC Q100 instrument.

2.3. Large-Scale Heat Value Evaluation

The sampling for this study was conducted from a circle measuring 0.2 km in diameter
in order to assess the calorific value and conduct the sampling. The initial site of sludge
accumulation during a span of five years is therefore situated at the midpoint of this ellipse.
Although it is evident that the occupied property encompasses a greater area than this, for
the purpose of determining the management criteria, only a 0.2 km diameter was assessed.
Because under these conditions, the complete process may be examined and evaluated. The
process of storing, as seen in Figure 5, is radial in nature, proceeding from the innermost to
the outermost place. Consequently, the accumulation of sludge in the major areas persists
for a longer duration than that on the margins.
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Figure 5. The configuration of this case study’s sludge sampling and storage. Longitudinal (vertical)
characteristic: P1; P2; and P3, and transverse (horizontal) characteristic: P1; P4; and P5.

In this study, the subsequent definitions are applicable to both transverse and lon-
gitudinal features. The structure of available sludge is solid with moisture percentage
(semi-liquid), and therefore, with increasing depth of sample point, more force is applied
for the process.

2.4. Classical Mathematical Modelling

In the present study, the experimental data—specifically moisture content and COD
values—were initially correlated with the HHV using the Curve Fitting Tool (CF Tool)
in MATLAB 2019. During the preliminary modeling phase, statistical indicators were
employed to evaluate the performance of the developed model.

2.5. Sensitive Analysis and Optimization

To enable sensitivity analysis and extend the model, response surface methodology
(RSM) was applied in the present research. Design Expert 7.0.0 software was utilized for
modeling, sensitivity analysis, and ANOVA evaluation.

In the next step, after enhancing the model with detailed specifications of organic
compounds, a comparative modeling approach was implemented using various machine
learning algorithms, including Random Forest (RF), Gaussian Process Algorithm (GPA),
Multilayer Perceptron (MLP), SMOreg, Lazy IBK (Instance-based k-nearest neighbor), Lazy
LWL (Locally Weighted Learning), and Meta Bagging. All algorithms were executed using
WEKA 3.9 software. The dataset was divided into 70% for training and 30% for testing in
all machine learning evaluations.

2.6. Thermodynamics Analysis

The main objective of this study is to evaluate the thermodynamic performance of
15 sludge samples by estimating energy output, losses, and efficiency indicators. All
computations and visualizations were performed using MATLAB 2019b. HHV, LHV
(Lower Heating Value), and moisture percentage (MP) were used as input variables. Energy
losses were calculated based on moisture evaporation loss Qmoisture = mmoisture × L, flue gas
loss (10%), residue loss (5%), and unburned fraction QUnburned = HHVtotal × (1 − ηcomb)Q.
Useful energy was derived as Quseful = HHVtotal × ηcomb × ηturb, and efficiency metrics
include thermal and exergy efficiency ηexergy = Quseful/(HHVtotal × (1 − T0/Tcomb)). A
dashboard presents energy flow and efficiency comparisons across samples.
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2.7. Economical Analysis

This study conducts a comprehensive economic assessment focused on Life Cycle Cost
(LCC) analysis of a sludge-to-energy system, using MATLAB 2019b for all simulations. The
analysis incorporates capital expenditure (EUR 900,000), annual operational costs (EUR
1M), and revenues based on 10,000 MWh/year energy sales at EUR 150/MWh with 2%
annual growth. Key indicators such as net present value (NPV), internal rate of return
(IRR), Benefit–Cost Ratio (BCR), and Payback Periods were calculated over a 25-year project
lifetime with a 7% discount rate. The cash flows were adjusted for inflation (3%) and
discounted to determine viability. Results are visualized via a dashboard highlighting costs,
revenues, break-even, and key financial metrics.

3. Results and Discussion
The characterization of oily sludge (OS) by Jin et al. [37] highlights its complex compo-

sition and hazardous nature. OS is a mixture of water–oil emulsions and solid particles,
typically consisting of approximately 30% oil, 40% water, and 30% solids. It contains heavy
metals, organic pollutants, and bacteria, making it an environmental hazard if not properly
managed. The proximate analysis shows a high volatile content (65.86 wt%) and low ash
content (1.67 wt%), contributing to its potential for energy recovery. The ultimate analysis
reveals a significant presence of carbon (60.39 wt%) and hydrogen (7.92 wt%), indicating a
high organic matter content. Additionally, the sludge contains nitrogen (3.11 wt%), sulfur
(0.25 wt%), and oxygen (26.66 wt%), which influence its chemical behavior and environ-
mental impact. The sludge’s elemental composition includes metals such as Si, Al, Fe, Ca,
Na, and Mg, with potential implications for processing and disposal.

The results of diverse tests conducted on 15 samples are illustrated in Figure 6. As
shown in Figure 6a, COD values of various samples vary from 27,100 to 37,050 mg/kg.
Furthermore, the moisture percentage and sludge sample calorific value exhibit fluctuations
of 6 to 16 percent (Figure 6b and heat value 2000 to less than 4000 kcal/kg, respectively
(Figure 6c). In contrast to previous studies, the fluctuations in the moisture percent curve
exhibit a nearly identical pattern to those observed in the COD and calorific value. Conse-
quently, a direct association exists between the moisture content and the calorific value in
relation to COD.
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Figure 6. The experimental outcomes of (a) COD; (b) moisture percentage; (c) high heat value; and
(d) low heat value fluctuations in the experimental evaluations of the sludge samples.

The HHV and LHV of the sludge (in MJ/kg) can be determined using Equation (1) [38].
In this equation, it is assumed that 1 kg of hydrogen generates approximately 9 kg of
water (H2O) during combustion. Therefore, the calculation is based on the assump-
tion that the hydrogen content (H%) is equal to the moisture percentage divided by
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9 (H% = Moisture% ÷ 9). The results of the LHV for the dried sludge are demonstrated
in Figure 6d.

LHV = HHV − (9 × %H + %H2O) × 2.44 (1)

Stehouwer et al. [39] conducted an extensive study on 7746 sludge samples from
177 publicly owned (wastewater) treatment works (POTWs) over a 20-year period, re-
vealing notable seasonal and operational variability. The study found that inter-POTW
variability was greater than intra-POTW variability, confirming that sludge properties
are highly influenced by external factors such as wastewater composition and treatment
efficiency. The coefficient of variation (CV) for NH4-N exceeded 0.5, while the error margin
for plant-available nitrogen application ranged from 0.39 to 1.09 of the intended amounts.
This uncertainty suggests that seasonal fluctuations, along with treatment inefficiencies,
can significantly impact nutrient concentrations. Additionally, trace element concentrations
showed large variations, with lead (Pb) concentrations fluctuating within ±2 standard
deviations, indicating a substantial degree of uncertainty in heavy metal distribution. The
application uncertainty for trace elements, though large relative to single applications, was
minimal in relation to cumulative loading limits, generally remaining below 0.01. Climate
change exacerbates these variations by influencing precipitation patterns, temperature
fluctuations, and industrial wastewater composition. Increased rainfall can lead to higher
dilution of pollutants in sewage, altering sludge nutrient content, while extreme tempera-
tures may affect microbial activity in treatment processes, impacting sludge stabilization.
Furthermore, changing industrial discharge patterns due to climate adaptation strategies
may lead to unpredictable shifts in sludge composition. The study’s findings emphasize
the necessity for more frequent sampling and improved monitoring protocols to mitigate
these uncertainties and ensure reliable sludge quality assessments [39].

MATLAB 2018b was used to simulate the function of implicit polynomials, with
a second degree in the X-direction and a third degree in the Y-direction, for predicting
accessible heat value (HV) energy based on the sludge’s moisture content in percent (MP)
and COD, respectively, as shown in Figure 7. In the case of sludge samples with lower
COD, their thermal energy levels decrease as relative humidity increases due to the ongoing
anaerobic digestion process in deeper layers, as shown in the graph. Microbial activity
results in a reduction in the organic load, and the anaerobic digestion occurs at a lower
depth that promotes hydrolysis. Consequently, an increase in samples’ moisture content
would lead to a rise in calorific value [20,21].

Figure 7. The algorithm for determining heat value from COD (mg/Kg), heat value (Kg/Kcal), and
moisture content (%) via polynomial regression.
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The regression model (Equation (2)) for predicting the HV of sludge based on the MP
and COD values yielded promising results. The Sum of Squared Errors (SSE) was found to
be 5.183 × 104, indicating a moderate residual error when estimating HV from the input
variables. The model achieved an R2 value of 0.9881, suggesting that approximately 98.81%
of the variance in HV can be explained by the MP and COD values, reflecting a high level
of accuracy. The Root Mean Squared Error (RMSE) was 93.27, which quantifies the average
deviation between observed and predicted values and is relatively low, showing good
model fit. The adjusted R2, at 0.9624, accounts for the number of predictors in the model
and still indicates a strong explanatory power, confirming that the chosen variables are
effective for predicting HV while avoiding overfitting. These statistical metrics demonstrate
that the regression model provides a reliable and effective tool for predicting the heat value
of sludge based on MP and COD.

HV = A00 + A10 MP + A01 COD + A20 MP2 + A11 MP × COD + A02 COD2

+ A21 MP2 × COD + A12 MP × COD2 + A03 COD3 (2)

Ratios (with 95 percent confidence)
Regression Coefficients:

- A00: (−2.067 × 105, −7.254 × 105, 2.868 × 105)
- A10: (9.326, −15.95, 35.66)
- A01: (3.626 × 104, −4.406 × 104, 1.171 × 105)
- A20: (−0.0001034, −0.0004356, 0.0002053)
- A11: (−1.376, −5.09, 2.385)
- A02: (−1417.85, −3646.81, 647.19)
- A21: (1.142 × 10−5, −2.878 × 10−5, 5.442 × 10−5)
- A12: (0.02876, −0.02351, 0.08127)
- A03: (17.25, 0.8327, 33.66)

Equation (2) established the suitability of a polynomial regression model. Subse-
quently, Equation (3) employed the response surface methodology (RSM) to derive a highly
accurate quadratic equation. This approach was chosen because cubic models, which
can exhibit varying ascending and descending trends, may not align with the underlying
physics of the problem. In contrast, quadratic equations often provide a more consistent rep-
resentation and are widely supported by existing studies [40–42]. Therefore, the quadratic
model serves as the foundation for the analysis.

Through comprehensive regression model analysis utilizing historical data within
the RSM framework, and employing Design Expert 7.0.0 software, a predictive quadratic
regression model was developed, achieving an R2 of 0.93 and a predicted R2 of 0.71, as
presented in Equation (3).

HV = +32,058.20274 − 1.39570 × COD − 1417.47530 × MP + 0.035335 × COD × MP

+ 1.73263 × 10−5 × COD2 + 7.44860 × MP2
(3)

Table 2 details the ANOVA results for the heat value concerning COD and MP across
various samples, assessing both model significance and the contributions of individual
factors. The model demonstrates high significance (p < 0.0001), underscoring a robust
correlation between the predictors and the response variable. The linear terms, A-COD
(p = 0.0690) and B-MP (p = 0.1251), exhibit moderate significance, suggesting their notable
impact on the heat value. In contrast, the interaction term (AB) and quadratic terms (A2,
B2) display lower significance levels, indicating minimal interactive or nonlinear effects
between COD and MP on the heat value.
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Table 2. The results of ANOVA analysis in the present study.

Source F Value p-Value (Prob > F)

Model 27.72974 <0.0001

A-COD 4.26082 0.0690

B-MP 2.859985 0.1251

AB 2.39887 0.1558

A2 1.343002 0.2763

B2 0.34175 0.5732

Figure 8a illustrates the sensitivity analysis of the model, displaying the response
surface plot of HV as a function of COD and MP. The three-dimensional representation
provides insights into the interactive effects of these parameters, where HV exhibits a
nonlinear trend. The visualization suggests that increasing MP leads to a significant rise in
HV, while COD demonstrates a more complex impact, indicating the necessity of optimizing
both parameters for enhanced performance.

Figure 8b presents the normal plot of residuals, evaluating the normality distribution
of the dataset. The points align closely with the diagonal reference line, suggesting that
the residuals are approximately normally distributed. This indicates that the model’s
assumptions hold true, ensuring reliable predictions and statistical validity.

Figure 8c illustrates the residuals versus run number, providing insight into the error
distribution throughout the experiments. The plot shows that the residuals are randomly
scattered without any discernible trend, confirming that there is no systematic error in
the experimental setup. The absence of a clear pattern suggests that the model effectively
captures the variability in the data without significant bias.

Figure 8d compares the predicted HV values with the actual experimental results,
demonstrating the accuracy of the model’s predictions. The data closely align with the
45-degree diagonal line, indicating a strong correlation between the predicted and observed
values. The minimal deviation suggests that the model provides a reliable estimation of
HV under different experimental conditions.

Figure 8e depicts the desirability function, highlighting the most favorable regions for
achieving optimal conditions based on the model’s predictions. The contour plot identifies
specific areas where the desirability index is maximized, guiding the selection of optimal
COD and MP values. The design points provide additional verification of the model’s
applicability in real-world scenarios.

Figure 8f illustrates the contour plot of HV, emphasizing the optimal maximum
achievable points. The heatmap representation indicates regions where HV reaches its
peak, guiding parameter selection for enhanced performance. The optimal conditions
identified in this plot align with the sensitivity analysis, reinforcing the model’s predictive
capability in determining the highest HV values.

As discussed earlier, the calorific value decreases with increasing sampling depth due
to the in-depth progression of anaerobic digestion of organic compounds, as illustrated
in Figure 9a. The longitudinal and transverse profiles, shown in Figure 9b,c, reveal that
the lowest heat value is observed at point P1, corresponding to the oldest sludge storage
location. This trend is likely attributable to the metabolic activities of anaerobic bacteria,
which play a critical role in the breakdown of organic matter. Over a five-year period [34],
these metabolic processes have had sufficient time to complete, further contributing to the
observed reduction in calorific value.
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(a)  (b) 

(c)  (d) 

(e)  (f) 

Figure 8. Comprehensive analysis of model performance and optimization: (a) sensitivity analysis
of HV with COD and MP, (b) normal plot of residuals assessing data distribution, (c) residuals vs.
run number illustrating error distribution, (d) predicted vs. actual HV values demonstrating model
accuracy, (e) desirability function contour plot identifying optimal parameter regions, and (f) contour
plot highlighting maximum achievable HV points. Units: COD: mg/Kg, heat value: Kg/Kcal, and
moisture content: %.
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Figure 9. The outcomes of heat value changes in (a) the depth; (b) the horizontal; and (c) the vertical
profiles as per the experimental protocols. Longitudinal (vertical) characteristic: P1; P2; and P3, and
transverse (horizontal) characteristic: P1; P4; and P5. Units: heat value, Kg/Kcal.

This refinery processes approximately 4000 tons of accumulated sludge with an av-
erage calorific value of 3090 kcal/kg, enabling the generation of a substantial amount
of energy over its estimated five-year operational period (around 12,400 GCal). How-
ever, operators must be well versed in managing air pollution and ash byproducts
resulting from combustion and adhere to critical management principles to mitigate
environmental impacts [36].

Figure 10a illustrates the Differential scanning calorimetry (DSC) curve of refinery
sludge, offering insights into the thermal transitions of the material. DSC is a versatile
analytical tool that evaluates heat flow associated with physical and chemical transitions,
such as melting, decomposition, and phase changes.
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Figure 10. The results of DSC characterization of (a) sludge sample from P1 point temperature:
600 ◦C, mass: 14 g, and rate: 10 ◦C min−1 and (b) material detection in different peaks.

The DSC curve reveals two significant endothermic peaks and two exothermic transi-
tions. The first endothermic peak occurs at 115.9 ◦C, with an enthalpy change of 14.2447 J/g.
This is likely associated with the evaporation of water or light volatiles within the sludge.
The second endothermic peak is observed at 313.2 ◦C, with a higher enthalpy value of
157.2821 J/g, suggesting the decomposition or melting of high-molecular-weight organic
materials, such as hydrocarbons typically found in refinery sludges. The substantial energy
requirement for this transition reflects the complexity of these organic compounds.

Exothermic transitions occur at (1) 98.6 ◦C, which may correspond to the oxidation
of reactive components like light volatiles or easily oxidizable organics, and (2) 259.9 ◦C,
indicating more substantial oxidation reactions or structural rearrangements, potentially
involving reactive hydrocarbons or metal compounds.

These thermal transitions across a wide temperature range highlight the heteroge-
neous nature of refinery sludge. It consists of diverse components, including water, light
hydrocarbons, heavy organic compounds, and potentially metals, each exhibiting distinct
thermal behaviors. The varying thermal stability observed in Figure 10 reflects the intricate
composition of refinery sludge, with each component undergoing unique transformations
at different temperatures.

From a thermodynamic perspective, the significant energy requirement at 313.2 ◦C
indicates a high input is necessary to process the sludge beyond this point. This has prac-
tical implications for thermal treatment processes, e.g., incineration or pyrolysis, where
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understanding these transitions helps optimize temperature settings and energy use. More-
over, the combination of endothermic and exothermic behaviors suggests opportunities for
energy recovery during sludge processing, depending on the specific components treated.

Figure 10b illustrates the DSC curve of oily sludge, highlighting two main thermal
events. A small endothermic peak appears around 100–120 ◦C, attributed to the evaporation
of water, alcohol, and light organics. A strong exothermic peak occurs between 260 and
313 ◦C, with a maximum at 313 ◦C, corresponding to the oxidation of hydrocarbons
and breakdown of the organic gel matrix. This thermal behavior reflects the stepwise
decomposition and energy release of sludge components, consistent with its high HHV.

Our study on sludge incineration for energy recovery from industrial wastewater treat-
ment demonstrates notable parallels and contrasts with the works of Dereli et al. [25], Wan
et al. [26], and Ji et al. [39], which focused on hazardous waste incineration and pyrolysis.
A common theme across all studies is the emphasis on maintaining high temperatures to
enhance waste decomposition and minimize harmful byproducts.

Wan et al. [26] focused on oily sludge combustion in a fluidized bed reactor at temper-
atures between 850 and 1050 ◦C, analyzing emissions of nitrogen and sulfur compounds
as well as heavy metal migration. They found that higher temperatures and increased air
ratios elevated NOx and SO2 emissions while also influencing the retention of heavy metals
in bottom ash. Similarly, our study emphasized the importance of controlling combustion
conditions to reduce harmful emissions. The findings of Wan et al. on heavy metal migra-
tion and stability are directly relevant to the complex composition of our sludge. In our
study, by analyzing the moisture percentage, the correlation between the HHV and Lower
Heating Value (LHV) was scrutinized. Our findings highlight that an increase in MP%
leads to a significant reduction in LHV due to the additional energy required to evaporate
water before combustion can proceed efficiently. This energy loss reduces the net heat
output and lowers combustion efficiency. Moreover, a higher moisture content results in
lower flame temperatures, incomplete combustion, and increased latent heat losses in the
flue gas, further diminishing the effective energy yield.

Ji et al. [39] explored the pyrolysis of oily sludge as a sustainable alternative to in-
cineration, using a life cycle assessment (LCA) to evaluate environmental impacts. Their
results indicated that pyrolysis has a lower global warming potential (GWP) compared to
incineration. Major contributors to GWP included processes such as flue gas purification
and hot washing, while recycling pyrolytic oil and residues mitigated adverse effects.
They also emphasized decarbonization strategies such as employing green electricity and
co-pyrolysis. While our study focused on energy recovery through incineration and did not
incorporate an LCA, Ji et al.’s findings highlight the environmental benefits of alternative
thermal treatments. This insight complements our efforts to optimize sludge manage-
ment for energy recovery and suggests future exploration of sustainable alternatives such
as pyrolysis.

In terms of methodology, all studies utilized numerical analysis to refine waste treat-
ment processes. Dereli et al. used simulations to enhance combustion, Wan et al. employed
BCR sequential extraction to study heavy metal migration, and Ji et al. relied on LCA for
environmental impact assessments. In our study, we applied quadratic regression to predict
heat value based on sludge properties such as moisture content and COD, achieving an R2

value of 0.93. This approach effectively captured the relationship between sludge character-
istics and calorific value, contributing to improved efficiency in sludge incineration.

The Gas Chromatography (GC) analysis of petroleum sludge in the research of Jerez
et al. (2021) [41], as presented in Figure 11, reveals a comprehensive distribution of hy-
drocarbon compounds with varying retention times (r.t). The detected compounds range
from light hydrocarbons such as mesitylene (6.87 min) to heavy hydrocarbons including
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triacontane (34.307 min). The chromatographic profile highlights the presence of alka-
nes, branched alkanes, and oxygenated compounds, reflecting the complex composition
of petroleum sludge. In the lower retention time range, volatile hydrocarbons, such as
mesitylene (6.87 min), decane (7.44 min), and undecane (8.92 min), are observed, indicat-
ing lighter fractions within the sludge. Moving to the mid-range, compounds such as
heptadecane (12.642 min) and nonadecane (14.423 min) appear, representing longer-chain
alkanes with moderate volatility. The presence of branched hydrocarbons like 2,6,10-
trimethylpentadecane (15.528 min) and pristane (16.47 min) suggests the existence of
isoprenoid structures commonly found in petroleum products. The high retention time
region is dominated by long-chain hydrocarbons, including docosane (21.603 min), hen-
triacontane (24.496 min), and octacosane (29.335 min), which are indicative of waxy and
heavy petroleum fractions. The detection of tetratetracontane (33.383 min) and triacon-
tane (34.307 min) further confirms the presence of high-molecular-weight hydrocarbons,
emphasizing the sludge’s complex and persistent nature. The numerical distribution of
retention times confirms the presence of a diverse range of hydrocarbons, spanning from
light, volatile fractions to heavy, long-chain alkanes. This characterization provides insight
into the sludge’s chemical composition, which is crucial for its further processing, treatment,
or utilization in energy recovery applications.

Figure 11. Chemical compounds found in the oil phase of oily sludge based on GS-MS analysis,
adopted from [41].

The study by Huang et al. [43] presents a comprehensive quantitative assessment
of the environmental and economic benefits of sludge-to-energy incineration approaches.
The research evaluates four sludge treatment routes—co-incineration in coal power plants
(CIN), mono-incineration (IN), anaerobic digestion (AD), and pyrolysis (PY)—using an
integrated methodology combining life cycle assessment (LCA), Techno-Economic Analysis
(TEA), and the Analytic Hierarchy Process (AHP)-Entropy method. The study finds that
CIN exhibits the best overall performance, followed by PY, while IN ranks the lowest due
to its high costs and significant environmental burden. From an environmental perspective,
the study assesses multiple impact categories. In terms of global warming potential
(GWP), CIN demonstrates the lowest emissions at 177.75 kg CO2-eq per ton of dry sludge
(t DS), while IN has the highest emissions at 689.45 kg CO2-eq/t DS due to its high
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fossil fuel consumption. Heavy metal contamination is another critical factor, with IN
exhibiting the highest human toxicity potential (HTP), primarily due to fly ash disposal,
whereas AD has elevated freshwater (FEP) and terrestrial ecotoxicity potential (TEP) due
to heavy metal leaching during digestate land application. Fossil fuel depletion (ADP-F)
is most severe for IN, while CIN and AD perform well due to energy recovery through
electricity generation and biogas substitution. Acidification and eutrophication potential
are highest for AD, primarily because of nutrient leaching from digestate land application.
While photochemical oxidation and ozone depletion potential are comparatively minor, IN
exhibits the highest photochemical ozone creation potential (POCP) due to NOx emissions.
The techno-economic assessment highlights notable differences in financial viability across
the four treatment routes. CIN, PY, and AD exhibit relatively high net present values (NPV)
at 141.2, 219.2, and 254.1 CNY/t DS, respectively, whereas IN has a significantly lower
NPV of 33.1 CNY/t DS, making it economically less attractive. The dynamic payback
period (DPP) further supports the superiority of CIN, with the shortest investment recovery
time of 5.36 years, compared to 12.83 years for IN. In terms of the internal rate of return
(IRR), all routes surpass the 8% economic viability benchmark, with PY leading at 16.3%,
followed by CIN (16.2%) and AD (14.93%). IN, however, barely remains feasible at 8.87%,
further reinforcing its economic disadvantage. Sensitivity analyses reveal that both organic
content and sludge reception fees significantly influence the environmental and economic
performance of all four routes. Higher volatile solids (VSs) content, increasing from 40%
to 70%, improves economic returns by enhancing energy recovery. Similarly, sludge
reception fee variations impact the financial feasibility of treatment routes, with IN being
the most vulnerable to revenue fluctuations. These findings suggest that policies promoting
higher sludge organic content and stable financial incentives can enhance the economic
sustainability of sludge-to-energy conversion.

According to Nkuna et al. [44], the cost–benefit analysis of sludge incineration reveals
that the overall feasibility depends significantly on the scale of the plant, operational
efficiency, and energy recovery potential. Large-scale incineration plants with a capacity of
35,000 Mg ds/a require an investment of EUR 35 million, with annual operational costs of
EUR 5.5 million, translating to a treatment cost of EUR 157 per Mg ds. Medium-scale plants
(4000 Mg ds/a) demand an investment of EUR 12 million and annual operational costs of
EUR 1 million, leading to higher treatment costs of EUR 487 per Mg ds. Small-scale plants
(2000 Mg ds/a) are the least cost-effective, with an investment of EUR 16 million, annual
operational costs of EUR 1 million, and treatment costs reaching EUR 510 per Mg ds. These
data suggest that larger plants benefit from economies of scale, making them more viable
for long-term operation. From an economic feasibility standpoint, energy recovery through
gasification presents a compelling case for investment. Over a 25-year period, gasification
is projected to yield a profit ranging from 4.3% to 7.5%, with a net present value (NPV)
of EUR 1,801,700 after nine years. The internal rate of return (IRR) is estimated at 2.55%,
with a payback period of approximately six years. The energy output from gasification
is substantial, with an annual electricity generation of 427.78 MWh, of which 270.4 MWh
can be supplied to the grid, contributing to an annual energy profitability of EUR 70,947.
However, the economic feasibility is highly dependent on drying costs, H2 generation from
synthesis gas, and municipal solid waste (MSW) processing, all of which influence the
financial sustainability of the project. Environmental considerations play a crucial role
in determining the viability of sludge incineration, particularly in managing pollutant
emissions and complying with regulatory standards. The combustion of wastewater sludge
(WWS) produces nitrogen oxides (NOX) in the range of 1250–2250 ppm, which necessitates
advanced emission control measures. Studies show that incineration significantly reduces
toxic hazards, decreasing pollutant levels from 777.07 in raw WWS to 64.55 in slag and
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288.72 in fly ash. However, gas cleaning and ash disposal introduce additional costs, making
regulatory compliance a significant financial burden. Technologies such as filtration devices,
fabric filters, and packed-bed scrubbers have been implemented to mitigate emissions
of NOX, SO2, and HF, further influencing the operational costs of sludge incineration.
The efficiency of energy recovery varies depending on the conversion technology used.
Fluidized Bed Combustion (FBC) has proven to be highly effective, achieving an energy
recovery efficiency of approximately 80%, with electricity generation accounting for 20%
of the total energy output. Furthermore, integrated sludge and MSW incineration have
been identified as the most profitable approach, particularly when incorporating coal co-
incineration, which results in a turnover profit of 89.74%. This highlights the potential
for optimizing incineration processes by integrating multiple waste streams to enhance
overall energy recovery and cost efficiency. Investment and operational costs are critical
determinants of the economic sustainability of sludge incineration. The drying process
alone requires a capital investment of EUR 150,000, with annual maintenance costs of
EUR 7500. Gasification technology demands an even higher investment, with a gasifier
purchase price of EUR 140,431.2 and annual maintenance costs of EUR 7021.56. The total
venture capital for an integrated energy recovery unit is estimated at EUR 295,431.2, with
an annual maintenance cost of EUR 36,371.56. These outcomes underscore the need for
cost-effective energy recovery strategies to justify the high capital expenditure associated
with sludge incineration [44].

In the next step, based on the GC output reported by Jerez et al. [41], the percentage
of each compound was calculated. Subsequently, the mass concentration (mg/kg) of each
compound was determined using the COD values, as illustrated in Figure 12a. Accordingly,
the model inputs included moisture content, COD values, and 30 features corresponding
to different organic compounds (O1, O2, . . ., O30), while the HHV was considered as the
output variable.
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Figure 12. Input features distribution and algorithm performance comparison: (a) compound
concentration across samples (mg/kg), (b) correlation coefficients, (c) MAE/RMSE radar plot, and
(d) RAE/RRSE error metrics across seven machine learning models.
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Figure 12b presents the correlation coefficients (CC: R values) obtained from different
regression algorithms implemented in WEKA. The GPA and SMOreg yielded the highest
predictive correlations, both achieving R = 0.95, reflecting strong agreement between the
predicted and actual HHV values. This was followed by MLP (R = 0.86), Lazy LWL
(R = 0.85), and Lazy IBK (R = 0.81). Random Forest and Meta Bagging demonstrated
lower performance with R values of 0.62 and 0.68, respectively. Figure 12c compares the
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) using a radar plot. GPA
and SMOreg recorded the lowest MAE and RMSE values, confirming their high accuracy
and reliability. In contrast, Lazy IBK and Lazy LWL presented noticeably higher errors,
implying weaker generalization capability. Meta Bagging and Random Forest fell in the
mid-range. Figure 12d shows the Relative Absolute Error (RAE) and Root Relative Squared
Error (RRSE) for each algorithm. GPA and SMOreg again outperformed the others with
the lowest RAE and RRSE percentages. The Lazy learning algorithms (IBK and LWL) and
Meta Bagging exhibited significantly higher relative errors, reinforcing their comparatively
lower accuracy.

GPA and SMOreg showed the best performance with R = 0.95 and the lowest
MAE, RMSE, RAE, and RRSE, indicating high accuracy. MLP and Lazy LWL followed,
while Random Forest, Meta Bagging, and Lazy IBK showed weaker predictive capabil-
ity. Finally, all outcomes of different algorithms in WEKA 3.9 software are mentioned
in Equations (A1)–(A7).

Figure 13 offers a comprehensive thermodynamic dashboard that illustrates the energy
distribution, efficiency metrics, and loss components associated with the combustion of
15 distinct sludge samples. Each subplot of Figure 13a–d highlights a key dimension of
performance, with data normalized for a batch mass of 100 kg to ensure comparability.

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 13. The thermodynamic performance of 15 sludge samples based on (a) energy distribution
per sample, (b) thermal vs. exergy efficiency trends, (c) moisture loss energy, and (d) average
energy share.

Figure 13a decomposes the total HHV energy input of each sludge sample into five cat-
egories: useful output, moisture loss, flue gas loss, residue loss, and unburned energy. The
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total energy input per sample ranges from approximately 822 MJ (Sample S11) to 1565 MJ
(Sample S4), reflecting variability in HHV values across the samples. For instance, Sample
S4, with the highest HHV (15.648 MJ/kg), produces the greatest amount of useful energy at
approximately 368.29 MJ due to favorable combustion and turbine efficiencies. In contrast,
Sample S11, with the lowest HHV (8.221 MJ/kg) and the highest moisture content (15.5%),
delivers only about 179 MJ of useful energy, severely impacted by both moisture losses
(approximately 37.82 MJ) and reduced combustion efficiency (around 0.869). Unburned
energy represents a significant portion of the losses across all samples, driven by the inverse
relation between combustion efficiency and moisture percentage. Flue and residue losses,
held constant at 10% and 5% of HHV, respectively, also contribute meaningfully.

Figure 13b compares the thermal efficiency and exergy efficiency for each sample.
Thermal efficiency, defined as the ratio of useful energy to total HHV, ranges narrowly
between 21.7% and 23.5% across the samples. The highest thermal efficiency is observed
in Sample S4 (23.5%), aligning with its high HHV and low moisture content. Sample
S11 again shows the lowest performance with approximately 21.7% thermal efficiency
due to high moisture penalties and low turbine efficiency. In contrast, exergy efficiency,
which accounts for the quality of energy and ambient-to-combustion temperature gradients,
consistently trends higher, falling between 28.42% and 30.7%. The peak exergy efficiency
is again recorded for Sample S4, reaching 30.7%, while S11 dips to the lowest at 28.42%,
reinforcing the energy quality loss due to moisture and low-grade heat sources. According
to Figure 13c, moisture energy loss, computed using each sample’s moisture percentage
and the latent heat of vaporization (2.44 MJ/kg), shows a clear and substantial variation.
The highest moisture energy loss occurs in Sample S11 (37.82 MJ), directly attributable
to its 15.5% moisture content. Figure 13d summarizes the average distribution of energy
across all samples. On average, useful output accounts for approximately 30% of the total
input energy, making it the largest single contributor. Flue gas losses come next at around
10%, followed by unburned energy at approximately 20%, which slightly exceeds useful
output—highlighting the critical role of combustion efficiency. Residue losses contribute
5%, and moisture loss averages around 23.83 MJ, equivalent to approximately 2.5% of the
total input on average, though this varies widely by sample.

The thermodynamic performance of sludge incineration is significantly influenced by
the HHV, moisture content, and combustion conditions of each sample. Samples with high
HHV and low moisture (e.g., S4 and S3) exhibit superior energy recovery and efficiency,
while samples like S11 and S6, which have a low HHV and/or high moisture, show
diminished performance. The large proportion of unburned energy across all samples
suggests the potential for optimization, possibly via improved combustion control or pre-
drying of sludge. This dashboard thus provides a robust visual and numerical framework
for prioritizing sludge types for energy recovery and improving incineration system design.

Figure 14 presents a comprehensive overview of the economic performance of the
sludge-to-energy project under the given assumptions. In Figure 14a, the Life Cycle Cost
(LCC) breakdown highlights that operational expenditures (OPEX) over the 25-year lifetime
significantly dominate the overall cost structure, while capital expenditure (CAPEX) consti-
tutes a minor portion. This reflects a typical scenario where the investment is relatively mod-
est upfront, but long-term operational efficiency plays a critical role in economic viability.

Figure 14b illustrates the cumulative revenue and cost trends over the project lifetime.
The cumulative revenue curve (green) consistently stays above the cumulative cost curve
(red), indicating a growing financial surplus over time. This widening gap reflects the
profitability of the project and aligns with the calculated net savings of EUR 10.69 million,
confirming that revenues comfortably outweigh costs despite annual OPEX inflation.
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Figure 14. Economic performance evaluation of the sludge-to-energy system: (a) LCC breakdown,
(b) cumulative revenue vs. cost, (c) annual net cash flow, (d) discounted cash flow and DPP, (e) key
economic indicators, and (f) break-even point of CAPEX recovery.

Figure 14c depicts the annual net cash flow across the 25 years. Although there is
a gradual decline due to OPEX increasing at 3% annually while revenue only grows at
2%, the net cash flow remains positive throughout the operational period. This persistent
surplus ensures steady returns and supports the short payback timeframe.

Figure 14d shows the discounted cumulative cash flow, where the project surpasses
the break-even point in present value terms after approximately 2 years. The indicated
Discounted Payback Period (DPP) of 1.99 years confirms the speed at which the initial
investment is recovered when the time value of money is considered. The curve continues
to rise steeply, reflecting strong and sustained value generation. Figure 14e summarizes the
key economic indicators. The project achieves a net present value (NPV) of EUR 4.68 million
and an internal rate of return (IRR) of 55.44%, far exceeding the 7% discount rate, which
signals excellent financial performance. A Benefit–Cost Ratio (BCR) of 1.29 indicates that
for every euro invested, the project returns EUR 1.29 in benefits. The simple payback
period is just 1.80 years, reinforcing the attractiveness of the investment. Lastly, Figure 14f
illustrates the cumulative net cash flow over time and identifies the break-even point
where cumulative earnings exceed the CAPEX. This occurs before year 2, in line with both
the payback and DPP values. After break-even, the cumulative net cash rises linearly,
confirming the system’s capacity to generate consistent profits well beyond the recovery of
the initial investment.

Lastly, Figure 14a–f collectively demonstrates that the sludge-to-energy project, with
free feedstock and favorable energy sales, is not only economically viable but also highly
profitable. The combination of low CAPEX, rapidly recoverable investment, and high
internal returns makes this model a promising and sustainable solution within the waste-
to-energy domain.

4. Conclusions
Efficient sludge management is critical to the operation and cost-efficiency of wastew-

ater treatment systems, as sludge handling constitutes a significant portion of operational
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expenses. This study highlights the energy potential of sludge as a component of sustain-
able solid waste management by leveraging the energy content of sludge from sewage
treatment plants, particularly in industrial contexts, to support the development of a circu-
lar economy. By examining the waste-to-energy connection, this research investigates the
properties of sludge relevant to energy generation, without proposing a comprehensive
framework or detailed methodology for energy production from sludge, presenting it as a
viable resource within refinery or treatment facility operations.

This study determined an average energy content of 3090 kcal/kg in sludge, showing
a positive correlation with COD and a negative correlation with humidity. These findings
highlight the energy potential of sludge, particularly from gas and oil refining processes,
offering significant opportunities for reuse and energy recovery at the source.

Future research can focus on quantifying and analyzing the energy dynamics of
industrial wastewater treatment facilities to further elucidate the role of sludge as an energy
contributor. Extending this approach to investigate other valuable components, such as
nitrogen and phosphorus, through systematic experimentation could also provide further
insights into optimizing sludge utilization. This holistic approach to sludge management
not only supports environmental sustainability but also promotes economic efficiency,
presenting a dual benefit that aligns with the principles of a circular economy.
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Figure A1. The schematic plan of novelties in the present research.
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Figure A2. The conceptual model for applied methods in this study.

Scheme: weka.classifiers.trees.RandomForest − P 100 − I 100 − num-slots 1 − K 0 − M 1.0 − V 0.001 − S 1 (A1)

Relation: dataset
Instances: 15
Attributes: 33

• COD (mg/kg)
• MP (%)
• O1
• O2
• O3
• O4
• O5
• O6
• O7
• O8
• O9
• O10
• O11
• O12
• O13
• O14
• O15
• O16
• O17
• O18
• O19
• O20
• O21
• O22
• O23
• O24
• O25
• O26
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• O27
• O28
• O29
• O30
• HV (kcal/kg)

Test mode: split 70.0% train, remainder test
=== Classifier model (full training set) ===
RandomForest
Bagging with 100 iterations and base learner
weka.classifiers.trees.RandomTree − K 0 − M 1.0 − V 0.001 − S 1 − do-not-

check-capabilities
Time taken to build model: 0.06 s

Scheme: weka.classifiers.functions.GaussianProcesses − L 1.0 − N 0 − K “weka.classifiers.functions.sup-
portVector.PolyKernel − E 1.0 − C 250007” − S 1

(A2)

Relation: dataset
Instances: 15
Attributes: 33

• COD (mg/kg)
• MP (%)
• O1
• O2
• O3
• O4
• O5
• O6
• O7
• O8
• O9
• O10
• O11
• O12
• O13
• O14
• O15
• O16
• O17
• O18
• O19
• O20
• O21
• O22
• O23
• O24
• O25
• O26
• O27
• O28
• O29
• O30
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• HV (kcal/kg)

Test mode: split 70.0% train, remainder test
=== Classifier model (full training set) ===
Gaussian Processes
Kernel used:
Linear Kernel: K(x,y) = <x,y>
All values shown based on: Normalize training data
Average Target Value: 0.6359812206572769
Inverted Covariance Matrix:

• Lowest Value = −0.220396690974698
• Highest Value = 0.9928283922385543

Inverted Covariance Matrix * ×Target-value Vector:

• Lowest Value = −0.2503201873874878
• Highest Value = 0.23221797774109562

Time taken to build model: 0.06 s

Scheme: weka.classifiers.functions.MultilayerPerceptron − L 0.3 − M 0.2 − N 500 − V 0 − S 0 − E 20 − H a (A3)

Relation: dataset
Instances: 15
Attributes: 33

• COD (mg/kg)
• MP (%)
• O1
• O2
• O3
• O4
• O5
• O6
• O7
• O8
• O9
• O10
• O11
• O12
• O13
• O14
• O15
• O16
• O17
• O18
• O19
• O20
• O21
• O22
• O23
• O24
• O25
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• O26
• O27
• O28
• O29
• O30
• HV (kcal/kg)

Test mode: split 70.0% train, remainder test
=== Classifier model (full training set) ===

Table A1. Linear Node 0.

Inputs Weights

Threshold 0.07068559270318164

Node 1 −1.0267170130135643

Node 2 0.2676516375287772

Node 3 −0.043342463822593116

Node 4 0.33977695621839915

Node 5 0.24888150788090302

Node 6 −0.06800622170292374

Node 7 0.31727989982986315

Node 8 −0.04489031019869961

Node 9 −0.2588190758184514

Node 10 −0.039516413434804554

Node 11 1.3035263323746997

Node 12 −0.06718337711396917

Node 13 −0.061885404365778274

Node 14 0.06767586764224053

Node 15 −0.07428253993399515

Node 16 −0.0023380775212030747

Table A2. Sigmoid Node 1.

Inputs Weights

Threshold −5.101317434129237

Attrib COD (mg/kg) −0.10999855382272447

Attrib MP (%) 3.1387888383515667

Attrib O1 −0.11312401213156814

Attrib O2 −0.184565906314655

Attrib O3 −0.1609389583729251

Attrib O4 −0.19056277500932514

Attrib O5 −0.12455240631904742

Attrib O6 −0.11669309820417555

Attrib O7 −0.1666746469102521

Attrib O8 −0.1566849927679588
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Table A2. Cont.

Inputs Weights

Attrib O9 −0.13136319810000371

Attrib O10 −0.17111187241119893

Attrib O11 −0.10876891855576579

Attrib O12 −0.13963863593323714

Attrib O13 −0.17488220359423481

Attrib O14 −0.18826763381673942

Attrib O15 −0.10627892287650095

Attrib O16 −0.19158484634251424

Attrib O17 −0.16986667044756942

Attrib O18 −0.15000595490396923

Attrib O19 −0.1876307078421849

Attrib O20 −0.1420222737860945

Attrib O21 −0.1763802458606058

Attrib O22 −0.15144753857645396

Attrib O23 −0.162494340100809

Attrib O24 −0.16966263268661816

Attrib O25 −0.17166796524208977

Attrib O26 −0.17286309827371693

Attrib O27 −0.09365854447748827

Attrib O28 −0.1743046302471895

Attrib O29 −0.12203141651000744

Attrib O30 −0.15154881060134617

Table A3. Sigmoid Node 2.

Inputs Weights

Threshold −1.1612492691992555

Attrib COD (mg/kg) 0.18667668975258248

Attrib MP (%) 0.25133557727001477

Attrib O1 0.2021348504114182

Attrib O2 0.10569840866027984

Attrib O3 0.15594851195736417

Attrib O4 0.17289154799565462

Attrib O5 0.17682937513594285

Attrib O6 0.12180962817200848

Attrib O7 0.17634169286443965

Attrib O8 0.20137823787469658

Attrib O9 0.1755624358581744

Attrib O10 0.1177407588486516

Attrib O11 0.15674143567553267
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Table A3. Cont.

Inputs Weights

Attrib O12 0.19841851389872142

Attrib O13 0.13996155054342732

Attrib O14 0.18147093387294402

Attrib O15 0.18479881795013345

Attrib O16 0.12965569779387076

Attrib O17 0.11698259403349087

Attrib O18 0.1695889184256365

Attrib O19 0.18005577961884872

Attrib O20 0.155905226013561

Attrib O21 0.11203483985974043

Attrib O22 0.1604180703184138

Attrib O23 0.14707012524396276

Attrib O24 0.18627969388869484

Attrib O25 0.1421059130733816

Attrib O26 0.10714139233062554

Attrib O27 0.1285405671548043

Attrib O28 0.13131373182059017

Attrib O29 0.1888867833746358

Attrib O30 0.19092652004379093

Table A4. Sigmoid Node 3.

Inputs Weights

Threshold −1.0544569431161999

Attrib COD (mg/kg) 0.08791197516570441

Attrib MP (%) 0.512527175223934

Attrib O1 0.12355247283191953

Attrib O2 0.08360904994694489

Attrib O3 0.1271234505800763

Attrib O4 0.10977731821020945

Attrib O5 0.12468555314269844

Attrib O6 0.04749216393044118

Attrib O7 0.04435668780898842

Attrib O8 0.0928312842866889

Attrib O9 0.06562843285736743

Attrib O10 0.12727925177723093

Attrib O11 0.0936824544575851

Attrib O12 0.10454391602313798

Attrib O13 0.05870688970878106

Attrib O14 0.06237281509401124
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Table A4. Cont.

Inputs Weights

Attrib O15 0.040212781514511485

Attrib O16 0.05936958346964843

Attrib O17 0.1163504590479479

Attrib O18 0.03681035512791618

Attrib O19 0.03822595820895604

Attrib O20 0.10546018079269798

Attrib O21 0.1292174337742086

Attrib O22 0.05738939639819674

Attrib O23 0.1092915369459559

Attrib O24 0.10279008924329892

Attrib O25 0.04431985840693077

Attrib O26 0.13179245944734233

Attrib O27 0.12039531829380745

Attrib O28 0.10128123122629713

Attrib O29 0.04314855852223309

Attrib O30 0.04671207875874583

Table A5. Sigmoid Node 4.

Inputs Weights

Threshold −1.24985880989842

Attrib COD (mg/kg) 0.19069650004923305

Attrib MP (%) 0.008442582116890968

Attrib O1 0.11779215134369228

Attrib O2 0.19795801343195163

Attrib O3 0.1284840029063042

Attrib O4 0.1614918232346659

Attrib O5 0.1587587795086591

Attrib O6 0.172091898025917

Attrib O7 0.1272177389570626

Attrib O8 0.16118774531385205

Attrib O9 0.16329930323225939

Attrib O10 0.16953236719368844

Attrib O11 0.1605017300713232

Attrib O12 0.11292493336070926

Attrib O13 0.15460576251982444

Attrib O14 0.1729334231049767

Attrib O15 0.12689728282752713

Attrib O16 0.11261728487168146

Attrib O17 0.1323899610679607
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Table A5. Cont.

Inputs Weights

Attrib O18 0.11725011012960049

Attrib O19 0.15304796164804607

Attrib O20 0.16004222343197444

Attrib O21 0.17600849862017967

Attrib O22 0.19286347261251874

Attrib O23 0.19680461638250799

Attrib O24 0.16196572739114043

Attrib O25 0.14758774874077502

Attrib O26 0.14870560925114576

Attrib O27 0.15035039470259692

Attrib O28 0.1352672283181746

Attrib O29 0.19514882919878382

Attrib O30 0.19538464817597642

Table A6. Sigmoid Node 5.

Inputs Weights

Threshold −1.2251067355081124

Attrib COD (mg/kg) 0.09186043363150222

Attrib MP (%) 0.14877534147816598

Attrib O1 0.17467334106953253

Attrib O2 0.17737816637431542

Attrib O3 0.16589267140190117

Attrib O4 0.10197462195876188

Attrib O5 0.12954199885333806

Attrib O6 0.1717707623536782

Attrib O7 0.09733327644717756

Attrib O8 0.10577731316794882

Attrib O9 0.08204572681197876

Attrib O10 0.17013672395692475

Attrib O11 0.11590476232431593

Attrib O12 0.12900208378410835

Attrib O13 0.11396087452092103

Attrib O14 0.12041602604413904

Attrib O15 0.16246855669383137

Attrib O16 0.15718962488381794

Attrib O17 0.13226519378143117

Attrib O18 0.1527813214183376

Attrib O19 0.11715000202330848
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Table A6. Cont.

Inputs Weights

Attrib O20 0.1721757864270836

Attrib O21 0.09726287302811605

Attrib O22 0.10776291119974697

Attrib O23 0.12746335731362718

Attrib O24 0.08021660541735268

Attrib O25 0.1507095084714076

Attrib O26 0.16437377420588278

Attrib O27 0.13643681048975892

Attrib O28 0.1401132445417598

Attrib O29 0.14393709994759651

Attrib O30 0.16823457159266914

Table A7. Sigmoid Node 6.

Inputs Weights

Threshold −1.0746898611822175

Attrib COD (mg/kg) 0.03812029982283836

Attrib MP (%) 0.588805326368804

Attrib O1 0.10224356415502629

Attrib O2 0.10655826902240698

Attrib O3 0.0908022095806878

Attrib O4 0.06871837897390685

Attrib O5 0.06101103234207764

Attrib O6 0.06092493709915469

Attrib O7 0.05959019786602173

Attrib O8 0.08113274308276638

Attrib O9 0.07755042180719901

Attrib O10 0.033354722978098855

Attrib O11 0.0299781227727338

Attrib O12 0.11994706762907376

Attrib O13 0.060820564836093195

Attrib O14 0.058894407785175

Attrib O15 0.0726710309763646

Attrib O16 0.12609496401767573

Attrib O17 0.08155397153844599

Attrib O18 0.12264570031092098

Attrib O19 0.09671014693822111

Attrib O20 0.06712749861220695

Attrib O21 0.12538182618527124
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Table A7. Cont.

Inputs Weights

Attrib O22 0.11289025285738608

Attrib O23 0.10259787932026297

Attrib O24 0.09033812799853908

Attrib O25 0.045958993949314436

Attrib O26 0.07421463557768682

Attrib O27 0.03542280609935533

Attrib O28 0.07588779879666113

Attrib O29 0.11808904071971221

Attrib O30 0.060635350964090715

Table A8. Sigmoid Node 7.

Inputs Weights

Threshold −1.260034067295491

Attrib COD (mg/kg) 0.19261570131468267

Attrib MP (%) 0.07371236265972055

Attrib O1 0.16249368301742959

Attrib O2 0.14489800459660834

Attrib O3 0.18562218942942563

Attrib O4 0.18590510313729364

Attrib O5 0.14878120955123456

Attrib O6 0.14771154440673925

Attrib O7 0.17060535666774546

Attrib O8 0.18923229356455493

Attrib O9 0.10402529083388913

Attrib O10 0.11427404345226191

Attrib O11 0.16370910913095676

Attrib O12 0.11147664186918499

Attrib O13 0.17850375276338531

Attrib O14 0.1192544849930477

Attrib O15 0.16887642506263464

Attrib O16 0.1157379259672118

Attrib O17 0.14935597411577523

Attrib O18 0.13371469248850515

Attrib O19 0.15597435192830703

Attrib O20 0.1005712417328219

Attrib O21 0.09870793157428388

Attrib O22 0.10323428382479513

Attrib O23 0.13891901271255327

Attrib O24 0.17811203929944885
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Table A8. Cont.

Inputs Weights

Attrib O25 0.19179716395186147

Attrib O26 0.1260357257223176

Attrib O27 0.1538006217432872

Attrib O28 0.15220102266640329

Attrib O29 0.15509776156536378

Attrib O30 0.1311093153574443

Table A9. Sigmoid Node 8.

Inputs Weights

Threshold −1.0220526688097895

Attrib COD (mg/kg) 0.11265264999332877

Attrib MP (%) 0.5263090589499574

Attrib O1 0.12085648032011136

Attrib O2 0.06596946852986284

Attrib O3 0.044865998874315936

Attrib O4 0.057155847372874116

Attrib O5 0.13772770226240377

Attrib O6 0.05831473201031545

Attrib O7 0.04507574097456941

Attrib O8 0.06219198191051828

Attrib O9 0.11147958356814221

Attrib O10 0.09801759642193907

Attrib O11 0.11179167492620072

Attrib O12 0.07535337736474804

Attrib O13 0.10749508924933317

Attrib O14 0.05294058448423124

Attrib O15 0.12805119084305583

Attrib O16 0.13254759349899414

Attrib O17 0.07724728240404337

Attrib O18 0.0778175516508985

Attrib O19 0.06454426347944316

Attrib O20 0.0581160449696003

Attrib O21 0.061424302061267894

Attrib O22 0.11737871064165986

Attrib O23 0.08273845775050312

Attrib O24 0.06795895841280947

Attrib O25 0.09305437377190746

Attrib O26 0.10947558360605791



ChemEngineering 2025, 9, 51 38 of 51

Table A9. Cont.

Inputs Weights

Attrib O27 0.13800391755182373

Attrib O28 0.07266042881521638

Attrib O29 0.10063082774835745

Attrib O30 0.0882060516398677

Table A10. Sigmoid Node 9.

Inputs Weights

Threshold −1.557363606880057

Attrib COD (mg/kg) 0.09225159988826521

Attrib MP (%) 1.156222148984904

Attrib O1 0.06489117785758867

Attrib O2 0.05166431322184241

Attrib O3 0.08542088334478797

Attrib O4 0.02113985245278545

Attrib O5 0.08211225698426577

Attrib O6 0.032136700877342494

Attrib O7 0.02935535285896353

Attrib O8 0.11173066699325086

Attrib O9 0.06416268660109455

Attrib O10 0.11724697153014652

Attrib O11 0.027673153727056865

Attrib O12 0.09026412352967635

Attrib O13 0.031655872512937944

Attrib O14 0.03561786772306921

Attrib O15 0.050014174119410726

Attrib O16 0.02540506280849797

Attrib O17 0.03528943790143984

Attrib O18 0.02798759128660677

Attrib O19 0.06016503406885871

Attrib O20 0.061996351346991524

Attrib O21 0.08397022671520293

Attrib O22 0.07533484368020739

Attrib O23 0.044184049400287466

Attrib O24 0.049183665133131695

Attrib O25 0.07293931308535331

Attrib O26 0.027003836534056795

Attrib O27 0.03852631593476523

Attrib O28 0.06854093006780097
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Table A10. Cont.

Inputs Weights

Attrib O29 0.1118969606032633

Attrib O30 0.02882915184368124

Table A11. Sigmoid Node 10.

Inputs Weights

Threshold −1.0366514315744024

Attrib COD (mg/kg) 0.04838580290737172

Attrib MP (%) 0.5089641979341035

Attrib O1 0.08027256388416022

Attrib O2 0.11889181378234637

Attrib O3 0.0837441395533612

Attrib O4 0.0605533475545697

Attrib O5 0.0367806696511173

Attrib O6 0.10245789701051387

Attrib O7 0.12328613401103007

Attrib O8 0.036000174702474526

Attrib O9 0.11599851416774667

Attrib O10 0.06723897144355272

Attrib O11 0.08439994907613854

Attrib O12 0.03730730934018215

Attrib O13 0.12762688632100452

Attrib O14 0.0678226051301851

Attrib O15 0.1323802444694831

Attrib O16 0.1312968141873455

Attrib O17 0.05583556867494034

Attrib O18 0.0465466043589025

Attrib O19 0.13355317546154835

Attrib O20 0.0991035049228638

Attrib O21 0.1123883351958508

Attrib O22 0.0866240342554215

Attrib O23 0.10840138883724833

Attrib O24 0.08929991453293

Attrib O25 0.08976794548137196

Attrib O26 0.06526818694647897

Attrib O27 0.08468901941043606

Attrib O28 0.0710213619379394

Attrib O29 0.1143011729234599

Attrib O30 0.10681760747029694
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Table A12. Sigmoid Node 11.

Inputs Weights

Threshold −2.602333035551181

Attrib COD (mg/kg) −0.02292589729334108

Attrib MP (%) −2.518550447841651

Attrib O1 0.01606106117911416

Attrib O2 −0.06401321687354593

Attrib O3 −0.01855151380610832

Attrib O4 0.02006001424955837

Attrib O5 −3.199144440957356 × 10−4

Attrib O6 −0.0312966793918709

Attrib O7 −0.015757794943633396

Attrib O8 −0.041800739074798594

Attrib O9 −0.0087697698961916

Attrib O10 −0.0554023835094126

Attrib O11 −8.502776275819785 × 10−5

Attrib O12 −0.04321819218877869

Attrib O13 0.018309066783170586

Attrib O14 0.01453530608599118

Attrib O15 0.013733406113064773

Attrib O16 −0.028391993692497397

Attrib O17 −0.03161652546016829

Attrib O18 −0.016217273945953476

Attrib O19 −0.04010403912219427

Attrib O20 0.0019413150730336532

Attrib O21 −0.033085208168662096

Attrib O22 −0.009868299917392733

Attrib O23 −3.4196133290180183 × 10−4

Attrib O24 −0.03136646684637699

Attrib O25 −0.04451617340528765

Attrib O26 −0.017975103734739956

Attrib O27 −5.430432351494496 × 10−4

Attrib O28 −0.0077508275754642865

Attrib O29 −0.03008450946393853

Attrib O30 −0.003319464939601245

Table A13. Sigmoid Node 12.

Inputs Weights

Threshold −1.0319288428521507

Attrib COD (mg/kg) 0.0355202658793075

Attrib MP (%) 0.6002402499548405
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Table A13. Cont.

Inputs Weights

Attrib O1 0.08525519145561074

Attrib O2 0.03608925002803349

Attrib O3 0.087140586020223

Attrib O4 0.06482853272465125

Attrib O5 0.09810063203014707

Attrib O6 0.0943146093719647

Attrib O7 0.04363593734904761

Attrib O8 0.10195105246945697

Attrib O9 0.10229619228295685

Attrib O10 0.0448018489097359

Attrib O11 0.11515284813200802

Attrib O12 0.08156405833983768

Attrib O13 0.1202717325946275

Attrib O14 0.11954046333208115

Attrib O15 0.1121857541772192

Attrib O16 0.08661223445971938

Attrib O17 0.1263675150660494

Attrib O18 0.1282115839559057

Attrib O19 0.04870199110115739

Attrib O20 0.12929443622653153

Attrib O21 0.04995919527319357

Attrib O22 0.06131301997807984

Attrib O23 0.04526679549900331

Attrib O24 0.05418862954286943

Attrib O25 0.07858282262303855

Attrib O26 0.09328420199299454

Attrib O27 0.132168294272423

Attrib O28 0.04137698369583454

Attrib O29 0.06105986864164176

Attrib O30 0.08563122415578285

Table A14. Sigmoid Node 13.

Inputs Weights

Threshold −1.018775423993633

Attrib COD (mg/kg) 0.041811078111431144

Attrib MP (%) 0.5817848329368184

Attrib O1 0.13385554534263866

Attrib O2 0.07004654268636898

Attrib O3 0.07129731960687286
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Table A14. Cont.

Inputs Weights

Attrib O4 0.07755169508098379

Attrib O5 0.11644499611436258

Attrib O6 0.1287221726045683

Attrib O7 0.08779650105351719

Attrib O8 0.06344892499657183

Attrib O9 0.07966802322997461

Attrib O10 0.11663060218171604

Attrib O11 0.10682290851728525

Attrib O12 0.07530246971806011

Attrib O13 0.07410056447742444

Attrib O14 0.06076530863831428

Attrib O15 0.07104537604696695

Attrib O16 0.03571432385846548

Attrib O17 0.09153559854013618

Attrib O18 0.036368054395842266

Attrib O19 0.07841227221291355

Attrib O20 0.12959728737027976

Attrib O21 0.09310814083216934

Attrib O22 0.09505391382697179

Attrib O23 0.11027651559220354

Attrib O24 0.13229991711457226

Attrib O25 0.037420236383293455

Attrib O26 0.09293622349945631

Attrib O27 0.05952054736113679

Attrib O28 0.037731606745566366

Attrib O29 0.10866599784898434

Attrib O30 0.11875163025596361

Table A15. Sigmoid Node 14.

Inputs Weights

Threshold −1.1105465033260664

Attrib COD (mg/kg) 0.09136178655030434

Attrib MP (%) 0.32746322234492614

Attrib O1 0.15344675462009733

Attrib O2 0.06519354946706367

Attrib O3 0.1042834544163131

Attrib O4 0.125274927551394

Attrib O5 0.13063159813372258
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Table A15. Cont.

Inputs Weights

Attrib O6 0.10993431657701604

Attrib O7 0.06385882014782662

Attrib O8 0.06291900168615548

Attrib O9 0.09097584134998561

Attrib O10 0.1235119245858827

Attrib O11 0.09067161785307432

Attrib O12 0.07506684365579509

Attrib O13 0.09434850023662843

Attrib O14 0.1185434900182713

Attrib O15 0.07215739058905128

Attrib O16 0.07104272575503055

Attrib O17 0.14403289411661352

Attrib O18 0.08934169578794976

Attrib O19 0.11572848789791045

Attrib O20 0.11842898411064622

Attrib O21 0.13985165911629127

Attrib O22 0.06503977797032455

Attrib O23 0.10189906960406984

Attrib O24 0.09619100812273614

Attrib O25 0.13129172164009642

Attrib O26 0.06271652437478975

Attrib O27 0.1374100956752353

Attrib O28 0.1478022460749558

Attrib O29 0.07062932592569605

Attrib O30 0.14052129605295352

Table A16. Sigmoid Node 15.

Inputs Weights

Threshold −1.0408653898645

Attrib COD (mg/kg) 0.0733426752650935

Attrib MP (%) 0.6255323266270877

Attrib O1 0.07477631802642083

Attrib O2 0.12449686018744868

Attrib O3 0.10986267864682446

Attrib O4 0.08031535398954151

Attrib O5 0.10260871667045947

Attrib O6 0.0608851788005209

Attrib O7 0.057142614408122884

Attrib O8 0.062091918812251866
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Table A16. Cont.

Inputs Weights

Attrib O9 0.06640518603756414

Attrib O10 0.08235448947909953

Attrib O11 0.045841305641284046

Attrib O12 0.0688165544601729

Attrib O13 0.09209127880537882

Attrib O14 0.0885379274854056

Attrib O15 0.06668228068987606

Attrib O16 0.1246859829734389

Attrib O17 0.10471974571127768

Attrib O18 0.0977270650683007

Attrib O19 0.048578764918776315

Attrib O20 0.11161790122071474

Attrib O21 0.10659552994455497

Attrib O22 0.12499694577446563

Attrib O23 0.13675867919262863

Attrib O24 0.04737590368880155

Attrib O25 0.055400764932153776

Attrib O26 0.060331035497816286

Attrib O27 0.0708896294262611

Attrib O28 0.06369459449550872

Attrib O29 0.04231980384507909

Attrib O30 0.04674625845139092

Table A17. Sigmoid Node 16.

Inputs Weights

Threshold −1.0372912907695282

Attrib COD (mg/kg) 0.13961717796881334

Attrib MP (%) 0.4369830521355912

Attrib O1 0.05840811000258616

Attrib O2 0.054049212997619486

Attrib O3 0.08595830196184198

Attrib O4 0.08898677305780758

Attrib O5 0.08517075719500093

Attrib O6 0.08705449008085972

Attrib O7 0.1420293006135053

Attrib O8 0.06768822146559722

Attrib O9 0.12819623885595804

Attrib O10 0.10167614133764652
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Table A17. Cont.

Inputs Weights

Attrib O11 0.088610020707298

Attrib O12 0.11125638263906086

Attrib O13 0.0540828856659922

Attrib O14 0.09521470754164786

Attrib O15 0.07889852931378395

Attrib O16 0.07898215147755136

Attrib O17 0.10340974539268763

Attrib O18 0.08973269100426907

Attrib O19 0.14163609883777212

Attrib O20 0.056480893812395

Attrib O21 0.09386157551509472

Attrib O22 0.13517956524557556

Attrib O23 0.08423222302779669

Attrib O24 0.05881742612025948

Attrib O25 0.12335383673229423

Attrib O26 0.11251675232945223

Attrib O27 0.09588959683564696

Attrib O28 0.13363104094266542

Attrib O29 0.07315772375904138

Attrib O30 0.13684265200576334

Class

• Input
• Node 0

Time taken to build model: 0.07 s

Scheme: weka.classifiers.functions.SMOreg − C 1.0 − N 0 − I “weka.classifiers.functions.sup-
portVector.RegSMOImproved − T 0.001 − V − P 1.0 × 10−12 − L 0.001 − W 1” − K “w-

eka.classifiers.functions.supportVector.PolyKernel − E 1.0 − C 250007”
(A4)

Relation: dataset
Instances: 15
Attributes: 33

• COD (mg/kg)
• MP (%)
• O1
• O2
• O3
• O4
• O5
• O6
• O7
• O8
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• O9
• O10
• O11
• O12
• O13
• O14
• O15
• O16
• O17
• O18
• O19
• O20
• O21
• O22
• O23
• O24
• O25
• O26
• O27
• O28
• O29
• O30
• HV (kcal/kg)

Test mode: split 70.0% train, remainder test
=== Classifier model (full training set) ===
SMOreg
weights (not support vectors):
+0.007 * × (normalized) COD (mg/kg)
−0.6679 * (normalized) MP (%)
+0.007 * (normalized) O1
+0.007 * (normalized) O2
+0.007 * (normalized) O3
+0.007 * (normalized) O4
+0.007 * (normalized) O5
+0.007 * (normalized) O6
+0.007 * (normalized) O7
+0.007 * (normalized) O8
+0.007 * (normalized) O9
+0.007 * (normalized) O10
+0.007 * (normalized) O11
+0.007 * (normalized) O12
+0.007 * (normalized) O13
+0.007 * (normalized) O14
+0.007 * (normalized) O15
+0.007 * (normalized) O16
+0.007 * (normalized) O17
+0.007 * (normalized) O18
+0.007 * (normalized) O19
+0.007 * (normalized) O20
+0.007 * (normalized) O21
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+0.007 * (normalized) O22
+0.007 * (normalized) O23
+0.007 * (normalized) O24
+0.007 * (normalized) O25
+0.007 * (normalized) O26
+0.007 * (normalized) O27
+0.007 * (normalized) O28
+0.007 * (normalized) O29
+0.007 * (normalized) O30
+0.7879
Number of kernel evaluations: 120 (96.317% cached)
Time taken to build model: 0.01 s

Scheme: weka.classifiers.lazy.IBk − K 1 − W 0 − A “weka.core.neighboursearch.LinearNNSea-
rch − A\”“weka.core.EuclideanDistance − R first-last\”

(A5)

Relation: dataset
Instances: 15
Attributes: 33

• COD (mg/kg)
• MP (%)
• O1
• O2
• O3
• O4
• O5
• O6
• O7
• O8
• O9
• O10
• O11
• O12
• O13
• O14
• O15
• O16
• O17
• O18
• O19
• O20
• O21
• O22
• O23
• O24
• O25
• O26
• O27
• O28
• O29
• O30
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• HV (kcal/kg)

Test mode: split 70.0% train, remainder test
=== Classifier model (full training set) ===
IB1 instance-based classifier
using 1 nearest neighbour(s) for classification
Time taken to build model: 0 s

Scheme: weka.classifiers.lazy.LWL − U 0 − K − 1 − A “weka.core.neighboursearch.LinearNNSearch
− A\”“weka.core.EuclideanDistance − R first-last\” − W weka.classifiers.trees.DecisionStump

(A6)

Relation: dataset
Instances: 15
Attributes: 33

• COD (mg/kg)
• MP (%)
• O1
• O2
• O3
• O4
• O5
• O6
• O7
• O8
• O9
• O10
• O11
• O12
• O13
• O14
• O15
• O16
• O17
• O18
• O19
• O20
• O21
• O22
• O23
• O24
• O25
• O26
• O27
• O28
• O29
• O30
• HV (kcal/kg)

Test mode: split 70.0% train, remainder test
=== Classifier model (full training set) ===
Locally weighted learning
===========================
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Using classifier: weka.classifiers.trees.DecisionStump
Using linear weighting kernels
Using all neighbors
Time taken to build model: 0 s

Scheme: weka.classifiers.meta.Bagging − P 100 − S 1 − num-slots 1 − I 10 − W
weka.classifiers.trees.REPTree − M 2 − V 0.001 − N 3 − S 1 − L − 1 − I 0.0

(A7)

Relation: dataset
Instances: 15
Attributes: 33

• COD (mg/kg)
• MP (%)
• O1
• O2
• O3
• O4
• O5
• O6
• O7
• O8
• O9
• O10
• O11
• O12
• O13
• O14
• O15
• O16
• O17
• O18
• O19
• O20
• O21
• O22
• O23
• O24
• O25
• O26
• O27
• O28
• O29
• O30
• HV (kcal/kg)

Test mode: split 70.0% train, remainder test
=== Classifier model (full training set) ===
Bagging with 10 iterations and base learner
weka.classifiers.trees.REPTree − M 2 − V 0.001 − N 3 − S 1 − L − 1 − I 0.0
Time taken to build model: 0.01 s
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25. Dereli, B.; Gürel, B.; Dolgun, G.K.; Keçebaş, A. Comprehensive study on incineration-based disposal of hazardous gas and liquid

wastes from used lubricating oil refineries. Process Saf. Environ. Prot. 2024, 184, 79–95. [CrossRef]

https://doi.org/10.3390/chemengineering8040074
https://doi.org/10.3390/chemengineering8050095
https://doi.org/10.3390/chemengineering3020045
https://doi.org/10.1016/j.energy.2022.123103
https://doi.org/10.1016/j.conbuildmat.2022.128116
https://doi.org/10.1016/j.jenvman.2023.119910
https://doi.org/10.1016/j.fuel.2023.129500
https://doi.org/10.1016/j.fuel.2023.130331
https://doi.org/10.1016/j.wasman.2023.12.007
https://doi.org/10.1016/j.resconrec.2022.106308
https://doi.org/10.1016/j.psep.2022.01.018
https://doi.org/10.1016/j.jhazmat.2021.127369
https://doi.org/10.3390/en15165943
https://doi.org/10.1080/09593330.2011.588961
https://doi.org/10.1016/j.fuel.2005.01.003
https://doi.org/10.1016/j.enconman.2009.11.039
https://doi.org/10.1016/j.fuel.2010.11.031
https://doi.org/10.1016/j.fuel.2012.04.015
https://doi.org/10.1016/j.fuproc.2012.04.023
https://doi.org/10.1016/j.rser.2015.10.033
https://doi.org/10.1007/s10098-022-02315-z
https://doi.org/10.1016/j.psep.2024.01.077


ChemEngineering 2025, 9, 51 51 of 51

26. Wan, G.; Sun, L.; Xu, L.; Lin, L. Emission of nitrogen/sulfur pollutants and migration of heavy metals during combustion of oily
sludge from the oil refining process in fluidized bed. J. Energy Inst. 2024, 112, 101476. [CrossRef]

27. Sahu, R.; Sethi, S.; Bharshankh, A.; Biswas, R. Sustainable Management of Oily Petroleum Refinery Sludge Through Anaerobic
Digestion with Bioenergy Production. In Recent Trends in Management and Utilization of Industrial Sludge; Springer Nature: Cham,
Switzerland, 2024; pp. 57–94.

28. Panda, S.; Jain, M.S. A paradigm shift in the management of oil refinery wastes. In Solid Waste Management for Resource-Efficient
Systems; Elsevier: Amsterdam, The Netherlands, 2024; pp. 427–440.

29. Mokhtar, N.M.; Omar, R.; Salleh, M.M.; Idris, A. Characterization of sludge from the wastewater-treatment plant of a refinery. Int.
J. Eng. Technol. 2011, 8, 48–56.

30. Barneto, A.G.; Moltó, J.; Ariza, J.; Conesa, J.A. Thermogravimetric monitoring of oil refinery sludge. J. Anal. Appl. Pyrolysis 2014,
105, 8–13. [CrossRef]

31. Crelier, M.M.M.; Dweck, J. Water content of a Brazilian refinery oil sludge and its influence on pyrolysis enthalpy by thermal
analysis. J. Therm. Anal. Calorim. 2009, 97, 551–557. [CrossRef]

32. HSE. Report of Shahid Hasheminejad Gas Refinery Plant, Iran. 2018. Available online: https://www.mashal.ir/content/1/%D9%85%
D8%B4%D8%B9%D9%84/57/897/20 (accessed on 4 April 2025). (In Persian).

33. Weather Spark. The Weather Year Round Anywhere on Earth. Available online: https://weatherspark.com (accessed on 17
November 2023).

34. Schasfoort, T.; Fard, Z.; Gehrmann, T.; Hollatz, S. Demonstration of the Benefits of SAE 30 Stationary Gas Engine Oil in Full
Scale Engine Tests. In Proceedings of the Internal Combustion Engine Division Fall Technical Conference, Virtual, Online, 13–15
October 2021; Volume 85512, p. V001T04A008.

35. Rice, E.W. (Ed.) Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington,
DC, USA, 2012; Volume 10.

36. Silva, A.P.M.; Barros, R.M.; Lora, E.E.S.; Flórez, C.A.D.; dos Santos, I.F.S.; de Cassia Crispim, A.M.; Renó, M.L.G. Characterization
and evaluation of the life cycle of energy use from drying bed sludge. Energy 2022, 263, 125630. [CrossRef]

37. Jin, X.; Teng, D.; Fang, J.; Liu, Y.; Jiang, Z.; Song, Y.; Zhang, T.; Siyal, A.A.; Dai, J.; Fu, J.; et al. Petroleum oil and products recovery
from oily sludge: Characterization and analysis of pyrolysis products. Environ. Res. 2021, 202, 111675. [CrossRef]

38. Ogunjuyigbe, A.; Ayodele, T.; Alao, M. Electricity generation from municipal solid waste in some selected cities of Nigeria: An
assessment of feasibility, potential and technologies. Renew. Sustain. Energy Rev. 2017, 80, 149–162. [CrossRef]

39. Stehouwer, R.C.; Wolf, A.M.; Doty, W.T. Chemical monitoring of sewage sludge in Pennsylvania: Variability and application
uncertainty. J. Environ. Qual. 2000, 29, 1686–1695. [CrossRef]

40. Ji, L.; Gu, D.; Cai, B.; Che, L.; Xiao, L.; Foo, D.C.; Zhang, N.; Lou, Y.; Hu, T.; Li, G.; et al. Environmental impacts and
decarbonization pathways of oily sludge pyrolysis based on life cycle assessment. J. Clean. Prod. 2024, 471, 143391. [CrossRef]

41. Jerez, S.; Ventura, M.; Molina, R.; Pariente, M.; Martínez, F.; Melero, J. Comprehensive characterization of an oily sludge from a
petrol refinery: A step forward for its valorization within the circular economy strategy. J. Environ. Manag. 2021, 285, 112124.
[CrossRef]

42. Shi, D.; Ren, D.; Ma, Z. Impact of Municipal Solid Waste Incineration Bottom Ash as Cement Substitution. Arab. J. Sci. Eng. 2024,
1–12. [CrossRef]

43. Huang, Y.; Zhen, Y.; Liu, L.; Ning, X.; Wang, C.; Li, K.; Zhao, L.; Lu, Q. Comprehensive competitiveness assessment of four typical
municipal sludge treatment routes in China based on environmental and techno-economic analysis. Sci. Total Environ. 2023, 895,
165123. [CrossRef]

44. Nkuna, S.G.; Olwal, T.O.; Chowdhury, S.D.; Ndambuki, J.M. A review of wastewater sludge-to-energy generation focused on
thermochemical technologies: An improved technological, economical and socio-environmental aspect. Clean. Waste Syst. 2024, 7,
100130. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.joei.2023.101476
https://doi.org/10.1016/j.jaap.2013.09.007
https://doi.org/10.1007/s10973-009-0077-5
https://www.mashal.ir/content/1/%D9%85%D8%B4%D8%B9%D9%84/57/897/20
https://www.mashal.ir/content/1/%D9%85%D8%B4%D8%B9%D9%84/57/897/20
https://weatherspark.com
https://doi.org/10.1016/j.energy.2022.125630
https://doi.org/10.1016/j.envres.2021.111675
https://doi.org/10.1016/j.rser.2017.05.177
https://doi.org/10.2134/jeq2000.00472425002900050041x
https://doi.org/10.1016/j.jclepro.2024.143391
https://doi.org/10.1016/j.jenvman.2021.112124
https://doi.org/10.1007/s13369-024-09542-0
https://doi.org/10.1016/j.scitotenv.2023.165123
https://doi.org/10.1016/j.clwas.2024.100130

	Introduction 
	Materials and Methods 
	Case Study 
	Experimental Methods 
	Large-Scale Heat Value Evaluation 
	Classical Mathematical Modelling 
	Sensitive Analysis and Optimization 
	Thermodynamics Analysis 
	Economical Analysis 

	Results and Discussion 
	Conclusions 
	Appendix A
	References

